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In this dissertation, we present an analysis of contlnucus review
models of a two-echelon inventory system for recoverable items. The
system consists of a depot and a set of bases. Primary demands occur
at the bases for one Or several units at a time. It is assumed
that demands arrive in a Poisson manner. Upnn arrival of a demand for
certain units, a like number of failed units are turned in at the
base. An inspection of the failed units is carried out to decide
whether the units will be repaired at the base or at the depot or will
be remcved from the system in case repair is not economical. The
bases use an (s-1, s) policy for procurement of serviceable units
from the depot, and the depot uses an (s,S) policy to procure from
the external supplier. Demands in an out-of-stock situation are
backlogged. It is assumed that all the locations have infinite repair
capacities and repair and procurement lead times are constant.

A common problem in inventory management is to specify the policy
parameters that will minimize expected cost per unit time for operating
the system subject to constraints of certain performance measures.

To formulate such a problem we must find the stationary distributions

for inventory position, on-hand inventory, backorders and in-repair
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inventery. Our main objective is to find exact expressions for these

distributions.

The investigation begins with an extensive analysis of a single
location system. The procurement policy is a continuous review (s,S)
policy. The inter-arrival times between successive requisitions are
independent and identically distributed random variables. The system
experiences two types of demands - recoverable and non-recoverable.

The two demand processes may be independent or dependent. For the
inspection of failed units, two models - batch and unit - are considered.
In the batch model, the entire batch is either recoverable or non-
recoverable, whereas, in the unit model each unit in a batch is
inspected independently. The special cases of compound Poisson demands,
(s, nQ) procurement policy, complete recoverability and cmmplete non-
reccverability are also considered.

For the two-echelon system we first consider the case where demands
at the bases occur for a single unit at a time. The approach is then
applied to a general situation where demands at the bases are
random. Both the batch and unit inspection models are considered.

For the case when there are no condemnations of the item, results are
compared with the METRIC model. he METRIC model provides a simple
but approximate expression for the probability distribution of system
backorders. The comparison indicates that there is a considerable
discrepancy between the NETRIC results and our results when the depot

spare stock is low or when a major proportion of the repair is done

kY

at the depot.
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CHAPTER I

INTRODUCTION

This study is devoted to the analysis of recoverable (repairable)
item inventory systems. Upon failure, a recoverable iten is returnad
to th2 source of supply (inventory point) where a decis’en is made
eitter to remove (condema) the item from the inventery cystem or to

pcrform repair on it in order to restore it to a serviccable cordition ,

v
r

The dacision to repair or condemn the failed item is based on the
degree and the nature of failure, the repair facilitles available, and
the economics involved. Once an item is designated as recoverable, it
is prcsumably more economical to repair the item than it is to
dispose of itandreplace it with a new item.

lost inventory systems concist of consumable (non-recoverable)
items that are predominantly low in cost. In many large-scale
industrial activities, military organizations, for example, a large
proportion of the inventory investment is in recoverable items,
althoush precentage~wise most items are consumable. Hence management

cf recoverable item inventory systems from both the design and control

viewpoints is important.

1.l PRecoverable Item Inventory Systems

A typical recoverable item inventory system consists of customers,
inspection and repair facilities, supply (inventory) points, and an
external supplier (manufacturer).

Customers generate the primary demands on the system. While

placing requisitions for the replacement of one or scveral units,

&




nstomers turn in a like nurkar of failed units. In view of the
&
deseription presented earlier, tlie system experiences two types of demand:s:
recoverable and non-recoverable. Depending on the processes gencrating
the failures, the two demand processes can be either (1) independent

("

o (2) dependent., Demand processes are independent when tl

here a2e tJ o
independent processes generating the two types of failures. Although
dapendenuce of the demand processes may arise in different vays, we

shall limit the consideration to the case where a single failure process
razults in both types of failures. Thus for independent demand processes,
there are two types of customers from two independent sourcss wherecs

for dependent demand processes custoncrs arrive from a single source .

We assume that customers arrive from an infinite population.

