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NOMTiNC LATIO R E

Symbol Definit ion Units*

A a constant in Walther's equation (-)

A surface of contact between media (MM2

A cage-land surface area (mm or in. 2 )

A e area of outer cylindrical surface (mm 2 )

A area of inner cylindrical surface (mm 2 )

Av  ball frontal area (mm 2)

B auxiliary variable (-)

B B = AX/a, a constant in Walther's (-3
equat ion

C a constant tabulation by Fresco (mm 2]N or
in.2/lb)

C0  a non dimensional fluid-geometry (-)
parameter

C specific heat at constant pressu're (W/kg-DegC)

Cr cage pocket clearance (mm)

C drag coefficient (-)

D ball or roller diameter (mm)

D a constant tabulated by Fresco (mm2 /N or
in.2/lb)

constant tabulated by Fresco (mm2iN or
in. /lb)

El E2 Young's modulis for the contacting (N/mm2 or p.i,
bodies

FA  axial force (N or ib)

FnlI Fn 2  normal components of resultant force of (N or lb)
the inlet pressure distribution

'4herc multiple units are indicated, the first units given are
those associated with the computer program input and output.
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NOMLINCLATURE (CONTD)

Symbol Definition Units*

FR sliding force acting on the ball (N or lb)

FR1 , FR2 pumping forces acting on the ball (N or Ib)

tangential forces due to inlet rolling (N or lb)
FR3, FS3  and shearing between hall and cage

FS  shearing force acting on the ball (N or lb)

FSI, FS2  inlet friction forces (N or lb)

F F F force components in the x,y,z coordinate (N or Ib)
FxOFyFz system

F windage force or drag force (N or Ib)
w

F the vector of inertia and drag forces (N or lb)

F the vector sum of the hydrodynamic forces (N or Ib)
acting on the ball at the m-th contact

F b a vector of bearing loads and moments (N or lb mm-

N or in.-ib)

F si a vector of shaft loads and moments (N or lb. & min-
N or in.-lb)

G lubricant coefficient of thermal (I/DegC or

expansion 1/DegF)

If non dimensional film thickness parameter (-)

J moment of inertia of the ball kg-mm 2

Kf conductivity of the film (lb/egF-sec)

K.. the proportion of the heat flow from (-)
IJ node i going to node j.

K9,K10 constants in expression for heat transfer C-)
coefficient

L characteristic length (mm or in.)

10' full film fatigue life (hrs)

M c moment due to fluid friction between the (mm-N or in.- lb
cage and the ring land

*1here multiple units are indicated, the first units given are
those associated with the computer program input and output.
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NOMENCLATURE (CONTD)

Symbol Definition Units*

Mx,,MM z  ball moment components in the x,y,z (mm-N or in.-ib)
coordinate system

M ball moment vector (mm-N or in.-lb)

Nu  Nusselt's number (-)

Pr Prandtl's number (-)

Pd diametral clearance (mm or in.)

PE bearing end play (mm or in.)
Pl,32 forces acting normal to the ball (N or Ib)

surface within the outer and inner

raceway contact ellipse

P3 ball-cage 'normal force (N or ib)

Q load (N or lb)

Qa average asperity borne load (N or lb)

Q the radial component of the minimum (N or Ib)rolling element-race normal force

non dimensional load parameter (-)

&m the vector normal load per unit length (N/mm or Ib/in.)
of the contact ellipse

R radius of outer ring groove centers (mm)

Re Reynold's number (-)

RxRy effective iadii of curvature parallel (mm or in.)
and transverse to the rolling direction
respectively

S coordinate along the contact in the (mm or in.)
direction perpendicular to rolling
friction

*111here muitiple units are indicated, the first units given are
those associated with the computer program input and output.
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NOMENCLATURE (CONTD)

Tymbol Definition Units*

Sd diametral play (mm or in.)

T time (sec)

T long time duration sQCI

Ts starting time (sec)

T1,T 2  traction forces (N or 1b)

T traction force vector at a general (N or lb)
location within the contact

U characteristic speed (m/sec or in./sec)

V fluid entrainment velocity at the (m/sec or in./sec)
contact center

V volume of the nodal element (m3 or in. 3

V voltage (volt)

V volume flow rate-through node i (M3/sec)

Vo voltage over long time duration (volt)

Vx  rolling velocity in x direction (m/sec or in./sec)

Vy rolling velocity in y direction (m/sec or in./sec)

X,Y,Z inertial coordinate system (-)

DCL diametral clearance (mm or in.)

EPSFIT user specified convergence criterion (-)

EPI, EP2 a user supplied convergence criterion (-)

EQ temperature equilibrium convergence (-)
criteria for Eq. (3-41)

NEQ number of equations in bearing solution(-)

XCAV volume fraction of lubricant in bearing(-)
cavity oil/air mixture

Wl Whre multiple units arc indicated, the first units given are
those associated with the computer program input and output.

xi



NOMENCLATURE (CONTD)

Symbol Definition Units*

a a constant coefficient in Nusselt's (-)
number

a contact ellipse semi-major axis (mm or in.)

a free convection temperature-exponent (-)

b an exponent in Nusselt's number (-)

b half the contact width (mm or in.)

c an exponent in Nusselt's number (-)

c coefficient of specific heat (W/kg-Deg C)

d exponent in free convection heat transfer (-)
equations

d cage-land diameter (mm)

dm bearing pitch diameter (mm or in.)

fm the vector of friction force per unit (N/mm)
length of the contact ellipse

g gravitational constant (m/sec2/ or
in./sec2 )

h elastohydrodynamic film thickness (mm orp -in.)

hc critical value of film thickeness (mm orp -in.)

hf the film thickeness under fully flooded (mm orm -in.)
conditions

hs  starved plateau thickness (mm orp -in.)

hA.C. film thickness calculated by Archard- (mm orp -in.)
Cowking formula

hD.H. film thickness calculated by Dowson- (mm orp -in.)
Higginson formula

i j indices of heat flow nodes (-)

*Where multiple units are indicated, the first units given are
this associated with the computer program input and output.
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NOMENCLATURE (CONTD)

_,iybol Definition Units*

senaration distance between temperature (mm)
nodes

Ge contact length, or in the case of an (mm)
elliptical contact area, 0.8 times the
contact length

n number of rolling elements, total number (-)

of heat flow nodes

P0  maximum contact pressure (N/mm2 or psi)

q heat generation rate, net heat transfer (W)

qc heat generated by fluid shearing between (W)
the cage and land

qf fluid drag heat (W)

q, heat generated by shearing force in the (W)
hall-raceway and ball-cage inlet region

qi heat energy in the i-th nodal element (IV)

qT heat generated by traction in the contact (W)
zone

qti heat carried by mass flow from node i (W)

q gi heat generated at node i iV)

qoi heat flow from all neighboring nodes to (V)
node i

qRi,j the heat energy transferred by radiation (M)
Ri~j between nodes i and j

qci,j heat flow transferred by conduction from (M)
CiJ node i to node j

qui,j the heat flow between nodes i and j (M)

qvi'j heat flow transferred by free convection (M)
Vi,.)from node i to node j

*11here multiple unis are indicated, the first units given are
those associated with the computer program input and output.
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NOMENCLATURE (CONTD)

Symbol Definition Units*

qwi,j heat flow by forced convection from (W)
node i to node j

r groove radius (mm or in.)

rm  a vector from the rolling element center (mm or in.)
to the point of contact

r* meniscus distance from center of contact (mm or/-in.)
along direction of rolling

t temperature (Deg C or Deg K)

u sliding velocity at the contact center (m/sec or
in./sec)

u sliding velocity vector (m/sec or
in./sec)

Ul, u 2  surface velocity of bodies 1 and 2 (m/sec or
relative to the contact in./sec)

u s  sliding speeci (m/sec or
in./sec)

us sliding speed at which traction coef- (m/sec or
ficient is a maximum in./sec)

x,y,z a local coordinate system established at (-)
each ball location

x sliding velocity scaled by us* (m/sec or
in./sec)

xI  ball axial position relative to the outer (mm or in.)

race

xm  maximum variation of x (mm)

Yl ball radial position relative to the (mm or in.)
outer race

Ym maximum variation of y (mm)

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.
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Symbol Definition Units*

zc  ball center-cage pocket offset (mm or in.)

& diametral clearance between cage and land (mm or in.)

4 shaft displacement at a bearing location (mm or in.)

ADCL change in bearing diametral clearance (mm or in.)

AT a small increment of time (sec)

A. angular distance between rolling elements (deg)

Lb bearing deflection vector (mm or rad)

&C lubricant replenishment layer thickness (mm)

so') cumulative distribution function of C-)
standard normal distribution

resistance of heat flow (degC/W)

angular velocity (rad/sec)

c cage angular velocity (rad/sec)

res resultant resistance to heat flow (degC/W)

contact angle (deg)

Cscaling factor in modified Newton-Raphson (-)
technique

pressure-viscosity index (in. 2/ib)

inner race contact angle (deg)

outer race contact angle (deg)

o auxiliary contact angle (deg)

v film coefficient of heat transfer by free (W/m2-degC
convection

*Where multiple units are indicated, the first units given are

those associated with the computer program input and output.
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NOMENCLATURE (CONTD)

Symbol Definition Units*

a W film coefficient of heat transfer by (W/m2 -degC)
forced convection

'3
temperature-viscosity coefficient (i/degC)

ball speed vector pitch angle (deg)

the first variation (-)

-e elastic deformation (mm)

Ex' SySz the linear deflection components of &b (mm)

r surface emissivity (-)

C a small arbitrary constant (-)

dynamic viscosity (centipoise or
lbf sec/in.2 )

the angular deflection components of Ab (rad)y z

A thermal conductivity (W/M-degC)

A a viscoelastic constant <oil parameter) (-)

traction coefficient (-)

I a coulomb friction coefficient (-)

r scaled byM (-)

EHD fluid traction coefficient (-)

M maximum EHD traction coefficient (-)

V kinematic viscosity (centistokes)

Vi, V2 Poisson's ratio for contacting bodies (-)

*Where multiple units are indicated, the first units given are

those associated with the computer program input and outputs.
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NOMENCLATURE (CONTD)

Symbol Definition Units*

P density (kg/m 3)

P o density of the oil (kg/m3)

P dimensionless meniscus distance (-)

Stefan-Boltzmann radiation constant W/m2 -degK*)

RMS value of the distribution of (deg)
asperity slope angles

RMS value of surface roughness (micrometers)
aximuth angle (deg)

density function of standard normal (-)
distribution

4)s starvation reduction factor (-)

the film thickness reduction factor, (-)
due to heating

thermal diffusivity (mm2/sec)

Wc cage orbital velocity (rad/sec)

wo ball orbital velocity (rad/sec)

x ball angular velocity component about (rad/sec)
the x axis

ball angular velocity component about (rad/sec)
the y axis

Wz ball angular velocity component about (rad/sec)
the z axis

o first derivative ofj)o with respect (rad/sec2 )
to time

angular velocity of ball in x, y, z (rad/sec)
coordinate system

*Where multiple units are indicated, the first units given are
those associated with the computer program input and output.

xvii



SUBSCRIPTS

Symbol Definition

B refers to point where traction curve becomes
nonlinear

C refers to cage or conduction

N refers to current iteration

R refers to rolling or radiation

a, asp denotes asperity effect

f refers to fluid or flooded

i denotes the i-th ball, i-th node, inner ring

j denotes j-th node

k index denoting a specific time interval

m an index-denoting bearing component

o denotes outer ring

s refers to sliding, starvation effect, or shaft

t refers to thermal effect

v refers to free convection

w refers to forced convection

x,y,z denotes components of vector quantities with
respect to x, y, and z coordinates

1,2 refers to bodies 1 and 2

xviii



I. INTRODUCTION

The computer program described herein, SHABERTH, "A Compu-
ter Program for the Steady State and Transient Analyses of
Shaft Bearing Systems," is the third generation of S K F
Computer Program AE72Y003. Program AE72Y003 was developed by
Kellstrom (1) under U. S. Army Contract DAAD05-73-C-0011,
sponsored by the Ballistics Research Laboratory at Aberdeen
Proving Grounds. The original as well as the succeeding
generations of the program consists of the following major
subprograms.

The master program consists of the following major sub-
programs.

1) Bearing Analysis. These subprograms are largely
based upon the methods of Harris, (2,3).

2) Three Dimensional Shaft Deflection Analysis developed
by Norlander and Friedrichson. (See Appendix I 3).

3) Bearing Dimensional Change Analysis based on the

methods of Timoshenko, (4), and adapted to the shaft-
bearing-housing system by Crecelius, (5). (See
Appendix I 2).

4) Generalized Steady State and Transient Temperature
Mapping and Heat Dissipation Analyses based on the
methods of Harris. (6), Fernlund, (7) and Andreason,
(8).

Although the primary function of all three generati ns of

the program is to predict general bearing performance character-
istics, and the bulk of the coding reflects this emphasis,
the steady state and transient heat dissipation and temperature
mapping subprogram may be used on a stand alone basis to model
the thermal behavior of any system which can be represented by
discrete temperature nodes.

The differences between the successive generations of
the program reflect the development and installation of improved
bearing lubrication and friction models, improved analysis
of the bearing cage and improvements in the program structure
which increased the program versatility and solution procedures.

The first geieration of the program used the Newtonian

lubricated friction models developed by Harris (2, 3).

-_.



The second generation of the program which carries the
designation AT74YO01 was created by Crecelius, Liu and Chiu
under Air Force Contract No. F33615-72-C-1467 and Navy
MIPR No. M52376-3-000007 and is documented by McCool, et al
(9).* In that effort, with Program AE72Y003 as the basis,
the ball bearing subprogram was modified to include new models
as follows:

1) An EHD film thickness model that accounts for i)
thermal heating in the contact inlet using a
regression fit to results obtained by Cheng (10)
and ii) lubricant film starvation using theoretical
results derived by Chiu (11).

2) A new semi-empirical model for fluid traction in an
EHD contact (9), is combined with an asperity load
sharing model developed by Tallian (12) to yield a
model for traction in concentrated contacts that
reflects the state of lubrication as it varies from
dry, through partial EHD to the full EHD regime.

3) A model for the hydrodynamic rolling and shear forces
in the inlet zone of lubricated contacts accounting
for the degree of lubricant film starvation, (9).

4) Normal and friction forces between a ball and a cage
pocket are modelled in a way that accounts for the
transition between the hydrodynamic and elasto-
hydrodynamic regimes of lubrication (9).

5) A model for the effect on fatigue life of the ratio
of the EHD plateau film thickness to the composite
surface roughness, (9).

Additionally, models for temperature viscosity and pressure
viscosity variation as functions of temperature given by Walther
(13) and Fresco (14) respectively, were adopted.

Program AT74YO01 is capable of analyzing only a single
axially loaded ball bearing. The program cannot be used to
analyze a multi-bearing system. All other capabilities are
present however.

*Due to the similarities between major segments of SHABERTH
AT75Y004 and AT74YO01, many sections of (9) have been included in
this text, without modification.
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The basis for the present program, SHABERTH, was AT74Y001.
The latent capability for the analysis of up to five ball and
roller bearings subjected to general, (5 degrees of freedom)
loading, has been utilized. The models added to AT74YO01 are
used in the calculation of both the ball and roller bearing
friction forces and frictional heat generation rates. The
present program also includes a new model for the hydrodynamic
rolling and slip forces in the inlet zone of lubricated line
contacts, based on the work of Chiu, Ref. (15). Additionally,
a cage model developed under NASA Contract No. NAS3-19739
Ref (15) has been added which allows the cage to move with up to
three degrees of freedom versus the one degree of freedom per-
mitted in Program AT74YO01. This cage model may be used in the
analysis of both ball and roller bearings.

