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In this diss~rtati~n, ‘.:-~ 1::~~~nt an ~ndl;- i- . of c~ r~t r ~u-
_u
~ rLview

model s of a two-echelon inventory c:~~tem for recoverabl e items. The

system consists of a depot and a set of bases. Primary demands occur

at the bases for eri e or several units at a time . It is assumed

that demands arrive in a Poisson manner . Up~ n arrival of a demand for

certain units, a like number of failed units are turned in at the

base. An inspection of the failed units is carried out to decide

whether the units will be repaired at the base or at the depot or will

be remc ved from the system in case repair is not economical. The

bases use an (s-l, s) policy for procuremen t of servic~ c~~~c’ units

from the depot , and the depot uses an (s ,S) policy to procure ‘
~~~~.

th~ external supplier . Demands in an out-of-stock situation ar~

backlogged . It is assumed that all the locations have i n f in i t e  r~ -a i r

capacities and repair and procurenent lead times are cori~ t•:~nt .

A conw on problem in inventory management is to specify the policy

parameters tha t will minimize expected cost per unit time for ~~er~ t i n~

the system subject to constraints of certain performance measures.

To formulate such a problem we must find the stationary distributions

f or inventory position, on-hand inventory, backorders and in-repair
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inventory. Our main objective is to find exact expressions for these

distributions.

The investigation begins with an extensive analysis of a single

location system. The procurement policy is a continuous review (s,S)

policy. The inter-arrival times between successive requisitions are

independent and identically distributed random variables. The system

experiences two types of demands - recoverable and non-recoverable.

The two demand processes may be independent or dependent. For the

inS~ection of failed units, t~:o models - batch and unit - are considered .

In the batch model, the entire hatch is either recoverable or non-

recoverable, whereas, in the unit model each unit in a batch is

inspected independently. The special cases of compoumd Poisson demands ,

(s , nQ) procurement policy , complete recoverability and cmmplete non-

recoverability are also considered .

For the two-echelon system we first consider the case where demands

at the bases occur for a single unit at a time. The approach is then

applied to a general situation where demands at the bases are

random. Both the Latch and unit inspection models are considered .

For the case when there are no condemnations of the item , results are

compared with the METR iC model . The METRIC model provides a simple

but approximate expression for the probability distribution of system

backorders. The comparison indicates that there is a considerable

discrepancy between the ~iETRIC results and our results when the depot

spare stock is low or when a major proportion of the repair is done

at the depot.
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CHAP’~ER I

1• ~UC TI ~2fl

This study is dev~t~ d to the analysis of recovorable (r epa i ra b le)

i~~c~~ i • v ~ntory sy~ t-:os. Upon failure , a recoverable itE- :~ i~; r- : turnc~d

to th -~ source of sup ply ( invcntory point ) where a deci:~ :-a is r~”v~e

eitL~r to r emove ( condc —~~) the item from the i: 1vL~~L~~ ’,’ cy~ tem cr to

p~ r f :~ n repair on it in ca-der to restore it to a .rvicL ~ 51e c-~~d~ t ic r~

Th-~ dac~~ ion to repair or cor ~n the fa iled item is based on t i •e

d~~~ ee and the n~ t xre of failure, the repair feci1i~~~s avd .~l~ L~ e , and

the eConomics involved. Once ~ri i~ c~m is desigsate~ os recuvcz’able, it

is ~ 2~ 5U~Ub1y more economical to rc~~ ii~ the i~ ei. than it is to

dispose of it andrepiace it wi~~ a new item .

~ost inc-entor ~ system consist of consumable (non-recoverab le)

items tb~ t are pr’c~ nminant 1y low in cost. In many large-scale

industrial activi~ les , mi1it~~-~i organizat ions , for enan ple , a large

proportion cf the inventory investment is in recoverable items ,

~~~ i~-:u -~h precentage-wise most items are consumable. Hence management

of recover-able item inventory systems from both the design and control

vio~rmoint s is imt ortant .

1.1 F~ eov erabio Item Inventory Systems

A typ ical recoverable item inventory rm•’ste m consists of customers ,

i:~ ~t~~ s and r~pair f~- u1i~ i~~ , supply ( inventory ) points , an i  an

~xtcrn aJ .  supplier (manufacturer) .

Cust omor s generate the pric~ry demands on the system . ~h~ 1e

placing requisitions for t r ~c rep) ocemcnt of one or sc:v -~rel units ,

1
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____________ ~

c~ 3t~ m~ps ~u•~n in a i1~~ ~~~~ ~n o~ f:i~ i~ d units . In ri :i-~ o ’ the

d : c .~ ip t i J n  e:~~~~ ~J J e r , t:~e sy3t~ m e~pcriear~es two types of d :s ’~~ :

r~~~~~-~r~- -b~ e and nen-~ ecoverahie . Depending on the processes gencreting

the 1 iu~ es , the two dem and processes can be either (1) in dcpenc!ant

( 2  (~ ) i ea n i c~.eri t . T~~~~nd processes are independent u~ as t - ~r O  ~ : ‘~ t b

5sdopenc~c-nt processes generating the two types of failures. Althnu :h

~~~and ~ c.ce o~ t~~ demand r~:oceeses may arise in differen t vay’ , we

shall limit the corisidera-~j on to the case where a sim~ le fnilure process

re:ul~ s in both types of failures . Thus for independent demand r :’oaec~~es ,

thire are -two typsa of customers from two independent cour - ees w~~~~CCS

for demench st d~~~ n-~ p~aaesscc c to::: rs arrive frc- m a single ~~urce

We assume that customer ’s arrive flea an infinite population .

Llso, the inter-arrival times of the customers and the number of units

d~.iianded upon om ar r imal  are assumed to be rando~n variables r~~th f ini te

means (knotin) .

Upon arrival , a batch of failed units is insp~ cted to classif y

the units as renairable or n m-repairable. It is assumed that inenestion

takes a n~~ l~~-ible amount of time and the probai; l it y  of failed

u ni ts  being repairable is kno~m and is the same for all aro ivals .

We will not consider the decieicn rules for classifying the items.

i’~f tc r  inspection , the repairable units are sent to repair faci l i t ies

~•h -- me repa irs are p~rforim~d on a f~rst-come , first-served basis . ~o

~ ll cr~n-~id-~: cn J y  cont inuous re air  proc~ ss~ that is , n o batch ing

is allou’ at the rep ~ir faci li ti c~;. It is assumed that repaired units

hcha~ -: c~ a.~tiv like new ones in tneir performance characteristics.

Unsa ccm~ .~etinn of repairs, the u n i t  immediately joins the stock of

serviceable units at the supply r ’ i~~.
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fue~~y -c ir~~ Si :. the ready-for-ia~~e units to rnsspp ly  t~.e

customers . They receive thc~~ aui m1ic~ from two see~-cce: the

r- - JilL fj ciL. ! n e  ted Le c- xL  - e- ~ j sliu~~. T t - - : . ~ur~~d t~. ~t s~ i~~ - iy

points can stock an unlimited number of uni ts .

In e:~terea L supplier can supply an unlimited number of un ~t3 to

the s~stom within a known duration of t ime. This duraticn , known as

procuronent lead time , is assumed ti be the same for all orders

indedendent of the size.

Thus the main functions c f  n recoverable item inventory ny ct em ,

in gan~ re l .~ are to fill  the eeeto: ~r d ilends~ to ciia~ noee (i i -~~ ec- t )

tna  failed un its , to rapair the failed but recoverable un-its, and to

procure units from an external supplier . Ye have already described the

~mrpee t ion  and repair functions . We shall consider the foLLowing

polic ies for ~epply and procurew.e-nt.

The Supply Policy :

Demands are sat isf ied from the ready-for-issue stock (also

ref erc~ed to as on—hand inventory) at a supply point. Upon arrival cf

a re:~uisiticn 9 the customer is immediately shipped the quantity

requested if there is sufficient on-hand inventory. If there Lr e

not enoug h units on hand , then all the units in stock are dispatched

~h ile the balance is backlogged . In either case , the batch of fa iled

units is sent for inspection . The backlogged demands are satisfied on

a first-come first-served basis when the next supply arrives from an

L -Jrn-a l suppl ier or from repair facilities. The assumption of

l-aohlo~p~in o may not be appropriate in some cases , but is representative

of s i tuat ions such as n il i ter y  organi-~ctions where a captive market

si tuation ex is t s .

~ -
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The Procurement Policy:

In order to ake up for system losses due to condemnations ,

new units are procured from the external supplier. We shall consider

a continuous review reorder-point (s), r’eor’der--level (5) pro-

curement policy. The policy is based on the inventory position

which is defined as the sum of the units on hand , on order and in

repair minus backorder’s. When the inventory position drops below the

level s, a procurement order is placed so as to bring the inventory

position to the level S. Thus the procurement decisions are cognizant

not only of those serviceable units on hand or on order, but also

of those in repair or awaiting repair .

The main reason for considering the continuous review (s,S)

policy is to deal wi-t b situations in which the presence of a computer-

ized control system makes it possible to update the inventory levels

after each transaction. Also, this policy is known [7] to be superior

to the popular continuous review reorder-point (r), fixed order

• quantity (Q) procurement policy in terms of total reduced costs of

procurement and carrying irivento~ny, especially when the order size is

random .

In addition , we shall consider a continuous review (s ,n Q )

policy because of its mathematical simplicity [19] . In this policy ,

er i ts are ordered each t i m -  t h — - ~e - ’ ::tn r-: ~oaition d~ -ene Lclcs~ the

level s, where n is the largest integer such that the subsequent

inventory position is between s + 1 and s + Q.

To erovide a better 1~~r ~~~ o~ ie ;c~-cchelon systems, we shall

first study a single location system . An outline of the two systems

is presented in the following subsections.

~~~~~ 
.
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1.1. _i ‘ 1e I a o et ~ :s L y s t~

I- .e: air l
:- ‘ L e t !  et t rc-naired

- Station

:~ ~l 

coverable 

-

ur:it S

- -~~~~~~ ~u:~*’ Point ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
j un 

— 
~~~~~ t

~~~~~
-——1 un~ ts (ccndemned )

usits
customer s supplied

w i th  new units

Figure 1.1: Single Location f y stern ,

Figure 1.1 shows ‘the schematic diagram of a single locatior.

• system. System demands are gaiier~ated at one s in~ 1€ p a i :t ;

procurements at the supply point are made djSt cti’/ from the external

supplier.

1.1.2 Tw a— E ch elon  System .

We se~ ll investigate a two—echelon system as depicted in i~ i- crc

• 1. . hys tee --~-:sand:; are genera ted at several loca tions c - -~Ji~ d ha re - i ,

which ir :  turn  r coc- ivr  t hei r  o’ -~ - : ies from a ce A:rel location calit

a : cpot. The ‘: - -
~ ot and the iases are also cnlJ ei the uj per and i ‘~-er

e-2:lelOfl of the - e- -s~~-er , respectively . Each lac J t . ~cs j e - i c e it i : : ,  to

t e i s~ an it em ot o c k in n  p oI nt , Las f ac i l i t i e s  to r fn e m  i’ ’r e rs .  The

~~~~~~~~~~ ~~~~~~~ --~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~
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depot stock is used only to resupply the bases, and bases are

resupplied only by the depot ; that is, lateral resupply among the
I.

bases is not allowed . Thus procurement of u n i t s  fror: . th~ exter:nil supplier

• is done through the depot only. From the viewpoint of network theory ,

the system looks like a parallel activity arborescence structure .

Upon arrival of requisitions at a base, the failed units are

sent to the inspection facility whose function is two fold: first,

the units must be classified as either recoverable or non-recoverab1~ ,

and then if repair is warranted where it will take place at the

base or at the depot. The latter decision depends only on the severity

of the damage caused to the units and the base repair capability .

1.2. The Problem

The management problem in both the single and two-echelon systems

is to establish the operating rules that will minimize expected cost

per unit time for operating the system. The solution to the problem

is usually sought in the environment of a limited budget and a

set of goals to reach certain levels of some measures of system

performance.

The major cost components are: cost of acquisition per unit of

the item, a fixed procurement setup cost independent of the quantity

ordered, a fixed backorder cost each time a stockout occurs, a time-

weighted cost for each backorder, a holding cost for the units held in

stock, and a charge for the units held at the repair facilities. Given

the repair policy and the number of repair facilities, specifying the

operating rules includes determining procurement policy parameters

s and S for an (s ,S) policy , and s and Q for an (s ,nQ ) policy.

— ~~~~~~~~~~~~~~~~~ 
-
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Fince all recoverable failures must be repaired and all :.or~-

recoverable failures must be replaced at costs independent of the

procurement policy parameters, we can ignore both repair costs and

acquisition costs (other than fixed procurement or set up costs) as

far as determination of these parameters is concerned .

Several measures of effectiveness have been used for inventory

systems. Fol1o;~ing Hadley and Whitin [7], some of the~ ’: are: the

probability of no stock on hand , the expected number of backorders and

expected on- hand inventory at any time . Feeny and Sherbrooke [~]

considered fill rate, service rate, ready rate and operational rate as

measures of effectiveness for a base stockage system with  no condern-

m ier~~. F-- p a two— ~c~ -~to:. cynIc:: with ::o conde :: :n’ ~tior ~, h r ~ n~:e

[17] faco l  the  expcct :d Lachordc: ’rs to he the ::,ost sui table :: canor - .

The ~c rrcash

In order to solve the problems as described above , several

ac-croaches have been suggested [3], viz.expected cost analysis,

stationary process anaiysis , dynamic programming and dynamic process

analysis. We shall use an approach based on stationary process analysis.

Th is approac h is more appealing to us since it is appl icable to gen eral

situations and it is also computationally less complex. The approach

uses techniques based upon Markov processes and elements of renewal

and queuein~’ theory. The principal problem is to find the stationary

probability distributions for’ several stochastic processes. These

-~i, cr~ P~~t~ -am: , if thcy  c xj , .t , are func t ions  of tbe procuremen t policy

used and of the demand dis t r ibut ion , but not of any costs. The cost

structure tc r - ~ r enem t  the ohie ct ive function - expected cost per time

unit - ca n be constructed using these stationary ~ic- tributions. Also,

- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ , - ,

~~~~~~
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tL~ vO—’i0us measures of syst~ m effectiveness described earlier can be

• obtained from these distributions.

In order to obtain expressions for the objective function arid

system performance criteria , we must find the stationary distributions

of:

1. Inventory r~osit ion

2. On-hard inventory

3. Number of backorder’s

4. In-repair inventory.

1.3 Scope of the flu

The objective of this study is to obtain an exact expression for

the stationary distributions of the stochastic processes mentioned

in ectior, 1.2 for the single location and two-echelon inventory systems

descr ibed in iections 1.1.1 and 1.1.2 , reo~~ectivei,y.

With reference to the dependent demand processes mentioned in

Section 1.1, we shall consider the following two inspection policies.

Batch !- odel:

Upon arr ival , the entire batch is either recoverable or non-

rccoverable. Inspections are considered to be repeated independent Bernoulli

trials with probability r~(say) of a batch being recoverable and

probability (1 - rB
) of it being non-recoverable .

From a practical viewpoint, this model represents situations where

the units of a batch fail simultaneously for the same reason and

the extent of damage is the same for all units in the batch. For

instance , the maintenance system of aircraft engines considered by

Muckstadt [ii] in his 1- D-~ ETF.IC model can be described by the batch

~
— 

~~~ ..“- 
~ . ., . - . - — -

- 
—~~~~~~~ ~~~~~~~~~~~~~~ — ~~~ - - - 
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nc-Jet .  The eng The consL:ts of several modules which contain a lar7e

flUt Oer’ of recoverable units. In a failed eng ine , all the units ii ; a

module (batch) are considered to have sustained same extent of

damage as far as maintenance (repairs) is concerned . h ere, the

inspection is Cafried out to decide whether the module will be repaired

at the supply point (base) or will be sent to the depot for repair.

Init ~-iode1:

Each failed unit in a batch is inspected independently to deter-

mine whether it will be repaired or condemned . lns;-ections are

considered to be repeated independent Bernoulli trials with probability

r
~ 

(sa y) of sending a unit to the repair cycle and probability

(1 - r
~

) of condemn ing it.

From a practical viewpoint, this model can be applied to the

situations where units failed under different conditions but are

submitted in a batch for replacement .

For the single location system, we will consider both the cases

of independent and dependent demand processes under (s,S) and

(s ,riQ ) prucurement policies. A general structure will be provided

to obtain the stationary distributions for the cases of finite and

inf ini te  number of repair facilities and general repair time

distributions.

The two-echelon sytem will be analyzed for the case where a

Poisson process generates the demands at the bases. We will consider

-i c: . - ,—f : r — c:~~ ( b—i , s)  r- ’ ’: r - :- ,nt ol icv at tb  L-a s~~n in (s,)

(s , nQ ) olicies at tIic depot. The re-p air time s at the depot and the

~~~~~~ as well as procuremetit  lead times bc -tween a base and the depot ,

and the external supplier will be assumed to be deterministic and known .

Also, we shall assume that the repair capacity at all locations is infinite.

~~~~~~~~~~~~ _ _ _ _ _.,_____, - 1 t ~ -~~~~ -~~i ,
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For both systems we will first obtain the results f or the ~‘ c:eral

cane where an item will either be repaired or condemned ; rcsult s wi l l

then be derived for the special cases where (1) no condemnations

occur and ( ii)  all failed units are condemneth

• 1.4 Organization of the Study

- :  We beg in with a brief review of the work of previous author s

in Chapter II .

Chapter III is devoted to the study of the single location

system . We identify the inventory position as a semi-~1arkov process

and obtain its n at i cus ry  dis-t r iLuc ion . Following this , the stationary

distribution of the stochastic process representing both the backorders

and on-hand inventory is obtained .

Both independent and dependen t demand processes under ( s . S)

and (s,nQ) policies are examined . The case of a Poisson process

generating the failures is studied in depth. At the end of the

chapter , some long-run averages are derived from the stationary

distribut ions.

- - The two-echelon system is studied in chapters IV and V. In

Chapter IV , the case of unit  demand at the bases is examimc d . The

coac of -an arbi trary or~ er size d i st r ~~-ut i~ n at t . c  beac:;

• is considered in Chapter V. In both the chapters, the special cases

of no condemnation and complete non-recoverability are considered .

In Ch apter VI , we assess the degree to which Snerbrooke ’s

results [17] can serve as approximations to our exact results. F inally,

Cha pter  V II contains concluding comments. In this chapter , we ~lno

ir;dic-3te areas for future research.

L_. 
- - ~~~~~~ ~~~~~~~~~~~~~~~~~ 
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CHAP TER II

REVIEW OF SChE PREVI OUS WORK

~1ost of the vast literature on inventory theory is addressed to

consumable items and it is not directly applicable to inventory synt rcs

of recoverable items . We shall present a brief review of the eark of

pr’evious authors for ringle location and multi-echelon systems for

recoverable items. We will set aside the numerous simulation models

that have been developed and applied to specific situations. Also , we

will concentrat e on work deali- p :.ith stochastic models for these

systems.

2.1 Sing le Location System

Considerable attention has been devoted to the analysis and design

of t his problem as a whole and to it s subproblems. Feeney and Sherbrooke

[5] investigated stochastic recoverable item models that assume compound

Poisson demand distributions and complete recoverability of failed items .

Schrady [15] examined a deterministic model that permits condemnations .

In a subsequent survey report [16], Schrady described approximate solu-

tions to both continuous and periodic review models , and continuous as

well as batch repairs .

Allen and D’Esopo [1] allowing condemnations obtained approximate

stationary re~u1ts for expected number of backorder’s and other measures

of effectiveness. They assumed a Poisson demand distribution and

deterministic (positive) repair and procurement lead times. In a sub-

sequent paper, Simon and D’Es:Lo [21] obtained exact results for the

12
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same model with a relaxat ion of the assumption made in [1] that Poisson

proce ss generate the failures.  They , however , assumed th at recoverable

and non~recoverab1e demand processes are independent . In all the above

references repair facility was treated as an infinite server queue .

Francois Lureau [ioj  viewed the problem as a queuein~ process and

:htairied stationary results for the expected number of backorders. In

addition , he obtained the stationary distribution for waiting time of

a customer before being resupplied. Assuming complete recoverability

throughout , he developed models a:Liowing ~eocra1 repair  t i m e  dint r i -

hutions and finite as well as infinite number of the repair facilities.

Recent ly , R ichards [ 1 examined the problem with condemnations . His

results allow for random lead time and alternate repair disciplines.

He -, however , maintained the assumption that recoverable and non-recoverable

demand prccesses are independent.

Our analysis is more general in that it permits the recoverable

and non-recoverable demand processes to be dependent as well as inde-

pendent. In addition , for dependent demand processes we consider batch

and unit inspection policies.

2.2 Two-Echelon System 4

A fundamental work on the two-echelon system was the development

of METRIC ( Multi-Echelon Technique for Recoverable Inventory Control)

by Sherbrooke [17] for a completely conservative system that does not

allow item condemnat ion . He considered the problem of allocating

several units among a depot and several bases in order to minimize the

total expected number of backorder’s at bases within the limitation of

::t

~

i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a given budget . He assu !ced a compound Poisson demand distribution at

each base and a one-for-one procurement policy . Depending upon the

nature of failures , repairs could be performed at the base where the

demand originated or at the depot . The resulting expressions are

approximate , and a special case of our model can be used to check the

accuracy of his results. Sherbrooke assumed an arbitrary repair time

distribution though his results depend only upon the means of these

distributions. We shall assume deterministic repair times. Sherbrooke

also presented an approximate method for including item condemnation

in his model, assuming that procurements are made on a periodic review

basis . For Sherbrooke’s model of the conservative system , Muckstadt

[12] developed a computationally more efficient approach than the

previous work by Sherbrooke , for determining the optimal system stock

levels.

A variation of the METRIC model was introduced by Simon [20] to

obtain the exact expressions for the stationary distributions of on-hand

inventory and of the backorder’s at the bases. This model is more general

than I-~ TRIC in that it permits non-recoverability as well as recoverability

with positive condemnation rates. It is less general in that all repair

and lead times are deterministic and demand distributions at the bases

are simple Poisson . ifl a subsequent comment on Simon ’s paper , Kruse

and Kap lan [-j] po inted out that Simon ’s derivations were valid for the

~-wo special cases in which non base-repairable failures are either all

depot-re~;a irab1e or all non-depot repairable . For Simon ’s model , they

suc~ ested a simpler method of deriving the probability expressions for

the number of backorders at the bases. We use the same approach for the

case of arbitrary demand distributions at the bases .

h&- 
-.

~

- °
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Clb\FiER III

SI~CLS LOCATION SYSTEfl

3.1 Int rcduction

In this chapter we study the single location system as described

in Section 1.1.1. The ana1ysi~~, in addition to offering the solution

to thj s  system , is also applicable for the upper echelon (depot) of

the two-echelon system discussed in Section 1.1.2. The results can also

be used to find an approximate solution for an individual location in

lower echelons of a multi-echelon system.

The stationary distr.ibutisns of inventory position , on-hand

in’~en tcwy , number of backorder’s and in-repair inventory will be

obtained for the problem described in Section 1.2. For t > 0 , let

X(t) = the inventory level at time t which consists of the

units ready for issue minus any backorder’s,

Q( t) = in-repair inventory ct  time t ,

0( t)  = the numb~~ of units on order at time t from the external

supplier ,

D (t )  the number of units condemned during the interval
c -

(0~ t],

D (t) = the number of recoverable units turned in during the
r

interval (O,t],

C(t) the number of units repaired during the interval (O,t],

OQ(t) the number of units ordered during the interval (O,t]

and

RQ ( -~) the number of units received via procurement during

the interval (O,t].

15
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~Uno , fo r  any stochastic piocess {P(t),t > O}, P(t1,t2
)

P(t
2

) - P ( t~ ).

Ct v i o u ly,

(3. 1) Q(t )  = (0) + D (t )  — C(t ) ,

• x(-t ) = X ( O )  ÷ C( t) + RQ( t) - D ( t )  - D (t ) ,

and u ( t )  O( ~~) + ( - Q ( t )  - RQ(t).

The inventory position Z(-t) at time t is defined as

(3 . 2) Z ( t )  X (t )  i- Q( t ) + 0(t).

From Eqs . (3.1) and (3 .2)

(3 .3 )  Z (t )  = Z ( O )  + o Q ( t )  — D ( t ) .

We shall first consider the continuous review (s,S) procurement

policy. When the inventory position Z(t) falls to the level s or’

below, a procurement order is placed to bring Z(t) to the level

S ~> s). ~Jpon completion of a repair , Q ( t )  decreases and X ( t )

increases by the same amount; thus no change in Z(t). Similarly ,

upon an arrival of supply from the external supplier , 0(t) decreases

and X(t) increases by the same amount and therefore Z(t) remains

unchanged. Thus Z(t) may change only at the epochs of customer arrivals.

Consequently , procurement orders may only be placed at demand epochs.

By convention , whenever an order is triggered, Z(t) is meant to

include the demand just arrived plus the order that the demand triggered

so that Z(t) = S at such epochs.

-I 

- 
. 

~~~~~~~~~~
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The state space for the process {Z (t ) ,  t > o} i~ the fin~.t-~

set H {iIs+l  < i < S, i integers). z(t )  bounc es betwee n

- 
- 

s + 1 and S during each ordering cycle. The ordering epochs

R
1,

R
2,..., are regencratjon po~nts for {z(-t), t > 0} since at eash

such epoch the inventory position restarts at S and the continuation

of the process thereon is a probabilistic replica of the previous

cycle (Figure 3.1).

:(t) j~

--

I I

j-

~~~

- -

~~~~

-

i 

~~~~H

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• Figure 3.1: A sample realization of the inventory position wi th  the
(s,S) policy and random order’ sizes.

~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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‘2 r’-~ c~-c -w o ~- n s ib1e appi uacbm~ to obtain the stationary

-
- 2~t ~~. One approach is bas~ d on renewal the-~~y

~rd h~ 0 - ‘ ~~~ - t~ theory of scmi-Markov process. Though the
~~~~ 

i .r c~~ - in the same, we shall use the second approach

~ I sur dr•a~ voL5 .

r- ~~t r - ~~~:r  th e use of the term ‘ limiting distri~utiofl ’ in the

context of the stochast ic processes with discrete index parci ;retcr

such as Markov chai ns~ whereas , the term ‘stationary distribution ’

w ill be used in the context of continuous 11 ex parameter’ ~t(~~ 4J~-t 1~.

pfocecses such as CZ(t),t > 0}.