Also, the inter-arrival times of the customers and the number of units
demanded upon an arrival are assumed to be randon variables with finite
means (known).

Upon arrival, a batch of failed units is inspected to classify
the units as repairable or non-repairable. It is assumed that inspection
takes a nazligible amount of time and the probability of failed
units being repairable is known and is the same for all arrivals.

We will not consider the decisicn rules for classifying the items.

After inspection, the repairable units are sent to repair facilities
whore repeirs are performzd on a first-come, first-cerved basis. Ve
slall consider cnly continuous repair process; that is, no batching
iz allowrd at the repair facilities. It is assumed that repaired units
bchave ezactly like new ones in tneir performance characteristics.

Upon comnletion of repairs, the unit immediately joins the stock of

cerviceable units at the supply point.




a2

Supply points stock the ready-for-issve units to resupply the
customers. They receive their supplies from two souices: the
repair facilities and the external supplier. It is assumed that supply
points can stock an unlimited number of units.

An external supplier can supply an unlimited number of units to
the system within a known duration of time. This duraticn, known as

procurcment lead time, is assumed to be the same for all orders

He

ndependent of the size.

Thus the main functions of a recoverable item inventopy system,
in general, are to fill the customer demands, to diagnose (inspect)
the failed units, to repair the failed but recoverable units, and to
procure units from an external supplier. We have already described the
inspection and repair functions. We shall consider the foliowing
pelicies for supply and procurement,

The Supply Policy:

Demands are satisfied from the ready-for-issue stock (also
referred to as on-hand inventory) at a supply point. Upon arrival of
a regquisiticn, the customer is immediately shipped the quantity
requested if there is sufficient on-hand inventory. If there are
not enough units on hand, then all the units in stock are dispatched
while the balance is backlogged. In either case, the batch of failed
units is sent for inspection. The backlogged demands are satisfied on
a first-come, first-served basis when the next supply arrives from an
external supplier or from repair facilities. The assumption of
backlosging may not be apprcpriate in some cases, but is representative

of situations such as military organizations where a captive market

situation exists.




The Procurement Policy:

In order to ake up for system losses due to condemnations,
new units are procured from the external supplier. We shall consider
a continuous review reorder-point (s), pveorder-level (S) pro-
curement policy. The policy is based on the inventory position
which is defined as the sum of the units on hand, on order and in
repair minus backorders. When the inventory position drops below the
level s, a procurement order is placed so as to bring the inventory
position to the level S. Thus the procurement decisions are cognizant
not only of those serviceable units on hand or on order, but also
of those in repair or awaiting repair.

The main reason for considering the continuous review (s,S)
policy is to deal with situations in which the presence of a computer-
ized control system makes it possible to update the inventory levels
after each transaction. Also, this policy is known [7] to be superior
to the popular continuous review reorder-point (r), fixed order
quantity (Q) procurement polizy in terms of total reduced costs of
procurement and carrying inventory, especially when the order size is
random.

In addition, we shall consider a continuous review (s,nQ) h
policy because of its mathematical simplicity [19]. In this policy,
n? units are ordered each time the inventory position drops below the

level s, where n 1is the largest integer such that the subsequent

inventory position is between s + 1 and s + Q.
To provide a better understanding of two-echelon systems, we shall

first study a single location system. An outline of the two systems

is presented in the following subsections.




b Single Location System

Repair

procurement repaired = .
: , Station
; from external ] units ‘? i f
} supplier ! i
, i i recoverable ;
v units !
|
failed ’"’“—L—*~—j
customers a Ly - nicn-recoverable
——————3 Supplv Point —pPp———4Inspection| e
o i units : X |
bringing 4 ! T units (condemned)
failed |
units ) X
customers | supplied
with new units |
i
Figure 1.1: Single Location System. |
Figure 1.1 shows the schematic diagram of a single location i

system. System demands are generated at one single point;
procurements at the supply point are made directly from the external

supplier.