Under Air Force Contract No. F33615-76-C-2061 and Navy
NAPTC MIPR No. N62376-76-MP-00005, the capabilities of SHABERTH
were expanded to solve the combined set of multi-rolling element
and cage quasidynamic equilibrium equations.

This exapnsion required changes in the concentrated contact
asperity friction model as well as changes in the cage-rolling
element and cage-ring interaction calculations. Additionally,
the mathematical definition of the range of permitted variable
values was made substantially more accurate.

SHABERTH is intended to be as general as possible with
the following limits on system size.

Number of bearings supporting the shaft - five (5) maximum
Number of rolling elements per bearing - thirty (30) maximum
Number of temperature nodes used to describe the system -
one hundred (100) maximum

The program structure is modular and has been designed to
permit substitution of new mathematical models and refinements
to the existing models as the needs and opportunities develop.

The third generation program, SHABERTH, exists as two
versions, SHABERTH/SKF, SKF Program No. AT75Y004 and SHABERTH/NASA,
SKF Program No. AT76YO01. The differences between the two
versions reside in the calculation of the elastohydrodynamic
(EHD) film thickness and traction forces which develop in the
rolling element-raceway and rolling element-cage concentrated
contacts. The calculation of these factors as performed in the
SKF version is detailed herein. The details of the calculations
performed by the NASA version are presented in Ref. (15).

3



2. PROBLEM FORMULATION AND SOLUTION

The purpose of the program is to provide a tool with which
the shaft-bearing system performance characteristics can be
determined as functions of system temperatures. These system
temperatures may be a function of steady state operation or a
function of time variant conditions brought on by a change
in the system steady state condition. Such a change would be
the termination of lubricant supply to the bearings and other
lubricated mechanical elements.

The program is structured with four nested, calculation
schemes as follows:

1. Thermal, steady state or traisient temperature cal-
culations which predict system temperatures at a given
operating state.

2. Bearing dimensional equilibrium which uses the bearing
temperatures predicted by the temperature mapping
subprograms and the rolling element raceway load dis-
tribution, predicted by the bearing subprograms, to cal-
culate bearing diametral clearance at a given operating
state.

3. Shaft-bearing system load equilibrium which calculates
bearing inner ring positions relative to the respective
outer rings such that the external loading applied to the
shaft is equilibrated by the rolling element loads
which develop at each bearing inner ring at a given
state.

4. Bearing rolling element and cage load equilibrium
which calculates the rolling element and cage equili-
brium positions and rotational speeds based upon the
relative inner-outer ring positions, inertia effects
and friction conditions, which if lubricated, are
temperature dependent.

The above program structure allows complete mathematical
simulation of the real physical system. The program has
been coded to allow various levels of program execution
which prove useful and economical in bearing design studies.

These levels of execution are explained fully in Sections
3, 4, and 5.

4



The structure of the program and the nesting of the
solution loops noted above can be seen clearly in the Program
Flow Chart which is discussed in Appendix II 1.

The sections below present the systems of field equations
which are solved in each of the nested calculation schemes.
A more detailed discussion is contained in (1, 9 and 15).

2.1 Temperature Calculations

Subsequent to each calculation of bearing generated heat
rates, either the steady state or transient temperature mapping
solution scheme may be executed. This set of sequential
calculations is terminated as follows:

1. For the steady state case, when each system tempera-
ture is within EPA °Centigrade of its previously
predicted value, EPA is specified by the user. If
it is zero or left blank, a default value of 10 Centi-
grade is used. This criteria implies that the steady
state equilibrium conditions has been reached.

2. The transient calculation terminates when the user
specified time up is reached or when one of the
system temoeratures exceeds 6000 C.

2.1.1 Steady State Temperature Map

The mechanical structure to be analyzed is thought of as
divided into a number of elements or nodes, each represented
by a temperature. The net heat flow to node i from the sur-
rounding nodes j, plus the heat generated at node i, must
numerically equal zero. This is true for each node i, i going
from 1 to n, n being the number of unknown temperatures.

After each calculation of bearing generated heat, which
results from a solution of the shaft-bearing system portion
of the program, a set of system temperatures is determined
which satisfy the system of equations:

qi= qoi + q8 = 0 for all temperature nodes i (2.1)

where qoi is the heat flow from all neighboring nodes to
node i

q8 i is the heat generated at node i. These values
may be input or calculated by the shaft bearing
program as bearing frictional heat
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This scheme is solved with a modified Newton-Raphson
method which successfully terminates when either of two
conditions are met:

A ti

t EP2 for all nodes i (2.2)ti

where A t represents the Newton-Raphson correction to the
temperature t at a given iteration such that,
tN+l = tN + &t and N + 1, and N, refer to the
next and current iteration respectively.

EP2 is a user specified constant. If EP2 is left blank
or set to zero (0) a default value of 0.001 is used.

A second convergence criterion dependent upon EP2 is also
used. In the system of equations, q0  + qei = 0 for all nodes
i, absolute convergence would be obtained if the right hand
side (EQ) in fact reduced to zero (0). Usually a small residue
remains at each node, such that (qoi + qgi ) = (EQ)i.

The second convergence criterion is satisfied if

n [(EQ) 2]
S 1  100 x EP2 (2.3)

where n = number of equations in bearing solution

2.1.2 Transient Temperatures

In the transient case, the net heat q. transferred to a
node i heats the element. It is thus necessary for heat
balance at node i that the following equations are satisfied.

dti
PCpi Vi dT = qi (2.4)
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where p = density
C = specific heat

= volume of the element
t = temperature
T = time

The temperatures, t o, at the time of initiation T - Ts are
assumed to be knwon, that is

ti(T s ) = toi i = 1, 2, ..., n (2.5)

The problem of calculating the transient temperature
distribution in a bearing arrangement thus becomes a problem
of solving a system of non-linear differential equations of
the first order with certain initial values given. The equa-
tions are non-linear since they contain terms of radiation
and free convection, which are non-linear with temperature as
will be shown later. The simplest and most economical way of
solving these equations is to calculate the rate of temperature
increase at the time T = Tk from equation 2.4 and then calcu-
late the temperatures at time Tk + AT from

tk+ 1 = tk + dtk AT = tk + _7k AT (2.6)
aT eCp V

If the time step AT used as program input is chosen
too large, the temperatures will oscillate, and if it is chosen
too small the calcualtion will be costly. It is therefore
desirable to choose the largest possible time step that Coes
not give an oscillating solution. The program optionally
calculates such a time step. The step is obtained from the
condition, (16)

dti ,k-U
dtik - 0 i = 1, 2, ..., n (2.7)

If this derivative were negative, the implication would
be that the local temperature at node i has a negative effect
on its future value. This would be tantamount to asserting
that the hotter a region is now, the colder it will be after
an equal time interval. An oscillating soluticn would result.
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Differentiating equation (2.6) for node i, one has as
condition (2.8),

dtik+l _ Ti  dqidtik - 1 + 1 - 0, i = 1, 2 .... n (2.8)dti,k + iiCpiVi dti

The derivative dqi/dt i is calculated numerically

dqi _ qi (ti + ti) - qi(ti) (2.9)
U[i a t.29

For each node, the value of AT. giving a value of zero
to the right hand side of Eqn. (2.8t is calculated.

A value of AT rounded off to one significant digit smaller
than the smallest of theAT i given by Eqn. (2.8) is used.

If the transient thermal scheme is being used interactively
with the bearing subprograms, the user must specify a small
enough time step between calls to the bearing subprograms in
order that the variation in bearing generated heats, with
time, accurately reflects the physical situation. At first,
a trial and error procedure will be required to effectively
use the program in its mode, however, experience will increase
the user's effectiveness.

2.1.3 Calculation of Heat Transfer Rate

The transfer of heat within a medium or between two media
can occur by conduction, convection, radiation and fluid flow.

All these types of heat transfer occur in a bearing appli-
cation as the following examples show.

1. Heat is transferred by conduction between inner ring
and shaft and between outer ring and housing.

2. Heat is transferred by convection between the surface
of the housing and the surrounding air.

3. Heat is transferred by radiation between the shaft
and the housing.

4. When the bearing is lubricated and cooled by cir-
culating oil, heat is transferred by fluid flow.

Therefore, in calculating the net flow to a node all the

above-mentioned modes of heat transfer will be considered.

2.1.3.1 Generated Heat

There may be a heat source at node i giving rise to a heat
flow to be added to the heat flowing from the neighboring nodes.



In the case that the heat source is a bearing, it may
either be considered to produce known amounts of power, in
which case constant numbers are entered as input to the program,
or the shaft-bearing program may be used to calculate the bearing
generated heat as a function of bearing temperatures.

2.1.3.2 Conduction

The heat flow qi %- which is transferred by conduction
from node i to node 3, 's proportional to the difference in
temperature (ti - t.) and the cross-sectional area A and is
inversely proportio~al to the distance t between the two points,
thus

_cij = A (ti_t ) (2.10)

where ? the thermal conductivity of the medium.

2.1.3.3. Free Convection

Between a solid medium such as a metallic body and a
liquid or gas, heat transfer is by free or forced convection.
Heat transfer by free convection is caused by the setting in
motion of the liquid or gas as a result of a change in density
arising from a temperature differential in the medium. With
free convection between a solid medium and air, the heat
energy q transferred between nodes i and j can be cal-
culatedqYr6g the equation, (2.11)

qvi,j = (vA Iti-t i d SIGN (ti-t j ) (2.11)

where ov = the film coefficient of heat transfer by
free convection

A = the surface area of contact between the media
d = is an exponent, usually = 1.25, but any value

can be specified as input to the program

§ if t. a t.

SIGN f -if tk:< t:
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The last factor is included to give the expression qvi,j
a correct sign.

The value of(V can be calculated for various cases, see

Jacob and Hawkins, (16).

2.1.3.4 Forced Convection

Heat transfer by forced convection takes place when liquid
or gas moves around a solid body, for example, when the liquid
is forced to flow by means of a pump or when the solid body is
moved through the liquid or gas. The heat flow qwi j transferred
by forced convection can be obtained from the following equation.

9wi,j =  w a(ti - tj) (2.12)

wherecw is the film coefficient of heat transfer during
forced convection. This value is dependent on
the actual shape, the surface condition of the body,
the difference in speed, as well as the properties
of the liquid or gas.

In most cases, it is possible to calculate the coefficient
of forced convection from a general relationship of the form,

Nu = aRebprc (2.13)

where a, b, and c are constants obtained from handbooks,
such as (17). R and P are dimensionless numbers
defined by e r

Nu = Nusselt's number = o. L/A
L= characteristic lengt
A = conductivity of the fluid
Re = Reynold's number = UL p/V
U = characteristic speed
p = density of the fluid

= dynamic viscosity of the fluid
Pr = Prandtl's number = qCp/A
C = specific heat
P

10



The program can use a value of the coefficient of convec-
tion, or let it vary with actual temperatures, the variation
being determined by how the viscosity varies. Input can be
given in one of four ways, for each coefficient.

Constant viscosity

1. Values of the parameters of equation (2.13) are
given as input and a constant value of o w is cal-
culated by the program.

Temperature dependent viscosity

2. The coefficient Ow for turbulent flow and heating
of petroleum oils is given by

= k 9 * {)(t)} klo (2.14)

where k9 and kl0 are given as input together with
viscosity at two different temperatures.

3. Values of the parameters of equation (2.13) are given
as input. Viscosity is given at two different
temperatures.

2.1.3.5 Radiation

If two flat parallel, similar surfaces are placed close
together and have the same surface area A, the heat energy
transferred by radiation between nodes i and j representing
those bodies will be,

qRi,j CaAfti + 273)4 _ (t. + 273] 4  (2.15)

where E is the surface emissivity. The value of the
coefficient E is an input variable and varies
between 1 for a completely black surface and 0
for an absolutely clean surface. In addition,
avis Stefan-Boltzmann's radiation constant
which has the value 5.76 x 10-8 watts/m 2-(OK) 4

and ti and tj are the temperatures at points i
and j.

Heat transfer by radiation under other conditions can also
be calculated, (16). The following equation, for instance, applies
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between two concentric cylindrical surfaces

aAi [(ti + 273)
4 - (tj + 273)4(

qRi,j = _________________ (2.16)
1 + (l-E) (Ai/Ae)

where Ai is the area of the inner cylindrical surface
Ae is the area of the outer cylindrical surface

2.1.3.6 Fluid Flow

Between nodes established in fluids, heat is transferred
by transport of the fluid itself and the heat it contains.

' jq i '

Figure 2.1 Convective Heat Transfer

Figure 2.1 shows nodes i and j at the midpoints of consecu-
tive segments established in a stream of flowing fluid.

The heat flow quij through the boundary between nodes
i and j can be calcu a ed as the sum of the heat flow qfi through
the middle of the element i, and half the heat flow qoi trans-
ferred to node i by other means, such as convection.

The heat carried by mass flow is,

qfi = pi CPi Vi ti = Kiti (2.17)

where V. = the volume flow rate through node i

12
12



The heat input to node i is the sum of theheat generated
at node i (if any) and the sum over all other nodes of the
heat transferred to node i by conduction, radiation, free and
forced convection.

q oi= qG,i + (qci,j + qvi,j + qwi,j + qRi,j) (2.18)

The heat flow between the nodes of Fig. 2.2 is then,

qui,j = qfi + qoi/2 (2.19)

If the flow is dividing between node i and j, Figure 2-2
then the heat flow is calculated from

qui,j = Kij (qfi + qoi/2) (2.20)

where Kij = the proportion of the flow at i going to
the node j, o Kij 1. Kij is specified
at input.

k k eki

kki-IiO ki

FIGURE 2.2 1

DIVIDED FLUID FLOW FROM NODE i

Figure 2.2 Divided Fluid Flow from Node i

2.1.3.7 Total Heat Transferred

The net heat flow rate to node i can be expressed as,

qi =q G,i + (qci,j + q ui,j + q vij + q wi,j + q Ri (2.21)
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The summation should include all nodes j, both with un-
known temperatures as well as boundary nodes, at which the

temperature is known so long as they have a direct heat exchange
with node i.

This expression is a non-linear function of temperatures

because of the terms qw and q . Therefore, the equations to be

solved for a steady state soldtion are non-linear. The sub-

program SOLVXX for solving non-linear simultaneous equations
is used for this purpose.

2.1.4 Conduction Through a Bearing

As described in Section 2.1.3.2, the conduction between
two nodes is governed by the thermal conductivity parameter A
of the medium through which conduction takes place. The

value of ?i is specified at input.

An exception is when one of the nodes represents a bearing

ring and the other a set of rolling elements. In this case,

the conduction is separately calculated using the principles

described below.

2.1.4.1 Thermal Resistance

It is assumed that the rolling speeds of the rolling

elements are so high that the bulk temperature of the 
rolling

elements are the same at both the inner and 
outer races, except

in a volume close to the surface. The resistance to heat flow

can then be calculated as the sum of the 
resistance across

the surface and the resistance of 
the material close to the

surface.

The resistance A is defined implicitly by

4t = A-q 
(2.22)

where

&t is temperature difference
q is heat flow

The resistance due to conduction through 
the EHD film is

calculated as

= (h/A) - A (2. 24)

14
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where h is taken to be the calculated plateau film
thickness

A is the Hertzian contact area at the specific
rolling element-ring contact under consideration.

Ais the conductivity of the oil.

The geometry is shown in Figure 2.3(a). Asperity con-
duction is not considered.

So far, a constant temperature difference between the
surfaces has been assumed. But during the time period of
contact, the difference will decrease because of the finite
thermal diffusivity of the material near the surface, Fig. 2.3(b).