The stochastic rirocess {> ~(t~~,t > O} cha nges its state at dema nd

arrival epochs (decreases) , at completions of repairs (increases),

and at arrivals of procurement orders (increases). The state space of

this process is the set Z = {S ,S-i , ...  ,1,O ,—l ,—2 ,. . . 1 .  The positive

values of X ( t )  indicate on-hand inventory while the negative values

indicate the existence of backorders B ( t )  at t ime t ;  tha t is ,

B(t) max (O,-X(t)).

In order to obtain the stationary distribution of X ( t ) ,  we assume

that the procurement lead time is a constant T.

For t > t  let

(3.14) x...(t) Pr(x(-t) = jrz(O) = i} i £ H , j C
1]

Anything on order from external supplier at time t - t will have

arrived by time t and anything ordered after time t - r will

arrive after time t. Thus the number of units received via

II& ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-
- - - - - - --- 
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• Procuremer .t thn’ir~ (t—1 , tj  is OCt — T ) .  The number of uni~ s

arr iving ~t om the L’epair shop dur in g (t-i , t] is C(t~ r, t ) .

Therefcre,

X(t )  X (t  — t )  + o(t — t )  + C ( - t —t , t) — D
r
(t_ ’t

~ 
t) — ti

0
( t — t , t ) .

S.~t C ( t — t , t )  Q(t — t )  + D ( t — T , t )  — Q ( t ) ;  thus , we ~ e-t

X(t) z(t — t) - Q(t) — D (t-t , t ) .

Then Eq. (3.L~) can be ~witten as

(3. 5) x..(t) ~ Pr {X(-t ) j tZ( t— i ) = k ; Z(0)=i} . Pr{Z(t—t ) = k~ Z ( 0)  =

ksE

= ~~ Pr {Z(t — r )  — Q ( t )  — D (t—~ , t)  j Z ( t — T ) = k ;  Z ( O )  1)
ksE C

— r )  = k } z ( O )  i}

1-.

= 
~ ~ Pr{Q(t) + Li ( t — t , t )  k — j j Q ( t — t ) m ; Z(t— -r ) = k;

keE L m 0  C

Z ( 0 ) = i}

Pr {Q(t - t) mIZ(t - t )  K , Z (0)  =

Pr {Z(t - r )  k I Z ( 0 )  i}.

The stationary distributioll x(-i~ u r n  x . .(t) is obtained by taking the
1J

limit (as t-~~ ) of the right hand side of Ec. (3.5). The stationary

distriautiorzs for on—hand inventory and the backorder ’s can easily be obtained

knowing x(j). The stationary distribution of Q(t) will be derived

dur ing the proc’ ss of obtainin g x (j).

____ -
— —•--- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ — -~ L~~~ _ -



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— In the next section , we assume the demand processes {D
~
(t),t > 0)

and {D (t ) , t > 0) are independent. In h.j~ t i n i i  3.3 , these demand

f~ -o~ esaes are assumed to be dependent. In Section 3.4 results are

obtained for the case where the demand arrival process is Poisscn .

In S :ction 3.5, an (s ,nQ) procnr- -~~ n~ [olicy is studi~ J. In ~ :cLic ~s 3.i

results for the two special cases of complete recoverability and conr’lete

non-recoverability are outlined. In Section 3.7 some long-run averages

are derived .

3.2 Independent Ds .-s~d Processes

3.2.1 Tha Model

The case of independent demand processes arises when there are t’~;o

independent streams of failure processes responsible for the recoverable

and the non-recoverable demands .

The r ec overable demands arrive at the supply point at the epoch s
0 1 2of time T = 0, T , T ,..., where the inter-arrival times

- ~~~~ (n = 1,2,...) are independent and positive random variables

with common distribution function A
r

(t ) Pr{T~ - T~ <

(t > 0; n = 1,2,...). Let be -the number of the units (repairable)

turned in for replacement at nth epoch. The order sizes ,~~~~~, . ..  are

independent, positive and integer-valued random variables with common

probability distribution Pr {~~ = ~} , (1 1,2,...: n 1 ,2,...).

These random variables are also independent of the arrival process

{T ’~}. It is assumed that the inter-arrival times and order sizes have

f in ite means that is ,

-- ~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



a f t~~ (dt ) 
< 
~ and d~ ~~ 

< 
~~~.

- 0 j l

Similarly, the non-recoverable demands arrive at the epochs

T
0 

= 0, T1,T
2
,... and the inter-arrival times - P

1 (n 1,2,...)

are independent and positive random variables with comnon distribution

function A
~
(t) Pr{T~ - T~~

1 
< t}, (t > 0; n = 1,2,...). The

respecti~~ number of the units ~~~~~~~~ demanded are indeper.der.t,

positive and integer-valued random variables with the ccimnon probability

distribution ~~(j )  = Pr{~
’
~ = -~} . (j  = 1,2,...; n=1,2,...), ~~•:~~

these are also independent of the arrival proces~ {T~ }. It is

assumed that ‘~~~-~~ 
> 0, and

a I tA (dt ) < and dm =

The dcaan~ processes {D
~
(t),t > o} and {D (t),t > 0) are

independent since {T~~}, {T~~}, {~~~} and are independent. We

also assume that A and A are non-arithmetic [23).

For any n = 1,2 , . . . ,  let

for’ t < 0 ,

A~~~(t) = f A(t - y)A
_1)

(dy) for t > 0,

~nd = 
k~ O ~~ 

- k)~~~
_1)(k )  f or ~ = 0 ,1, . . . ,

where A
(0)

(t) = 1 for t > 0, A~
°
~(~ ) 0 for t < 0, •

(0)( O )  = 1

and ~~~~(j )  = 0 for n < j .  We shall use similar notation f - -~-

A (~~) arid $ ( .)
r r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4~~~v -  
~~~~~~~~~~~~~~~~
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t > 0 ie~

~s - sur h r  of non- -eover~ibie requisit ions arriving during

th~ ii~t~~ ’- (o ,tj ,

the len.’th ol tin e I~~t~~j V d i  beU-~een tine t and the epoch

of the fir —t i j :i—rccov~~’a~1e requisit~cn arriving after t.

v~~( t )  
~r(2 (t) )~) , k = 0,1,...,

i~~{h (t. i-~~) = RI k 0,1,..., t > 0,

w , (t~~~ l~ n w~ (t, t+t).- -  t_* _
~
,

v~
(. t) = 

~ ~ -fh~~t) k~N (t) = n } P r { h ( t)  = r~}
o 0

= 

n 0  
~
(n)

(k) . CA~~~(t) -

~s shown in the reference [23], we note that vk (t )  sat isfies the

following integral equations,

(3.6) v~
(t ) 1 — A (t ) ,  t > 0

(3.7) v~(t) = f ~~ ( i ) v ~~~~(t  - x)A (dx), k = 1, 2 
j l 0

Since A is non-ari thm~ tic , we have
C

- - - --
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(3.8) u r n  P~’(U(t) < uJ -
~~~ 

f {l - A
~
(x))dx (S c  p. 97, [23]).

For each t > 0, we have

(3.9) w~(t ,t + t) = Pr{U (t) > t), and

k T
(3.1o w~ (t ,-t + T) = 

~ 
f ~~(i)v~~~(T — :).dPr{U (t) <u} —

j=1 0

k 1,2,...

From Eqs. (3.8 - 3.10) we get tL2 stationary distribution

~~~~

— 5 {l - A ,(i)}du k = 0

(3.11) w~
”(T) =

~ c : T
j~~l 

~~~~~~~~~~~~ 
- u).{1-A(: )}du

Similar results can I-.e obtained for the process {h (t) ,t > 0).
r —

r
3.2.2 The Stationary Distribution of the Process_{2(t).t > 0)

From the definition of the inventory position (Fq. (3.1)), it

is clear that the stochastic process (Z(t),t > C} cLa; -~ s i t s

state only at the arrival epochs ~~~~ It remains uschanged

tt th~ e; ochs T
1 
)T
2
, . . • b- -c 1 -us - in th~ c -inc of r- ccv:-rab1 J~ nnn l n

X ( t )  decreases and Q(t) increases by the same amount with  no

change in Z(t). Completions of repairs or arrivals of supplies from an

external supplier do not result in a change in Z(t).

It in clear’ that

~~~~~~~~~~ 
---

~~
-.- - -—.

~~~~~
- 

-
~~~~~~~~~~~ -~~~:~~~~~~ -~~~ - .  

-

- ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ - -
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Z (t )  E (T ’1) for T~ < t  < T~~~; n = o,1,...,t > 0.

. -Oi~no’Jcr , we n:ive

Pr (Z( T~~~ ) j ;  T~~
1 - Pr1 < tjZ(T°), z(T1),...

T0 T
1 fl

},...,T

= Fs{Z~T°~’) j ;  T~~
1 - T~ < t L ( i °) ;  T~ } almost n~~~-Iy ,c c C —  C

for n = 0 ,1, . . .  ,t > 0; and 1 c E .

Thus {Z ( - t ) , t > 0} is a semi-Markov process whose kernel is given by

Q(i~ j t ) Pr{Z(T ~~
1) T’~~

1 — T” < tIZ(T~
) = i} i~j ~ H .

Define

= lirn Q( i ,j ~ t )

Th en P(i ,j) > 0 and Y P ( i ,1) = 1, so that the P(i,j) are the
je E n

transition probabilities of the imbedded Markov chain {Z(T
~
)}. To

derive these results we hivo

r ( i j t ) = Q s + l < i < j < S — l ,

(~~(j ~~~~~ t ) A ( t )
~~

(i — j) < i , s + 2 < i < s~
• Q(i, S ; t) A (t) 

~

‘ 

~~~~~ 
s + 1 < I < S.

~ 

~~~~~ ~~~~~~~~~~~~~ 
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‘icing the fact that u r n  A (t) 1, we obtain
t.-*(o

P(i , j)  = 0 s + 1 < I < j < S - 1,

P(i ,j )  ~~(i—j) 
j < 1; s + 2 < i < S,

P( i ,S) = 
~~~
°‘
~ 

s+l < I < ~~
.

k~i-s

Now we have tne fcllowin~ :

p~ (i j )  Pr [Z (T’~) fiZ(T~) = i}, n = 0,1, . . .;  1, j c E.

Let Z = Z (T°~ , n = 0,1....; then {Z } is a ~arkov chain 
imbedded in the

n C n

semi-~-1ar’kov process {Z(t),t > o}. The transition probability matrix

of this chain is P. We f irst obtain the limiting d istribution of

the chain {z} and then the stationary distribution of the process

> 0)

Theorem 3.1. The limiting distribution v ( j )  = lim P
r1(i ,j) for

i ,j  c E, oF the imbedded Markov chain (Z} exists and is given

by

(3.12 ) v (j )  j = s + l~ ... ,S - 1,

v ( s )  
~~~~S-s-l)

where

K

( 3 . 13) M ( k )  ~

- ~~~~~~~~~~~~~~~~~ 
-
~~~~~~~ - 

-- -- - 
~~- - -

~~~~~
-
~~~~
- - — - -  - - . -  — - — - -

~~~~
-

~~~~~~~~~~~



2~

~(~~) ~i~ fi~-s

k-u
( 3.1~ ) n ( L )  = ~(l); m~k )  = ~~(k) + ~ ~~(k — q )m(q ) , k = 2 ,3 .

q J.

Proof. From our assumption that ~~(l) > 0, it follows that the

cha in {z } is irreducible . From the theory of finite Markov

chains [8], we know t~ -ot in a finite irreducible I-Jarkov chain all states

are positive recurrent. We consider the following two caaes.

(i) 0 <
~~~~ (1) <1.C

In this case the cho in is aperiodic. We know that for an irreducible ,

-sitii~e recu-~ren t and aperiodic cha in , the limit ing distribution

{- (j ) > 0) exists end is given by the equations

(3.15) “ (j )  = ~ \(i)F(i.j), C H
icE

and

(3.16) ~ ‘)(j) = 1.
j~ E

Using Eq. (3.ll~) we can reduce Eq. (3.15) successively for

~—1~ S-2 ,... , si-i to

v (j )

The normalizing condition given by Eq. (3.16) and the Eq. (3.13) lead

to the desired results (Lq. (-..i2)).

(ii) ~~(l) = 1

- 
•~~ : 

- -
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In th is  case the chain is periodic with period S — s. Also , tho

rnot—~ix F(i,j) is doubly stochastic. We k~ ow that the l imi ting

distribution for this chain exists and is given by the E’is. (3.15) and

(3.16) which on solving yield

(3.17) ‘(j) = ~~
-
~~-— for all j c

For 
~~

(l)  1~ from Eqs. (3.1t~) and (3.13) we hdve m (k) = 1 for

all k c E, and fl(3—s—1) = h—n— I . Fuhstitu1~Th~ t~n - e

Eq. (3.12) we get the relations given by Eq. (3.17).

Q . E . D .

We now find the stationary distributicn of the process

{z (t ) , t > 0}.

~~~rt~S 3.2. For the process {~(t), t>0}, the stationary distribution

~(j )  ],Is~ PrU:~(t) jjz(0) = 1); i, j c E  exists and is ~ivcn by

(3. 18) 1 1(j )  = v (j )  j  c E

whcre v ( j )  are given by Eq. (3.12).

Proof: According to our assumption , the probability that a transition

will take place within an amount of time t , given that process has

just entered state i and will next enter’ j is independent of i and

j and is f. (t). let h(k) be the expected amount of time spent in

a state k during each visit , then

h ( k )  = ~ P ( K ,j)ftA
~

(d t )
j c E  0

~ .- - - 
I
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~

= p (k , j ) a .

<~~~ for all k c E .
C

F~ r tr~~ ca~-e 0 < ~ (1) 
< 1. w~~- r~ tL~ ehoin 

is i~~-riL -J ic wc hnn~-: thct

{f l (j )  > 0) exist and is given by

11(j) = 
~

kF-E

v ( j )

For the case ~~ (i)  = 1, when the chain is periodic with period

S - s , the mean recurrence ti:ro of state k is given by (p. 90, [i~ ]),

h(k,k) (S - s)  f tA (dt)
0

= (S-s)a for all K £
C

- 
. h (j )  1

ama H( j ) h(j,~ ) ~~~
Q.E.D.

We note that 11(j) does not depend on the recoverable 
demand arrival

process {A
~
} or order size distribution ~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
the Process

To obtain the transient distribution 
of the process X (t) given

by Eq. (3.5), we first prove the following 
theorem.

L ~~~~~~~~~~~~~

-

~~~~

-

~~~~~~~~

- _
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i . :eor~~ r i 3.3 .  For independ~ nt demand processes , Q~ t )  and Z( t)

crc irirJ -pendcnt hon any t > 0.

P~ oof: From Eq. (3.1) we have

Q(t) c ( o )  + 0 (t) - C(t) and Z(t) = Z(0) + CY~
( t ) - D ( t )

As mentioned in iuctiofl 3.2.2 , recoverable demands do not affect the

inventory position and thus do not influence the procurement orders.

Therefore :Q( t) is independent of D~ (t). Similarly, C( t ) is

independent of D (t). Since D ( t )  and D (t) are independent , we
C r C

r :r~ ~Tite

Pr{’)(t) q(t)~ z(t) = ~ (t)}

Pr{Q ( 0) + D
~ (t) — C(t) q(t) Z(0) + o Q( t )  — lf(t) = z(t))

= ?r{Q (0) + o (t )  - C(t) q(t)}

Thus Q(t) nod Z(t) are inde~- -
-
~ndeat  .

O.L.D.

Apply ing Theorem 3.3 and using the fact that D(t -

0(t) and 0(t — -r ) + >;(t - -r) are independent , we can rewr ite the

condit ional transient distr ibutionof X ( t )  as follows . For

t > r , ~~~~

(~~.1~~) ~r{~-;(t) = ~ j~ ; ( t  - t) = ~~~, 2(0) = 1)

~ 1r{ F (t— -t , t) + ~(t) = k — j f d ( t  — T) = m; Q(t — T)
r n U  

C

+ X (t — r) = k—rn; ; t o )  j} . Tr{h-(t — t )  = mjz- (0) U

~~~~~~ - - - -- - -~~~~~~- ~~~~~~~~~~~~~~~~ 
_ i~~- ~~

— — -_-- -
~~~

--- --



r

~ Pr{D ( t-~~, t )  + Q( t ) = k-j Q(t - t ) m ; Z~ 0) = i}
m 0

Pr-[Q(t-i , t) = iri~Z(0) i}

= Pr{D (t — r , t) + Q ( t )  = k— j j Z ( 0 )  = i}

k-j
= ~ Pr{Q( t ) k—j-d l Z ( 0 )  = I) • Pr{D (t—t , -t) = d },
d = 0  C c C
C

since D
c
(t_t

~ 
t) does not depond on Z(0).

Now following the theorem of convergence of independent processes

[2], from Eqs. (3.5) and (3.19) we have

(3.20) x(j) lirn Pr{X(t) = jJZ (O) i} for j c Z
t+~

—

~ u r n  Pr{Q(t) = k—j-ci Z ( O )  1)
kcE .d 0 t - ~~ 

C
C

lb Pr {D ( t-r , t )  d . 11(k )
t-~~

o 
c
_i

The above expression describes the stationary distribution of X(t).

Eq. (3.20) can be evaluated after obtaining the stationary distribution

of Q(t) and from Eqs. (3.11) and (3.18).

The stationary distribution of Q(t) is obtainable using

queueing theoretic methods . As indicated in [6], explicit analytical

results are not available for a Cl/C/C (general inter-arrival and repair

time distributions and a finite nurni~er of repair facilities) system

with bulk (batch) input. We shall consider the following special case: 

- -- -
~~~~

-
~~~:. -

~~~~~
- - -
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G~ /~;/~ (ce neral 2rri~ra1 process , constant rej - ir tiuc = I~ , infinite

repair facilicies) system with batch input.

For aliy t > ~~ , the nun*er of units in repair at time t is

equal to the number of the reco-iorable units that arrived in inte~’val

(t - R a t] ; that is

P r (Q ( t )  k — j — d t Z ( 0)  = Pr {D (t — R ,-t )  = K — j — d
~~
}.

Fol1owin~ the steps similar to those nscd in 
derivino ih. s~~(t , n~

(3.21) jim Pr(Q(t) = k~IZ(0) = 1)
t-*~

f {l - A (u)}du k’ = 0
1’

f ~~(j ’ )  v~~~.( R - u). (1 - A (u)}du k~ = 1,2 , . . .

where v~ ,(t )  = ~~~~~~~~~~~~~~~ -

From Eqs. (3.11), (3.18) and (3.211 , we can obtain x(j).

3.3 Dependent Demand Processcs

3.3.1 The T-Iodel

Fe view the case of dependen t demand processes arising from a

sing le failure process.

The demands arrive at the sumply point at the epochs of time

0 1 2  . . . ,,n n-l
I = 0,T ,T The inter-arrival times I - T (n = 1,2,...)

are independent and posit ive random variables with common distribution

_ _ _ _ _ _  J



3 -~

function A(t) = PrCT
a 

- T~~
’ < t}, (t > 0 o 1,2,...). The

respect ive number of units d manded are in~~-- c -nuent , positive and

- ‘ integer-valued random variables with the common probability distribution

~~~~~~ These are also injeç~~~~E -~t ~~~~
- the arrival process. It is

assumed that ~(1) > 0; and

a z .f t A(t) < ~ and d
r1 

= j ~(j )  <

0 j=l

Here the demand process {D(t),t > 0) and {D (t),t > 0)

are , in general , dependent . Similar to that in previous 5ecticn , we shall

denote the n-fold convolution of ~~( )  and A(S) by ~(~1)(.) and

respectively. For t > 0, let

N(t) = the number of total requisitions arriving in ( 0,t],

U(t) = the length of tha time interval between t and the

epoch of the next arrival ,

v (t )  Pr~ D (t) = K -, D (-t) = k~
} K ,k = 0 ,1,... ,

C 1 r 1 2

wk k (t ,t + t) Pr’{D (t,t ÷ -r) = k
1~ 

D ( t ,t -t- t) = K
2
)

= 0,1,... ,t > 0

W
k K (t) = u r n  wk k (t ,t ÷
1~ 2 t-~° 1’ 2

We shall derive these for the two inspection models discussed earlier.

J3atch Hodel:

In batch model , where the entire batch of the failed units is

either repaired or condemned , inspections are repeated independent

‘~ 
-‘
~ ~~~~~~~~~~~~~~~ 

- . .‘.
.- -_I ’- - — - .4- -’~~ - -. - 

- 
0

~~ 0 -
- --.——.-- —- -‘ — — .——----————- - - — -~4_ .— — - — -——- .- - -—
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Bernoulli trials with probability r
B
(0 < r ’11 < 1) of sending a batch

to th~. r JL cyst: and probsbility (1 — r
2

) of co:~dumnin i, tb: batch.

This divides th e requisitions into recoverable and non-recoverable

types. For t > 0, let

N (t) = the number of non-recoverable requisitions arriving

in (0,t]., and

11 (t) = the number of recoverable requisitions in (0,t].

We have the fo’ lowing.

Pr {N (t )  = k~N ( t )  n )  (~~~) r~ (1 -

k = 0,1,...,n.

k1+k 2 7k 2
(3.22) vk k (t) = 

n~ O 
(~~)r~ (1 - r’

B~

. [A ~~~ ( t )  - A
(1
~
+1) (t )~~ k

1
,k2 = 0,1,...

Following an approach similar’ to that used in deriving Eqs. (3.9)

0 
and (3.10 ) , we get

(3 .23) w (t ,t + -
~~) = P r { U ( t)  > -r } , k ,k = 0, arid

‘ 2

- 2 T
(3.214) w1, k

(t ,
~~~

T) r’
8 ~ $ 

~~~~~ k ~~~~~~ — u)dPr{tJ (t) <u )
l~ 2 j=l 0 1’ 2

k,

+ (1- r
B
). 

~ 
f 

~
(i)v

k -j  k (t - u ) dP r {U (t )  ~~u }
j 1 0  1 ‘2

k1,k6 = 1,2 

~ 

_ _ _
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be St it nosry d : ~~
i -  Sn i~ iv en by

~ 5{i - A(u)}du k
1
,k
2
0

( 3 . 2 5) ~ — 2 r

~ 
f ~(j ) v ~~~~~~ 1 

(~~ - u)-[l - A(u)}du

(1 - rr ) .
~~ 

~ 

f ~ (j ) v 1 . 
,k2

(T - u ) ( 1  -

k,,k2
=l,2 

Unit Nodel In the unit model , each unit in a batch is ir1spe~ ted to

determine if it mil•t be rup 3ircd or ~)C scrapped . The inspections are

repeated Bernoulli trials with probability r’1~ 
(0 < r’

~ 
< 1) of

repairing a nflit and probability (1 - r
~
) of scrapping the unit.

This divid s the units into recoverable and non—recoverable classes.

We can wrIte

k + k

(3.26) vk k (t )  1 2  
- r~)

1r~~
2
~~~ ~~~~~~~~~~~~~~~~~~~~~~~

= 0,1,2 

Also ,

(3 .27)  Wk ,k (t,t + T) = Prfu (t) > -r } k
1
,k2 = 0

1 
k
2 ~~~~~ j ~ 

-
~

(3.28) U
k K (t ,t + t) = 

~ 
~~~ 

~~ 
l.~~~)(i - 

~~~ 

1(r
~~
) 
2 

~

V
k k (T-u)dPr’{U(t) < U

1~~~
’ 2~~ 2 )

= 1~ 2 

hlL&L ~~~~~~~~~~~~~~~ 
- ~~~~~~~~~ ~~~

. . 
~~~ 

— 
-
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The stationary distribut ion is given by

- A (u f l d u  k1,k
2 

= 0

(3.29) w
~~~k

(T) = 

~ ~~~~ 

(l ~~ r
u

) 1r u~
2

. f 
~
(i l+i 2

)vk j ,  k
2~

j
2
( T t

~~~~
Jd1

~~

K =
1’ 2 ~~~~~

‘ 

3.3.2 The Staticoary Distrihut$on of the Process {Z(t),t > 0)

When a sinc’le process generates failures, {Z(t),t > 0) changes

its state possibly only at arrival epochs T
1
,T
2 Completions

of repairs or arr ivals of procurement orders do not change Z (t ) .

Fr~llowing the arguments similar to those presented in Section 3.2.2,

we see that {Z(t),t > 0} is a semi-.hiarkov process whose kernel is

given by

Q( i ,j ~ t )  Pr{Z(T~~
1) ~~~ T

n+l 
- 1

fl <tj zyr~) = i}

c E.

In the following two subsections we obtain the kernel and the

stationary distribution of { Z( t) ~ t > 0) for the two models .

3.3.2.1 Batch Model

Upon a demand arrival, the following two outcomes are possible :

(i) the batch is condemned (prob. = 1 - r’3
) ,  X(t) decreases

and Z(t) CL nges~ and

_______ 
s..- . . - .• - - — •:-~ 

- 

-I~~ 
—- ---

~~~~~~ -- - --———--‘-~!~ 
*__ _________ -k- ——- ’



(ii) the batch ii found repairable (;~-rob. r
B
)
~
X (t) decreases

and Q(t) increases by the same amount , nnd , therefore ,

Z(t) remain unchanged .

Then ,

Q(i,j-, t ) = 0 ‘ + 1 < i < j  < S — 1

Q(i,j t )  A (t)r
B S -

~- 1 — j i < S •

Q( i , j~ t) = A(t) (1 — r
B
)41(i — j )  j  < i ,s + 2 < < S;

Q(i,S - t) = A(t)(1 - r
B
) ~ •(k) S + 1 < ]. < S - 1.

k>i—s

Q( S ,S , t) = A(t){r
B 
+ (u  — rB ) ~

k>S - s

Using the fact that Urn ACt) 1, we obtain ~~~~i j )  = u r n  Q (i,~ ; t).
t-~~~ t-~~~

— The transition probability matrix P(i,j) of the imbedded barhov

chain is shown on next page. We i-ave the following theorem .

- 
. 

Theorem 3.14. The stationary distribution I(j) = lirn {Z(t) = j~~~(0) = i},
t-*~

i ,j £ E exists and is given by Eq. (3.18).

Proof. From the matrix P(i,j) it is clear that the chain is

irreducible since ~(l) > 0 and 0 < r
3 

< 1. Therefore all the states

are positive recurrent . For 0 < ~(l) < I, the chain is aperiodic

and limiting distribution is given by Eqs. (3.15) and (3.l~~) wh ich on

solving yield Eq. (3.12). For ~
( l) 1, the chain is aperiodic for

~~ < < 1 and is periodic with period S-s for r
B O .

• Therefore the limitine distribution is given by Eq. (3.17).

Proceed ing as in the proof of Theorem 3.2. we obtain the desired

result.

Q.E.D.

