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NOMENCLATURE

Symbol Definition Units*
A a constant in Walther's equation (-)
A surface of contact between media (mmz)
AC cage-land surface area (mm2 or in.z)
A, area of outer cylindrical surface (mmz)
Ai area of inner cylindrical surface (mmz)
Av ball frontal area (mmz)
B auxiliary variable (-)
B B = Ax/a, a constant in Walther's (-)
equation
C a constant tabulation by Fresco (mm2 N or
in.4/1b)
C0 a non dimensional fluid-geometry (-)
parameter
Cp specific heat at constant pressure (W/kg-Deg()
Cr cage pocket clearance ' (mm)
C, drag coefficient | (-)
D ball or roller diameter (nm) H
D a constant tabulated by Fresco (nmle or
in.2/1b)
1
E a constant tabulated by Fresco (mm2 N or
in.4/1b)
El’ EZ Young's modulus for the contacting (N/mm2 or psi,
bodies
Fa axial force (N or 1b)
Fnl’ Fn2 normal components of resultant force of (N or 1b)

the inlet pressure distribution

*Where multiple units are Indicated, the first units given are
those associated with the computer program input and output,




NOMENCLATURE _(CONTD)

Symbol Definition Units?
Fo sliding force acting on the ball (N or 1b)
Fpi» Fr2 pumping forces acting on the ball (N or 1b)
Fozy F tangential forces due to inlet rolling (N or 1b)
R3* 753 and shearing between ball and cage
Fg shearing force acting on the ball (N or 1b)
; ictd N or 1b)
Fsl’ FSZ inlet friction forces (
F_,F ,F force components in the x,y,z coordinate (N or 1b)
xyz system
F, windage force or drag force (N or 1b)
F the vector of inertia and drag forces (N or 1b)
F n the vector sum of the hydrodynamic forces (N or 1b)
acting on the ball at the m-th contact
F b a vector of bearing loads and moments (N or 1b § mm-
N or in.-1b)
F si a vector of shaft loads and moments (N or 1b. § mm-
N or in.-1b)
G lubricant coefficient of thermal (1/DegC or
expansion 1/DegF)
i non dimensional film thickness parameter (-)
J moment of inertia of the ball kg-mm2
Kf conductivity of the film (1b/degF-sec)
Ky the proportion of the heat flow from (-)
] node i going to node j.
Kqo,K constants in expression for heat transfer (-) !
92710 . |
coefficient 1
L characteristic length (mm or in.) i
L 0w full film fatigue life (hrs) |
MC moment due to fluid friction between the (mm-N or in.-1b

cage and the ring land

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.
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NOMENCLATURE (CONTD)

Symbol Definition
Mx,My,Mz ball moment components in the x,y,z
coordinate system
ﬁ ball moment vector
N, Nusselt's number
P. Prandtl's number
pd diametral clearance
PE bearing end play
PP, forces acting normal to the hall
surface within the outer and inner
raceway contact ellipse
P, ball-cage mormal force
Q load
Qa average asperity borne load
Qr the radial component of the minimum
rolling element-race normal force
qQ non dimensional load paramcter

the vector normal load per unit length

m of the contact ellipse
R radius of outer ring groove centers
Re Reynold's number
Rx’Ry effective radii of curvature parallel
and transversc to the rolling direction
respectively
S coordinate along the contact in the
direction perpendicular to rolling
friction

Units*

{mm-N or in.-1b)

(mm-N or in.-1b)
(-)

(<)

(mm or in.)

{mm or in.)

(N or 1b)

(N or 1b)
(N or 1b)
(N or 1b)
(N or 1b)

(-)
(N/mm or 1bh/in.)

(mm)
(-)

(mm or in.)

(mm or in.)

*There multiple units are indicated, the first units given are

those associated with the computer program input and ou

tput,
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NOMENCLATURE (CONTD)

Symbol Definition Units*
Sd diametral play (mm or in.)
T time (sec)
T, long time duration (sec)
Tg starting time (sec)
Tl'TZ traction forces (N or 1b)
? traction force vector at a general (N or 1b)
location within the contact
i U characteristic speed (m/sec or in./sec)
fluid entrainment velocity at the (m/sec or in./sec)
contact center
Vv volume of the nodal element (m3 or in.3)
E \' voltage (volt)
r Vi volume flow rate through node i (ms/sec)
V0 voltage over long time duration (volt)
Vx rolling velocity in x direction (m/sec or in./secc)
Vy rolling velocity in y direction (m/sec or in./sec)
X,Y,2z inertial coordinate system ()
DCL diametral clearance (mm or in.)
? EPSFIT user specified convergence criterion )
EP1, EP2 a user supplied convergence criterion (-)
EQ temperature equilibrium convergence (-)
criteria for Eq. (3-41)
NEQ number of equations in bearing solution(-)
XCAV volume fraction of lubricant in bearing(-)
cavity oil/air mixture
*Where multiple units arc indicated, the first units given are
those associated with the computer program input and outprut.
xi
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NOMENCLATURE (CONTD)

Symbol Definition

a a constant coefficient in Nusselt's
number

a contact ellipse semi-major axis

a free convection temperature-exponent

b an exponent. in Nusselt's number

b half the contact width

c an exponent in Nusselt's number

c coefficient of specific heat

d exponent in free convection heat transfer
equations

dm cage-land diameter

- bearing pitch diameter

E; the vector of friction force per unit
length of the contact ellipse

g gravitational constant

h elastohydrodynamic film thickness

hg critical value of film thickeness

he the film thickeness under fully flooded
conditions

hg starved plateau thickness

hp c. film thickness calculated by Archard-
Cowking formula

hp 4 film thickness calculated by Dowson-
U Higginson formula

i j indices of heat flow nodes

Units?*

(=)

(mm or in.)
(=)
(=)
(mm or in.)
(=)
(W/kg~Deg C)
(=)

(mm)

(mm or in.)
(N/mm)
(m/sec2/_or
in./sec¢)
(mm orpm -in.)
(mm oru -in.)

{mm orM =-in.)

(mm oru -in.)

(mm ory -in.)
(mm orm -in.)

(=)

*Where multiple units are indicated, the first units given are
this associated with the computer program input and output.




NOMENCLATURE (CONTD)

Symbol Definition Units*
L seraration distance between temperature (mm)
nodes
Lye contact length, or in the case of an (mm)

elliptical contact area, 0.8 times the
contact length

n number of rolling elements, total number (-)
of heat flow nodes
P, maximum contact pressure (N/mm2 or psi)
heat generation rate, net heat transfer W)
a. heat generated by fluid shearing bectween (W)
the cage and land
Qe fluid drag heat (W)
ay heat generated by shearing force in the W)
hall-raceway and ball-cage inlet region
a; heat energy in the i-th nodal element W)
a7 heat gencrated by traction in the contact W)
zone
Q5 heat carried by mass flow from node i (W)
qgi heat generated at node i (W)
Qi heat flow from all neighboring nodes to (W)
node i
MRy i the heat energy transferred by radiation (W)
») between nodes i and j
i heat flow transferred by conduction from (W)
»J node i to node j
A j the heat flow between nodes i and j )
?
a,; j heat flow transferred by free convection (w)

from node i to node j

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.
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Symbol

i,

Ym

NOMENCLATURE (CONTD)

Definition

heat flow by forced convection from
node i to node j

groove radius

a vector from the rolling element center
to the point of contact

meniscus distance from center of contact
along direction of rolling

temperature

sliding velocity at the contact center
sliding velocity vector

surface velocity of bodies 1 and 2
relative to the contact

sliding speex

sliding speed at which traction coef-

ficient is a maximum

a local coordinate system established at
each ball location

sliding velocity scaled by ug*

ball axial position relative to the outer

race
maximum variation of x

ball radial position relative to the
outer race

maximum variation of y

Units*

(W)

{mm or in.)

(mm or in.)
(mm or/‘-in.)

(Deg C or Deg K)

{m/sec or
in./sec)

(m/sec or
in./sec)

(m/sec or
in./sec)

{m/sec or
in./sec)

{m/sec or
in./sec)

(-)
{m/sec or
in./sec)

(mm or in.)

(mm)

{mm or in.)

(mm)

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.




Symbol Definition . Units*
Z¢ ball center-cage pocket offset (mm or in.)
a diametral clearance between cage and land (mm or in.) ;
2 shaft displacement at a bearing location (mm or in.) f
ApcL change in bearing diametral clearance (mm or in.)
aq a small increment of time (sec)
ag angular distance between rolling elements (deg)
‘Zb bearing deflection vector (mm or rad)
ar lubricant replenishment layer thickness (mm)
$c) cumulative distribution function of (-)
standard normal distribution
N resistance of heat flow {degC/W)
n angular velocity (rad/sec)
Ilc cage angular velocity (rad/sec)
J\res resultant resistance to heat flow (degC/W)
o contact angle (deqg)
o scaling factor in modified Newton-Raphson (-)
technique
o pressure-viscosity index (in.2/lb)
o inner race contact angle (deg)
o outer race contact angle (deg)
o auxiliary contact angle (deg)
v film coefficient of heat transfer by free (W/mz—degc )
convection

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.




Symbol

NOMENCLATURE (CONTD)

Definition

£film coefficient of heat transfer by
forced convection

temperature-viscosity coefficient

ball speed vector pitch angle

the first variation

elastic deformation

the linear deflection components of.:b
surface emissivity

a small arbitrary constant

dynamic viscosity

the angular deflection components of Zb
thermal conductivity

a viscoelastic constant {(oil parameter)
traction coefficient

coulomb friction coefficient

M scaled by u*

fluid traction coefficient

maximum EHD traction coefficient
kinematic viscosity

Poisson's ratio for contacting bodies

*Where multiple units are indicated, the first units
those associated with the computer program input and outputs.

xvi

Units*

(w/mz-degC)

(1/degC)
(deg)
()
(rm)
(mm)
(=)
(=)

(centipoise or
lbg sec/in.?2)

(rad)
(W/M~degC)

(=)

(=)

(=)

(=)

(=)

(=)
(centistokes)

(=)

given are
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NOMENCLATURE (CONTD)

Symbol Definition Units*
P density (kg/m3)
Py density of the oil (kg/m3)
P dimensionless meniscus distance (-)
g Stefan-Boltzmann radiation constant W/mz—degK*)
%o RMS value of the distribution of (degqg)
asperity slope angles
<§k RMS value of surface roughness (micrometers)
aximuth angle (deqg)
& . .
) density function of standard normal (-)
distribution i
6 g starvation reduction factor (=)
é . the film thickness reduction factor, (=)
due to heating
W’ thermal diffusivity (mm2/sec)
W cage orbital velocity (rad/sec)
Wy ball orbital velocity (rad/sec)
W x ball angular velocity component about (rad/sec)
the x axis
W ball angular velocity component about (rad/sec)
Y the y axis
W, ball angular velocity component about (rad/sec)
the z axis
w first derivative of W, with respect (rad/sec?)
e} : o
to time
;- angular velocity of ball in x, y, 2z (rad/sec)

coordinate system

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.
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SUBSCRIPTS
Symbol Definition
B refers to point where traction curve becomes
nonlinear
C refers to cage or conduction
N refers to current iteration
R refers to rolling or radiation
a, asp denotes asperity effect
f refers to fluid or flooded
i denotes the i-th ball, i-th node, inner ring
J denotes j-th node
k index denoting a specific time interval
m an index-denoting bearing component
o denotes outer ring
s refers to sliding, starvation effect, or shaft
t refers to thermal effect
v refers to free convection
w refers to forced convection
X,Y,2 denotes components of vector quantities with
respect to x, y, and z coordinates
1,2 refers to bodies 1 and 2

xviii




I. INTRODUCTION

The computer program described herein, SHABERTH, "A Compu-
ter Program for the Steady State and Transient Analyses of
Shaft Bearing Systems," is the third generation of S K F
Computer Program AE72Y003. Program AE72Y003 was developed by
Kellstrom (1) under U. S. Army Contract DAAD05-73-C-0011,
sponsored by the Ballistics Research Laboratory at Aberdeen
Proving Grounds. The original as well as the succeeding
generations of the program consists of the following major
subprograms.

The master program consists of the following major sub-
programs.

1) Bearing Analysis. These subprograms are largely
based upon the methods of Harris, (2,3).

2) Three Dimensional Shaft Deflection Analysis developed
by Norlander and Friedrichson. (See Appendix I 3).

3) Bearing Dimensional Change Analysis based on the
methods of Timoshenko, (4), and adapted to the shaft-
bearing-housing system by Crecelius, (5). (See
Appendix I 2).

4) Generalized Steady State and Transient Temperature
Mapping and Heat Dissipation Anaiyses based on the
methods of Harris. (6), Fernlund, (7) and Andreason,
(8).

Although the primary function of all three generati ns of
the program is to predict general bearing performance character-
istics, and the bulk of the coding reflects this emphasis,
the steady state and transient heat dissipation and temperature
mapping subprogram may be used on a stand alone basis to model
the thermal behavior of any system which can be represented by
discrete temperature nodes.

The differences between the successive generations of
the program reflect the development and installation of improved
bearing lubrication and friction models, improved analysis
of the bearing cage and improvements in the program structure
which increased the program versatility and solution procedures.

The first generation of the program used the Newtonian
lubricated friction models developed by Harris (2, 3).




The second generation of the program which carries the
designation AT74Y001 was created by Crecelius, Liu and Chiu
under Air Force Contract No. F33615-72-C-1467 and Navy
MIPR No. M52376-3-000007 and is documented by McCool, et al
(9).* 1In that effort, with Program AE72Y003 as the basis,
the ball bearing subprogram was modified to include new models
as follows: ]

ekaie

1) An EHD film thickness model that accounts for i)
thermal heating in the contact inlet using a
regression fit to results obtained by Cheng (10)
and ii) lubricant film starvation using theoretical
results derived by Chiu (11).

2) A new semi-empirical model for fluid traction in an ,
EHD contact (9), is combined with an asperity load
sharing model developed by Tallian (12) to yield a :
model for traction in concentrated contacts that
reflects the state of lubrication as it varies from
dry, through partial EHD to the full EHD regime.

3) A model for the hydrodynamic rolling and shear forces
in the inlet zone of lubricated contacts accounting ?
for the degree of lubricant film starvation, (9).

4) Normal and friction forces between a ball and a cage
pocket are modelled in a way that accounts for the
transition between the hydrodynamic and elasto-
hydrodynamic regimes of lubrication (9).

5) A model for the effect on fatigue life of the ratio
of the EHD plateau film thickness to the composite
surface roughness, (9).

Additionally, models for temperature viscosity and pressure
viscosity variation as functions of temperature given by Walther
(13) and Fresco (14) respectively, were adopted.

Program AT74Y00l is capable of analyzing only a single
axially loaded ball bearing. The program cannot be used to
analyze a multi-bearing system. All other capabilities are
present however.

*Due to the similaritlies between major segments of SHABERTH
AT75Y004 and AT74Y001, many sections of (9) have been included in
this text, without modification.




The basis for the present program, SHABERTH, was AT74Y001l.
The latent capability for the analysis of up to five ball and
roller bearings subjected to general, (5 degrees of freedom)
loading, has been utilized. The models added to AT74Y001 are
used in the calculation of both the ball and roller bearing
friction forces and frictional heat generation rates. The
present program also includes a new model for the hydrodynamic
rolling and slip forces in the inlet zone of lubricated line
contacts, based on the work of Chiu, Ref. (15). Additionally,
a cage model developed under NASA Contract No, NAS3-19739
Ref (15) has been added which allows the cage to move with up to
three degrees of freedom versus the one degree of freedom per-
mitted in Program AT74Y001. This cage model may be used in the
analysis of both ball and roller bearings.

Under Air Force Contract No. F33615-76-C-2061 and Navy
NAPTC MIPR No. N62376-76~MP-00005, the capabilities of SHABERTH
were expanded to solve the combined set of multi-rolling element
and cage quasidynamic equilibrium equations.

This exapnsion required changes in the concentrated contact
asperity friction model as well as changes in the cage-rolling
element and cage-ring interaction calculations. Additionally,
the mathematical definition of the range of permitted variable
values was made substantially more accurate.

SHABERTH is intended to be as general as possible with
the following limits on system size.

Number of bearings supporting the shaft - five (5) maximum
Number of rolling elements per bearing - thirty (30) maximum

Number of temperature nodes used to describe the system -
one hundred (100) maximum

The program structure is modular and has been designed to
permit substitution of new mathematical models and refinements
to the existing models as the needs and opportunities develop.

The third generation program, SHABERTH, exists as two
versions, SHABERTH/SKF, SKF Program No. AT75Y004 and SHABERTH/NASA,
SKF Program No. AT76Y001. The differences between the two
versions reside in the calculation of the elastohydrodynamic
(EHD) film thickness and traction forces which develop in the
rolling element-raceway and rolling element-cage concentrated
contacts. The calculation of these factors as performed in the
SKF version is detailed herein. The details of the calculations
performed by the NASA version are presented in Ref. (15).




2. PROBLEM FORMULATION AND SOLUTION

The purpose of the program is to provide a tool with which
the shaft-bearing system performance characteristics can be '
determined as functions of system temperatures. These system
temperatures may be a function of steady state operation or a
function of time variant conditions brought on by a change
in the system steady state condition. Such a change would be
! the termination of lubricant supply to the bearings and other

lubricated mechanical elements.

The program is structured with four nested, calculation
schemes as follows:

1. Thermal, steady state or traisient temperature cal-
culations which predict system temperatures at a given
operating state.

2. Bearing dimensional equilibrium which uses the bearing
temperatures predicted by the temperature mapping
subprograms and the rolling element raceway load dis-
tribution, predicted by the bearing subprograms, to cal-
culate bearing diametral clearance at a given operating
state.

3. Shaft-bearing system load equilibrium which calculates
bearing inner ring positions relative to the respective
outer rings such that the external loading applied to the
shaft is equilibrated by the rolling element loads
which develop at each bearing inner ring at a given
state.

4. Bearing rolling element and cage load equilibrium
which calculates the rolling element and cage equili-
brium positions and rotational speeds based upon the
relative inner-outer ring positions, inertia effects
and friction conditions, which if lubricated, are
temperature dependent.

The above program structure allows complete mathematical
simulation of the real physical system. The program has
been coded to allow various levels of program execution
which prove useful and economical in bearing design studies.

These levels of execution are explained fully in Sections
3, 4, and 5.




The structure of the program and the nesting of the
solution loops noted above can be seen clearly in the Program
Flow Chart which is discussed in Appendix II 1.

The sections below present the systems of field equations
which are solved in each of the nested calculation schemes.
A more detailed discussion is contained in (1, 9 and 15). ;

2.1 Temperature Calculations

Subsequent to each calculation of bearing generated heat
rates, either the steady state or transient temperature mapping
solution scheme may be executed. This set of sequential
calculations is terminated as follows:

1. For the steady state case, when each system tempera-
ture is within EPA ©Centigrade of its previously
predicted value, EPA is specified by the user. If
it is zero or left blank, a default value of 1° Centi- ;
grade is used. This criteria implies that the steady ;
state equilibrium conditions has been reached.

2. The transient calculation terminates when the user
specified time up is reached or when one of the
system temveratures exceeds 6000C.

2.1.1 Steady State Temperature Map

The mechanical structure to be analyzed is thought of as
divided into a number of elements or nodes, each represented
by a temperature. The net heat flow to node i from the sur-

; rounding nodes j, plus the heat generated at node i, must
i numerically equal zero. This is true for each node i, i going
from 1 to n, n being the number of unknown temperatures.

! After each calculation of bearing generated heat, which
results from a solution of the shaft-bearing system portion
of the program, a set of system temperatures is determined
which satisfy the system of equations:

Q; = Qo * % i = 0 for all temperature nodes i (2.1)

where q,; is the heat flow from all neighboring nodes to
node i

Qg i is the heat generated at node i. These values
may be input or calculated by the shaft bearing
program as bearing frictional heat




This scheme is solved with a modified Newton-Raphson
method which successfully terminates when either of two
conditions are met:

At

i
= £ EP2 for all nodes i (2.2)

where At represents the Newton-Raphson correction to the
temperature t at a given iteration such that,
ty+l = ty tot and N + 1, and N, refer to the
next and current iteration respectively.

EP2 is a user specified constant. If EP2 is left blank
or set to zero (0) a default value of 0.001 is used.

A second convergence criterion dependent upon EP2 is also
used. In the system of equations, qg; + dei = 0 for all nodes
i, absolute convergence would be obtained 1f the right hand
side (EQ) in fact reduced to zero (0). Usually a small residue
remains at each node, such that (qg; + qGi) = (EQ)1i.

The second convergence criterion is satisfied if

X
n (EQ) 2 <
> 112 100 x EP2 (2.3)
i n
where n = number of equations in bearing solution

2.1.2 Transient Temperatures

In the transient case, the net heat g, transferred to a
node i heats the element. It is thus neceSsary for heat
balance at node i that the following equations are satisfied.

at;

1




density

specific heat

volume of the element
temperature

time

U T I B

The temperatures, t_ ., at the time of initiation T - Ty are
assumed to be knwon, that is

ti(TS) = tOl i= 1, 2, eseys N (2.5)
The problem of calculating the transient temperature

distribution in a bearing arrangement thus becomes a problem

of solving a system of non-linear differential equations of

the first order with certain initial values given. The equa-

tions are non-linear since they contain terms of radiation

and free convection, which are non-linear with temperature as

will be shown later. The simplest and most economical way of

solving these equations is to calculate the rate of temperature

increase at the time T = T, from equation 2.4 and then calcu-

late the temperatures at tlme Tk + &T from

trel = ty + z;k AT = t) + Q T (2.6)
ooV

If the time step 8T used as program input is chosen
too large, the temperatures will oscillate, and if it is chosen
too small the calcualtion will be costly. It is therefore
desirable to choose the largest possible time step that does
not give an oscillating solution. The program optionally
calculates such a time step. The step is obtained from the
condition, (16)

dti, k+1 _
dEr o - O i=1,2, ..., n (2.7)

If this derivative were negative, the implication would
be that the local temperature at node i has a negative eifect
on its future value. This would be tantamount to asserting
that the hotter a region is now, the colder it will be after
an equal time interval. An oscillating soluticn would result.




Differentiating equation (2.6) for node i, one has as
condition (2.8),

dt. AT dq.

i, k+1 Ti q; ,
—_— = l + . = 2 re s .
dti,k piCini dti 0, 1 1 n (2.8)

The derivative dqi/dti is calculated numerically

= 1 1
dg; at, (2.9)

For each node, the value of AT. giving a value of zero
to the right hand side of Eqn. (2.8} is calculated.

A value of AT rounded off to one significant digit smaller
than the smallest of theaT; given by Egn. (2.8) is used.

If the transient thermal scheme is being used interactively
with the bearing subprograms, the user must specify a smail
enough time step between calls to the bearing subprograms in
order that the variation in bearing generated heats, with
time, accurately reflects the physical situation. At first,

a trial and error procedure will be required to effectively
use the program in its mode, however, experience will increase
the user's effectiveness,

2.1.3 Calculation of Heat Transfer Rate

The transfer of heat within a medium or between two media
can occur by conduction, convection, radiation and fluid flow.

All these types of heat transfer occur in a bearing appli-
cation as the following examples show.

: 1. Heat is transferred by conduction between inner ring
) and shaft and between outer ring and housing.

2, Heat is transferred by convection between the surface
of the housing and the surrounding air.

3. Heat is transferred by radiation between the shaft
and the housing.

4, When the bearing is lubricated and cooled by cir-
culating oil, heat is transferred by fluid flow.

Therefore, in calculating the net flow to a node all the
above-mentioned modes of heat transfer will be considered.

2.1.3.1 Generated Heat

There may be a heat source at node i giving rise to a heat
flow to be added to the heat flowing from the neighboring nodes.

8




In the case that the heat source is a bearing, it may
either be considered to produce known amounts of power, in
which case constant numbers are entered as input to the program,
or the shaft-bearing program may be used t» calculate the bearing
generated heat as a function of bearing temperatures.

2.1.3.2 Conduction

The heat flow Qeci, which is transferred by conduction
from node i to node j, 15 proportional to the difference in
temperature (t. - t.) and the cross-sectional area A and is

inversely proportioﬁal to the distance R between the two points,
thus

Qei,j = ?\_211 (ty-ty) (2.10)
where A = the thermal conductivity of the medium.

2.1.3.3. Free Convection

Between a solid medium such as a metallic body and a
liquid or gas, heat transfer is by free or forced convection.
Heat transfer by free convection is caused by the setting in
motion of the liguid or gas as a result of a change in density
arising from a temperature differential in the medium. With
free convection between a solid medium and air, the heat
energy q i, 4 transferred between nodes i and j can be cal-
culated ‘Frém the equation, (2.11)

d
Qui,j = XvA Iti—tjl - SIGN (t;-tj) (2.11)

the film coefficient of heat transfer by

free convection

the surface area of contact between the media
is an exponent, usually = 1.25, but any value
can be specified as input to the program

where ‘(v

A
d

i >
l if ti- tj

SIGN =

-1 if ¢ < tj




The last factor is included to give the expression g

; vi,j
a correct sign. ’J

The value of Oy can be calculated for various cases, see
Jacob and Hawkins, (16).

2.1.3.4 Forced Convection

Heat transfer by forced convection takes place when liquid
or gas moves around a solid body, for example, when the liquid
is forced to flow by means of a pump or when the solid beody is
moved through the liquid or gas. The heat flow Awi, j transferred
by forced convection can be obtained from the following equation.

qwi'j = % A(tl - tj) (2.12)

where&,, is the film coefficient of heat transfer during
forced convection. This value is dependent on
the actual shape, the surface condition of the body,
the difference in speed, as well as the properties
of the liquid or gas.

In most cases, it is possible to calculate the coefficient
of forced convection from a general relationship of the form,

= b c
N, = aR, P, (2.13)

where a, b, and ¢ are constants obtained from handbooks,

such as (17). R_ and P_ are dimensionless numkers

. e r

defined by

Nu = Nusselt's number = o, L/A

L~ = characteristic lengtg

A = conductivity of the fluid

Re = Reynold's number = UL p/

U = characteristic speed

p = density of the fluid

R = dynamic viscosity of the fluid

P, = Prandtl's number = nCp/A

C_ = specific heat

o




‘ The program can use a value of the coefficient of convec-
f tion, or let it vary with actual temperatures, the variation

f being determined by how the viscosity varies. 1Input can be
given in one of four ways, for each coefficient.

Constant viscosity

1. Values of the parameters of equation (2.13) are
given as input and a constant value of<xw is cal-
culated by the program.

Temperature dependent viscosity

2. The coefficient &, for turbulent flow and heating
of petroleum oils is given by
k
: «, = kg - {n(e)} F10 (2.14)

where kg and kjp are given as input together with
viscosigy at two different temperatures.

3. Values of the parameters of equation (2.13) are given
, as input. Viscosity is given at two different
« temperatures.

2.1.3.5 Radiation

If two flat parallel, similar surfaces are placed close
together and have the same surface area A, the heat energy
transferred by radiation between nodes i and j representing
those bodies will be,

dri,j = €oAlt; + 273)% - (g + 273]* (2.15)

where g 1is the surface emissivity. The value of the
coefficient € is an input variable and varies
between 1 for a completely black surface and 0
for an absolutely clean surface. In addition,
& is Stefan-Boltzmann's radiation constant
which has the value 5.76 x 10-8 yatts/m2-(oK)4
and t; and t; are the temperatures at points i
and j. ]

[P UR

Heat transfer by radiation under other conditions can also
be calculated, (16). The following equation, for instance, applies !




between two concentric cylindrical surfaces

4 _ 4
a s esPi [t + 273) (b5 + 273) | 2 16
i, .
’ 1+ (1-6 (A;/A])

where A. is the area of the inner cylindrical surface

A, is the area of the outer cylindrical surface

2.1.3.6 Fluid Flow

Between nodes established in fluids, heat is transferred
by transport of the fluid itself and the heat it contains.

qoi

s ®;

A A A A S S S S
l D
A A e A e e

T

Figure 2.1 Convective Heat Transfer
Figure 2.1 shows nodes i and j at the midpoints of consecu-
tive segments established in a stream of flowing fluid.
The heat flow q,; i through the boundary between nodes
i and j can be calcufafed as the sum of the heat flow gg; through
the middle of the element i, and half the heat flow g,; trans-

ferred to ncde i by other means, such as convection.

The heat carried by mass flow is,

Ari = 0; Cp; Vi ti = Kity (2.17)

the volume flow rate through node i

where V.,
i




The heat input to node i is the sum of the heat generated
at node i (if any) and the sum over all other nodes of the
heat transferred to node i by conduction, radiation, free and
forced convection.

9%i = %,i Y & “ei,j * qui,i * 9wi,i * 9Ri,3) (2.18)
J
The heat flow between the nodes of Fig. 2.2 is then,

Qui,j = 9£i + 9372 (2.19)

If the flow is dividing between node i and j, Figure 2-2
then the heat flow is calculated from

dui,j = Kiy gy * 95;72) (2.20)
where Kij = the proportion of the flow at i going to
the node j, o K;. 1. K,;. is specified
. ij ij
at input.

FIGURE 2.2
DIVIDED FLUID FLOW FROM NODE i

Figure 2.2 Divided Fluid Flow from Node i

2.1.3.7 Total Heat Transferred

The net heat flow rate to node i can be expressed as,

= + R + + + 2.21
9 = dg.; ? @ei,i * Tui,g * i3 " T,y T e,y (2.20)
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The summation should include all nodes j i
j, both with un-
known temperatures as well as boundary nodes,'at which the

temperature is known so long as they have a i
t] i
> direct heat exchange

This expression is a non-linear function of temperatures
because of the terms qy and q_,. Therefore, the equations to be
solved for a steady state solgtion are non-linear. The sub-
program SOLVXX for solving non-linear simultaneous equations
is used for this purpose.

2.1.4 cConduction Through a Bearing

As described in Section 2.1.3.2, the conduction between
two nodes is governed by the thermal conductivity parameter A
of the medium through which conduction takes place. The
value of A is specified at input.

An exception is when one of the nodes represents a bearing
ring and the other a set of rolling elements. In this case,
the conduction is separately calculated using the principles
described below.