To points at a distance from the surface this phenomenon
will have the same effect as an additional resistanceA 2 acting

in series with Ji"

This resistance was estimated in (18) as,

= 1 (_V (2.24)
ALre,i 2biV

where Ir = contact length, or in the case of an

elliptical contact area, 0.8 times the
major axis

A = heat conductivity

= thermal diffusivity p

= density

Cp = specific heat

b = half the contact width

V = rolling speed

The resultant resistance is

res 1 + 12 (2.25)

15
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(b) Temperature Distribution at Rolling,
Concentrated Contact Surfaces

FIGURE 2.3

CONTACT GEOMETRY AND TEMPERATURES
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There is one such resistance at each rolling element.
They all act in parallel. The resultant resistance, tres'
is thus obtained from

n
1 r 11 - 1(2.26)

ares i=l firesi

2.2 Bearing Dimensional Change Analysis

The program calculates the changes in bearing diametral
clearances according to the analysis described originally in
(5) and herein in Appendix I 2, and expressed in generalized
equation form as,

ADCL = f ((Fits)m, ti ,jjm' (Qr)ml , m = 1, 2 for inner and (2.27)
outer rings
respectively

i = 1,2,3,4,5 for
shaft, inner ring,
outer ring, housing
and rolling element
respectively

17



where: ADCL is the change in bearing diametral clearance
Fits are the cold mounted shaft and housing fits
ti are the component temperaturesd m refers to the ring rotational speeds

r refers to the radial component of the minimum
rolling element-race normal force.

A bearing clearance change criterion is satisfied when
the change in bearing diametral clearance remains within a
narrow, user specified range, for two successive iterations
as follows:

I(ADCL)N - (ADCL)N-I 1 EPSFIT for all bearings (2.28)

D

where: N denotes the most recent iteration and
N-1 denotes the previous iteration
D denotes the ball or roller diameter and

EPSFIT is a user specified value = .0001D

It should be noted that although ring rotational speeds,
and initial, i.e. cold, shaft and housing fits are considered
in the clearance change analysis, these two factors are fixed
at input and remain constant through the entire solution.
Although component temperatures may change as a consequence of
the thermal solution, temperatures remain constant through a
complete set of clearance change iterations. As a result, only

the change in bearing load distribution affects the change in

bearing clearance within a set of clearance change iterations.

2.3 Bearing Inner Ring Equilibrium

The bearing inner ring equilibrium solution is obtained

by solving the system:

(Fb)i - (Fs)i = 0 for all bearings, i (2.29)

where: Fb denotes a vector of bearing loads and
moments resulting from rolling element/
race forces and moments.

18



Fbxi

Fbyi Forces

Fbzi
(Fb)i - (2.30)

Mby
Mbyi Moments

Mbzi

If the bearing solution considers friction, Fb is com-

prised of the rolling-element race friction forces as well as

the normal forces.

If the bearing solution is, at the user's option, friction-

less, Fb is comprised only of rolling element/race normal con-

tact forces.

(Fs)i denotes a similar vector of loads, .xerted on the

inner ring by the shaft. The calculation of (Fs)i is presented

in Appendix I 3.

Fsxi

Fsyi Forces

F Fszi (2.31)
(Fs) -- --

Msyi
Moments

Mszi

The variables in this system of equations are the bearing
inner ring deflections db and the shaft displacements A at

all bearing locations. The bearing loads may be expressed as

a function of the inner ring deflections.

Fb = Fb (6'b) (2.32)

The dcflectionAb of a bearing is described by two radial

deflections 6 and 4, two angular deflections e and ez and one

axial deflectyon6 x. The axial deflection is asumed to be

the same for all bearings on a shaft, i.e.

19



The solution scheme is ended when

4 EPSI (frictionless)
6(&)ij < (2.37)
( )ij EPS2 (friction)

i = 1,... (Number of bearings)
j = 1,5 - for the 3 linear and two

angular deflections at
each bearing

If for some i or j, ( 6 )ij = 0, Eq. (2.38) is used in place of
(2.37)

+ (EPSI (frictionless)() ij . (2.38)

(0.001 x NBRG) LEPS2 (friction)

NBRG denotes the number of bearings in the system.

EPSI and EPS2 are Used depending on whether the bearing
solutions are frictionless or include friction, respectively. If
the bearing deflections are extremely small, computer-generated
numerical inaccuracies may prevent convergence according to
the above criteria although a perfectly good solution has
been obtained. To overcome this problem, the iteration is ter-
minated if all angular deflections are less than 2 x 10-6 radians
and all linear deflections are less than 5 x 10-8 inches. Any
one of the above criteria imply that inner ring equilibrium is
satisfied.

2.4 Bearing Quasi-Dynamic Solution

The bearing quasi-dynamic solution is obtained through
a two-step process:

1. Elastic Solution - considering rolling element
contrifugal force.

2. Elastic and Quasi-dynamic Solution*

*Quasi-dynamic equilibrium is used to connotc that the true
dynamic equilibrium terms containing first derivatives of the
ball rotational speed vectors and the second derivatives of
rolling element position vectors with respect to time are
replaced by numerical expressions which are position rather

than time dependent.

20
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2.4.1 Rolling Element Equilibrium Equations

The equations which define rolling element quasi-dynamic
force equilibrium take the form

[f am . . * m = 1-3 refers to the

(Qm + fm)dt + Fm 1 +F=0 outer, inner and cage
m _am rolling element contacts (2.39)

respectively

where: Qm is the vector normal load per unit length
of the contact. See Appendix I 4.

f is the vector of friction force per unit length
of the contact. See Appendices I 5 and I 6.

F is the vector of inertia and drag forces.
See App. I 6 and I 7

t is a coordinate along the contact, perpen-
dicular to the direction of rolling (usually
the major axi,

a i3 half the contact length. See Ref. (1).

Fm is the vector sum of the hydrodynamic forces

acting on the rolling element at the m-th
contact. See Appendix I 6.

Rolling element moment equilibrium is defined by:

[ m x ( + f)dt + x M = 0 (2.40)

-am

m

Qm,fmFmamp and t are defined above, M is a vector
of inertia moments. For te definition of
MI, refer to Appendix I 7.

rm is a vector from the rolling element
center to the point of contact, see Appendix
I 4.

The solution to the equation sets represented (2.39) and 2.40)

generate the necessary data to calculate bearing fatigue life.

See Appendix I 9.

In the frictionless elastic solution Fm and fm 
= 0.

Additionally, the only rolling element inertia 
term considered

in the frictionless solution is centrifugal force. As a con-

sequence, only the axial and radial force equilibrium 
equa-

tions are solved for each ball. For each roller, the radial

force equilibrium and the tilting moment about 
the Z axis of

Fig. 2.4 is solved. A dummy equation for axial force equilibrium

is included in the solution matrix which keeps the 
roller centered
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FIGURE 2.4

Bearing Inertial £XYZ) and Rolling Element (xyz),
Coordinate Systems
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with respect to the outer race. The cylindrical roller bearing
considered by the program cannot carry axial loading.

The friction solution determines ball quasi-dynamic equili-
brium for six degrees of freedom. A roller is permitted four
degrees of freedom. The rolling-element variables in this
solution are x,, Yl' U)x, IJy, W z, and W o.

where xI is the rolling element axial position relative to
the outer race. For a roller, this is a dummy variable.

Yl is the rolling element radial position relative to
the outer race,

(Jx,c.y, Lz are the orthogonal rolling element rotational speeds
relative to the cage speed, about the x, y and z
axes and W o is the rolling element orbital speed.
For the roller, Wz is a dummy variable.

The variables xI and y are the ball variables in the friction-
less solution. The variables in the rol ler frictionless solu-
tion are xI, a dummy, Y1 and 0z = tan (L.Oy/Lhix).

2.4.2 Cage Eguilibrium Equations

The cage equations and cage-rolling element interactions
are not considered when the friction forces are omitted from
the rolling element equilibrium equations.

The number of degrees of freedom given to the cage is one,
if the cage will tend to rotate concentrically with respect to
the ring on which it is riding. This condition is determined
as a function of the rolling element orbital speed variation and
prevails with most roller bearings and with ball bearings
subjected only to axial loading. In both cases, orbital speed
variation is often inconsequential. Also, single degree of
freedom is allowed when the cage is rolling element riding.
The single degree of freedom corresponds to a small angular
rotation about the bearing axis, measured with respect to rolling
element 1. The angular displacement is converted to a linear
dimension by a multiplication by the bearing pitch diameter and
is noted in Fig. 2.4 as I . When a single degree of freedom
is permitted, the sum of moments acting on the cage about the
bearing x axis is required to be zero. This moment equation
considers the cage-rolling element normal and friction forces
as well as the torque generated at the cage-ring surface.

If there is significant rolling element orbital speed
variation, the cage is permitted to move to an eccentric posi-
tion with respect to the land on which it is piloted. Two
additional degrees of freedom are required to describe the
eccentric pcsition. These are the cage center of mass radial
displacement, e, and the angular displacement of the center of
mass, with respect to the bearing Y axis, 0 c', see Figures 2-5
and 2-6. These radial and angular displacement variables are
determined when the sum of forces acting on the cage, resolved
along the bearing Y and Z axes, reduce to zero. The rolling
element-cage normal and friction forces as well as the pressure

23



FIGURE 2-5

Inner Ring-Cage Land Contact Geometry
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FIGURE 2-6

outer Ring-Cage Land Contact Geomuetry
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buildup between the cage and its piloting surface are considered
in the equilibrium equations. The effect of the cage mass is
neglected.

Figure 2-7 depicts the cage pocket normal and friction
forces acting on a rolling element which are considered in
the cage equibrium solution. These forces are functions of
the rolling speedswx andy and the contact geometry are cal-
culated in the x,y,z frame. The forces exerted on the cage
due to the i-th rolling element are, in the XYZ frame of
reference:

Mxi = - (Fyl + Fy 2 )ir + (P1 - P2)i Rm

Fyi = - (FyI - Fy 2 ) i cos Oi - (PI - P2)i sin 5i (2.41)

Fzi = (FyI - Fy 2 ) i sin 1i + (P1 - P2)i cos Oi

when the forces of Eq. (2.41) are summed over all of the rolling
elements, and the total added to the cage land contact forces,the cage equilibrium equations for the three degree of freedom

model are obtained as:

Mx = 0 = (Mxi) + McX

Fy = 0 = (Fyi) + Fcy (2.42)

Fz = 0 = (Fzi) + FcZ

where MXi' F and Fzi are defined for each rolling element
by Eq. (2.411, Mcx is the cage land friction torque, Fcy and
FcZ are the cage land hydrodynamic forces.

Within SHABERTH, Eq. (2.42) which defines cage equili-
brium, are solved simultaneously with the set of all ball or
roller quasidynamic equilibrium equations.

Details for calculating the rolling element/cage pocket
forces and the cage land/ring land forces are presented in
Appendix I 9.

The ball bearing friction solution is thus obtained by
solving 6Z+(l or 3) equations where Z is the number of rolling
elements. The ball bearing frictionless solution is obtained

by solving 1, (Z/2) (Z/2+l) or Z sets of 2 equations, depending

upon the number of rolling elements in the bearing and the

degree of load symmetry which prevails. The various symmetry

conditions are explained below.

The roller bearing friction solution contains 4Z+(l or 3)

equations and the frictionless solution contains Z/2, Z/2+1

or Z sets of three equations again depending upon the number

of rolling elements and whether or not load symmetry exists.
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FIGURE 2-7

Cage Pocket Normal and Friction Forces
Affecting Equilibrium
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2.4.3 Load Symmetry Conditions

The various load symmetry conditions are as follows.

Axial symmetry is utilized if, for a ball bearing the load
is axial only, then only one set of two equations is solved for
the frictionless case. Six ball and one cage equilibrium equations
are solved when friction is included. All balls are assumed to
behave identically.

Radial load symmetry is utilized if the non-axial shaft
loading is comprised of only radial components parallel to the
Y axis and moment components parallel to the Z axis and the
position of the first rolling element is on the Y axis, then
symmetry exists, only half the rolling elements need be con-
side-ed if the number of rolling elements is even and one half
plus one need be considered if the number is odd. Because
of inertia terms, radial load symmetry can only be utilized in
the frictionless solution.

If load symmetry is not present, then Z sets of two (ball
bearing) or Z sets of three (roller bearing) equations must be
solved to obtain the frictionless solution.

2.4.4 Bearing Quasidynamic Solution Criteria

As with the steady state temperature mapping scheme, the
Newton-Raphson scheme in subprogram SOLVXX is used to solve
the sets of equations for each bearing. The iteration scheme
terminates when either:J hXiN I ( [EPS1 frictionless (2.43)

XiN-I -- EPS2 friction
i=l..n

or
EPS1 frictionless

n 2 (2.44)
1 EQi EPS2 friction

n J
______ j_ S 100 X I

Experience has shown that the second criteria is usually
responsible for terminating the solution. However, when rolling
element loads are extremely large, on the order of 105 Newtons,
it becomes difficult to reduce the equation residues to less
than 10 Newtons. In those instances, the first criteria usually
terminates the iteration scheme.
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3. PROGRAM INPUT

3.1 Types of Input Data

A complete set of input data comprises data of four
distinct categories. Within these categories, cards which
convey specific kinds of information are referred to as card
types. Depending on the complexity of the problem, the input
data set may contain none, one or several cards of a given type.
The categories are listed below.

I. Title Cards
A title card plus a second card which provides the
program control information for the shaft-bearing
solution.

II. Bearing Data Cards
A set of up to sixteen (16) card types, each set des-
cribing one bearing in the assembly. All bearings must
be so described. The card sets must be input sequentially
in order of increasing distance from a selected end of
the shaft.

III. Thermal Data Cards
A set of up to nine (9) card types to describe the
thermal model of the assembly.

IV. Shaft Data Cards
A set of three (3) card types to describe the shaft
geometry, bearing locations on the shaft and shaft
loading

If the program is being used to predict the performance
of a bearing assembly, cards from all four sets must be included
in the runstream. If the program is being used to thermally
model a mechanical system wherein no bearing heat generation
rates are required, and therefore, no bearing calculations
need be performed, the cards from sets II and IV are omitted.

The review of required input information which follows is
broken into the four sets of data categories given above, with
special emphasis on program control data.

The input data instructions are given in Appendix II 2,
and are for the nfost part self explanatory. They are laid out
in the format of an eighty column data card. A description
of the variables is given in the input instruction forms.
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The units used for input data are as follows:

Linear Dimensions - (mm)
Angles - (degrees)
Surface Roughness - (microns)
Bearing Angular Mounting Errors - (radians)
Rotational Speeds - (RPM)
Force - (Newtons) (N)
Moments - (N-mm)
Pressure, Elastic Modulus - (N/mm2 )
Density - (gm/cm3)
Kinematic Viscosity - (cs)
Temperature - (degrees centigrade) (°C)
Coefficient of Thermal Expansion - (°C-1 )
Thermal Conductivity - (Watts/m/OC)

3.2 Data Set I - Title Cards

3.2.1 Title Card 1

This card should contain the computer run title and any
information which might prove useful for future identification.
The full eighty (80) columns are available for this purpose.
The title will appear at the top of each page of Program output.

3.2.2 Title Card 2

This card provides the control information for the shaft
bearing solution.

Item 1: Shaft Speed in rpm, GOV (1). All bearings have the
same shaft, i.e. inner ring speed.

Item 2: Number of Bearings on the shaft (NBRG), a minimum
of zero is permitted if no bearing solution is being sought.
A maximum of five is permitted.