1.1.2 Two-Echelon System.

We shall investigate a two - echelon system as depicted in Figure :
1.2. System demands are generated at several locations called bases;
which in turn receive their supplies from a central location called

a depot. The depot and the bases are also called the upper and lower

echelon of the system, respectively. Each location in addition to !

being an item stocking point, has facilities to perform repairs. The
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depot stock is used only to resupply the bases, and bases are
resupplied only by the depot; that is, lateral resupply among the
bases is not allowed. Thus procurement of units from the external supplier
is done through the depot only. From the viewpoint of network theory,
the system looks like a parallel activity arborescence structure.
Upon arrival of requisitions at a base, the failed units are
sent to the inspection facility whose function is two fold: first,
the units must be classified as either recoverable or non-recoverable,
and then if repair is warranted where it will take place at the
base or at the depot. The latter decision depends only on the severity

of the damage caused to the units and the base repair capability.

1.2. The Problem

The management problem in both the single and two-echelon systems
is to establish the operating rules that will minimize expected cost
per unit time for operating the system. The solution to the problem
is usually sought in the environment of a limited budget and a
set of goals to reach certain levels of some measures of system
performance.

The major cost components are: cost of acquisition per unit of
the item, a fixed procurement setup cost independent of the quantity
ordered, a fixed backorder cost each time a stockout occurs, a time-
weighted cost for each backorder, a holding cost for the units held in
stock, and a charge for the units held at the repair facilities. Given
the repair policy and the number of repair facilities, specifying the
operating rules includes determining procurement policy parameters

s and S for an (s,S) policy, and s and Q for an (s,nQ) policy.
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Since all recoverable failures must be repaired and all non-
recoverable failures must be replaced at costs independent of the
procurement policy parameters, we can ignore both repair costs and
acquisition costs (other than fixed procurement or set up costs) as
far as determination of these parameters is concerned.

Several measures of effectiveness have been used for inventory
systems. Following Hadley and Whitin [7], some of thesc are: the
probability of no stock on hand, the expected number of backorders and
expected on-hand inventory at any time. Feeny and Sherbrooke [4]
cousidered fill rate, service rate, ready rate and operational rate as

measures of effectiveness for a base stockage system with no condem-

b

natlons. For a two-zchelon system with no condem ation, Sherbrooke

[17] found the expected backorders to be the most suitable measure.
The Approach:

In order to solve th=s problems as described above, several
apvroaches have been supggested [3], viz.expected cost analysis,
stationary process analysis, dynamic programming and dynamic process
analysis. We shall use an approach based on stationary process analysis.
This approach is more appealing to us since it is applicable to general
situations and it is also computationally less complex. The approach
uses techniques based upon Markov processes and elements of renewal
and queueing theory. The principal problem is to find the stationary

probability distributions for several stochastic processes. These

L £
al3tribution

]

Q

, if they exist, are functions of the procurement policy
used and of the demand distribution, but not of any costs. The cost
structure tc represent the objective function - expected cost per time

unit - can be constructed using these stationary distributions. Also,




the various measures of system effectiveness described earlier can be
obtained from these distributions.

In order to obtain ezpressions for the objective function and
system performance criteria, we must find the ctationary distributions
of:

1. Inventory position

2. On-hand inventory

3. Number of backorders

4. In-repair inventory.

1.3 Scope of the Stulv

The objective of this study is to obtain an exact expression for
the stationary distributions of the stochastic processes mentioned

in Cection 1.2 for the single location and two-echelon inventory systems

described in Sections 1.1.1 and 1.1.2 , respectively.
With reference to the dependent demand processes mentioned in
Section 1.1, we shall consider the following two inspection policies.

Egﬁch Model:

Upon arrival, the entire batch is either recoverable or non-

recoverable. Inspections are considered to be repeated independent Bernoulli
trials with probability rB(say) of a batch being recoverable and
probability (1 - rB) of it being non-recoverable.

