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COMPUTER GRAPHICS: TWO- AND THREE-DIMENSIONAL CLIPPING

L. INTRODUCTION

Clipping is a procedure used to determine the proper line segment(s) of a given line, such that the
resulting segment(s) contain nq points exterior to a plane that serves to define a boundary. Qlipping is
employed to limit the amount of work a display device must perform by drawing only" the visible parts of a
line. This is done by using a clipping algorithm to compute only the line segments interior (or exterior) to a
defined region that has been selected for display. The resulting list of lines represents a substantially smaller
amount of work for the display hardware to process in a given period of time.

A good clipping algorithm quickly rejects lines that lie outside the viewing area, and since speed is
always desirable, algorithms that lend themselves to parallel (or pipeline implementation), in -either
hardware or firmware, are sought.

Let us initially limit our discussion to two-dimensional clipping. A later section of this paper will
explore three-dimensional clipping.
II. TWO-DIMENSIONAL CLIPPING
Typically, display regions have been chosen as being rectangular (Figure 1). The actual number of

sides is not of importance to the development of a clipping algorithm, although it does affect performance
when finally implemented. Viewing windows are always chosen however, as convex sets in a Hilbert Space.

Wt

b |
Figure 1. Rectangular display reion.

The standard properties of Hilbert spaces, as well as the set concepts referred to in this paper, are
found in most texts on linear analysis.

Making use of these properties, the following is clear: A straight line, intersecting the interior of a®
convex set, can intersect the boundary of the set in, at most, two places. In the event the convex set’is
closed and bounded, the straight line will intersect it in exactly two places.

At this point, we introduce the idea of “inward” normals. That is, we say n is an inward normal for
any boundary point X of S if, for any other point Y in S,

n * (Y=X)> 0. where “+” denotes the inner product operation:
With this representation, we have defined a natural geometry over the set S.

For the set S only four unique inward normals exist. All others are mathematically equivalent to
these four.

Our particular clipping problem, that of dete the points of intersection between a particular
line segment and the set S can then be partially resolved by examining the parameterized behavior of the
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line segment with the four inward normals to S. In particular, if f is a boundary point of S for which n is an
inward vector and P(T) is a parameterization of the line segment in question, then, for particular values of

T,

n - [AT)-f]>0
implies P(T) is “pointed” toward the interior of S with respect to at least one of the four normals,

o [P(N)-f] =0
implies X(T) is “pointed™ parallel to the plane containing f and perpendicular ton (that is, parallel to this
particular boundary of S) and

n * [NT)-f] <0

implies ’(T) is “‘pointed” away from the set S.
So far we have mentioned only that any line piercing S does so at exactly two points. It is also dear

that these two points of intersection do not lie on the same target planes to the boundary of S (a plane not
completely containing a line may be intersected by it at most once). These facts give rise to our first

important result:
if f is a point in a particular plane tounding S for which n is an inward normal, then the scalar

equation
n- [A(T)-f] =0
has, at most, one solution.

Thus, there are exactly two possibilities; first, P(T) is parallel to some plane lying along the boundary
of S. Second P(T) pierces that plane for some value of T. Now, suppose we want to talk about drawing

only a line segment:
:(T)=Py +(P; —Py) T Te[0,1)

It is the restriction of T to [0,1] that makes : P(T) a line segment.
With regard to the set S, either:
1. The line segment is wholly contained in S, or
2. The line segment is partly contained in §, or

3. Theline segment is no part of S at adl.

Before introducing the primary result, we need the following definitions:

Define Sy, as the set of all planes bounding S, that is, intersecting only the boundary of S.
For each €Sy, define n(b) as the set of positive normals drawn from b with respect to S.

The Primary Result
The set of all T such that:
1. Te(0,1)
2. n* [(T)-] >0
Where for every besb.nen(b),nl fisan arbitrary vector in b, completely determines the line segment

containment in S.
Careful examination of the flowchart (Figure 2) reveals the underying geometry involved in this
technique. The implementation lends itself to swift line segment rejection.
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Figure 2. Primary dimbing algorithm flowchart.
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The previous result is great for theory, but the practice is somewhat more complex.

1. How many planes are involved in the convex object? If the result were large, our procedure would
be tedious.

2. Are there any ways to “set up” the problem to facilitate the solution?
3. Are there any timesaving ways to accept or reject segments?

It should be clear that there is no one fastest way to examine any vector segment under all
circumstances. For example (Figure 3), examine that rectangle again:

il

AUTOMATIC
REJECTION
Figure 3. Probabilistic two-dimensional clipping.
V tibe an ellipse and circumscribe an ellipse and test I(T') for either immediate acceptance
or reje . the event the test fails, the area we must further test is considerably smaller. This kind of

test procedure is one type of conditional test, where we maximize the probability of an accurate selection.
Now, we consider the general formulation of the orientation vector technique.