Item 3: Print Flag (NPRINT), NPRINT equal to zero is normal
and will result in no intermediate or debug output. With a value
of one, a low level intermediate print is obtained at the end
of each shaft bearing iteration. The values of the variables,
the inner ring displacements (DEL), and the equation residues
are printed.

At the end of each bearing iteration, wherein the rolling
element and cage equilibrium equations are solved, an error
parameter is printed which has the value:

30

k-'



Error Parameter = XN/XNl

XN is the change in the variable X specified
at iteration N.

XNl is the value of the variable specified
at the previous iteration.

The Error Paremeter is calculated for each of the bearing
variables, but only the largest one is printed.

Additionally, at the end of each Clearance Change itera-
tion, the clearance change error parameter is printed. This
error is defined by Eq. 2.28.

If NPRINT is set at 2, all of the above information is
printed. Additionally, the variable values and residue values
are printed for each iteration of the rolling element and cage
equilibrium solution.

Item 4: ITFIT controls the number of iterations allowed
to satisfy the bearing clearance change iteration scheme. If
ITFIT is set to zero (0), or left blank, the clearance change
portion of the program is not executed. If a position integer
is input, the clearance change scheme is utilized with a maximum
iteration limit of five (5). If a negative interger is input,
the scheme is used with a maximum iteration limit equal to
the absolute value of the negative integer.

Item 5: ITMAIN limits the number of iterations attempted
during the solution of the shaft and bearing inner ring equili-
brium problems, i.e., establishing the equilibrium of bearing
reactions and applied shaft loads. If ITMAIN is left blank,
set to zero, or to a positive integer, then (15) iterations
are premitted. If ITMAIN is set to a negative integer, the
number of iterations is limited to the absolute value of that
integer.

31

.... .. .. ..'l -..... .... .. . . .. . . . . . . ... .. ... ... ..... .. .. .



Item 6: GOV(2) or EPSFIT is the convergence criterion
for the diametral clearance change portion of the analysis.
As mentioned under item 3 above, this error parameter is
defined by Eq. 2.28.

The iteration scheme is terminated when the error para-
meter is less than the input value of EPSFIT. If EPSFIT is
left balnk or is set to zero (0), the program default value
of 0.0001 is used.

Items 7 & 8: Main loop accuracy for frictionless elastic
(EPSl) and friction solution (EPS2). These accuracy values
control the accuracy of the shaft bearing deflection solution
as well as the quasi-dynamic solution of the component dynamics
(cf. Section 3). If EPSI and EPS2 are left blank or set to
zero (0), default values of 0.001 and 0.0001 respectively are
used.

Item 9: IMT, if set to 1, the Material properties for
both bearing rings and the rolling elements are to be input
on card types B 11 through B 19. If IMT is zero or blank,
the rings and rolling elements are assumed to be steel.
Card types B 11 through B 14 are required only if the change
in bearing diametral clearance is to be calculated.

Item 10: NPASS controls the level of the bearing solution

0 Elastic Contact Forces are calculated. No lubrication
or friction effects are considered.

1 Elastic Contact Forces are calculated. Lubrication
and friction effects are considered using raceway control
(ball bearing) or epicyclic (roller bearing) assumptions
to estimate rolling element and cage speeds.

2 Inner Equilibrium is satisfied considering only the
Elastic Contact Forces. Using the inner ring positions
thus obtained, rolling element and cage equilibrium
are determined considering friction.

3 Complete Solution. The inner ring, rolling element
and cage equilibrium is determined considering all
elastic and friction forces.

3.3 Data Set II - Bearing Data

Most of the input instructions are self-explanatory.
Where certain items are deemed to require more explanation
than given in the input data format instructions, they are
treated on an individual basis by card type and item number.



Most of the bearing input data is read into a two dimen-
sional array named "BD," which has the dimensions (1830, 5).
For each of the five bearings permitted on a shaft, a total
of 1830 pieces of data may be stored. Denoting BD(I,J), I
represents a specific piece of bearing data, J represents
the bearing number. The bearing input data of Data Set II
occupies the first 106 locations of the 1830 allocated. On
the input data format sheets, the designation BD(I) where
I-i...106, denotes the location within the BD array where
each piece of input data is stored.

3.3.1 Card Type 1 - Bearing Type and Material Designations

Item 1: Bearing type, columns 1-10 must be specified,
left justified, i.e., "B" or "C" in column 1. This format
must be followed since the Program recognition of bearing
type, (ball bearing or cylindrical roller bearing), is derived
from reading the "B" or "C" in the first column of this card.

Item 2 & 3: Columns 11-30 and 31-50, "Steel designations,"
inner and outer rings, respectively. The alphameric-literaI
description of the steel types such as "M-50" or "AISI 52100"
is input.

Items 4 & 5: Columns 51-60 and 61-70, the numbers input
for items 4 (inner ring) and 5 (outer ring) are used to account
for improved materials and multiply the raceway fatigue lies
as determined by Lundberg-Palmgren methods. Typical life
factor values for modern steels are in the neighborhood of 2.0
to 3.0. If the ASME Publication Life Adjustment Factors for
Ball and Roller Bearings, is referenced by the user, the Material
Factor D and the Material Process Factor E should be used
multiplicatively as inputs for items 4 and 5. Additionally, if
the user is accustomed to using a lubricant life multiplier
he must also multiply the material factor by the lubricant life
multiplier. The program considers EHD film thickness and RMS
surface roughness but generates a life multiplier having
a maximum value of 1 and a minimum of 0.479, i.e. Lube-Life Factor
Programmed only serves to reduce predicted Fatigue Life.

Item 6: Columns 71-78, "Orientation angle of the first
rolling element." (01) (degrees). Refer to Fig. (2.4). The
quasi-dynamic rolling element bearing problem has an infinite
number of solutions which fall within a narrow envelope having
a periodic shape. The solution obtained is a function of
the rolling elem6nt positions relative to the bearing system
coordinate axes. 01 = 0, places a rolling element on the Y
axis and is the choise customarily made. 01 can be desig-
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360
nated as any value 0O 360-where Z is the number of rolling

elements. For each different value assigned to 01, a differ-
ent, although similar, bearing solution will be obtained. To
take advantage of bearing symmetry and the computer time savings
which result, 01 must be specified as zero or left blank.

Item 7: Column 80, a signal, termed the crown drop flag,
which specifies for a cylindrical roller bearing, whether the
roller-race crown drops will be calculated, or read directly.
If item 7 is blank or zero, the crown drops are calculated
based on the roller-race crown radius, and effective flat
length input information. If the crown drop flag is other than
zero or balnk, the non-uniform separation of the roller and
raceway must be specified at the center of each slice into
which the roller-raceway effective contact length is divided.
The slice widths are identical. The number of slices is
input as item 7 card type B4. The non-uniform roller-raceway
separation is input on card types B5 and B6.

3.3.2 Card Type B2 - Bearing Geometry and Outer Ring Speed

Item 1, 2 and 5 need no explanation, however, items 3
and 4 require substantial explanation as they apply to the
various types of ball bearings.

3.3.2.1 Ball Bearing Geometry

Through the proper specification of the diametral clearance
and contact angle, the Program can properly handle deep grove,
split inner, and angular contact ball bearings.

The deep groove ball bearing requires the specification
of zero contact angle and either the operating diametral clear-
ance Pd or the off-the-shelf diametral clearance, if the dimen-
sional change analysis is utilized.

The angular contact bearing is fully described through
specification of the contact angle which obtains under a gauge,
axial load. However, this method of input does not accurately
define the system if there is more than one angular contact
supporting the shaft and at least one of those bearings has
its grooves offset in the direction opposite to the other
bearings and if the shaft is capable of axial and/or radial
play. In other words, if what are known as angular contact
ball bearings are mounted such that some diametral shaft
play is permitted, an auxilliary angle as well as the diametral
play must be specified at input. The angle input is not the
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manufacturer's designated contact angle,oe , but an auxilliary
angle,c( 0, the calculation for which shall be demonstrated.

Refer to Figure 3.1. The manufacturer's contact angle is
calculated as follows:

= cos-l [ ] (3.1)

A =r 0  ri - D (3.2)

where: ro and r. are the outer and inner raceway groove1 radii respectively

D is the ball diameter

Under a gauge axial loada< is obtained at both inner and
outer raceways for each ball. Under this condition, the outer
and inner raceways are axially offset an amount s,

sa = A Sino (3.3)

When angular contact ball bearings are mounted with some
diametral play, the grooves are offset an amount Sxo such that
Sxo< So . The diametral play which obtains at this condition
is Sd. This diametral play is usually known by the engineer
or designer and is usually required to allow some forgiveness
when thermal gradients are encountered. Assuming that the user
has the values foro , ro , ri, D and So< then:

o¢ °  tan -1 So

where: Pd and A may be calculated from Eqs. (3.1) and (3.2).

The manufacturer might be able to provide the value of
Sac at the Sd value of interest. If not, the following
equation may be solved foro.
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Sd -APd0
2-- C 2 A - 2 o- 0 (3.5)

Note: Sato should be less than Sa and o0 should be less thano..

Equation (3.6) is derived by developing two expressions
for the radial separation (A r ) of the outer and inner raceway
curvature centers.

Ar = A - Pd

Ar = (A - Sdcos<o) Cos O  (3.6)
2

Pd _ o 2A - A Cost o - 5 CX
T 2 0

In order that the Program properly handle split inner
ring ball bearings an auxilliary angle and diametral play must
be input. Referring to Figure 3.2, the auxilliary angleao_ and
diametral play Sd must be determined and input. Typically,
the values of D, ro,o s and Sd' are known. Pd and Sd may be
calculated as follows:

Pd = Sd' + (2ri-D) (l-Coss) (3.7)

Sd = [Pd - 2A (l-Cosoc0) /Cos 2O0  (3.8)

The unloaded half of the inner ring must be removed from con-
sideration and the ball moved such that its center lies on the
line connecting the origins of ri and r and positioned such
that the auxilliary clearance Sd 4 exists at both the inner
and outer raceways. The auxilliary angle is

= Tan1  (ri - D/2) Sina s t (3.9)
ro  D/2 - Sd'/2 + (ri - D/2) Cos. s
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The angle associated with each ball bearing must be
specified with the correct sign. A positive contact angle
allows the bearing to accept a positively directed axial
load transmitted by the shaft.

3.3.3 Card Type B3 - Rolling Element Geometry

These data are self explanatory. Although space has
been set aside for the specification of roller end radius and
roller included angle, this has been done for future considera-
tions and are not used by the program. The items may be left
blank.

3.3.4 Card Type B4 - Raceway and Roller Raceway Contact Geometry

3.3.4.1 Ball Bearing

Items one and two refer to the outer and inner raceway
curvatures respectively where curvature is defined as the
cross groove radius divided by the ball diameter. Typical
values range from 0.515 to 0.57.

3.3.4.2 Roller Bearing Contact Geometry Data

All items are used to define the roller-race contact
geometry, see Fig. 3.3 "Flat length" and "Crown Radius" are
used to calculate roller-race separation along the roller
profile if this information is not specifically input. See
Item 7 of the Bearing Data title card and Bearing Data Cards
B5 and B6.

Items 1 and 4 "Effective Contact Length" refer to the
longest possible length which can obtain at a roller-race
contact. Typically, this is the roller total length less the
corner radii. If, however, the raceway undercuts are excep-
tionally large so that the tract width is smaller than the
effective roller length then the tract width should be input.

Item 7 refers to the number of slices into which the
roller raceway contact may be divided. A maximum value of
twenty is permitted a default value of two is used if Item 7
is blank or zero. Each slice is the same width.

3.3.5 Roller-Raceway Non-Uniform Profile Definition

3.3.5.1 Card Type B5 - Inner Roller Raceway Contact

These cards are used to input the inner and outer race
roller-race separation along the roller profile. With the
high points of the roller and race in contact, i.e. with all
clearance between roller and raceway removed. These cards
must be omitted if item 7 of the Bearing Data Title card is
zero or blank.
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3.3.6 Card Type B6 - Outer Roller Raceway Contact

Same as Card Type B5.

3.3.7 Card Type B7 - Raceway-Rolling Element Surface Data

Items 1 through 6 define the statistical surface micro-
geometry parameters of the rollers and raceways. Items 1 through
3 require the input of center line average CLA surface rough-
ness. Within the program CLA values are converted to RMS by
multiplying by 0.9.

Items 4 through 6 are RMS values of the slopes measured
in degrees of the surface asperities as measured in a traverse
across the groove for rings, longitudinally for rollers and
in any arbitrary direction for balls. Typical values for
raceway and rolling element surfaces are 1 to 2 degrees.
This card is omitted if item 10 of title card 2 is zero or
blank.

3.3.8 Card Type B8 - Cage Data

This card is omitted if item 10 of the title card 2 is
zero or blank. These data are self explanatory. Note that the
cage weight is an input item. The weight, however, is not
used in any calculation. It is included only for future con-
sideration of cage stability predictions.

3.3.9 Card Type B9 - Shaft and Housing Fit Dimensions

These cards are to be included only if the change in
bearing diametral clearance with operating conditions is to
be calculated, i.e. if item 4 ITFIT on the Bearing Title Card 2
is non-zero. On Card Type B9, tight interference fits bear a
positive sign and loose fits, a negative sign.

Items 3 and 6 on Card No. 9 are termed the shaft and
housing effective widths, respectively. The value specified
for these effective widths may be as great as twice the ring
width.

Use of an effective width is an attempt to account for
the greater radial rigidity of a shaft than the ring that is
pressed on to it, owing to the fact that the shaft deflects
over a distance that extends beyond the ring width. In the
proaram, the calculated internal pressure on the ring due to
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its interference fit with the shaft, is distributed over the
shaft effective width and this (lower) pressure is used in
computing the shaft deflection. Using double the actual width
as the effective width is customary.

3.3.10 Card Type B10 - Shaft Housing Fit Dimensions

These items are self explanatory, and are used to describe
equivalent ring sections, see Fig. I 2.1.

3.3.11 Card Type Bil

This card defires the elastic modulus for the shaft, inner
ring, rolling element, outer ring, and housing, respectively.
This card is to be included only if the change in bearing
diametral clearance with operating conditions is to be calcu-
lated, i.e., if item 4 ITFIT on the Bearing Title Card is non-
zero.

3.3.12 Card Type B12

This card defines the Poisson's ratio for the shaft, inner
ring, rolling element, outer ring, and housing, respectively.
This card is to be included only if the change in bearing
diametral clearance with operating conditions is to be calcu-
lated, i.e., if item 4 ITFIT on the Bearing Title Card is non-
zero.

3.3.13 Card Type B13

This card defines the density for the shaft, inner ring,
rolling element, outer ring, and housing, respectively. This
card is to be included only if the change in bearing diametral
clearance with operating conditions is to be calculated, i.e.,
if item 4 ITFIT on the Bearing Title Card is non-zero.

3.3.14 Card Type B14

This card defines the coefficient of thermal expansion
for the shaft, inner ring, rolling element, outer ring, and
housing, respectively. This card is to be included only if
the change in bearing diametral clearance with operating con-
ditions is to be calculated, i.e., if item 4 ITFIT on the Bearing
Title Card is non-zero.

3.3.15 Card Type B15 - Lubrication and Friction Data

This card is omitted if item 10 of title card 2 is zero
or blank.
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Items 1 and 2

These items are the amounts by which the combined thickness
of C'e lubricant film on the rolling track and rolling element is
increased during the time interval between the passage of successive
rolling elements, from whatever replenishment mechanisms are
operative. Items 1 applies to the outer and Item 2 to the inner
race-rolling contacts, respectively. If Item 1 is zero or
blank, the mode of friction is assumed to be dry.

