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Nomenclature

characteristic pressure coefficient

minimum pressure coefficient

pressure typical of the noncondensable gas in a bubble
maximum gas pressure in a bubble

minimum pressure

vapor pressure based on liquid temperature

static pressure of infinity

static pressure at infinity for limited cavitation
rotor tip velocity

velocity at infinity

dissolved gas content of the liquid

Henry's Law constant

flow coefficient

cavitation number

desinent cavitation number

limited cavitation number

mass density of the liquid




———

-5- 24 August 1976
MLB:jep

INTRODUCTION

Secondary flows generate additional streamwise vorticity when a
boundary layer flow is turned by a rotor. The apparent effect of this
additional vorticity is evidenced by a cavitating trailing vortex.
The cavitation number of this vortex which exists in the complicated
flow downstream of the rotor is a measure of the amount of streamwise
vorticity near the wall of the rotor. In most cases, the critical cavitation
numbers typical this trailing vortex system are often higher than those
associated with any other type of cavitation.

Vortex cavitation is one of the least understood forms of cavitation.
It is felt that this lack of understanding is due to an inadequate
knowledge of the flow field and the effects of noncondensable gases. As
an example, the structure of the trailing vortex created in the passage
of a rotor is influenced very significantly by variations of the incoming
boundary layer to the rotor. Also, vortex flows tend to itz good collectors
of gas bubbles which can cause nonvaporous cavitation. The cavitation
numbers associated with limited nonvaporous cavitation are often considerably
higher than those for limited vaporous cavitation.

In this investigation, experimentally determined cavitation numbers
for the trailing vortex system were obtained for various incoming
boundary layer profiles and flow coefficients. Also, the effect of air
content on the cavitation number was determined.
BACKGROUND

Cavitation flows are delineated by the cavitation number, ¢, defined

as

by il @ %
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where P_, V

g Pv and p are the pressure at infinity, the velocity at

infinity, the vapor pressure, and the mass density of the liquid,
respectively. The fluid properties correspond to the bulk temperature
of the liquid.

The flow regime of particular concern is limited cavitation, i.e.
the extent of cavitation is minimized. The problem of limited
cavitation has been reviewed in recent years by Holl {1]* and
Holl, Arndt, and Billet ([2].

The particular value of 0 corresponding to limited cavitation is
the limited cavitation number Og» OT critical cavitation number given

by

Gg =g (2)

Oy = 04 (3)

where 94 is the desinent cavitation number [3]. The limited cavitation
number can also be determined by an inception test, provided hysteresis
effects are not involved [4].

There are two general types of limited cavitation, namely vaporous
and nonvaporous cavitation. To visualize the various types of limited
cavitation, it is useful to imagine that one is observing the growth of

a single bubble as the pressure is suddenly reduced. Vaporour cavitation

*
Numbers in brackets refer to documents given in the list of references.
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occurs at pressures less than vapor pressure and is characterized by
the explosive growth of a bubble due to the rapid conversion of liquid
to vapor at the bubble wall. There are two types of nonvaporous
cavitation, namely pseudo and gaseous cavitation. Pseudo cavitation
occurs when a bubble merely expands due to a reduction in pressure
with the mass of gas in the bubble essentially remaining constant.
Gaseous cavitation occurs when a bubble grows ir an oversaturated liquid
due to the transport of gas across the interface. In contrast to
vaporous cavitation, nonvaporous cavitation can occur at pressures
greater than vapor pressure;

Of particular importance in the study of limited cavitation is the

minimum pressure coefficient, CPmin’ given by
_ "o “min
Cpua, Bl (4)
P ;
min 1/2p Voo2

where Potn is the minimum pressure.

In general, results indicate for vaporous limited cavitation that

oy < Cpmin . (5)
In principle, nonvaporous cavitation can occur below or above vapor
pressure [1]. However, from a practical point of view, it is the latter iﬁ
type which is the most interesting because of the large values of
cavitation numbers which are often typical of these cases [1]. Thus,
for nonvaporous limited cavitation occurring at pressures above vapor

pressure

s A S - BA- B L e L A B A A Y A . e . FUCUS——
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g, > C . (6)

In 1960, Holl [3] employing an equilibrium theory which ignored

surface tension effects predicted for nonvaporous cavitation that

P,
gt il @
YR hyde vt

where Cp is a characteristic pressure coefficient, and P, is a pressure

G
typical of the noncondensable gas in the bubbles. Holl indicated that
there was anupper limit to the gas pressure, namely the equilibrium value
given by Henry's Law which may be expressed in the form

=aB (8)

PGmax

where o is the dissolved gas content and f the Henry's Law constant.