R From a practical viewpoint, this model represents situations where
the units of a batch fail simultaneously for the same reason and
the extent of damage is the same for all units in the batch. For

instance, the maintenance system of aircraft engines considered by

Muckstadt [11] in his MOD-METRIC model can be described by the batch




model. The engine consists of several modules which contain a large
number of recoverable units. In a failed engine, all the units in a
module (batch) are considered to have sustained same extent of

damage as far as maintenance (repairs) is concerned. lere, the
inspection is carried out to decide whether the module will be repaired
at the supply point (base) or will be sent to the depot for repair.
Unit Model:

Each failed unit in a batch is inspected independently to deter-
mine whether it will be repaired or condemned. Inspections are
considered to be repeated independent Bernoulli trials with probability
rU (say) of sending a unit to the repair cycle and probability
(1 - PU) of condemning it.

From a practical viewpoint, this model can be applied to the
situations where units failed under different conditions but are
submitted in a batch for replacecment.

For the single location system, we will consider both the cases

of independent and dependent demand processes under (s,S) and

{s,nQ) procurement policies. A general structure will be provided
to obtain the stationary distributions for the cases of finite and
infinite number of repair facilities and general repair time
distributions.

The two-echelon sytem will be analyzed for the case where a
Poisson process generates the demands at the bases. We will consider
a one-for-one (s-1, s) procurement policy at the bases and (s,S)
(s,nQ) policies at the depot. The repair times at the depot and the
bases as well as procuremeut lead times between a base and the depot,

and the external supplier will be assumed to be deterministic and known.

Also, we shall assume that the repair capacity at all locations is infinite.
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For both systems we will first obtain the results for the general
case where an item will either be repaired or condemned; results will
then be derived for the special cases where (i) no condemnations

occur and (ii) all failed units are condemned.

1.4 Organization of the Study

We begin with a brief review of the work of previous authors

in Chapter II.

Chapter ITII is devoted to the study of the single location

—

system. We identify the inventory position as a semi-Markov process
‘ and obtain its staticnary distribution. Following this, the stationary

distribution of the stochastic process representing both the backorders

and on-hand inventory is obtained.

Both independent and dependent demand processes under (s,S)
and (s,nQ) policies are examined. The case of a Poisson process
generating the failures is studied in depth. At the end of the
chapter, some long-run averages ave derived from the stationary
distributions.

The two-echelon system is studied in chapters IV and V. In
Chapter 1V, the case of unit demand at the bases is examined. The
case of an arbitrary order size distribution at the bases
is considered in Chapter V. 1In both the chapters, the special cases
of no condemnation and complete non-recoverability are considered.

In Chapter VI, we assess the degree to which Sherbrooke's

results [17) can serve as approximations to our exact results. Finally,

Chapter VII contains concluding comments. In this chapter, we also

indicate areas for future research.




CHAPTER II

REVIEW OF SOME PREVIOUS WORK

Most of the vast literature on inventory theory is addressed to
consumable items and it is not directly applicable to inventory systems
of recoverable items. We shall present a brief review of the work of
previous authors for cingle location and multi-echelon systems for
recoverable items. We will set aside the numerous simulation mcdels
that have been developed and applied to specific situations. Also, we
will concentrate on work dealing with stochastic models for these

systems.

2.1 Single Location System

z Considerable attention has been devoted to the analysis and design
of this problem as a whole and to its subproblems. Feeney and Sherbrooke
[5] investigated stochastic recoverable item models that assume compound
Poisson demand distributions and complete recoverability of failed items.
Schrady [15] examined a deterministic model that permits condemnations.
In a subsequent survey report [16], Schrady described approximate solu-
tions to both continuous and periodic review models, and continuous as
well as batch repairs.

Allen and D'Esopo [1] allowing condemnations obtained approximate

N stationary results for cxpected number of backorders and other measures
of effectiveness. They ascsumed a Poisson demand distribution and
deterministic (positive) repair and procurement lead times. In a sub-

sequent paper, Simon and D'Escpo [21] obtained exact results for the

L2




same model with a relaxation of the assumption made in [1] that Poisson
process generate the failures. They, however, assumed that recoverable
and non-recoverable demand processes are independent. In all the above
references repair facility was treated as an infinite server queue.
Francois Lureau[10] viewed the problem as a queueing process and
chtained stationary results for the expected number of backorders. In
addition, he obtained the stationary dictribution for waiting time of
a customer before being resupplied. Assuming complete recoverability
throughout, he developed models allowing genepal Pepair time distri-
butions and finite as well as infinite number of the repair facilities.
Recently, Richards [137] examined the problem with condemnations. His
results allow for random lead time and alternate repair disciplines.
He, however, maintained the assumptionthat recoverable and non-recoverable
demand prccesses are independent.
Our analysis is more general in that it permits the recoverable
and non-recoverable demand processes to be dependent as well as inde-
pendent. In addition, for dependent demand processes we consider batch

and unit inspection policies.