At the present time, the magnitude of the inner and
outer raceway replenishment layers has not been correlated to
lubricant flow rate, lubricant application methods and bearing
size and speed factors. At this point then, the user is
forced to establish proper values for the replenishment layer
thickness. As a rough guide, the following suggestions are made.

1. To avoid starvation, the replenishment layer thick-
nesses should be one or two times the EHD film thick-
ness which develops in the rolling element raceway
contacts.

2. Because of centrifugal force effects, intuition suggests
that the outer raceway replenishment layer should be
several times thicker than that prescribed at the inner
raceway.

Item 3, XCAV, describes the percentage of the bearing
cavity, estimated by the user to be occupied by the lubricant.
OSXCAV6I00.

As with the replenishment layer thicknesses, the amount
of free lubricant should be able to be correlated with lubricant
flow rate, lubricant application methods and bearing size and
speed factors. At this time, such correlations do not exist.
XCAV values of approximately one percent are recommended at
this point.

Item 4 is the coefficient of coulomb friction applicable
for the contact of asperities. If Items 1 and 2 are zero,
then Item 4 serves as the coulomb friction coefficient which
prevails in all contacts.

3.3.16 Card Type B16

This card is omitted if Item 10 title card 2 is zero or
blank or if Item 1 card 15 is zero or balnk which implies dry
friction.

This card specifies the lubricant type. If Item 1, NCODE
is 1, 2, 3, or 4, the Program uses preprogrammed lubricant
properties as presented in Table 1, and no further information
is required.
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NCODE Lubricant

1 A specific mineral oil
2 A MIL-L-7808G
3 C-Ether
4 A MIL-L-23699

NCODE may also be specified as negative (-1 to -4), in
which case, the traction characteristics of the respective
lubricant NCODE noted above are used but the actual properties
specified by Items 2 through 7 override the hard coded data.
This option is most useful in specifying various mineral oils
i.e. NCODE = -1.

3.4 Data Set III - Thermal Model Data

Appendix I 1 has been included to aid the user in data
preparation and calculation of heat transfer coefficients
required at input.

3.4.1 Card Type 1

Card type 1 is a control card. If no temperature map
is to be calculated, this card is to be included as a blank
card followed by a Type 2 card for each bearing on the shaft.
Card Type 1 contains control input for both steady state and
transient thermal analyses. It is not intended, however,
that both analyses be executed with the same run.

Item 1: The highest node number (M). The temperature
nodes must be numbered consecutively from one (1) to the
highest node number. The highest node number must not exceed
one hundred (100).

Item 2: Node Number of the Highest Unknown Temperature
Node (N). This number should equal the total number of
unknown node temperatures. It is required that all nodes
with unknown temperatures be assigned the lowest node numbers.
The nodes which have known temperatures are assigned the
highest numbers.

Item 3: Common Initial Temperature (TEMP)°C: The tempera-
ture soution iteration scheme requires a starting point, i.e.,
guesses of the equilibrium temperatures. Card Type 3 allows
the user to input guesses of individual node temperatures.
When a node is not given a specific initial temperature, the
temperature specified as Item 3 of Card Type 1 is assigned.

Item 4: Punch Flag (IPUNCH): If the Punch Flag is not
zero (0) or blank, the system equilibrium temperature- along
with the respective node numbers will be punched accordinq
to the format of Card T3. This option is useful if, for
instance, the user makes a steady state run with lubrication,
and then wishes to use the resultant temperature as the initia-
tion point for a transient dry friction run in order to assess
the consequence of lubricant flow termination.
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Item 5: "Output Flag" (IUB). If the "Output Flag" is
not zero, the bearing program output and a temperature map
will be printed after each call to the shaft bearing solution
scheme. This printout will allow the user to observe the flow
of the solution and to note the interactive effects of system
temperatures and bearing heat generation rates. Since the
temperature solution is not mathematically coupled to the bearing
solution, the possibility exists that the solution may diverge
or oscillate. In such a case, study of the intermediate output
produced by the "Output Flag" option may provide the user with
better initial temperature guesses that will effect a steady
state solution.

Item 6: "Maximum Number of Calls to the Shaft Bearing
Program" (IT1). IT1 is the limit on the number of Thermal-
Shaft-Bearing iterations, i.e., the external temperature
equilibrium calculation. The user must input a non-zero
integer such as 5 or 10 in order for the Program to iterate
to an equilibrium condition. If ITI is left blank or set to
zero (0) or 1, shaft bearing performance will be based on the
initially guessed temperatures of the system. The tempera-
tures printed out will be based on the bearing generated
heats. It is unlikely that an acceptable equilibrium condition
will be achieved. However, the temperatures which result may
provide better initial guesses, for a subsequent run, than
those specified by the user.

IT1 also serves as a limit on the transient temperature
solution scheme, by limiting the number of times the shaft-
bearing solution scheme is called. Each call to the shaft-
bearing scheme will input a new set of bearing heats to the
transient temperature scheme until a steady state condition
is approached or until the transient solution time up limit
is reached.

Item 7: "Absolute Accuracy of Temperatures for the
External Thermal Solution" (EPl). In the steady state thermal
solution scheme, each calculation of system temperatures occurs
after a call to the shaft-bearing scheme which produces bearing
generated heats. After the system temperatures have been
calculated for each iteration, using the internal temperature
solution scheme, each node temperature is checked against the
nodal temperature at the previous iteration.

If [t(Nli - t(N-Il< EPI for all nodes i then equilibrium
has been achieved and he iteration process stops.
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Item 8: "Iteration Limit for the Internal Thermal Solution"
(IT2). After each call to the shaft-bearing program, the
internal temperature calculation scheme is used to determine
the steady state equilibrium temperatures based on the calculated
set of bearing heat generation rates. If the program is used
to calculate the temperature distribution of a non bearing
system, it is the internal temperature scheme which is employed.
If IT2 is left blank or set to zero, the number of internal
iterations is limited to twenty (20).

Item 9: "Accuracy for Internal Thermal Solution" (EP2).
The use of EP2 is explained in Section 2.1.1. If EP2 is left
blank or set to zero (9), a default value of 0.001 is used.

Item 10: "Starting Time" (START) is a time Ts at which
the transient solution begins; usually set to zero (0).

Item 11: "Stopping Time" (STOP) is the time in seconds at
which the transient solution terminates, Tf. The transient
solution will generate a history of the system performance
which will encompass a total elapsed time of

(Tf - Ts ) seconds

Item 12: "Calculation Time Step" (STEPIN). The transient
internal solution scheme solves the system of equations

tk+l = tk + 1k 6T

PCpV (3.10)

T = STEPIN

The user may specify STEPIN. If left blank or set to zero (0),
the Program calculates an appropriate value for STEPIN using
the procedure described in Section 2.1.2.

Item 13: "Time Interval Between Printed Temperature Maps"
(TTIME) seconds. The user must specify the length of time
which will elapse between each printing of the temperature
map. The interval will always be at least as large as the
"calculation timestep" (STEPIN).

Item 14: "Time interval Between Calls of the Shaft Bearing
Portion of the Program" (BTIME). BTIME will always have a value
larger than or equal to (STEPIN) even if the user inadvertently
inputs a shorter interval. Computational time savings result
if BTIME is greater than STEPIN, however, accuracy might be lost.
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3.4.2 Card Type 2

Card Type T2 is required, one card for each bearing if no
thermal analysis is being performed. The temperature data is
used within the shaft-bearing analysis portion of the program
to fix temperature dependent properties of the lubricant in
which case the inner race, outer race and lubricant bulk
cavity temperatures are used. The assembly component tempera-
tures at each bearing location are used in the analysis which
calculates the change in bearing diametral clearance from
"off the shelf" to operating conditions.

Item 9: "Flange" temperature is not currently used in the
analysis. It simply provides for future consideration of
tapered roller bearings.

3.4.3 Card Type 3

In the steady state analysis this card is used to input
initial guesses of individual nodal temperatures for unknown
nodes as well as the constant temperatures for known nodes,
such as ambient air and/or an oil sump.

In the transient analysis, Card Type T3 is used to input
the nodal teymperatures of all nodes at (START) = Ts  i.e.,
at the initia.tion of the transient solution.

3.4.4 Card Type 4

With this card, node numbers are assigned to the components
of each bearing, one card per bearing. With this information, the
proper system temperatures are carried into each respective
bearing analysis. The inner race and inner ring node numbers
may or may not be the same at the user's discretion. Similarly,
the outer race and outer ring node numbers may or may not be
the same.

3.4.5 Card Type 5

The shaft bearing system analysis accounts for frictional
heat generated at four locations in the bearing, i.e., at the
inner race, the outer race, between the cage rail and ring
land, and in the bulk lubricant due to drag. The heat genera-
ted at the hydrodynamic cage-rolling element contact is added
to the bulk lubricant. Heat generated at the flange is not
presently considered. This card allows the heat generated to
be distributed equally to two nodes. For instance, the heat
generated at the inner race-rolling element contact should be
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distributed half to the rolling element and half to the inner
race. The heat developed between the cage and inner ring
land may be distributed half to the inner ring and half to
the cage if a cage node has been defined, otherwise, half to
the bulk lubricant.

3.4.6 Card Type 6

This card specifies the node numbers and the heat genera-
tion rate for those nodes where heat is generated at a constant
rate such as at rubbing seals or gear contacts.

3.4.7 Card Type 7

This card type is used to input the numerical values
of the various heat transfer coefficients which appear in the
equations for heat transfer by conductivity, free convection,
forced convection, radiation and fluid flow. Up to ten
coefficients of each type may be used. Separate values of
each type of coefficient are assigned an index number via
card T7 and in describing heat flow paths (Card Type T8 below)
it is necessary only to list the index number by which heat
transfers between node pairs.

Incides 1-10 are reserved for the conduction coefficient
, 11-20 for the free convection parameters, 21-30 for forced

convection, 31-40 for emissivity and 41-50 for fluid flow
(product of specific heat, density and volume flow rate).

As an example, for heat transfer by conduction with
coefficient A of 53.7 watts/MOC one could prepare a card type
T7 with the digit 1 punched in column 10 and the value 53.7
punched in the field corresponding to card columns 11-20.
If a conduction coefficient of 46.7 were applicable for
certain other nodes in the system, one could punch an additional
card assigning index No. 2 to the valueA = 46.7 by punching
a "2" in card column 10 and 46.7 anywhere within card columns
11-20.

Rather than inputting constant forced convection coefficients,
optionally, these coefficients can be calculated by the program
in oen of three ways. If the calculation option is exercised
a pair of cards is used in place of a single card containing
a fixed value ofo . The contents of the pair of cards depends
upon which of the three optional methods are used.

Option 1) is independent of temperature but is calculated
as a function of the Nusselt number which in
turn is a function of the Reynolds number Re,
the Prandtl number Pr as follows, (cf. l7j)
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= oil/LNu (3.11)

Nu = aRbpc (3.12)ue r

where Aoilis the lubricant conductivity, L is a
characteristic length (with a unit of meters)
and K, a, b and c are constants.

Option 2) 0 is a function only of fluid dynamic viscosity

and viscosity is temperature dependent.

= c d  (3.13)

where c and d are constants

Option 3) Mis a function of the Nusselt, Reynolds and
Prandtl numbers, and viscosity is temperature
dependent.

3.4.8 Card Type 8

Thic card defines the heat flow paths between pairs of
nodes. Every node must be connected to at least one other
node, i.e., two or more independent node systems may not be
solved with a single Program execution.

The calculation of heat transfer areas is based on lengths,
L 1 and L 2 input using Card Type T8. Additionally, the
type of surface for which the area is being calculated is
indicated by the sign assigned to the heat transfer coefficient
index. If the surface is cylindrical or circular, the index
should be positive, if the surface is rectangular the index
should be input as a negative integer.

In the case of radiation between concentric axially
symmetric bodies, L3 is the radius of the larger body. For
radiation between two parallel flat surfaces or for conduction
between nodes, L 3 is the distance between them.

Fluid flow heat transfer accounts for the energy which
the fluid transports across a node boundary. Along a fluid
node at which convection is taking place, the temperature
varies. The nodaa temperature which is output is the average
of the fluid temperature at the output and input boundaries.
If the emerging temperature of the fluid is of interest, it
is necessary to have a fluid node at the fluid outlet. At
this axiliary node, only fluid flow heat transfer occurs and
the fluid temperature would be constant throughout the node.
Thus, the true fluid outlet temperature will be obtained.
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Conduction of heat through a bearing is controlled by
index 51. The actual heat transfer coefficient which contains
a conductivity, area and a path length term is calculated in
the bearing portion of the program. The term is based upon
an average outer race and inner race rolling element contact.

3.4.9 Card Type 9

This card inputs data required to calculate the heat
capacity of each node in the system. This card type is required
only for a transient analysis.

3.5 Data Set IV - Shaft Input Data

The Shaft-bearing analysis requires all loading to be
applied to the shaft. The loads applied to each bearing are
a product of the shaft-bearing solution. There is no need
for the user to solve the statically determinant or indeter-
minant system for bearing loads. Even if a single bearing is
being analyzed, with the applied load acting through the center
of the bearing, data for a dummy shaft must be supplied.

In the analysis, the housing is assumed to be rigid.
Provision has been allowed to input data for housing radial
and angular spring characteristics. However, this has
been done for future consideration of an elastic housing and
is therefore currently unavailable.

The shaft input data consists of three card types:

1. Shaft Geometry and Elastic Modulas Data
2. Bearing Position and Mounting Error Data
3. Shaft Load Data

3.5.1 Card Type 1

This card type is used to describe shaft geometry at up
to twenty locations along the shaft. The user must place his
shaft in a cartesian coordinate system with the end of the
shaft at the origin and with the shaft lying along the X-axis.

The shaft may have stepwise and linear diameter variations.
The stepwise variations require a single card which specifies
different diameters immediately to the left and right of the
relevant X shaft coordinate. The shaft analysis assumes a
linear diameter variation if on two successive cards, i.e.
two successive X coordinates, the diameters to the right of the
location differ from the diameters to the left of the location
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of the following card. Complex shaft geometries may be
approximated with a set of linear diameter variations spaced
at close intervals.

If an Elastic Modulus is not specified at the designated

input location, the modulus of steel is assumed, 204083 N/mm2.

3.5.2 Card Type 2

This card type locates the bearing inner ring on the
shaft in the X-Y and X-Z planes. For a ball bearing, the
X coordinate specified locates the inner ring center of
curvature. For cylindrical roller bearings, the X coordinate
locates the center of the inner race roller path.

In addition to specifying bearing location, the Type 2
card is also used to specify housing radial and angular
mounting errors. As mentioned previously, space has been
reserved for inputting housing radial and angular spring
characteristics, however, these characteristics are not used
in the system analysis.

Two sets of Type 2 cards may be required. The first set
is always required and defines housing alignment errors in the
shaft X-Y plane. The second set defines the housing align-
ment errors in the shaft X-Z plane and is required only if
non zero errors exist for the particular bearing in question.

The first set of Type 2 cards must contain a card for
each bearing.

3.5.3 Card Type 3

Type 3 cards are used to specify shaft loading at a
given X cooidinate. Loading may be applied in the x-y and
x-z planes, thus requiring two distinct sets of Type 3
cards. Applied loads may have the form of concentrated radial
forces, concentrated moments, linearly distiibuted radial
forces and concentrated axial loads which may be eccentrically
applied. If an axial load is eccentrically applied, the moment
which results must not be separately calculated and input as
a concentrated moment.

Variations in distributed radial loads are handled at
input just as shaft linear diameter variations are handled.