2.1.4.1 Thermal Resistance

It is assumed that the rolling speeds of the rolling
elements are so high that the bulk temperature of the rolling
elements are the same at both the inner and outer races, except
in a volume close to the surface. The resistance to heat flow
can then be calculated as the sum of the resistance across
the surface and the resistance of the material close to the

surface.

The resistance §L is defined implicitly by
(2.22)

where

At is temperature difference
q is heat flow

The resistance due to conduction through the EHD film is
calculated as

14
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where h is taken to be the calculated plateau film
thickness 3

A is the Hertzian contact area at the specific

rolling element-ring contact under consideration. i

A is the conductivity of the oil.

The geometry is shown in Figure 2.3(a). Asperity con-
duction is not considered.

So far, a constant temperature difference between the
surfaces has been assumed. But during the time period of
contact, the difference will decrease because of the finite
thermal diffusivity of the material near the surface, Fig. 2.3(b).

To points at a distance from the surface this phenomenon
will have the same effect as an additional resistancen2 acting
in series with &,.

This resistance was estimated in (18) as,

- %
f,=__ 1 (Y, (2.24)
Al’re,i 2b;V
where Lre = contact length, or in the case of an

elliptical contact area, 0.8 times the
major axis

A = heat conductivity
= thermal diffusivity =)\/(9'Cp)
P = density

Cc,. = specific heat

o)

half the contact width

on
I

Vv = rolling speed

The resultant resistance is

(2.25)
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There is one such resistance at each rolling element.
They all act in parallel. The resultant resistance,JEres,
is thus obtained from

n
1 _ Z 1
R i=l Wreg i (2.26)

2.2 Bearing Dimensional Change Analysis

The program calculates the changes in bearing diametral
clearances according to the analysis described originally in
(5) and herein in Appendix I 2, and expressed in generalized
equation form as,

ADCL = f {(Fits)m, ti Ry (Op)yl, m =1, 2 for inner and (2.27)
outer rings
respectively

i=1,2,3,4,5 for
shaft, inner ring,
outer ring, housing
and rolling element
respectively




where: APCL is the change in bearing diametral clearance
Fits are the cold mounted shaft and housing fits
t. are the component temperatures
refers to the ring rotational speeds
Q, refers to the radial component of the minimum
rolling element-race normal force.

5 A bearing clearance change criterion is satisfied when
the change in bearing diametral clearance remains within a
narrow, user specified range, for two successive iterations
as follows:

i I(ADCL)N - (ADCL)N_ll < EPSFIT for all bearings (2.28)

D

where: N denotes the most recent iteration and
N-1 denotes the previous iteration
D denotes the ball or roller diameter and
EPSFIT is a user specified value = .0001D

It should be noted that although ring rotational speeds,
and initial, i.e. cold, shaft and housing fits are considered
in the clearance change analysis, these two factors are fixed '
at input and remain constant through the entire solution. ’
Although component temperatures may change as a consequence of
the thermal solution, temperatures remain constant through a
complete set of clearance change iterations. As a result, only
the change in bearing load distribution affects the change in
bearing clearance within a set of clearance change iterations.

2.3 Bearing Inner Ring Equilibrium

The bearing inner ring equilibrium solution is obtained
by solving the system:

> >
(Fp); - (Fg)i = 0 for all bearings, i (2.29)

E
where: Fp, denotes a vector of bearing loads and
moments resulting from rolling element/
race forces and moments.




Fpxi
Fbyi Forces
(F Vo = Fb21
e (2.30)
Mbyi
Moments
Mpzi
. -

. 13 . . . *
. If the bearing solution considers friction, Fp is com-
prised of the rolling-element race friction forces as well as
the normal forces.

If thg bearing solution is, at the user's option, friction-
less, Fp is comprised only of rolling element/race normal con-
tact forces.

-

(Fg); denotes a similar vector of loads, gxerted on the
inner ring by the shaft. The calculation of (Fg); is presented
in Appendix I 3.

~
Fexi T
Fsyi Forces
(Fg); = i (2.31)
M .
syi
Y Moments
LMSZi

The variables in this system of equations are the bearing
inner ring deflections Ay and the shaft displacements A at
all bearing locations. The bearing loads may be expressed as
a function of the inner ring deflections.

> > >

+
The de:flectionAb of a bearing is described by two radial
deflections §  and &,, two angular deflections 8, and ©; and one
axial deflection § . The axial deflection is asg
the same for all bearings on a shaft, i.e.

umed to be




The solution scheme is ended when

+> EPS]1 (frictionless)
S(A)ij < (2.37)
(A)ij EPS2 (friction)
% = 1,...(Number of bearings)

1,5 -~ for the 3 linear and two
angular deflections at
each bearing

>
ig ggf some i or j, (A)ij = 0, Eq. (2.38) is used in place of
> . .
Sa).. EPS]1 (frictionless)
(8) 55 < (2.38)
(0.001 x NBRG) EPS2 (friction)

NBRG denotes the number of bearings in the system.

EPS]1 and EPS2 are used depending on whether the bearing
solutions are frictionless or include friction, respectively. 1If
the bearing deflections are extremely small, computer-generated
numerical inaccuracies may prevent convergence according to
the above criteria although a perfectly good solution has
been obtained. To overcome this problem, the iteration is ter-
minated if all angular deflections are less than 2 x 10-6 radians
and all linear deflections are less than 5 x 108 inches. Any
one of the above criteria imply that inner ring equilibrium is
satisfied.

2.4 Bearing Quasi-Dynamic Solution

The bearing quasi-dynamic solution is obtained through
a two-step process:

1. Elastic Solution - considering rolling element
contrifugal force.

2. Elastic and Quasi-dynamic Solution*

Fouasi-dynamic equilibrium is used to connotc that the true
dynamic equilibrium terms containing first derivatives of the
ball rotational speed vectors and the second derivatives of
rolling element position vectors with respect to Fime are
replaced by numerical expressions which are position rather

than time dependent.
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2.4.1 Rolling Element Equilibrium Equations

"he equations which define rolling element quasi~dynamic
force equilibrium take the form

ame > > > m = 1-3 refers to the
é JP (Qp *+ fpldt +-E}\] +F=0 outer, inner and cage
=an rolling element contacts (2.39)
respectively
>
where: Qn is the vector normal load per unit length

of the contact. See Appendix I 4.

>
fn is the vector of friction force per unit length
of the contact. See Appendices I 5 and I 6.

>
F is the vector of inertia and drag forces.
See App. I 6 and I 7

t is a coordinate along the contact, perpen-
dicular to the direction of rolling (usually
the major axi;

a is half the contact length. See Ref. (1).

ok

is the vector sum of the hydrodynamic forces
acting on the rolling element at the m-th
contact. See Appendix I 6.

Rolling element moment equilibrium is defined by:

a
z I’m+ » > + > +>
m rn X (O + fm)dtJ + ry x Fo + M = 0 (2.40)

_am

> > > > . > s
O fm Fmrsay, and t are defined above, M; is a vector

of inertia moments. For tge definition of
+ Mg, refer to Appendix I 7.
Yy i8 a vector from the rolling element
center to the point of contact, see Appendix
I 4.

The solution to the equation sets represented (2.39) and 2.40)
generate the necessary data to calculate bearing fatigue life.
See Appendix I 9.

> >
In the frictionless elastic solution Fp and fm = 0.
Additionally, the only rolling element inertia term considered
in the frictionless solution is centrifugal force. As a con-
sequence, only the axial and radial force equilibrium equa-
tions are solved for each ball. For each roller, the rgdlal
force equilibrium and the tilting moment abogt the Z axis of

Fig. 2.4 is solved. A dummy equation for axial force equilibrium
is included in the solution matrix which keeps the roller centered
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FIGURE 2.4

Bearing Inertial (XYZ) and Rolling Element (xyz),
Coordinate Systems
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with respect to the outer race. The cylindrical roller bearing
considered by the program cannot carry axial loading.

The friction solution determines ball quasi-dynamic equili-
brium for six degrees of freedom. A roller is permitted four
degrees of freedom. The rolling-element variables in this
solution are x;, Y;» Wx, Wy, Wz and Wo.

where Xy is the rolling element axial position relative to
the outer race. For a roller, this is a dummy variable.
N is the rolling element radial position relative to
the outer race,
Wx,Wy, Wz are the orthogonal rolling element rotational speeds
relative to the cage speed, about the x, y and z
axes and W o is the rolling element orbital speed.
For the roller, W2z is a dummy variable.

The variables X1 and y, are the ball variables in the friction-
less solution. 'The vaFiables in the roljer frictionless solu-
tion are x,, a dumiy, Y, and @z = tan (Wy/ Wx).

2.4.2 Cage Equilibrium Equations

The cage equations and cage-rolling element interactions
are not considered when the friction forces are omitted from
the rolling element equilibrium equations.

The number of degrees of freedom given to the cage is one,
if the cage will tend to rotate concentrically with respect to
the ring on which it is riding. This condition is determined
as a function of the rolling element orbital speed variation and
prevails with most roller bearings and with ball bearings
subjected only to axial loading. In both cases, orbital speed
variation is often inconsequential. Also, single degree of
freedom is allowed when the cage is rolling element riding.

The single degree of freedom corresponds to a small angular
rotation about the bearing axis, measured with respect to rolling
element 1. The angular displacement is converted to a linear
dimension by a multiplication by the bearing pitch diameter and
is noted 1in Fig. 2.4 as¥ . When a single degree of freedom

is permitted, the sum of moments acting on the cage about the
bearing x axis is required to be zero. This moment equation
considers the cage-rolling element normal and friction forces

as well as the torque generated at the cage-ring surface.

If there is significant rolling element orbital speed
variation, the cage is permitted to move to an eccentric posi-
tion with respect to the land on which it is piloted. Two
additional degrees of treedom are required to describe the
eccentric pcsition. These are the cage center of mass radial
displacement, e, and the angular displacement of the center of
mass, with respect to the bearing Y axis, @ c', see Figures 2-5
and 2-6. These radial and angular displacement variables are
determined when the sum of forces acting on the cage, resolved
along the bearing Y and Z axes, reduce to zero. The rolling
element-cage normal and friction forces as well as the pressure

23




FIGURE 2-5

Inner Ring-Cage Land Contact Geometry

CAGE LAND

WNER RING




FIGURE 2-6

Quter Ring-Cage Land Contact Geometry
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buildup between the cage and its piloting surface are considered
in the equilibrium equations. The effect of the cage mass is
neglected.

Figure 2-7 depicts the cage pocket normal and friction
forces acting on a rolling element which are considered in
the cage equibrium solution. These forces are functions of
the rolling speedswx and#y and the contact geometry are cal-
culated in the x,y,z frame. The forces exerted on the cage
due to the i-th rolling element are, in the XYZ frame of

reference:
Myj = = (Fyy + Fyp)ir + (P = P2)j Ry
Fyj = - (Fyy = Fyp)j cos g; - (P} -~ P2} sin &; (2.41)
Fgi = (Fyq - Fyz)i sin g, + (P; ~ Pp); cos ¢&;

when the forces of Eq. (2.41) are summed over all of the rolling
elements, and the total added to the cage land contact forces,
the cage equilibrium equations for the three degree of freedom
model are obtained as:

My = 0 = (MXi) + Mcx
Fy = 0 = (Fyi) + Fgy (2.42)
FZ =0 = (le) + FCZ

where Myj, Fy; and Fzj are defined for each rolling element
by Eq. (2.41¥, Mcx is the cage land friction torque, Fcy and
F.y are the cage land hydrodynamic forces.

Within SHABERTH, Eq. (2.42) which defines cage equili-
brium, are solved simultaneously with the set of all ball or
roller quasidynamic equilibrium equations.

Details for calculating the rolling element/cage pocket
forces and the cage land/ring land forces are presented in
Appendix I 9.

The ball bearing friction solution is thus obtained by
solving 62+(1 or 3) equations where Z is the number of rolling
elements. The ball bearing frictionless solution is obtained
by solving 1, (Z/2) (2/2+1) or Z sets of 2 equations, depending
upon the number of rolling elements in the bearing and the
degree of load symmetry which prevails. The various symmetry
conditions are explained below.

The roller bearing friction solution contains 4Z+ (1 or 3)
equations and the frictionless solution contains 2/2, Z/2+1
or 2 sets of three equations again depending upon the number
of rclling elements and whether or not load symmetry exists.
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FIGURE 2-7

Cage Pocket Normal and Friction Forces
Affecting Equilibrium

1
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2.4.3 Load Symmetry Conditions

The various load symmetry conditions are as follows.

Axial symmetry is utilized if, for a ball bearing the load
is axial only, then only one set of two equations is solved for
the frictionless case. Six ball and one cage equilibrium equations
are solved when friction is included. All balls are assumed to
behave identically.

Radial load symmetry is utilized if the non-axial shaft
loading is comprised of only radial components parallel to the
Y axis and moment components parallel to the 2 axis and the
position of the first rolling element is on the Y axis, then
symmetry exists, only half the rolling elements need be con-
side_ed if the number of rolling elements is even and one half
plus one need be considered if the number is odd. Because
of inertia terms, radial load symmetry can only be utilized in
the frictionless solution.

If load symmetry is not present, then Z sets of two (ball
bearing) or Z sets of three (roller bearing) equations must be
solved to obtain the frictionless solution.

2.4.4 Bearing Quasidynamic Solution Criteria

As with the steady state temperature mapping scheme, the
Newton-Raphson scheme in subprogram SOLVXX is used to solve
the sets of equations for each bearing. The iteration scheme
terminates when either:

: EPS1 frictionless
A—-i.l-N—l < (2.43)
1N- EPS2 friction
i=l...n
or .
% EPS1 frictionless
H EQ2 (2.44)
i=1 i < 100 X EPS2 friction
n

Experience has shown that the second criteria is usually
responsible for terminating the solution. However, when rolling
element loads are extremely large, on the order of 103 Newtons,
it becomes difficult to reduce the equation residues to less
than 10 Newtons. In those instances, the first criteria usually
terminates the iteration scheme.
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3. PROGRAM INPUT

3.1 Types of Input Data

A complete set of input data comprises data of four 1
distinct categories. Within these categories, cards which
convey specific kinds of information are referred to as card 1
types. Depending on the complexity of the problem, the input
data set may contain none, one or several cards of a given type.
The categories are listed below.

I. Title Cards
A title card plus a second card which provides the
program control information for the shaft-bearing
solution.

II. Bearing Data Cards
A set of up to sixteen (16) card types, each set des-
cribing one bearing in the assembly. BAll bearings must
be so described. The card sets must be input sequentially
in order of increasing distance from a selected end of
the shaft.

I1I. Thermal Data Cards
A set of up to nine (9) card types to describe the
thermal model of the assembly.

Iv. Shaft Data Cards
A set of three (3) card types to describe the shaft
geometry, bearing locations on the shaft and shaft
lcading

If the program is being used to predict the performance
of a bearing assembly, cards from all four sets must be included
in the runstream. If the program is being used to thermally
model a mechanical system wherein no bearing heat generation
rates are required, and therefore, no bearing calculations
need be performed, the cards from sets II and IV are omitted.

The review of required input information which follows_is
broken into the four sets of data categories given above, with
special emphasis on program control data.

The input data instructions are given in Appendix II 2,
and are for the most part self explanatory. They are laid out
in the format of an eighty column data card. A description
of the variables is given in the input instruction forms.
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The units used for input data are as follows:

Linear Dimensions - (mm)

Angles - (degrees)

Surface Roughness - (microns)

Bearing Angular Mounting Errors - (radians)

Rotational Speeds - (RPM)

Force - (Newtons) (N)

Moments - (N-mm)

Pressure, Elastic Modulus - (N/mm2)
Density - (gm/cm3)

Kinematic Viscosity - (cs)

Temperature - (degrees centigrade) (°C)
Coefficient of Thermal Expansion - (°c-1)
Thermal Conductivity - (Watts/m/©C)

3.2 Data Set I - Title Cards

3.2.1 Title Card 1

This card should contain the computer run title and any
information which might prove useful for future identification.
The full eighty (80) columns are available for this purpose.

The title will appear at the top of each page of Program output.

3.2.2 Title Card 2

This card provides the control information for the shaft
bearing solution.

Item 1l: Shaft Speed in rpm, GOV (1). All bearings have the
same shaft, i.e. inner ring speed.

Item 2: Number of Bearings on the shaft (NBRG), a minimum
of zero 1s permitted if no bearing solution is being sought.
A maximum of five is permitted.

Item 3: Print Flag (NPRINT), NPRINT equal to zero is normal
and will result in no intermediate or debug output. With a value
of one, a low level intermediate print is obtained at the end
of each shaft bearing iteration. The values of the variables,
the inner ring displacements (DEL), and the equation residues
are printed.

At the end of each bearing iteration, wherein the rolling
element and cage equilibrium equations are solved, an error
parameter is printed which has the value:
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E P =

rror Parameter XN/XN_1

Xy is the change in the variable X specified
at iteration N,

XN-1 is the value of the variable specified
at the previous iteration.

The Error Paremeter is calculated for each of the bearing
variables, but only the largest one is printed.

Additionally, at the end of each Clearance Change itera-
tion, the clearance change error parameter is printed. This
error is defined by Eq. 2.28.

If NPRINT is set at 2, all of the above information is
printed. Additionally, the variable values and residue values
are printed for each iteration of the rolling element and cage
"equilibrium solution.

Item 4: ITFIT controls the number of iterations allowed
to satisfy the bearing clearance change iteration scheme. If
ITFIT is set to zero (0), or left blank, the clearance change
portion of the program is not executed. 1If a position integer
is input, the clearance change scheme is utilized with a maximum
iteration limit of five (5). If a negative interger is input,
the scheme is used with a maximum jteration limit equal to
the absolute value of the negative integer.

Item 5: ITMAIN limits the number of iterations attempted
during the solution of the shaft and bearing inner ring equili-
brium problems, i.e., establishing the equilibrium of bearing
reactions and applied shaft loads. If ITMAIN is left blank,
set to zero, or to a positive integer, then (15) iterations
are premitted. If ITMAIN is set to a negative integer, the
number of iterations is limited to the absolute value of that
integer.
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Item 6: GOV (2) or EPSFIT is the convergence criterion
for the diametral clearance change portion of the analysis.
As mentioned under item 3 above, this error parameter is
defined by Eqg. 2.28.

The iteration scheme is terminated when the error para-
meter is less than the input value of EPSFIT. If EPSFIT is
left balnk or is set to zero (0), the program default value
of 0.0001 is used.

Items 7 & 8: Main loop accuracy for frictionless elastic
(EPS1) and friction solution (EPS2). These accuracy values
control the accuracy of the shaft bearing deflection solution
as well as the quasi-dynamic solution of the component dynamics
(cf. Section 3). If EPS1 and EPS2 are left blank or set to
zero (0), default values of 0.001 and 0.0001 respectively are
used.

Item 9: IMT, if set to 1, the Material properties for
both bearing rings and the rolling elements are to be input
on card types B 11 through B 19. If IMT is zero or blank,
the rings and rolling elements are assumed to be steel.

Card types B 11 through B 14 are required only if the change
in bearing diametral clearance is to be calculated.

Item 10: NPASS controls the level of the bearing solution

0 Elastic Contact Porces are calculated. No lubrication
or friction effects are considered.

1 Elastic Contact Forces are calculated. Lubrication
! and friction effects are considered using raceway control
3 (ball bearing) or epicyclic (roller bearing) assumptions
to estimate rolling element and cage speeds.

2 Inner Equilibrium is satisfied considering only the
Elastic Contact Forces. Using the inner ring positions
thus obtained, rolling element and cage equilibrium
are determined considering friction.

3 Complete Solution. The inner ring, rolling element
and cage equilibrium is determined considering all
elastic and friction forces.

3.3 Data Set II - Bearing Data

Most of the input instructions are self-explanatory.
Where certain items are deemed to require more explanation
than given in the input data format instructions, they are
treated on an individual basis by card type and item number.
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Most of the bearing input data is read into a two dimen-
sional array named "BD," which has the dimensions (1830, 5).
For each of the five bearings permitted on a shaft, a total
of 1830 pieces of data may be stored. Denoting BD(I,J), I
represents a specific piece of bearing data, J represents
the bearing number. The bearing input data of Data Set II
occupies the first 106 locations of the 1830 allocated. On
the input data format sheets, the designation BD(I) where
I-1...106, denotes the location within the BD array where
each piece of input data is stored.

3.3.1 Card Type 1 - Bearing Type and Material Designations

Item 1l: Bearing type, columns 1-10 must be specified,
left justified, i.e., "B" or "C" in column 1. This format
must be followed since the Program recognition of bearing
type, (ball bearing or cylindrical roller bearing), is derived
from reading the "B" or "C" in the first column of this card.

Item 2 & 3: Columns 11-30 and 31-50, "Steel designations,”
inner and outer rings, respectively. The alphameric-literal
description of the steel types such as "M-50" or "AISI 52100"
is input.

Items 4 & 5: Columns 51-60 and 61-70, the numbers input
for items 4 (inner ring) and 5 (outer ring) are used to account
for improved materials and multiply the raceway fatique lies
as determined by Lundberg-Palmgren methods. Typical life
factor values for modern steels are in the neighborhood of 2.0
to 3.0. If the ASME Publication Life Adjustment Factors for
Ball and Roller Bearings, is referenced by the user, the Material
Factor D and the Material Process Factor E should be used
multiplicatively as inputs for items 4 and 5. Additionally, if
the user is accustomed to using a lubricant life multiplier
he must also multiply the material factor by the lubricant life
multiplier. The program considers EHD film thickness and RMS
surface roughness but generates a life multiplier having
a maximum value of 1 and a minimum of 0.479, i.e. Lube-Life Factor
Programmed only serves to reduce predicted Fatigue Life.

Item 6: Columns 71-78, "Orientation angle of the first
rolling element." (#gl) (degrees). Refer to Fig. (2.4). The
quasi-dynamic rolling element bearing problem has an infinite
number of solutions which fall within a narrow envelope having
a periodic shape. The solution obtained is a function of
the rolling elemént positions relative to the bearing system
coordinate axes. ¢l = 0, places a rolling element on the Y
axis and is the choise customarily made. ¢l can be desig-
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360
nated as any value 0%¢4 ——where Z is the number of rolling

elements. For each different value assigned to gl, a differ-
ent, although similar, bearing solution will be obtained. To
take advantage of bearing symmetry and the computer time savings
which result, g1 must be specified as zero or left blank.

Item 7: Column 80, a signal, termed the crown drop flag,
which specifies for a cylindrical roller bearing, whether the
roller-race crown drops will be calculated, or read directly.
If item 7 is blank or zero, the crown drops are calculated
based on the roller-race crown radius, and effective flat
length input information. If the crown drop flag is other than
zero or balnk, the non-uniform separation of the roller and
raceway must be specified at the center of each slice into
which the roller-raceway effective contact length is divided.
The slice widths are identical. The number of slices is
input as item 7 card type B4. The non-uniform roller-raceway
separation is input on card types B5 and B6.

3.3.2 Card Type B2 - Bearing Geometry and Outer Ring Speed

Item 1, 2 and 5 need no explanation, however, items 3
and 4 require substantial explanation as they apply to the
various types of ball bearings.

3.3.2.1 Ball Bearing Geometry

Through the proper specification of the diametral clearance
and contact angle, the Program can properly handle deep grove,
split inner, and angular contact ball bearings.

The deep groove ball bearing requires the specification
of zero contact angle and either the operating diametral clear-
ance Pd or the off-the-shelf diametral clearance, if the dimen-
sional change analysis is utilized.

The angular contact bearing is fully described through
specification of the contact angle which obtains under a gauge,
axial load. However, this method of input does not accurately
define the system if there is more than one angqular contact
supporting the shaft and at least one of those bearings has
its grooves offset in the direction opposite to the other
bearings and if the shaft is capable of axial and/or radial
play. 1In other words, if what are known as angular contact
ball bearings are mounted such that some diametral shaft
play is permitted, an auxilliary angle as well as the diametral
play must be specified at input. The angle input is not the




manufacturer's designated contact angle,o< , but an auxilliary
angle,oco, the calculation for which shall be demonstrated.

Refer to Figure 3.1. The manufacturer's contact angle is
calculated as follows:

o = cos! [ﬁi%i] (3.1)

A = ry+ryo- D (3.2)

where: T, and r. are the outer and inner raceway groove
radii respectively

D is the ball diameter

Under a gauge axial load < is obtained at both inner and
outer raceways for each ball. Under this condition, the outer
and inner raceways are axially offset an amount s,

Se¢ = A Sine (3.3)

When angular contact ball bearings are mounted with some
diametral play, the grooves are offset an amount Sx, such that
Sg€< S« . The diametral play which obtains at this condition
is Sd. This diametral play is usually known by the engineer
or designer and is usually required to allow some forgiveness
when thermal gradients are encountered. Assuming that the user
has the values fore , Tos Ts) D and S“o then:

x, = tan’! [;_?d ] (3.4)

where: Pd and A may be calculated from Eqs. (3.1) and (3.2).

The manufacturer might be able to provide the value of
Sx _ at the Sd value of interest. If not, the following
eqﬁation may be solved foro<o.
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sd
7 Cos?ag - A Cosep + A - Bd- g (3.5)

Note: Sxg should be less than S« and w, should be less thane.

Equation (3.6) is derived by developing two expressions
for the radial separation (Ar) of the outer and inner raceway
curvature centers.

Ar = A - Pd
=2

- - sd .
Ar = (A i_.COSqO) Cosag (3.6)

_ Pd
A 5=

A Cosxg - -g—d-Coszoco

In order that the Program properly handle split inner
ring ball bearings an auxilliary angle and diametral play must
be input. Referring to Figure 3.2, the auxilliary anglex, and
diametral play Sd must be determined and input. Typically,
the values of D, ro,« g and Sd' are known. Pd and Sd may be
calculated as follows:

Pd

sd' + (2ri-D) (1-Cosag) (3.7)

sd

[pa - 2a (l—Cosao)] /cosy, (3.8)

The unloaded half of the inner ring must be removed from con-
sideration and the ball moved such that its center lies on the
line connecting the origins of r; and r, and positioned such
that the auxilliary clearance Sd}4 exisfs at both the inner
and outer raceways. The auxilliary angle is

= Tant [ (rj - D/2) Sinug ] (3.9)

(4
© T, - D/2 - §d'/z + (r; - D/2) Cosag
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The angle associated with each ball bearing must be
specified with the correct sign. A positive contact angle
allows the bearing to accept a positively directed axial
load transmitted by the shaft.

3.3.3 Card Type B3 - Rolling Element Geometry

These data are self explanatory. Although space has
been set aside for the specification of roller end radius and
roller included angle, this has been done for future considera-
tions and are not used by the program. The items may be left
blank.

3.3.4 Card Type B4 - Raceway and Roller Raceway Contact Geometry

3.3.4.1 Ball Bearing

Items one and two refer to the outer and inner raceway
curvatures respectively where curvature is defined as the
cross groove radius divided by the ball diameter. Typical
values range from 0.515 to 0.57.

3.3.4.2 Roller Bearing Contact Geometry Data

All items are used to define the roller-race contact
geometry, see Fig. 3.3 "Flat length” and "Crown Radius" are
used to calculate roller-race separation along the roller
profile if this information is not specifically input. See
Item 7 of the Bearing Data title card and Bearing Data Cards
B5 and B6.

Items 1 and 4 "Effective Contact Length" refer to the
longest possible length which can obtain at a roller-race
contact. Typically, this is the roller total length less the
corner radii. 1If, however, the raceway undercuts are excep-
tionally large so that the tract width is smaller than the
effective roller length then the tract width should be input.

Item 7 refers to the number of slices into which the
roller raceway contact may be divided. A maximum value of
twenty is permitted a default value of two is used if Item 7
is blank or zero. Each slice is the same width.

3.3.5 Roller-Raceway Non-Uniform Profile Definition

3.3.5.1 Card Type B5 - Inner Roller Raceway Contact

These cards are used to input the inner and outer race
roller-race separation along the roller profile. With the
high points of the roller and race in contact, i.e. with all
clearance between roller and raceway removed. These cards
must be omitted if item 7 of the Bearing Data Title card is
zero or blank.
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3.3.6 Card Type B6 - Outer Roller Raceway Contact

Same as Card Type BS.

3.3.7 Card Type B7 - Raceway-Rolling Element Surface Data

Items 1 through 6 define the statistical surface micro-
geometry parameters of the rollers and raceways. Items 1 through
3 require the input of center line average CLA surface rough-
ness. Within the program CLA values are converted to RMS by
multiplying by 0.9.

Items 4 through 6 are RMS values of the slopes measured
in degrees of the surface asperities as measured in a traverse
across the groove for rings, longitudinally for rollers and
in any arbitrary direction for balls. Typical values for
raceway and rolling element surfaces are 1 to 2 degrees.

This card is omitted if item 10 of title card 2 is zero or
blank.

3.3.8 cCard Type B8 -~ Cage Data

This card is omitted if item 10 of the title card 2 is
zero or blank. These data are self explanatory. Note that the
cage weight is an input item. The weight, however, is not
used in any calculation. It is included only for future con-
sideration of cage stability predictions.

3.3.9 Card Type B9 - Shaft and Housing Fit Dimensions

These cards are to be included only if the change in
, bearing diametral clearance with operating conditions is to
i be calculated, i.e. if item 4 ITFIT on the Bearing Title Card 2
: is non-zero. On Card Type B9, tight interference fits bear a
positive sign and loose fits, a negative sign.

Items 3 and 6 on Card No. 9 are termed the shaft and
housing effective widths, respectively. The value specified
for these effective widths may be as great as twice the ring
width.

Use of an effective width is an attempt to account for
the greater radial rigidity of a shaft than the ring that is
pressed on to it, owing to the fact that the shaft deflects
over a distance that extends beyond the ring width. 1In the
proaram, the calculated internal pressure on the ring due to
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its interference fit with the shaft, is distributed over the
shaft effective width and this (lower) pressure is used in
computing the shaft deflection. Using double the actual width
as the effective width is customary.

3.3.10 card Type Bl0 - Shaft Housing Fit Dimensions

These items are self explanatory, and are used to describe
equivalent ring sections, see Fig. I 2.1l.