2.2 Two-Echelon System

A fundamental work on the two-echelon system was the development
of METRIC (Multi-Echelon Technique for Recoverable Inventory Control)
by Sherbrooke [17] for a completely conservative system that does not
allow item condemnation. He considered the problem of allocating

several units among a depot and several bases in order to minimize the

total expected number of backorders at bases within the limitation of

e o
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a given budget. He assumed a compound Poisson demand distribution at
each base and a cne-for-one procurement policy. Depending upon the
nature of failures, repairs could be performed at the base where the
demand originated or at the depot. The resulting expressions are
approximate, and a special case of our model can be used to check the
accuracy of his results. Sherbrooke assumed an arbitrary repair time
distribution though his results depend only upon the means of these
distributions. We shall assume deterministic repair times. Sherbrooke
also presented an approximate method for including item condemnation
in his model, assuming that procurements are made on a periodic review
basis. For Sherbrooke's model of the conservative system, Muckstadt
[12] developed a computationally more efficient approach than the
previous work by Sherbrooke, for determining the optimal system stock
levels.

A variation of the METRIC model was introduced by Simon [20] to
obtain the exact expressions for the stationary distributions of on-hand
inventory and of the backorders at the bases. This model is more general
than METRIC in that it permits non-recoverability as well as recoverability
with positive condemnation rates. It is less general in that all repair
and lead times are deterministic and demand distributions at the bases
are simple Poisson. In a subsequent comment on Simon's paper, Kruse
and Kaplan [¢] pointed out that Simon's derivations were valid for the
two special cases in which non base~repairable failures are either all
depot-repairable or all non-depot repairable. For Simon's model, they
suggested a simpler method of deriving the probability expressions for

the number of backorders at the bases. We use the same approach for the

case of arbitrary demand distributions at the bases.




CHAPTER III

SINGLE LOCATION SYSTEM

3.1 Intrecduction

In this chapter we study the single location system as described
in Section 1.1.1. The analysis, in addition to offering the solution
to this system, is also applicable for the upper echelon (depot) of
the two-echelon system discussed in Section 1.1.2. The results can also
be used to find an approximate solution for an individu2l location in
lower echelons of a multi-echelon system.

The stationary distributicns of inventory positicn, on-hand
inventcry, number of backorders and in-repair inventory will be
obtained for the problem described in Section 1.2. For t > 0, let

X(t) = the inventory level at time t which consists of the

units ready for issue minus any backorders,

Q(t) = in-repair inventory at time t,

0(t) = the numbe~r of units on order at time t from the external

supplier,

Dc(t) = the number of units condemned during the interval
{0stls

Dr(t) = the number of recoverable units turned in during the
interval (0,t],

C(t) = the number of units repaired during the interval (0,t],

0Q(t) = the number of units ordered during the interval (0,t]

and

RQ(%t) = the number of units received via procurement during

the interval (0,t].




Also, for any stochastic process {P(t),t > 0}, P(tlatg) =

+
P(t2) - P(tl).

Obvioucly,

(3.1) Q(t) = 0{0) + D _(t) - C(t),
X(t) = X{(0) + C(t) + RQ(t) - Dr(t) - Dc(t),
and 0O(t) = 0(0) + 0Q(t) - RQ(t).

The inventory position Z{t) at time t 1is defined as

(3.2) Z(t) = X(t) + Q(t) + o(t).