~~~~~~~
-- _-~~~~~—--- --~~~~~ -- - s - .  ~~~~~~~~~~~~ 1- •

:
1

-
~ 

•
~
•
~•b.~ - - 

~~~~~~~~
- — - - -

~~~~~~~~~~-~~~ - _ -  I
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3.3.2.2 Unit LIodel

Let

p (k) = Prfthe number of non-recoverable ~:nits in a batch = k}

= ~ Pr{thc n-srrj-er ~f r n-recoveraUt- units in a I tcb

d=k = kibatch size = cjpr{eatch size  = d).

(3.30) = 
d~k 

(~~)r~~~~~(l 
- r~~)

k
. ~(d).

Tb er~~pcntLe arrival of a demand . Z(t) changes with probability

p(k) and remains unchanged with probability p (O) 1 - 
k=1

F~reover , for 0 < r
~ 

< 1 0 < o ( 0 )  < 1. Fe have

‘~( i ,j t ) 0  s + l < i < j < S — i ;

~(i ,j t ) = A ( t ) p ( O )  s + 1 < j = i < S

ç(i ,j  t )  = A (t)p(i — j )  j  < i . s i -2 < i  < S~

Q(i ,2 t )  = A ( t )  ~ p(k)  s + 1 < i < S —

k’i—s

ufl d

b ( S , S; t) = A ( t )  (p(O) + ~ p ( k ) } .
k>S—s 0

We can obtain the transition probability matrix of the

imbed ded :-~arkov chain Zn = Z(T
m
),fl = 0,1 (noting that lim !.(tl = l) .

t-~

Theorem 3.5. The stationary distribution f l ( j )  = u r n  Pr{ (t) = jIZ (0) = i},
t•+~

exists ani is given Ly - 

~~~~— - —- -- - -~~~~~ --

.

—- --~~~~~~~~~~~~~
—-‘— -

~~~~~~~~~~~ --—-
~~
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(3.31) 0 (j )  = ‘~~G( S~~~~l)  = S + 1,. ..,S - 1,

I I )(S - 
l+G (S-s-l)

vi a
k

(3.32) G(k) ~

and g(k) being determined recursively from the equations

~3.33) gUi = p(l) I (l — p( 3 ) )
k-I

g ( k )  = E p ( k )  + ~ p ( q )~~(k - ~-)]/El — p ( O ) ]
q- 1

K = 2,3 

Pro f: Suppose 0 < r
~ 

< 1 then 0 < p(1) < 1. Following arguments

similar to those in the proof of Theorem 3.1, we note that the chain

is irr s iucii~~e cr 1  -ill the states are positive recurrent . Therefore

the t i rit -- Ji t rbit ion {v(j) > 0) of the chain exists and is

• ri ven by bns . (3.15) and ( 3 . 1 6 ) .  Using Eq. (3.33) we reduce

- - ii. (3.i~~
) successively f cr j = S — l,S — 2 s + 1 to

v (j )  = g(S — j)v(S).

The rior~~ l i n i n~ cond ition (Eq. (3.16)) and the E~~. (3.32) yield

v ( j )  = l+C- (S-s-i) j = s + 1,... ~S - 1.

1• v (S) 1+G S—s-l)

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~~~
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y ~ r o l y jfl.- Tbeoi-en 3.2 we ob tii~ t is dusirtd rcnults .

The spec -Hl cases of cornp1ot~ recQverabilii-y sri corobietc- non—

recoverability ore discussed in 3ection 3.~~.

3 . i . 3  The Stationary fli nt~ ibu tion of the Process ~X(tL,t2. 01

be consider a constant recair time R and an infinite number

of repair facilities. It is assumed that P < r. in order to

obtain the transient distribution x..(t) -t > r , ~ iven by Eq. (.5),

we first obtain the join t p ro babil i ty distribution of {Q(t),t > 0) and

{Z(t),t ? o} . It the demand processes are independent then the t:o

processes are independen t ~Theorem 3.3). This offered a considsrsL1~r

simplificat ion in evaluatiri e x . .(t) in Section 3.2.3.
1]

Since only the repairable units received during (t-i-~,t] are

Is tb~- renoir cycle at time t (t>R) , v~ con

(3,3L~) Pr{Q(t) = m; Z(t) = kJZ(0) i} -

= ~ Pr{Q(t) = rn - 7(t) = k~Z(t — It) z z(0) = i}
zcE

Pr {Z(t - R) zVT (0) = i}

= 
~ 

Pr{D (t - R ,t )  = m; z(t) kIZ(t - R) = z~ Z(0) = i}
zcE

Pr{Z(t - R) = z~Z(0) i}, m = 0 ,1, . . . , and k c E.

Let

N0 (t - R ,t )  = the number of procurement orders placed during
(t —

. - .

~

0•__— —~~~~
-
~~_~~~~~~2?~~~ — — 

_______



-—
~

--
- -  0~~~~~~~~~~

= the time after t - R  when the 1
th 

oruer is placed , i l ,2

- P1
LL

~1’

n+I 

r

Figure 3 .2 :  A sampl’~ rea1isat~~ n of the process {Z (t ) , t>0 }

during the interval (t-R , t].

The random variables Y
1, 

Y1-Y1 ~ 
(1=2,3,...) are mutually

independent. Furthermore, we have

(3.35) P r { Y
1 

< yJZ(t-k) = z} = ~ Pr{D (t—R , r—R+y ) = k
1

};
k
1
>z- s

and

Pr{Y. - < y } = ~ Pr{D
0

(y)  k
1
}, 1=2 ,3 

1 k1>S-s

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
L- -~~~~•~~- +

-~~~
- 

___ i _  
0
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The process {Y 5~ is a rerewal process when z S . and it is a so-

called d:~la~ed renewal proccas when z � S (see 1~oss [114]). For

p -
~ l~2,...; let

(t ,y) = Pr[ N0(t-R , t )  = p; Y < y ;  Dr
(t_ R

~ 
t_R+Y~~) £ J Z(t -R)  = z}.

We have,

(t ,y) = ~ Pr {D (t-R , t-R+y) = k1
; Dr(t_R~ t-R+y) =‘ k > z_ s

1—

and

(3.36) (t ,y) = I ~ 
Ct , y_u)F

~~~~
(t,du) p = 2 ,3

0 k 2 0 2’ 2’

For 0 < y < R and p l ,2,...; we have,

(3.3 7) Pr {Z(t) = k; Q(t) = m IIi°(t-R, t) = p ;  Y = y; D
r
(t_R

~ 
t-R+y) = i;

Z(t -R)  = z}

= Pr{D (t—Ri-y , t) = S-k; Dr
(t_R+Y

~ 
t) = m-~~ N0( t-R , t )  =

= 
~~ 

D
r
(t••R

~ 
t—R+y) = i~; Z(t-R)

and for p 0 we have

(~~.38) Fr {P~ -t ) k ; Q( t )  m~Z ( t—R ) z}

Pr{D c
(t _ R , t) = z-k ; Dr

(t_ R
~ 

t )  m}

~~z_ k ,m (t
~~~

t )  ‘ for z > k,
= 
0 , otherwise

~~-- -
~~~~ -~~~- 

-~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~ - -  .~~~~~~~~~~~~~—~~~~~~~~~~ ------—~~~~
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From Eqs. (3.36 - 3.38) we get

(3.39) Pr{D (t-R , t) = m; z(t) = kIZ(t-R) z; z(0) i}

(t- R , t)  + 
~ 

I wS_k,m_ Z
(t R•f

~ 
t)~F~~~(t ,dy).

p l —= 0 y=O

Substituting Eq. (S.39) into Eq. (3.34) we obtain the joint prciahilitY

distribution of Q(t) and Z(t), given by

(3.40) Pr{Q(t) = m; z(t) = k jZ(0) 1)

= 
z~E 

~~z_k ,m
(t_R

~ 
t) + 

~ ~~o ~L0 
wS_k ,m_~

(t R+Y
~ 
t)F~~~(t,dy9

Pr{Z(t-R) = z I Z ( 0 )  = 1).

I
We can now ob tain the expressions for the two probability terms in Eq. (3.5).

Since D (t-t, t) is independent of Q(t-r) and Z(t-T),

and Q(t) depends on D
~
(t- -r, t )  only through D

r
(t_R

~ 
t), we have

(3. 41) Pr{D (t — r , t )  + Q(t) k—j~ Q (t_r) = m ; Z ( t — -r ) = k: 3(0) = i}

• dk-j
= ~ Pr{D

~~
(t—r , t—R) = q; D (t-R, t) = d —q ; I) (t- i \ , t )

d 0 q 0  C c r 
0

= k-j_d
~
}

d

= 

~~ O q~~ 
(
k
2~

O 
Wq, k

2
(t_T

~ 
t_R)) (wd -q,k-j-d 

(t-R , t)).

£ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- : ~~~~~ ~~T -.



And

(3.42) Pr{Q(t—t) = mIZ(t—T ) K; Z(0) = i)

= 
Pr{Q(t—r)-rn; Z (t_L ) kIZ(0) = i}

Pr{Z(t—r) k~Z(0) i}

The numerator of Eq. (3.142) can be obtained from Eq. (3.40). 
0

Substituting Eqs. (3.41) and (3.42) into Eq. (3.5) we get

~ rk-~ ~~~~~~~~~~~~~~

(3.42) x..(t) = w (t— -r , t—R ) I
kcE m 0 ~~~ 0 q 0 

~2
0 q, 2 J

Wd _ q, k_j _ d (t_ R
~ j [ \

z_k~m 
t- r )

~° in R
+ I WS k  ~~~~ t-t~ R+~~ -t-t)

p=l 2.=0 y O

F~~~~ ) (t~ T~ dY))

Pr {Z (t -T -R)  z I Z ( 0 )  =

The stationary distribution x(j) can be obtained from Eq. (3.42)

0 usiss th~ b -opLas~ transform anproach as suggssted by Sivazlian [22].

~~~~~~~~~~~ - _ :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•
~~~~~~~~~

.- -
. 

- -~~~~~--- - 0  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~-- ---— - ~~~0~~~~~~~~~~ o
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:a.14 Th- Cas3 of Cornmo~~ J Poj~’ n h e o s c ’ I i

Fe now consilcr the case whore tha faI~~re prccesses are

. 0 
Poisson processes . Both the cases of independent and dependent

d~masd processes outlined in Sections 3.2 aaid 3.3 are investigated .

3.4.1 Independent Demand Processes

Suppose that non-recoverable and recoverab’e failures are

d r r ~.r0tL.i by m a  ir:-JfpOndOnt Fsisson processes with notes A (>3)

and A
r
(> 0), respectively. Then, in terms of the model described

-x t  - A t
in 3eaticn 3.2.1, A (t )  = 1 - e 

C and A ( t )  = 1 — e 
r 

, ~ 
> 0;

a = 1/A (< ~~~) am;i a = 1/X (-< ~~). Let 
~~~~~~~~~ ~~~~~~ 

> 0) and

be the order size distributions of non-recoverable and re-

coverable demands , res~ ective1y . Then {D
~
(t),t > 0) and {D

r
(t)

~
t > 0)

a~-~e independent compound Poisson processes with parameters A and

with cornpounding distributions ~~~
( • )  and ~~~~~~~~~~~~~ 

respectively .

Consequently, from Eqs. (3.7) and (3.8) we have

-A t
C fl

k e (A t )
(3.414) v~(t) = 

n 0  , K = 0 ,1, . . . ;

and

u —X x
u r n  Pr{U(t) <u} = A

~ 
f e 

C dx = 1 - e

0

Thus from Eq~ (3.10), w~(t,t + t) v~ (t). Therefore

(3.145) w~~~( T ) = v~ (t) for t > 0.

-
~~~~

- 0 -—0 -~~ 
_ _ _  _ _
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—A t
A~ (t) = 1 t>°, and ~~~

( )  5 t1:i/ i~~~L ~~~~~~~~~

ci: theo rems 3.1 and 3.2 , tb-z~ stationary dis~ cibution fl~j ) ,j  C E

is p I -~’en by Eq. (3 .18) . To obtain the stationary distribution

x (j ) , j e Z, given by Eq. (3.20), we fi~ost ob-tHn tha statico

distribution of tha process (Q~t),t > 0).

Let G denote the repair tis.a distribution of a unit and 3

me the number of repair faciliLis::. Then using the nomenclature

from queueing theory as g iven in Gross and Harris [G] ,  the rep-air
[~> ]

system is equivalc o-t to a ~4 
r 
/~/k C~~~Li~~~I~~ syste ., ~r:e t !1e

stationary distributIon of thc process {Q(t),-t > C} is equivalent

to {pJ , the ototfos -ry disc~ ibu-~ic’n of the number of custoncra

in the aueueing c~m tern , As rno - t ion-.-J by Gross and Ha rris , no

analytical resulto for {p } are available for the systems like
n

~ /G/l , !i /3/k r iLi J  ~ 
~ /3/1. ~~s- resalts a1~ av~±L le in

the form of a generating function or a Laplace transform. In our

following discussions, we shall consider a i-I 
r /G(T)/~ repair

system , whare T is the mean (finite) of the repair time distribution .

It is assuo~ed that repair time is the same for all units in a botch

and Q ( 0 )  = 0. Feeney and Siierbrooke [5] have shown that  fez’ such

a systho {r~) is a cos:po~uri -~ t~oissori with pcr-arzete: A T  ari d

coat ousdinp distribution ~~~~~~ tha t is ,

- A T
r ~na e (.~ ~~ .j

(3.~ b) 1~ m Pr(Q(t) = q} = 
n~ 0 

~~~~~~~ —___

q 0,1 

b~ ccnslder certain special cases.

• 0~ .

~~~~~~~~~— 
- .  .- - -~ - .4 ---

•0

•~
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(1) Geometric Ordo~ Size bi~-t nibi~tions :

The geometric order size distribution has be~ ri extensively

considered in inventory theory in the context of random order

size, (for example , see h -i-I1~~ ~an1 Whitin [7] ) .  h i t h  ~ccmat ric

order sizes , the r-:sulti demand processes CL ~
( t )

~
t > u} cod

{D ( t)~ t > 0) have stutterim~ Poisson distributions. As notc-t

by Sherbrooke [18]. a stuttering It. Isson r)i’ccea~ ofi:cre considerable

analytical simplification and is a ‘natural’ candidate for

describing the demand process-na in a number of practical s it oat ia r i S .

Let

= 0, ~~(k) = (1 — , It = 1,2 

and ~~(0) 0, ~~(k )  = (1 - a )c~~~
1
, k = 1,2 

where O < a  < l a n d  0 < a < i .
— C  — r

• From Eqs. (3.14 ) and (3.13 ) we have

r n ( l )  = 1 -

m ( 2 )  = (1 - a~~
a

~ 
÷ (1 - o

~
)(l - a )  = 1

m (3) (1- + (1- c& )a (1 - e )  + (1- a )(l - a )

= 1 - a .
C

It can be easily shown that

in(k) l - a , for k > 1 .
C —

Th .ji ~ ( C — s — 1 )  = (S—s—1 )(1—a ). Substituting these into Eq. (3.18)

~ get 

~~ 0 
- 4



- - --~~~-~~~~~~~. ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - —

L4 ~,

= s + 1,s -
~ 2,...,S - 1;

and 
~~~

(S_ s_ 1)( l_ a
~~

)

The distribution given by Eq. (3.45) is a stuttering Poisson

distribution and is given by

(-A r
H

° d O

(3.48) w~~ (t) 

~~~~ e~~~~
T

.~
1 

1 (d~~
-1)

~~(i 
~~
c)
~~~1~ 

d
c 
11.

[9 ]

For a M 
r 
/G(T)/o~’ repair system , it follows from Eq. (3.146)

that u r n  Pr{Q(t) = q} also has a stuttering Poisson distribution

t-~
a.

ly on by

(3.49) lim Pr{Q(t) = k_j _ d
~~

t Q ( O )  = 0)
t-~
a.

T
r d = k - j

e~~~
T 1~ 

d i~~~~~~~~~~~ \rTl

Substituting Eqs . (3. 147 - 3.49) into Eq. ( 3 . 2 0 )  we can obtain the

stationary distribution x(j), j c Z.

(2) Unit Order Size~

Fhcii units are demanded one at a time , that is, when ~ 
(1) = 1

C

and ~~(1) = 1, it follows from Eqs. (3.18) and (3.45) that

j

hr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~~

. ,
~~~~~~~~~~~ 

- -~



—A -r

~ 
~~~~~~~~~

and W
d
(T) = —

~~~
—

~~~~
_ 

, d > 0.

For a M/G(T)/a. repa~:-’ syotem , from Eq. (3.46) it f l1co~ that

-A T
e r (A T) k J~~c

lim Pr {Q(t)= k-j - d } =  — —---- , k > j  + d
t-+a. c (k - -J - d ). — c

Su.astituting the above results icto Eq. (3 .20 )  we get

— A t  d -A T
S k— -j ~ ~ (A r) C 

e (A T)
k_ J d c

(3.50) x(j) = —
~~

—- 
, 

C- r
S-s 

k~s+l d 0 d
~
. (k - j  - d )!

c C
— (A - .÷x ~~

= ~ 
S e C r

k=s-t-l (k —

Ac nol:c-d by Richards [13], it is interesting to compar e the results

- iven by Eq. (3.50) with the re~.:~ltn given by Hadlev and Whitin

([7], pp. 183-187) for a continuous review consumable item inventory

system with Poisson demands with parameter A and a constant procurement

lead time -r , where

— A T  k—IS e (At)
(3 .b l )  x ( )  = ~~

-—  

‘k— ~ 

a simple change of parameter from At to (A
~~~

T +  A
r

T) makes

Eqs. (3.51) and (3.50) identical.

~
Te conclude by emç h.:oizing that results o bt a in e d  here hold for the

c~ s~ nh~ re C l  iteo h~ s n poosib le independent faiiur€- modes. For mode i,

the fai1sr~ jroceso is a Poisoon process with rate an-I th~ c-i J~ r size

d i .t r i b u m ior~ is ~~~~ ( ‘) .  Furthermore-, if the foilure  node belcn- -.~ te a

set R, the units are recoverable ; but if the node belongs to

~~~~~. 
-
.- . .

~~ -~~~~~:~~
- :~ ,;a- .~~~~~~~~ . - -.

- — —_ -_ -- — -~~ 
— ______ ~~~~~-w_- 

_ _ _ _ _—
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the complement set C , the units are non-recoverable. for this Lr SC ,

the results obtained in this ~ection hold with A = ~ A.,
icE

A = • 1 1i~ ~~~~~ 
= ~ A .$(~ ) and 4) ( .)  

1 
~~

is r icR r ic-.

3.4.2 Dependent Demand L’rocesses

Suppose the failures are gceerated by a Poisson process with rate
— A- c

A (>~ ); that is, 
A( t) = I - e , t > 0. Also, let q ( . )  denote the

order size distribution. We e>,amine this case for batch and unit

— inspection models.

h atch Model:

Let r
E 

be the probabflity that a batch of failed ux—it is recoverable ,

then from Eq. (3.22) we have

(3.52) Pr{D (t) k
1; D (t) = k2

)

k +k k1 2  2 -At n
= (~ )r~ (l — rB)~~~~~~~

(k
2
)c
~ 

(k ~ 
e (At)

n 0  k max (0,n-k1
) 1

= 

k7 e Bt(~rpt)
k k~ 

X( 1 r B )t
(A ( l )t ) fl~ k 

~
(n
~

k ) (k )

2 n-3 0 (n k)h

Fr-cm (3.52) it follows that the demand processes fDr
(t)

~ 
t > 0) and

{ D ( t) ,  t > 0) are independent compound Poisson processes with parameters

and (1 - r
B

) A ,  respectively , and have a common compounding

distribution, ~~
( ) .  Therefore , the results of Section 3.4.1 hold for

the batch model with A = r8
A , A (1 - r

B
)A and 

~~~~ 
= 
~~~~~ 

=

~~~~~~~~~~~~~ ~~ . - —
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T ] ~ j t  -~-~dei :

Let r
~ 

ba the probability that a unit in a batch is reeov- - rable .

Then from Eqs. (~ .20) and (3.2c~) the demand distribution is give-n by

(3.53) v (t) Pr[D (t) k,. D (t) = k )
k1

,k2 C ~ r 2

k k ~k1+k2 
~ 

e (At )~
k~ ) (1 - r

~
) 1r

~ Ln~0 
~ ~ (k

1
+k~) 

~ 
— •

and

(3 .54) W} k (t) = v k (t) for k ,k
2

0,l 

~1’ 2 k
1

, 2 1

The stationary distributions 
~

(j ) , i  c E and x (j ) ,j c Z can be

obtained from Eqs. (3.31) and (3.43), respectively. The darivation of

x(j), however, is computationally complex for a general ~~~ • ) .  We

consider the special case of unit order size, that is, ~(1) 1.

Using the fact that ~
(n)(k + k

2
) = 1 for n = k

1 
+ k

2 
and

+ k
2 

= 0 for n � k1 
+ :(

2~ ~t follows from Eq. (3.53) that

(3.55) Pr(D (t) = k D (t) = k }

(k~ + k2~~ - r  1 k
2 e

_At
(A t )

k
l*k2

\ k
1 ,J U ‘ U

_r
~

At 
k -(1-i’ )A t k

e (rUAt ) 2 e U ((1_1
~~
)At) ~

Thus D
~

(
~~

) and flr
(t )  are independent Poisson processes with

parameters (1 - r
~

)A and r
CA , respectively . Therefore , the results

for the case of unit order size obtained in Section 3.4.1 hold in this 



situation with A
r 

r
U
A , A = (1 — r

~
)A , and 

~r
’1
~ 

>
~
(l)

In addition , Eqs. ~3 52) and (3.55) lead to the obvious conclusion

that for the unit order size distribution , the batch and unit models

are id~ntic~-1 .

3.5 The Uniform Distribution of Inventory Position and the (s,nO)

~G - ~O -5L t >lic~~.

From t~tO previous sectiono , we make the following observations

on the stationary distribution of inventory po~- .tion under an

~-rocuremont policy . For the c-a:;-T~ where the demand ~rocecscs are

(
~~~e1v1an t , it is clear frcm ft -r -n 3.2 that 11(j), 

~ 
c E , is

uniform over {s 1- 1 ~~} fc~ ~~(i) = 1, and is independent of

~~~~~ 
Similarly , when the demand proce-n-rs -ce dependent cud r ( 1) = 1,

~haoren-; 3.14 and 3.5 imply that rI (i) is uniform over {s + 1,... ,~~ ).

Further-no--c . we can derive tl’e ccnditions for which the uniform distribu-

tion is obtained. Tic is done in the following lemma.

Lemma 3.1: Under am (s,S) policy , 11(j ) is usifc:’io over {s + 1 , . ..~~~~ }

en~ cr.ly if

(a) 
~c
(1) = 1 ur~ er the conditions of Section 3.2 ,

and (h )  
~(l) = 1 under the conditions of Section 3.3.

Proof : We have already discussed the if’ part. For the ‘only if’

part, assume 1 1(j ) , is uniform , that is,

(3.56) 11(j) = ~~
-
~~~~- for I c E. 



~~~~~~ 
_

~~ __ _ __

( a)  From Eqs. (~~.1e), and (3.56) it folious ti::t m (s—j) = 1,

:+1 <j<.—j; an-I h (S—s—l) b—s—i . Substitutine ii~to Eq. (3.14)

we ~-:t 
~~
(1) 1.

(b) From Theorem 3.4, it follews that above proof also holds

for the batch model; that is, q(l) = 1. For the unit mo ’el ,

Eq. (3.5t) implies that g(S-j) = 1 for s + 1 < j < S - 1 and

G(S—s-1) 1. Eq. (3.33) the-n imp lies that p(l) = 1 - p(0) and

p(k) = 0 for k = 2,3 Substituting this into Eq. (3 . 3 0) .

we get ~(l) = 1.
Q.E.D.

Because of its cathernatical simplicity, the ~‘nifoa~ distribution

of inventory position has been extensively considered in inventory

theory. For example see Hadley and Whitin ([7], pp . 181-183), Simon

[19], and Sivazlian [ 2 2] .  But Lemma 3.]. suggests that under an (s,~ )

policy, 11(j) cannot be uniform unless (a) ~~(l) = 1 or (b) ~
(l)  = 1.

However, the uniform stationary distribution is recaptured under

an (s,nQ) policy for arbitrary order size distributions. We first

describe ~Lis policy.

The (s,nQ) Policy:

Under a continuous review policy , when the iuv--atcry position

falls to the level s or below , nQ units are ordered where n is

the largest integer such that the subs~~ u n t  inventory position is

between s + 1 arid s + Q. Figure 3.3 shows a sample realization of

inventory pc-sitien under this polIcy. The state space of the process

{Z( t ) ,-t > a) is the set E’={ils+l < i < s+Q, i integers).

~~~~~ ~~
.... - . - .

- —_- ---- — ~~~
. 