3.3.11 Card Type Bll

This card defires the elastic modulus for the shaft, inner
ring, rolling element, outer ring, and housing, respectively.
This card is to be included only if the change in bearing
diametral clearance with operating conditions is to be calcu-
lated, ji.e., if item 4 ITFIT on the Bearing Title Card is non-
zero.

3.3.12 card Type Bl2

This card defines the Poisson's ratio for the shaft, inner
ring, rolling element, outer ring, and housing, respectively. ]
This card is to be included only if the change in bearing
diametral clearance with operating conditions is to be calcu-
lated, i.e., if item 4 ITFIT on the Bearing Title Card is non-
zero.

3.3.13 Card Type B1l3

This card defines the density for the shaft, inner ring,
rolling element, outer ring, and housing, respectively. This
card is to be included only if the change in bearing diametral
clearance with operating conditions is to be calculated, i.e.,
if item 4 ITFIT on the Bearing Title Card is non-zero.

3.3.14 card Type Bl4

This card defines the coefficient of thermal expansion
for the shaft, inner ring, rolling element, outer ring, and
housing, respectively. This card is to be included only if
the change in bearing diametral clearance with operating con-
ditions is to be calculated, i.e., if item 4 ITFIT on the Bearing j
Title Card is non-zero. ;

3.3.15 card Type B1l5 - Lubrication and Friction Data i

This card is omitted if item 10 of title card 2 is zero
or blank.
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Items 1 and 2

These items are the amounts by which the combined thickness
of {"e lubricant film on the rolling track and rolling element is
increased during the time interval between the passage of successive
rolling elements, from whatever replenishment mechanisms are
operative. Items 1 applies to the outer and Item 2 to the inner
race-rolling contacts, respectively. If Item 1 is zero or
blank, the mode of friction is assumed to be dry.

At the present time, the magnitude of the inner and
outer raceway replenishment layers has not been correlated to
lubricant flow rate, lubricant application methods and bearing
size and speed factors. At this point then, the user is
forced to establish proper values for the replenishment layer
thickness. As a rough guide, the following suggestions are made.

1. To avoid starvation, the replenishment layer thick-
nesses should be one or two times the EHD film thick-
ness which develops in the rolling element raceway
contacts.

2. Because of centrifugal force effects, intuition suggests
that the outer raceway replenishment layer should be
several times thicker than that prescribed at the inner
raceway.

Item 3, XCAV, describes the percentage of the bearing
cavity, estimated by the user to be occupied by the lubricant.
0<XCAVE$100.

of free lubricant should be able to be correlated with lubricant
flow rate, lubricant application methods and bearing size and
speed factors. At this time, such correlations do not exist.
XCAV values of approximately one percent are recommended at

this point.

As with the replenishment layer thicknesses, the amount i

Item 4 is the coefficient of coulomb friction apglicable
for the contact of asperities. If Items 1 and 2 are zero,
then Item 4 serves as the coulomb friction coefficient which
prevails in all contacts.

3.3.16 Card Type Bl6

This card is omitted if Item 10 title card 2 is zero or
blank or if Item 1 card 15 is zero or balnk which implies dry
friction.

This card specifies the lubricant type. If Item 1, NCODE
is 1, 2, 3, or 4, the Program uses preprogrammed lubricant
properties as presented in Table 1, and no further information
is required.
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NCODE Lubricant

A specific mineral oil
A MIL-L-7808G

C-Ether

A MIL~L-23699

W N

NCODE may also be specified as negative (-1 to -4), in
which case, the traction characteristics of the respective
lubricant NCODE noted above are used but the actual properties
specified by Items 2 through 7 override the hard coded data.
This option is most useful in specifying various mineral oils
i.e. NCODE = -1.

3.4 Data Set I1I - Thermal Model Data

Appendix I 1 has been included to aid the user in data
preparation and calculation of heat transfer coefficients
required at input.

3.4.1 Card Type 1

Card type 1 is a control card. If no temperature map
is to be calculated, this card is to be included as a blank
card followed by a Type 2 card for each bearing on the shaft.
Card Type 1 contains control input for both steady state and
transient thermal analyses. It is not intended, however,
that both analyses be executed with the same run.

Item 1: The highest node number (M). The temperature
nodes must be numbered consecutively from one (1) to the
highest node number. The highest node number must not exceed
one hundred (100).

Item 2: Node Number of the Highest Unknown Temperature
Node (N). This number should equal the total number of
unknown node temperatures. It is required that all nodes
with unknown temperatures be assigned the lowest node numbers.
The nodes which have known temperatures are assigned the
highest numbers.

Item 3: Common Initial Temperature (TEMP)®C: The tempera-
ture solution iteration scheme requires a starting point, i.e.,
guesses of the equilibrium temperatures. Card Type 3 allows
the user to input guesses of individual node temperatures.
When a node is not given a specific initial temperature, the
temperature specified as Item 3 of Card Type 1 is assigned.

Item 4: Punch Flag (IPUNCH): If the Punch Flag is not
zero (0) or blank, the system equilibrium temperature - along
with the respective node numbers will be punched according
to the format of Card T3. This option is useful if, for
instance, the user makes a steady state run with lubrication,
and then wishes to use the resultant temperature as the initia-
tion point for a transient dry friction run in order to assess
the consequence of lubricant flow termination.
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Item 5: "Output Flag" (IUB). If the "Output Flag" is
not zero, the bearing program output and a temperature map
will be printed after each call to the shaft bearing solution
scheme. This printout will allow the user to observe the flow
of the solution and to note the interactive effects of system
temperatures and bearing heat generation rates. Since the
temperature solution is not mathematically coupled to the bearing
solution, the possibility exists that the solution may diverge
or oscillate. 1In such a case, study of the intermediate output
produced by the "Output Flag" option may provide the user with
better initial temperature guesses that will effect a steady
state solution.

Item 6: "Maximum Number of Calls to the Shaft Bearing
Program" (IT1). ITl1l is the limit on the number of Thermal-
Shaft-Bearing iterations, i.e., the external temperature
equilibrium calculation. The user must input a non-zero
integer such as 5 or 10 in order for the Program to iterate
to an equilibrium condition. If IT1 is left blank or set to
zero (0) or 1, shaft bearing performance will be based on the
initially quessed temperatures of the system. The tempera- 3
tures printed out will be based on the bearing generated §
heats. It is unlikely that an acceptable equilibrium condition ‘
will be achieved. However, the temperatures which result may
provide better initial guesses, for a subsequent run, than
those specified by the user.

ITl also serves as a limit on the transient temperature
solution scheme, by limiting the number of times the shaft-
bearing solution scheme is called. Each call to the shaft-
bearing scheme will input a new set of bearing heats to the
transient temperature scheme until a steady state condition
is approached or until the transient solution time up limit
is reached.

Item 7: "Absolute Accuracy of Temperatures for the
External Thermal Solution" (EPl). 1In the steady state thermal

solution scheme, each calculation of system temperatures occurs
after a call to the shaft-bearing scheme which produces bearing
generated heats. After the system temperatures have been
calculated for each iteration, using the internal temperature
solution scheme, each node temperature is checked against the
nodal temperature at the previous iteration.

If {t(N)’ - t(n-1)i}¢ EP1 for all nodes i then equilibrium
has been achieved’ and Lhe

iteration process stops.




Item 8: "Iteration Limit for the Internal Thermal Solution"
(IT2). After each call to the shaft-bearing program, the
internal temperature calculation scheme is used to determine
the steady state equilibrium temperatures based on the calculated
set of bearing heat generation rates. If the program is used
to calculate the temperature distribution of a non bearing
system, it is the internal temperature scheme which is employed.
If IT2 is left blank or set to zero, the number of internal
iterations is limited to twenty (20).

Item 9: "Accuracy for Internal Thermal Solution" (EP2).
The use of EP2 is explained in Section 2.1.1. If EP2 is left
"blank or set to zero (9), a default value of 0.001 is used.

Item 10: "Starting Time" (START) is a time Tg at which
the transient solution begins; usually set to zero (0).

Item 11: "Stopping Time" (STOP) is the time in seconds at
which the transient solution terminates, Tg. The transient
solution will generate a history of the system performance
which will encompass a total elapsed *time of

(Tf - Ts) seconds

Item 12: "Calculation Time Step" (STEPIN). The transient
internal solution scheme solves the system ¢f equations
treel = tx + K AT
oCpV (3.10)

AT = STEPIN

The user may specify STEPIN. If left blank or set to zero (0),
the Program calculates an appropriate value for STEPIN using
the procedure described in Section 2.1.2,

Item 13: "Time Interval Between Printed Temperature Maps"
(TTIME) seconds. The user must specify the length of time
which will elapse between each printing of the temperature
map. The interval will always be at least as large as the
"calculation timestep" (STEPIN).

Item 1l4: "Time Interval Between Calls of the Shaft Bearing
Portion of the Program" (BTIME). BTIME will always have a value
larger than or equal to (STEPIN) even if the user inadvertently
inputs a shorter interval. Computational time savings result
if BTIME is greater than STEPIN, however, accuracy might be lost.
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3.4.2 Card Type 2

Card Type T2 is required, one card for each bearing if no
thermal analysis is being performed. The temperature data is
used within the shaft-bearing analysis portion of the program
to fix temperature dependent properties of the lubricant in
which case the inner race, outer race and lubricant bulk
cavity temperatures are used. The assembly component tempera-
tures at each bearing location are used in the analysis which
calculates the change in bearing diametral clearance from
"off the shelf" to operating conditions.

Item 9: "Flange" temperature is not currently used in the
analysis. It simply provides for future consideration of
tapered roller bearings.

3.4.3 Card Type 3

In the steady state analysis this card is used to input
initial guesses of individual nodal temperatures for unknown
nodes as well as the constant temperatures for known nodes,
such as ambient air and/or an oil sump.

In the transient analysis, Card Type T3 is used to input
the nodal temperatures of all nodes at (START) = Tg 1i.e.,
at the initiation of the transient solution.

3.4.4 Card Type 4

With this card, node numbers are assigned to the components
of each bearing, one card per bearing. With this information, the
proper system temperatures are carried into each respective
bearing analysis. The inner race and inner ring node numbers
may or may not be the same at the user's discretion. Similarly,
the outer race and outer ring node numbers may or may not be
the same.

3.4.5 Card Type 5

The shaft bearing system analysis accounts for frictional
heat generated at four locations in the bearing, i.e., at the
inner race, the outer race, between the cage rail and ring
land, and in the bulk lubricant due to drag. The heat genera-
ted at the hydrodynamic cage-rolling element contact is added
to the bulk lubricant. Heat generated at the flange is not
presently considered. This card allows the heat generated to
be distributed equally to two nodes. For instance, the heat
generated at the inner race-rolling element contact should be
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distributed half to the rolling element and half to the inner
race. The heat developed between the cage and inner ring
land may be distributed half to the inner ring and half to
the cage if a cage node has been defined, otherwise, half to
the bulk lubricant.

3.4.6 Card Type 6

This card specifies the node numbers and the heat genera-
tion rate for those nodes where heat is generated at a constant
rate such as at rubbing seals or gear contacts.

3.4.7 Card Type 7

This card type is used to input the numerical values
of the various heat transfer coefficients which appear in the
equations for heat transfer by conductivity, free convection,
forced convection, radiation and fluid flow. Up to ten
coefficients of each type may be used. Separate values of
each type of coefficient are assigned an index number via
card T7 and in describing heat flow paths (Card Type T8 below)
it is necessary only to list the index number by which heat
transfers between node pairs.

Incides 1-10 are reserved for the conduction coefficient
A, 11-20 for the free convection parameters, 21-30 for forced
convection, 31-40 for emissivity and 41-50 for fluid flow
(product of specific heat, density and volume flow rate).

As an example, for heat transfer by conduction with
coefficient A of 53.7 watts/MOC one could prepare a card type
T7 with the digit 1 punched in column 10 and the value 53.7
punched in the field corresponding to card columns 11-20.
If a conduction coefficient of 46.7 were applicable for
certain other nodes in the system, one could punch an additional
card assigning index No. 2 to the valueA = 46.7 by punching
a "2" in card column 10 and 46.7 anywhere within card columns
11-20.

Rather than inputting constant forced convection coefficients,
optionally, these coefficients can be calculated by the program
in oen of three ways. If the calculation option is exercised
a pair of cards is used in place of a single card containing
a fixed value of &« . The contents of the pair of cards depends
upon which of the three optional methods are used.

Option 1) is independent of temperature but is calculated
as a function of the Nusselt number which in
turn is a function of the Reynolds number Re, |
the Prandtl number P, as follows, (cf. {17})




o = A 0il/LNy (3.11)

N

u aRng (3.12)

where ;\oilis the lubricant conductivity, L is a

characteristic length (with a unit of meters)
and K, a, b and ¢ are constants.

Option 2) ® is a function only of fluid dynamic viscosity
and viscosity is temperature dependent.

d (3.13)

0(=cq
where c and d are constants
Option 3) o is a function of the Nusselt, Reynolds and
Prandtl numbers, and viscosity is temperature
dependent.

3.4.8 Card Type 8

Thic card defines the heat flow paths between pairs of
nodes. Every node must be connected to at least one other
node, i.e., two or more independent node systems may not be
solved with a single Program execution.

The calculation of heat transfer areas is based on lengths,
Ly and L, input using Card Type T8. Additionally, the
type of surface for which the area is being calculated is
indicated by the sign assigned to the heat transfer coefficient
index. If the surface is cylindrical or circular, the index
should be positive, if the surface is rectangular the index
should be input as a negative integer.

In the case of radiation between concentric axially
symmetric bodies, L3 is the radius of the larger body. For
radiation between two parallel flat surfaces or for conduction
between nodes, Lg is the distance between them.

Fluid flow heat transfer accounts for the energy which
the fluid transports across a node boundary. Along a fluid
node at which convection is taking place, the temperature
varizs. The nodal temperature which is output is the average
of the fluid temperature at the output and input boundaries.
If the emerging temperature of the fluid is of interest, it
is necessary to have a fluid node at the fluid outlet. At
this axiliary node, only fluid flow heat transfer occurs and
the fluid temperature would be constant throughout the node.
Thus, the true fluid outlet temperature will be obtained.
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Conduction of heat through a bearing is controlled by
index 51. The actual heat transfer coefficient which contains
a conductivity, area and a path length term is calculated in
the bearing portion of the program. The term is based upon
an average outer race and inner race rolling element contact.

3.4.9 Card Type 9

This card inputs data required to calculate the heat
capacity of each node in the system. This card type is required
only for a transient analysis.

3.5 Data Set IV - Shaft Input Data

The Shaft-bearing analysis requires all loading to be
applied to the shaft. The loads applied to each bearing are
a product of the shaft-bearing solution. There is no need
for the user to solve the statically determinant or indeter-
minant system for bearing locads. Even if a single bearing is
being analyzed, with the applied load acting through the center
of the bearing, data for a dummy shaft must be supplied.

In the analysis, the housing is assumed to be rigid.
Provision has been allowed to input data for housing radial
and angular spring characteristics. However, this has
been done for future consideration of an elastic housing and
is therefore currently unavailable.

The shaft input data consists of three card types:

1. Shaft Geometry and Elastic Modulas Data
2. Bearing Position and Mounting Error Data
3. Shaft Load Data

3.5.1 Card Type 1

This card type is used to describe shaft geometry at up
to twenty locations along the shaft. The user must place his
shaft in a cartesian coordinate system with the end of the
shaft at the origin and with the shaft lying along the X-axis.

The shaft may have stepwise and linear diameter variations.
The stepwise variations require a single card which specifies
different diameters immediately to the left and right of the
relevant X shaft coordinate. The shaft analysis assumes a
linear diameter variation if on two successive cards, i.e.
two successive X coordinates, the diameters to the right of the
location differ from the diameters to the left of the location
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of the following card. Complex shaft geometries may be
approximated with a set of linear diameter variations spaced
at close intervals.

If an Elastic Modulus is not specified at the designated
input location, the modulus of steel is assumed, 204083 N/mm2.

3.5.2 Card Type 2

Tkis card type locates the bearing inner ring on the
shaft in the X-Y and X-2 planes. For a ball bearing, the
X coordinate specified locates the inner ring center of
curvature. For cylindrical roller bearings, the X coordinate
locates the center of the inner race roller path,

In addition to specifying bearing location, the Type 2
card is also used to specify housing radial and angular
mounting errors. As mentioned previously, space has been
reserved for inputting housing radial and angular spring
characteristics, however, these characteristics are not used
in the system analysis.

Two sets of Type 2 cards may be required. The first set
is always required and defines housing alignment errors in the
shaft X-Y plane. The second set defines the housing align-
ment errors in the shaft X-Z plane and is required only if
non zero errors exist for the particular bearing in question.

The first set of Type 2 cards must contain a card for
each bearing.

3.5.3 Card Type 3

Type 3 cards are used to specify shaft loading at a
given X coordinate. Loading may be applied in the x-y and
x-2z planes, thus requiring two distinct sets of Type 3
cards. Applied loads may have the form of concentrated radial
forces, concentrated moments, linearly distiributed radial
forces and concentrated axial loads which may be eccentrically
applied. 1If an axial load is eccentrically applied, the moment
which results must not be separately calculated and input as
a concentrated moment.

Variations in distributed radial loads are handled at
input just as shaft linear diameter variations are handled.

Note that each set of Type 3 cards must be followed by
a blank card.

|
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Also, note that in order for symmetry conditions
(see section 2.4.2) to be considered the second type 3
card must be void of any loading data.
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4. COMPUTER PROGRAM OUTPUT

4.1 Introduction

The Program Output is intended to provide the engineer or
designer with a complete picture of the shaft-bearing system
performance.

In addition to the calculated output data, the input data
is listed, thus producing a complete record of the computer
run.

A sample set of program output is included for reference
as Appendix II 3 and represents an NPASS=2 solution for a two
bearing system comprised of a 209 size cylindrical roller
bearing, a single 110 mm bore angular contact ball bearing
operating at 10,000 rpm under a thrust load of 2,000 1lbs.
(8,896 Newtons) with MIL-L-23699 lubricant and a 6220 size
split inner ring angular contact ball bearing operating at
15000 RPM under shaft loads of 8896 Newtons axial, 2248 Newtons
radial and a moment load of 4000 Newton millimeters. The
bearings are lubricated with an MIL-L-7808G lubricant.

The first seven pages of output essentially consists of
a summary of the input data categorized into bearing, cage,
steel, lubricant, fit temperature and shaft geometry and
loading data.

For four specific lubricants, see Table 1, the relevant
lubricant data has been coded into the Program. In this case,
the lubricant input information consists only of a single number
which designates the particular lubricant but the relevant
information for the lubricant is printed in the input data list.

Except as just noted, the actual results of calculations
are printed under the headings "Bearing Output" and "Rolling
Element Output.”

Key output items are discussed briefly below.




4.2 Bearing Output 4

4.2.1.1 Linear and Angular Deflections 1

These deflections refer to the bearing inner ring relative
to the outer ring and are defined in the inertial coordinate
system of Figure 2.4. The bearing deflections are not necessarily
equal to the shaft displacements since the bearing outer ring
radial or angular mounting errors may be specified as non-zero
input.

4.2.1.2 Reaction Forces and Moments

These values reflect bearing reactions to shaft applied
loading and outer ring mounting errors.

When the bearing inner ring has achieved an equilibrium
position, the summation of all bearing reaction loads should
numerically equal the shaft applied loading. When the level
of solution indicated by "NPASS" = 2 is employed, as discussed
in Section 5, differences between shaft applied and bearing
reaction loads will exist but will typically be less than 10%.

This difference is a consequence of friction forces con-
tributing to the reaction loads whereas the inner ring equilibrium
position has been determined considering elastic contact forces
only.

4.2.2 Fatigue Life Data

The Ljg fatigue life of the outer and inner raceways as
well as the bearings are presented. The bearing life represents
the statistical combination of the two raceway lives. These
lives reflect the combined effects of the lubricant film thick-
ness and material life factors. The lubricant film thickness
life factor is described in detail in Section 3.

4.2.2.1 h/sigma

The ratio h/g¢, also referred to asA, is printed for the
most heavily loaded rolling element. The variable h, represents
the EHD plateau film thickness with thermal and starvation
effects considered. The variable® , represents the composite
root mean square surface roughness of the rolling element and
the relevant raceway.
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4,2.2.2 Life Multipliers

4.2.2.2.1 Lubrication - This life multiplier is a function of
h/¢ at each concentrated contact and is in the form of a
derating factor. Its value ranges from 0.479 for h/g = 0 to 1.0
at h/g¢ 24. Since the lubricant life multiplier is decremental
the normal multiple of 3 used for thick film lubrication must

be multiplied by the material life factor normally used and

this product should be specified at input. This subject is
covered in more detail in Section 3.3.1.

4.2.2.2.2 Material - This output simply reflects the input
value. Again, 1t is covered in Section 3.3.1.

4.2.3 Temperatures Relevant to Bearing Performance

These temperatures fully describe the temperature condi-
tions which affect the performance of a given bearing. If one
of the temperature mapping options is used, the temperatures
printed reflect the results of the particular option. 1If,
neither temperature option was used, the list is simply a repeat
of the input data. Note that there are separate temperatures
for outer and inner raceway and ring temperatures. The raceway
temperature is used to determine lubricant properties. The
ring temperatures are used in the bearing dimension change
analysis. The raceway and ring temperatures may be the same
value.

4.2.4 Frictional Heat Generation Rate and Bearing Friction Torque

4,2.4.1 PFrictional Heat Generation Rate

The various sources of frictional heat generated within
the bearings are listed. The values printed for "OUTER RACE,
OUTER RINGS, INNER RACE, INNER RINGS, R.E. DRAG AND R.E.-CAGE"
represent the sum of the generated heats for all rolling ele-
ments. Additionally, the heats printed for the outer and inner
raceways plus the rolling element-cage, reflect the friction
developed outside the concentrated contacts, i.e., the HD friction
as well as the EHD friction developed within the concentrated
contacts. The raceway data also include any heat generated
as a consequence of asperity contacts. "R.E. DRAG" should be
interpreted as the heat resulting from lubricant churning as
the rolling elements plow tnrough the air-oil mixture. Items
2 and 4 relevant to rolling element-flange contacts are present
for future program expansion.
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4.2.4.2 Torque ;

The torque value is calculated as a function of the total

generated neat and the sum of the inner and outer ring rotational j
speeds. The intent is to present a realistic value of the torque ;
required to drive the bearing. Under conditions of inner ring
rotation, the torque value reflects the torque required to drive
the inner ring. The inner ring torque includes that fraction
of torque required to impart an angular velocity to the lubri-
cant in the bearing. A considerable portion of the lubricant
will come to rest within the housing and not at the outer ring.

[ Thus, the measured outer ring torque may not equal the torque

| at the inner ring.

4.2.5 EHD Film and Heat Transfer Data

4.2.5.1 EHD Film Thickness

These values refer to the calculated EHD plateau film
thickness at both contacts of the most heavily loaded rolling
element and include the effects of the thermal and starvation
reduction factors.

4.2.5.2 Starvation Reduction Factor

These factors give for the inner and outer ring contacts,
the reduction in EHD film thickness ascribable to lubricant
film starvation according to the methods of Chiu, (11).

These factors pertain to the EHD film thickness for both
the inner and outer race contacts of the most heavily loaded
rolling elements, but are applied to the respective inner and

: outer race film thickness for each rolling element in the bear-
‘ ing.

4.2.5.3 Thermal Reduction Factor

These factors are calculated according to the methods of
Cheng, (10) and pertain to the EHD film thickness for both
the inner and outer race contacts of the most heavily loaded
rolling elements, but are applied to the respective inner and
outer race film thickness for each rolling element in the
bearing.

4.2.5.4 Meniscus Distance

These factors are calculated according to the methods of
Chiu, (11) and pertain to the EHD film thickness for both
the inner and outer race contacts of the most heavily loaded
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rolling elements, but are applied to the respective inner and
outer race film thickness for each rolling element in the
bearing.

4.2.5.5. Raceway-Rolling Element Conductivity

These data reflect the amount of heat transfer between
rolling element and raceway for each degree centigrade differ-
ence between the two components. These data reflect the average
of all outer and inner contacts, respectively.

4.2.6 Ffit and Dimensional Change Data

4.2.6.1 Fit Pressures

These data refer to the pressures built up as a conse-
quence of interference fits between shaft and inner ring and
housing and outer ring. Pressures are presented both for the
standard cold-static condition (169C) and at operating
conditions.

4.2.6.2 Speed Giving Zero Fit Pressure (Between the Shaft
and Inner Ring)

This is a calculated value based upon operating conditions
and provides a measure of the adequacy of the initial shaft
fit.

4.2.6.3 Clearances

"Original" refers to cold unmounted clearance which is
specified at input if the diametral clearance change analysis
is executed. "Change" refers to the change in diametral
clearance at operating conditions relative to the cold unmounted
condition. A minus sign indicates a decrease in clearance.
"Operating” refers to the clearance at operating conditions.
For all types of ball bearings, the decrease in clearnace can
be combined with the initial diametral clearance, and the free
operating contact angle at operating conditions may be
calculated. Note that the change in clearance should be com-
pared against the diametral play of the split inner ring ball
bearing in order to determine if the possibility for three
point contact exists. The Program does not account for three
point contacts even though the change in clearance might suggest
that three point contact is obtained.
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4.2.7 Lubricant Temperatures and Physical Properties

The lubricant properties, particularly the dynamic vis-
cosity and to a lesser degree, the pressure viscosity coefficient,
are heavily temperature dependent. These factors enter the EHD
film thickness calculation and the HD and EHD friction models.

The lubricant is assumed to be at the same temperature as the
relevant raceway. As noted elsewhere, these temperatures may
be either input directly or calculated by the Program.

The physical properties printed are self-explanatory.
The units are enumerated.

4.2.8 Cage Data
4.2.8.1 Cage-Land Interface

The cage data indicates the performance parameters at the
interface between the cage rail and the ring land on which the
cage 1s guided. The torque, heat rate and separating force
require no explanation. The eccentricity ratio defines the
degree to which the cage approaches the ring on which it is
guided at the point of nearest approach. The radial displace-
ment of the cage relative to the bearing axis is divided by one
half the cage-land diametral clearnace. An eccentricity ratio
of one indicates cage-land contact. A ratio of zero indicates
that the cage rotation is concentric with the bearing axis.

Only the cage-land and rolling element pocket forces are
considered in determining the cage eccentricity. The cage
weight and centrifugal force which result from the eccentricity,
although available, are not considered in the analysis. The
omission of these considerations helps reduce convergence
problemns.

4.2.8.2 Cage Speed Data

Cage speed data presents the comparison between the cage
speed calculated based upon the quasidynamic equilibrium con-
siderations and the speeds calculated with raceway control
theory for ball bearings and the epicyclic speeds of the
roller bearing components.

4,3 xolling Element Output

4.3.1 Rolling Element Kinematics
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4.3.1.1 Rolling Element Speeds

All of the rolling element speeds tend to vary from
position to position when the bearing is subjected to
combined loading.

The total rolling element speed is with reference to the
cage and represents the vector sum of the three orthogonal
components.

4.3.1.2 Speed Vector Angles

The rolling element speed vector angles, Arctan (wy/wx)
and Arctan (wWz/wx) are presented in order to show a clearer
picture of the predicted ball kinematics. The ball speed
vector tends to become parallel with the bearing X axis with
increasing shaft speed and decreasing contact friction.

4.3.2 Rolling Element Raceway Loading

4.3.2.1 Normal Forces

The normpal forces acting on each rolling element are
printed. The rolling element race normal forces are self-
explanatory. The cage force is calculated only when the
friction solution is employed and is always directed along the
rolling element Z axis. If the rolling element orbital speed
is positive, a positive cage force indicates the the cage is
pushing the rolling element, tending to accelerate it. Cage
force is a function of rolling element position within the
cage pocket. Its magnitude is derived using hydrodynamic lubri-
cation assumptions, when the distance between the rolling
element and cage web is large, and EHD assumptions when the
separation is of the order of the EHD film thickness or when
rolling element-cage web interference exists.

4.3.2.2 Hertz Stress

The stress printed represents the maximum normal stress
at the center of each ball race contact or at the most heavily
loaded slice of the roller raceway contact.

4.3.2.3 Load Ratio QasE/Qtot

If the EHD film thickness is small compared to the RMS
composite rolling element-race surface roughness, the rolling
element-race normal load will be shared by the EHD film and
asperity contacts. The load ratio reflects the portion of the
total load carried by the asperities.




4.:3.2.4 Contact Angles

A ball bearing, subject to axial loading, misalignment or
mounted such that the inner ring is always displaced axially
relative to the outer rings, (i.e., a duplex set of angluar
contact ball bearings) will have non-zero contact angles.

At low ball orbital speeds, the inner and outer race angles

will be substantially the same. At high speeds, ball centrifugal
force will cause the outer race contact angle to be less

than the inner race angle.

4.4 Thermal Data

As in the case for bearing output, all of the input data is
printed. The calculated output data is presented in the form
of a temperature map in which a node number and the respective
node temperature appear. The appearance of the steady state
and transient temperature maps are identical. The transient
temperature map also includes the time (T) at which the
temperature calculations were made.

4.5 Shaft Data

These data simply reflect the input information.

4.6 SHABERiH Error Messages

4.6.1 Introduction

For various reasons, SHABERTH execution may terminate
before the desired results have been achieved. This section
is intended to give insight to the user as to the nature of
the problem which caused termination.

In some instances, error messages are printed and exe-
cution proceeds. These messages indicate that in one of the
internal iterative loops, a particular solution failed to
converge to the desired accuracy. These messages should be
taken as caution signals to the user to check the results
carefully. In particular, compare the calculated bearing reaction
forces against the applied shaft loading. If these results check
to within 10 percent with an NPASS = 2 solution and to within
I percent with an NPASS = 3 solution, the solutions should be
sufficiently accurate,

Additional means of evaluating solution accuracy are
rrsrnted in section 4.6.10.
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From ALLT - Message: '"STEADY STATE SOLUTION WITH (EP1)
DEGREES ACCURACY WAS NOT OBTAINED AFTER (IT1) ITERATIONS."
Explanation: This message pertains to the thermal equi-
librium solution in which bearing generated heat and
system temperatures must be consistent.