From Egs. (3.1) and (3.2)

(3.3) Z2(t) = 2(0) + 0Q(t) - Dc(t)-

We shall first consider the continuous review (s,S) procurement
policy. When the inventory position 2Z(t) falls to the level s or
below, a procurement order is placed to bring Z(t) to the level
§ (> s). Upon completion of a repair, Q(t) decreases and X(t)
increases by the same amount; thus no change in 2Z(t). Similarly,
upon an arrival of supply from the external supplier, 0(t) decreases
and X(t) increases by the same amount and therefore Z(t) remains
unchanged. Thus Z(t) may change only at the epochs of customer arrivals.
Consequently, procurement orders may only be placed at demand epochs.

By convention, whenever an order is triggered, 2(t) is meant to

include the demand just arrived plus the order that the demand triggered

so that 2(t) = S at such epochs.
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The state space for the process {Z(t), t > 0} is the finite
set E = {i|s+l <i<S, i integers}. Z(t) Dbounces between
s + 1 and S during each ordering cycle. The ordering epochs
Rl,R2,..., are regeneration points for {z(t), t > 0} since at each
such epoch the inventory position restarts at S and the continuation
of the process thereon is a probabilistic replica of the previous

cycle (Figure 3.1).
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Figure 3.1: A sample realization of the inventory position with the
(s,5) policy and random order sizes.
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e ore (wo ponsible approaches to obtain the stationary
distribution of Z(1). One approach is based on renewal theory
and the other uses the theory of semi-Markov process. Though the
underlying aiguments pemcin the same, we shall use the second approach
in our analysis.

We rcstrict the use of the term 'limiting distribution' in the
context of the stochastic processes with discrete index parameter
such as Markov chains; whereas, the term 'stationary distribution’
will be used in the context of continuous index parameter stochastit
procezses such as  {Z{t),t > 0}.

The stochastic process {X(t),t > 0} changes its state at demand
arrival epochs (decreases), at completions of repairs (increases),
and at arrivals of procurement orders (increases). The state space of
this process is the set Z = {$,5-1,...,1,0,~1,-2,...}. The positive
values of X(t) indicate on-hand inventory while the negative values

indicate the existence of backorders B(t) at time +t; that is,

B(t) = max(0,-X(t)).

In order to obtain the stationary distribution of X(t), we assume
that the procurement lead time is a constant T.

For t = Bliet

(2.4) x.ij(t) = PriXx(t) = 4|2(0) = 1} il J®4d
Anything on order from external supplier at time t - t will have
arrived by time t and anything ordered after time t - 1 will

arrive after time t. Thus the number of units received via




procuvemert during (t-t, t] is o{t - t}. The number of units
arriving irom the repair shop during (t-1, t] is C(t-1, t).

Therefere,

X(t) = X(t - 1) + 0(t - 1) + C(t-1, t) - Dr(t-r, t) - Dc(t-t, t).

But C(t-1, t) = Q(t - 1) + Dr(t-T, t) - Q(t); thus, we get
X(t) = Z2(t - 1) - Q(t) - Dc(t-r, )6

Then Eq. (3.4) can be written as

(&s)xﬁ(ﬂ =} Pri{x(t) = j|la(t-1)=k; 2(0)=1i} - Pr{2(t-1) = k|2(0) = i}

keE
= ] Pela(v=1) - olt) - B (t-v, t) = j1z(t -9 =k; 2(0) = i}
keE %
« Pr{Z(t - 1) = k|2(0) = i}
= 2 z Pr{Q(t) + Dc(t-T, t) = k-j|0(t-1) =m; 2(t-1) = k;

ket m=0

« Pr{Q(t - 1)

m|Z(t - 1)

i
~
ti
[a]
o~
o
~
"
e
i)

1]

« Pr{Z(t - ) = k|2(0) = i},

The stationary distribution =x(3j) = lim xij(t) is obtained by taking the

T
limit (as t=») of the right hand side of Eg. (3.5). The stationary
distributions for on-hand inventory and the backorders can easily be obtained

knowing x(j). The stationary distribution of Q(t) will be derived

during the proc-ss of obtaining x(j).