Let
P(T) =P, + [P, —P,] T Te[0,1]
P(T) can be made a line by allowing Te(—o°,).
W Wp - W
£ = L=f, nl=[R 1] -
Wp 0 9
. 0
P R 1 B &
| s = n,= =N
3 [WT] 4 2 |:WT el WB] 4
Now we see (Figure 4) that:
Yy
' f3.fa
n,
wL i < WR
n n;
i
fl vfi W.

Figure 4. Rectangular display region conventions.




The five conditions become
(AN -fl-n>0  i=1,2,3,4
orPo * m+T[P; —Py) - ;>0 i=1,2,3,4
or T[Py ~Pol-n; > [f; — PoJon; i=1,2,3,4
and Te[0, 1)
letting
P, —Py =D (Dis called the Directorix of the vector X(T))
and W; = Py —fj (Wj is the ith plane “weight” vector), i=1,2,3,4
Then we can write:
TDnj+Wj*ni>0 i=1,2,3,4
Now we have our algorithm:
For a K-sided convex object S with inside normals:
nl s N2y ooy nk
Points on each plane:
f1,f5 .o i
Let X(T) be the parameterization of the line running from P, to P,
Define: ‘
Wj=Py —f;,D=P, — P,
Then the K + 1 conditions for any portion of the line segment beingin S are:
TDm +Wpen,>0  i=1,2,..,K
Te[0, 1]
Let the set of such that each ith case above is satisfied:
T,= {7 17Dy +Wen; >0}
Then for each T;, Tie (—2°,%0)
Lt T=KT;
i=1
ThenT= § T | P(Mes }
Finally, T* =TN [0, 1]

Using the Tektronix 4051 Graphic Computing System, an implementation of this algorithm was
programmed (Figure 5). The program and sample results follows (Figure 6):

In this program:
Poy=X1  Ply=X2
Poy = Y1 Ply =Y2
Figures 7 and 8 show examples of segments drawn and rejected, respectively.

We can introduce efficiency into the computation by first evaluating directly for the values of 7.
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INIT

PAGE

WINDOW 0,22,0,22
VIEWPORT 65,130,0,65

DIM F(4,2),N(4,2)
REM......... Define window

REM......... Draw Window boundary

REM......... Enter line definition
PRINT @32,21,0,90
PRINT“Enter x1,y1, x2,y2 :”;
INPUT X1,Y1,X2,Y2
REM......... Normals defined
N(1,1)=W2-W1 g
N(1,2)=0

N(3,1)=-N(1,1)

N(3,2)=-N(1,2)

N(2,1)=0

N(2,2)=W4;-W3

N(4,1)=-N(2,1)

......... Window boundary
F(1,1)=W1
F(1,2)=W3
F(2,1)=F(1,1)
F(2,2)=F(1,2)

F(3.1)=W2
F(3,2)=W4
F(4,1)=F(3,1)

FOR I=1 TO4

W1=X1-F(1,1)
W2=Y1-F(1,2)
D=D1*N(I,1)+D2*N(I,2)
W=W1*N(I,1)}+W2*N(1,2)

IF D=0 THEN 690

T=W/D

IF D>0 THEN 710

IF T<O0 THEN 860

U=T MIN U

GO TO 730

IF W<0 THEN 680

GO TO 730

IF T>1 THEN 860

L=TMAX L

NEXT 1

REM......... Segment drawn
IF L=>U THEN 860
X4=X14(X2-X1)*
Y4=Y1+(Y2-Y1)*I
X5=X1+(X2-X1)*U
Y5=Y1{(Y2-Y1)*U

MOVE X4,Y4

DRAW X5,YS

PRINT @32,21:0,30

PRINT “SEGMENT DRAWN”
END

REM......... Segment rejected
PRINT @32,21:0,30

PRINT “SEGMENT REJECTED”
END

Figure 5. Sample computer program.
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X1 Yl
n(4,D 18,17
l»\ n(3,])
-(2,1) '
xz,Yz

Figure 6. Sample display problem.

Enter x1,y1, x2,y2 : 7,10,20,16

SEGMENT DRAWN

EXAMPLE #1

Figure 7. Sample interior (segment drawn)




Enter x1,y1, x2,y2: 5,18,15,17.1

SEGMENT REJECTED

EXAMPLE #2

Figure 8. Sample exterior (segment rejected).

We can introduce efficiency into the computation by first evaluating directly for the values of T.

W = Pox -WL -w, w, = l:'ox -Wr =W,
P, —W
P —-W 0 T
o L
b < = 0 7
W, - W = =_n
el ol | J 57 = n
nl = o —'ﬂs 2 WT—WB ‘ 4
L 5 = -~
W g WR| -
F. =| L =f F, = o
e el 3 [“’T]
¥ 3
D = P‘x‘_P° :
P -P :
'y %
ks J .
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1) T,y —Po,) WR-Wp) > (W P ) (Wg-Wp)

@T (ny ~ Poy) Wr—Wp > (WB—Poy) Wr-Wp)

() T @y, —Po,) (W -WR)> (WP, ) (W -Wp)
4) T, vy~ Poy) WRp-Wp > (wT‘Poy) Wg—Wp)
(5) Te[0,1)

Assuming that P(T) is not parallel to any side of the rectangle, then we can solve for the values of T
so that each equation (1 through 4) is satisfied identically.