Note that each set of Type 3 cards must be followed by
a blank card.
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Also, note that in order for symmetry conditions
(see section 2.4.2) to be considered the second type 3
card must be void of any loading data.
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4. COMPUTER PROGRAM OUTPUT

4.1 Introduction

The Program Output is intended to provide the engineer or
designer with a complete picture of the shaft-bearing system
performance.

In addition to the calculated output data, the input data
is listed, thus producing a complete record of the computer
run.

A sample set of program output is included for reference
as Appendix II 3 and represents an NPASS=2 solution for a two
bearing system comprised of a 209 size cylindrical roller
bearing, a single 110 mm bore angular contact ball bearing
operating at 10,000 rpm under a thrust load of 2,000 lbs.
(8,896 Newtons) with MIL-L-23699 lubricant and a 6220 size
split inner ring angular contact ball bearing operating at
15000 RPM under shaft loads of 8896 Newtons axial, 2248 Newtons
radial and a moment load of 4000 Newton millimeters. The
bearings are lubricated with an MIL-L-7808G lubricant.

The first seven pages of output essentially consists of
a summary of the input data categorized into bearing, cage,
steel, lubricant, fit temperature and shaft geometry and
loading data.

For four specific lubricants, see Table 1, the relevant

lubricant data has been coded into the Program. In this case,
the lubricant input information consists only of a single number
which designates the particular lubricant but the relevant
information for the lubricant is printed in the input data list.

Except as just noted, the actual results of calculations
are printed under the headings "Bearing Output" and "Rolling
Element Output."

Key output items are discussed briefly below.
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4.2 Bearing Output

4.2.1.1 Linear and Angular Deflections

These deflections refer to the bearing inner ring relative
to the outer ring and are defined in the inertial coordinate
system of Figure 2.4. The bearing deflections are not necessarily
equal to the shaft displacements since the bearing outer ring
radial or angular mounting errors may be specified as non-zero
input.

4.2.1.2 Reaction Forces and Moments

These values reflect bearing reactions to shaft applied
loading and outer ring mounting errors.

When the bearing inner ring has achieved an equilibrium
position, the summation of all bearing reaction loads should
numerically equal the shaft applied loading. When the level
of solution indicated by "NPASS" = 2 is employed, as discussed
in Section 5, differences between shaft applied and bearing
reaction loads will exist but will typically be less than 10%.

This difference is a consequence of friction forces con-
tributing to the reaction loads whereas the inner ring equilibrium
position has been determined considering elastic contact forces
only.

4.2.2 Fatigue Life Data

The L1 0 fatigue life of the outer and inner raceways as
well as the bearings are presented. The bearing life represents
the statistical combination of the two raceway lives. These
lives reflect the combined effects of the lubricant film thick-
ness and material life factors. The lubricant film thickness
life factor is described in detail in Section 3.

4.2.2.1 h/sigma

The ratio h/q, also referred to asA , is printed for the
most heavily loaded rolling element. The variable h, represents
the EHD plateau film thickness with thermal and starvation
effects considered. The variableW, represents the composite
root mean square surface roughness of the rolling element and
the relevant raceway.
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4.2.2.2 Life Multipliers

4.2.2.2.1 Lubrication - This life multiplier is a function of
h/1 at each concentrated contact and is in the form of a
derating factor. Its value ranges from 0.479 for h/v- = 0 to 1.0
at h/q Z4. Since the lubricant life multiplier is decremental
the normal multiple of 3 used for thick film lubrication must
be multiplied by the material life factor normally used and
this product should be specified at input. This subject is
covered in more detail in Section 3.3.1.

4.2.2.2.2 Material - This output simply reflects the input
value. Again ,it is covered in Section 3.3.1.

4.2.3 Temperatures Relevant to Bearing Performance

These temperatures flilly describe the temperature condi-
tions which affect the performance of a given bearing. If one
of the temperature mapping options is used, the temperatures
printed reflect the results of the particular option. If,
neither temperature option was used, the list is simply a repeat
of the input data. Note that there are separate temperatures
for outer and inner raceway and ring temperatures. The raceway
temperature is used to determine lubricant properties. The
ring temperatures are used in the bearing dimension change
analysis. The raceway and ring temperatures may be the same
value.

4.2.4 Frictional Heat Generation Rate and Bearing Friction Torque

4.2.4.1 Frictional Heat Generation Rate

The various sources of frictional heat generated within
the bearings are listed. The values printed for "OUTER RACE,
OUTER RINGS, INNER RACE, INNER RINGS, R.E. DRAG AND R.E.-CAGE"
represent the sum of the generated heats for all rolling ele-
ments. Additionally, the heats printed for the outer and inner
raceways plus the rolling element-cage, reflect the friction
developed outside the concentrated contacts, i.e., the HD friction
as well as the EHD friction developed within the concentrated
contacts. The raceway data also include any heat generated
as a consequence of asperity contacts. "R.E. DRAG" should be
interpreted as the heat resulting from lubricant churning as
the rolling elements plow through the air-oil mixture. Items
2 and 4 relevant to rolling element-flange contacts are present
for future program expansion.
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4.2.4.2 Torque

The torque value is calculated as a function of the total
generated neat and the sum of the inner and outer ring rotational
speeds. The intent is to present a realistic value of the torque
required to drive the bearing. Under conditions of inner ring
rotation, the torque value reflects the torque required to drive
the inner ring. The inner ring torque includes that fraction
of torque required to impart an angular velocity to the lubri-
cant in the bearing. A considerable portion of the lubricant
will come to rest within the housing and not at the outer ring.
Thus, the measured outer ring torque may not equal the torque
at the inner ring.

4.2.5 EHD Film and Heat Transfer Data

4.2.5.1 EHD Film Thickness

These values refer to the calculated EHD plateau film
thickness at both contacts of the most heavily loaded rolling
element and include the effects of the thermal and starvation
reduction factors.

4.2.5.2 Starvation Reduction Factor

These factors give for the inner and outer ring contacts,
the reduction in EHD film thickness ascribable to lubricant
film starvation according to the methods of Chiu, (11).

These factors pertain to the EHD film thickness for both
the inner and outer race contacts of the most heavily loaded
rolling elements, but are applied to the respective inner and
outer race film thickness for each rolling element in the bear-
ing.

4.2.5.3 Thermal Reduction Factor

These factors are calculated according to the methods of
Cheng, (10) and pertain to the EHD film thickness for both
the inner and outer race contacts of the most heavily loaded
rolling elements, but are applied to the respective inner and
outer race film thickness for each rolling element in the
bearing.

4.2.5.4 Meniscus Distance

These factors are calculated according to the methods of
Chiu, (11) and pertain to the EHD film thickness for both
the inner and outer race contacts of the most heavily loaded
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rolling elements, but are applied to the respective inner and
outer race film thickness for each rolling element in the
bearing.

4.2.5.5. Raceway-Rolling Element Conductivity

These data reflect the amount of heat transfer between
rolling element and raceway for each degree centigrade differ-
ence between the two components. These data reflect the average
of all outer and inner contacts, respectively.

4.2.6 Fit and Dimensional Change Data

4.2.6.1 Fit Pressures

These data refer to the pressures built up as a conse-
quence of interference fits between shaft and inner ring and
housing and outer ring. Pressures are presented both for the
standard cold-static condition (160C) and at operating
conditions.

4.2.6.2 Speed Giving Zero Fit Pressure (Between the Shaft
and Inner Ring)

This is a calculated value based upon operating conditions
and provides a measure of the adequacy of the initial shaft
fit.

4.2.6.3 Clearances

"Original" refers to cold unmounted clearance which is
specified at input if the diametral clearance change analysis
is executed. "Change" refers to the change in diametral
clearance at operating conditions relative to the cold unmounted
condition. A minus sign indicates a decrease in clearance.
"Operating" refers to the clearance at operating conditions.
For all types of ball bearings, the decrease in clearnace can
be combined with the initial diametral clearance, and the free
operating contact angle at operating conditions may be
calculated. Note that the change in clearance should be com-
pared against the diametral play of the split inner ring ball
bearing in order to determine if the possibility for three
point contact exists. The Program does not account for three
point contacts even though the change in clearance might suggest
that three point contact is obtained.
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4.2.7 Lubricant Temperatures and Physical Properties

The lubricant properties, particularly the dynamic vis-
cosity and to a lesser degree, the pressure viscosity coefficient,
are heavily temperature dependent. These factors enter the EHD
film thickness calculation and the HD and EHD friction models.
The lubricant is assumed to be at the same temperature as the
relevant raceway. As noted elsewhere, these temperatures may
be either input directly or calculated by the Program.

The physical properties printed are self-explanatory.
The units are enumerated.

4.2.8 Cage Data

4.2.8.1 Cage-Land Interface

The cage data indicates the performance parameters at the
interface between the cage rail and the ring land on which the
cage is guided. The torque, heat rate and separating force
require no explanation. The eccentricity ratio defines the
degree to which the cage approaches the ring on which it is
guided at the point of nearest approach. The radial displace-
ment of the cage relative to the bearing axis is divided by one
half the cage-land diametral clearnace. An eccentricity ratio
of one indicates cage-land contact. A ratio of zero indicates
that the cage rotation is concentric with the bearing axis.

Only the cage-land and rolling element pocket forces are
considered in determining the cage eccentricity. The cage
weight and centrifugal force which result from the eccentricity,
although available, are not considered in the analysis. The
omission of these considerations helps reduce convergence
problems.

4.2.8.2 Cage Speed Data

Cage speed data presents the comparison between the cage
speed calculated based upon the quasidynamic equilibrium con-
siderations and the speeds calculated with raceway control
theory for ball bearings and the epicyclic speeds of the
roller bearing components.

4.3 R olling Element Output

4.3.1 Rolling Element Kinematics
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4.3.1.1 Rolling Element Speeds

All of the rolling element speeds tend to vary from
position to position when the bearing is subjected to
combined loading.

The total rolling element speed is with reference to the
cage and represents the vector sum of the three orthogonal
components.

4.3.1.2 Speed Vector Angles

The rolling element speed vector angles, Arctan (4.,y/wx)
and Arctan (4z/wx) are presented in order to show a clearer
picture of the predicted ball kinematics. The ball speed
vector tends to become parallel with the bearing X axis with
increasing shaft speed and decreasing contact friction.

4.3.2 Rolling Element Raceway Loading

4.3.2.1 Normal Forces

The norMal forces acting on each rolling element are
printed. The rolling element race normal forces are self-
explanatory. The cage force is calculated only when the
friction solution is employed and is always directed along the
rolling element Z axis. If the rolling element orbital speed
is positive, a positive cage force indicates the the cage is
pushing the rolling element, tending to accelerate it. Cage
force is a function of rolling element position within the
cage pocket. Its magnitude is derived using hydrodynamic lubri-
cation assumptions, when the distance between the rolling
element and cage web is large, and EHD assumptions when the
separation is of the order of the EHD film thickness or when
rolling element-cage web interference exists.

4.3.2.2 Hertz Stress

The stress printed represents the maximum normal stress
at the center of each ball race contact or at the most heavily
loaded slice of the roller raceway contact.

4.3.2.3 Load Ratio Qasp/Qtot

If the EHD film thickness is small compared to the RMS
composite rolling element-race surface roughness, the rolling
element-race normal load will be shared by the EHD film and
asperity contacts. The load ratio reflects the portion of the
total load carried by the asperities.
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4.3.2.4 Contact Angles

A ball bearing, subject to axial loading, misalignment or
mounted such that the inner ring is always displaced axially
relative to the outer rings, (i.e., a duplex set of angluar
contact ball bearings) will have non-zero contact angles.
At low ball orbital speeds, the inner and outer race angles
will be substantially the same. At high speeds, ball centrifugal
force will cause the outer race contact angle to be less
than the inner race angle.

4.4 Thermal Data

As in the case for bearing output, all of the input data is
printed. The calculated output data is presented in the form
of a temperature map in which a node number and the respective
node temperature appear. The appearance of the steady state
and transient temperature maps are identical. The transient
temperature map also includes the time (T) at which the
temperature calculations were made.

4.5 Shaft Data

These data simply reflect the input information.

4.6 SHABERLH Error Messages

4.6.1 Introduction

For various reasons, SHABERTH execution may terminate
before the desired results have been achieved. This section
is intended to give insight to the user as to the nature of
the problem which caused termination.

In some instances, error messages are printed and exe-
cution proceeds. These messages indicate that in one of the
internal iterative loops, a particular solution failed to
converge to the desired accuracy. These messages should be
taken as caution signals to the user to check the results
carefully. In particular, compare the calculated bearing reaction
forces against the applied shaft loading. If these results check
tc within 10 percent with an NPASS = 2 solution and to within
percent with an NPASS = 3 solution, the solutions should be

sifficiently accurate.

Additional means of evaluating solution accuracy are
,.,nted in section 4.6.10.
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4.6.2 From ALLT - Message: "STEADY STATE SOLUTION WITH CEPi)
DEGREES ACCURACY WAS NOT OBTAINED AFTER CITI) ITERATIONS."
Explanation: This message pertains to the thermal equi-
librium solution in which bearing generated heat and
system temperatures must be consistent.

4.6.3 From AXLBOJ - Message: "ERROR MESSAGE, KX = (IER)
SINGULAR SET OF SHAFT EQUATIONS." Explanation: This
message indicates an error in the input data which
describes the shaft.

4.6.4 From DAMPCO - Message: "TIlE NUMBER OF EQUATIONS CALCU-
LATED BY SUMMING THE NUMBER OF EQUATIONS IN EACH SUBSET
IS (NTOT). THIS DOES NOT EQUAL THE TOTAL NUMBER OF
EQUATIONS SPECIFIED (N) AN ERROR EXISTS AND EXECUTION
TERMINATES." Explanation: If the nonlinear equations
are comprised of M independent subsets, then N must
equal the summation of NSIZE(K) = 1,M.

K=M
NTOT = E NSIZE(K) (4.1)

K=l

In SHABERTH M is always 1 and NSIZE(l) is N. This
message should thus never be written.

4.6.5 From EHDSKF - Message: "AN IMPROPER LUBRICANT TYPE CODE
HAS BEEN PASSED TO EHD SKF. EXECUTION TERMINATES."
Explanation: Coming into EHD SKF N must have an integer
value 1, 2, 3 or 4, a test has shown that l>N>4.

4.6.6 From INTFIT - Message: "SINGULAR MATRIX ON TIGHT SHAFT
FIT." Message: "SINGULAR MATRIX ON LOOSE SHAFT FIT."
Explanation: These messages indicate bad data entering
INTFIT.

4.6.7 From SHABE - Message: "AFTER (ITFIT) ITERATIONS, ERRMAX =
(ERRMAX) WHILE THE REQUIRED FIT ACCURACY WAS (ERFIT)."
Explanation: The bearing diametral clearance change
analysis did not converge in ITFIT iterations. Either
increase the number of iterations or set the number to
-2 for a good approximate solution.

4.6.8 From SONRI - Message: "SINGULAR SET OF EQUATIONS, NPASS =
(NPASS)." Explanation: This message pertains to shaft
equilibrium solution and has never been known to occur.

4.6.3.1 From SONRI - Message: "THE RELATIVE ACCURACY EPS HAS
NOT BEEN OBTAINED AFTER IT ITERATIONS IN ROUTINE SONRI."
Explanation: This message indicates that shaft bearing
inner ring equilibrium has not been achieved within the
specified number of iterations. This may occur under
light loading.
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4.6.9 From STARFC - Message: "***IN STARFC/ROOTI*** ROOT
OF F(X) DOES NOT EXIST BELOW HO." Explanation: The
iterative solution for the meniscus distance for a
rolling element raceway contact has not converged.
This occurs only when the specified replenishment layers
are extremely thin.