In the next section, we assume the demand proczsses {Dc(t)’t > 0}
and {Dr(t),t > 0} are independent. In Section 3.3, these demand
processes are assumed to be dependent. In Section 3.4 results are
obtained for the case where the demand arrival process is Poisson.

In Section 3.5, an (s,nQ) procurement policy is studied. In Section 3.6
results for the two special cases of complete recoverability and complete

non-recoverability are outlined. In Section 3.7 some long-run averages

are derived.

3.2 Independent Dar-ud Processes

3.2.1 Thz Model

The case of independent demand processes arises when there are two
independent streams of failure processes responsible for the recoverable
and the non-recoverable demands.

The recoverable demands arrive at the supply point at the epochs

; 0 Al ) . . .
of time Fr = 0 Tr’ Tr""’ where the inter-arrival times
= n-1 A it .
1: - Tr (n = 1,2,...) are independent and positive random variables

n-1

with common distribution function Ar(t) = Pr{T; - Tr % ths

(t>0;8=1,2,...). Let E: be the number of the units (repairable)
¢ th : % s ()

turned in for replacement at n epoch. The order sizes Er’gr"" are

independent, positive and integer-valued random variables with common

probability distribution ¢ (§) = Prl€] = 3}, (3 = 1,2,...5 n=1,2,...).

These random variables are also independent of the arrival process
{T:}. It is assumed that the inter-arrival times and order sizes have

finite means : that is,




N
[

“n Jd‘r(]) e
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n
O %~ 3
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ne~-18

tﬁ_(dt) s % and 4 =
B 1=

J

Similarly, the non-recoverable demands arrive at the epochs

0 . . . n-1
Tc = 0, Ti,Tg,... and the intecr-arrival times Tn - in

¢ - = (m= 20 )

are independent and positive random variables with common distribution

function Ac(t) = Pr{Tg - Tz—l <%}, A£>0;m = 1,2,.+4), The
respective nurber of the units gi,gz,... demanded are indeperndent,

positive and integer-valued random variables with the cemmon probability

distribution ¢c(j) = PP{EZ 2R, 4% L, 2,000% BEL,2, .0.), and

these are also independent of the arrival process {TZ}. EE s

assumed that ¢c(l) > 0, and
o]

a. = £ tAc(dt) < o and d: = j

o~ 8

s R
L
The dcmand processes {Dr(t),t > 0} and {Dc(t),t > 0} are
independent since {T;}, {TE}, {63} and Kiz} are independent. We
also assume that Ar and Ac are non-arithmetic [23].

For any n = 1,2,0.., let

Ain)(t) = 0 for t < 0,
(n) s (n-1) %
A (1) = £ B (t - yIA, (dy) for t> 0,
and 6™y = 1 6 G- 0™V for 4 = Dylysses
(~ k=0 (o (]
where 4,70 =1 for t20, A% =0 for teo, 60 =1
(n)

and ¢ (j) =0 for n < j. We shall use similar notation for

Ar(-) and ¢r(').




Also, for t > 0 let

1"

Nc(t) the number of non-recoverable requisitions arriving during

the interval (0,t],

U(t) = the length of time interval between time t and the epoch
of the first non-recoverable requisition arriving after t.

vi(t) = Pr{D () = k}, k = 0,1,...,

ki(t, t41) = Pr{ﬂc(t, tet) ®* k} K= 0,0,.00a T 20,

and

wF*(T)= lim wo(t, t+1).

k kT

t-)r.o

Then

"
il X

vi(t) Fr{D_(t) = k|N (t) = n} « Pr{N_(t) = n}

n=0

(n)

g (n+l)
(k) {Ac

@(n) (t) - AC

Cc

{t)}.