From AXLBOJ - Message: "ERROR MESSAGE, KX = (IER)
SINGULAR SET OF SHAFT EQUATIONS.' Explanation: This
message indicates an error in the input data which
describes the shaft.

From DAMPCO - Message: "THE NUMBER OF EQUATIONS CALCU-
LATED BY SUMMING THE NUMBER OF EQUATIONS IN EACH SUBSET
IS (NTOT). THIS DOES NOT EQUAL THE TOTAL NUMBER OF
EQUATIONS SPECIFIED (N) AN ERROR EXISTS AND EXECUTION
TERMINATES." Explanation: If the nonlinear equations
are comprised of M independent subsets, then N must
equal the summation of NSIZE(K) = 1,M.

K=M
NTOT = £ NSIZE(K) (4.1)
K=1

In SHABERTH M is always 1 and NSIZE(1) is N. This
message should thus never be written.

From EHDSKF - Message: '"AN IMPROPER LUBRICANT TYPE CODE
HAS BEEN PASSED TO EHD SKF. EXECUTION TERMINATES."
Explanation: Coming into EHD SKF N must have an integer
value 1, 2, 3 or 4, a test has shown that 13N>4,

From INTFIT - Message: '"SINGULAR MATRIX ON TIGHT SHAFT
FIT." Message: "SINGULAR MATRIX ON LOOSE SHAFT FIT."
Explanation: These messages indicate bad data entering
INTFIT.

From SHABE - Message: '"AFTER (ITFIT) ITERATIONS, ERRMAX
(ERRMAX) WHILE THE REQUIRED FIT ACCURACY WAS (ERFIT)."
Explanation: The bearing diametral clearance change
analysis did not converge in ITFIT iterations. Either
increase the number of iterations or set the number to
-2 for a good approximate solution.

From SONRI - Message: '"SINGULAR SET OF EQUATIONS, NPASS =
(NPASS)." Explanation: This message pertains to shaft
equilibrium solution and has never been known to occur.

4.6.3.1 From SONRI - Message: ''THE RELATIVE ACCURACY EPS HAS
NOT BEEN OBTAINED AFTER IT ITERATIONS IN ROUTINE SONRI."
Explanation: This message indicates that shaft bearing
inner ring equilibrium has not been achieved within the
specified number of iterations. This may occur under
light loading.
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4.6.9 From STARFC - Message: U***IN STARFC/ROOTI*** ROOT
OF F(X) DOES NOT EXIST BELOW HO.'" Explanation: The
iterative solution for the meniscus distance for a
rolling element raceway contact has not converged.

This occurs only when the specified replenishment layers
are extremely thin.

4.6.10 From SOLVXX

The majority of the error messages printed by SHABERTH
will be printed from SOLVXX, indicating that SOLVXX has been
unable to fully solve a particular set of nonlinear equations.
Within SHABERTH failure has never occurred during the solution
of a set of steady state thermal equations. Failure does occur,
however, in the solution of the bearing quasidynamic set of
rolling element and cage equations. The major portion of this
section should be read with this in mind.

4.6.10.1 Message: "ONLY (NDER) EQUATIONS WERE FOUND TO VARY
WITH X(J), ND(J) WERE EXPECTED.'" THE DIFFERENCES
EQ (X+DX) - EQ(X) + DIFF(I)" 1IF DIFF(I) IS LESS THAN
SF8*EQ(I), THEN EQ(I) IS NOT CONSIDERED TO VARY WITH
X SF8 = (SF8)." "FOR THE FOLLOWING EQUATIONS THE
DIFFERENCES ARE BIG ENOUGH" (C(N*J-N+I), I = 1, COUNT.
Explanation: The matrix of partial derivatives cal-
culated within SHABERTH must have at least N, nonzero
diagonal elements. It is possible to specify a mini-
mum number of nonzero elements greater than one, for
each variable with the use of the array ND. If that
minimum number is not obtained, the above set of
error messages is printed., In SHABERTH, only the
diagonal elements are required.

4.6.10.2 Message: ''**** ERROR MESSAGE FROM THE EQUATION
SOLVING ROUTINE AT ITERATION LOOP (LOQP) #**##% n

One of the four following situations has occurred.
Situations 1. and 2. have never been known to occur;
3. and 4., however, have, and are explained.

1. T"SINGULAR SET OF EQUATIONS,'" IER = 1.

2. "DIVERGENCE HAS OCCURRED 10 CONSECUTIVE ITERA-
TIONS," IER = 2.

3. "THE LIMIT FOR NUMBER OF ITERATIONS IS REACHED,"
IER = 3.

This message (No. 3) indicates that the solution accuracy is not as

good as desired. To achieve the required accuracy, the problem
might be rerun with the iteration limit increased. This is accom-
plished at solution level NPASS = 2, through changing the '"20" in
CALL BEAR statement in "SHABE" from 20 to a larger number. At
solution level NPASS = 3, the "30" in the CALL BEARC statement in
SONRI must be increased to a larger number.

Prior to making these Program changes, however, the magni-
tudes of the equation residues should be examined in the same

manner az suggested above. The solution may be sufficiently good ,
as discussed in 4 below, so that further computations are unnecessary.
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4. M“THIS IS THE BEST WE CAN DO. IT MAY BE USABLE."
IER = 4.

This message indicates that computation has stopped before
the desired results have been obtained. Fifty attempts have been
made to increment the variable values without finding a set of
increments which would reduce the equation residues.

After failing at these numerous attempts to improve the
solution, it is concluded that the best solution has been
achieved and that further changes to the variables will serve
only to increase the equation residues. (In this discussion
equation values and residue values are synonomous.) It is believed
that this situation arises when large changes in variable values
introduce small changes in equation values, i.e. when the force
versus variable function has a very shallow slope.

When the differences in equation values are of the same
order of magnitude as the numerical accuracy of the particular
computer being used, these kinds of convergence problems can be
expected.

It is possible that when this "BEST WE CAN DO" message 1is
printed, that even though the solution is not as accurate as
desired, it may be sufficiently accurate to be usable. The accur-
acy can be assessed by comparing the magnitude of the equation
residue to the magnitude of the individual terms which comprise
the equation. Since most convergence problems arise in the
quasi-dynamic equilibrium solution of the rolling element and
cage equations, the method of assessing the accuracy of this set
of equations shall be addressed.

As noted earlier, the set of equations used to define the :
quasidynamic problem is comprised of (6Z + Mcage) equations where ‘
Z is the number of rolling elements and Mcage is the number of ;
degrees of freedom (1 or 3) assigned to the cage. To assess the i
accuracy of the solution, the magnitude of the equation residue i
should be compared to the magnitude of the components which make !
up the equation. The residue values are printed under the heading
"CORRESPONDING EQ-VALUES." The residues are printed in a six per
line format such that the residues pertaining to a given element
are all on one line. These six values represent the following
six equilibrium equations:

= 2 T =
0 2) ZFY 0 ) Fz 0 i

4) ZMx =0 5) ZMy 6) IM

1) ZFx

]
o

]
o

z

Equations 1 and 2 are dominated by the normal raceway contact
forces and the rolling element centrifugal force. Compared to

the magnitude of these forces the residues of ILFy and LFy are
usually very small and thus acceptable. The remaining four
equilibrium equations, however, have as their major terms, various
components of the friction forces which act upon the element. Large
values of these residue values are a manifestation of an unstable
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operating condition, where the instability is defined qualita-
tively in terms of large change in component and raceway relative
speeds producing small changes in internal bearing forces, The
shallow slopes of these "Force vs. Relative Speed Functions"
promote dynamic and numerical instabilities.

The IF, equation should be examined for each rolling
element. Typically this may be done by inspection with close
comparison and calculations made for only one or two elements,

The three cage equilibrium equations are:

1) ZMy =0 2) ZFy =0 3) F, =0

If only one cage equation is considered, it is equation 1); if
more than one is considered, all three are used.

The components of these equations are the rolling element
cage normal and friction forces as well as the cage-ring normal
and friction forces. Magnitudes of the components of these
forces and moments are printed as part of the output. Thus,
comparison of components against residues is straight forward
after converting to a consistent set of units. Residues are in
English while the output is in metric units.

It should be noted that in those solutions in which the
cage has only one degree of freedom, that the cage interaction
with the rolling elements has only minor impact upon the rolling
element dynamics. Therefore, a relatively large residue for
the cage equation is not terribly significant. The rolling
element IF, equations should be the basis for the judgement as
to whether a solution is good enough.

Although the message "THIS IS THE BEST WE CAN DO. IT MAY BE
USABLE" may be written during a steady state temperature calcu-
lation scheme, numerical instabilities in those schemes are rather
uncommon. Ncne have been experienced with this program after
three years of operation.

The following data are printed subsequent to printing messages
1 through 4 above.
RELATIVE ACCURACY (ERREL) ITERATION,
LIMIT (ITEND), NUMBER OF UNKNOWNS (N) ABSOLUTE ACCURACIES EXA(J).
DAMPING FACTORS 1-5 OTHER STEP FACTORS 6-10 (SF), MAXIMUM STEP
FACTORS (SMX(J)}, J=1,N).
CORRECTIONS OF THE X-ES FROM SMQ D(J), J=1,N.
NUMBER OF DERIVATIVES EXPECTED FOR EACH X ND(J), J=1,N
X=VALUE X X(J), J=1,N.
CORRESPONDING EQ-VALUES EQ(J), J=1,N.
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5. GUIDES TO PROGRAM USE

The Computer Program is a tool. As with any tool, the
results obtained are at least partially dependent upon the
skill of the user. Certainly, the economics of the Program
usage are highly dependent upon the user's technical need
and discriminate use of Program options.

Some general guides for efficient use of the Program are
listed below:

1.

Attempt to use the lowest level of solution possible.
For instance, if the prime object of a given run 1is to
obtain bearing fatigue lives, execute only the elastic

solution (NPASS = 0). If an estimate of bearing
frictional heat is required, execute the low level
friction evaluation (NPASS = 1). Execute the friction

solution (NPASS = 2) only if rolling element and cage
kinematics are of interest. Execute the highest level
of solution (NPASS = 3) if kinematics are of interest
and the bearing reaction loads deviate substantially
from the shaft applied loading, i.e., a deviation
greater than ten percent.

Attempt to input bearing operating diametral clearance
rather than calculate it. Or, execute the diametral
clearance change analysis once for a group of similar
runs and use the output from the first run as input

to the subsequent runs omitting the clearance change
analysis.

Attempt to input accurate operating temperatures
rather than calculate them.

The more non-linear the problem, the more computer time
required to solve 1it. In the bearing friction solution,
large coefficients of friction seem to increase

the degree of non-linearity. In the thermal solutions,
if possible, eliminate non-linearities by omitting
radiation terms and by using constant rather than
temperature dependent free and forced convection
coefficients.

In the transient thermal solution, space the calls to
the shaft-bearing solution (BTIME) to as large an
interval as prudently possible. Be careful, however,

too long an interval will produce large errors in heat
rate predictions.




6. In the steady state thermal analysis, attempt to
estimate nodal temperatures on a node-by-node
basis. Nodes which are heat sources should have
higher temperatures than the surrounding nodes.

The above suggestions are intended to encourage the use
of the Program on a cost-effective basis. The intent is not
to discourage the use of important program capabilities, but
to emphasize how the program should be most effectively used.

It is suggested that the user take a simple, axially
loaded ball bearing problem and execute the program through
the full range of options beginning with a frictionless solu-~
tion proceeding to the three levels of friction solution with
a low (0.01) and high (0.1) friction coefficient. The dia-
metral clearance change analysis and the thermal solutions
should also be executed on an experimental basis. This exer-
cise will provide the user with some insight into economics of
the Program usage on his computer as well as the results obtained
from various levels of solution of the same problem.

It is also suggested that a constant user of the program
should study the hierarchical Program flow chart, Appendix II 1,
along withe the Program listing to gain an appreciation of the
program complexity and the flow of tre problem solution. The
Program is comprised of many small functional subroutines.
Knowledge of these small elements may allow the user to more
easily piece together the philosophy of the total problem
solution.

SHABERTH is intended to be used for the analysis of a
multi-bearing system. It may, however, be used to analyze
single bearings, mounted on dummy shafts under certain conditions
of limited applied loading. These loading conditions are
outlined and explained below as they apply separately for
ball and cylindrical roller bearings.

Ball Bearings

Of major value is the capability of SHABERTH to treat, in
a simple, economic manner, ball bearings subjected to axial
loading only. Use of the program in this manner is recommended.

SHABERTH is not recommended for the solution of a single
ball bearing subjected to radial load only. The Program
attempts to satisfy axial and angular equilibrium as well as
radial. A ball bearing is elastically very soft in those
directions which causes mathematical instabilities during the
solution scheme. This makes the Program uneconomical for this
particular situation.
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Whereas the usce of SLABERTH to solve single radially loaded
ball bearing problems is not recommended, because of economics,
the solution of a single, radially and axially loaded problem
is impossible. The impossibility arises because a moment reac-
tion will develop when a hall bearing is subjected to both radial
and axial loading. 1In order for the user to solve this problem
he must specify at input the bearing reaction moment. The user
must know the answer to a portion of the problem before he can
begin to solve it.

Cylindrical Roller Bearing

A single, cylindrical roller bearing may be subjected to
radial loading or combinations of radial and moment loading.
When SHABERTH is used in this manner, it is important that
bearing misalignments be specified indirectly through specifi-
cation of a non-zero applied moment. If a radial load and an
initial outer ring misalignment are specified along with a
zero applied amount, SHABERTH will attempt but will be unable
to solve the problem since it will be impossible to equilibrate
the non-zero reaction moment, resulting from the offset, against
the zero applied moment.

The cyvlindrical roller bearing cannot accept applied
axial loading and thus when a single cylindrical roller bear-
ing is being examined, the applied axial load must be speci-
fied to be :zero.

When a single cylindrical roller bearing is being examined
all loading should be referred to the X-Y plane in order to
take advantage of the symmetry of load distribution among
rolling elements.
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APPENDIX I 1

HEAT TRANSFER INFORMATION

I 1.1 BACKGROUND

The temperature portion of SHABERTH is designed to
produce temperature maps fcr an axisymmetric mechanical system
of any geometrical shape. The mechanical system is first appro-
ximated by an equivalent system comprising a number of elements
of simple geometries. Each element is then represented by a node
point having either a known or an unknown temperature. The
environment surrounding the system is also represented by one or
more nodes. With the node points properly selected, the heat
balance equations can be set up accordingly for the nodes of unknown
temperature. These equations become non-linear when there is
convection and/or radiation between two or more of the node points
considered. The problem is, therefore, reduced to solving a set
of linear and/or non-linear equations for the same number of
unknown nodal temperatures. It is obvious that the success of
the approach depends largely on the physical subdivision of
the system. If the subdivision is too fine, there will be a
large number of equations to be solved; on the other hand, if the
subdivision is too crude, the results may not be reliable.

In a system consisting of rolling bearings, for the sake
of simplicity, the elements considered are usually axially
symmetrical, e.g., each of the bearing rings can be taken as an
element of uniform temperature. For an element which is not
axially symmetrical, its temperature is also assumed to be
uniform and its presence is assumed not to distort the uniformity
in termpature of a neighboring element which is axially symmetri-
cal. That is, the non-symmetrical element is represented by
an equilvalent axially symmetrical element with approximately
the same surface area and material volume. This kind of approx-
imation may seem to be somewhat unrealistic, but with properly
devised equivalent systems, it can be used to solve complicated
problems with results satisfying some of the important engineering
requirements.

The computer program can solve the heat-balance equations
for either the steady state or the transient state conditions
and produce temperature maps for the mechanical system when the
input data are properly prepared.

I 1.2 BASIC EQUATIONS

I 1.2.1 Heat Conduction

The rate of heat flow qci,j(W) that is conducted from node
i to node j may be expressed by,
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t; and tj are the temperatures at i and j, respectively, A; 3
the area”normal to the heat flow, (m2) L;: the distance !
{m) and aij the thermal conductivity betwgen i and j, (W/m°C).

Assuming that the structure between point i and j is
composed of different materials, an equivalent heat conductivity
may be calculated as follows:

Fig. I 1.1 Parallel Conduction
T T By
1) Kij

Fig. I 1.2 Series Conduction

The calculation of the areas will be discussed in Section I 1.2.5

I1.2.2 Convection

The rate of heat flow that is transferred between a solid f
structure and air by free convection may be expressed by




1.25
Qvi,5 =%i,3 i3 | &1 - tj' - SIGN (t; - t3) (I 1.2)
where
1, if (¢; - t)2 0
SIGN = J
-ll if (tj - ti)< 0
in which

2.5 - 1072 w/m2 - (degC)l'25 for hot surfaces facing upward
and cold surfaces facing dnwnward

®ij ={1.4 - 102 w/m2 - (degC)l-25 for hot surfaces facing downward
and cold surfaces facing upward

1.8 - 10-2 W/m2 - (degC)1°25 for vertical surfaces

For other special conditions, ®;jj must be estimated by referring
to heat transfer literature.

The rate of heat flow that is transferred between a solid
structure and a fluid by forced convection may be expressed by

q.ni’j = di,j Ai,j (ti - tj) (I 1.3)

in which jj is the heat transfer coefficient.

Now, withoa = di introduce the Nusselt number

jl
N, =L (I 1.4)
u A
the Reynolds number
_ UL
Re = (I 1.5)
and the Prandtl number
P = P“:E (I 1.6)
where
L is a characteristic length which is equal to the diameter
in the case of a cylindrical surface and is equal to the
plate length in case of a flat surface.




U is a characteristic velocity which is equal to the difference
between the fluid velocity at some distance from the surface
and the surface velocity (m/sec)

is the fluid thermal conductivity (Ww/M°C)

A
v is the fluid kinematic viscosity (Mz/sec)
e is the fluid density (kg/m3)

c

b is the fluid specific heat (J/kg©C)

For given values of Ry and P,, the Nusselt number N, and
thus, the heat transfer coefficient may be estimated from one
of the following expressions:

Laminar flow along a flat plate: Ry ¢ 2300

N, = 0.323 VR, - o, (I 1.7)

Laminar flow of a liquid in a pipe:

3
N, = 1.36vV'Ry * Py (%) (I 1.8)
where D is the pipe diameter and L the pipe length

Turbulent flow of a liquid in a pipe:

— 0.8 .3
N, = 0.027 - Rg VP, (I 1.9)
Gas flow inside and outside a tube:
- 0.57
: Nu = 0.3 Rg (I 1.10)

Ligquid flow outside a tube:
N, = 0.6 r3-5 . p2:31 (I 1.11)

Forced free convection from the outer surface of a
rotating shaft

= 2 . 0.35

N, = 0.11 [0.5 Re Pr] (I 1.12)
where the Reynolds number R, is developed by the shaft
rotation.

R, = wr p? (I 1.13)

v




in which @w is the angular velocity (rad/sec)
D is the roll diameter (m)

The average coefficient of forced convection to the lubri-
cating oil within a rolling contact bearing may be approximated

by,
o = 0.0986 § N [1 + D_Cfi_ﬂj % yxpp)1/3 (I 1.14)
v - dm r
using + for outer ring rotation
- for inner ring rotation
in which is the bearing operating speed (rpm)

N

D is the diameter of the rolling elements (mm)
d, is the bearing pitch diameter (mm)

« is the bearing contact angle (degrees)

I 1.2.3 Fluid Flow

The rate of heat flow that is transferred from fluid node
i to fluid node j by fluid flow is
e

qfi’j = pVij Cp (ti - tj) (I 1.15)

V;+ is the volume rate of flow from i to j. It must be observed
tﬁgt the continuity of mass requires the following equation to
be satisfied

Zvij =0 (I 1.16)
provided the fluid density is constant. The summation should
be extended over all nodes i within the fluid which have heat

exchange with node j by fluid flow.

I 1.2.4 Heat Radiation

The rate of heat flow that is radiated to node j from
node i is expressed by

N 4o (t. 4

ri,j = 1,5 {(£5+273)4-(£5+273)4} (I 1.17)
where

Tj = tj + 273.16
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and the value of the coefficient J

depends on the geometry
and the emissivity or the abSOrptiviiy of the bodies involved.

i

For radiation between large, parallel and adjacent surfaces
of equal area, Ai j and emissivity, Ei . Ji . is obtained from
the equation ’ »J ]

d; . =& . oon . (I 1.18)

b4

where 0°, the Stefan-Boltzmann constant, is

o =5.76 ° 10‘8 w/mz/(degK)z'

For radiation between concentric spheres and coaxial

cylinders of equal emissivity, €. ., J. . 1s given by the
equation 1] 1]
y £i,5 04,;
ij A (I 1.19)
1+ Q-€&, ) "i,j
1,37 x»
i,
where 0° is as above A, , is the area of the enclosed body and
A*  1is the area of %hé surrounding body, i.e. A, , A% .
i,] i,] i,]

Expressions for©’i,j that are valid for more complicated
geometries or for different emissivities may be found in the
heat transfer literature,.

I 1.2.5 Calculation of Areas

In the case of heat transfer in the axial direction Ai . 1s
given by the equation (I 1.3) >J
= L. * .
Ai,j 2 L AT (I 1.20)
Referring to the input instructions, Section 5, but recalling
L must be input in mm not m.
r. +r
L1 rm 3 (I 1.21)
L2 = QLr = r2 - r1 (I 1.22)




In the case of heat transfer in the radial direction,
is obtained from the expression

Ai,j
Aj,5 = 2w r, * Hi Ll = r
and similarly for the radiation term above

m? L; = H

A*i,j = 2m r*mH

L3 = r*m

L2=2H

in which H is the length of the cylindrical surface; where heat

is conducted between i and j, ry is given by the same equation

as above (Fig. I 1.3(d)); where heat is convected between i and j,
rm is the radius of the cyllndrlcal surface (Fig. 1 1.3(c)); where
heat is radiated between i and j, r_ is the radius of the enclosed
cylindrical surface and rp* the radius of the surrounding
cylindrical surface (Fig. I 1.3(d)).
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I 1.3 Transient Analysis

For the transient analysis, all of the data pertaining to
the node-to-node heat transfer coefficients must be provided by
the input. Additionally, the volume and the specific heat at
each node is required. For metal nodes, this input is striaght-
forward. However, when fluid flow is being considered, there is
no easy way to approximate the fluid nodal volume in a free
space such as the bearing cavity. However, through use of the
Program, the user's ability to make appropriate estimates will
improve.




APPENDIX I 2

BEARING DIAMETRAL CLEARANCE CHANGE ANALYSIS, FROM COLD UNMOUNTED
TO MOUNTED OPERATING CONDITIONS

I 2-1




APPENDIX I 2

BEARING DIAMETRAL CLEARANCE CHANGE ANALYSIS, FROM COLD UNMOUNTED
TO MOUNTED OPERATING CONDITIONS *

I 2.1 INTRODUCTION

As a bearing is taken from the shelf, mounted in a housing
and on a shaft, turned up to speed and subjected to operating
loads and temperature, the diametral clearance of the bearing
will change. To accurately analyze the performance of a bearing,
its operating clearance must be known. An analysis has been
developed to account for the following effects:

1. Temperature changes and gradients.

2. Initial and operating shaft and housing fits.

3. Rotation induced, ring radial growth,

4. Uniform radial components of the rolling element-
raceway normal loads.

The basis for the major portion of this analysis is taken
from Timoshenko,{_4 ]. The bearing rings are treated as thick
walled circular cylinders of constant wall thickness subjected
to the action of uniformly distributed internal and external
pressure.

The external pressure arises in the case of the outer ring

from a press fit into the bearing housing. The internal

pressure on the outer ring arises from the discrete rolling element loads

which are regarded as uniform internal pressure acting on the

outer ring. Similarly for the inner ring the press fit on the

shaft provides a uniform internal pressure and the rolling element loads

are regarded as a uniform external pressure. Fig. I 2.1 show the

idealized sections used in the analysis.

*This Appendix is based upon the original work tﬁ
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I 2.2 BEARING SHAFT AND HOUSING EQUIVALENT SECTIONS

Timoshenko's analysis requires that a ring be fully defined
by specification of only internal and external radii. If two
concentric rings are pressed together the analysis assumes that
the rings are of equal width. Perhaps the outside surface of the
actual inner ring section cannot be defined by a single radius.
However, an equivalent radius may be found such that the cross sec-
tional areas of the real and equivalent rings are equal.

A second significant dimension associated with both the outer
and inner rings is the radius of the rolling element path at each
section, Ultimately, it is the change in these path radii, in
addition to a change in the rolling element diameter, which permit
a change in the bearing diametral clearance.

The bearing diametral clearance change problem requires the
solution to similar problems for both the inner ring-shaft (shaft)
and the outer ring~housing (housing) sections., To help eliminate
repetition and cumbersome subscripting, only the shaft section
will be covered thoroughly. Differences in analysis which occur
at the housing section will be noted.

I 2.3 INTERNAL AND EXTERNAL EQUIVALENT PRESSURES

Both the shaft and housing sectionsare represented hy two rings
The rings may or may not be in intimate contact. Intimate contact
occurs when due to any of several factors, the outside radius of
the inside ring is greater than the inside radius of the outer
ring. A pressure is developed at that interface, which tends to
expand the outside ring and collapse the inside ring. Although
the pressure acting on the actual interfering surfaces js iden-

tical, the use of equivalent geometric sections requires the
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use of equivalent pressure, such that the calculated pressure
acting to collapse the inside ring will not be identical to the
pressure acting to expand the outside ring.

The equivalent pressure concept allows the‘effect of unequal
component widths to be considered.

The effect of.unequal inner ring and shaft width is taken into
account by the factor X which applies to th« pressure where,
referring to Fig. I 2.1

054 (Xg =) o, (1 2.1)

L

W
05¢( X, = WV,

7 (I 2.2)

Where W denotes the element width and the subscripts I, 0, S
and H refer to inner, outer, shaft and housing respectively.

The equivalent pressures acting on the shaft and housing are
thus

-Ps,"' Xs F:i.'_

(I 2.3)

PHL ’Xu Po, (I 2.4)

.Yz. denotes the pressure on the shaft 0.D. as related to the

pressure on the inner ring %L’?“C and Po. are similarly defined.
The pressures (P) in Eq. (I 2.3 and I 2.4) are non-zero only if an
interference fit exists at the section in question. An inter-
ference fit may exist under cold mounted conditions but due to thermal
gradients and high speed rotation, clearance may develop at operating

conditions.




To account for the elastic effect of the uniform radial

components of the rolling element loads on the ring dimensions,

an equivalent inner ring external pressure and outer ring internal
pressure are calculated based on the minimum radial component of
the rolling element loads, such that for the inner ring;

B - £ <Q"l Cos d:s) wmin
° 2T C W (I 2.5)

where Z is the total number of rolling elements

(QIJ c“"‘::) is the smallest rolling element raceway
win radial load component at the inner
raceway

Wg is the inner ring total width, or one half the total width
if the inner ring is split.

An expression corresponding to Eq. (I 2.5) can be developed
for the internal pressure acting to expand the outer ring. In fact
?;D will exist only when the applied load is predominantly axial or
when the bearing is preloaded, but the internal pressure acting on
the outer ring,7%1, will always exist to some extent, as a result
of rolling element centrifugal force.

I 2.4 TEMPERATURE EFFECTS

Temperature effects at operating conditions are considered in
two ways. A bulk effect based on the radii to the rolling paths (R)

is calculated from Eq. (I 2.6)

§ - Rt (1 2.6)

where
é; - is the change in rolling path radius
A - is the component coefficient of thermal expansion,

i.- is the difference between the component effective

temperature and 68°F.




A similar expression may be written for the change in roller
diameter.

The second effect of temperatures is the change in interfer-
ence fit from cold to operating conditions such that the inter-
ference fit as a result of the initial fit and the temperature
difference between the two components can be calculated. Cold
(293°k, (68°F)), shaft and housing fits Q:ccld)are input to the
analysis. A positive value reflects an interference fit. The
analysis neglects asperity crushing. The fit(Fhotx’at operating

temperature is given by

(Fhot) (\'co\en +2b U‘sts =7 :.)(1 2.7)

‘ hot\.is the fit considering operating temperatures.

I 2.5 RING RADIAL DISPLACEMENT cONSIDERING SURFACE PRESSURES

At this point we consider the problem of evaluating thick
walled cylinder, (ring) radial displacements as a function of
the ring radial dimensions, physical properties, and uniform
internal and external pressures. Timoshenko develops Eq. (I 2.R)
for determining the ring/radial displacement (é:), as a function
of a general radius (r) to any point within the ring when consid-

erations of ring rotation are omitted.

‘t;f ‘\_%—f _S_ 20 (I 2.8)

The general solution of this equation is

S. K. r < K2 (I 2.9)
P

The expression for normal stress in the ring is given by:

T, ‘E— K, (1+1) -k, (“' 3] (I 2.10)
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The constants of integration K,and K‘can be determined from

Eqs. (I 2.11 and I 2.12) which make use of the boundary conditions
at the inner and outer surfaces of the ring. Note that the dimen-
sions of inner ring section are used in Eq. (I 2.11 and I 2.14).
These equations, however, are general expressions and are valid

for all rings,

- € |-y
(Tr-)\-;c - "‘P‘o =\-v§ IK' (”u’) -k,(_&__‘:}] (I 2.11)

= \-Ve
).y - Frm 5 (K000 (28)] 4y

Where E and Y are the modulus of elasticity and Poisson's

ratio respectively. The negative sign associated with‘Ficand
F&L reflect the sign convention, wherein a positive normal
stress indicates tension. Solving Egqs. (I 2.11-12) for K, and
Kg.and substituting the results into Eqs. (I 2.9 and I 2.10)
gives the general expressions for normal stress and radial deflec-
tion as functions of the internal and external pressures acting on
the ring: . 2

T, b P“L - c:. () - et (P:L-ﬁ.,) (I 2.13)

-bv r* (ct-b?)