4.6.10 From SOLVXX

The majority of the error messages printed by SHABERTH
will be printed front SOLVXX, indicating that SOLVXX has been
unable to fully solve a particular set of nonlinear equations.
Within SHABERTH failure has never occurred during the solution
of a set of steady state thermal equations. Failure does occur,
however, in the solution of the bearing quasidynamic set of
rolling element and cage equations. The major portion of this
section should be read with this in mind.

4.6.10.1 Message: "ONLY (NDER) EQUATIONS WERE FOUND TO VARY
WITH X(J), ND(J) WERE EXPECTED." THE DIFFERENCES
EQ (X+DX) - EQ(X) + DIFF(I)" IF DIFF(I) IS LESS THAN
SF8*EQ(I), THEN EQ(I) IS NOT CONSIDERED TO VARY WITH
X SF8 = (SF8)." "FOR THE FOLLOWING EQUATIONS THE
DIFFERENCES ARE BIG ENOUGH" CC(N*J-N+I), I = 1, COUNT.
Explanation: The matrix of partial derivatives cal-
culated within SHABERTH must have at least N, nonzero
diagonal elements. It is possible to specify a mini-
mum number of nonzero elements greater than one, for
each variable with the use of the array ND. If that
minimum number is not obtained, the above set of
error messages is printed. In SHABERTH, only the
diagonal elements are required.

4.6.10.2 Message: " ** ERROR MESSAGE FROM THE EQUATION
SOLVING ROUTINE AT ITERATION LOOP (LOOP) ****."

One of the four following situations has occurred.
Situations 1. and 2. have never been known to occur;
3. and 4., however, have, and are explained.

1. "SINGULAR SET OF EQUATIONS," IER = 1.

2. "DIVERGENCE HAS OCCURRED 10 CONSECUTIVE ITERA-
TIONS," IER = 2.

3. "THE LIMIT FOR NUMBER OF ITERATIONS IS REACHED,"
IER = 3.

This message (No. 3) indicates that the solution accuracy is not Ps
good as desired. To achieve the required accuracy, the problem
might be rerun with the iteration limit increased. This is accom-
plished at solution level NPASS = 2, through changing the "20" in
CALL BEAR statement in "SHABE" from 20 to a larger number. At
solution level NPASS = 3, the "30" in the CALL BEARC statement in
SONRI must be increased to a larger number.

Prior to making these Program changes, however, the magni-
tudes of the equation residues should be examined in the same
manner a suggfsted above. The solution may be sufficiently good
as discussed in 4 below, so that further computations are unnecessary.
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4. "THIS IS THE BEST WE CAN DO. IT MAY BE USABLE."
IER = 4.

This message indicates that computation has stopped before
the desired results have been obtained. Fifty attempts have been
made to increment the variable values without finding a set of
increments which would reduce the equation residues.

After failing at these numerous attempts to improve the
solution, it is concluded that the best solution has been
achieved and that further changes to the variables will serve
only to increase the equation residues. (In this discussion
equation values and residue values are synonomous.) It is believed
that this situation arises when large changes in variable values
introduce small changes in equation values, i.e. when the force
versus variable function has a very shallow slope.

When the differences in equation values are of the same
order of magnitude as the numerical accuracy of the particular
computer being used, these kinds of convergence problems can be
expected.

It is possible that when this "BEST WE CAN DO" message is
printed, that even though the solution is not as accurate as
desired, it may be sufficiently accurate to be usable. The accur-
acy can be assessed by comparing the magnitude of the equation
residue to the magnitude of the individual terms which comprise
the equation. Since most convergence problems arise in the
quasi-dynamic equilibrium solution of the rolling element and
cage equations, the method of assessing the accuracy of this set
of equations shall be addressed.

As noted earlier, the set of equations used to define the
quasidynamic problem is comprised of (6Z + Mcage) equations where
Z is the number of rolling elements and Mcage is the number of
degrees of freedom (1 or 3) assigned to the cage. To assess the
accuracy of the solution, the magnitude of the equation residue
should be compared to the magnitude of the components which make
up the equation. The residue values are printed under the heading
"CORRESPONDING EQ-VALUES."' The residues are printed in a six per
line format such that the residues pertaining to a given element
are all on one line. These six values represent the following
six equilibrium equations:

1) ZFx = 0 2) EFy = 0 3) ZFz = 0

4) x = 0 5) EM= 0 6) Z = 0

Equations 1 and 2 are dominated by the normal raceway contact
forces and the rolling element centrifugal force. Compared to
the magnitude of these forces the residues of EF, and EFy are
usually very small and thus acceptable. The remaining four
equilibrium equations, however, have as their major terms, various
components of the friction forces which act upon the element. Large
values of these residue values are a manifestation of an unstable
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operating condition, where the instability is defined qualita-
tively in terms of large change in component and raceway relative
speeds producing small changes in internal bearing forces. The
shallow slopes of these "Force vs. Relative Speed Functions"
promote dynamic and numerical instabilities.

The EFZ equation should be examined for each rolling
element. Typically this may be done by inspection with close
comparison and calculations made for only one or two elements.

The three cage equilibrium equations are:

1) zMx = 0 2) EFy = 0 3) EFz = 0

If only one cage equation is considered, it is equation 1); if
more than one is considered, all three are used.

The components of these equations are the rolling element
cage normal and friction forces as well as the cage-ring normal
and friction forces. Magnitudes of the components of these
forces and moments are printed as part of the output. Thus,
comparison of components against residues is straight forward
after converting to a consistent set of units. Residues are in
English while the output is in metric units.

It should be noted that in those solutions in which the
cage has only one degree of freedom, that the cage interaction

with the rolling elements has only minor impact upon the rolling
element dynamics. Therefore, a relatively large residue for
the cage equation is not terribly significant. The rolling
element ZFz equations should be the basis for the judgement as
to whether a solution is good enough.

Although the message "THIS IS THE BEST WE CAN DO. IT MAY BE
USABLE" may be written during a steady state temperature calcu-
lation scheme, numerical instabilities in those schemes are rather
uncommon. None have been experienced with this program after
three years of operation.

The following data are printed subsequent to printing messages
1 through 4 above.

RELATIVE ACCURACY (ERREL) ITERATION.

LIMIT (ITEND), NUMBER OF UNKNOWNS (N) ABSOLUTE ACCURACIES EXA(J).

DAMPING FACTORS 1-5 OTHER STEP FACTORS 6-10 (SF), MAXIMUM STEP

FACTORS (SMX(J), J=I,N).

CORRECTIONS OF THE X-ES FROM SMQ D(J), J=I,N.

NUMBER OF DERIVATIVES EXPECTED FOR EACH X ND(J), J=I,N

X-VALUE X X(J), J=l,N.

CORRESPONDING EQ-VALUES EQ(J), J-I,N.
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5. GUIDES TO PROGRAM USE

The Computer Program is a tool. As with any tool, the
results obtained are at least partially dependent upon the
skill of the user. Certainly, the economics of the Program
usage are highly dependent upon the user's technical need
and discriminate use of Program options.

Some general guides for efficient use of the Program are
listed below:

1. Attempt to use the lowest level of solution possible.
For instance, if the prime object of a given run is to
obtain bearing fatigue lives, execute only the elastic
solution (NPASS = 0). If an estimate of bearing
frictional heat is required, execute the low level
friction evaluation (NPASS = 1). Execute the friction
solution (NPASS = 2) only if rolling element and cage
kinematics are of interest. Execute the highest level
of solution (NPASS = 3) if kinematics are of interest
and the bearing reaction loads deviate substantially
from the shaft applied loading, i.e., a deviation
greater than ten percent.

2. Attempt to input bearing operating diametral clearance
rather than calculate it. Or, execute the diametral
clearance change analysis once for a group of similar
runs and use the output from the first run as input
to the subsequent runs omitting the clearance change
analysis.

3. Attempt to input accurate operating temperatures
rather than calculate them.

4. The more non-linear the problem, the more computer time
required to solve it. In the bearing friction solution,
large coefficients of friction seem to increase
the degree of non-linearity. In the thermal solutions,
if possible, eliminate non-linearities by omitting
radiation terms and by using constant rather than
temperature dependent free and forced convection
coefficients.

5. In the transient thermal solution, space the calls to
the shaft-bearing solution (BTIME) to as large an
interval as prudently possible. Be careful, however,
too long an interval will produce large errors in heat
rate predictions.
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6. In the steady state thermal analysis, attempt to
estimate nodal temperatures on a node-by-node
basis. Nodes which are heat sources should have
higher temperatures than the surrounding nodes.

The above suggestions are intended to encourage the use
of the Program on a cost-effective basis. The intent is not
to discourage the use of important program capabilities, but
to emphasize how the program should be most effectively used.

It is suggested that the user take a simple, axially
loaded ball bearing problem and execute the program through
the full range of options beginning with a frictionless solu-
tion proceeding to the three levels of friction solution with
a low (0.01) and high (0.1) friction coefficient. The dia-
metral clearance change analysis and the thermal solutions
should also be executed on an experimental basis. This exer-
cise will provide the user with some insight into economics of
the Program usage on his computer as well as the results obtained
from various levels of solution of the same problem.

It is also suggested that a constant user of the program
should study the hierarchical Program flow chart, Appendix II 1,
along withe the Program listing to gain an appreciation of the
program complexity and the flow of the problem solution. The
Program is comprised of many small functional subroutines.
Knowledge of these small elements may allow the user to more
easily piece together the philosophy of the total problem
solution.

SHABERTH is intended to be used for the analysis of a
multi-bearing system. It may, however, be used to analyze
single bearings, mounted on dummy shafts under certain conditions
of limited applied loading. These loading conditions are
outlined and explained below as they apply separately for
ball and cylindrical roller bearings.

Ball Bearings

Of major value is the capability of SHABERTH to treat, in
a simple, economic manner, ball bearings subjected to axial
loading only. Use of the program in this manner is recommended.

SHABERTH is not recommended for the solution of a single
ball bearing subjected to radial load only. The Program
attempts to satisfy axial and angular equilibrium as well as
radial. A ball bearing is elastically very soft in those
directions which causes mathematical instabilities during the
solution scheme. This makes the Program uneconomical for this
particular situation.
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Whereas the use of SI.ABFRTII to solve single radially loaded
ball bearing problems is not recommended, because of economics,
the solution of a single, radially and axially loaded problem
is impossible. The impossibility arises because a moment reac-
tion will develop when a ball bearing is subjected to both radial
and axial loading. In order for the user to solve this problem
he must specify at input the bearing reaction moment. The user
must know the answer to a portion of the problem before he can
begin to solve it.

Cylindrical Roller Bearing

A single, cylindrical roller bearing may be subjected to
radial loading or combinations of radial and moment loading.
When SHABERTH is used in this manner, it is important that
bearing misalignments be specified indirectly through specifi-
cation of a non-zero applied moment. If a radial load and an
initial outer ring misalignment are specified along with a
zero applied amount, SHABERTH will attempt but will be unable
to solve the problem since it will be impossible to equilibrate
the non-zero reaction moment, resulting from the offset, against
the zero applied moment.

The cylindrical roller bearing cannot accept applied
axial loading and thus when a single cylindrical roller bear-
ing is being examined, the applied axial load must be speci-
fied to be zero.

When a single cylindrical roller bearing is being examined
all loading should be referred to the X-Y plane in order totake advantage of the symmetry of load distribution among

rolling elements.
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APPENDIX I 1

HEAT TRANSFER INFORMATION

I 1.1 BACKGROUND

The temperature portion of SHABERTH is designed to
produce temperature maps for an axisymmetric mechanical system
of any geometrical shape. The mechanical system is first appro-
ximated by an equivalent system comprising a number of elements
of simple geometries. Each element is then represented by a node
point having either a known or an unknown temperature. The
environment surrounding the system is also represented by one or
more nodes. With the node points properly selected, the heat
balance equations can be set up accordingly for the nodes of unknown
temperature. These equations become non-linear when there is
convection and/or radiation between two or more of the node points
considered. The problem is, therefore, reduced to solving a set
of linear and/or non-linear equations for the same number of
unknown nodal temperatures. It is obvious that the success of
the approach depends largely on the physical subdivision of
the system. If the subdivision is too fine, there will be a
large number of equations to be solved; on the other hand, if the
subdivision is too crude, the results may not be reliable.

In a system consisting of rolling bearings, for the sake
of simplicity, the elements considered are usually axially
symmetrical, e.g., each of the bearing rings can be taken as an
element of uniform temperature. For an element which is not
axially symmetrical, its temperature is also assumed to be
uniform and its presence is assumed not to distort the uniformity
in termpature of a neighboring element which is axially symmetri-
cal. That is, the non-symmetrical element is represented by
an equilvalent axially symmetrical element with approximately
the same surface area and material volume. This kind of approx-
imation may seem to be somewhat unrealistic, but with properly
devised equivalent systems, it can be used to solve complicated
problems with results satisfying some of the important engineering
requirements.

The computer program can solve the heat-balance equations
for either the steady state or the transient state conditions
and produce temperature maps for the mechanical system when the
input data are properly prepared.

I 1.2 BASIC EQUATIONS

I 1.2.1 Heat Conduction

The rate of heat flow qcij(W) that is conducted from node
i to node j may be expressed by,
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L (t i - t.) I 1.1)

t i and tj are the temperatures at i and j, respectively, Aij
the area normal to the heat flow, (m2 ) Li. the distance
(m) and Aij the thermal conductivity between i and j, (W/m°C).

Assuming that the structure between point i and j is
composed of different materials, an equivalent heat conductivity
may be calculated as follows:

A 2

3 Fig. I 1.1 Parallel Conduction

A1A X2 A2
A ij A..

A ij A A1  + A 2

Fig. I 1.2 Series Conduction

L . Su.IL Jt 1 + 2

The calculation of the areas will be discussed in Section I 1.2.5

I 1.2.2 Convection

The rate of heat flow that is transferred between a solid
structure and air by free convection may be expressed by
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1.25
qvi, j = i,j Ai'j ti - tj • SIGN (ti  tj) (1 1.2)

where

1, if (ti - t.) . 0
SIGN =f3

, if (tj - ti)< 0

in which

2 .5 10-2 W/m2 - (degC)1 "2 5 for hot surfaces facing upward
and cold surfaces facing downward

oij = 1.4 10-2 W/m2 - (degC)1 -25 for hot surfaces facing downward

and cold surfaces facing upward

1.8 10- 2 W/m2 - (degC)1 -2 5 for vertical surfaces

For other special conditions, ij must be estimated by referring
to heat transfer literature.

The rate of heat flow that is transferred between a solid
structure and a fluid by forced convection may be expressed by

Ini,j = i,j Ai'j (ti - tj) (I 1.3)

in which ij is the heat transfer coefficient.

Now, withc = ij, introduce the Nusselt number

Nu = L (I 1.4)

the Reynolds number

Re L (I 1.5)

and the Prandtl number

=r PlCp (I 1.6)
A

where

L is a characteristic length which is equal to the diameter
in the case of a cylindrical surface and is equal to the
plate length in case of a flat surface.
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U is a characteristic velocity which is equal to the difference
between the fluid velocity at some distance from the surface
and the surface velocity (m/sec)

A is the fluid thermal conductivity (W/M°C)

V is the fluid kinematic viscosity (M2/sec)

is the fluid density (kg/m3 )

c is the fluid specific heat (J/kg°C)p

For given values of Re and Pr, the Nusselt number Nu and
thus, the heat transfer coefficient may be estimated from one
of the following expressions:

Laminar flow along a flat plate: Re < 2300

Nu = 0.323 VRe " - (I 1.7)

Laminar flow of a liquid in a pipe:

Nu = 1.36 'e • Pr ) (I 1.8)
L

where D is the pipe diameter and L the pipe length

Turbulent flow of a liquid in a pipe:

Nu  0.027 • RO "8 .p (I 1.9)e r

Gas flow inside and outside a tube:

N = 0.3 RO " 5 7  (I 1.10)
u * e

Liquid flow outside a tube:

Nu = 0.6 RO 5  P 0 . 3 1  (I 1.)