1]
[ e

As shown in the reference [23], we note that vk(t) satisfies the

following integral equations,

(3.6) v(o:(t) =1-4(t), t20
and
c = c
(2.7) vk(t) = jzl g ¢C(j)vk_j(t - x)Ac(dx), =l 2 e

Since Ac is non-arithmetic, we have




u
(3.8) lim Pr(U(t) < u} = f—j {1 - A GYdx  (see p. 97, [23]).
C

tH>o

0

For each t >0, we have

(3.9) wg(t,t + 1) = Pr{U(t) > 1}, and

Hnes1x

(3.10) wi(t,t + 1) =

¢ (j)VC .(t - u) dPr{U(t) iu}
3 e k-1

Q'*—A

.
k= 1,24

From Egs. (3.8 - 3.10) we get the stationary distribution
Vi

'l
|

a

f {1 - A (1)}du lo =10
. c

: c
€8.21) w (1) =2

G
= 1 Jevp_ytr - we L - A (W)
e =L 0

= 12,00, .

Similar results can be obtained for the process {Dr(t),t > 0}.

3.2.2 The Stationary Distribution of the Process {Z(t),t > 0}

From the definition of the inventory position (Eq. (3.1)), it

is clear that the stochastic process {Z(t),t > 0} changes its

5 12 "
state only at the arrival epochs Tc’Tc"" . It remains unchanged
. Tad e 214
at the epochs lr’Tr"'" because in the case of recoverable demands,

X(t) decreases and Q(t) increases by the same amount with no
change in Z(t). Completions of repairs or arrivals of supplies from an

external supplier do not result in a change in Z(t).

It is clear that




Zlt) = Z(T?) for T

lioreover, we have

wyentl n+l n (6] 1 Aoy
Pr = g - Z(T wine g0 >
{2¢r ") = 55 T, il t) (T, 2T )50, (lc),
0 fi n
Too T seens T }
= Fr{Z(Tn+l) = 3 Tn+l =t e t,Z(Tn); Tn} almost surely,
c c c — c c

for n=0,1,...,t > 0; and j e E,

Thus {2Z(t), t > 0} is a semi~Markov process whose kernel is given by

. Gl . s 2 5
Qt,9; )= Pl D 2 L T - B oafztly = 1} 15 e £,

Define

PCiy)) = lam QUigjs t)

t-o

Then P(i,j) > 0 and )} P(i,j) =1, so that the P(i,j) are the
jeE
transition probabilities of the imbedded Markov chain {Z(TZ)}- To

derive these results we have

@i, 1 &)= O s elcirs =N
01,3, t) = A () (3 - ) J<i,s+2<ic<s;
Q(i,S; t) = Ac(t) Yoo (k) g+1%i%8.

k>i-s




-

Using the fact that lim Ac(t) = ), we obtain
t—»co

P(i,j) = 0 s+l<i<j<s-1,
P(i,3) = ¢ (i-7) j<iss+2<ic<s,

I
o>

P(i,s) = ¢ (K s+l < i < S.

k>i-s

Now We have the following:

PP(i,j) = Pr[Z(Tz) = jiZ(TZ) = 4F, B = 0,1 0.3 1y % & B

Let Zn = Z(TZ), n = C,lj...t then {Zn} is a Markov chain imbedded in the
semi-Markov process {z(t),t > 0}. The transition probability matrix

of this chain is P. We first obtain the limiting distribution of

the chain {Zn} and then the stationary distribution of the process
{z(t),t > 0}

Theorem 3.1. The limiting distribution v(j) = lim P7(i,j) for

n-eo
i,j € E, of the imbedded Markov chain {Zn} exists and is given

by
2 3 — --——-——-m(S _j—)—‘ 3 = -
€3.12) v(ij) e S =
il

S Y = as e

V8) ® f3S=s-1)
where

k

(3.13) M(k) = Z m(e),

L=1




and m(k) satisfies

k-1
(3.14) m(1) = ¢(1); m{k) = ¢ (k) + ] ¢ (k-am@), k= 2,3,...
e o e

Procf. From our assumption that ¢C(l) > 0, it follows that the
chain {%1} is irreducible. From the theory of finite Markov
chains [8], we know thtat in a finite irreducible Markov chain all states
are positive recurrent. We ccnsider the following two cases.
(i) o < ¢, (1) < 1.

In this case the chain is apericdic. We know that for an irreducible,

)

sositive recurrent and apericdic chain, the limiting distribution
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