SIQ =(“_"'§) r'ban'C’P:._._ \..._;i'[b,f-‘ (ﬁ':-.-ﬁ:,\) (I 2.1489
By ct - b? (c*=-*

Using the appropriate dimensions and pressures, Eq. (I 2.14)

can express the inward displacement of the shaft and the outward

displacement of the inner ring when assembled with an interference

Fit Fyor- S.rb" S‘b" 'Fuo‘r (I 2.15)
Q v b fi-c E) *”;3 ble* Ri- to)] (I 2.16)
Stb z b( ci- it btz ?c; b*
- 'P ale ot ‘
SSB = bES- t _&L -y 1 (I 2.17) |
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Fi; and13¢° are assumed zero. Using Eq. (I 2.5) to obtain ;;o

the following expression may be developed for F%a' which accounts
for all variables in the interference fit problem except for the

effect of high speed rotation.

e (E)(55)
T ()e(). G )

Note, F%L may not be negative, i.e. the effect of fitting one

(T 2.18)

ring on another cannot result in placing the common surfaces in
tension,

Having determined 1%; and‘?;. Eq. (I 2.14) may be used to
determine &(F,t,Q‘) by replacing the general radius (r) with the
radius to the roller path, R. &Q(F,t,@is defined as the change in

rolling path radius resulting from:
F* The initial fit
t: The change in fit resulting from a temperature gradient

Gt The effect of the rolling element load.
I 2.6 RING ROTATION

We must now examine the effect on the rolling path which
results from high speed rotation. 1If the rotational speed is
less than 100 rpm, the rolling path radius is assumed to be
unaffected.

Timoskenko presents Eq. (I 2.19) to define ring displace-
ment s in terms of a general radius (r), the weight density of the

ring material, ( c )}, and the ring angular velocity (i)

I 2-9
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Using the notation;

3 SZ"
N« (1-v )%E

(I 2.20)
the general solution to Eq. (I 2.19) may be written:
S:=-NL L Krik, (I 2.21)
8 -

The general expression for the normal stress is given by:
E y-3 5 |
q':_s("-:”z) -é_Nr +(|-V)K.-(\'7)Kz-‘:z (I 2‘22)

Using Eqs. (I 2.21 and I 2.22) and the principle of super-
position, the effects of ring rotation can be considered. In
case, superposition allows a set of integration constants

K, and K, to be calculated for a ring based on a change in
pressure (P*) at the internal and external surfaces. Eq.
(I 2.22) may be written for the four specific surfaces of the
shaft section as follows;

Inner Ring External Surface

Ao B 12 e () K- (s B0 @ 2aw

Inner Ring Internal Surface

P B \n- 3NPz+(\+v,3K.r-(\ AL b:“ (1 2.24)
t -y1
Shaft External Surface

« E - , - (1-VY)K -‘-;& (I 2.25)
.:égj:%_sr{‘buf\*»’ﬂk,s (1-¥Y¢)¥as g

IR

Shaft Internal Surface \

«_Es ‘_fs -3 N+ (\s-VJK.s'("yJKzs Z"k Q1 2.26)

sit® yLle 't

)
From Eq. (I 2.3)
o
-
Fo- X ?I't (1 2.27)

An additional useful relationship derived from Eq. (I 2.21)

*
defines the difference 8 between the inner ring and shaft

I 2-10
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displacement at their common surface, as a result of their
rotational speed, in terms of the four integration constants of
Eq. (I 2.23 - 1 2.26).

3
S‘: Kigbe &?—Nz% -Kisb -Kzs +Nsb—-3 (I 2.28)
b 8

Under press fit conditions g‘.o

We will now examine the application of Eq. (I 2.23 - I 2.26)
in determining the ring behavior as a function of rotational
speed.

The following conditions might be encountered:

1. A tight fit remains tight

2. A tight fit loosens

3. A loose fit remains loose

4. A loose fit tightens

For all four conditions, ‘P‘i'soand E:%O , i.e. it is assumed
that no change in pressure occurs at the internal surface of the
shaft or the external surface of the inner ring resulting from ring
rotation. Also .Q: and SZ‘ are identical. All four of the integra-
tion constants K;3 , Kap » Kyg and K,g are unknowns. Also, either
the change in pressure sz or the rotational speed SL. embodied in

Ng and Ny are additional unknowns.

Now the formulations of Fq. (I 2.23 - I 2.28) are presented

which are required to solve each of the four conditions.

I 2.6.1 SITUATION 1 AND 2, INITIALLY TIGHT FIT

In addition to the integration constants,?:r is the
unknown, where P:‘.,‘ is the change in inner ring internal pressure
resulting from the rotational speed. If P;‘i, is less than "P:L
from Eq. (I 2.18), situation 1 is realized. The operating
fit pressure is the difference between ?r.'t. and-Pz'r and the fit

remains tight. The resulting radial displacement at the inner

ring rolling path is given by:

k)
S;,_"Nx% +\<.:I:122_4il‘éf. (I 2.29)




and the total change in the rolling path radius at the inner ring

S“'gf‘ g(t,q§+g1*g& (I 2.30)

is

E;; is the change in rolling path radius which occurs as a
result of a temperature change from 68°F.
If 13:f is greater than Pgi; the solution to the problem
requires several additional steps. Eq. (I 2.23), must be re-solved
to determine the rotational speed, SZ‘TL at which the change in

fit pressure is just equal to the initial fit pressure and S‘uo .

This rotational speed is termed the tight fit speed 1limit and is
subscripted with the letter (TL). Using the integration constants
thus determined and Eq. (I 2.21), S;TL may be determined.
Note, the subscripts in parenthesis should be interpreted

as follows: The first subscript refers to the state of the
initial fit (T-tight) or (L-loose), the second subscript refers
to the rotational speeds (T-Total) or (L-Limit). For instance,

Uq refers to the change in inner ring rolling path radius due |
to the rotational speed at which the initially tight shaft fit is
lost.
; After determining Uy Eqs. (I 2.23 - I 2,26) are resolved
twice for the four integration constants, withT%f*set to zero.
First, for the full rotational speeds, yielding Ue¢, and then
for the tight fit speed 1limit, yielding ., . This is accom-
plished by changing the values of N and Ng through a change
in the value of SL in Eq. (I 2.20). Utilizing super-position,
the change in rolling path radius resulting from rotation is given

in Eq. (I 2.31),

g-ﬂ * gf\. + (Su -g..\.\ | (I 2.31) 4

Eq. (I 2.31) is presented graphically in Fig. I 2.2. Then

is calculated from Eq. (I 2.30).
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# FIGURE I 2.2

Ring Radial Expansion vs. Rotational Speed Squared
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I 2.6.2 SITUATIONS 3 AND 4 INITIALLY LOOSE FIT

The integration constants Ky, Kiz, Kig , and K.s are
unknowns. ‘le.’ , 1:1-: , P‘: and -P,: are all set to zero, and
only Egs. (I 2.23 - I 2.26) are solved. Using the integration
constants thus obtained, Eq. (I 2.28) is solved for 5* . If

‘< "‘Fha‘r\ where ¥ oy is negative, the loose fit remains
loose at operating conditions. The constants K y and Kpp are
used to calculate Ug_ . Using Eq. (I 2.30), Uqor is
calculated. If S'>\Fhaf\, the shaft has expanded further
under the effects of rotation than the inner ring, and the

initially loose fit becomes tight. This requires additional
solutions to Eqs. (I 2.23 - I 2.26).

S* is set equal toFMand the equations are solved
for the integration constants plus the speed at which the init-
ially loose fit becomes tight_SZH_. Using the integration
constants k't and K¢ along with Eq. (I 2.32), S,_‘_ is
determined. Eq. (I 2.23 - I 2.28) are again resolved twice at

.. and ,, for -PT.'\- and the integration constants, after

setting g‘ to zero. Sﬂ_ and S‘TT‘ can be obtained by from
eq. (I 2.29) using the two sets of integratim constants . The

operating fit pressure is then given by;
Rl - PR (1 2.32)
TLEIDear - 1z (TL :

ES;L' §;;1 b<~5;1"E;TL)

(1 2.33)

and Eq. (I 2.30)' is used to determine STQ“'. Where g-\-ﬂ
represents the total change in the radius to the rolling path
of the section as the bearing is taken off the shelf at 68°F,
mounted on the shaft)subjected to load and rotated up to

operating speed.
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I 2.7 BEARING DIAMETRAL CLEARANCE

The preceeding sections dealt primarily with the shaft-
inner ring section. However, the equations presented are valid
for all four of the assembly sections. For both sections, a value
is determined for Syaw, cold fit pressure, operating fit pressure
and the speed at which an initially tight fit loosens.

As noted earlier, Eq. (I 2,6) can be used to determine this

change in rolling element diameter such that:
i«gg-ﬁbb"\")a (I 2.34)
The change in bearing diametral clearance is given by

APy = 2 {Sh‘ro‘l’ - gsm - Z'Sgt.k

The bearing operating diametral clearance equals the initial

(I 2.35)

clearance plus the change in clearance APd
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APPENDIX 1 3

LELASTIC SIHAFT ANALYSIS *

I 3.1 COORDINATE SYSTEM, LOAD AND GEOMETRY CONSIDERATIONS

The shaft subprogram calculates the deflection characteristics of
a general shaft in two planes, one plane at a time, by solving

the differential equation for the deflection curve of

the shaft,
’ = - M(x) (I 3.1)
ELXX)

v

where M = moment
E = modulus of elasticity
I = moment of inertia

The coordinates )C and \f-are shown in Fig. I 3.1
Mmoo
7/ q .
PamneS /’ F ,v. VN‘ M
o N
= —

JY\I{ x tF

Figure I 3.1 Shaft Coordinate System and Shaft Loading

The shaft load may consist of concentrated loads, moments, or
linearly varying distributed loads, Fig. I 3.1, The shaft may
be hollow, and the inner and outer diameters may vary stepwise

or linearly, Fig. I 3.2

-
— ~ - - a—
- 4

Figure I 3.2 Shaft Schematic Showing Stepwise and Linear
Diameter Variation

*This Appendix is based upon the original work {ﬂ
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*

The shaft may be supported by bearings at up to five locations. E

The bearings may take force and/or moments and they may be initially '

displaced (SYO) @'Q) . ‘

-4 Co
Y. B ) ) |
f g C.'.: ,
Figure I 3. Schematic-Shaft Supports |

The bearing subprograms calculate the reaction forces and moments

on the shaft from the bearings as functions of bearing deflections.
The bearing deflections can be looked upon as shaft support displace-
ments, (S\, s @) .

I 3.2 "SHAFT BEARING EQUATIONS

The shaft reaction at any location i is calculated as the shaft
reaction, F;; , at i when all additional displacements of the shaft
supports are zero, plus the additional reactions at i.caused by all
additional displacements, or bearing deflections:

“i )F\ @ “\: %

A i=\ B®n * +Z B&w\ A
The reactions Fe are calculated using the shaft program with the
given initial displacements and spring constants. The constant
derivatives 3F/A® and G\F/ds are calculated by introducing
one initial displacement at a time. If the bearing mounts are
rigid, i.e. spring constants are zero, then the reaction at loca-
tion i depends only on the deflections at i-1, i,and i+l. The
other derivatives are zero. The present program uses the shaft
program this way, and has not yet heen extended to include all
derivatives. Thus the influence of liousing elasticity is not

taken into account.
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I 3.3 METHOD OF SOLUTION

The object is to calculate the shaft deflections and slopes
at the bearing locations along the shaft. The shaft may be arbi-
trarily loaded and have arbitrarily varying cross-section. The
supports may take force or moment load, they can be initially
displaced. These deflections and slopes are found by going through

the following steps:

Step 1. Take away all supports (support and bearing are
synonomous) except two. In the following, these two sup-
ports are called the initial supports. In the steps to
follow, slopes, deflections and initial displacements
refer to a coordinate system with the X-axis along the :
center-line of the unloaded shaft when it is supported
by the initial supports. The relation between this co-
ordinate system and the original system is given by the
coordinates Sgoand QL of the left end of the shaft as de-

fined in the original coordinate system.

The problem is now statically determinate and the reac-
tions of the initial supports are calculated.

Step 2. Define a new coordinate system. Fix the left
end of the shaft in that system so that deflection and
slope are zero at that end. Let the load acting on the
shaft still be the external 1load plus the reactions from

the initial supports as calculated in Step 1.

Since these reactions were obtained from equilibrium

equations of the shaft, there is no reaction at the

fixed end. Therefore, all shaft loads are known and the

moment M of the shaft can be calculated at any section X
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from an equation of equilibrium of the shaft to the left
of the section. The slopes and deflections are calculated
from the Moment-Area theorems by numerical integra-

tion of the following equations,

X

_ [ N
® (%) = f-ﬁg-) Ay a5

®
= MO (X-x%)
$ (X) T 00 ax (1 3.4)

0
Step 3. Put the shaft back on the initial supports and
correct the slopes and deflections accordingly. The
resulting calculated slopes and deflections are in the
following denoted by Ac.
Step 4. The reaction forces and moments, here called
F‘ at all supports except the initial supports are now
introduced. Their magnitude is determined from the condi-

tion that the deflection at each support location goes

back to zero + initial displacement, A° .

Fi'B“i+ A + F" .\.\ * e * FN@“&"A‘-\'N'\(I 3'5)

where
/3 are influence coefficients

;iis the deflection or slope at location i from a
unit force or moment at location j.

The influence coefficients are obtained by introducing

a unit force or moment at one support at a time and then
calculating the deflections and slopes starting from
Step 2.

There is one equation for each of the n bearings except

the two initial supports. The linear system of equations

I 35




can be written

A-F =a2aB (1 3.6)

where A is a matrix Nb X Nb
A = B
F;,= the vector of unknown reactions
Bi= -Aci - Al (1 3.7)

The reactions are obtained by solving this system of equations.
Step 5. Calculate the reactions at the initial supports
again, this time with both the external loads and the cal-
culated reactions acting on the shaft.

Step 6. The deflections and slopes are calculated again
as in Step 2, this time with external loads and all reac-
tions acting on the shaft.

Step 7. The deflections are expressed in the original co-
ordinate system by addition of Svo to the lateral deflec-

tion and é&,oto the slopes.
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APPENDIX T 4
CONCENTRATED CONTACT CALCULATIONS *

I 4.1 INTRODUCTION

This section deals with the calculation of the forces which
develop in rolling element-raceway contacts in bhall and cylindrical

roller bearings.

1 4.2 COORNINATE SYSTEMS

Consider a plane through the bearing axis and the center of a
rolling element Fig. 2.4. The position of the center of the rolling
element relative to the outer ring is described as a coordinate system
fixed to the rolling element center, having its x-axis parallel

to the bearing X-axis and y-axis radially outward from the bearing axis.

I 4.3 BALL RACEWAY FORCES

In a ball bearing, the outer and inner ring groove curvature
centers EC and IC, are defined by the vectors 9, and 92 ,
respectively, Fig. 4.1 and 4.2.

The normal force Q is obtained from the Hertz theory for bodies
in contact under load.

3/2
Q = K1 S—el (1 4.1)

where l(1 = a function of the initial geometry and of the material
properties.

é;el = the elastic deflection

*This Appendix is based upon the original work {1}
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The elastic deflection at one ring is obtained from the distance
between the ball center and the groove curvature center, that is
19.| Ol"lgz\. When the elastic deflection is zero, this distance is

rg -0.%D where rg is the groove curvature radius. When there is
elastic deflection, this distance is greater by the amount §;¢Q of

the elastic deflection. Thus,

Seflm‘:\@m\" (\"gm - °‘5§>’ ms=4i,2 (1 4.2)

The dimensions of the contact ellipse are obtained from the same

theory,
a = Kk, Q'3 (1 4.3)
b = Ks Q1/3 (I 4.4)
where a = the major half-axis
b = the minor half-axis
K, and K; = functions of the initial geometry and of the

material properties

=X
9, - -y, (1 4.5)
0

‘32 = E’,"Ebo + 9,
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FIGURE 1 4.1

Ball Bearing Geometry
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FIGURE I 4.2

Ball Coordinate System Showing Ball Center Position Vectors
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where 9, a vector from ED to the original position of IC,.

a vector between ICO and IC

o2
"

go ‘t\'\dg
g cod o
-]
g’o bt o
where (I 4.6)

9,' Bt*rgz'b'go

oM

the total clearance at one ball in the direction ofs\
L

G is the displacement of the inner ring groove curvature center
at a ball from original position to loaded position in the bearing

coordinate system. 9)'6 is the vector G in the rolling element

coordinate system.

(1 4.7)

The vector 9’5 is the projection of <9)‘A on the x-y plane, i.e.

9); with the z-component equal to zero.




u is the rotational transformation matrix which transforms
forces and moments described in the bearing coordinate system to

their equivalents in the rolling element coordinate system.

{ o ()
“ = @) Cos¢ -$N¢

(1 4.8)
O SWMP cosé

where ¢ is the rolling element aximuth angle described in Fig. 2.4.

The Vector'da'is obtained from the bearing linear deflection vector

ID  and angular deflection vector (®

G( =-D‘\' @ KPR_
where O (I 4.9)

g O
D.| 3y ®- | @ ,th‘ L cof

Y )
S : @e e"‘ S

1 4.4 ROLLER RACEWAY FORCES

In a roller bearing the position S 0 and Y, = 0 for the roller
center is defined as the position of the roller center when it is
centrally located in relation to the raceway in the x-direction, and

when the roller under no load and no misalignment touches the outer

raceway, Fig. I 4.3.
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To obtain the normal forces on the roller, it is thought of as
divided into Ny slices. The force on each individual slice is
calculated separately, as though the entire length of the roller
was deflected to the amount which obtains at the actual slice. Shear
forces between slices are neglected. The relation hetween deflection

and force is given by the following formula, i25 3

8/9 19/9
Q = K‘-[’u ‘ S;q (I 4.10)

where Q roller load

du
éae= elastic deflection

roller length

The load per unit length of the contact is q.
Q

T

The slice load, Qk is obtained from:

a (I 4.11)

%)
. Ap . = KAe ! g .
Ae* % re = % AQN '"n[ of “'Aere (I 4.12)
&9 ‘9% re
- K‘ ‘Qr‘ Sg(k
n
L 4
At the outer race, the deflection S;‘ax slice k is the difference
between the normal approach gn and the crown drop S-c‘ . See

Fig. 3.3.

Sce ®™ g—n&' S-cw. (I 4.13)
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where SCI\: sum of roller and race crown drops

A
S,,<= ("9‘.-‘-@?“‘13"3 (I 4.14)
; = a unit vector in the y-direction
0o
-X
) = ¢ =
Y 2
/‘

The vector Wy from the rolling element center to the center of

slice k¥ in the roller raceway contact is defined as follows:

X
A (I 4.15)

Guly + (-0:5) trefn,

At the inner race, the deflection at slice k 1is:

ge(’zz‘ - gm‘-a- (Eo-@ x@ct>.§-§;.§:u (I 4.16)

where the vector from the inner ring center to the contact at

the inner race, ’\EC‘ is
Xk
. = Kic Cos Cb
Rye s §
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Since the roller rotates only about its geometric axis, the
angular alignment of the roller may be described in terms of the

orthogonal components of the roller rotational speed (W) as follows:

@% P ‘\-QM-‘ (-UJ; /wxw% -3 /(_,_),‘ (1 4.17) ;

fow"'(wg /W) Wy /Wy (1 4.18)

I 4.5 SUMMATION OF CONTACT TRACTION FORCES

Of all the forces which develop within various concentrated
contacts, only the elastic Hertz force in a ball raceway contact
may be treated as a point force. The elastic forces which develop

in a roller raceway contact and both ball and roller traction forces

cannot be treated as point forces since they are not necessarily
symmetric. Within the extremely small areas which develop in
concentrated contacts, the variation in surface pressure is extreme.
Despite the small area, significant variation in rolling element-
raceway, relative surface velocities may occur within the contact.
The acute pressure variations plus the changes in surface veloci-
ties necessitate that concentrated contact areas be subdivided into
smaller elemental areas. Over the latter the assumptions of a
circular pressure distribution and constant relative sliding
velocity closely approach the physical situation.

For the roller raceway contact, the same contact sub-areas used
to calculate the elastic force distribution are subsequently used
to evaluate the traction force distribution. For the ball
raceway contact, the sub-areas consist of slices perpendicular

to the contact major axis.

I 4-11




I 4.5.1 VECTOR TO TiE CONTACT CENTER FROM THE ROLLING ELEMENT CENTER

For roller bearings the vector I has bheen given previously.

In a ball bearing the vector I is required to calculate the

ball raceway friction forces and is given by its components n and t.
See Fig, I 4.4,

oo e £k

A a 1 8in
*cos &
fe
< [FCos

+ Swney
o

(I 4.19)

the upper and lower signs apply for outer and inner ring contacts
respectively.

The radius of the deformed surface, Fig. I 4.5, is given by

Eq. T 4.20. >
Fdeps 5 ° é :%/z o
|
ne (*‘aa"-{‘ )t —no (14.21)
Yy V!
ho- (I’dc!z"az) : ((D/z)z’o't) * (1 4.22)

The coordinates t and n are used with the other components of the hall
rotational speed to calculate the ball surface velocity components.

I 4.5.2 SUMMING THE TRACTION FORCE OVER A CONCENTRATED CONTACT AREA

In computing the traction force acting in a contact, the high

pressure contact region is divided into a number of slices parallel

to the minor axis. 1In a roller raceway contact, these slices are

the same as those used to calculate the normal force. In a ball

raceway contact the total contact length as determined by the Hert:z

analysis is divided into approximately 21 slices. The tractive

force is computed for each :lice and then summed to give the total.
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FIGURE I 4.4

Ball Coordinate System Showing Ball-Race Contact
Position Vectors
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FIGURE I 4-5

Rall Race Deformed Contact and Deformed Surface Radius

groove curvaiure cente

origin of radius of
deformed surface

°’ball center and origin
of coordinate system

original groove surface

deformed surface
— original ball surfacc
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Figure 1 4.6a shous a Hertzian contact area with the semi-

elliptical distribution of pressure due to elastic deformation
(effects of the lubricant on the pressure distribution are
neglected) and a local coordinate system established at the
contact center ( t=0 ).

By considering a sufficient numbher of slices the variation of
pressure in the x-direction over a slice width may be neglected,
i.e. each slice is regarded as the contact zone due to a cylindrical
disk (without edge effects).

Sliding velocities at a typical race slice are shown in Fig.

I 4.6b. A sliding velocity in the x-direction results if the ball
rotational vector has a component & ." The sliding velocity Ugy is
always equal for all slices.

Because of groove curvature the sliding velocity component ug,
will vary from slice to slice across the contact ellipse.

Figure I 4.6c shows the traction components Tx and Tz on the
slice. T indicates the resultant for the given slice. The forces
Tx and TZ are computed for each slice and summed to give the
components of the total traction force acting at the contact.

Additionally, during the integrations, friction moments of the

tractions about the rolling element center are obtained, wusing the

radius vector coordinates n and t.




FIGURE I 4.6
Calculation of Traction Forge Components

v

-
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¢. TRACTION COMPONENTS ANDP THEIR RESULTANTS AT
A TYPICAL SLICE

tz

=

b. SLIDING VELOCITIES ON TYPICAL SLICE

a. CONTACT ELLIPSE AND PRESSURE DISTRIBUTION
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APPENDIX I 5

LUBRICANT PROPERTY AND EHD FILM THICKNESS MODELS *

I 5.1 LUBRICANT PROPERTY MODELS

Many of the calculations performed by computer program SHABERTH
require that the viscosity 7 and the pressure-viscosity coefficient

o( be known at a given temperature.

1 Accordingly, the program employs subroutines which, when given

: lubricant kinematic viscosity ) at 100°F (37.78°C) and 210°F

{ (98.89°C), density Q at 60°F (15.56°C) and the thermal coefficient
of expansion, determine the lubricant density, viscosity,

and the pressure-viscosity coefficient at any temperature required.

The kinematic viscosity » (cs) at atmospheric pressure is

calculated at a given temperature t (OF) from Walther's relation i133
/ -
log10 log10 (z7+0.6) = A - B log10 (t + 460) (I 5-1)
where A and B are constants determined by substituting the known
values of M at t = 100°F and t = 210°F into Eq. (I 5-1) and

solving the two equations which result for A and R.

Having calculated ) at a specific t, 0 is comnuted as

Y =¥Q (1 5-2)

* This Appendix is baseduwon the original work [Qz .
15-2




1910°0 0T X viy 6.80°0 010°1 §69°¢ L0zZ°01 [ 6°82¢ 669¢Z2-T1-TINW 14

'
i
'
'

V|
8910°0 <-o~ X SI°¢ 0690°0 102°1 1 G A 4 ISYTIT 1Y ¥°S¢ 1ay3ig-D ¢
2¢10°0 w-OH X v6°¢ 6L80°0 9756°0 869°¢ STZ°01 l°¢ 8°CI1 9808L-T-TIN Z
110
€oT0°0 e-oH X 7§°'¢ 1490°0 0088°0 €.9°¢ 6vE°0T 0°8 9 TEIUTIN ¢
9
ﬁﬁ-mov uotsuedxyg .xo\um\h:\:um
33900 3o ED | wo /wgd t U 0% 1] ¢4 4,001
AIISODSIA *3390D A3ITATIDNPUO) .m 09 @ S1UBISUO) wmuv .%pwmoumﬁ> ad{iy *ON
-dway Teuwlayy rewzay L A3Tsuag uorjenbg asayirem JI3BUIUTY 110 110

HLYG9VHS WVY90dd NI ddsn STIO dn0d Ju STIL¥IJ0¥d INVIIAENT

-5 1 479Vl

et i




where g the lubricant density at temnerature t is given by,

o )= @ (60°F) - G{1-60"F)

(I 5-3)

where G is the lubricant coefficient of thermal expansion.
The pressure-viscosity index & is defined implicitly by the
relation

»J(p)-tj(P-ov-e.dP

(I 5-4)

where p1(p) denotes the viscosity at pressure p at an arbitrary
temperature.

The value of o itself varies with pressure, The appropriate
value of o to use in the film thickness prediction equations
wherein it appears, is the value applicable at the inlet,i.e., at
atmospheric pressure.

The value of & at a given temperature and at atmospheric
pressure is calculated by the relation developed by Fresco, 114}

(560)

o = (2.303) 10°°

[C+Dlog,, * E(log,, y2p(t + 460) (50 2/1) (1 5-5)
wherein ) is evaluated at temperature t (OF) and C, D, and E are
constants tabulated by Fresco as a function of S® 0.2B where B is

the coefficient in Walther's equation.
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Another lubricant property that appears in the model for film
thickness reduction due to inlet heating is the temperature viscosity
coefficient @ , that appears in Reynolds' exponential temperature -
viscosity relationship.

Q is computed from the viscosity values at t = 100°F

and 210°F as follows, ]

100°F) (I 5-6)
210°F)

Q= 0.00909 1n Y (t

§ (&

Relevant lubricant properties for the oils whose properties have
been preprogrammed in SHABERTH are listed in Table I 5-1. These

property values have been supplied by the manufacturers,

I 5.2 LUBRICANT FILM THICKNESS

The elastohydrodynamic (EHD) film thickness,h, at each contact
is computed as the product of the film thickness predicted by the
Archard-Cowking 20 (point contact) or by the Dowson-Higginson {Zﬂ (line
contact) formulas and two reduction factors ¢t and ¢s. The factors i
¢t

due to heating in the contact inlet and the decrease in film due

and ¢S account respectively for the reduction in film thickness

to lubricant starvation, i.e.,due to the finiteness of the distance

between the contact zone and the inlet oil meniscus. In equation

3 (1 5-7)

form,

h=¢ + 6 1 hac.
D.H.
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The Archard-Cowking and Dowson Higginson film thickness formulas

take the following forms respectively.

-0.93 0.740 0.407 -0.074
hpc=2.04 [1 * IR (o 4V R (Q/E") (1 5-8)
y

0.6 0% 0.13
hp = 1.6.R +(RE) . (5V ) (_‘L (I 5-9)

]
zE Rx E'Rx

Rx’ Ry - effective radii of curvature parallel and transverse
to the rolling direction respectively
=8 - pressure viscosity coefficient
\'s - lubricant entrainment velocity
-1

N -1 -1
R - o= [Rx + Ry ]

= maximum load per unit length
Q = load -1

2 2
E' -2\ L 1Y,
El EZ

[
n

absolute viscosity

[22]

= Young's modulus for the contacting bodies

~

X
<
[3S]
"

Piosson's ratio for the contacting bodies

[
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I 5.2.1 Inlet Heating Factor ¢t

A Grubin type inlet film thickness analysis considering full

thermal effects was developed for line contact by Cheng {10 }.

Results presented in ilO} covering wide ranges of loads, speeds, and
lubricant parameters were used to develop regression formulas for
the thermal reduction factor ¢t. Based on 28 sets of data, each
containing 15 data points, the regression formulas obtained take the

following form:

X
g, = e°
(I 5-10)

where
(1) x, = -0.3011 - 0.00432 1In (p /E') - 0.03469 In (1 + S)

-0.16423 1n Q- 0.01728 (1an)2 + 0.00389 1nck!

- 0.06316 1nQ'

]
for 0<Q < 0.1, (s'> 11.5 and 0 € Q < 0.4, Q <11,5

(2) x = -1.119304 - 0.16192 1n (p_/E') - 0.0895 1n (1+S)

- 0.29 1n Q_ - 0.04572 (1nQ )% + 0.13615 In e
- 0.31615 1n Q"
|
for 0.1< Q <.1, Q'> 11.5 and 0.44Qm‘— 1,@ ' & 11.5

(3) and X, = -3.66426 -0.48511 1n (po/E') + 0.00568 o
- 0.05491 %' - 0.1678 1In (1+S) - 0.19573 1nQ
3 m
- 0.09392 ¢ (anm) + 0.20908 -~ In &'
for Qm > 1

where, o '=’Tr’°‘p
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v

R0

S = (uz-ul)/ZV
_ 2

Qm= 2 V /Kf tO

K - pressure viscosity coefficient, in 2/1b.

b - half of Hertzian width in the rolling direction, in

Py" maximum Hertz pressure, 1b/in2

- temperature viscosity coefficient, oR'l computed via

Eq. (4-6)
- ambient temperature, on

¥ - ambient viscosity, (lb.sec/inz)

1° UZ - surface velocity of bodies No. 1 and 2, (relative to the
contact) in/sec

Kf- conductivity of the film (lb/oF.sec)

vV - (u1+ uz)/z, lubricant entrainment velocity (in/sec)

It is noted that for small values of Qm’ ¢t computed from
Eq. (I 5-10) may be larger than unity. ¢ _= 1.0 is used whenever

t
the value computed using Eq. (I 5-10) is larger than 1.0.