Several general implications come from Equation (7). Firstly, the
equation predicts that Oy is a monotonically decreasing function pf
velocity for constant values of PG and Cp' Secondly, the equation pre-
dicts excessively large values of o, at low velocities. These results
suggest that, if one is tc avoid confusing nonvaporous for vaporous
cavitati?n, it is advisable to conduct tests at high velocities. The
aforementioned tendency for o, to decrease with velocity for nonvaporous
cavitation is characteristic of data reported by several authors, namely,
Hammitt et al. [5], Lindgren and Johnson [6], McCormick [7], and Ripken
and Killen [8].

Thus, it is very important to understand the differences between

vaporous and nonvaporous cavitation in order to interpret test data. It
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is also apparent in view of Equations (5) and (6) that it is very
important to know Cp in order to differentiate between various flow
states. However, in many flows Cp data are not available so that
other means for differentiating between flow states, such as noise
spectra, are needed.

DESCRIPTION OF THE EXPERIMENTS

The experiments were conducted with water near room temperature in

the 48-inch diameter tunnel located in the Carfield Thomas Water Tunnel

. b

Building of the Applied Research Laboratory at The Pennsylvania State
University. In all cases, desinent cavitation was employed as the
experimental measure of limited cavitation. Limited cavitation in tie
trailing vortex system occurred at the cone tip which was behind the
rotor located at the end of the axisymmetric forebody. Also, the occurrence
of the cavitation was very sporadic.

The air content was approximately 3.1 ppm for all of the experiments
except for one experiment which had a range of air contents. The air
content of 3.1 ppm was chosen because gas effects are reduced and the
relative saturation level was always much less than unity.

Desinent cavitation number data were obtained for different incoming

velocity profiles to the rotor. The incoming velocity profile was ,varied

by changes in the configuration of the axisymmetric forebody. Results
were obtained with/without upstream appendages, with/without a screen on
the nose of the axisymmetric forebody, and on/off design rotor flow L

coefficients. In addition, two different tip designs were employed behind

the rotor. These basic flows are described in Table 1 and the tip designs

are sketched in Figure 1.
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DISCUSSION OF RESULTS

The desinent cavitation number data are shown in Figures 2-8 where
the effects of the following factors are displayed:
Figure 2 - Effect of Air Content
Figure 3 - Effect of Tip Design

Figure 4 - Effect of Flow Coefficient

Figure 5 - Effect of Upstream Appendages

Figure € - Effect of Upstream Appendages and Screens

Figure 7 - Effect of Screen and Flow Coefficient with Appendages
Figure 8 - Effect of Screens and Flow Coefficient without

Appendages
Thus, Figures 2-8 display the effects of air content, tip design, flow
coefficient, upstream appendages, and upstream screens on the desinent
cavitation number.

In general, an increase in gas content, the addition of upstream
appendages, or a 107 decrease in flow coefficient cause the cavitation
number to increase. In contrast to these results, the addition of
upstream screens or a 107 increase in flow coefficient cause the
cavitation number to decrease.

Data in Figure 4 shows that a decrease in the flow coefficient
by 10%Z causes a dramatic increase in the cavitation number,
whereas a 107 increase in the flow coefficient causes the opposite trend.
The cavitation number at the design flow coefficient increases slowly
with velocity, whereas at 107% below the design flow coefficient, it
increases rapidly with velocity. In contrast to these trends, at a flow

coefficient 10% above the design value, the cavitation number decreases

with velocity.
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The effect of upstream appendages is displayed by the data in Figures
5 and 6, where the appendages are in the form of four struts upstream of
the rotor. It is seen that the addition of the appendages increases
the cavitation number by 50 to 70%.

The effect of tip design is shown by the data in Figure 3. The data
indicates that the conical tip causes cavitation numbers which increase
with velocity and range between 4.5 and 5.1. In contrast to this trend,
the truncated conical tip causes much higher cavitation numbers which
tent to decrease with an increase in velocity. This velocity trend is in
agreement with the equilibrium theory discussed in the background

information. Assuming that C and PG are essentially constant, then

Pmin

Equation (7) can be expressed as

onstant
04 = constant + ceastant : 9)

v 2

[ee]

The data for the truncated cone tip approximate this trend. Apparently,
the separated flow increases the residence time of bubbles in the low
pressure region which accentuates the gas effects predicted by the
equilibrium theory.

The data in Figure 2 also show gas effects on the cavitation number.
As the gas content increases, the cavitation number tends to increases.
SUMMARY

Cavitation numbers for trailing vortex cavitation from a rotor
vary significantly with upstream configurations. Variations in the
shape of the incoming boundary layer influences the loading on the rotor
near the hub. This causes variations in the amount of inlet vorticity to
the rotor passage and variations in the amount of secondary vorticity

gencrated in the blade passage. Small changes in the profile result in

— —— —t——
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a large increase in the cavitation number as shown by the addition of
upstream appendages. A 107% decrease in the flow coefficient causes an
increase in O whereas a 10% increase in the flow coefficient yields the

opposite trend. The cavitation number is sensitive to air content

effects, particularly for tue truncated conical tip design.
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TRUNCATED CONICAL TIP

CONICAL TIP

Figure 1 - Tip Designs
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