) N — P°x
Plx - Pox
ayst Spk,
Ply - Poy
Pl SR T
B
w = "5

IIl. THREE-DIMENSIONAL CLIPPING

Since the algorithm was not restricted to two dimensions, the basic result applies in the
three-dimensional case. We will examine a particular case. The set of points chosen for perspective purposes
is centered with the axis center at the eye point, looking along the Z axis. The set of points is given by the
set product

{WL, Wr} X {WpWr} X {Wy, Wy}
The region in space R, now being viewed as our convex set, is given by the product
WL,WRI X [Wg,Wr] X Wy, Wy]

In the 2-D case, there were four equations in T and one additional constraint. In this 3-D case, there
are six equations in T and that same constraint.

There are six bounding planes, four of which contain the point [0,0,0]. The other two are the hither
and yon planes, which are handled as special cases (Figure 9). Symmetry conditions imply the following:

WL - —WR WB . —WT

o




g e ST iz s » 450 = itz

Let
Vi = [WR, W, Wyl
V, =[-Wg, W, Wy]
V, = [-Wg, —Wq, W]

V, = [#Wg, W, Wy Figure 9. Three-dimensional viewing window.
These four vectors are the vectors along the intersection of the four bounding planes to the first
perspective plane.

n, =V1XV, =[0, -2WpWy, 2WpWq]
n, =V, XV, = [2WyWy, 0, 2WgWq]
n; =V, XV, = [0,2WgWy, 2WpWq]
ng =V, XV, = [-2WyWy, 0, 2WpWr]
ng = (Hither)=[0,0,1 ]

ng =(Yon)=[0,0,-1]

1 [
f,=bg =1, =, =f,
ol
el
%o |
-
My
D=P -P,
Wy = +P,
W, =+, W, =+P, W, =+P, W, =P,
§ W, = ::ox e = :::x
oy y
'wH"Poz "wy+Po




The same Tules apply to D+n; and w; * n; as before.

The primary formula is T = ~Wi *Bj for each i, giving
D+ n;

proszPoy
T =
: (sz "Poz) Wr - (Ply "Poy)wH

& WyPo, + WgPo, j
; (an 'Pox)wﬂ+(Plz "Poz)wR |
g wHPoy"'wTPoz ]
- W
(P'y = Poy)wﬂ * (sz £ Poz)wT
®,, ~ P %R - @, — Fo, )W
h -Puz K
Plz —Pol
3
1
L = -Wy +Poz
Po "Pnz

These values of T, define the intersection points of P(T) with each bounding plane. .

It can be seen from this analysis that while the computaticn of T for the 3-D case may appear to be a
lengthy computation, each value of T can be computed in a separate parallel process.

Our discussion so far has been limited to determining a line segment that is either rejected or clipped
to fit inside a convex set S. Our output {Ty ,T{y) can also be used to draw the complement, that is the line
segment(s) exterior to a given convex set S,

The possibilities are summarized in Figure 10.




Hole
Exterior Clipping

Hole ,
Interior Clipping

Normal exit draw KT ),A(Tyy)
TL’O,TU = 1

T L.T U ./
T =Ty ~A/I»

draw P(T))R(Ty))
TL-O’TU =1 omit

T Ty

T Ty —F il
omit

A.bnormal exit

e

Figure 10. Window-hole clipping summary.

This introduces the possibility that an Algol, PL/1 or Pascal implementation of this algorithm might
be implemented to first apply exterior clipping to a ‘Hole’ contained within the convex window.

If we define a function which performs P(T) cal,
can be extended as in Figure 11. The output of SEt

integer coordinates.

EG, the flow chart (Figure 2) previously drawn
. scaled appropriately for a display device using




Exterior Clip

o~

* Interior Clip
N \

Do Abnormal Exit
exterior
clip

Do
exterior
CALL SEG clip

(L,IX2,1Y2)
CALL SEG
(U,IX3,1Y3)

CALL SEG
(0,0,1X1,IY1)
CALL SEG
(1.0, 1X4,1Y4)

No

CALL SEG
(0.0,IX1,IY1)

CALL SEG
(L,IX2,1Y2)

No

CALL SEG
(U,IX3,1Y3)
CALL SEG
{ (1.0,IX4,1Y4)

i1

Figure 11. Extended dipping flowchart.
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. Hp Hp Hg Hy Hy Hy Wp < Hp W > Hy

VIEWPORT V; Vg Vg Vp Wy < Hy Wy > Hy

Figure 12. Window-hole dipping perspective.

IV. CONCLUSION

Implementation of true three dimensional interior and exterior clipping gives a display processor great
flexibility in creating a truly useful representation of complex shapes short of hidden line elimination. By
careful placement of the boundary planes, the viewer will be able to section shapes, remove obscuring
surfaces, or look through one surface to another one in the interior. These techniques will form part of the
necessary tools visual displays will find necessary to provide, as computer graphics seeks to aid in the
visualization of objects presently being dealt with.
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