- 
-
- — *_ _ _~~~~~~__ ~_~ - 

- -—
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:(t)

L
1~ LH

’

~~~~~~ 
L1_

0 time

Figure 3.3: A sample realization of the inventory position with the
(s,nQ) policy and random order sizes.

For a consumable item inventory system , it was shown by Simon [9]

that the stationary distribution of inventory position (units on hand +

units on order - number of Lcckorders) exists and is uniform over

{s+l ,... ,s+Q}. In the following theorem , we extend his results for

o~ir version of a recoverable item inventory system .

Theorem 3.6. Under an (s,nQ) policy, 11 (j) = ~~~, 
j  c E’ both for

independent and dependent des1and processes under the conditions of

5- sti~-ns 1.2 ond 3.3, r ~sp cti-t iy.

Froof. We obtain the transition probabilities P(i , j ) , i, j c E ’

of the i:~Lcdded Markov chain fo-r~ the process (2(t), t>0} under an

(s ,n~~) policy. 

- -- -— ~~~- -



_____________ _______ ___________

(a)  Independent demand processc-s: Proceeding a~ ~~

3.2.1 for an (s,S) policy , w~ obtain

~ j

P(i,j) 
~~~~~~~ 

~~~~~ 
- (j- - -)), i ~~~ 1; 

- 
-

and P ( i ,j) = ~ ~~(nQ + (i-j)), I < i.
n 0

From the assumption that ~~(l) > 0, the Markov chain {Z~
) is

irreducible and its limiting C~ stribution ~(j ) ,  j  ~ E’ iS given

by Eq. (3.12). ~o1ving tlxesc equations we get v (j )  = ~~. By

theorem 3.2, 11(j) = ~~
-

(b) 1’ependent demand processes: In this case, we shall consider

both batch and unit models of inspection. For the batch modei,

r:rcc~~ din~ as in Section 3.3.2.1, wc hav~

P( i ,j) = (1_r
B
) 
n~l 

•(nQ + i - I ) , i 
> i;

P (i ,j) = 1
B ~ 

(l-r
3
) 
n~ l 

~ (nQ ) , I i~

and P (i ,j) = (l_r
D
) 
n~0 

~ (nQ + i - j) I < i.

The matrix P here is easily scan to be doubly stochastic , and tn t~

rest of the prooi is similar to that in case (a) above.

rsc- .- ii~ a~s in S~ctiori 3.3.2.2, w~ n~tein t h -  fcliowin,~ fcr the

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~ 

-
~~~~

--
~~~~~~~~~~ 
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P(i ,j) = ~ p(nQ + i - I )  I > ~-

n=l

and P(i ,j )~~~~~~~p (n Q + i_ j )  j L ~~
i.

From the assumption that ~~1) 
> 0, it is clear that Eq. (3.30)

i.nplies 0 < p(l) < 1 for 0 < r
~ 

< 1. The rest of the proof is

similar to case (a). For r
U 

= 0., p (k )  ~(k )  and the resulting

situation is the same as case (a), with ~~~
( )  = ~~

( )  and 
~r
(k) 0

for k > l .

Q.E.D.

‘~Then the demand processes are independent , the stationary distri-

bution of the process {X(t), -b-0} under an (s,nQ) policy is the

same as obtained in Section 3.2.3 for an (s,S) policy . Also, from

the discussion in Section 3.4.2, it follows that this stationary

distribution is the same under both policies when a Poisson process

generates the failures and a batch model is used for inspection .

Similar results hold fcr the stationary distribution of the process

{Q( t ) , t>0). The derivation of these stationary distributions under

an (s,nQ) policy for general dependent demand processes is not

included in this study.

We emphasize that the (s,nQ) policy has received an appreciable

acceptance in practice [19], because in addition to the mathematical

advantage of a uniform distribution of inventory position , it permits

the use of an economic lot size Q. The difference between an (s,S)

and an (s ,nQ) policy is that Z(t), in an (s,nQ) policy is in E ’

~-incdiat-~ly after plaathg an cr d cc , whereas in an (s,S) policy it is

always S immediately after placing an order. The two policies are the same
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if 
~~(1.) = 1 and ~(l) = 1 For independent and dependent d~~rr’d

process , respectively.

• 3.6 Sr~ cia1 C~ so- - .

3.6.1 Cc~ 4ete Recovcr~bility (no cond~.mrat5cr~~).

In this case. all failed units are recoverable with probability

one. The system experiences only one type of demand (recoverable)

and there is no distinction between independent and dependent demand

processes. There are no procurement and inspecticn functions in the

sy:tcm and consequently , the external supplier and ins~c-c~
ion h c .litisS

ar-c eliminated fr om the list c~ entities in Figure 1.1. The

resulting system , also referred to as a conservative system , resupplies

itself from the repair facilities.

System demands can be considered to arise from a single arrival

process {A
r
(t)

~ 
t>0} with order size distribution as

described in S~ction 3.2. Thu inventory position Z(t) remains

constant for all t > 0. Let Z(t) = S, t ~ 0. The problem of

specifying the s stem operating rules reduces to t in J i n c a

value of S that minimizes the total expected holding and backorder

costs per time unit. Eq. (3.2) reduces to

X(-t) ÷ Q(t) = S , for t > 0.

Clearly 0 < Q ( t )  < S indicates inventory on hand while Q(t) > S

in-~icai- ’-’~; the existence of backorders at time t. Thus, for a

conservative system , we need to study only the process CQ (t), t>0}

to obtain the above expected cost.

- -~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~‘: 
-
~~- a ~ - - ~.
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The stationary distributieri ef the proce—~s {Q( t )  t~ 0} for

bt,th a general arrival process and for a Poicson m’rrinl pr-~ acsS Can

be easily obtai-ied foLlowing the methods developed in Sections

3.2.3and 3.4.1, respectively.

3.6.2 Complete Non-recoverability .

This is the c1as~ica]. invent~ir-y problem of a consumable it n~.

The inspection-repair loop is eliminated from the sysi:em shown in

Figure 1.1. All the supplies are received from the external- Supp J.1CJ.’

The system demands can be con-si~icr-ed to arise f:oin a single arrivul

process {A (t), t:-~~ with order size distribution ~~~(~~~ ) as

described in Sectjo~ 3.2. In -this case, Eq. (3.2) redur~e~ to

Z(t) X(-t) + o(t), t > 0.

It c~n b~ easily ~ean that 11(1), the stationary distributi~n of

{Z( t) , t>0 }- , for the (s ,S) and the (s ,nQ) p~Jicies are g iven by

Theorems 3.2 End 3.6, respectively. For obtaining x ( I ) ,  I ~ Z , the

stationary distribution of {X(t ) ,  t>0]- , Eq. (3.5)  for an (s ,S)

policy can be simplified to

x1. (t ) 3 
~ Pr {X(t ) = I I Z ( t -~) = k; Z(0) 1) Pr{Z(t-t) = k IZ ( 0 )  z 5)

ke

= 
~ 

Pr~D~ (t_ .t , t) k—j Z(t—~
r )  ~ k; Z( 0) 1)

keE

Pr{Z(t—~ ) - k~Z( 0) 2 i}.

— 
~~~~~~~~~~~~~~

.
- - - ~~~~~

-
.~~~~~~~~~~~~ — -.- 

- —
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Ta~ ing the limit as t ÷ ~~~, we get

x (j )  ~ ~T(k )
kcE

where w~~ .(t) is obtained from Eq. (1.11). The resulting expression

for n(j) is equival-m~. to that give-. by Tij~ s ([23], pp. 100-101).

Similarly, it can he easily s~ o.rn that for an (s,nQ ) poli cy

x (j )  ~~~
- ~~

where w~~.(t) is giver by Eq. (3.11).

3.7 Certain Long-run Averagcs.

Combining t io results of previous sections, we can determine

certain b ag-run averages which may be i~sed to structura an 
&jectlve

function of total expected co~3t and to express constraints on

7:~ten p ~~~in- i a- . : i - -~aur~~ nuc~. as :::~ r:t ion~ d in Stctiofl 1.2.

We first cbtain the stotionary expected ordering cost per unit

time . Let K.(t) represent the expected number of ordn~’s placed in

(0~:~~. !L-: a) x- ~~~~~ to T~ ctions 3.2 an—I 
3 •3  1-C L

= a and ri = d~ for ifldependent demand processes ,

and ~ = a and r~ = d
m 

for dependent demand processes.

From c1~ocntary renc~1al theoz-y [23], 
we have 

- -

-~ 
-
~ -

fl 
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Further-nore , following the analysis given ~y Tij: s (123~ , Ph• li3 lin )!

the exo::ct-e d size of the r~~ (n > 2) order is ~qu~ 1 to ~r-1
--T
~- • I f

the ordering cost of K units is Y
~~(k )  ÷ . k -cr~- - -~( 0 )  0 ,

and ~(k) 1, for k > 0, th.~c 
-th~ hitic irlr”J - :‘  ~~~~~~~~~ O ’~ -1 -L r~~T

cost per unit time is equal to

~.a Ku(S)
3 + 

~

Under an (s , S) ~Oi~ -~~ t I .~ ~~a~ ionary expected nuinbcr of backordcr~
C

i- ~ given as ) ji: (j~~. Ti:~ stat$onary expected number of th~ naits

h~ld at the au:p ly ~-aLm t -La 
~ 

jx(j). The expected fraction of
1=1 S

t3~- - ~ tha ~ya~~-: s cut of stock is 1 — 
~

SirL1-a- r~ 
- - ul~~ ~-1fl h-a c ~:i~y obcai~~ J under an ( nQ) halic;

.- - :--. — 
-

— — —  fl.~~~. - ~~~~~~~~~ 
- -
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Ch\P TE }. IV

7:W0—ECHELC-N Y~3T~p-1 — UNIT QFD~ h SIZE

L .I The ~cc~e1.

We consider a t~o-achelon s~atea as described in section

1.1.2 with J bases; the bases a’e numbered from 1 to J, and

the icpot is index: d as 0. The failures which ~enarate the system

demands occur in a Poisson manner with known parameter A
1 

at

base i (j=l ,2,... ,J). Upon such failures, one unit of the item is

demanded for rep acement. A failed unit turned in at base j is

rapairod -~t Lhe hase with nrobabili-ty r. and is shipped to the

depot for repair ‘~ith ~aaebabi1ity (l-r. )p. Thus with probaLil~ tv

(l-r .)(l-p) , the ui- it is condemned .

;-:e fuether specify the following assuaa -tbnn used in tha n-c~iel.

1. The Laaes use an (s-1 , s) policy for procurement of units from

Jie der ~t. The depot procuremcnt policy is a general (s,S) ;~o1icy.

2. Back1o~--ad demands at each location arc supplied on a first-come,

f r  -:-:crve~i basis.

3 . ~i~~re are an infinite number of repair facilities at each location .

The base repair times R. and the depot repair time R , are

daterministic and independent of the ara’ival process and the number of

units in rca-c ir. R0 
is th-: sane for all the units receive- - from all

the bases.

4. The time -to chip a dcp~~t rai-eirab e uni.t to the depot from a

h~sc is assumed to be negligible. In reality, it can be absorbed in

61
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R
0
.The procurement lead t J n~~s f~r the depot , aau for the

a~e~; arc ~ t~ r aj  f istic.

rur~ fl - l U r e  ‘~e assuma , as does Simon [20], that R
0 

< t 0
; that

~c , the c~-p0~ repair t ime does not exceed the depot procurement 1 ad

~h-~ caalogaus results for the case > c-an be deri~7ee.

this case is less realistic.

Wc use the following nomenclature.

:nenclature

= total demand rate at location 1 (j=0,1,... ,J; j 0  denotes

the depot).

r. = the prob-abil~ty th;At. a unit that fails at base ~ 
will

be r~~-ii r- ed at base j.

p = the prob~bi1ity that a failed unit that is not base

repairable will be depot repairable. p is the same for

all bases.

(s.-1, s .)  ~ the procurement policy used at base I (jl ,2,...,J).

(5
0,
S
0
) ‘~~ the procurement policy used at the depot.

R . the deterministic repair time at location 1 (j=0 ,1,... ,J).

-r . = the determ inistic delivery time from the depot to base

1 (11 ,2,... ,J) .

the deterministic procurement lead time from the external

suppi.~Ler to the depot.

D.(t) the num ber of units demanded a ’: location j ( 1 0 ,1, . . .  ,J)

during the interval (0 ,t] .

D~ (t )  the number of units which were declared base repairable

at hasa j during the intc”val (0,t] (j=l ,2,...,J).

D? (t )  the r~srhc-e of usL~:s sent to the depot for repair from

base i during t;.e interval (0 ,t] ( j = l ,2 . ..., J) .

i. - ,~~-~~~~~ - - .- -.~~~~~ - .  — 
-

- ~~~~~~~ 
- --



D~~ t) = the number of unit a - ondemne i at base ~ 1 1J~~~
J

interval (0,-i-) (J=1 ,2,. ..

D~ ( t) the number of unitc uc:T:an-1e-J frc-m the i~ ~pa~ by b~ a~

dul ’iN ,; the in terval (O,t] tj 1,2 

the nu- iber of units rec - ived at the-  d~~r at  ~~~,)‘ r :

during the in tc: val ( O ,t] .

D~(t) = the number of units demanded from th- ~ -~ -;~ot as a result of

ec cr -n ~ tion~ at the bases durincr ~~~~~ ~ i~~~~~ VrI 1 (0 ,t].

Z .( t )  = th— ’ inventory ç-c-:~ition at tim e t at ~ -: : at i Of l

j (j=0,1,. . ,~~~
) .

Q.(t) the number of units in ra~-:Ir at tiac t at icc ctiofl

I (~=0,l,. . . ,J).

O.(t) the number of units on order at t~ me t at lccat~ nn

- 

. 
1 (1=0 ,1,... ,-fl.

5 . (-t ) = the number of backcrders at t ima t at ic-cation

j j (j ~~0.1, . . .  ,J) .  Negative backorders denote on-hand

- 

. 
inventory.

U.(t) - total number of units on order plus in repair at time

t at location i (j=0 ,1,. .. ,J). Thus, 0
1
(t) =

0
1
(-t) + B.(t).

F
0 

= 

~~~~~~~~~~~ 
c-~
2
~

• • ,S~ }, the state space of the process

t>o} . - -

Urn Pr(h .(t) = k) , (10 ,1,... ,J) .

— m r
.-
~ ~ (m )  . . .

= —— , n 0 ,l,... (Poisson d~stribution with mean rn).

- N(t~~) for the process {N(t), t>0}.

~owcr c:’se ~rtters are used to dcnote a particulat~ 
rca1i~ation of a

— - - 
- 

- -

~~~~~~~~~~~~~~~~~ ~~~ .~~~~~_ -
_  

-~~~~- I
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random variable.

We note the following implications of o~’r assurnptioas.

(a) Because the bases follow an (s-b, s) policy and the time to

place an order from a base to the depot and the -time to ship a depot

repairable unit to the depot are neg3 igible, we see that for t > 0

= I D~ (t ) ,  and D~ (t )  ~
j=l ~ j=l ~

that is ,

~~0
(t )  = D~ (t) + D~ (t )  = ~ D?(t).

(b) For j=1,2,... ,J; the demand processes (D
~ (t ) ,  t>0},

CD~~(t ) , t>o} and {
~~~~( t ) .  t>o} are mutually independent Pois:- - - e

processes with parameters ) . = r . A ., A . ~l_r.)PA . and
3 3 3  3 3 1

(l— r
1
)(l—P )X1, respectively. Th e procecs {o?(t) ,  t> o } is a

to:L~ c-:-n process with parameter (1—r 4)~~

(c) The depot demand processes {D~(t), t
>o} and {D~(t), t

>0} are

D
independent Poisson processes with parameters A

0 
At’ and

c -, j=l
= ~ A~ , respectively. The depot total demand process

1=1 ~
{i -t , t>o) is a Poisson process with the kai-:lnetc:r A =

X~~.

(d) Because of the infinite number of repair facilities and constant

c’epafr t!uas, the units in repair at base j  at time t(> ) will

~-e due to tb- base repairable failures occurring only in (t-R., ti;

that is, Q.(t) D~ (1:-fl ., t ) .  Thus for t > R., Q.(t) is a Poisson

variable with mean A~ R., 1 1 ,2,...,J. Similarly for t > R
0,

~~. (t )  is a Poisson vdriable with mean ~~~~~

A



5

(e) Because depot demands are for a single unit at a time , (s,S) ate

(s ,nQ) policies for the depot are the same with Q S-s.

In view of the problem described in ~icct i~~ 1.2, our goal is to

-~btain the stationary distributions of the processes {z.(t), t>0},

(B
1
(t), t>o} and {Q.( -t ) ,  t>o}, for 1= 0,1,... ,J. The overall

objective of the model is to find the policy values which minimi:~c

total expected base backorders. Depot backorders are of interest

- 
-

- only insofar a5 the y affect the base backorder’s. ‘~hi e basic approach

for d~ termining the -;tatiorfl -~r) distributions is described in Section 4 . 2 .

In Thction 4.3, tb-c di:::ribuijili,s crc obtained. The results :~~r the

n:ca~s of oaT1~~fl1ate  r ecoverab iliLy and ce:-:Ju’ e non—recoverability are

d-~ri--i-aI in section 4.4.

‘~- .2 The B~sie ipproach_For Stationary D intribut ions

In this section we de-ceribe the basic approach for determining

the stationary distributions of the processes {Z . ( t) , t>0},

{B
1
(t), t>0} and {Q.(t), tacT (j=0,l,. .. ,J) when the bases use an

(s-b, s) procurement policy. The approach will also be applied in

tee next chapter where the situation of a randarn order cise at the

bases is dealt.

4.2.1 The Pepot

To obtain the stationary distributions of the procesees

{Z
0
(t), tao), {B

0
(t), tao) and (Q0

(t), t>0), ire first find the

distribution of the pr cesses {D~ (t), tao) and {D~ (t), t>0}. The

depot can be viewed as a single location system and the results of

Secti:-ii 3.4.1 apply.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4.2 .2 The vases

Because the ba ’:ls follow an (s-i , s) policy , the inver/~~ y

nosition is c’ taut; titat is, Z.(-t) s1 for all t > 0 and

1 1 ,2,... ,J.

To find the stationary distribution B .(*) , we f i rnt  obtain

Pr{B4(t) h} fc’r b e ~~~~~~~~~~~~~~~~~~~~~~ a~’d then

- ~~~ ~ ~-ea-ch is tl~ one ~~~ n by Kruse ~md

Kaplan 19].

i~eferr~ng to F~gu~-z~ ~.l, th-~ only units that can a.
’rf.ve at base

j from the depot by t-~ - c t arc t!-~os’e on order 
L I t u e  t ,.

ti t 2 t~

t-T 0-T. t—R — T .  t—T. t
j  O j j

Figure 4.1: The seqa~aice of events at base j.

This depends on the total assets (ready—for—issue Units) available

at the depot by t5c:~ t3, the total derrsnd at the depot during the

interval (:1,t3
] ~md the sc~ju- ace of arrivals of requisitions 

at the

depot from the bases during the interval (t
1
,t3
]. This is so

because the units on o!-ie~’ ~b~~~ r~h -t ime t1 wila  h~vc crrived at

the depot from the ca-ternal supplier by time t3, 
and any units not

on order by ~:ime t~ will not arrive by tine t3. The total assets

available at the depot by time 1:3 include the units on hand mint’s

any bs~’kordcrs at time t1, the units on order at t ime t1, the

uni~ s in repair at time t1 and the units received for repair

di~ring the iuterval (t1,t2 ). This equals z0(t1) + d~ (t 1,t 2 ) . Now ,

~ -~~~‘ follow ing two mutuaJ ly exclusive situat ions are possible :

- - 
,~ - .  -- . -‘-. ._p -..- -‘-

~~ 
— -
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CASE ‘~: The total depot der~and du~’ing thc intcrv~ 1. ~i1 ,t2] does

~ot exc~~~i the to tal assets available by t b : ?  t~~.

In t hi s case ,

+ d~ (t1,t 2 ) z0 (t 1) + d~(t1,t2)

or

d~ (t1,
t2
) < z

0
(t
1
).

Thus all the depot demands d
0
(t
1,
t2
) = d~(t1,t2

) + dg(t1
,t6) are

satisfied by tin e t~ . On ly the c~- -pot demands d~ (-t
2,t3

) aga:~nst

the stock of z0
(t
1
) - d~(t 1,t2) units available by time t3 determine

how many demands could possibly remain unsatisfied by time t3.

C~~~E 13: The total depot demand during the interval (t
1
,t2] exceeds

the total available stock b; tire t
3.

In this case,

d~(t1,t2) + d~ (t1,t8) > z0
(t
1

) + d~ (t1,t2)

yr

d~(t13t~) > z~ (t 1
) .

Thus there 1.; nc stock available at the depot at time t to satisfy

the demands d
0

(t 2,t~~). Also , there is no guaran tee that all the

d t ( t  ,t~,) dener Is will he satisfied since this dspem-Js on the

sequence ai~ arrivals of c1~ (t1
,t2
) and d~ (t1,

t~ ). Hence , the total

d’~maric1 d (-t ,t . ) dr awn against the amount of z (t ) + d~ (t ,t )
0 1  0 1  0 1 2

determines hex: :-~~ry  dc -: cnds will remain unsatisfied by time t
3
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



a coasequence of the (s .-1, s~) policy at base j ,

7~. ( t)  = s. ; that is —B.(t) + U .( t )  = s. for all t > 0. TL.n tot-
3 1 3 3 3

any b e {-s., -s.+l,... ,O,l,...} and for any t + 
~~~~~ 

the

cvent B.(t) b occurs if and only if U.(t) = S. + b. Thus

(4.1) Pr{B.(t) bi Pr~U.(t) s.+b).
1 3 3

In vi es of th e previous discus~-ion, Eq. (4.1) can be rewritten

~4.2) Pr{U1
(t) -~

c [Pr{u.(t ) s .+ b I D ~(t 1~t 0 ) d ~(t 1~t 2 ) ;

z0
(t
1
)cE

0 
d
0
(t 1,t2~~~0 

—

Z
0

(t
1
)~ z0

(t
1
)}Pr{D~ (t

1
,t
2

) d ~
(t
1
,t
2

) ;  Z
0

(t
1
)~~~0

(t
1
)~~~.

Va investigate Pr~U.(t) = s.+bjD~ (t 1,t2) d ~ (t1,t2
) ;  Z

0
(t
1

) z
0
(t ,) }

~or the fo1lD~ ing two mutually exclusive 
events, 

:

(A) p~ (t1
,t2) <

cod (B) D~ (t
1
,t
2

) > z~ (t
1
).

U inn the independence of D~(t1
,t2
) and z0(t 1) we can cxrrc~c Eq.(4.2)

correspond3i~ to ever~:-c (A) and (B) as follows,

(~~ 
.3) Pr{U.(t)

3 1

~ lPr{U.(t)s.+b } + Pr {U .(t) s.+b} ]
3 A 3 j  B

- —~~~ -.~~~ ,.
_..__‘__ - -

~~~~~
- - — - .——- --.— - _—- -,--—— 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

- - - —
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-

~~~~~

-_ - —
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--

w~ere

(4.4) Pr {U .( t )  s- .+b}
3 A

z0(t1)
Pr(U.(t)=s.+t-~D~(t1,t2

) d ~(t1,t2
); ~0(t ,)~~~

(t~
)}

d~,(t1,t2
)~0 Pr {D~~(t 1,t2) d ~~(t 1,t2

)} ,

( 4 . 5)  Pr (U .( -t ) =
j  B

= Pr {U .(t~~s.+bID~ (t, ~t2)=-~~(t1,t);

d~(t ,t
2
)z

0
(t
1
)+3. 

-- -

~

a given z0
(t ,), Eqs. (4.4) and (4.5) represent Pr{B.(t) b} for

-~ J

ce:es A arid 13, respectively .

To evaluate Eq. (4.~~), let

u.(t) u~(t) +3 3

where

U~(t) the sum of the units in repair at base j  at time t and

the units for which orders were placed on the depot by base

j during the interval (t3
,t],

the units ordered from the depot by base j during the

interval (-c
2,
t
3
] that remain unfilled by time t3

.

1 2
Because the arrival process is Poisson , U

1
(t) and U~(t) are

iL~ iC~pendent.  As mentioned earlier , all the demands levied on the

- ,_ - _ _ . . - - -

- — - 
- - -

~~~~~.~~
- _ _ _  

- ,_ -.~~ -.~~‘ • -. -
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depat fi~orn base j derind the interval (t~ ,tJ will remain ~~

order at time t. Also, the base repairable demands occurring

only during the interval (-t-R., t3 will be in the repair cycle at

base j at time t .  Thus, U t )  = r)~(t—R 1, t )  -- D~(t~ ,t) +

D~(t3,t) and the probability distribution of u~(t) can be easily

• obtained. The probabi1:~ty distribution of U~(t) re~uires

considering the sequenne of arrivals of requisitions from the

bases during the interval (t 2,t3]. Suppose the prohahility

distributions of U~(t) a-ed U~(t) are obtained th~a Eq. (4.4)

cnn be evaluated by c~~vol:- U Jt )  wit~i U t ( t ) .  L1’ce U~ (t)

is independent of Z
0
(t,) and i:~ (t3,t2),

z
0
(t
1
) [s.+b

(4.6) Pr~U .( t) 
~~~

‘T A I ~ Pr {U~ (t) = s.-~h- d}J C d-Q
d0(t1,t2

)0 L

Pr{U~(t) = d I D ~(:1
,t2
) = d~(t1,t2

) ;  Z0(t1)

PrCD
0
(t1,t2)

I
To evaluate Eq. (4.5), we -te that all the ba ;e dem:nds

levied on the dc-pot during the interval (t,, ,t] reTlain um~ ill~ d

by time t. In addition , some demands from base j place ~u~ in~

the interval (t
1
,t2] may rcrncin unfilled by time t

3
. L~:

L’~ (t) = t h -~ sum of th~ uni ts in repa ir at base j at ~~1:..L t

aral thu  units f r  which tL.~ ord a s weru placed on the

depot by base j during the interval (t2,t),

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ •
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u? t) = the units ordeL-ed from the depot by base j during the

interval (t 1,t9] that are unfilled by tim e t3.

Obviously U (t )  tJ~ (t )  + U~(t). Because ~ Poisson arrival
J 3 3

process , U~(t) and m (t) are independent. Here u~(t)

D.(t-R., t) + D.(t2,t) + D.(t2,t) and we can readily deter’~n~~e

the p~bobability distribution of U~(t). The orobability distribution

of U~(t) involvec consideration of the sequence of arrivals of

f requisitions at the depot ~uri~-~ the interval (t
1
,t2
]. Eq. (4.5)

can be obtained tb~osRh the convolution of U~(t) and u~
(t) .

Again, U~(t) is eperdent of Z0
(t
1
) and n~(t1,t2). 

hua

(4.7) Pr( U.(t) 5
~
+b}r = Pr{U~(t)

d0(t1,t2) z
0(t1

)-s-1 ‘
~~~

Pr-jU~ (t )  = dlD~
(t1,t2) = d~(t1,t2); 30(t

1
)

Pr (D~ (t 1,t 2 ) -
~ d~(t1,t2

)}.

Upon substituting Eqs. (4.6)~ (4.7) and the results for

Pr {Z
0
(t
1

) z0(t ,~~} into Eq. (4.3), we obtain Pr{U~ (t ) = s
1
+b}.

The probability distribution for the process {Q.(t), -t>o}

is easily obtained as

Pr {O .(t )  q) = Pr {D~(t-R., t) q} , for t > R~ .

- ~ 
- - 

- ~ 
.
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4 .3 The Stat iorwi:’y d b3-tri ) - t ~ u~~

4.3~1 At Tha D - ~ot

Since {D ~ (t ) , t~O} and {D g(t ) , t’O} are indep endent

?oissOia processes with parsacters and ,

it fol1cu~ from Section 3.4.1 that

(4.8) lim Pr(Z0(t) = k} 110(h )  = ~~~~~ for k £ ES
0— -

~o 
0

(4.9) li:n Pr{Th (t) b } = —i—--- ~. P[k-i-b 1A
0

T S I) . ]
0 o 

~~~~~ k~E0 
0 0 0 0 U

for =

and

(4.10) u rn  Pi1Q
0(t) = q0) PEq0~

A~ P.0
], for q0 = 0,1 

4.3.2 At the Bases

To obtain Pi-{B.(t) = bi we compute Pr~U . ( t )  s .+b}
1 1

er~d P r {L 1. ( t)  = s.+b} B by evaluuting Eqs. (4 .6 )  and (4.7),

respectively .