In evaluating ¢t for the elliptical point contacts in a ball
bearing, P, is taken to be the maximum of the Hertzian pressure
ellipse.

The point contact is thus treated as if it were a line contact
having a maximum contact pressure Py along its entire length of
contact. This is a conservative approximation inasmuch as it will

tend to underestimate ¢t and hence underestimate film thickness.

I5-8




I.

The magnitude of the error resulting from this approximation is
small as P, is not a highly influential variable in the expression

for ¢t.

5.2.2 Starvation Reduction Factor ¢s

A hydrodynamic analysis of an elliptical point contact having §

two equivalent principal radii of curvature Rx and Ry (parallel and

transverse to the rolling direction, respectively) is used for

calculating ¢s' Finite thickness of the half films (h, ,and h

1,1 1,2)
upstream from the inlet are set. The flow rate in the center plane

at the meniscus line is set equal to the incoming flow rate at the

contact centerline. The complete analysis is given in {115 and‘gS}.
Figure I 5-1 shows the geometry considered. The starved

plateau film thickness is ‘13 and the meniscus distance from the

contact center along the direction of rolling is r *, The ambient

film layers move toward the contact zone with velocities uy and u,.
The analysis shows hS and r* to be related to hl’ the sum

of the upstream ambient film layer thicknesses, (h1 = hl,l + hl,Z)

through the following two equations:

Y2
5.5VH & R 12VY o r*
1 X 5 = 1.0 (I 5-11)
h 3/2(342x) (3+2k) (h_+ r*2/2R )2
S S X
and hy = 2(2+k) (hy)+ kr#? (I 5-12)
342k (3+2K)R_
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FIGURE I 5-1

Film Geometry
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where k 2 Rx/Ry’ g is the viscosity of o0il at the contact inlet,

@ the pressure-viscosity coefficient and V= ( u; *+ uz) is the
entrairment velocity in the x-direction. 2
The simultaneous solution of Eqs. (I 5-11) and (I 5-12) for
given values of Rx’ Ry’ Vv, g , & and h1 yields the associated

values hs and r*. Subroutine STARFC performs this calculation.

As the meniscus distance r* increases, the film thickness hs
increases, asymptotically approaching a value hf as 1% —e oo ,
Therefore, hf is the film thickness under fully flooded conditions.

On letting r* —e o0 and hs—a hf in Eq. (I 5-11), the second
term on the left hand side vanishes and one may solve for hf as

2/3

1/2
he 5.5vy  (R) (I 5-12)

(3t2k)

Note that for line <contacts, the contact curvature ratio k is
set equal to a small value.

K = Rx/R = 0.01.
y

This k value results in a contact length to width ratio of 18 ¢ 1.
The lubricant meniscus distance in the rolling element-cage
contact is assumed to be proportional to the rolling element radius.

t* = 0.25 * r

I 5-11




Subroutine STARFC evaluates hf from Eq. (I 5-13) and then
calculates the ratio ¢S = hs/hf' As given by Eq. (I 5-13), it 1
does not indicate a dependence upon load. This is characteristic
of film thickness formulas derived from a Grubin type assumption !
applied to rigid bodies. It is considered preferable to use the
Archard-Cowking and Dowson Higginson formulas for the unstarved cases
rather than hf since these formulas better describe the dependence
of film thickness upon the influential physical variables. The

only role played by h_. is to scale hS to yield the ratio ¢S, which

f
is applied as a multiplicative factor on the Archard-Cowking and

Dowson Higginson predictions of unstarved film thickness.

I 5.3 Film Replenishment

As noted above, it is necessary to know the combined oil layer
thickness h1 to calculate ¢s and r*,

As a rolling element passes a point on the inner or outer raceway
of a bearing, a very thin lubricant film remains on each of the
components and is of the same order of magnitude as half the
plateau film thickness in the EHD contact. PReplenishment of the
lubricant layer on the raceway is required in order to assure
sufficient lubricant in the inlet region of the succeeding contact,
so that the EHD film thickness will be the same as in the preceding
contact. If replenishment fails to occur, each sucgessive rolling

element pass would have a thinner EHD film and steady state operation

with EHD lubrication would not be possibhle.
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Many mechanisms serve to replenish the lubricant in the track
of a high speed bearing. Of prime concern is replenishment at the
inner race in high speed ball bearings since centrifugal force tends
to direct free fluid away from that surface. Seven replenishment
mechanisms have bheen identified:

(1) Centrifugal flinging of the lubricant from the ball.

(2) Centrifugal travel of oil along the surface.

(3) Random splashing of lubricant in the bearing cavity.

(4) Direct deposition from a jet.

(5) Back flow along the surface into the track, from its

edges resulting from lubricant surface tension.

(6) Carrying into the contact, of lubricant adhering to

the ball.

(7) Back flow into the gap behind the contact exit due to

vacuum in the cavitated area.

A model exists for item (5) above. In view of the other,
possibly more influential sources of replenishment enumerated above,
this model has not been adopted in this program. Instead, it is
assumed that an externally supplied replenishment, amount A? ,
adds to the plateau film thickness to yield hl.

As a simplification, since A; is usually much larger than h,

the approximation h ﬂuhs is used so that,

hy = h + A; ( 15-13)

Subroutine STARFC uses Eq. (I 5-13) in solving Eqs. (I 5-10) and
(I 5-11), with a user specifified AF value.

Criteria for estimation of 4 g are presented in Sect. 3.3.15.
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APPENDIX I 6
TRACTION AND INLET FRICTION CALCULATIONS

I 6.1 INTRODUCTION

The traction model developed for use in program SHABERTH
is applicable to the partial EHD regime in which the lubricant
film separating the contacting surfaces may be small enough to
permit some degree of asperity contact. The model computes the
traction coefficient as a function of the ratio (h/q9), film
thickness h to composite surface roughness ¥ . For small values
of h/¢ (h/¢*<OM the model represents dry friction. For large
values of h/q (h/§ > 3) the model becomes a non-Newtonian semi-
empirical fluid film model in which the traction coefficient,

/“EHD’ depends upon sliding rate, as well as the load, rolling
speed and lubricant properties at operating temperture. For
intermediate values of h/¢~ the model is a combination dry and
fluid film friction., Essential features of the model are described
below.

A single, two dimensional, functional relationship is used
to model aspects of both wet and dry friction. The function is
plotted in Fig. I 6-1 and is valid over the range.

o0& X*e 0

and has the following characteristics.

§' s Yo e ouxum, 0D
®

4% Ye(1+Y, * D /0Ly K w5y X,) (1 6-2)

“ifb = \-‘ir‘

¢
X x"=Xg
0(%"1 . Y.' defines the value of y.below which y*is a linear

where:

>
function of X.
O‘Xs <=0 . X; defines the value of x* below which y -

is a linear functionof x* . I 6-2
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Note that y* increases monotonically with x* and that -31,-:

is continuous at x* = Xp- X
Both wet and dry friction coefficients will be defined in

terms of Eqs. (I 6.1 and I 6.2).

I 6.2 ASPERITY TRACTION MODEL

If Q is the total load applied to a concentrated contact (or

to a suitable sub-element of a contact), a portion of this 1load,
designated Qa will be carried by elastically deformed asperities
and the remaining, Q—Qa, will be carried by the EHD film. The
traction force Ts then is,

Ts = Aa QU *Awup (Q - Q) (I 6.3)

Under the assumption that the rough surface consists of two-

dimensional ridges of random height and slope angle, the average
asperity borne load‘Qa is the following function of the ratio h/q.

€ .
Q = ‘TT?"AVBI (h/g % (I 6.4)

where Lot -

T

E 2[ €, Ea

RI,EZ = Young's moduli of the contacting bodies

A = contact area

Vb = RMS value of the distribution of asperity slope

angles (radians)
Y I1(h/¢ ,x)= function defined in {}f} of the filn parameter h/g
and a statistical micro-geometry parameter § defined
in Nayak {26{.
It is shown in {27} that ® = 2 is a reasonable value to use
for rolling bearing surfaces. The following polynomial fit to the
function I(h/g,x =2.0) is used in computation:

1(hAT,2)=2.31e- 1840/ 40 1175 (hig-0.0) 00 (2-h/q) (I 6.5)
0.4¢h/&2
1(h/s,2) = 17 2840/ L 1 40 x 1074 (-1 1 4-hye 78

2¢h/g
When h/§ £ 0.4 the asperities are assumed to carry the entire
contact load.




The asperity friction coefficient gfa) is calculated as

follows:

4a =/1* y* (I 6.6)
117 * is supplied by the user, 0.1 to 0.2 is the recommended
range of values.

where y* is calculated from Eq. (I 6.1 or I 6.2) in which:

YB is 0.66

XB is 0.005

x* = Z(U;—Un\ calculated, local
{ (SPR AN slide to roll ratio

3 U, and U1 are defined in Fig. I 6.4

This relationship is believed to better approximate the
asperity friction phenomena than the coulomb friction model.

This relationship causes the friction coefficient to be a
function ¢f the small tangential displacement of the surface of
one body with respect to the other. The slide to roll ratio

provides a measure of the displacement.

In the numerical solutions being employed, it is important
that the functional relationships produce a unique set of forces
for a given set of rolling element rotational speeds. The use of
the above asperity friction model helps guarantee this uniqueness.

The value ‘/7* = 0.1 was recomnmended in (27} as being consis-
E tent with values deduced in traction measurements in the partial
F

EHD regime,
I 6.3 FLUID TRACTION COEFFICILNT EHD
The general behavior of the fluid traction coefficient yp..

as a function of sliding rate is illustrated by the curves in
Fig. (I 6.2). (Throughout this section the subscript on YEND will
be omitted,)
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In the curve in Fig. (I 6.2a) the traction coefficient
increases linearly, at low sliding speeds, reaches a mathmbﬂt/L*
at speed ug = us*, and decreases thereafater.

In the curve in Fig. (I 6.2b) the traction coefficient i
increases linearly at low sliding speeds and then approaches an
asymptotic valui/k*.

Both types of traction curves have been experimentally
observed. Both signify a departure from isothermal Newtonian
fluid behavior since for this situation the traction coefficient
increases linearly with sliding speed.

For the curve of Fig. (I 6.2b),/M* denotes the asymptotic ;
traction coefficient. Define us* = 3 x Uges where u. . is the
sliding speed at which the line/u7n*intersects the extended linear
portion of the curve‘/kvs. u,.

It has been found tha?/&* for either type of curve increases
with the contact pressure and decreases with rolling velocity
and lubricant viscosity (and hence ambient temperature);/&s* on
the other hand decreases with pressure and increases with rolling
velocity and viscosity, This joint variation has been found to

result in a scale change in the two axes but not in a substantial

change in the character of the traction curve. T

This means that traction curves obtained under widely dif-

ferent conditions of pressure, rolling velocity and temperature

when plotted on a grid with coordinates/ur =/45pg* and x = u/u.*,
yield substantially the same curve {775.11}.

A characteristic of the curves of the type of Fig. (I 6.2a)
is that /ur decreases indefinitely with large x. Curves of this
type can cause convergence difficulties in a bearing computer
program because there are two sliding speeds associated with

each value of the traction coefficient. The solution may cycle
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FIGURE I 6.2
Typical Traction Curves
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between two values in seeking an equilibrium condition.

An approach to avoiding this difficulty is to use the

previously mentioned monotonically increasing curve Eq. (I 6.1 and
I 6.2) that is a good match to the actual curve over the increasing
portion of that curve. If the program then cenverges at a sliding i
speed that is within the range where the curves match, the solu- |
tion is valid.
In the present context, let y®* and x ¥ from Eq. (I 6.1 and I 6.2)
correspond to the relative traction coefficient Q/*R) and the
sliding speed Uy , respectively.

If we now define/ﬁt‘as the asymtotic EHD traction coefficient g

the acatual coefficiensﬁ&EHD is:

Memp Mt M . (6.8

For a given oil, the maximum traction coefficient #* has
been found iZ?} to vary with pressure, viscosity, rolling velocity,

and film thickness in the following manner:

un ‘P(Po)o'“i’o("'”)lg (0.59), (048 =0:613) |, (-0148) (1 4,9

where ,

Py = the maximum contact pressure (lb/inz) 5

h = plateau EHD film thickness (in) i

f(p,) = a function governing the dependence of viscosity on %
pressure p, (oil parameter)

A = a visco-elastic constant (oil parameter) |

Similarly, u_* exhibits the following dependence on po’”«a’

S

V and H. A - - '
uf~P,('°"“);(9‘)( o.uo)ﬂ( m)v (0,40 - 0.09 ) W 53) 1 6.10)

The quantitics;A*z}AS* and h can be measured experimentally

for a set of given values of Pys j, and V. For the oils thusfar

examined, the function f(py) has been found to follow a law of

the fornm, ‘?(PA“'(FQ/P‘):' l;o ‘PPI
~ (P » >
()™ I 6-g ' (1 6.11)




r . . ;v?.-—————-—————-——_—_____j - , " ,

where Ay, A, and p; are lubricant dependent constants.
Values of A;, A, and pj for four o0ils are listed in Table (I 6.1).
The procedure for determining these values for other oils is given
in {23,274.

Making use of Eq. (I 6.11), Eqs. (I 6,9) and (I 6.10) can be

expressed in thc following form on introducing Cj and C as propor-

tionality constants.

P CA?,""4.(?o/r.\°""A‘g (0:59) |, Gub-001) =045 ¢ g

-0.14 . ‘ -1 4oA-o. .
0:= szo o '(P'/?o)o 4A‘. t)( ' I)-V (ovdo 009)0 \f\o e (1 6.13)

L =42
The values of C; and C,; are evaluated by substituting measured
/A*, us* and h values for a specific test condition. Then knowing
values of Cj, C2, py, Aj and h (starved), it is possible to pre-
dict values o€/4* and ug* as functions of the operating parameters
Pos V, andlﬂ by Eqs. (I 6.12) and (I 6.13). Values for C; and C3
thus calculated for four oils are tabulated in Table (I 6.1). The

units in Eqs. (I 6.12) and (I 6.13) are V (in/sec), % (cp), P. (ksi)

o
and h (microinches). Also shown in Table (I 6.1) are the values of
Q}kr)g and (us)B used for the four oils. These data have been
preprogramned into SHABERTH.

In summary, the calculation Of/AEHD at a given sliding velocity
ug and for a given pressure p,, film thickness h, rolling velocity
V and temperature t, proceeds as follows:

1. Calculate viscosity ¥ at temperture t.

2. Using appropriate constants from Table (I 6.1), calcu-
latgﬁAs* and M* for given p_, h, V and q(t).

= ®
3. Calculate x ug / ug
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4, Use Eq. (I 6,1 and I 6.2) with values of (f*r)B and
(us)B from Table I 6.1 to calculate/.l.r associated with

the value of x calculated in Step 3.

5. Conpute/uEHD =M ./u*

I 6.4 INLET REGION HYDRODYNAMIC FRICTION FORCES

I 6.4,1 ELLIPSOIDAL CONTACT

The contacts between ball and race and between ball and
cage pockets are "point' contacts. Under lubricated conditions,
the surfaces are separated by a fluid film and there is a
pressure build-up around the contact caused by the sweeping-in
motion of the surfaces. This pressure build-up contributes to
the friction in rolling. Tangential surface forces are required to
pump the oil into the high pressure :zone.

The pumping forces are due to rolling, (FR), and sliding (FS).
Expressions as a function of a finite meniscus distance r*
have been found for these forces. The complete analytical develop-

ment is contained in {11} and §27% .

Since these forces arise in the contact inlet region,
elastic deformation is not considered to have a significnat effect
and the analysis invokes a rigid body assumption.

Figure (I 6- 3 ) shows the relevant geometry. Two rigid bodies
are shown in noninal point contact separated bv an oil film and
underpoing relative rolling and sliding. A local cartesian co-
ordinate svstem is established with the x-y plane parallel to
the tangent plane of the two bodies and with the origin coincident
with the surface of body 2. The coordinate system remains fixed
in the contact as the surfaces of the two bodies move. The prin-
cipal radii of curvature of the two bodies are (Rx]i and (Ry)i’

i = 1,2. The equivalent radii are

- -l
Rye ('/e’li * '/217.) ' ')21‘ (\/2‘1111’ |/Eyz) (I 6.14)
1 6-




FIGURE I 6.3

Notation for Rolling Sliding Point Contact
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FIGURE I 6.4

Friction Forces on Sliding and/or Rolling Disks
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The normal separation of points on the two bodies near the

origin is given by
2 2

h=h0+3(z§ + a‘éﬁ (I 6.15)
R, v

where h0 is the minimum film thickness at the origin. This
separation function is applicable if the width of the Hertzian
flat repion in the contact is negligible compared to the
relevant x and v dimensions in the inlet and outlet.

The surfaces are assumed to be moving with velocities u,
and Vi (i = 1,2) relative to the origin in the x and y directins.
The rolling velocities in the x and y directions are defined
respectively as Ve = (ul and uz)/Z and Vy = (v1 and vz)/Z and

sliding velocities in the respective directions are u = u;-u,

sX
and usy = V-V,

N is the portion of the normal load that is being supported
by hvdrodynamic forces in the inlet. For elastic ball race con-
tact O is considered negligible when compared to the load sup-
ported over the llertzian contact zone.

The forces FR, FS and F, are displaved in Fig. (I 6.4). For
claritv the special case of contact between two disks is illustrated.
In this case, R, is infinite and the forces are directed along the
x axis. In the.neneral point contact case the forces have both x
and v components.

The force Fp acts in the sarme direction on both contacting
bodies and opposite to the direction of motion. FS acts in
opposite directions on the two bodies in such a way as to tend to
increase the speed of the slower bodv and to decrease the speed of
the faster bodv.

The forces F1 and F, are the resultants of the hvdrodvnamic

pressure distribution in the inlet and act through the centers of !

the two bodies. The component of these forces in the y direction. !
I 6-14




represents the (small) portion of the total load supported
hydrodvnamically, The components Fol and F , acting in the x
direction contribute to the force balance in the rollingsdirec-
tion,

The magnitudes of Fps» F and F  depend upon the meniscus

s
location r*, The calculation of r* for the rolling element race

and rolling element cage contacts is discussed in Appendix I 5.

Expressions for the x and y components of the forces FR’

FS and F, are given below in terms of the dimensionless quanti-

ties FR and Fs.

Pumping Forces
RolIling Component

A

Frv = % Co Fp cos ¥ (I 6.16)

Fry ¢, g (sin¥) (Ry/lzx)’i (1 6.17)

Sliding component

- 7 L]
Fsy = Fy Yug, (Rny) (I 6.18)
- F %
Fox = Fs ¥ Usy (RR)) (I 6.19)
Normal Forces (on ball)
- Ry
. Foy = Co Fr 7 cos Y (I 6.20)
4
| = R in¥) (R 's (1 6.21)
; an = C0 FR 7= (sin¥) ( y/Rx) .

i (For a ring, r is replaced by the raceway radius) where

] -1y-2- I 6.22
Co = Y Vx(ReRy et (Vx/vy)2 (3+2k"1) "2k 1] ( )
-1 3 + 2k \'
=t H—r - ¥
¥ e [ k® (3+2k™ ) v, :\ (I 6.23)

>
\

= Ry /Ry

absolute ambient viscosity

[ 4
"
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The auantities FR and FS are dimensionless and depend upon

two further dimensionless parameters & and tl . Ql is a

dimensionless meniscus distance defined as
- - * P 2 . 2 L
?1 = [ r*/(2nR) (cos“ ¥ + (1/k)sin“¥) (1 6.24)

ho for ball-race contact is taken as the plateau EHD film
thickness.

For ball-cage contact h0 is as calculated in Apvendix I 8.

r*® is the distance of the o0il meniscus from the contact
center along the rolling direction.

&« is the product of the pressure viscosity coefficient of
the lubricant and the maximum fluid pressure Unax
that prevails if the lubricant is isoviscous.

assumes values between @ and 1 with &= 0 indicative

21

of purely hydrodynanic and ® = 1 of purely elasto-
hydrodynamic conditions. & = 1 is taken for ball-race
and = 0 for ball-cage pocket calculations.

Plots of Es and }?Ras a function of ?1 for various values

of & are given as Figs. (I 6.5) and (I 6.6) taken from 5.233

For the FIID ball race contacts the following expressions
have been fit to the FR vs. ? ] curve in Fig. (I 6.6)

for & = 1.
Fp = 28.59 in Ql - 10.1; Q% 5 (I 6.25)
Fp = 36.57 in R, - 22.85; Q;> 5
Fs is not considered for a hall-race contact because the

amount of sliding is so small,
For the predominantly hydrodynamic contacts, @ = 0) which
arise between the ball and the cage web, both pumping and

sliding friction are considered. The following equations were

fit to thee< = 0 curves in Fig. (I 6.5) and (I 6.6).
I 6‘16
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FIGURE 1 6.5

Variation of Es with l’-’1
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FIGURE I 6.6

Variation of FR With the Dimensionless Meniscus Distance Pl




15.570,

sl
[}

= 8.53 x 107" T1nco00 Q ]
R = 36.576 In @, - 29.32; 0, 2 5.4

1< 5.4 (I 6.26)

-y
L§

el
H

1.71 x 10°7 finc1000 @ 1" ; @ < 2

965 (I 6.27)

i
"

10.115 (1nQ,) + 1.5; ?1-" 2

In applying the above results to ball-cage web and ball-
race contacts, it is necessary to interpret the geometrical
parameters of the general configuration of Fig. (I 6.7) in terms

of the appropriate bearing dimensions.

Figure I 6.7 shows the relevant geometry for the two contact
types as well as the direction of the various force components.
In this figure r denotes the ball radius,r' the cage pocket

radius, r_, the outer ring groove radius, R the radius to the

g
center of the contact ellipse and & the outer ring contact angle.

I 6.4.2 INLET REGION HYDRODYNAMIC FRICTION FORCES LINE
CORTACTS

A nodel has been developed for calculating hydrodynamic

pumping and sliding friction forces in the inlet regions of

roller bearing race contacts wherein film variable viscosity
and starvation effects are included. The contacting bodies are
assured to be rigid. The model was developed by Dr. Y. P. Chiu
of S K F Industries.

Consider two rigid cylinders of radius Ryl and Ryz moving
at surface velocity U 1 and UZ as shown in Figure I 6-4. Floberg
inbo} has obtained expressions for the fluid pressure distribution
P , normal rolling friction forces Fnl and Fa2 and tangential
friction forces FR as functions of a dimensionless meniscus
distance X,, = r*/( R-hov' Isoviscosity is assumed. h, is the

minimum film thickness and R = (l/Ryl + l/Ryz)-l.

I6-19
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FIGURE I 6-7 Configuration of Contacts

{(a) Ball-Cage Contact
(b) Ball-Race Contact (Outer Ring)
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Specifically, the maximun fluid pressure Pmax is pgiven by
HEs

P nax Po* (24 unyn, Y2

where Po* is a function of x01 as shown in Table 1 6. 2. The

(I 6.29)

normal friction forces acting through the centers of the two

cylinders of length f are

Fa 912 ' 7/ !
= 5 (2quR2) W2 (Ry+ Ry)| (1 6.30
e )= g, )the (g RO @R 16
The pumping forces are
Fp = 9.5 (Fp * Fpup) (I 6.31)

where u = (uz + ul)/Z
The dimensionless coefficients ﬁxo’ A, B and C, given in

Table1 6,2 below, are functions of Xp1 and were calculated by
Table 1 6.2

Floberg .
.Dimensionless Coefficients for the Calculation of
Line Contact Inlet Friction
x01 Pxo A ¢ B
-ed 4.6 3.5 4.485
- . L) 3.41
-2.245 0.81 2.72 0.877 2.94
-1,380 0.25 2,27 0.322 2.92
-0.954 0.11 2.02 0.17¢6 3.22

For the case that the fluid viscosity increases exponentially
with pressure, i.e. q=1j,, e“r it is desireable to use the Archard-
Snidle approximation 1315 that the ninimum film thickness hj in
an [N contact is determiend from Lq. (I 6-25) by setting P max

-1).

equal to the reciprocal of the pressure viscosity coefficient (X

Using P mq;x = 1, one then has,

Po* h¥t/(2y uet R?) (1 6.32)
and  (F \ [ (25‘*«) R/ r
(Fnl\). ('T)C /2((.“ l) (1 6.33)
e (B2 2 2w (42500
keu./u, (1 6.34)

where -(.P.xo’?zxo)/(P )

I 6-21 (1 6.35)




The values of C and B, as functions of xOl’ are tabulated in
the last two columns of the above table.
For the case where one has pure rolling suach that k =2 1.0,

Eq. (I 6.30) vields,

FescC (z‘d_a’"‘ )t/329/(2°<) (I 6.36)

The forces Fn exerted on the roller race contacts are,

F_(outer ring) R
n B[ o 2—1—— (— (I 6.37)

Fn(inner ring) Ri AR

where Rm = R0 -r= Ri + r = roller pitch radius.

Chiu {1% has determined in his analysis that contact load has
a negligible effect on the above pumping forces, and has obtained
good agreement with experiment for his rigid body assumption.
S1iding friction has been determined to be
Ty (outer rn«g) \I :\:::: ) 2 [ o!m)j ¢/
Fy Ciumer wwg) | = 0 Tu (o \ 24| Ry

where u = entrainment velocity = (u2 + ul)/Z and V = sliding

(I 6.38)

velocity = u, - uy

I 6.4.3 HEAT GENERATT )N RATES

In the ball-race and ball-cage inlet regions, the heat
generated due to the sliding force F and sliding force Fp is
calculated as,

ay = ZFRV + Fsu (I 6.28)

where V = fluid entrainment velocity at the contact center

u = sliding velocity at the contact center

I 6.5 BALL DRAG FORCE IN BULK LUBRICANT

In{ S}the following form of "churning friction force" is
cited, to account for all friction losses on the ball other than

EHD sliding traction in the ball/race contacts:
I 6-22




F, = N & (dy @o) (1 6.39
8 g
where F, 1is the drag force
A,: the ball frontal area
C,: a drag coefficient given in{}S}as a function

of the Reynolds number
d_: the bearing pitch diameter
W, the ball orbital angular velocity
g: the gravitational constant

Q ¢ the density of the air-oil mixture in the bearing :
cavity

Q= xcav . @ o (I 6.40)

XCAV: the fractional amount of lubricant assumed to

be in the bearing cavity

e o: the density of the oil

In the present model, three hydrodynamic force components at
each point contact on a ball have been defined.

These components tend to retard ball motion as would Fo
Since two race contacts and a cage contact exist for each ball,
15 force components have been made explicit. After accounting
for all contact friction forces, there is left a residual loss
due to "windage" or "drag" acting on a ball as it moves through
the air-0il mixture in the’ bearing cavity. Eq. (I 6.37) has been
used to model this windage force. Although the effect of the drag
force is less significant than calculated inis} , it remains impor-
tant.

XCAV values of one percent or less are recommended. 1In actu-
alitv,XCAV is a function of lubricant supply rate, metho& of

supply, speed and bearing and bearing cavity geonmetry.
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APPENDIX I 7

ROLLING ELEMENT INERTIA FORCES AND MOMENTS

A rolling element, Fig 2-4, traveling between azimuth locations,
is forced to undergo changes in its rotational velocity components
@, “y’ and wz’ as well as in its orbital velocity wo. The
forces which must act on an element to produce time variations in
its rotational and orbital velocities may be deduced from Newton's

Laws of Motion as follows:

1 p~
Fo 0 % o
- Y 2
F =1F§ =nm Y - W, (Rty) (r7.1)
wy .
F, 2 Wy + d (R+y)
J -

where Fx’ Fy and Fz are the components of the forces in the rotating
coordinate system attached to the element, m is the ball mass, x and
y are the element center displacements shown in Fig. 2-4, and R is
the radius of outer ring groove centers,

A rough estimation assuming stable operation yields that the
term x is smaller than 6J02° (R+y) by a factor of the order of
xm/R, where Xn is the maximum variation of x. Similarly, the
terms y and 2 d%y are smaller than G%ZR by a factor in the order
of ym/R where Ym is the maximum variation of y. Note that both
xm/R and ym/R are very small in magnitude. The second derivatives
with respect to time of x and y are thus neglected as is the

Coriolis term 2 ldoi'. The term ‘)o is expressible as follows:
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L e

o = da ded, dg de (I 7.2)

dT dé dT dé
!

The term duo is approximated for ball i as follows:

de
o, | (W) i+l - @i -] (I 7.3) '
d ¢ J, 2A4¢
(
where Af is the angular distance between rolling elements. ‘
The moments necessary to cause the element velocity to change are
as follows: 4
- |
M o] . (@)
- X , W,
Mo p 20 @) - @l ow, (17.4)
M 0
z W, + w, be
-
Jx 0 0
J = 0 J 0 17.5
b , a7
0 0 J,
‘r a ball:
2 :
Lo 1, =, = mD?/10 (I 7.6)
I7-3




T

for a roller:

mD2/8

JX

, =3, = n/12 (3/4 0% + fre?) (1 7.7)

[
n

m is the element mass
D is the element diameter

fre is the element length

The time variation of the rotational velocity components

@, wy and @, are approximated in the same manner as uo ,e.8.,

’ - 3 ;
D o @) i1 - @25, o (1 7.8)
2A¢ o
- -
Using D'Alembert's principle, forces -F and moments -M

calculated as described above are imposed on the element along with
the other forces and moments due to friction and elastic contact.

The combined system of forces is then regarded as being in static

equilibrium.




Because the time rates of change of Uo, ux,wy, and(dZ are
included by approximation as described above, the analytical treat-
ment is considered to be quasi-dynamic as distinct from analyses
wherein these terms are neglected and only the centrigufal force
mé)oz(R+y) and gyratory moments on. NZ and -onwy are considered.