4.3.2. 1 Case (A ) :  Pr {U .(t )

Since U~ (t )  = D~ (t -R . , t )  + D~ (t 3, t )  s D~ (t 3, t )  aiJ the

processes {D~ ( t ) .~ t>0 },  {D~ ( t ) ,  t>0 } and {D~ ( t ) , t> O} are

independent , U~ (t )  is a Poiss~ n variable with mean

A~R. + ~~~ + that is ,

(4.11) Pr {U~ (t)  s. +L- -d} = PLs . - fb- d IA ~ R~ + (A~ + A9)r.].

- - - - ._~~_ ,  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -j - - - - -  - -------__ ~~~~~~~~~~~ 
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~e now proceed to find the probability distribution of IJ~ (t).

Suppose we are given D
0
(t 2,t3) d

0(t2,t3
) and D~(t2,t3

)

d~(t2,t3). Then U~(t) = d if and only if d~(t2,t3
)-d units of

base j demands are filled by time t
3
. In other words, d .(t23 t 8 )-d

of the first z
0
(t
1

) - d~(t1,t2) depot arrivals after time t2

LuSt come from base j.

Let PA [D?(t2,t3
) = d~(t2,t3

); D0
(t2,t3

) = d0(t2,t3) ;

D~(t1,t2
) d~(t1,t2

) ;  Z0(t 1 )

Vs shall obtain Pr{U~ (t)=d~D~ (t 1 )t2
) d ~ (t 1,t2

); Z
0
(t
1
) = z0

(t
1

)}

by enumerating Pr (U~ (t )  d~~ A } ever D
0
(t2 , t3) and D?(t2 , t3

) .

-~~ us~ of the propcrti~~ of -the Poisson process [20], we have

(4.12) Pr{D?(t
2,t3

) d?(t2,t3)1D 0
(t2,t3

) = d0(t2~t3
)}

(d
o
(t
2~t3))o d9(t

2~
t
3
) 

- 
0 d

0
(t 2,t3)-d?(t2 , t3)

for d?(t 2 , t 3
) = 0,1 d0

(t 2, t3).

Substituting Pr {D
0
(t
2,
t
3
) = d

0
(t 2,t3)} = P[d

0
(t2~t3

) X
0
R
0
], in

Eq. (4.12) we get

(4.13) Pr{D?(t2 , t3) = d?(t
2~
t
3

) ; D
0
(t2,t3

) d
0
(t 2 , t3

)}

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 0 d

0
(t2,t3

)d?(t2,t3
)

P[d
0

(t 2 , t3)I~~0
R
0
],

for d?(t2,t3
) < d0

(t2,t3
)(  > 0). -

___________________________________________________________________  

11
- -  ~~~~~~~~~~~~~~~~~~~~~ ~~~ 

~~~~

-. = j
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To obtain Pr{U~(t) d~ RA } we cOflSiJ ~ the following two

mutually exclusive cases.

( i ) D 0(t 2 , t 3) < z
0
(t
1
)- d ~ (t 1,t~ ). that is, all the depot

demands during interval (-t 2,t3
] are satisfied by time t3

.

Therefore

Ii d = o ;
(4.14) Pr (U~ (t )  d~RA }

d > 0 ,

(ii)  D
0
(t
2
t3) > 

z
0
(t

1) — 
d~(t ,,t2

); that is, the last

d
0

(t 2,t3) - (~~(t1) - d~ (t1~t2)) depot demands that ar-~ ived

during the interval (t 2,t3
] cannot be satisfied by tine t

3
.

Because of a first-come , first-served resupply policy at the depot ,

th~ r- -eeits of C~ rdll--~ y 1.1 of “ ~ :-: A we fliVL

(4 . 1 5)  Pr {U~ (t )  d~RA}

(d~ (t 2~ t3) 
~ 
( 

d0
(t2,t3

) - d?(t2 , t3)

t
\
d.(t

2~t3) - 
d ) 1

~z0
(t

1) - 
d~(t19t2) - 

(d?(t2 , t3
)-d)

/ d0 (t 2 , t 3) -

- d~(t,,t2
)

From Eqs. (4.13 - 4.15) we obtain ,

(~4.16) Pr{U~
(t )  = 0D~(t1

,t2
) d~(t1,t,,); Z0(t1) = z0(t 1)}

(t
1 

) -d~ (t 1 , t2)

= P[d
0
(t2,t3)tA 0R0

] . 
- 

-

~

d0
(t2,t3)0 -
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+
- 

- d
0
(t
2
,t

3
)5

0
(t
1
)-d~~(t

1
,t2) ~‘

[do t2~t3 çí( d0(t7,t3
)-d~(t2 t3

) 
~~~~~ 

d0
(t
2,~ 3

)

[d~(t2, )=O~~
zO(tl

)a
O
(t
l~
t2 o

i
(t2 t3~~ ~~o~

tl
)_d

~~~1:
t
2~~~

- 
o do(t7~t3

)d~(t2~t3
)]

and

(4.17) Pr[U~(t)c1jD~(t1
,t2

)d~(t1,t2
); Z 0 (t 1

) z 0 (t 1
)}

d (t ,t )  
-

— 
- 

0 ~ j(d.(t 2~ t3) \
- 

d0
(t2,t3

)Z
0
(t )-d~(t1,

t2
)+l [d?(t2.~3 =o ‘~~~(t 2~t3)_d)

( d0
(t
22t~)-d?(t2,t3) \//d0

(t
2~
t
3
)

. 

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(:
~~~~~

) 
O ) 2 ’ 3  o d0 (t 2~ t 3

)~ d~ (t 2~t 3)]

P[c10(t 2 , t3
)~X 0R0],

for d 1,2 

As mentioned ~~ S-~ction 4.1, { D~ ( t ) , t~o} is a Poicson process

with parameter ~~~~~ Therefor e

&_ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~—~~~~~—

-. 
- - -  _ _ _ _ _ _ _
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(4.18) PriD~ (t 1,
t2
) = , )}

Now substituting Eqs. (~ .ll),(4.16),
(4.l7) and (4.18) into

r . ( 4 . 6 )  we obtain p x - (U . ( t )  = s.+b}1
. Af ter sin’-p1i.fyie-~ 

(c ~ e

Appendix B) we get

(4.19) u r n  Pr {U .(t )
j  A

z
0
(t
1
) ~

= p1s.÷bI R.+(;~~
÷x
~
)r.J

c ~d
0 

t~~~:2 -
~

-
~ L

1 o(t u )-d~(t i,t o )
[

d0
(t2,t3

)
~O

0 d0(t 2, t 3
)_ Z 0(t 1)fd o(t l,tv

+ c
• d0(t 2 ,t3

) 0(t 1
) d 0(t 1,t2~~ i-

s. +b

P[d 0
(t 2, t3) 0R 0~~~ + 

~~ 

PCs
1
+b_d~X~R1+(X~+X~)Tj)

~d0
(t2,t3

)_Z
0(t1

)1dQ(tl,
t2
)

I~o(t 2 , t 3)~ o(t 1 t1,t 2 )
~d \ d

O
~~~

]d O~~~~~ O~~ 2 ’ 3  0 1 0 1 4

. P[d 0 (t 2~ t 3 ) I X 0R0]] 
.

~ 

~~~~~~~~~ ~~~~~-~~— - •  - - —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;~~~~~~~~~~~ _~~~~~~_ - - - -—~~~~~~~~~~~~~~ _~~~~~~~~~~~ --- _ --
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4.3. 2 .2  Case (B) :  Pr {U .(t) s.+b)
3 j  B

- 
- 

10~rc U~ ( t )  = D~(t-R., t) + ~~(t2
,t) + D9(t2

,t); hence , U~(t)

is a Poisson variable with mean A~ R. + (A? + A~ )(T. ÷ R ) ; that
1 1  3 j  j  0

is,

(4 .20)  Pr (U~ (t )  = s.÷b-d} P~s.+b-d~A~R . + (X~ + A~~) (t
1 

+

To cbtain the probability distribution of U~(t) in this case,

we follow the approach similar to that used in case ( A ) .  Suppose

D~(t1
,t2
) ~~~ t~ ,t2

) and D?(t ,t2
) d?(t1,t2

). Then U~(t) d

ifand only if d.(t
1
,t2

)—d units of base j  demands c~rn he shipped

by time t
3
; that is , d?(t 1,t2 )-d of the first z

0
(t~ )+d~ (t 1,t2)

depot arrivals during the interval (t
1
,t2) must come from base j.

Let RB E {D?(t1 ,t2
) d?(t

1
,t2

); Dg(t1,t2
) = d~ (t 1,t2 ) ;

D~(t1,
t2
) = dg(t1,t2

)~ Z0
(t
1
) =

A~ein b-~cause of the properties of the demand procLss,

(4.21) Pr{D?(t
1
,t2
) d?(t1,t2){D~ (t

1
,t
2

) d ~ (t
1,
t
2

) ;  D~ (t1,t2) d ~ (t 1,t2
)}

(d~(ti~t2)÷d~(ti~t2) 

~~ 
~ 

d.(t1,t2
)

d~(t1,t2
) 1 ~ 0

-

for d~ (t 1, t 2
) = 0 ,1,. . .  ,d~ (t 1,t2 )+dg(t 1,t2 ) .

~ 

_ -~~-~.- -
~~~~~~~~~~

- 
- --~ -~- _ ~ j
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D D 1’ c
(4.22) Pr(D

0(t1,t2
)d

0
(t
1,
t
2

) ; D~(t1,t2)~d0(t1,~ 2
) }

P[d~
(t1~ t2)IAg (-r 0

—R0
)] . Ptd~(t,,t2

)~A
0
(T- ~0

)J.

tJii~~ ~ore!1ery 3 .1 of Ap1 T i~~~~~~X

( 4 . 2 3)  Pr {U~~(t )  = d I R B }

( d.(t
1,t

2
)~~ (

~ 
d~(t1,

t
2
)÷d~(t1,t2

)-d9(t
1,
t2 ?~~

~~d?(t1,t9)-d /
’ 
~~z0

(t
1
)+d~(t1,t2

)-d?(t
1,t2

)÷d /
= (

• \ 0 1 0 1 2  I
Multiplying Eqs. (4.21), (4 . 2 2)  and (4.23) and then enumer ating

over D?(t 1,t 2
) and D~ (t 1,t 2

) , we obtain Pr {U~ ( t )  = d I D ~ (t 13t 2
) =

d~(t1,
t2); Z0(t1

) = z0(t1)}. substituting this probability and

Eq. (4.20) into Eq. (4.7) (see Appendix B) we get

(4 . 24) u r n  Pr{U .(t )  = s.+b}
j  j  B

s .+bI
= 

~
d=0

C 

3 3~

[dü
t
i~
t
2

z
0
t
i
+d 

[d~
(t
i~

t
2
):O 

~~ d /



r

I , ~~~] l_A 0/A ]
0 l ’ 2

~~~~
0
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

P[db (tl~t2
)IA

~
(To

_R
o)]j 1~S :bs tituting Eqs. (4 .19) , (4 .24)  and (4 .8)  into Eq. (4 .3)

o~-~ u n  r~ B .(~~) = b ) .
I

For th-~ case where the depot follows an (s 0-1,S0
) policy,

= {S0 } and fl(s~) = 1. Pr~ .3 .(~~) b) can now be obtainad by

substituting z0 (t , )  = S into Eqs. (4 .19) and (4 . 2 4 ) .

4~14 Spec ial. Cases

4. 4.1 Complete Recoverabillty

For the case of complete recoverability, P = 1; therefore A~ 0

( j 0 ,l,... J) and = (l—r .)A . x ?  ( j 1 ,2 .... ,J) .  Consequently
J I -~

= = ~ ( l - r . ) A . .  Since there are no condemnation s and the
j-.l

system is cznservative , no procurement is made by the depot from

the external supplier . The inventory position at the depot remains

at a constant level S
0 (say), that is , Z 0

(t )  S~~, for all

t > 0. The stationary distribution of {B 0( t ) , t>0 } is obtained

in a manner similar to that discussed in Section 3.6.1 and is given

by

u r n  Pr{B
0
(t) = b0 ) = -s- b

0JA 0
R
0
]

t9~~O

for b
0 = —S

0
, —S0 

+ 1, . .  ., O ,1 

l.a ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
- 

- -.& - A
-- -- A
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Since D~ (t )  = 0 for all t > 0 , case (B ) discussed in

section 4 .2 .2  will not arise and consequently Eq. (4 .3)  reduces to

Pr {U .(t )  s .i-b) Pa {U . ( t )  = s.+b}A for z0
(t
1
) = S0 . Upon

substituting = 0 , A~ = X
c~ 

d~ (t 1,t2) = 0 and z0(t 1
) = S0 

in

Eq. (4.19) , we obtain

- - (4 .25)  Pr(B .(*) hi = ?{s~+hLA~R. i-

r s 0
• 1  PEd ( t ,t ) I A  R ]

0 ‘ 3

d ( t t )-S
+ 

d0(t 2 , t 3) S 0+l 
Cl — x?/A 0 J 0 2’ 3 0 Fud 0 t2~t3 iA 0R0J

s .+b

+ 
J~ P[-s.+b-dt~~

:-
~
. +

d=l - I ~

(dQ t 2~t 3 _s
~ 1~~~~d

Lao(t 2~
t 3~

sc~ \ 
d / ~

o d ( t  ,t )—d-S 
-

[1 — ‘j ’~~0~ 
2 3 0 r [d0(t 2, t 3

)~ A 0R0
]

We note that Eq. (4 .24)  is equivalent to the result obtained

by Simon [20) for the case p 1.

4.4.2  Complete Non-recoverability

When an item is consumable , p = 0 and r . = 0 (j 1 ,2 ,. . . ,J) .

The repair loop is absent at each location in the system and Q~ (t)  = 0
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for t > 0 cnd j = 0,1,..., 3 . The stat i onary di~tribut i0n5 of

{z0
(t), t>0) and {B0~

t), t>o} are given by Eqs . (4 .8)  arid (4 . 9 )

reo~ective1y. Setting r~ 0 and X0= ~ A .  in Eq. (4.24),
-I 1=1 ~

-ml u~ im’, Eq. (.3) we obto iii

( 4 . 2 r )  Pr {B
1

(*) = b}

1
— r z

0
(t ,)

= P [s +b I A . t . ]  P [d 0
(t 2 ,t 3

)~ A 0R0]

z0(t 1)cE 0 L ~ 3 1 d
0
(t 2 ,t3)0

d ( t ,t ) Z ( t )

+ El— ~. X C, ) 0 2 3 0 1

d (t .~,t , )=z (t )+1
0 4 . ,  0 1 ..J

s .+b
+ ~ P (s~ i- b —d J A. t

1 2I I

.[ (

‘
d
o
(t
2~
t3

)_z
0
(t
i)\ r x .,x 0]d

d0(t 2 , t 3) Z 0(t 1)+d d } ~

d (t 2, t.~)-d-z0(t 1
)

Ci — 
0 . PE c1o (t 2~t 3) t x om 1j j  ~~~~~~

.4

-L



CHAPTER V

TWO-ECHELON SYSTEM-RANDOM ORDER SIZE

5.1 The Model

In this chapter we study the two-echelon system as described

in Section 4.1. Requisitions arrive in a Poisson manner with known

parameter A. at base j ( j= l ,2 , . ..  ,J). Upon arrival of a

requisition , a batch containing one or several failed units is

turned in, and a like number of new units is demanded for replacement .

We shall consider both batch and unit models for the inspection of

failed units. In the batch model, a batch as a whole is either base

F repairable , depot repairable or condemnable , whereas in the unit

model , each unit in a batch is inspected indenendently to find - -
whether it is base repairable , depot repairable or condemnable . We shall

use the same assumptions about procurement policies , repair facilities ,

repair and lead times , as specified in Section 4.1. In addition ,

partial backlogging of the demands is allowed -~ that is , upon arrival

of a requisit ion , if the base does not have the number of units

demanded , then al the units on hand are supplied while the balance

is backlogged . Partial backlogg ing is also allowed at the depot .

We shall use the following nomenclature in addition to that

introduced in Section 4.1

= total number of requisitions that arrived at location

j during the interval (O ,t) (j0 ,l .... ,J).

4~ (k) = Pr{upon arrival of a requisition at location j, total

number of units demanded k), k>1 , (j= O ,J. J).
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B, . . . . . - -Pr{upon arrival of a requisition at base ‘ tne

number of base repairable units k), k>1 ,

(j=i,2,... ,J).

q,~?(k) = Pr (upon arrival of a requisition at location j,

the number of condemnable units = k}, k>l ,

(j= O ,l,. . . ,J).

~~~k) = Pr{upon arrival of a requisition at base j ,  the

number of depot repairable units = k ) , hl ,

( j =l ,2 , . . . ,J).
~ -At n

cP[kIA t,f]  e (At) f~~~(k) (compound Poisson distribution

with parameter A and compounding distribution f).

In Section 5.2, we consider the inspection of the failed units

-and~r the batch model. In Subsection 5.2.1, we derive the results for

the case where order size distribution is the same at all bases~ that is ,

= ... = ~~~~~~~~~~ Subsection 5.2 .2  examines the case of

different order size distribution at the bases. In Section 5.3, we consider

the inspection of the failed units under the unit model.

5.2 The Batch ~iodei

In this model ., upon arrival of a requisition at base j ,  the

entire batch of failed units is repaired at the base with probability

r.-, is shipped to the depot for repair with probability (l-r.)p , or

is condemned with probability (i-r~ )(l-~ ). This divides the requisitions

into three types: base repairable , depot repairable and condemnable .

For t>O and j 1 ,2.,... ,J , let

~~~~ :~~~~~ ~~~~~~~~~~~~~~~ - - ~~~~~~~ - ~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~
--

~~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N~ (t) the number of requisitions at base j during the interval

(O ,t] for which the entire batch was declared base

repairable,

N~ (t )  the number of requisitions at base j during the interval

(o ,tJ for which the entire batch was condemned ,

and

N~ (t) the number of requisitions at base j during the

interval (O,t] for which the entire batch was sent

to the depot for repair .

Obviously, N.(t) = N~~ (t )  + N~~ ( t )  + N~~ ( t )-, for all t>O .

Following the arguments used in deriving Eq. ( 3 . 5 2 ) , we ~ee t hat

the processes {N ~~ (t ) , t>O}, (N? (t )~, t>O} and {N?(t), t>O) arc

mutually independent Poisson processes with parameters

= r~~’~ = (l_r~)(
l_
~ )A~ and X~ (1-r~)~~~. respectively

( j l 2 ,... ,J). The demand processes {D~ ( t ) ,  t>0}, {D~ (t), t>O} and

{D
~ (t)-~ t>o} are compound Poisson processes with parameter

x?~ A? and ~? , respectively,and have a common compounding distribution
I 3 3

It is clear from the above that the depot receives two distinct

types of requisitions from each base .. One type requires depot

repair for the entire batch , while the other corresponds to a

condemned batch of items. For t>O , let

N~ (t) total number of requisitions placed at the depot by

base j during the interval (O,t] (~~ l.2 ,. ..

= total number of requisitions at the depot during the

interval (O,t] as a consequence of condemnations ,

and
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Ng(t) = total number of requisitions at the depot during the

interval (O,t] for which the batch of failed units

was found depot repairable.

Because the bases use an (s-l,s) policy, N?(t) = N
L
(t)+N ?(t), for all

3 3 3

t>0 and j1 ,2,. . . ,J. Consequently, {N~ , t>O} is a Poisson process

with parameter A~ = A~ -I- ~
D
. Furthermore, because the bases operate

independently,  {N~ (t ) , -t>0} and (N ~ ( t ) ,  -b-O} are Poisson processes

with parameters = 

~ 
A~? and A~ = 

~~l ~ respectively .

Obvious ly , N (t) = N~ (t) + N~ (t), for all t> O. Thus {N
0

(t ) , t>O}

is a Poisson process with parameters A 0 
= ~~~~~ Using these results,

we now proceed to find the probability distributions for the

processes {D0
(t), t>O}, {D~ (t) ,  t>O} and {D~(t), t>O}.

Let i~.(w) be the characteristic function of 4.(~~~~) ;  that is,
cx, 3

~p.(w) = ~ p.(k)e~~
1k
. Then *?(w), the characteristic function of

k 1 3

D. ( t) , is given by [18],

(~~.l) ‘p (w) e .

Thus {D?(t), t>O} is a compound Poisson p x c ~~~ with parameter A~

and compounding distribution $.(~~~) . S ince the bases operate

independently , D0
(t )  is the sum of J independent compound Poisson

processes . Therefore , 
~D ( t) (w ) ,  the characteristic function of

is given by
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U

~D (~~)~ ‘~ 
= ~i

0

J

j = 1

= e Ot[1
~~~ j~~l 

~~ (w)]

Thus- {-D 0(t ) , t>0} is a compound Poisson process with pa~ameter

X ci and co-apounding distribution u
~c~

(
~~

) whose characteristic function

*0
(w )  is given by

= ~
0 ~=l ~

From the additive property of characteristic functions, it follows

that

( 5 .2)  ~~(k) = ~ A?~~.(k), 
k>1.

O j =l  ~~~

Similarly, we can show that the demand processes {D~
(t) ,  t>0} and

{D~(t), t>O} are independent compound Poisson processes with parameter

and A~ , respectively. Their respective compounding distributions

are given by

(~~.3) q~~(k )  -~~~ ~~ A % . (k ) .  k>l ,
A 0 j=l ~

and

~~~_ 4 ~~• -~~- 
~~~~~~

‘
-
~~~~~ - -



(5.4) 
~~(k) -

~~~ ~ A~~ .(k); k>l.
A 0 j=1  ~

The depot can now be analysed as a single location system

where recoverable an~ non-recoverable demand processes ~rc independent

compound Poi:~on processes. Therefore, the results ~c-rived in

:~cti~n 3~4.l apply. From Eqs. (3.18), (3.46) and (3.20) we have

)

T 1;1(S:s_l) s+l<k~S-1,

( 5 . 5 )  u r n  P r (Z
0 ( t ) = k l Z 3 ( 0) = i , i>s0}s110

(k )
t~~ 

— 
1 k—S j

~.IT~ 1(S-.s~ l) —

where

k-i k
m(l)~~~(l), rn(k)~~~ (k ) +  ~ ~~(k-q)muq) , k>2 , and M(k) ~ m ( 2 , ) ,  k>l ;

( 5 .6 )  Urn Pr(Q 0(t )  = q:1Q 0
(0)=0} Ci’[q

0~
A~ R0

, 
~~~‘

and

(~~7) 
u r n  F:{B

0
(t )  = b0JZ0

(0) i, i>s0
}

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~
]CF[d

c IA
~ 

.

b0 
-S0, -S0+l ,. . .,0,l 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

-

-

~~~~

-- ~~~~~~~~~~~ ~~~~~~~ -- - — -- ----
~
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Let u~ consider a subgroup of the ba~ c•s , containing more than

c~ie base. Than following the arguments used in deriving F~~~.

( 5 .  2 - 5 . 4 )  ~e can easily determine the probability distributions

for the resultant demand processes of this subgroup. For the

purpose of obtaining the stationary distribution of the L’ackor~e~

process at base j, we view the demand at the depot az’ising f~’~~

• two sources . One, the base j ~.or which the distribution is

i~1 d~’pot
L~~~~J

7• till]
j {l ,2 ,. ..,j- l ,j+l ,.. ., J} bas~ o

being dete~mined, and the other being set of the remaining bases.

Let us denote this set by a, that is, a = {l,2,...,j-l,j +l,...,J}.

Since the bases operate independently , the two sources are

ind~pendent. Fo~’ so~rc~ a, ~~ shall uso notation ~:~~~iiar to

t1~~t ~~~~~~ for an individual base. Tho proc~ssus {N~(t), t>O),

{N ~ (t ) ,  t>O} and {N ~ ( t ) , t>O } are mutually independent Poissc’n

processes with parameters 
.
~~~ ~~~~‘ ~~~ ~~~ and

D iC~~ iC~~A3 = 
~ 

, respectively. Following the arguments used in obtaining
lea

Eqs. (5.2-5.4) it can be easily seen that the demand processes

{D~(t), t>O}, {r~ (t), t>o } and {D~(t), t>O} are compound Poisson

processes with parameters X~ , A~ and respectively . Their

respective compounding distributions are: ~~(k) —fl- ~X ica

4 0 ( k )  —~~~
- 

~ A~~.(k) and ~~(k) 
—

~~~
— 

~ A~~ .(k); k>l. Also ,
• X ice A icea a



the process ~N~(t)3 t>c } is a Poisson process with perameter

= and the demand process {D~(t), t>O} is a compound
1

Poisson process with parameter and ccripo unding distribution

.4 ~ A ?c~.( k ) ,
A ica

In the ne;~t two subsections , we obtain the stat ionary

• distribution fo~ the number of backorders ctt the bases usin g cho

• approach as described in S.ection 4 .2 .  In Section 5.2.1, the results

a~~ d�riv :J for ~ 1i~ case w1~~~ a the ordcr sizc dis t r ibut ion is the

saue at all bases, while in Section 5 .2 .2 , the cuse of d ifferent

order size d is ~~ai ic..ns the i•:~~~ Is u in~ d.

5 . 2 . 1 Tr~ Sa:n~~~ :ii r 5i:~u Di~~ ributIon At T1i~ Bases

Let ~
( . )  be the coirsnon order size distribution at the bases.

From Eqs. (5.2—5.4), it follows that ~( )  = 4~~(~~) =

• that is, the demand processes at the depot have a common compounding

distribution, 4( ). The stationary distributions of the processes

{z0(t), t>O}, (Q0(t), t>~} ~rxd {B0
(t), t>c,} can be obtained

from Eqs. (5.5), (5.6) and (5.7), respectively ,upon substituting

= = cC .) . Also, we note that in this case,

= q~~( • )  =

To obtain the stationary distribution of the backorder process

{B.(t), t> C}, we first compute Pr{U~ (t) s~+b}. In order to do

so, we consider the two cases A and B as described ~~ 
SCCtIOfl Li.2.

We recall tha t case A corresponds to the situation where the total

depot demand during the interval (t1,
t2] (see Figure 4.1) does

not exceed the total assets available at the depot by time t3.

— ~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _
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Cn~ c 13, c-n the other hand , rc;prc~oent ; the situation ~ i’r~ thY - total,

depot demand during the interval (t1,
t
2
] exceeds the total stock

a~ 3ilab1e by t ime t 3 . The probability distribution of u
1
(t) for

the case A and B are derived i:-~ ~~ctions 5.2.1.1 and 5.2 .1.2 ,

respectively .

5. 2.1.1 Case A: P r {U .( t )
_____________ j  A

As .nentioned in Sectio n 4.2, in case A all the depot demands

• during the interval (t1,t2
] ~‘~e satisfied by time t3

. Only the

depot demands during the interval (t
2,
t3
] may remain unsatiofied

by time t
3
. To obtain (Pr U (t) s.±b} in case A , we evaluate

Eq. (4.6) by computing the probability distributions of [4(t) and

the two independent components of U.(t).

• By definition, U~ ( t )  = D~(t-R ., t) + D~(t3,t). Thus the

random variable [4(t) has a compound Poisson distribution with

parameter A~R. + (A ~ + A 1?)-t . and compounding distribution ~( .) •

Therefore,

( 5 . 6 )  Fr {(J~ (t )  = s.+b~d} CP[s.+b-d~X~R. + (X~ + ~~~)t .,  ~].

The random variable U~(t) represents the units ordered from

the depot by base j  during the interval (t
2,
t3
] that remain

unfilled by time t
3
. We shall obtain Pr{U~(t) c~ D~(t1,

t2
) =

d~(t1,
t2

’
~; Z0

(- t
1

) =  z
0
(t
1
)} by conditioning on N?(t

2,t3
) ,  i j , o. Let

n . ; N
0(t

2,
t3
) n ;  D~(t1,

t
2
) d ~(t1

,t2
) ;  Z

0
(t

1
) z

3
(t

1
} .



~ 
~~~~~~~~~~~~~~~~~

To obtain Pr{U?(t)jRA}, we need to know the n~ n~L~er of requisitions

at the depot placed during (t2~t3
] and completely satisfied by

time t
3. Let N .~(t2,t3

) denote the number of requisitions from

source i that arrived during (t
2,
t3
] and are completely sati fied

by t ime t3, i j ,  a.

Now , suppose we are given RA and N~ (t2 ,t 3
) n~ . Then

U~ (t )  = d if and only if the sum of the demands due to the unsatisf ied

n .  -n~ requisitions and unsatisifed units of possibly a partially

satisfied requisition (if fro m source j )  equals d . Let LX denote

the number of the units supplied to the requisition whose demand is

c.~ly partially m e t . The range of the random variable LX is fro m

O to z0 (t 1) - d~ (t 1,t 2 ) . Whe n EX = 0, ther e is no partially

satisfied requisition and when LX z0 (t1) — d~ (t1, t2 ) , no

requisition is completely satisfied and z0(t 1) — d~ (t1,t 2 ) units

are supplied to the first reQuisition (if  any ) (see Figure 5.1)

Let us introduce an indicator var iable I such that I i

if the partially satisfied requisition is from source i , i j ,  o

We have the following .

( 5 . 9 )  Pr {[4(t) dIRA ; EX O; N ( t 2 , t 3
) n ; N t

(t 2 , t 3
) = n ’}

(n . -n .
,
)

= ~ ~ (d);

(5.10) Pr{U~(t) = dlr<A; LX = e > 0; N.(t2,t3) n ;  N ’(t2,t3
) n’ ; I =

= 
j~~j~(d);



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~

~ 2

d0(t2,t3) I—

z~~~~~~~~~~~ f~

• 
-

~ 
SO~ f l C f  J

• W fr~~ source a

S * S  S S *- ~ S .

t
2 

__________________ 

,_,~~~~~~ 
t

3 
( t  m e )

cornDletely  s a ti s fie d  r e q u i si t io n :  u n : ; a t i -~ f .ied
m c  nsitiorm s

~~m r t ~~a1ly sat  in ~~: i  F O - 1 U i t j u n

F~~- u i :- 5 . 1: A samp1~ r - -i1i ~~~ 10mm of LX , ~1 . (t
2

, t~~) amm ~ ( t ~~ , t~~)

•~;iv m i-A .

~~~~~~ -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~

-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 4
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and

(5.11) Pr {U~ (t) dIRA; EX e >0; N . ( t
2,
t3
) n. ;N(t

2
,t3
) n ;  1 j }

d (n.-n~-1)
= ~ ~(k+e) • ~ ~ (d—k).

k>O

The Pr{U?(t) d I R A } can be obtained from Eqs. (5.9 - 5.11) by

knowing Pr {LX = e(> 0); 1i; N~(t2~
t
3
) n ;  Na

(t2~
t3) = n 1 RA) ,

for i = j,o. Let 
~k 

denote the number of units demanded from

the depot by the k
t
~ (k>l) requisition during (t

2,
t3
]. Using

the results of Theorem 1 of Appendix A , we obtain the

Pr {LX = e, 1 i , b.(t2,t3
) = n .; N (t

2,t3
) = n RA} . We consider

the following two situations. One where not all the requisitions during

(t
2
,t3] are satisfied by time t3

; and the other, where they are all

satisfied .

(i) 0 < n. + n < n .  + n ; n .  + n > 1, not all the
— 3 0 0 0 —

requisitions in (t ,-t
3
] are satisfied by time t

3
.

(5.12) Pr{EX = e; I~ j; N~ (t
2~
t
3
) = n.; Na

(t
2~
t3
) 
%~RA}

= Pr{(Y +Y
2
+...+Y , ,) z

0
(t
1
)_dg (t1,t2

)_ e; Y , , > e;
n .+n n.+n +1a j  a

out of tb~ f i r s t  (n ~ + :: ‘)  rcqu i sit i ons  ~t th~ depot .

n~ ar~ from sourcc j, snd t1m ~ (n~ + n ’ + l) th rcquisitiofl
3 a

is from sourc~ il~~)



m .  n
/ j \ o\ 9 9

n .+1 ~n +l)(n~
J (n .+n ~ c

______ _________  -~ ° (z0(t1
)— d 0

(t1,t2
) e )

f l . +fl +1. / j
3 0  f ,  I 1

~ f l . +fl 
~~~

-/\j a

for e 0 ,l,...,z0
(t
1~~

d~(t11t2
) (n~ +n.); 0<n~~<n~.

Similarly,

5 9 5 5

(5.13) Pr{EX e; I=a; N.(t2,t3
) n~ ; N (t 2, t3) = n 0

j RA )

i n .  - I n
I j t ’  a -

I 
~ n~ ~1~ n ’ + iI  ‘ ‘

n +1 \ -j ~~ a / (n.÷r. ~
= 

0 
_________ • 

a (z
0
(t1)—d 0

(t1,t2)—e ) 
. 

~~

~L÷I~ +1 (n. +n )a

for e 0 ,l,...,z0
(t
1)-d~

(t1,t2)— (fl
1
+fl~~; 0

Summing Eqs . (5 . 1 2)  and (5.13) we have

(5.14) Pr {EX e; N.(t
2~
t3)n~; N (t

2,
t
3
) n I R A }

I
’ 

t ) 4
~ ,) 

t
n. n (n.+n )

= 
~~~~~~~~~ 

~ ~ 0 (z 0(t 1) — d ~ (t
1,t 2 ) —  e)’ ~( j 9.>e

~ n !+n ’JC

for e 0 ~
1
~
...,z0

(ti
)_ d

~
(t
i~
t2

)_ (n
j
+ncy),

and 0 < n. + n < n .  + n
o
.

- ~~~~~~~~~~



• -
~~~~~~~~~

55

(ii) n. + = n~ + n0 (> 0) allthe reqi~isitions in (t
2,
t33

are satisfied by time t
3.

(5.15) Pr{EX e; N.(t2,t3) n .; N~(t2,t3) n ~~RA)

= Pr{(Y
1+Y2+...+Y ,) < z

0
(t
1
) -d~(t1,

t2
)}

n •J o

1zo(t i )_ d
~t1,t 2 ) 

(n +rm
’ ) ,

3 0 (9), for e 0~n .n~~f l n
0~

n.1-n >1;J 3 0—

1 , for e_ z
O(t1

) d
O
(t
l~
t2)s

0 , otherwise

FDom Eqs . (5.9 — 5.11) and Eqs. (5.12 - 5.15) we obtain
Pr{U~(t) d)RA}. We consider the following two cases: one where

all the demands from base ~ during (t2,t3
) are satisfied by

time t3 
(d 0 ); and the other,where some demands fro m ba se ~ during

(t2,t3J remain unsatisfied by time t3 (d>l).

(1) Pr{U~(t) = OIRA } From Eqs. (5.~~) and (5.10) we conclude that

given PA , U~(t) 0 ifand only if n
1 

n .(>0). For the case when

all the requisitions at depot in (t2,t33 are satisfied by time t3,

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ • --- _--
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thr t is, n . + n n . + n then Pr {U?(t )  O~RA) 1. From
3 0 3 0 3

Eq. (5.15) we have

1 ,for fl. +n 0 .
3 0

(5.16) Pr(U~(t) O I i ~A} = z (t  )_ d C (t ,t~ )
0 (n.÷n );for n.+ n > 1

0 3 0

2. n.+n
3 ~L

5 5

0-n the other hand , when n . + n < n . + n that is, not all0 3 0

requ isit ion s at tn~ depot during (t 2,t3
] are satisfied by time

t 3, then n . = i i .  implies the: ~ < n0 . From Eq.  (5 . 13) ,  af te r

• -~~lifying the combinatorial expressions we have

(5.17) Pr{U~ (t )  = 0~RA}

C
n0-l 

r~~!(n .+n )~ ;z0
(t
1
)-d3

(t
1,

t2
)-(n1+fl0

)

= 
,~ n~ I ( n . +n0 ) ! 

‘

~~~

n 0 0 e 0

(n.tn)
3 0 (z

0
(t
1
)—d~ (t1,

t2
) - e) - 

~~ 4 ( P . )~’ .

2. >e
-
j

(i i)  Pr ( U~(t) = d~ RA }, d > l  From Eqs. (5.~~) and (5.10) it

is clear that given PA, U?(t) d > 0 if n < n~ and thus

n. + n < r i .  + n for n. > 1. From Eqs. (5.J - 5-11) and (5.12 -
3 0 3 0 3

5.14), it follows that



a. n( j cm
~
L I ) \  S

xi .-l n ~~n.  fl
3 0 3 0

( 5.18) Pr {U~ ( t )  = dIRA ) =
n~~ 0 n =0 ,~ +n

• 3 0 (3  ~
— I ’  I

\ a. +n
\J  a

• 

- ~~0(t1
)-d~(t1,t2)-(n

1n~) ~~~~~~
‘ ) c
~ (z

0
(t 1

) — d
0

(t 1, t2
)— e)

e 0

~~~~~ 

( n .— n .  I

~j j  d (r: .-n .-~ )

k>o

÷ ( f
a~~~ 

(n . -n : )

9>e

From Eqs. (5.16), (5.17) and (5.18) we ohv :n Pr{U~(t) dlD~
(t1,t2

)

d~(t,,t2
)~ Z0

(t~) = z~(t1
)} by enumerating over N. (t

2,
t
3
)

and h0
(t

2~
t
3
). ~ubstitucing the resulting e>çr•~~-o ion and 1 ;. (5.6)

into Lq. (4.6) we obtain

I

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
,.
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5.2 .1. 2  C~~~ :m (f l ) ;  Pr[nJ .( t) = s .~ b}
_______ ~ 

B

10 this case, none of the deiot de.nands during (t
2
,t3
] am.

filled by time t
3
. The s-cock of z

0
(t
1
) + d~(t1

,t2
) units

ava ilable at the depot by time t 3 determines how many re’~u~sitionc

at the depot during (t 1,t 2 J can he filled by t i r r ~ t 3 • To cL :n in

P r { U. ( t )  = s .+b} in case B , we evaluate Eq. ( 4 . 7 )  by cor~~uting

the probability distributions of U~
(t ) and U~(t) as described

in S~ction 4.2. Here, U~(t) = D~(t-R., t) + h~~t2
,t); t e r ~ f :~ ?

(5.20) Pr{U~(t) = s.th-d} = C P [ s . +b-d ~~A~~P~1 
÷ A? (r~ ÷ R0

) , ~J.

U~(t), in this case, represents the units ordered from the depot

by base ~ during (t
1
,t2
) that are unfilled by time 

~~~~~

. We shall

obtain Pr([4(t) dID~(t1,t2
) -~~(t1

,t~ ); Z0
(t
1

) = z
0
(t
1
)} by

conditioning on N~(t1
,t
2

) ,  N~ (t,, t2) and D~(t1
,t2

) , i = j,o . We

temporarily denote d~(t1,
t2
) by d~ . Let

RB1 (N ~ (t 1,t 2
) = n~~ N’?(t1,

t2
) = ni?; N

C(t
1,t2

) = flC ; N~(t1,t2)

Z
0

(t 1
)

RB2 C {D~(t1
,t2

) + D~(t1,t2) d~; D~(t1,
t
2

) + D~(t1,t2
) = d~}, and

RB = RB1 tJ RB2.

Then
C C  D D(n .+n ) (n.+n )

(5.21) Pr{RB2IRBI} = ~ ° (d~) 4 ~ ° (d~).

To obtain Pr {U~(t)~ RB }, we need to consider the number and type

(depot repairable or condenr.able) of requisitions placed at

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

~~ :.:
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the depot dur ing (t 1,t 2
] from each source and completely satisfied

by time t
3
. For i~~~ ,a , let

N . C (t1,t 2
) = the number of condemnation type requisitions tha t

arrived at the depot dur ing (t
1,t 2

] and are completely

satisfied by time t3;

and 

N . D(t 1,t2) the number of depot repafrable ~~pe requisitions

that arrived during (t1
,t9] and are completely

satisfied by time t
3
.

Now suppose we are given RB and know that N1
C (t1,t2

) = n.
C

and N . D(t
1,t 2

) = n i B, i = ~~,0. Then U~ (t )  d if and only if

the sum of the demands due to the unsatisfied (n. i- n. -n. - n . )
3 3 3 3

requisitions and unsatisfied units of possibly a partially satisfied

requisition (if from source j ) equ a l s  d. Let LX denote the number

of units supplied to the p-irtially satisfied requisition. For

i j , cY, let

- 
. iC, if the partially satisfied requisition is of

condemnation type and is from source i,

1 =

iD , if the partially satisfied requisition is of depot

repairable type and is from source i.

Then similar to Ecp. (5.9), (5.10) and (5.11) we have

(5.22) Pr{U~(t) = dIRB; EX = 0; (~~C( t t )  = n’
.’ ; N)~(t 1,t2

) s)), i~~,o)}

C D ‘C ‘B(n . +n . -n. -n . )
= ~ ~ ~ ~ (d )~

I~~~L- ~~ ~~~~~~~~~~~~~~~~~~~~~~ :-~ 
- -  

-
— - ------ — -— -~~~~ -~~ --~-~~--



.5

101

( 5.23) Pr {U~ (t )  = d~ R3~ EX = e > 0; (N
C( t t ) a e

~~~
D( t t) n D

- .  
i= j, o)~ I = 6)

C B ‘C ‘B(n . -s-n .-n .  -n .  )
= ~ ~ ~ ~ ~ (d ) , for 6 = aC , aD ,

and

(5.24) Pr{U~(t) = djRi5 , EX = e > 0; ( N
C ( t t )  n . 0 , ~ ‘D ( t t )  5~ D ,

i = j, a), 1 6)

c ~ ~~~‘

d (r .+m~~-n . —n . -.1)
= ~ s~(ki-e)~ ~ ~ ~ ~ (d-}~.), for 6 = jC , jJ.

k>0

‘C ‘B ‘C ‘B C C C S
In this case , we notc that ,<n . i-n . i-n i-fl <fl .+f l .+fl -4- fl - We

— ]  3 0 a 3 3 0 0

now need to obtaifl Pr~ EX = e , (N . C
(t 1,t 2 ) = fl . ;  N

D(t  t )  =

i = j, a)~ I = 6jRE}. This will be done following the appi~ ach

used to obtain Eq. (5.12) , and using the results of Theor ro 2 and

Corollary 2.2 of Appendix ~~. Let - - be the sequence

of the number of uni :s demanded from the depot by the n~ requisitions

from source i (i=j a). Similarly, let {y
1
,Y

2
. .. .,Y } be the

sequence of the number of units demanded from the depot by the

n~ requisitions from source i (i j, a).

Let J n~ \ ln h?~~/ n C \ , D~
3 3 ~ 0\ a

~ ‘C I m, ‘DJ ~ ‘c) ‘D\~ f 
~ -j -• V1,, ~‘ \~

PS
/ C D C D
I f l + f l~ +fl -f-fl

• 3 ) 0 0

‘C ‘B ‘C ‘D
%rl . +n. i-fl i-fl

3 3 0 0
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Then

( 5 . 2 5 )

Pr {EX e; N . C (t1,t2
) = 

‘C 
N.
D(t1,t2

) = 
‘B i j , a);1 kC~ RB },

k j , o

= ~~~~(Y1÷Y~÷. . •+Y ,~~) + (Y
1+Y2

+.. •i-
~~’D~ 

+

+ (Y
1
÷Y
2~~

..i~’ ‘D~ 
= z0(t1

)+ (Y
1
i-Y
2
+...+Y D l —

~2~~
”
~~

’ 
D
)_ e ,

n n. n
cm 3 cm

‘C ‘D ‘C ‘BY 
~~~~ 

> e; out of firs t (n~ +n ~ i -n0 i -n0 ) requisitions

at depot, (n .
C
÷n))) are from source j; the next requisition

is condemnation typE - and is from source k J ( Yj+Y
2
+..-.+Y D

)

+ (Y
1
-f-Y
2t• 

. •+Y D
) = d~; (Y

1
÷Y
2
÷ • .+Y c

) + (Y
1
÷Y
2
÷. . = dg;

RB1]; k = j,a

r (~~~~~nk
C) 1

[(
C D c D ) ( ‘C i- ’D ‘C ’D

) j PS

— ~~~~~~~
. ~~~~~~~~ ~~~~~~~~~~~~~~~~ 

~~ 1

•

1 ~~



r __  
-

~~ ~~~~~~~~

- - - - - - 

~~~~~~

--

Ii
• 

~~ ((Y l
4.Y

2i - . . .+Y c~ 
+ 

1-~ 2~~~~~~~~’C~ 
=

+ ~~ ‘D i-...+Y ~) + (Y ‘B + •~~•+Y D
)_ e ; Y ,~~~ >

n. +l n. n i - i  n n i - ij j a .~ k

... + Y~~) + (Y
1
+Y

2 + . .. + Y~~ )

.+Y c
) + (Y

1+Y 2+ . . .+Y ~~ ) d~ ; RB1)

C ‘C
- ‘

~k ~= 

n~+n~÷n
C
i-n

D) — ( C+ D+ C ±~~~ )3 3 0 0  3 3 0 0

I ‘c ‘c(n . +n  )
3 0 (z

0
(t
1

) + k
1
-e)

~ 

k~ 
-

r (fl~~~~~f l
C _~~~~ C _~~~C_1)

4(e+k
2
) 4m ~ 

0 0 
(d~~-z0

(t
1
)—k

1
-k2)J

• ~~~~~~~~~~~~ ii L
0

where

‘ D D  
fl

C
< C.(>1) ; k j , o

~ 

L_ .  ~~
- 4~ -?
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~~~~~~~~~~~~~~ ~~~~~~~~~
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and

e =

The ranges for k
1 

and k
2 

are,

‘B ‘D ‘C ‘C D D D ‘B ‘B
max{n. + n , n . + — z

0
(t
1

) + e) < k
1 

< d
0 

- (n .  + n - n . - n ),

and
C C C ‘C ‘C C C C ‘C ‘C

l<k~,<minCd0
-z

0
(t 1 )-k

1
-( n.+n0-n~ -n0 

), d0— e - ( n 4 -~n0--n
1 

-n o )} .

Similarly,

(5 .26)  Pr {Ex = e; (S.
C(t,,t2

) = fl C; NJ3(t
1,

t2
) ‘B i j , a);

I = kD~RB} , k = j , cY

D ‘B I I ‘C ‘C
n - n (n. +n )

j 
= 

( C~~ Di-~C
÷~ D ) - ~~~~~~~~~~~~~~~ 

PS 
a (z0(t1)+k1

-e)

B D ‘B ‘B ‘D ‘D(n .+n -n. -n -1) (n . i-fl )
• $(e+k2

)ds ~ ° ~ 
0 (d~-k1-k2-e~

) 
~ 

° (k
1
)

(n.+n )
- C

- - - —

~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~
-- _ _



-- 

0-

~~~ C ‘B B
~~ -~~k~ -~~~’ ~k < n k ( >l ) , ~~~~~~~ arjd

e 0,i,...,z (t )+a 0 _ (~l .C +n .
D
+n

C
+n ’D ) .1•) ~ 0- ~ 

j a cm

The ranges for k1 and k
2 are,

max n~~
)
+n ’D , n~~ +n ’~ ...Z (t )+e)J < k

1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and l<k <ID k _e— (n~ +n~ —s~ 
D~ B

) -— 2—0 1 cm

T~m a probab•ility distribution of U~ (t )  can now be obtained

from Eqs. (5.20 — 5 .26 ) .  Let

- — 
1

P83. - 
(n~+n~+n

C
+n~) - (

C
÷fl~

D
÷fl

lC
~~~ D)

Then

s.+b

(5.27) Pr{IJ.(t) si -bIB c 
~~ Pr{U.(t) = s.+b-d}

d >s (t,) d=00 0 . ~.

~ (~~s\ ~~
D C D C ~ ‘D ‘C ‘B ~ ‘C I\ Ps1)dD e
0 0 3 C 0 3 3 0



_ _ _ _ _ _ _ _ _  -_-~~~~~~~~~ - -~~~~—- -- --- - - - - ---__- - -- _~- - -U’-- ~~~~~

- ~~ fl
C_n C)US(cm C) t (n

D
~n

’
~ 1jS(C ,D) + (fl

C
~fl

’C )US(i C)

- p[n X~ (r 0-h 0
) ] .  P[n~~I A ~ (t 0 R0

)] - P[n~ IA~(to-Ro
)] P[n~IA ~(t o-Ro

)] 
~

where

I ‘C ‘C ‘D ‘B
(n . +n ) (n . +n )

US(a ,C) = 
k1 

~~ 

3 0 (z
0
(t
1
)+k

1
e) .

~~~ 
~ ° (k

1
) ( ~(e+k

2
)

d (C C ) ( C
fl
C 1)

(k~~0 
~ ~ ~ (k s) 

~ 0 ~ (d~
_z
0
(t
1
)-k1

-k2
k3
)

( D t D ) 
- 

a d
D k d÷k )~
)

~~

( ‘C ‘C ‘B ‘B
(n -f-n ) (n. +n )

tis(o ,D) 
0 (z

0
(t
1
)-f-k1

—e) . • (k
1
) $(e+k

2
)

C ‘C C ‘C
d (n -n. ) (n -n )

- 

~~~~~ 
• ~ ~ (k

3
) - ° C (d~_z0(t

1
)—k

1
-k

3
+e)

- 
(n~-n~~~ • 

(n
~
_n
~~

_1)
D )))~

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
-
~~~ ~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~ - -~~~~~~~~~~~ 

•• - -
~~

- - - -
~~~~~~ --- ---~~~~~~~~~~~~~~ ----——



~~~~~ ___________

( ‘C i-
’C ) ( ‘D

÷
’D ) I ~ 

L7

U S (j , C) = ° (z
0
(t
1)i-k1

—e) - ~ ° (k
1
) 
~ ~ 1~(e+k

2
)

k
iL

( ( ~) (C C)
~ ~ (k

3
)~ 

0 0 (d~—z0
(t
1
)-k1-k2-k3

)

- 
(

D V D ) ( D ’ D

) )

~~~~

and
‘C ‘C ‘D ‘D(n . -f- n ) (n. *n ) ) d

U S (j , D) = 
0 (z 0(t1)+k 1-e) - ~ ~ (k

1
) 

~~k~~0 
~(e+k2

)

C ‘C C ‘C
(n.-n. ) (n -n )

- ç ~ ~ ~ (k 3 )4 ° 0 
(d~-z0(t1

)-k1-k3
+e)

L. 

k3

• 
(nD n

?D
l) ( n D

n ’D

) )

~~~

The ran~ e3 for the variabL s in the above enum ,ratiOfi ar~ given in

Lqs.(5.25) and (5.26).

Since the right hand sides of Eqs. (5.19) and (5.27) are independent

of t, we obtain Pr{B~(*) b} by substituting these equations

and E q .( 5 . 5)  into Eq. (4 .3 ) .

The special cases of complete recoverability and complete

non-recoverability can be analyzed in a manner similar to that

outlined in Section 4.4.1 and 4.4.2, respectively.

a- - - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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5.2.2 Different Order Size Dictributions At the Ba’~€~n

Up to now, all the ri~ dels studied for the two-echelon system

have assumed that order size distributions at the bases are identical

In this section, we allow for a more general situation where the

order size distributions at the bases are different .

At the depot, compounding distributions for the demand processes

{D
0(t), 

t>o}, (D~(t), t>0) and ~D~
(t) , t>o} are given by Eqs. (5.2),

(5.3) and (5.4), reapec-tively. Also, Eqs. (5.5)~ ( 5 • 1)  and (5.7)

provide the stationary distributions for the process {Z0
(t) ,  t>O},

{Q 0 (t ) ,  t>0} and {B0(t ) ,  t>o } , respectively.

To obtain the probability distribution of the process

{B
1
(t), t>0}, we consider the two cases A and B in the same context

as we did in Section 5.2.1. In order to evaluate Eqs. (4.6) and

(4.7) representing Pr(B.(t) = bI for the cases A and B, we obtain

Pr{U. ( t ) = s . +b }A and Pr{U ..(t )  = si —b I B in Sections 5.2.2.1 and

5.2.2.2, respectively. To derive these, we use the schemes

developed in Sections 5.2.1.1 and 5.2.1.2. Also , we shall use the

Borne notation as used in these Sections.