The description '"quasi-static" has been applied to slutions of

this type.
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APPENDIX I 8

ROLLING ELEMENT BEARING CAGE MODEL*

I 8.1 INTRODUCTION

The cage is driven by normal and friction forces which act
at the interfaces between balls or rollers and cage pockets, and
at the cage rail(s) and ring land(s). These forces are calculated
as functions of the separation and speeds of the interfacing mem-

bers. In this analysis it is assumed that:

normal forces exerted by the rolling element on the

cage pocket act in the plane of cage rotation which

is coincident with the cage axial midplane.

friction forces exerted by the rolling element on

the cage pocket act orthogonal to a corresponding

normal force and at the normal force point of appli-
cation.

the only friction force components considered in the

1 B cage equilibrium equations are those which lie in the
plane'of cage rotation. It is assumed that each rolling
element is axially centered within its pocket.

cage rail normal forces act at the cage midplane and
pass through the axis of the cage. These forces are
coplanar with the rolling element normal forces. i
cage-land friction forces act in the cage midplane such

that any résulting torque tends to drive or retard the

cage rotation.

*This Appendix is based upon the original work {_15}

I 8-2

adibldinhisonitini




The analysis is used to determine the normal and traction forces
at each rolling element and ring land on the basis of hydrodynamic,
elastohydrodynamic and Hertzian concentrated contact theory.

I 8.2 GEOMETRY

Figure 2.4 shows a coordinate system (XYZ) with the origin on
the outer ring axis in the plane of the outer raceway centers. A
local coordinate system (x,y,z) is established at the center of each
rolling element. The azimuth angle ¢ defined in the (X,Y,Z) coord-
inate frame locates the x axis penetration through the Y-Z plane.
The x axis is parallel to X. The y direction is radially outward
and the z direction is tangent to the direction of rolling.

A local coordinate z. is also defined for each cage pocket,
wherein the origin is located on the cage pitch circle. We wish
to determine the position of each rolling element center with respect
to the cage pocket center along Zos in terms of the rolling element
orbital speedstuo, the cage rotational speed cdc and the cage
rotational and translational displacement components.

I 8.3 CAGE MOTIONS

The equilibrium solution considers that the cage operates
in one of three modes:

(1) The cage is outer ring land riding such that radial

and small circumferential motions of the cage with
respect to the rolling elements are resisted by hydro-
namic fluid film forces that develop between the cage
rail land outside diametral surface and the bearing outer

ring outside diametral surface, Three degrees of freedom

e et ph i Mt et e i




apply to the cage motion. These are the circumferential

position of the cage relative to the rolling elements ( S )
and two components of radial displacement (AY and &Z

in rectangular coordinates, or e and a'c in polar coord-
inates.) When the bearing is subjected to axial load

only, or when the rolling element speed variation is in-
consequential, the radial degrees of freedom are neglected.

(2) The cage is inner ring land riding when motions are re-

sisted by hydrodynamic forces which develop at the cage
inside surface and the bearing inner ring outside surface.
Three or one degrees of freedom also apply.

(3) The cage is ball or roller riding in which case there

are no net radial fluid film forces between the bearing
rings and the cage, and consequently, no radial motion
of the cage relative to the bearing axis of rotation.
Angular motion of the cage relative to the rolling
elements is the only applicable degree of freedom.

The circumferential displacement of rolling element No. 1 at
azimuth location ¢ = ¢1, relative to its cage pocket center is
designated (-‘f ).

I 8.4 ROLLING ELEMENT MOTIONS

Returning to Fig. 2-4, the velocity with which the moving
coordinate system rotates about the X axis is designated W, and

is also assumed to be a function of azimuth angle, i.e. w =uDo(¢).




The rolling element is assumed to rotate relative to each of

the axes in the moving system of coordinates. The angular

X s

velocities about each of the axes x, y, z are denoted(ﬂx,uoy, and
w, respectively and are shown as the orthogonal components of the
rotational velocity vector(J in Fig. 2-4
The value of the ball center-cage pocket center offset Z.
applicable at other ball positions is deduced relative to ball
position No. 1, which remains fixed at its aximuth position.

The cage is assigned a rotation g , so that the offset of cage

pocket no. 1 relative to ball no. 1 is

d
‘S = —2‘"“ DO (I 8.1)

In so doing, it is assumed that a rolling element orbital
velocity remains constant as it traverses the distance corresponding
to one half of the pitch spacing on either side of the nominal
azimuth position. As a rolling element enters the azimuth location

i of the next adjacent rolling element the orbital speed undergoes a
step change. This is illustrated in Fig. I 8.1 for ball Nos. 1 and
2. The top half of Fig. I 8.1 is a plot of the assumed variation

of orbital velocity with respect to ball position.

The cage orbital velocity is denoted bycuC and is assumed

uniform and equal to the average of the ball orbital velocities, i.e.

n
|
ooc'-;l' Z‘@Oo)b (I 8.2)

t=d

where n is the number of rolling elements.
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Figure I 8-1

Cage and Rolling Element Speeds and Displacements
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The distance between ball positions is the quotient of the
circumference MW dm of the locus of rolling element centers
(neglecting small excursions) and the number of rolling elements.

The time A T for the cage to traverse this distance is then

‘T
AT = —‘:A‘/(é_%wg =%¢ (I 8.3)

In this time period the center of rolling element No. 1 moves

a circumferential distance of

a
—“i‘- (w,). . 9:-{ +é,2.‘“_‘. (wa), 'é;{ =A4MAT B‘*’W&"DA(I 8.4)

The circumferential distance between the rolling element and cage
pocket center at position No. 2 is obtained as the difference
between the rolling element travel and cage travel in time AT,
less the initial offset of the cage pocket center at rolling element
position 1 with respect to the center of rolling element 1,(?), see
Fig. I 8,1, plus the components of the radial eccentricity

Az and AY) of the cage axis with respect to the bearing axis. Then

T
(2, = LT {09, 0%, “Tedat - (§)-aYsing, + 52 cost,
(I 8.5)

Letting & T = 217"/’“0 then Eq. (I 8.5) becomes for the general
¢

i-rolling element ;

I 8-7




FIGURE I 8-2

Cage Pocket Geometry




~ (W, 0 .
(Z,_)Lz“_;&. _?#z_‘:_oéki.) 11 - [ % + AYsm ¢,;-A3cos¢a
J=2

(I 8.6)

I 8.5 CALCULATION OF CAGE POCKET NORMAL FORCES

A means for calculating the cage driving forces due to the
balls was developed in 523 3. The analysis has been extended to
include roller-cage pocket,line contacts, by approximating the
line contact to be an elliptical contact that has a large
curvature ratio (e.g.: a*/b* = 18 ).

The analysis is applied to determine the normal forces acting
at two diametrically opposite points on a rolling element, i.e., the
points of nearest and furthest approach of the ball or roller
relative to the cage. The net normal force acting on the rolling
element is the resultant of these two forces. The discussion
below considers ball-cage, but it applies to roller contact.

The typical ball geometry is shown in Fig. I 8.2. z, denotes
the offset between the ball and cage pocket centers in the direction
of rolling. W andwy denote the components of the ball rotational
velocity vector that result in relative surface speeds of the
ball and cage pocket.

The closest approach hO is the minimum film thickness when the

cage is lubricated.




Given the ball cage pocket eccentricity the associated cage
pocket load P can be calculated. When z. is small the load is
small and borne hydrodynamically by the lubricant film, which then
has minimum thickness h0 =r' -1 - Z.- In this regime, the load for
a given value of the ball and the cage pocket clearance is that
supported by a hydrodynamic contact of minimum thickness ho.
Elastic deformation is negligible in this regime, As Z. increases,
h0 decreases until it reaches a critical value hc’ below which a
further increase in Z. results in elastic deformation but no further

decrease in film thickness. In this regime

h = h (1 8.7)
and the elastic deformation is calculated from,

® -z +h -C (I 8.8)

where Cr is the cage pocket radial clearance (r' - 7r).

The load P in this case is assumed to be the sum of the load PC
hydrodynamically related to the film thickness hc’ and an
additional load Pe associated with the elastic deformation through
the Hertzian and flexural equations of contact elasticity,

An analysis was performed as described in 1233 of the relation-
ship between normal load P and minimum film thickness ho in a

lubricated point contact between two rigid bodies, each having two




principal radii of curvature, assuming that the lubricant
viscosity increases exponentially with pressure. The analysis
yielded a relationship between the nondimensional load parameter O
and the nondimensional film thickness parameter H, as shown by the
solid curve in Figure I 8.3. These nondimensional variables are

defined as:

= _ o 2, 1/3 -1/2 _
Q=P (&R/CH (R,R) P.D (I £.9)
- _ -2/3 _ h
H = hoRx (CORXCK ) = Co B (I 8.10)
r
where:
- 1/2
CO = 5 o Vy (RXRy) k1 (1 8.11)
_ 1 . _ \Y 2
k= [ Gad e e it (%) 17% (1 8.12)
'
y
k = Ry/RX (I 8.13)
= 2,1/3 y -1/2
D = (X Ry/c0 ) (R,R) (I 8.14)
-2/3
B = CrPX (CORX°<) (I 8.15)
- 2
R, = .1yl _r (I 8.16)
T r' C
T
R = T
y
Cr = r' - r, cage pocket radial clearance

I 8-11
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v, = 1/2 Wy s r

bulk viscosity

Yo

1/2Wx ¢ T

<
]

It has been found that the relationship between'a and H for an
unstarved point contact can be approximated by the following formula:

- = -1/2

Q = 53.3 () 3

+ 163 (H)~ (I 8,17)
provided that:

—(-— -

Q Qc 37.6

I 8.5.1 ELASTOHYDRODYNAMIC (EHD) CONTACT

For Q 2 37.6, the film thickness is independent of load and the

nondimensional parameter H remains constant at HC. Operation in this

case is in the EHD region.

¢ H = H = 3.122 (I 8.18)
for EHD Contact
0>0 =
Q2Q. 37.6 (I 8.19)

Equations (I 8.18) and (I 8.19) result in the following for the EHD

region of operation,

l:’C = QC
h, = h

/D = 37.6/D (I 8.20)
= 3.122 Cr/B (I 8.21)




The ~lastic deformation 5;; is given by,

be = z_+h -C

(I 8.22)

T
Pe (S:e) was originally calculated according to Hertz Theory.
This model has been changed, however, in an attempt to reduce the
nonlinearity of rolling element-cage load displacement relationships.
This was done through the assumption that the cage will respond
to large rolling element loads through flexing as well as
through the local contact displacements.

It was assumed that 95 percent ofé;é would be accemmodated
by cage flexing and the remainder would be accommodated by the
Hertz deformation. The Hertz calculations are made based on the
assumptions of a 9:1 major to minor contact axis ratios for a

ball-cage contact and an 18.2:1 ratio for the roller-cage contact.

The cage flexure deflection is calculated from

Pe (flex) = (0.958e) R+ 13500 (1 8.23)

The spring constant 13500 R where R is the cage rail radius,
was derived using circular ring theory, considering the cage
material to be steel. The total ball-cage contact load P is

thus

P = Pc + PHZ (0.0SSe) + %flex) (O.QSSe) (I 8.24)

I 8.5.2 HYDRODYNAMIC (HD) CONTACT

If the contact film thickness ho is greater than the critical
value hc’ the contact is assumed to be hydrodynamic:

Tag Hc = 3.122 for HD contact
The minimum film thickness for this case is given in terms of the

ball-cage clearance and eccentricity z. as:

I 8-14




h =C_ -z (I 8.25)
The caticulation procedure is,

(a) Calculate ho as above
= -2/3
(b) Evaluate H = ho Rx (CORX)

1/2 3

(c) For H from (b) find Q = 53.3 (H) ~/° + 163 ()~
(d) Calculate cage-ball load P as 5/D
The procedure for determining the ball-cage normal load is
performed for the points of nearest and further approach (ho min

and ho max). The net normal load acting on the ball is given by:

Zp = P (h, minimum) - P (h_ maximum) (I 8.26)
I 8.5.3 DRY CONTACT
Normal cage-pocket rolling element contact forces for con-
ditions of dry contact are calculated for the ho (minimum) contact
only. A continuous force displacement function is assumed for

this calculation. A soft spring and low force values occur for

e &£ 0.99, where ® = 2 7c/(r'-r); such that,
P = 10 . r . e fore = 0.99 (I 8.27)
A hard spring function is assumed for € > 0.99, such that
€ = 0.99+0.01 (e - 0.99)/¢
ep = € + 1.01
- - _=(1/8)) 1 - 3 -
P 0.0506r,i el/ [1-e p ]J (ep/Z) ‘&) (I 8.28)




I 8.6 CAGE POCKET/ROLLING ELEMENT FRICTION FORCES

Friction forces which arise in the rolling element/cage
pocket contacts are calculated according to Appendix I 6 for
wet friction. Dry friction forces are calculated with a Coulomb

model.

I 8.7 CALCULATION OF CAGE LAND NORMAL FORCES AND FRICTION MOMENT

The lubricant forces which develop between a cage rail and
its supporting ring surface are obtained using the hydrodynamic
solution for self-acting short-journal bearings. According to (35,
the resultant of the pressure distribution on the cage has orth-
ogonal force components, one of which lies along the cage lin
of centers (the line which passes through the cage center and its
point of closest approach to the ring). Both components pass

through the cage center.




Figure 2.5 depicts the geometric and operating parameters
for the inner land riding situation, and Figure 2.6 the outer

land riding situation. wu., u

i o Yo are the surface speeds of

the inner ring, outer ring, and cage land, respectively. The
cage undergoes a displacement in the bearing XYZ frame of a
magnitude e and direction S‘C. An xyz frame is attached to
b the cage, such that the y axis passes through the point of

minimum film thickness. The y axis is rotated ek:from the

ring Y axis. The short bearing solution for an isoviscous,

Newtonian fluid gives the magnitude of the normal first terms

in Eq. (I 8.29) through Eq. (I 8.31). The second terms account

for cage elastic flexure.

3
UL et
W, = Jo Sd=%F
y ) 4 13800 R, = =
Z (1. €2)?2 1 (I 8.29)
Y L3 e v
W = Jo -
z - -41sRS\ =, =T (1 8.30)
C2 4(1-62)3/2 \\II + %
) and of the friction torque as,
: 2
‘ = VR L 1 V
; c (1- €% 2! (I 8.31)
' where fe1- € - 0.999 C
C = radial clearance, (in.)
jo = viscosity, (lb-sec/in.z) L
L = cage ring width, (in.)
R = cage ring radius, (in.)
U = entrainment velocity, ) (in/sec)
vV = (ui + uC) for inner land riding cage
Vv = (u0 + uc) for outer land riding cage
Ve = (ui,0 - uc) sliding velocity

= eccentricty ratio, e/C
I 8-17




=
I

cage land normal force component along line of centers, (1b)

=
1

cage land normal force component normal to line centers,(1b)

=
]

cage land friction torque, (in-1b)

In using Eqs.(I 8.29) and (I 8.30),the upper sign applies to an
inner ring riding cage and the lower to an outer,

Subroutine CGWET makes the calculations.

For dry contact a load displacement relationship is assumed

which has the following form.

W, = XK+€ = +F (1 8.32)
Xk = .3/c? fore€o0.9 (I 8.33)
XK = 0.2111 » L3/c2 € /(1- €9 €>0.9

Wz = f wy,‘_%‘_ - +F, 1 8.34)
Mo = WZe R (1 8.35)

Subroutine CGDRY makes the calculations.

: In order to insert the values for Wy, W_ and Mc into the cage

z
equilibrium equations, the following transformations are made for
inner and outer rings:
ﬂ

r B )
Mcxw 1 0 0 M

! FcY - 0 cosG)c --smeC F (I 8.36)
FcZ 0 51n9c cosec F

. R i

where tan9c = (-AZ/-4Y) for an inner ring riding cage and tanec =

AzZ/ AY for an outer ring riding cage.

I 8-18
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I 8.7 FRICTION HEAT GENERATION RATES

The heat generated by fluid shearing between the cage and land
is calculated as the product of the cage friction moment and

rotational speed, i.e.,

q, = Mc‘l“'“c' (I 8.37)

where Mc is calculated according to Equation I8.31 and '(J—Uc‘is
the absolute value of the difference between the cage speed and the

speed of the ring that guides the cage.
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APPENDTX T 9

BEARING FATIGUL LITE CALCULATIONS

I 9.1 INTRODUCTION

Vithin SHABERTH, ball and roller bearing raceway fatigue 1life
is calculated with the methods of Lundberg Palmgren {33}&ndi$4§.
The life thus calculated is modified by multiplicative factors which

account for material and lubrication effects.

I 9.2 BALL BEARING RACEWAY LIFE

Bearing raceway L10 fatigue life in millions of revolutions as

determined by Lundberg-Palmgren,{33 Sis expressed by
Q 3 ‘
Liom = \ O (I 9.1)
' em

Qcm is the raceway dynamic capacity, the load for which the bearing
raceway will have 90 percent assurance of surviving 1 million
revolutions. From ref.issi.

2 ) 204 (s 'O’m)"”( ¥m )"'3’9 1.8
0n Oz -1z 3 Y 1% \cosatm 3

cm

I 9.2
where: ( )

f = proove curvature, raceway radius/ball diameter
(ry,/)
Y = D coso/d
I = Ball diameter
& = Raceway contact angle
d_ = Bearing pitch diameter
7 = Nunber of rolling clements

m = is a subscript, it is 1 for the outer raceway and 2 for

the inner raceway.




The upper sign is used for the outer race, the lower for the inner
race.

is the raceway equivalent 1load,
| €\}Ve {
Qfma 2( QW‘J‘) ms= :Z (I 9.3)
. =4

where Qmj is the individual ball contact load, and €= 3 or €:3.3

Qem

depending respectively upon whether the applied load rotates or is
stationary with respect to the raceway in question.

I 9.3 ROLLER BEARING RACEWAY LIFE

To account for non symnetrical load distributions across a
line contact, the roller and raceways are thought of as being
comprised of a nmmber of sliced discs. Raceway L10 fatigue life, 3
in millions of revolutions at a given slice as determined by Lundberg-

Palmgren, {345 is expressed by

-/ Q
Liomk =( ~cmk

Qemk

(I 9.4)

Qcmk is the dynamic capacity of a raceway slice, defined as the
load for which the slice will have a 90 percent assurance of
surviving 1 million revolutions. n refers to raceway, k refers

to slice, n is the index of the last slice, from ié{?

Qemic = 495'00)ib (% X)X""HA Qt:‘.”'C‘M)o.ZIL

{2Ciewn }© : )
A= 0.6l =i orK=z=hn . I 9.5
Az 1.0 Ke 2= <4 Alre ss50ice widlé .
The upper sign is used for the cuter race, the lower sign refers to

the inner race.

0

‘mek is the equivalent load for the slice.

y,
- P CE ogp € (1 9.6)

0
mek 591
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Omki is the individual roller contact load on the k-th slice and

€ = 4.0 or € = 4.5 depending respectively upon whether the
applied load rotates or is stationary with respect to the raceway
in question.

The LlO life of a raceway is ﬂiven by

Ve

Liow a, Z{L‘OMK X (I 9.7)

ke 4

where e is the Weibull slope exponent, here_ taken to be 9/8
for roller bearings and 10/9 for ball bearings

a, is a life improvement factor to account for improved
materials.

ag is a life improvement factor to account for full film lubri-
cation which

a*3 is less than 1 when full film lubrication is not obtained.
See I 9,5.

I 9.4 BEARING LIFE

The Lig life of the bearing considering both raceways is:

i —e -1/e
Lig = (L1 om) (I 9.8)

m=1

I 9.5 BEARING LIFE REDUCTION DUL TO ASPERITY INTERACTION

Ini?sgand{213the form of a reduction factor accounting for
the effect of surface asperity interaction was deduced and its
parameters were set to best fit to a large body of rolling con-
tact life tcust data.

As emploved in Program SHABERTH, the reduced tenth percen-
tile life L10 is calculated as follows,

-1
a*al+um~__ % (1 9.9)

3 Y 1.5)

1 59-4
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where

2
Y - I%%g_—_))— (1 9.10)

~
.

4
il

= density function of standard
normal distribution

tert

cumulative distribution function
of standard normal distribution

h/g = ratio of plateau film thickness

to surface roughness for most
heavily loaded ball

(L10)°°= the full film life

Lig = 23* (I1p)e0

(I 9.11)
The term (L10)°° is calculated using the principles of
Lundberg-Palmgren and multiplying by the user supplied product

of two factors which represent by Industry practice the life

1 improvement due to the type of material from which the bearings

is fabricated and the life improvement due to fuil EHD film

conditions. (Llo)ao is then down-rated to actual film conditions

; by Eq. (I 9.11).
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APPENDIX IT 1
S K F COMPUTER PROGRAM AT75Y004 FLOW CHART

Flow Chart

The hierarchical flow chart presents the program
structure, listing the program elements in the order in which
they would be called to solve the shaft-bearing dynamic, as
well as steady state and transient temperature distribution
problems. The various solution loops are indicated, as well
as notes which indicate the functions of various subroutine
groupings.

Each line in the flow chart represents a program element,
subroutine, function or the main program ALWAYS. The call of
one subroutine by another is dencted by indenting the called
subroutine relative to the routine doing the calling. As an
example, subroutine SKF calls subroutines FLAGS, TYPE, PROPST,
LUBPROP, LUBCON, DATOT, CNVRT, CONS and SPRING.

Subroutine CONS calls CONST, CONST calls BCON and CRCON and BCON
calls ABDEL.

The first mention of a subroutine within the flow chart
includes the entire 1ist of subordinate program elements.

At subsequent calls to that subroutine the 1list of subordinate
clements is omitted. As an example the first call to subroutine
AXLBOJ is followed by the subordinate elements JMVIKT, SNITMT,
NUMLOS, DUBSIM, MEIL, MEIL and SIMQ. After the call of AXLBOJ
from INDEL, the subordinate elements are not listed but are,
nevertheless, employed. The list of subordinate program ele-
ments are omitted in rcpeated calls of subordinate GUESS, BEAR,
SOLV13 and DELIV3 as well as AXLBOJ.

As noted earlier, rolling equilibrium is calculated, first
without, then if required, with friction forces included.
Whether or not friction is considered is highlighted with
the words Frictionless or Friction beside subroutine BEAREQ,

If the Program is too large to fit in its entirety on
the user's computer, segments of the program may be "overlaid".
For this purpose the Program is subdivided into ten (10) modvles
which can be sequentially 'overlaid". The contents of the ten
modules are listed below.

The Program segments SKF, TEMPIN, SHAFT and GUESS all
perform initiation functions and with the exception of GUESS,
are called only once per program execution.

The real problem solving portion of the program is
embodied in segment ALLT. Within this segment the shaft bear-
ing solution is obtained through the call to SHABE, then the

stcady state or transient temperature distributions are obtained.

IT 1-2




This scheme is repeated until the end objective, steady state
thermal equilibrium or time up for the transient scheme, is
realized.

The nonlinear equation solver SOLV13 is central to the
program and deserves special discussion as related to the flow
chart. The first call to SOLV13 is from BEAR. Only for this
first call are all of the SOLV13 subordinate subroutines
listed as noted earlier. These include INSOLV, EQS, PARDER,
SIMQ, EOCHEK, ERWRIT and ERCHEK. In the subsequent call to
SOLV13 in which the steady state temperatures are being calcu-
lated, the above listed subroutines are again called but
these calls with the exception of EQS are not listed on the
flow chart,

EQS is the name given by SOLV13 to a subroutine which sets
up the system of equations to be solved. EQS is brought into
SOLV13 through the argument list. When the bearing equations
are being solved, subroutine BRGGE(Q) is brought into SOLV]3
and within SOLV13 is referenced by the name EQS. When the heat
transfer equations are being solved as a consequence of the
call of SOLV13 from ALLT, NET is brought into SOLV13 and is
referenced as EQS.




ALWAYS

NO. AT75Y004
FLOW CHART

SPRING

TEMPIN
INDUM
RWHTC
RWG
RWHC
TMAP

SHAFT

ARRANG
ORDERR

OUTINP

AXLBOJ
JMVIXT
SNYTMT
NUMLOS

DUBSIM
MEIE
MEIL

STMQ

3 EARC
EAR
PREPAR
INITX
UNLOAD
XMIN
SOLVIS
INSOLV
EQS = BRGGEQ
EAREO (FRI
GC1RL
ALLIN
ALLEQ
OLLIN
ROLLEQ
TNORM.
PARDER
EQS = BRGGE
STMEQ
EQCHEK
EQS * BRGGE
ERWRIT
DAMPCO -
ERCHEK

[\/\N\)\)\/\)\)\)\)\/\)

CTIONLESS)
Q
Q

SUMF
SUMK

LIFE

BFILL
SHAPA

FILL8
STMEQ

BEAR
GUESS

visco2
ALPHAO

DRAGNO

STCON

2
=

EVALUT (IF NPASS = 1)
PREPAR
BRGGEQ

BEAREQ (WITH FRIC
BGCTRL

TION) >

Read and set bearing and bearing solution
control data

Set lubricant properties and calculate
constants for temperature dependeficy calculations

Write bearing input and hardcoded, preset data

Calculate bearing related constangs

Read and write thermla and thermal solution
control data snd calculate heat trainsfer
coefficients

Read and write shaft geometry, loading
and bearing position data

Calculate shaft deflection constants

Make initial guesses of bearing reaction loads
and displacements

Calculate shaft influence coefficients
Guess values of bearing varisbles

Begin the solution of the steady state or transient
thermal and temperature dcpendent shaft-bearing
anslyses

Calculate bearing diametral clearance

Establish iteration scheme to satisfy
inner ring equilibrium

Calculate rolling element raceway normal
forces

Sum the rolling element forces and moments
acting on the inner ring

Calculate bearing fatigue life

Add bearing inner ring forces and moments to the
shaft equilibrium equations and predict new shaft
displacements

Crlculate rolling element raceway normal loads
viith the new shaft displacements and guess
bearing component speeds

Calculate temperature dependent lubricant
properties

Begin the calculation of bearing friction with
the guessed component speeds

Calculate ball-race film thickness plus the
hydrodynamic and concentrated contact
friction forces




au

rmi shaft e b
SISEIEEL. 7 displacements
| BEAR Calculate rolling element raceway normal loads
GUESS P with the new shaft displacements and guess
vIsCo2 bearing component speeds !
DR:éngo Calculate temperature dependent lubricant
STCON properties
EV?;S;AélF NPASS = 1) Begin the calculation of bearing friction with
BRGGEQ the guessed comoonent speeds
BEAREQ (WITH FRICTION)
BGCTRL
BALLIN
BALLEQ
FMIX
TINT Calculate ball-race film thickness plus the
THERFC hydrodynamic and concentrated contact
STARFC friction forces
HOH1
HDFRIC
[ASLOAD
FRINT
EHDSKF
FRICTN
DRAG
ROLLIN
ROLLEQ
TNORM
FRIXR
HDFRIC
THERFC Calculate the raceway normal and all friction
STARFC forces acting on each roller
HOHI
ASLOAD
EHDSKF
FRICTN
CAGESP Calculate the bearing cage speed
CAGGEQ Calculate the forces acting on the cage
CGLAND
CGDRY ‘:> Calculate the cage-ring land forces and moments
CGWET
Calculate the ball/cage normsl and friction
forces for the ball in question )
SUMCGL Calculate the cage equilibrium equations
BRGAX — 2
RGAX Calculate the rolling element inertia terms
BRAX :’ g
LIFE Calculate bearing fatigue life and bearing
LRHS > heat transfer coefficients
HUT 5
BEAR IF (NPASS = 2) ¢
" PREPAR Calculate component equilibrium using the inner
SOLVXX ring positions determined with elastic rolling
EQS = BRGGEQ element-raceway forces
BEAREQ (WITH FRICTION)
SONRI 1F (NPASS = 3)
3 BEARC Calculate inner ring and component equilibrium
! BEAR using friction as well as elastic component
L ‘ PREPAR ferces
¢ SOLVXX
H EQS = BRGGEQ
. BEAREQ (WITH FRICTION)
) SUME
1 SUMK
4 DELIVY
TITLE . ,
RITE Write bearing output
REOQUT3
RITE2
o] FILLGT
SOLVgx
iF BQNETE:¥T Calculate the steady state temperature distribu-
== DELIVS tion and write results
TMAP
STEPMA
N NET
NETEET
DELIV3
NET Calculate transient temperature distribution
NETEET and write results
TMAP
DELIV3
TMAP

Solution Loops

1. Steady State and Transient Thermal
g. Change in Clearance
4

Shaft-Inner Ring Equilibrium
Rolling Element and Cage Equilibrium

IT 1-4




APPENDIX - II 2

S K F COMPUTER PROGRAM "SHABERTH/SKF"

INPUT FORMAT FORMS

IT 2-1




0°Sd J0 0°0TJd ‘3ewioy j ur ST elep Indur TedTILwWNuU [[e ‘palou ssayuf

~
.-.l! W) .N..\!ll » ovlagm) nl{l.ll B KBAIO DUV MOINR SJ0ASEINe OBV “TNRIIM 9 GVALSN SUALIM VUil 81 GISSNGED JUY U31NA SUSHTY YT SNOIAIIOT] EIMAE TEOLIVUALEN DM ‘MALSATV)S ML 40 SA1EA Dl ®1 SIAI8 36 &4 ev $IAWA Vi 7.-
-y
= .
!
L0 1)
1IV0 1 2%neTd W4
@meesceterear.erant msas desem  Seemesscesane m—— remtme s o Bm e cmma - esereem [ TUR W IPPI -0 ) wdil 48 w0l Airunedg HBAY 40 WRLiS1UNnDg
AL LU AL I I A
slej°h |1 v)° ol e st AN K B L RN e AR R] L3 LA LR B sle : r s IRIY $1NL N0 TICD GAA DATER BYP NGy
| U
. T 1 T,
inete B wa Bo021N0 Sedw 1R oty i sal 2l o] JIRIN (| ¢ ‘ezl el ‘g s &) Bediwasy § oyl of y E Tt t o 1al o, §
[ A A 11t | P b ol e i | e ,
fodacfuifod]odfscfosefee] wfocfenpsfes| rfs 39| <[os]s¢ LﬂT\._:. o8 avtiwlie]oe] ?_:.o oi|oz! eslos|ec]valecfoc] refes ﬁﬂT :T xf&w_a 2] ot| wuif ol sifwlaf 2 1 fodd oEr ..TT BERD -
€ )y (9)v 71 s)ag vIid [M :s1duexe 103 ‘swo3] 3Indur jo saweN werSold .