5.2.2.1 Case (A): Pr{U.(t) s.+b}~

To obtain Pr{U.(t) = sj
+b}

A, 
we find the probability distributions

for its two components U~
(t ) and U~(t) as described in Section

5.2.2.1. We derive these by modifying the related expressions of

3- : tian 5.2.1.1, for the present case of different order size

distributions at the bases.

Substituting 4 = $. in Eq. (5.8), we get



r -- — -
~~~~~~ 

— —

10- 0-

(5.28) Pr(U~
(t ) s.+b~-d} = C?[s.+b—dIA~R. + (A~+A~ )r., ~~~

Furthermore, we see that Eqs. (5.9 - 5.11) describing the

conditional probability distribution of u~(t) hold for this case

w ith ~ = 4.. Following the arguments used in obtaining the

expressions for Pr{EX 0(>0); I=i; N. (t
2
,t
3

) = n~ ;

N(t 2,t3
) n IRA} in Eqs. (5.12 - 5.13) we have the following.

‘ ,

(i) 0 < n .  -t- n < n. + n ; (n . +n > 1)
— )  0 3 0  3 0

Here, Pr{Y +Y +...+Y z (t ) - dC(t ,t ) - e)1 2 
~~~‘.+~~~‘ 

0 1 0 1 2
3 0

z (-t )_dC(t,t )-e0 1  0 2 (~~( ‘) 0(n ’ C ‘I
= 

k ~n 

~~~~ 
j (k

1
)4 cm ’(z

0
(t
1
)_d

0
(t
1~

t2)_e_k
1))

1 ]

“(n .+n )
= ~ ° (z

0
(t
1
)-d~ (t1,t2

)-e).

Then

- 
- 

(5 .29)  Pr( EX e; 1i; N.(t2, t3) = n.; N (t
2,t3

) = n~IRA }

f l .’~,’n( ] \ j  0)
(n.-n.) ~%n~.J~—n

’ - (n~+n
’)

= 
i 1 0 

~~~~ 3 0 (z (t )-d~(t ,t2)-e)
(n.+n )-(n.+n ) /n.i-n \ 0 0
3 0  3 0  ( 3°

\ n_ i-n\ 3 cm

0

~ ~~
(~)

£ >e

for 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 <  n . < n . ,  i j , cl.
— 1 —  1

• ~~~~~~~~~ - — --
- ~~~~ - ._~ 

- --~~~~~~ - -~:!:_~ 
- 

~~~ —~
• -



— - 

~~~~~~~~~ ~~~~~~~
11.0-

, ,
(i i) n .  + n = n. + n ( > 0)cm j  ___‘___r_ ._

(5.30) Pr{EX = ; N.(t2,t3
) = n . ;  N ( t2,t3

) = n
0 IRA )

z0
(t
1
)-d~(t1,t2

) -

J 0 U), for e 0 , n~=fl~ , n~~n0, 
n.+n0

>1;

3 °

C ( 1 ,for e z
0
(t
1
)-d~(t1

,t
2
), n . n . n

0
n~~~0;

0 , otherwice

• We can now obtain Pr{ U~ (-t ) OjRA } and Pr{U?(t) d ( R A } ,
3 3

~:I > 1.

Thus we have

-_ “—-- ,- -_

~

u

~ 

- _ _ _ _  _ _ _
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0

~~~~~~~~~~~~~~~~~~ C~~ b

U 
~~~~ 

+.r~. 
-~~~ 0 0

cm 4-’
-~ ii _-

t 

U 

-

D 
-

- ~~~~~~~~~~~ 
r .- ~~~ 0 I —

cm I cm cm -~~ ~C b __

• + 1+ cm ~~~~~
..- 0

r~j r ’  + ~~ — -._~~ cm ÷
0 H

~D ~~ b — —  +
cm cm cm ( J O

—a
a~ -r ’ H C’ - -

‘o~~~
’n

cm cm ~ cm
%
__

_.._
___

J 
.-

~~~~~~

L.J H o
a-. B L—~ 8 r—~~

”

__________  
cm cm

H
0 L—a 11 cm

~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~

1r

~
0~~r~ —a ~~~~~~ 

0,0
0

\
4- ~~~ 

-r-~ ~~~~~~~~~~~~~
0) 0 H
II  L.J — I 4-’

a-. i - o
4-’ r~1 I 10 C,

o • I I
~~~ 

+ i-.” v i
0 r I  •r ~ - -r-f O

0 c m i i
— L_i o o

0 a-. •r-4 0
cm 0 0 4 -
4- 

.5-’ (a
_ 0 H

C’)

U

‘b— - - -
~~~~

---
~~~~~~~~

- --  
~~~~~~~~~~~~~~~~~ ±~~~~~

-- —--- - - - — —-- — 
__ 1___ 

~~~~~~ --- - i
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5.2.2.2 Case B: Pr{U.(t) = s.+b)
j  3 B

Here again, the probability distributions of u~(t ) and

U? (t) for case B ar~ d~riv~d using Ln~. n o t a t i on  and tLr i~i~ thod

;crLS -d in ~eCtlOfl 5.2.1.2.

Substituting for 4 into Eq (5.20), we have

Pr {U1.(t )  = s . +5-d} CP[s .+b -d IX ~ R
1 

+X ~~ ( T .  + R
0

), 4~ ].

Similarly, substituting and in Eq. (5.21), we get

C C  D D(n .+n ) , ( n . -i-n )
Pr{RB2~RBl) 

~~ ° (d~) 
- ~ ~ (d~ ).

Also, Eqs. (5.22 — 5.24) hold for this case with 4(-) p~ ( - ) .

Following the steps used in deriving Eq. (5.25) we have

Pr{EX e; (N C
( t t )  n~~; N.

D(t
1,
t2
) n~~; ij,o); I kCIRB}, k j ,a

C ‘C(n
k 

- 

~k ~
= C B C B ‘C ‘B ‘C ‘B 

PS
(n. +n. +n + n ) - ( n .  -s- n. -s- n i - n

3 3 0 0 3 3 a 0

( ‘C ‘C
) )‘ C’

~~ 
-‘-n )

— 

~ ° (z0(t1
) + k

1 
— e)

C C ‘C ‘C
(n.-s-n -n . -n -1)

k2 

$~(e+k 2)4~ 
~ 

0 j ~ ( d Z r ( t i ) k
i

k
2

)
~~

~ 

- —



- 
~ ---w ~~ -~~~~~~~

_ _ _  -

• D(n D+fl D) 
- ~D (n

~
+n
~
-n -n )(d D k ) ~

(/

Ic  (n~ +n C )
(d

C ) D(n~ +n D )
(d

D )~ k = j , ~~,

where the ranges for and k 2 are the same as g iven in Eq. ( 5 . 2 5 ) .

‘C ‘C ‘D ‘BSimilarly, we can obtain Pr{EX = e; (N. (t1,t2
) = ; N. (t1,t2

) = n~

i 5 , o); I = kDf RB), k = j,o. Then proceeding in a manner sm iler

to that in deriving Eq. (5.27), we can obtain Pr{U
5
(t)~ s5

+bL . This

in iDly -a ~
; Lstantiol n:~.o~ nt o~ nun ;ra tion . Ti~- -J - t ~~l~J e:-:pz’onsion

is crnittcd here.

The special cases of complete recoverability and complete

non-recoverability can be dealt in the same way as mentioned in

S~ itios 4.4. We emphasize that approach developed in this section

can also he used for a more general case where the three demand pro-

ces~~: {D~(t), t>O}, {D~(t), t>O} and {D’?(t), -t>O} at base

5 (5 l,2,...,J) are independent compound Poisson processes with

different compounding distributions.

5.3 The Unit ~4odel

In this model, upon arrival of a requisition at a base, each

unit in the failed batch is inspe~ted independently . There are

three possible outcomes of each inspection. At base 5, a unit

is base repairable with probability r ., is depot repairable with

probability (l-r.)p, or with probability (l-r
5
)(l-~ ) is

condemned.

We shall use the following nomenclature in addition to

those j n tr o iu~~-d in Sections 4.1 and 5.1.

1i~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



- -

1:

B . = the number of units in a batch failed at base 5

(5= 1,2,.. .,J).

D~ the nund’er of base repairable units in a batch failed

at nase 5 (51 ,2,... ,J).

D~ = the numbec of condemned units in a batch failed at

base 5 ( jl , 2 , ...  , J) .

= the number of depot repairable units in a Latch failed

at base 5 (jl ,2,. . -

B? the n~nher of units demanded from depot upon a failure

at base 5 (j1 ,2,...,J).
0 ~‘ D

Obviously, D. D’ + B..
3 3 3

an in~—lica-cioi-i of inspection under the unit :~ode1 , we have

• (5.32) Fr{D~ d~; D~ = d~; D~ d
~l D . = d.)

d.~ d~ d~
Cr .] ~ C( l— r .) ( l— p )J  ~[ (1—r . )~~] ~

d ’ d d ’  ~ 3

~ for d~ ,d~?,d~>O , and d . d~+d~+d~ ;3 3 ]_ 3 3 3 3

0 , otherwise•

It can ~e easily shown from Eq. (5.32) that the conditional

probabilities of D~, D~ and given d
5 

are BEd
5 : 

r.],

BEd.; (l-r.)(1— p)] and BEd.; (l-r.)o], respectively ; where

BUn , p3 denotes the binomial probability distribution with

parameters n and p (n~nu. 0-er of trials, p probability of

success, 0 < p < 1). Therefore 

-

- 
- - .- - 

-
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~~(k ) Pr {D~~~k}

= Pr{D k} = 
d~-k

’k~~ 

[(l~r.)(l-p)] [r.+( 1 r
5
)P] 5 4

5~~5
)’

and
~ d . k d.-k

= Pr {D~? =k) = 
~ ( ~~) 

[(l—r.)p] [l— (l—r .)p] ~
d.~ k k
3

Furthermore, let 4.(k1
,k2
) = Pr{D~ = k1; D~

? = k2
}. Tnon

it follows from Eq. (5.32) that

(5.33) 4.(k1,
k
2
) = 

d1.

d. k
1
i-k2 

k
1
k2

(d
5
—k1-k2)!

- [(l~r
5
)(l~p)]

1[(l_r
j
)P]

2[r
j
]1 l 4 (d )

> 0,

and , therefore,

(5.34) 4?(k) = ~~{D? + D~ = k}  = 

~ 
45

(k
1
, k-k1

)

~ d. d. -k
= 

~ 
( 3)(l_r.)kr. ~ 4.(d.), k>0 .

d~~k k ~ 
3 3  —

3

Li~ 1 :::-J~~~~~~~~~~~ 

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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Ii 0-

Ue note that in this case D? is a non-negative variable, whereas

in th3 case cf batch model it is strictly po: tive. In our analysis,

we ~ha11 aloo include the base requisitions levied on the depot for

which the order size is zero. Consequently, the depot demand

process {D
0
(t), t>-O) is a compound Poisson process with paraneter

J 1
A 0 = ~ A. and compounding distribution 40

(k) = ~ A.4., k~0. For
5=1 ~ 0 5= 1

n>1, let

= ~ 4
(n
~
1)(k j k 6-j2

)~~.(j1
,j2
), ]

l~
i210~

~l ~2 ‘

where ,~
0)(o ,o) = 1 and 4

0(k~,k2) 0 for k
1,
k2 

> 1. Then the

process {D (t ) ,  D~ ( t ) ,  t >O } is a cc-mpound Poisson process with

parameter 
~ 

and compounding distribution 40
(k
1,
k2
) = ~~~~

- ~~

0 j 1
that is,

—A 0t ( A t )
(5.35) Pr{D~ (t )  = dg; D~(t) = d~ } 

n~0 
4~
’
~~(d~ ,d~)

d~ , d~~>0 .

In addition, the processes {D~
( t ) ,  t>0} and {Dg(t), tIO} are

compoun~1 Poisson ~ ‘ccesses with conmon parameter )t
~~ 

and compounding

distributions 4g (k )  = ~~~~
— 

~ A •~~
(k ) , k>O , and 4g(k) = ~~~- ~~ A .

oj= l ~~ 0 5=1 ~
k>0 , respectively. The depot can now be analyzed as a single

location system where recoverable and non-recoverable demand processes

are dependent compound Poisson processes . Therefore , the results

dcr r.v~ J in Section 3.4.2 apply.

From Theorem 3.5 , upon substituting $~
( — )  for p(s), we

have

:.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~1+G(S:S_l) 
, k s-l ,... ,S-l,

(5.3b) h a  P r {Z 0 ( t)  = klZ(0) 1, i>P } =
t-~~ X 

0 
1 k=S ,

~~+G ( S— s—l )

where g( 1) = ~~(1)/{l-~~ (0)], g(k) = [~~ (k )  + 

k~1 
$~(q)g(k-q)]/

C k q 1
[l_

~o
(0)], k=2 ,3,..., and G(k) ~ g(&).

L 1
Also , it easily follows from the previous discussions that

(5.37) u r n  Pr{Q0
(t) = q0~Q0(O) = 0) = CP[q0~A 0R0, $~

], q0>0.

The transient distribution of the process {B0
(t ) ,  t ’-aI can be

obtained from Eq. (3.43) . As mentioned in Section 3.3.3 , the derivation

of stationary distribution is computationally complex. The results,

however, can be obtained using Laplace transforms. The explicit

derivation is omitted here .

To obtain the stationary distribution of the process {B.(t), t>O},

we assume that the base repair time does not exceed the 0-n~ie procurement

lead tirrc; that is, r\. > ~~ .. The analoQous r~ sults for t~ case
3~~~~~J

> can be der ived u n ing the approach described ~ierc.

Here aga in , We compute Pr {U
5
(t ) s

5
+b } for the two cases

A and B described in Section 4.2.

5.3.1 Case A: Pr{U.(t) s.+b}
A

To obtain Pr {U
5
(t) s.+b}A i we find the probability

distributions for tJ~~(t) and u~(t), the two components of 0
5
(t)

in case A. Under the assumption R
5 

< C 5, it is clear that

-‘ - 
~ _.__ S. ~~~~ - — 

-~- ~~
— -— - --- -
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= D~ (t
3
, t—r ’- . )  + D!?(t3, 

-t-R.) + D.(t—R 5, t)

= D?(t
3
, t—R

5
) + D.(t—R5, t).

Because the arr’ival process is Poisson , D?(t 3, t-R
5

) ard

B.(t-R5, t) are independent. 
Therefore

s .÷b-d I
( 5.38) Pr {U~(t) = s.+b-d} = 

~~ 
?~Cp s .+b_d-k~X. (T5

-R
1

) , q~~]

• CP[k lX .Rj~~ j])

To obtain Pr~U~(t) = d}, we proceed as in section 5.2.2.1. Note

that is now a non-negat ive variable . Then from Eq. (5 .31),  it

follows that

~~~~~~~ ~~~~~~• -

— -~~~~~~
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wher e A0 = )~ A . ,  A = ~ A . and = -i-- ~ ~~~~~ The
5=1 ~ 5:1 ~ ~~i l

i�i 1 i�5
• probability distribution of 0

5
(t )  is obtained from Eq. (5.38) .

5 .3.2 Case (B) : Pr {U .(t )  = s. -Ib)~

Here again , we obtain the probability distributions for

- 
- U~ (t )  and U~ (t ) ,  the two components of U

5
(t )  in case B.

By definition , as given in Section 4 .2

U~ (t )  = n~?(t , t -R .)  + D~?(t  , t-R .) + D~ ( t — R . ,  t ) .
3 3 2 j 3 2 j j 3

Hence , s. -t-b-d
(5 .4 0 )  Pr {U~ (t )  s. +b-d} = )~ 

CP[s .+b-d -k~~ .(T5
+R0-R5

) ,  ~

• CP{ k~ A . R ,, q~.].

As indicated earlier, in the unit model each requ isition at

the depot is associated with a demand for replacement for some

depot repairable units and some condemned units . To obtain the

probability distribution of U~(t), we follo w the steps described

in Section 5 . 2 . 2 .2 .  Let

RBI {u.(t2
,t
3
) = n .; N ( t 2 ,t3

) = n ;  Z0(t1) =

RB2 E {B~ (t
1,t 2

) = d~ ; D~ (t1,t 2 ) d~ }

and

RB = RB2. U RB2

Then similar to Eqs . (5 .9 ) ,  (5.10) and (5.11), we have

-
. 
I~_5..~

_ ‘-~~ - - 
-

~ _1~~~~
-
~~~~_ __ 

~~~~~~~~~~~ ~~~~~~ ___ ~~~~~~~ ~~~~~~~~~~~~~~ 
-
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(5.41 ) ~~{U ~ (t) d~ RB; EX = 0; N.(t1
,t
2
) = n~ ; N (t 1,t 2

) = n }

= ~
O (n~-n~ )~~~

( 5.42) Pr {U~ (t )  = dIRB ; EX e > 0; N . ( t 1,t 2
) = n ;  Na

(t1~
t2

) = n 0, I = a)

= ~
O (n .-n~ )~~~

and

(5.43) Pr(U~(t) d~RB; EX = e > 0; ~-~~(t 1,t 2
) = n. ;  N a(t i~

t 2
) 

~~~ 
1= 5 )

d
= ~ 4’?(k+e) ~

O(n
5
—n

S
—l)(d k)

k>0

Following th:~ ar~~uments used in deriving Eqs. (5.25) 
and (5.26), we obtain

(5.44) Pr{EX e; N. (t1,
t
2
) = n . ;  N ( t 1,t 2

) = na , I kIRB}, k = 5 ,o

= Pr {(Y 1+Y 2 + ...+Y~ ’)  + (Y 1+Y 2+ . . .+ Y ~ ’) = z0
(t1
) +dg-e,

Y > e; out of first (n.-Fn
0

) requistions at the

depot , n are from source j ;  the next demand is

from source klD~(t1
,t2

) d~; D~ (t1,t 2
) d~ ; RB1) ;

k j , a

5k~~k , 

(:~
)
~

) f~ •~~~~~°(d , z (t )+d
D
~e~d )

~~~~~~~~~~ (+n c~

) 

1~’i 
° 1 0 1 0

I
III ~~~~

______ ~~~~~~~~~~~~~~~~~~~~~~~~~ ¶-  ;, - -
~~

0-. 
- 
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~~2 
~2 

~~(e+k 2
-d

2
, d

2
)

- 
~ (n.+n

(n . +n ) Ca (d
0
,d
0

);

where,

nk
< n

k
(>l), k j,a; and e = o,1,...,z0

(t
1
) + d~ .

From the property of pT1(a ,b ) ,  we see that the ranges for the

indicics in th~ summations nust  satisfy

• 0 < d1 
< z

0
(t

1
) +d~~- e , l < k 2 < d ~ - d1 

- e and 0 < d 2 <d1 + e - z
0
(t

1
).

Thus ~~~m Eqs. (5.41 - 5.44) we get

s .

( 5 .4 5)  Pr {U. (t )  = s.+b}B ~~ ?r{U~(t) = s.+b-d)
3 Cd 0 ’-z 0

(t
1

) d 0

I I __________

• i 
~ 

1

‘ ‘ - n. 4-n \ (n.ni )— (n.+n )
n .  na ~ n

5 
n 

( 
j a j a j ° d~=o 

e
V

.\ J 0 -

.-
‘

-
‘

US ( c)  + (n . n
;
) US(j)j]

P[n.1A
5
(t 0-Rü)] P[n0 IX 0(t 0-R0)]~

I__ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ._ __ :& - 

~
_ __ _1____ .___ _

~
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where

US(o) = 

d1 

~~~~~~~~ z0(t 1
) + d ~-e-d1

) ~ ~ ~~ (e+k~-d2, a2 )

Id (n . +n~~) (n -n ’-l)
~~~~~~~~~~~~~~~~~~ ~ 3(d- k 3, k 3

)~~~
0 ° ° (d~ _d

1-e-k 2+d 2
-d+k 3,

d1
+e-d2

-z0
(t
1
)k

3
) ~,

and J

US(j )  = ~ 
(n .÷ n ) (d z~ (t

1)+d~ -e-d 1
) 
k
L 
0 d~~

j 2 2  
d2

)

1 2> 2

~~ (n~ - n~
_l
~d k k  k ) • ~O (fl 0~~o~ dC_ d

1
_ e +d 2

_ d+k
3,

d1+e-d2
-z
0
(t1

)-k3) }
5-

The ranges for the IndicieS in tL  u;:~~ t ions  can be easily oEtjined

using the fact that in an expressinn •‘~(a,b), a, 
b>0 for n>l ,

and a b 0  for n 0 .

Thus Pr {B
5

(~~) h)  can now be obtained from Eqs. (5.36), (5.39)

and (5.45).
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CHAPTER Vi

A CC:-:PARISON OF TWO-ECHELON MODELS

In this chapter we compare the two-echelon inventory rr~dels studied

in the previo us two chapters to Sherbrooke ’s METRIC (Multi-Echelon

Techni que for Recoverable Item Control ) model [173. in Secticn 6.1,

we briefly describe the METRIC model. In SeCtiofl 6.2 , a general

comparison is presented , wh ile a computat ional comparison is made

in Section 6.3.

6.1 The METRIC ~oc~el

Almost a decade ago Sherbrooke [17] developed the well-known

METRIC model for a two-echelon system similar to that described in

section 1.1.2. A major purpose of the model is to determine optima l

base and depot stock levels that minimize the expected number of

total system backorders subject to a constraint on system investment

or system performance.

Demand at base j is assumed to be represented by a compound

Poisson process with parameter A .  ( j 1 ,2 , . ..  ,J). Upon arrival of a

requisition , one or several units are demanded for replacement and

a like number of failed Units are turned in for repair at the base.

A batch of failed units at base 5 is repaired at the base with

probability r
5 

and is shipp _d to the depot for repair with probability

( 1-r.) .  Thus there are no condemnations; that is , the system is by

defInition conservative. Bases use an (s—l, s) policy for

procurement of serviceable units fron the depot . Repa ir t ime at location

5 is a random variable with finite and known mean R
5 

(j=O ,l,...,J).

124
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It is assumed that the repair time is the same for each unit in a

failed batch. The order-and-ship time at ha- e 5 is also a random

variable with mean -r
5
(j=l ,2,...,J). Furthernore, it is assumed that

the order size distribution is the sane at all bases. Let ~ be

the mean order size per requisition at the bases. Th~n the m€-~u2
‘3

demand rate is ~ A. (l—r.)~ = A
04 ,  where A 0 

= ~ (l- r . ) A . .
5=1 ~ 3=1 ~

In the METRIC model, the stationary distribution of the number

of backorders at a base is derived from Eq. (12) of Feeney and Sherbrooke

[5]. Let S be the spare stock (inventory on hand ÷ on order + in

repair - backorders) for an item wher e demands are compound Poisson

with parameter A , and resupply time is a rando m variable with mean

T. Also, assume that the resupply time is the same for all units

demanded by a requisition. Then in the case w .ere backlogging is

allowed , the number of Units in resupply has a Poisson distribution

with mean AT.

Let S0 be the spare stock at th~ depot and T~(S0) be the

average response time to a demand from base 5 . Sherbrooke shows

that T
5

(S 0
) can be expressed as

(6.1) T . ( S 0
) = r .R . ÷ ( l— r . ) ( t . ÷ 6(S 0

) - R
0
)

wnere

6( S 0
) R 0 = average delay per depot demand

= expected number of backorder’s at the depot/average

depot demand rate

(X=~~~~~+~~ 

(x_S
0

)P [x~A 0
R
0~~
/0

~~
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where 
~[-I m] denotes the ~~isson distribution with mean m.  Thus in

the METRI C model , the stationary distribution of the number of

backorder’s at base 5 is given by

(6.2) PrfB.(~ ) = b) = P[s.+b IA .T.(S )]
3 3 3 3 0

P[s .+ A ~R.+A?t.+A? 6(S0
)R0)

b—s .,-s .+l,. - .,O ,1,...;

B 0where A . r . A . asd A . (l-r.)A ..
3 3) 3 3 3

6.2 General Comparison

We now compare some of the features of the METRIC model and the

two-echelon models studied in chapter IV and V. Our models are more

general than METRIC in that they permit non-recoverability and positive

condemnation rates. Our analysis includes both batch and unit models

for inspection of failed units , whereas METRIC considers only the

batch model . We also examined the case where order size distributions

are different at the base. The METRIC model is confined to the case

where the order size distribution is the same at all bases.

The METRIC model, on the other hand , is more general in that it

allows random repair and order-and-ship times. Furthermore, METRIC

provides simple but approximete expressions for the stationary

distribution of the number of backorders outstanding at a location at

any point in time. In our analysis, the expressions are relatively

more complex and a large amount of enumeration is requix’ed :to. compute

the probability distributions. - 
-

-~~~~~~~~~~:
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6.3 A Computational Comparison

In this section , we assess the degree to which the f1~ET RI C

- - model could serve as a useful approximation to our mod el which we

sh~l1 refer to as the EXACT mod el. Also , w~ con~:ar~ ~~~

complexities of the two models in terms of their execution times on

a digital cor~puter.

We consider the case of unit demands at the bases. For the

EXACT model, the conservative system is discussed in section 4.4.1 and

the stationary distribution of the number of backorder’s at the bascs

is given by Eq. (~4.25). For the MET RI C model it is computed from

Fo:. (.1) and (6.2) uu’js substitu n-~ = 1 into Eq. (6.1). Furthermore,

th term 6(S
0
)-R

0 ~s nin~-1ific- C as a finite sum and the resulting

expression is given by

s
- . (6.3) 6(S0

) R0 = -i-- [A
0 

• {l — 
~~ P[xI A

0
R
0

]} — S
0 

• {l — ~ PEX (A QRQ3}J
0 x 0  x 0

For the purpose of computational comparison , we considered several

numer ical examples covering a wide range of the system parameters -

demand rates at bases, depot and base repair times, depot and base

spare stock levels and probability of a unit being repairable at a

base. When the comparison was made, the difference between the METRIC

model and the EXACT model was found to have the same pattern in all cases.

The extent of discrepancy between the two models , however, d id vary from

one example to the other depending on the numerical values of their

parameters. To describe the comparison between the two models, the following

example was selected as representative of all situations considered .

L& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - — -~~ -

~~~
- — 
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E~an’ple Number cf iases 5

Base Arrival rate (per day) ~Ordcr-~nd - ship time (days) Repair time (days)

(j )  ( A . )  ( t . )  ( R . )

1 - 0.07098 12 6

2 0.14766 12 6

3 0.01497 12 6

4 0.04591 t 12 6

5 0.11019 12 6

Repair time ~t the nepot (R 0 ) 5~ days

Th e stationary distribution for the number of units in resupply at

the ba- es is computed for the two modeis. Tables I, II and III show

such distributions for r. 0.10, r. 0.50 and r. = 0.90, respectively .

it is assumed that r . is the same for all bases. The corresponding

arrival rate at the depot (A
0
) is stated at the beginning of each table.

The depot spare stock level (s0) for each case is chosen to be
approximately equal to A 0R0, the average number of units in resupply

at the depot. Similarly the value of s~ , the spare stock level at

base j ,  is chosen to be the least integer greater than or equal to

+ r
5
R.]. The letter x refers to the number of units in

resupply. The expected number of backorder’s (EBO) is computed in the

last row of each table. The execution time for the two models is

stated below each table. All programs were written in FORTRAN IV and run

on Cornell’s IBM 370/168 computer.

The data displayed in the tables indicated tr~ t the METRIC model

_______________________________________________________________________ 
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urlderestimate5 the stationary probability of zero unit in resupply (S
1

units on band at L?as~ j ) .  Also , in th~ I XCV T 04)141 , Ui staticoary distri-

bution of the t1u~)b’r o~ units i;C r~CJu~~ ly h-os to~~ - r  -L--’)ils. FCC:-th- rncr~~,

we wish to investigate how w~l1 the METRIC model approximates the

stationary distribution when the depot spare stock level (S0
) changes.

A similar investigation will be made when ~~ the probability that a

failed unit is repairable at base j ,  changes. For this purpose, we

arbitrarily examine base 2.

Figures 6.1, 6.2 and 6.3 show the prohabiflty distribution of the

number of units in resupply at base 2 when S0 
15, 19 and 23,

respectively. The value of r
2 

is fixed at 0.10. It is clear from

these figures that the discrepancy between the METRIC model and the EXACT

model decreases as the value of S
0 

increases. This can be explained

as follows. As S increases, in Eq. (~~.2s), the contribution of thed(t ,t)-S\

term 
d0
(~ 2J3

)CX S
0÷d (( 

~ 

d 

~ 0

) 

. rA
0,A]d[l~~0,A] 0 2 3

O)

P[d
0
(t2,t ,)jA 0R0J, d > 0 decreases and Pr{B

1
(*) = b} is dominated

by the Poissor~ term P[s.+bIA~R. + X ’?t.] • U P[d
0
(t
2
,t
3
)jX

0
R
0
] ( .

~ ) ~ ~ t,d0
(t2, t3)0 J

For the METRIC model , as S0 increases the term ~ (S 0
) R~ repres-~nting

the average delay per depot demand decreases and consequently T~ (S
0
)~ the

av.’rage responce ~~~~ decrC~ ”- -’!- . In Eq. (e , 2~~, Pr {B~ ( *) )- } ~~

dominated by the Poisson term P[s
1
+b IA~R1 

+ A~t1
]. Thus we conclude

that for the values of S
0 

sufficiently large (> X
0
R~), the Poisson

approximation is close to tho results given by EXACT r~ode1. As S
0 ~

T. ( s ) AB? + A~t .. Thus, the two models are the same and
3 0 j j  j j

Pr {B .(*) b } = P[s.÷b IA~
R . +

3 ~ j
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We now investigate how well the METRIC model approximates the EXACT

model when r., changes. Figures 6.2, 6.4 and 6.5 show the probability

distribution of the number of units in resupply at base 2 for the case

when r
2 

= 0.10, r2 
0. 50 and r

2 
0.90 , respectively. < l < e  depot 31T2 re S tC C F

lc’J- -L ~~r t11”Se C C ~ 3 <4 S 13 fixed at 10 ,11 and 2, respectively . Tl1-4 steeR level

is approximately equal to the corresponding value of )1
0
R
0 

in each case.

It is clear from Figures 6.2, 6.4 and 6.5 that the discrepancy between

the METRIC and the EXACT model decreases as r
2 

increases. This can

be explained in a way similar to the previous case of cooparing

the two models with respect to S
0
. When r

1 
increases increases and

decreases. ConsequC’ntly, the proportion of supply received at the

base from its repair process increases. Thus, in both Eqs. (4.25) and (6.2),

Pr{B
1
(~ ) = b} is do;ainated by the Poisson term P[s~+b~X~R~]. As

~
. 1, both Eqs. (4.25) and (6.2) reduce to P[s~+btA ~R1

] and the two

models are the same.

As mentioned by Sherbrooke [17], the expected number of backorders

at the bases (EBO) is an important measure of system performance. We

must mak<~ an ~.ssessment of how w~l1 the METRIC model approximat-~s the

computation of EBO. From tables 1,11 and III it is clear that the METRIC

model always gives the values of EBO which are less than or equal to the

corresponding values given by the EXACT model. Furthermore, it is clear

from Figures (6.1-6.5) that the METRIC curve is always below the EXACT

curve near the tail of the distribution. In other words , the METRIC

model always un-i~restioates the probability for the larger numbers of

units in res)11-21y at a base. Consequently , as the base spare stock level is

increased the difference between the values of DO given by the two mo~ 213

~r,crc-~ s~’s. Table IV dis~isy-; such a discrepancy for base 2 of the example.
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T I l e  IV

To .- I x~~t - ( C t , - -i Numb er of ~j~~c L (Cr .~~e~ -3 u Ba~-~- 2

r
2 

= 0.50 , S0 
11

‘2 
METRrC L’.A CT

1 
1.808638 i.h flb~-38

1 0.972516

2 0.432787 0.405504

3 0.161094 0.213471

4 0 . 0 5 0 1 9 0  0 .3860d 2  C

5 0.013959 0.033091

6 0.003354 0.011839

7 0.000717 0.003984

8 0.000138 0.001262

9 0.000024 0.000377
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Finally ,  the EXACT model requires more execution time than the

M TRIC model. This is so because in the EXACT model, the expression

for Pr{B~(*) b} is relatively complex . It involves the computations

of the combinatorial terms in addition to the Poisson terms, and a

large number of calculations are required to evaluate Pr{B~(C) bi.

We conclude this chapter by emphasizing that although the METRIC

model is computationally simple, its use in certain situations may

not be appropriate. When the depot spare stock level S0 
is low (less

than A 0R 0 , the mean demand d-t’ririg the repair t ime) and the proportion

of repairs done at t}-e depot is high (r. is low), there is a

pronounced difference between tha two models. Thus in this situation

the METRIC results msy be misleading. For higher values of S0 
and

r., however, the approximate results given by the METRIC model are
-J

fairly close to the results given by the EXACT model . Furthermore,

when an optisization algorithm is arplied to determine the optimal

stock levels of several items at different locations in the system

under a budget constraint, the solution may be wrong if the METRIC

results are used. This may happen because of the above mentioned

varying discrepancy between the two models with respect to S1~ and

r.. Suppose the problem is to determine the optimal stock levels for

two items, for one of which the METRIC and the EXACT results are close - 

-

while for the other there is a considerable difference between the

results given by the two models. In other words, for the second item

the METRIC curve is steeper than the EXACT curve towards the tail

of the distribution of the number of units in resupply. Thus the

reduction in the expecte~ number of backorders per additional unit

~
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of the second item is larger ior the METRIC model . Consequently,

• it will erroneously result in a larger appropriation of spare stocks

fc~r the second item if the METRIC results are used . A similar conclusion

can he drawn forthe case when the problem is to i1oc:~te o~tjrL~117

the spare stocks of a single item at different bases in the system.

Mere, it easily follows from the above arguments that for the bases

at which the repair capability is poor (r. is low), the I’~ETRI C

model will suggest larger spare stock levels than those given by the

EXACT model.
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CHAPTER VII

CONCLUDIN G COMMENT S

In this study, we have presented an analysis for continuous

review models of single location and two-echelon inventory systems

for recoverable items with random demands.

For the single location system , the (s,S) and (s,~~-) policies

have been examined. Under each policy, stationary aistributions

for inventory position , on-hand inventory and backorders have been

obtained for both independent and denendent demand processes. For

the diagnosis of failed units two appealing models - batch and unit -

were examined . Our analysis is more general than any previous work

since only independent demand processes and batch inspection were

considered before. We have also extended our results to the case

where demand processes are compound Poisson processes. In addition ,

we have demonstrated how the special cases of complete recoverability and

complete non-recoverability are obtained from our results with a

simple change of parameters.

i1~’31 -:1 tic-ne3 in ~~ction 3.1, th e anal ysis of a ~l1~2~1e location

system , in addition to offering the solution to the system itself, is

of great importance for the analysis of multi-echelon systems. The

results that we obtained do not offer a complete solution to the complex

problems facing inventory managers in such a system . Using the approach

and results obtained here , further analysis may be pursued to evaluate

cost/benefit trade-offs among the various system parameters and to examine

alternative repair disciplines.

142
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For the two-echelon system, we have n ainly concentrated on obtaining

an exact expression for stationary distribution of the number of

backorders at each base. The approach suggested by Kruse and Kaplan [9]

has been extended to the case of an arbitrary order size distribution

at the bases. Here , too , the batch and unit inspection models have been

considered. The results have been indicated for the -two extreme cases of

complete recoverability and complete non-recoverability of the item. For

the case of complete recoverability, we have de~~nstrated how the METRIC

model may produce a misleading soThtion to the problem of allocating

items in the system.

Our results for the two-echelon system depend heavily on the assumption

that failures are generated by Poisson processes, repair and lead times are

constant, and partial backlogging is allowed. Also, we have considered

and (s-1,s) policy at the bases and (s,S) policy at the depot. We

have assumed that a fi ’st-come, first-served policy is used at all

locations to fill the backlogged demands. We make no claim that these

assumptions are always true . Nevertheless , our approach should be

useful as a basis for further analysis.

The methodology developed in chapter IV and V may be used to obtain

the stationary distribution of the number of backorders when an (r ,Q)

or an (s ,S) ~ Oi1C~ is used at the bases. It will be interesting to

examine the situation where the inter-arrival time at each base has an

Erlang distribution. The Erlang distribution, .s mentioned by Gross and

Harris ([6], p. 162-163), provides much more modeling flexibiltty than

does the exponential. It can be used to provide good approximation for

• many different inter-arrival distributions.

~ 
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An attempt may be made to analyze the situat ion where the depot

does not strictly follow the first-come , first-served policy to fill

the base demands . On the other hand, a priority scheme is followed

at the depot such that the bases with low mean demand would have

priority over the bases with high mean demand. Certainly , this will not

affect the total expected number of system backorders , but will result

i:~ low~p -er~ ~t5jck i~v~ ls ~ t th-  iuU J - :~~wJ L~ s~ s.

Finally, our approach can be directly used to analyze arborescence

systems with more than two echelons where all the bases and intermediate

echelons use an (s-l,s) policy and the depot uses an (s,S) policy .

In add 5t ion to bas es and the depot , repair can be performed at intermediate

echelons.

— 
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APPENDIX A

ARRIVAL SEQUENCES

In this appendix , we derive some results concernin g the sequence

of arrivals generated by p (>2) independent Poisson processes. ~Je

first consider the case when p 2. Let {N1
(t), t > 0) and

{N
2
(t), t > 0) be the two independent Poisson processes with parcmeters

A
1 

and A 2 , respectively. Also , let

N(t) total number of arrivals during the interval (O,t];

T~ = the t ime of the kth ~~-~ iva1 f rom process i , i = 1,2 and

k > 1 (T~ 0 , i 1,2 ) ,

an~~
W = the time o~ the ~~~ arrival in the total a’rival processx

{N( t ) ,  t > 0).

We have the following theorem .

Theorem 1. Let n
1 

and n
2 

be nor-n~~-ative integers such that

+ > 0. Also , suppose we are given non-negative integers

n~~ and n~ such that

H (a)  n~~ < r 1~~ + n ~~ < n 1 + n 2

(b )  nj  + n~ > 0.

Then

(A.l) Pr{1-~2
(T~ ,) n~jN 1(t) n

1
; i~2

( t )  n~~ )

(n ~
j (n 2~

— 

T~l ~nl/ ~~2’
fl~~+n~~ (f l 1

+f l ~~
\

~
\

fl~~+fl~
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tli
Proof : We know that if,, the time of n~ arrival from pr ocess 1,

his a gam ma distribution with parameters n~ and A
1 

(see Ross

[14]. p. 1c~-17); that- is,, the probability density function of T11 is

given by n’ n ’-l
) 1(u) ~

(A. 2) f~1 ~ , u )  e 1 
0 < u < t~(n~_ l) !  — —

- :  We can write

(A.3) Pr{N
2

(T11 ) = n~~ N1
(t) = n

1
; N 2 ( t )  n~ )

- 

Pr~N2(T~11) = n~~~ N .(t )  n~~; N 2 (t ) = n2
}

- Fr~N1(t) n
1; N~i~) fl

2k

The numerator ot Eq. (A.3) can be evaluated by conditioning on T~~ .
I

Thus we have ,

(A.4) Pr{N
2

(T’1 ) n~~; N1( t )  n
1
; N

2
( t )  n

2
}

= 5~ Pr(N~(u) n~~ N~(t) 
~~ ~2

(t) n2IT~, u} . f ( T 1,, u )

f ~ Pr {N~ (u )  n~ ; N
1
(t-u ) = n1-nj~ N 2 (t-u ) = n 2 -n~ }~ f ( 111 , u)

— X
2

u n~ —X 2 ( t — u )  “1 ~~~~~~ ~2~~ 2
e (A 2u )  e [A 1( t — u) ] 1 e [X 2 ( t — u ) ]

- 10 n~ ! . (n
1

m~~ ! (n
2
-n~ ) !

I.

-X
1

u nj~ ni-i
e (A

1
) ( u )

- du(n ~
_ 1) !

~~ lII 
- - --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_

~~~~~~~
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—A 1t ~~ 

—A 2 t
e A e A n ’+n ’-l n +n -n ’-n ’

= (n~ _l)! f l ~~ ! (n
1 nj)! (n 2 -n~ )! ~~ 

u ~ 2 (t - u )  1 1 2 du

- ( A  +A )t n r.

— 

e I •
~ ( A )  1 ( A 2 ) 2 n ] +n 2 (n ~ ÷n~ _ 1) ! (n 1+n 2 -n~ —n~, )!

- (n ~ _ l ) !  n!~~ (n 1-n)~~ ! (n
2

—n~~)! 
.

We know for the deflonimator of Eq. (/ ~.3) that

-A , t ri — A t  n
e ~~( A t ) 1 e 2 ( X 2t ) 2

(A . 5 )  Pr {M 1(t )  = m1 
N~ (t )  = n 2 ) = n1!

1

Substituting Eq. (A.4) and (A.5) into (A.3) and upon simplifying we

obtain Eq. (A.l).

Q.E.D.

~ie now have the following two corollaries .

Corollary 1.1 Under th~ assumptions of Th~orcm 1, let x, y be non-

negative integers such that y < x < n1 + n
2 

and x > 0. Then

- 
- (A .6 )  Pr {N

1
(W
~
) = y~N1(t) n

1~. N2(t) n2}

(
~~l) (~:~)

/ fll
+n
2 \

(
\ x I

Proof: We note that the event N
1

(W
~
) y is equivalent to the event

N2
(W
~
) = x-y. The waiting time Wx will coincide either with

1 2T or T . Therefore ,y x-y

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~
- L

~~~~~~~~~~~~~~ 
-

~~~
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Pr{N
i

( W
~
) yjN1

(t) = n1; N 2
(t )  rm~ )

Pr {N~ (T~) = x—y~N1
(t) = n1; N2(t )  =

+ Pr{N
1

(T2~~ ) = x~N1
(t) n

1
; N2(t) 11

2
)

in \

(lV 2

= + ~L)~ ) .‘~ YJ~ X ’J~ ( from Theorem 1)
fl

2)

= 

(
~

)(2:)~(111 

: 

n
2) 

Q . E . D.

- . The above corollary has been also proved by Simon [20] under

more general conditions.

Corollary 1.2. Let I(s) denote the index of the process from which

the next arrival occurs after time s (0 ~ s < t ) .  Then under the

assumptions of Theorem 1,

(A .7) Pr (I (W
~
) ijN.(W ) n , N1

(t )  = n
1
; N2(t) = n~ )

11.-n:
I 1,2.

Proof: We prove for the case wh en I 1. Given that N1
(t )

N
2
(t )  = and N

1
(W
~

) n , the event I(W
~
) = 1 means that the

next arrival after n~ arrivals from process 1 and (x-n~) arrivals

-

-~~~~~~~- s—-- ~~~
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1~ J

from process 2 is from process 1. In other words , by the time

(n~jl)
th arrival from process 1 occurs , there are ( x - n )  arrivals

from process 2. Thus we have ,

Pr {I (W ) = = n~ ; N
1
(t) = n

1
; N

2
(t) = n 2

}

Pr{I(
~~
) = 1; N~ ( w )  = n~jN1

(t) n1; N2(t) n2
}

Pr(N
1
(W ) = n~jN1

(t) = n1; N 2( t )  = n
2
}

The numerator of the above expression is equivalent to

(A.8) Pr(N (T1 ) x—n ’~~N (t )  n ; N (t) n I
2 
(‘+1) 1 1 1 2 2

(11
iV  ~2

n~ +l \~n~+iA~ x-ri,
= —--— . ~— (from Theorem 1)

x+1 
~~~~ 

m t

)
x+l /

~2

- ~l~~i 
\n 2 )\

x_ n~~.I
- 

a
1
4n

2 ’~ T~ 
~~ n —

~ 1

From Corollary 1.2, we have

(A.9) Pr(N
1
(
~

-i
~~
) = nj N 1

(t )  = 

~~~ 
N2

(t
2
) =

~~~ X-n!L
= 

(n 1 + 1 12

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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From Eqs . (A.8 )  and (A . 9 )  we obtain Eq. (4 .7)

Q . E . D .

We now extend the above results to the case when there are

more than two independent sources ganerating the arrivals. Let

{N .(t), t>o}, i=l ,2,...,p be the independent Poisson processes

with poramet~r A1, resp~ctivL1y . ~~~~ us~ the folJ owing notation

sm iler to ta- Se u~~~ -l in the previous case.

N(t) = N.(t), -t > o .

T~ = the time of the kth arrival from process i, i 1 ,2,...,p

and k~~1, (T~~~O, i 1 ,2,...,p).

the timeof -the x~~’ arrival in the total arri1al process

{N ( t) , t>o).

Similar to theorem 1, we have

Theorem 2. Let {n.}, {n!} 1=1,2,.. .,p be non-negative integers

such that

(a)~~~~~n1~~~
0, 

iLn~~
> o

and

(b) n~ < n~ < n .

Then

I
— -~~_ L~~~~ ~~~~~~~

. 
~~~~~~~~~~~~~~~~ - - • - liIit ~~~~ —-- -~~~~---------

-
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(A .iO) Pr{N.(T’) = n !, j ~ l,2 , ..., p ; j ~i1N~
(t) = 

~k’ 
k= 1 ,2,...,pI

P t  ~~~~~

n .
- 1 ..._2~ 

1~
‘p

~ n~ / )~ 
n .

~ 
( 

j=1 ~

\ .~ 
ni,

j i

Proof: Similar to the proof of thaorem 1.2.

Par-allel to Coroi1ari~s 3.1 and 1.2 
we have the following.

Corollary 2 .1. Under the assumptions of Theorem 2,

Pr{N
1
(W ) n ’., i = l , 2 , . . . , p N~ (t )  = 1 1 . ,  i=1 ,2,...,p}

(n
1

+n
2 +..  .n ’ ) ~

/ n .
~~~~ 1 1

i 1  \ 1 /

- n~
/ ~~~~~~~ 

1

n ,.
1

Proof: Similar to the proof of Corollary 1.1.

Corollary 2.2. Let I(s) denote the index of the process from which

the next arrival occurs after time s ( 0  < s < t ) ,  then

- Pr{I(W
~
) = iIN

~
(W
~
) ~~~~~~, ~

I
k~~~ 

= n~, k=l ,2,...,p}

n. -
1 1

i 1 ,2,...,p.

i=1 ~

~~~~~~~ -- - - — -
~~~~

---
~~~~~~~ - i ~ :~~ 
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N~-~~f: ~~uilir t~ the rrouf of Corollary 1.2.
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APFF;~DiX B

SIMPLIFICATION OF COMBINATORIAL E~ PiU 3SIONS

1. Derivation of Eq. (4.19)

We f irst simplify Eq. (4 .16) .  To guarantee that all values within

the combinatorial expressions are non-negative , the range of d~ (t2,t3)

satisfies: 0 < d~ (t~~,t3 ) < z0(t1
) - d~ (t 1)t2). Expanding the combina-

torial expressions and simplif ying the summation over d?(t2,t3~, 
we

obtain

z
0
(t )_ d C

(t ,t )  -1 0 1 2 
((z0

(t
1
) —

d?(t2~t3
) = 0 \ \  

d?(t2,t3
)

[ X ?/ A 0
]~~~~

2 3 [ l - X ~ IA 0 ] ° 2 3  
- d?(t2,t3

)~

= [1 x~ fA 0] 0 2
~~~ 

- z 0(t 1) + d ~ (t 1,t 2
)

~z0
(t
1
) - d~ (t 1,t 2

) r -

• j (z0
(t
1
) - d0

(t13t2
) 

\

— 

d~(t2,t3
) = 0 d?(t 2 , t 3 ) )

- d~(t1,
t2
) - d?(t2 , t3)

)

= [l-A~ /A 0] ° 2 3  
- z

0
(t
1

) + d~ (t
1
,t2
)

Similarly , to simplify Eq. (4.17), we find that the ranges of

1S3

~~~~~~ -- _± __ _
-,

~~_ _ ~~~~~~~~~~~~~~~~~ ~~~~~ - 
~~- -t ~ ’~~~~~~~~~
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d~(t2,t3) and d0(t2,t3
) yielding non-negative values within the

• combinatorial expressions are

(1) d < d ? ( t 2, t 3 ) < z 0(t~~) - d~(t1,
t2) + d ,

and (ii) d
0
(t2,t3) > z0(t~~) - d~(t1,t2

) + d .

Expanding the combinatorial expressions and simplif ying we obtain

z O (t :
)_ d

~
(t l~

t 2 )+d
~~
(

~~( t t )  - z 0(t 1
) ÷

d .(t2 , t3)=d

(z0
(t
1

) — d~ (t1,t2)

d?(t21~ 3
) )

• . 
~A
0
’A~~~~~~

2’3 
[1 - A l /A o]

~~~~~~~~~~~~~~~~~~~~~~ ]

(d
o
(t 2~t 3 ) - 

:o
(t l

) - dg(t 1,t 2
)~~

- z
0
(t

1
) - d + d~ (t1,t2)

* 
fzo(t l

) - d ~ (t 1,t 2
) f (zQ~~l

) - d~ (t
l~

t
2
)
’
\

\

~~ 

d?(t
2,
t
3
) = 0 d?(-t

2
.t
3
) 

,,
1

- dg(t 1~t 2 ) - d~ (t 2, t~ )

]

~

Lk ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~~~~~~~ ~~~~~~~~~~~~ 
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= 
(do

(t2~t3
) - n ,~(t~

) - d~ (t1,t2 ) \

\~ 
d j

[\~ /A 0]
d[l_A ~ /A 0]

0 2 3  ) z
0
(C~ )-d÷d~ (t

1 
,t2
)

Substituting these simiplifications and taking the li’c!t as

t -
~~ ~, we obtain Eq. (4.19).

2. Derivation of Eq . u . 24)

From Eqs. ( 4 . 2 1 )  and (4.23) we obtain the ranges of d?(t
1,
t2

) and

such that -the v~lu.~ ;:ithi:: the combinatorial 
cxprcssionS are

nonnegative.

(I) d < d?(t1,t2
) < z

0
(t
1

) + d~ (t1,t2) + d

and ( i i)  d~ (t
1~

t
2

) > z
0

(t
1
) + d.

Upon o-paii~Iing -the combinatorial c-xpressions and simplif ying in

the manner si~.:ilar to that 
in th~ pr~vious case 

we obtain Eq. (4.24).

— - - - ---~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to con st r -  i m t :  of certain pe r - I  eisn ;ioc e ;cc-isures . To f- cr sctrlot ’- cocci -~i

; -r o l - l cc :  we must f ind the  s ta t ionary d ist r i b u t i o n s  for i n v e n t o r y  pos i t ion ,
u n i — i m o n i d  in v e nt o r y ,  backorders and in— n p-u i’ inventory . Our ci , m ir m c L j . - c t  i v ’ -
is to rind exact expressions for these dis t r ibutions. .~-t

Tite  i nves t igation bep ins  w i t h  an ex tens ive  analys\,~ of a s i r m ~~le lo-c-~ L~~o ;c
syStenc . Tim e pro curem ent policy is a cont inuous review ~~s ,S) pol icy .  T im e
in t- r-- -ir -rival t imes  1-etween successive requis i t ions  are independent arid iden-
ticill y distributed random variables . The system experiences two types of
demands - t-cr~ v-sr -:ible and non-recoverable.  The two demand processes may be
l I l d epenL ien t  or dependent . For the  inspect ion  of failed uni ts , two models -

oatcrm ar ms u n i t  — ire consimool . In t he  ba tch  model , the ent i re  batch is
eithex’ rs coverablt or n on-recoverable , whereas, in the unit model each uni t in
-i batch i—; inrsn ~~;ted independently, the soc ial cases of compound Poisson
semands , (c , n~~) pr eur emn er i t ~e 1icy,  complete recoverability and complete
non-recoverabili t-,’ - - ì t c  also 2 o n s ! h ~ -r ed .

For t h e t W O — e L N~~- i O ~ 1 ~t ec .; We fir st c-ansi-Icr the case where demands
at tri o I-aces cLcUc N - n - ‘  - ; i n c t t - -  u n i t  at a t i m e .  The approach is then applied
t-c a ;- sri ~i si r u - m t  I -i W lm-ii -e 1cm/limos at the  bases are random . Both tr io
L u  tc :c  l i i - ;  u n i t  i l m o n s -- :t  ion model ;;  u n - c  considered.  For the case when there are
n-s condsr;n-~tion c of the item , results are compared with the METRIC model . The
d~ TRIC i’ioiel i -roy ido;; a s imple but ~approx imate expression for the probab i l i t y
d i s t r i l - u s t ion of ;v~- t - n i  b ickorders.  The comparison indicates t h a t  there is a
consNde r ib le J i s c r - c n c r i c y  between the METRIC resul ts  and our results when the
let -o t spare st-m N is low or i~hen a major  proportion of the repair is done
at  the d e p o t .
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