SWH0d ONIMOTTOd FHL ISN ANV avid Ol MOH




-s8ed yaee se pajurad aq oy ML ()

L)

! N

—

_ —
o G0 0 i il A 23{19] 99} co|vmpral29| v9c9| astes] s | os| ss|es|g5| 25) 15 5 90| sofvefs o 2viog VsjLs pE{CE[2gy 1£[7E: n.uS&.ZﬂH_usto.:!o.tn.o.:a_oo..c_nvn.uu.
fA4 9 4 ve cr r W o¥ 6t 9¢ Le 9¢ e e 111 14+ 1€ ot ol (@)1t

11l °d£1l piel
@V FTLIL




‘panyeiqo snyl swogitsed

1_F
LAG

¥

ion
OPERTY

Sulut

L Y DIO— n G WYN, 3337

$9320F ®0Y191&]

pue 3piseys (e SutIapisued PININIIIND S wagiqiiinbe 2Bed pues 1ueme[?d Bajplo: ‘Buyx ismuy QL ruegangog s1s(deed ¢

2919p 93% mnyiqirinbe eBud pse imsmays Guwiyres

wor3at1) Buyiopisuod p@

Buyx asuwy aq1 Buyspy sdreg 12WIue) ITITE(I M L{uo Beyepysuod DIjELIes U wALIQYLIaby Iousy 2

spaads aBed pue 1uIBATS Burrrod IISWIINS u3 suojidunsse (Buyieoq 187102) st1194a1de 10

(Sutaeaq 118q) jeiiucd AWmaowl Buiss PIIaplsuoy 3ie $1203}9 UQT1I1A] Pue UGTINITIQN] PRISINITRI 18 §83I0g 1201803 2138013

Pa1aprsuod 21w $133J39 UWOLIITL) 10 uoyiI®dTAQN[ OU ‘pIie[NIfed Iie $3%104 328180 211813 O

Be.4 12427 worintog Ourissg *(S)IVILL 'SSVdie

" '] B.. v
s oo
B..u.—u’.‘ﬂ. La31 B¢

“Opdenin St o1 Lyudl)

-

i $1'9011021.0¢ Ry “LAaLe
| L4 {2 2 MeNy ss1 § = 2w was 1
[ 3 21 8011371430 WvInEY ‘an MitA NETATERLL FEX. |
T EIIE TS LI 3110000 40 19VEN0IY aie sufeel ‘2w wnedd
=631430 wiNvIE , 4] ABS=ENe WNVI8 2200 4 00 By
2 I %0 (843 WML 5330 81 -
P393 1000, 0 40 23vuntav uEn:.E_ MINY3e g0 7% 1] 30
- A33=30e BNVIN 14XV 2) DMIRZ 13349Y 2y N ARIMEYD IYI08 AD ”» VIN
- [l 3 Yruii Anaine dnedd
- ﬁ “NOIAMIOS BMOINCO WO CHI “NaILATOR I5INO0) Sulud - oI 3¢ bl add [ abbided ] BAne sie
ﬁ - s AOTWADIY 887 Rivy ¥a4 AJTNADIY <00\ WiW B0 L1 ASVENTIV €001 AN 4 e AN , ey ISIAAAIN 03049 Lsvmt
1 H L 4
A 9 3 L I3 Gt B B Gl ek B hiad B M R g ve] eS| Frisclg)ac]onl rafjor] ej w2 B2 vacdzl Rl e e v iwmf szl o) ijor) o] Wl Ll vl sjol k) 2t 1

weass [T
14}

2343 (%)M

isd] 1wl 113843 (21803 N 1 FLU Y S x ({31 1]

(PIDWIAT (ST () DVHL (1) Dvdl
pae) aup ‘z pied

ayvd 41LIL

IT 2-4




-9 pue g@ sedk3 pies uo induy sy K13ewosd aryjesd Lemedex-131101 mioyrenues ‘T 01 399 JY ‘Yvelq 10 ozes Lilemaey M

'
N - -
I.|V4$V°

t
; 53z
m X {2V w
: = oam uo s§ 1 wwnte) '
Juemard Bugires b n o
& 1311} sumaw sy wibag 180N
ot . ‘gluIWd e
bl oo Butr(oy “w 18313p8 1A, —
n._ sa21ban vt o16uy 10 114
2l uoyuuIID 1988] 13100 Suty X011Q Buyy 3omug aAky Betaeay
] IA01084 913 19938 Tusiieudiseq (221S
ol els vlvls _ | vivls ﬁ_q —_T
ls..-?.z.:!.m..un (1303 L4 (2iig n<_ocoﬁcm..aamnaxnn~a;l.; .cim'tc.emu'.!ceﬁon:«n.ﬁ“\»nni_wﬂeuﬁﬁﬁﬁ coizet r2loe] sl @] | | srjas| s} nfrilonf & @ Co.if_n,—u_.
N (2)ae (rp)C3 (gp)as (t)ae

p1e> auo ‘1g 2d4l pied

, *539 ‘7 Butaesq 103 914-14 spaed £q
pomor1o3 ‘1 8Butraesq 103 9Td-Td spied Surieaq I1ad 395 duQ ‘vilva INIY¥vid




IT 2-6

(ndn (wm) (wm)
paadg "Bam) (LI ITT3 ) sieemety
Buty z39ing stluy 3deimo) [e2lemuyg furrfoy jo -op iatewwiq Y2114
T . ;
t
-
IR |
,ﬂ..wn. 2 S 24 12 »T SUveieol2 159 ?..Na._...r v ovsex v ezier)iviov 6e ....oqi]...m....ﬂ €106} sZis2|veteeivel kjozj ol e | sumi i) njorf el o] lw| s]w{c]2] L
L
(€)ag (9)aa (L)ae (7)q8 (S)ae |

pied auo ‘zg adAl pae)

VIVQ ONIdvId




papnioul 1310

(wm) snipey (sm)pu3 01 pug (o)
pe3 121ton gibueq 1ay10y 2919mw1g 23110)

Sutiseg 391103

e

2] &_o«ﬂmvwnu_ﬁ ooy ulofsimlalal njole|e] c|lo]cie]el2]

[@9]:1:] (o1)ae (n)as

]

m (sw)idiametqQ u_-M—

futiedg treg

1 1

T n
pun,n.h Si UhwICL2L
L i '

]

.«N.'..).u...n vz T _NONO.—. wiolgilwm| |2} ot ele] &p9

.
*

el

(t)ae

pied> auo ‘gg adLL pied

VivVd ONIYVI4

I1 2-7




z 01

1t querq
V1 31 (xew
02) $2211s jo "oN

yibuae
2mIU0) 9AF139]33

(ww)
sRypRy umol)

(om) (em) gibeeqy
q1Bueq 18(4d | 1991v0) 2a711393]3

Kemadey 13uuy

Aem3ovy 13100

Sutiesg 121108

|

IT 2-8

FW?WP.R....»TN_: €929 v{8€,9¢] L€ ot] s e €12X| rZjezize) 2jozj o wpuionj sitmi ozt n|of 6w) s| o) siv| e[ 2} !
(Lz)ae (rz)aa (g2)as (eerae {12ra9

asta=13 samivaans a/°1=3 saminsan)

femaowy tauwm] Awmaoey 131ma

fuyisaq [1vg

?irﬂ 9€9127 10 % vzﬁﬁﬁﬂlﬁw LZ}92[%2| 3“&3!‘§!£!aﬁ=9oczonvn~.
{(cirae (1y)o9

pied auo ‘¢g adAlL pie)d
Viva ON1Yvid



(om) [ ewetee
18 deag saei)

MR Il P B wrisrf ol oofs 1)) S 5| L5} st | so|ar]iptew Lor) 40y £b) .v.vtxhaw.mnﬂu._nahﬂwhznln.:ﬂe._h_e.atnu._ﬁr_o-._quvnu.
. . . . . o
(r*2) r's 'S (v°%) (y°'€) v'21 (r‘riEvd ‘
~
©9oB1 I93IN0 9y} I0J ‘g JO uwnwixew ‘papo’du se Auew se ‘9og adAlL pie)d —
~ u _ 2z ensiue]
L veql 2010026 91 svaiwe] jo "ON 3% pas3 ewe Uyl eiom asn ‘SQ o3 pue °°° 1e doxgq wmoi) 19 doag wkoz])
aa|ocfen) oefsefwisalad wjadjas, 9| ¢ 29 mre FEme v nvcoﬂ.LJa...:c:tﬁ??ﬁﬂazi:ltd ﬁ_na_:a.c!-sﬂw.u.:c_onron_onuf
(2°L) 1$79) . ($°S) (S°v) (s7°¢) $'e (s"OHuv e
JdeI ISUUT ay3j IO0J ‘¢ JO wnuwixew ‘papasu se Auue se ‘Sg 9dL]l pie)

0 st Sery deap umoxd 3JT 99 pue Sg Spie) TuQ
VIvd 9NIYvHd




juame(l u::o-_ asuny _ 20189 jusmer3 Beyricy aowsy 20389
Geexdagredors £1y2edsy ——p

(sso13tw) 2%eJing ssaugbnoy y1)

— ! i : 1 {
!
aetsiluafoddscjwintag vla A s2lvars 29)19]03 es75[03]95) 3 vaj<f26) 16 o5 |ovap|Lo o0 soiv ] enlae]imortec)se|es|og]se ‘mﬂ_nn 15l 5-45 LUt L G L K o._ro,u_..»o__a_ »i nu_u__.._n. . o_zo_n_.v €2
T ad (yagi Torag 5108 birae IO

YUBTQ I0 0X3z ST Z pie) 9TITL ‘SSVAN JT 3ITwo ‘pred auo ‘/d ad£] pae)
vivd ONIYvig




Bagpya isamets H
Sajrres 103 ‘¢ '
(') Ss1pt2 puny ~
RITTFTTICN (wm) $97s-a0uny 38) -1+ —
LTRY L 131 [EITTITIEY (om) (sa) —
L) ] 183904 808) (e119m01q “uem X018a81qQ Gugpiz puey
1y0tag sbe) -183m0(3 Ouirron pes-yiey 1oy o1Buys pue-r1ey|Bugiazorne 203 "1~
adly afe)
-
PEFR._Q.!,, LT ..Sn-_vjﬁ Sq... 2] <losle o _%vjﬁanwcn 2 FITI..NWAQQN ejedus|nfsumi o] tlofejel sjofciv]cizf
4 . - qnq.in £ (6%) G [¥39]1] 9€)rae

juelq 20 019z ST ‘7 pie) ITITL ‘SSVAN FT 3Twp ‘pied duo ‘gqg adAL pied

Vivad ONIY¥vId




. we
(wm) (um) ..3!.-.:_ wo-: ::-.3 w.u-o (va) (o)
isieme g 181088 1Q ssog Buyy seon Sutiy 2010me1g 20108810
asnQ Bugsnoy 30380 Bujyasag aei1ng Ouyiseg zesu] Bujameg sz0g Buriveg 20881 1j)eqS
odfsi|a o] ) |aefec]| ] & al6ojar| Lo] r2|se]0n) e 2ef so] oo L o g [ Lo o o (S 1 \S.v~_;.vﬁlh8\‘3!:.&&—!;;:.«.. awloie]iniplula{oinpiels|Ll2is][pici2]
(v9)08 (29)08 (908 (09)c8 (99)08 s)en
« ~
pied auo ‘org adAlL piey ~
L]
~
—t
o
(ee) (ww) (ew) (om) (um)sdusasjamning (o) :
[ 2217 ] wipip duiy qIpIN Bury gibus 3% satitseq FTITITFETEY TR
241129333 Bursnoy 22100 Buraeag, aovu] bursesg SAT228133 1j)R4S ‘174 Dujysnop] sayriiseg 133 1304
.
]
duforfecfotisiiuciszianl jaens- Lo MESIAEY T o Eo e o e T )t i i i A g LS| os £€) 7% 1S10T] 62 9242 | 97]32 | K. ﬁ.mﬂ!!r_o.u.!u.”o_:o_oorouOnwu_
(0§)0e (5$)de (¥$)0a0 (L$)ug (zvren (is)a8 w K
1
t

pied auo ‘gg odLL pae)
paieinoTed o©q 03 3Jou alw Saduerear> furierado FT QT4 pue 64 SpPIED ITUWQ ,
vivd ONIYvidg :




u:-na__~ buty uo;e—r 1nema1y Buyrion — Buyg i0w%] ﬂ 13048
T 20/1 woIS¥Rdx] [E¥RASYL 198121]J80)
- ¥
Yoo, sive ) C "¢ &
e e o esjee wievisvivn coizv]s sejrgeeay, Jiﬁﬂv%ujlﬁ_. sinisiniotal njo]e|e]siefciv]elz]
(s9)ae (rg)as (¢8)a8 (28)ce (1g)as
pie3 ame ‘prg #dL] pie)
Buysnoy Suty asing jzeme(g Buryyroy Suiy 10us) k9 {114
2 /a8 £311383
guo/eb £ipenag
T
o b e veite 2 1s L5195 Sovel £R25)] w2t ivor| o €0 2¢) ﬁ . ol o Lo stios] ©| 2] njoijelw|s|e|sivlelz]
(08)0g ... (6L)ag (er)ad Lnae 9%)
pas2 avo ‘gig #dLy pasy
a-_uzon— Buyy u-:c_ 183mat3 o-_~—o-_ (13§ h--—M R91 1)
’ orisy $.v08810g
}
044 B L{S, S VL 4124 14104 00199 jﬂim; {9574 SErs] £5(2S iaghig a2 U 9] sqveieeey) eZjeiu2l9zieR| v2ieziZz] iZj02] o oY M1 w cami| Y| &] njo 89| sj 0[S v T]2)
(sLyas (rL)ae (cL)a8 (TLyae (1L)089
paed emo 'zrg #di} pie)
_ Buysnog — buiyg aainp _ 1v0ma13 u=,-e1— Buiy uo-.~H 1jen
1 _wu/N Aigdy1iser3 jo sagnpox
: T
} |
] PSP ) (T P P P 9% syrareaize] i 25] 951 s3] £5125) slos & evzr| 1vj0v|6C 58_4(:4.%2 aﬂj& 92]52 Z2 ozt ey aiml sitml a2l njojele| siwlsivicje]
. s 1 L
1874 €328 9N 19)a8 (99109

paed w0 °1ig 4L} pie)
‘PajeIndIed 9q 031 10U 91e SadurIedTd Surzexrado IT HT9 ySnoayi 119 sadAl pie) twQ
VLVG 9ONI¥VIY

IT 2-13




<
—
)
~
1wed Asmaoey :-:— Lenedeg ::.o— “
-13J90) wotrIdtag
f1t20dsy juswatr3z | Kipam) Dutrieag wt (mm) ssauxaty] 13Lkeq
bugriny-Aens.ey 1U8TIQN] 1UAdXd 1uemysjuayday 1vesriqey

sv]olu % ath_v_uv:..nﬂ.. ﬂ..:»wnnd.wn ] 82182142|92 ‘AHNN.‘ on.u.n O a.—! oo noie e Lt CiE]
90t)cd (vot1)08 (tot)as (zonae

oo 6 . 2. sl i cfocleefur ot st ilodls 25| mlosy

e e

*Yue[q I0 0182z ST ‘z PIeD ST3ITL ‘SSVAN FT 3TwQ ‘pied auo ‘Ss1g adL1l pied
vivd ONI¥vId

i




18P $IY1 peed 0188 S} 3ICOIM JI

I/ 2}
[£34)
-§120pU0) 19WIINY

3O 1931371))30)

30012 @

(39) £317130391A
sywenkyg

eSIA

(99) £118038¢A

Tubrlceat N Code 1-4 right justified NCO0D

ri,o’

o L9] 4 2919

vE|LC

24 rg{ot

OCGED

(06) 09

(Sa)ag

yUeTq 10 013z ST ‘z7 Pie) 9T3TL ‘SSVAN JT 3ITwWQ ‘pIEd duo

tce)0n

sat1319doad 3uedtiqni]
‘91g 2dLL pi®D
vivd SNI¥vig

11 2-15




WY v
2TWALYEIAGL
‘arwe WL 3
ame B " que
0N 39, #v3
miy'se Ay ‘apm)
=Aqvey By K0
PHL AGAT 2 1nas
auns 30 DL 6
T aw 241 Gue33¥
SnaveIselL SN

v -y PR e

st indine | swnivneas lI.s
wturas T g

-3 TUR .l. - i o P '\u_

»
> 148 B ‘oum ~oud e
» 1w Avyvnsn Ay 20 ]
‘dadg 3¢ ”» ‘o Yy "y wm— 2008 |
WLV IO W Ty Anairg nng Ay ABIRY
AT RN wval
| f— E 3
] t x
s ™S - | O 3] L ¥R sc| wIpRE[RE] 12 LKL T ofe|RfL|eistoje|

"

*NUEBTQ PABD 3yl SABS[ UdY] ‘paitsap ST uorje[ndTed °dwsl ou 3

LE

*pIed 3urf1oa3uODd dDUQ

11 a2d41l pie)
VIVQd TVWITHL

IT 2-16




I1 2-17

juedgiqn puty -u._& 1uametl (113 (13¢]
apwetd Jo wmyng Sutsmnoly 19100 aayneg Bwrgtox FE T FYIT M 13044

_ mﬂ“L.

RRREE

Ao Sl adevleclad celeslee .aﬁouon54~$!ﬂ~m;827.292-!!1:2eo A OED
"

129] ¢ PRIt L ¢ 9] Cojottn vf v 1t fAly L titnd1 i

1
2alot Jea)sefsilnafsa)ee] 1efacte se3jeof 9]

‘pjeEp TewIdyl aIouw ou aa18 uayl pur ‘paITSap ST *5Ted eanjexadwd3l ou 3T L1uo asn *81q/pied auQ ‘2l

STYNLIVYIdWIL ONIyvId - VIvd TYWITHL




20que,

b3

BEL

paed> uelq e Aq POMOT[0J ‘popasu se Spied Auew sy ‘¢l

STYNIVYIAWIL TVILINI TVAQIAIANI - VIVQ TVWHIHL

IT 2-18




£itam)
Sutaveg
a4y uy
1ue232qA
Jo atng

sy
20109

) pN.—‘

SYTIGWNN JAON ONIYvId

11 2-19

*8iq/paed auQ ‘vl

- Vivad TYWd3HL




omy dacqe I

spes spow
sy 10 s3I 1®

peiezsuet | pernianat)

sy 1809 27 1094

Ml Jren 243 J1%

Kue 3% Seig a3ey 2auN]
X x x|

%] Lo]9%) 6 .nnﬁz ¢ wjod o]0l ciofsjele] 20

*81q/pied sup ‘Sl

@ILVYINID SI LVIH TYNOILDIWd ONI¥vId IYIHM SIAON-VIVA TV FHL

I1 2-20




20quny
apoN

|21

pied yuelq ® £q PIMOTTOJ ‘Papaau se spied Auew se ‘gf

42¥010S ¥YdMOd LNVLSNOD V HLIM SHAON

ViVQd TVWYdHL

I1 2-21




= 1

- h]
“u A ALISESIA DTILS » [y “- AY ALISOWIA JUNTHAS 1 AVm n14338 Abisane
LAF ALLsecmia Hunss (3e) 4 "o wdtn 4 A% ALlsessta BiuemA® ~ls Lde) L) mrgy
g =mng Barlg {IB/OR) 4734 J1NIME { was) asisuag 1 Sy™/m asteesery iwwaag
| [
1
3 -
oo fectsefs:fweferize] welarfanizaleof ol sojvaicrl29] 19 s{os|sslw|aslag] 1s[=fen 9% sovifc ..ii..jscn:..u..n:};apuaunﬁnc.n.u._uanzc_c!‘_tcy:n..zrontn.iu_
Ml
~
o~
]
o~
£
L]
n L TE R Oy <
- mrie S M n ri.r vhox ll..:: -
[y - . v 3 ("1 = =) "R
. nul.t. t 3L o “A91305 AWBLTIIMNMI L3 ¥TD ONOIIN ¥ GNY AOAID JE LS viYE SHIAOTION ML IN[ *ALISENIA Biwveus u.w ey i =
e ‘a%ismme =@ CTON{O Q) =V RGN =2t Y. Ty a0y Jubm P 1700 = wo Y WSA0S M4 sONS WIN0Be 4L A9 ERATVINITD B0 YD o “SN 90115)ANS5 €OMO4
. v
3 41090138 801 4 339 1 MoV BIIOA A 3e30/823R 4TI HA1Tes o -!i.:.ub. s} (defm) A-92.4 - s ggel
[
2 {rsave’ Mmintesny [ASATS i#l& o0
{%on “umd @wey) VQQv.I.ﬁ o
(62°1 = w0 4 ) ~o (‘en “wms3 mu) IV > 2 eru
'~ A40 41 2000080 YN "
' 1 VQ.&\QK L []
183190 A0
*8s avm Bug
4 S0Ilvstanua08 A
WBAVY 304 Iu.-
o L &)
o e fatfealoefsefoefic)auf weforl u?o 5 929}19) hn.n :.J.Lk;aFi:j v:s?i—a.é:‘Ra:nin: 18] 28 oA 92 L2]92)52] picT]RR] 2j ) vy Ln |l Srfisa] v fjorf o G Lf i S|¥{ € 2| ¢t

pIed jueiq B Aq POMOITOJ ‘poposu se Auew Se ‘JUITDITIFS0D/SPAed OMI IO dUO /]

SINIIDIJI90D YIISNVIL LVIH - VIVA TYWJTHL

( ek acididimeeuiiii i id adatmsa 0 PR - IR ¥ ¢ I N P ST P S P WP, Y1 1 M P P T - T O S T AT TP




|
l.l.'..huola
WRAVAS DA .
wEmaDe We W4 B 28Visw W% wnm ¢ |- . .
nmrirp: 8 prim—— -ty s3m sy
AEVRE ¥ NOATML HO41SAN0 ) = avveam Suistsl e ] = e wvs ” 3o " 2 s = (3]
]
wSEmm gy e (3]
“t 3w 29 AYM QXL @ DA 1) O 2 4y NS
ASINA P DU 6k { BN W4 RO $IM e »ra «ne A I ¢ v t pem (1% BRI —
—
vt » = ‘G & im0 we s F
“:00° 3y P Y § KERADS MEAVIE%Y N 1 by * | (F ] oW S 1B
v 2 993'12) 688 000 3V BNy
JV‘. 91130000 ©ues mre n._ by [ 1 (X ___] athen 312
v groem g g = vaew
oy anr § %0113303 ™ m L) L) » o | aos oSwen 31
L §
M ] =t JoURASI0 ° 7 1 = Yy 0FXION 4 8 [}
BN T TP OF @ § SIALIN NOIL0NENS [ [ b w % . P Jmmi X nswem 3y
t fromm} = ovemy
+ o 1 e (=~ 1
_ 1
i
3] u ne ajm *
12| velocjvifsif ] sefockeslaa{iof Mis9 2919 PR T A G R B U (e B A £ .ﬂsucio.._sonSJ...&_nn#.nﬂou-nnln!,.nﬁaﬂ...eco.«.ﬂn.w.:o_..o..oa#ﬂu.

Xopujy
pied yuelq e £q pamoI1o} ‘005 °Xeu ‘papasdu se SpIEBD Auew se ‘gL
SHIVd MOT4 LVAH - VIVQ TVWIIHL




11 2-24

-pabusy2

108 81 ematoa aq1

eatiebes st 171 JI

42 Kk pattdri(em

sy amngoa

8q1 puw peunsse

st Karemuis

(ewotiIvlos

‘sfts w 1mogItm

s, e 4 w !y waayb sy 11 3]
Jo9N/SA ﬂ-

1e8)  dyjpoadg (cw/9%) Kiysesq

e ¢q . lq-apoy 18 sunyop 23quty apoy

k

asfoc] esfoniselmicc]es] re|ox) e w2 2] saisz| wifsafzR] 12| oz) | 1| L | Srjmfmaf i i iodd o[ @) L[ 9 syl €] 250

. 2

MEAM AL !_uc 19| S195]seus|uaias| 15| sler 9 sofwi]telze]:

apou/pied auQ ‘6l
SNOILVTINDTVD INIISNVHL 404 ATINO ‘STILIDVAVD LVAH I0ON - VIVAd TYWYIHL




IT 2-25

on/n -Su:e.u_ " (=) (wm) (we) -eue sy adly
._.m!. e 8] 10018 ‘U0 Y1238 ‘uoyrdes ‘ud 11908 ‘so11308 pasd w1y
‘yumiq 31391 31 Y1 1313 ay1 szxojeq g I93N oy3 3103aq (uw)
L{si1e1ponnt LrarsipIum? £19i1etpammy Kyeiwypaonmy [TR$E11] ‘paed
Kiragiseta 2213mR1D 1939mR YD x030W81p 1313me1p 1jeqs Jo 11948 3o
Jo sn(npoy 1jE4S 29100 1J04S 3031np 1J%yS a9uuy 13%4S 2aWM] djeyS 219U IP200I=X [13¢: &y
| i 1
!
T I O 8 O S T L e i v i 96[$6{4[04{26] 15705 0| S41L¥ [P} €11Tr} oo ...ntiuujno}.mon.:aﬂﬂa'mn..m_uao;e.._o_«._t!w_:o_ooro HULEL

poposu se spied Auew se ‘IS
sSutieeq ou ale aI9Yl JT Spied ®IEBP IIBYS [IE 3ITUWQ
! XK41INW09D L4VHS - VIvVd LJVHS




IT 2-26

= o)
SYEIT L0vaBeS Thu RIS
o Peere S
T Y]
P b ﬂ. s
. “vog/mvievy (sseipes) . LY - SMegrIe VIve oo 31 *2 o1 pesg
L B e ®pane) mu (o.) i Ty Ame ® Wi vrag
WMYN DL B "N ey KU Misnen Do 29 1M, B ~W0Y i 57 40908 9 .
291431 1ALIVN™E i 2 eowd PN IEIINe o o uding B & Wilisee ) ‘weiLizes “Ges /4%y
MInss PVINIMy I LR BT IORY Wi Iy OURE M iABEs VeiSV) metpe A 34 vt Guaee~-3 g - ey
t
d 11T
.
i n
s jox|e: 3;‘;3&"..3&824.: wis|miiinrjorfefe| Lol sfo| et

2¢ .J_lrh 991 sofvo]s vi 2o} 1000 K“nn wn_ln [ 2]

alloclcalocise)veisc)ae] wjou| (1 vﬂ—uo 1$i9¢lss|esic 6]
*23eUTPIO00D-X Surseardur jo iapio ur padueray °sSurieaq JO Iaqunu 3yl se spied Auew sy ‘7S

INVId X-X ‘1¥0ddnS ANV NOILISOd 9NI¥VId - VIVd LIVHS




IT 2-27

‘pied Yuelq ® AQq POMOTI0J ‘papeau suv spied Auew se °‘§g

wu/N ‘wotides we/N ‘vogioes .r adka st t ..

(wa) g3y 13y} 1 ex030q pasd syy1 :

‘98B L [eIXS 84 Atarwyp L1ateypan (s®) ] 7
Jo uwojide je -wt K11suaiug -8t K1tsuaut .-y N weyIaes ijens ‘pasd P

iy a1 10} N ‘Peey (RiX® peo]  ‘peo peoq  -pro9 "ZH 1wowoq *dg 93303 1Je98 jJe . 13eas
Jspugpinny-yg peIgIINIINGY) paivqrasy painqraisig poIe3IvIING) POIBIINSING) 2188 1P2083uy geerg Jo adiy “
e2104

4 !
!
MM mm soloatre) " _.::._Xm.k;..t. $ Svi 2] 1DIO! _o:nln:r..l -isn—tunn_uu.uoazscc.n.!n_u_:o.ooroatn&. !
- +
}
i

SINTWOW-Z “SIDY0d ANVTd X-X ‘ONIAVOT LIVHS - VIVA LIVHS !




il e

-]
~
[}
~
—
L]
‘N/mw Z 85 odiy
‘wBN/sustpe2 (svnipez) 801319811p-7 (wm) pre2 ssqy
HOYI09ITP-X YL uy ‘UOIIVNAIP-k aygs wy €011201¢p-7 oy
Bursnoy aya jo 343 wy Bura 2a3no Butsnoy ag: jo bty Burs z931n0 pIed
$97137123280104) Y3 Jo zoixe $313%8129310820g) M3 Jo 10110 a2oquun 1398
Buyads zeynBuy Gugiunow i1eynbuy bbrads terpey Sagiunoy [eipey qeelg Suganag Jo addy
[
i '
X
[ (e fucdea) efsefoesefoe) refonfonjam) s 9 s)og]seimslgata 15,7511 541L1 9% griv il v 22| iofOufesloc] us| 9apss g fecfae] e fonfe on..no:u_.. b L A R T R R L U T Y Y IR R E D

*ouetd x-X wouij n:ouowm.ﬁ.c ST elep Aue 31 A1uo papodu pie) ‘papesu se spied Auew se ‘zg

ANVId Z-X ‘1d0d4dNS ANV NOILISOd ONI¥VAE - VLV LAVHS




ma/N "un11d9s ue/N 'So132a8
(wa) peoy aq1 191 an1 ¥x0jag ¢ #dhy 1
teixe Igy ISCITISEL "N Areistpomnmt (om) pawd styy
jo uot1i12e jo N £11suaivt K1tsuaiuy N ‘uetIdes
auwry 3yl 103 ‘peot (erxE peo] ‘peot peoy -peol , 'fm 1eowom N T3 e} 17898 jJo ‘pled 1jeqs
SIMHIPLnduy PRI iMaIND) priagIIssI( prInqrzasyqg [ 228 280 1211 k) [ TAR FRT L E1T 0o} 218uiploodI-x qeelg Jeo adLy
<
x
ol e fou]ec) eefscweice] 2] refaejasa9ico| 99! f‘_ooa:ﬂ.m:“wxnomm;me L8| 9] s .qd..19....3535)nni_nonon-u...:x:.n.,m_mazo_c!a.tn_u.:o_..oron0n~.

pie> yuelq ® Aq pPoMOTTOJ ‘popasu se spied Auew se ‘¢€s

*SININOW-A ‘SED¥0d ANV Z-X ‘ONIAVOT LAVHS - V1vad 14VHS




APPENDIX - II 3

COMPUTER PROGRAM SHABERTH/SKF

SAMPLE OUTPUT
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