Forced free convection from the outer surface of a
rotating shaft

Nu =0.11 [0.5 Re2  Pr] 0.35 (I 1.12)

where the Reynolds number Re is developed by the shaft
rotation.

Re = W,1D 2  (I 1.13)
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in which W is the angular velocity (rad/sec)
D is the roll diameter (i)

The average coefficient of forced convection to the lubri-
cating oil within a rolling contact bearing may be approximated
by,

0.0986 {! L dm JJ A (Pr) (I 1.14)

using + for outer ring rotation
- for inner ring rotation

in which N is the bearing operating speed (rpm)
D is the diameter of the rolling elements (mm)

dm is the bearing pitch diameter (mm)
O is the bearing contact angle (degrees)

I 1.2.3 Fluid Flow

The rate of heat flow that is transferred from fluid node
i to fluid node j by fluid flow is

qfij = Vij Cp (ti - tj) (I 1.15)

V.- is the volume rate of flow from i to j. It must be observed
tAt the continuity of mass requires the following equation to
be satisfied

IVij = 0 (I 1.16)

provided the fluid density is constant. The summation should
be extended over all nodes i within the fluid which have heat
exchange with node j by fluid flow.

I 1.2.4 Heat Radiation

The rate of heat flow that is radiated to node j from
node i is expressed by

qRi,j = i,j Q(ti+273)4-(tj+273)4} (I 1.17)

where

Tj = tj + 273.16

Ti = ti + 273.16
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and the value of the coefficient depends on the geometry
and the emissivity or the absorptiviiy of the bodies involved.

For radiation between large, parallel and adjacent surfaces
of equal area, A i  and emissivity, £i, i. is obtained from
the equationij ij

0i,j = Ai. OAj (I 1.18)

whereCr, the Stefan-Boltzmann constant, is

e = 5.76 10 8 W/m 2/(degK)
4

For radiation between concentric spheres and coaxial
cylinders of equal emissivity, .i, Ji is given by the
equation

dij &ij A. (I 1.19)

1+ (I- E )L i.
A,j

where e is as above A is the area of the enclosed body and
A* . is the area of t surrounding body, i.e. A.A. iA*

123 iVj i,j

Expressions for0"i,j that are valid for more complicated
geometries or for different emissivities may be found in the
heat transfer literature.

I 1.2.5 Calculation of Areas

In the case of heat transfer in the axial direction A is
given by the equation (I 1.3)

A i j = 2'Wr Ar (I 1.20)i• m

Referring to the input instructions, Section 5, but recalling
L must be input in mm not m.

r +r

L =r = 1 2 (I 1.21)m 2

L2 r r 2 - r (I 1.22)
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In the case of heat transfer in the radial direction, Aij

is obtained from the expression

Ai  - 21W rm H; L1  rm; L2  H

and similarly for the radiation term above

A'i,j = 2 w r*mH

L3 = r*m

L2 = 2H

in which H is the length of the cylindrical surface; where heat
is conducted between i and j, r m is given by the same equation
as above (Fig. I 1.3(d)); where heat is convected between i and 1,
rm is the radius of the cylindrical surface (Fig. I 1.3(c)); where
heat is radiated between i and j, rm is the radius of the enclosed
cylindrical surface and rm * the radius of the surrounding
cylindrical surface (Fig. I 1.3(d)).

H

Fig. I 1.3 Ca) Fig.I 1.3 (b)
H H OP

0ii Te

Fig. I I. 3 (c) Fig. I 1. 3(d)
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I 1.3 Transient Analysis

For the transient analysis, all of the data pertaining to
the node-to-node heat transfer coefficients must be provided by
the input. Additionally, the volume and the specific heat at
each node is required. For metal nodes, this input is striaght-
forward. However, when fluid flow is being considered, there is
no easy way to approximate the fluid nodal volume in a free
space such as the bearing cavity. However, through use of the
Program, the user's ability to make appropriate estimates will
improve.

I 1-9



APPENDIX I 2

BEARING DIAMETRAL CLEARANCE CHANGE ANALYSIS, FROM COLD UNMOUNTED

TO MOUNTED OPERATING CONDITIONS

I 2-1



APPENDIX I 2

BEARING DIMIETRAL CLEARANCE CHANGE ANALYSIS, FROM COLD UNMOUNTED
TO MOUNTED OPERATING CONDITIONS*

I 2.1 INTRODUCTION

As a bearing is taken from the shelf, mounted in a housing

and on a shaft, turned up to speed and subjected to operating

loads and temperature, the diametral clearance of the bearing

will change. To accurately analyze the performance of a bearing,

its operating clearance must be known. An analysis has been

developed to account for the following effects:

1. Temperature changes and gradients.

2. Initial and operating shaft and housing fits.

3. Rotation induced, ring radial growth.

4. Uniform radial components of the rolling element-

raceway normal loads.

The basis for the major portion of this analysis is taken

from Timoshenko, i 4 1. The bearing rings are treated as thick

walled circular cylinders of constant wall thickness subjected

to the action of uniformly distributed internal and external

pressure.

The external pressure arises in the case of the outer ring

from a press fit into the bearing housing. The internal

pressure on the outer ring arises from the discrete rolling element loads

which are regarded as uniform internal pressure acting on the

outer ring. Similarly for the inner ring the press fit on the

shaft provides a uniform internal pressure and the rolling element loads

are regarded as a uniform external pressure. Fig. I 2.1 show the

idealized sections used in the analysis.

*This Appendix is based upon the original work L53
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I 2.2 BEARING SHAFT AND HOUSING EQUIVALENT SECTIONS

Timoshenko's analysis requires that a ring be fully defined

by specification of only internal and external radii. If two

concentric rings are pressed together the analysis assumes that

the rings are of equal width. Perhaps the outside surface of the

actual inner ring section cannot be defined by a single radius.

However, an equivalent radius may be found such that the cross sec-

tional areas of the real and equivalent rings are equal.

A second significant dimension associated with both the outer

and inner rings is the radius of the rolling element path at each

section. Ultimately, it is the change in these path radii, in

addition to a change in the rolling element diameter, which permit

a change in the bearing diametral clearance.

The bearing diametral clearance change problem requires the

solution to similar problems for both the inner ring-shaft (shaft)

and the outer ring-housing (housing) sections. To help eliminate

repetition and cumbersome subscripting, only the shaft section

will be covered thoroughly. Differences in analysis which occur

at the housing section will be noted.

I 2.3 INTERNAL AND EXTERNAL EQUIVALENT PRESSURES

Both the shaft and housing sections are represented by two rings

The rings may or may not be in intimate contact. Intimate contact

occurs when due to any of several factors, the outside radius of

the inside ring is greater than the inside radius of the outer

ring. A pressure is developed at that interface, which tends to

expand the outside ring and collapse the inside ring. Although

the pressure acting on the actual interfering surfaces is iden-

tical, the use of equivalent geometric sections requires the
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use of equivalent pressure, such that the calculated pressure

acting to collapse the inside ring will not be identical to the

pressure acting to expand the outside ring.

The equivalent pressure concept allows the effect of unequal

component widths to be considered.

The effect of unequal inner ring and shaft width is taken into

account by the factor X which applies to th. pressure where,

referring to Fig. 1 2.1

. ( Z (1 2.1)

(I 2.2)

Where W denotes the element width and the subscripts I, 0, S

and Ii refer to inner, outer, shaft and housing respectively.

The equivalent pressures acting on the shaft and housing are

thus

so (1 2.3)

H HX POO (1 2.4)

denotes the pressure on the shaft O.D. as related to the

pressure on the inner ring %,P1C andPO* are similarly defined.

The pressures (P) in Eq. (I 2.3 and 1 2.4) are non-zero only if an

interference fit exists at the section in question. An inter-

ference fit may exist under cold mounted conditions but due to thermal

gradients and high speed rotation, clearance may develop at operating

conditions.
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To account for the elastic effect of the uniform radial

components of the rolling element loads on the ring dimensions,

an equivalent inner ring external pressure and outer ring internal

pressure are calculated based on the minimum radial component of

the rolling element loads, such that for the inner ring;

-Pt CosQ Cki o~
zr- C W (I 2.5)

where Z is the total number of rolling elements

C(Qxosa ) is the smallest rolling element raceway

Kii radial load component at the inner

raceway

W, is the inner ring total width, or one half the total width

if the inner ring is split.

An expression corresponding to Eq. (1 2.5) can be developed

for the internal pressure acting to expand the outer ring. In fact

?Io will exist only when the applied load is predominantly axial or

when the bearing is preloaded, but the internal pressure acting on

the outer ring, Pot, will always exist to some extent, as a result

of rolling element centrifugal force.

I 2.4 TEMPERATURE EFFECTS

Temperature effects at operating conditions are considered in

two ways. A bulk effect based on the radii to the rolling paths (R)

is calculated from Eq. (I 2.6)

g 2 Z X!(I 2.6)
where

w- is the change in rolling path radius

- is the component coefficient of thermal expansion,

S- is the difference between the component effective

temperature and 68 F.

I 2-6



A similar expression may be written for the change in roller

diameter.

The second effect of temperatures is the change in interfer-

ence fit from cold to operating conditions such that the inter-

ference fit as a result of the initial fit and the temperature

difference between the two components can be calculated. Cold

(293°K, (680F)), shaft and housing fits C*LA)are input to the

analysis. A positive value reflects an interference fit. The

analysis neglects asperity crushing. The fit(Fho~ti)at operating

temperature is given by

(F11 ) ( CA A) z'6 ksts LtI)(I 2.7)

hotis the fit considering operating temperatures.

I 2.5 RING RADIAL DISPLACEMENT CONSIDERING SURFACE PRESSURES

At this point we consider the problem of evaluating thick

walled cylinder, (ring) radial displacements as a function of

the ring radial dimensions, physical properties, and uniform

internal and external pressures. Timoshenko develops Eq. (I 2.R)

for determining the ring/radial displacement (g), as a function

of a general radius (r) to any point within the ring when consid-

erations of ring rotation are omitted.

0 1 (1 2.8)

The general solution of this equation is

~ ~ 4(1 2.9)

The expression for normal stress in the ring is given by:

+ ~(1 2.10)
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The constants of integration Kand V can be determined from

Eqs. (I 2.11 and I 2.12) which make use of the boundary conditions

at the inner and outer surfaces of the ring. Note that the dimen-

sions of inner ring section are used in Eq. (I 2.11 and I 2.14).

These equations, however, are general expressions and are valid

for all rings,

-"-M = Z I "C . (1 2.11)

i _p r6&- (1 2.12)

Where E and ) are the modulus of elasticity and Poisson's

ratio respectively. The negative sign associated with 'Pzand

PX. reflect the sign convention, wherein a positive normal

stress indicates tension. Solving Eqs. (I 2.11-12) for K, and

k and substituting the results into Eqs. (I 2.9 and I 2.10)

gives the general expressions for normal stress and radial deflec-

tion as functions of the internal and external pressures acting on

the ring:
S ., - _7-6 % P_ (1 2.13)

CI -aI r. 16 C%- I.)
__ 6___ C 2 O fV**t~~

vi-L"P ) +  (L (c% - 262.

Using the appropriate dimensions and pressures, Eq. (I 2.14)

can express the inward displacement of the shaft and the outward

displacement of the inner ring when assembled with an interference

fit FIIOT. Erb - Es o (I 2.15)

"') ( -c L , L' 'a-F" (I 2.16)

Ef - 6-Z __6 -1' l (I 2.17)
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s andPi, are assumed zero. Using Eq. (1 2.5) to obtain ?Z.,

the following expression may be developed for Pxi which accounts

for all variables in the interference fit problem except for the

effect of high speed rotation.

R t( 2.18)

6 . . 6X

Note, P may not be negative, i.e. the effect of fitting one

ring on another cannot result in placing the common surfaces in

tension.

Having determined _t. and r. Eq. (I 2.14) may be used to

determine !t,~ by replacing the general radius (r) with the

radius to the roller path, R. ce(Ftj4is defined as the change in

rolling path radius resulting from:

F The initial fit

t* The change in fit resulting from a temperature gradient

The effect of the rolling element load.

I 2.6 RING ROTATION

We must now examine the effect on the rolling path which

results from high speed rotation. If the rotational speed is

less than 100 rpm, the rolling path radius is assumed to be

unaffected.

Timoskenko presents Eq. (I 2.19) to define ring displace-

ment 9 in terms of a general radius (r), the weight density of the

ring material, ( ), and the ring angular velocity (SL)
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Using the notation;

N -0 (I 2.20)

the general solution to Eq. (I 2.19) nay be written:

--. , Y. (1 2.21)

The general expression for the normal stress is given by:

r N K, l(I 2.22)

Using Eqs. (I 2.21 and I 2.22) and the principle of super-

position, the effects of ring rotation can be considered. In this

case, superposition allows a set of integration constants

K, and KL to be calculated for a ring based on a change in

pressure (P*) at the internal and external surfaces. Eq.

(I 2.22) may be written for the four specific surfaces of the

shaft section as follows;

Inner Ring External Surface

-P W z 0: (1 2.23)

Inner Ring Internal Surface

ET 0 (-1'Vr-- (1 2.24)

Shaft External Surface

Shaft Internal Surface

is (I 2.26)

From Eq. (I 2.3)

s(1 2.27)

An additional useful relationship derived from Eq. (I 2.21)

defines the difference between the inner ring and shaft
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displacement at their common surface, as a result of their

rotational speed, in terms of the four integration constants of

Eq. (I 2.23 - I 2.26).

64 21S N,.e - ts Ns(1 2.28)

10 8 6

Under p.ress fit conditions 9,-

We will now examine the application of Eq. (I 2.23 - I 2.26)

in determining the ring behavior as a function of rotational

speed.

The following conditions might be encountered:

1. A tight fit remains tight

2. A tight fit loosens

3. A loose fit remains loose

4. A loose fit tightens

For all four conditions, u.4Oand '*(.O , i.e. it is assumed

that no change in pressure occurs at the internal surface of the

shaft or the external surface of the inner ring resulting from ring

rotation. AlsoS2Z and S , are identical. All four of the integra-

tion constants Kz , 11 , Kl, and 4x are unknowns. Also, either

the change in pressure PZf or the rotational speed S. embodied in

NE and N% are additional unknowns.

Now the formulations of Eq. (I 2.23 - I 2.28) are presented

which are required to solve each of the four conditions.

I 2.6.1 SITUATION 1 AND 2, INITIALLY TIGHT FIT

In addition to the integration constants,'Pt is the

unknown, where is the change in inner ring internal pressure

resulting from the rotational speed. If ?zL is less than ?:

from Eq. (I 2.18), situation 1 is realized. The operating

fit pressure is the difference between w and' and the fit

remains tight. The resulting radial displacement at the inner

ring rolling path is given by:

. - (I 2.29)
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and the total change in the rolling path radius at the inner ring

is

"'+ ",L 4 . (I 2.30)

is the change in rolling path radius which occurs as a

result of a temperature change from 68 F.

If is greater than ?ZL the solution to the problem

requires several additional steps. Eq. (I 2.23), must be re-solved

to deternine the rotational speed, St.. at which the change in

fit pressure is just equal to the initial fit pressure and VO•

This rotational speed is termed the tight fit speed limit and is

subscripted with the letter (TL). Using the integration constants

thus determined and Eq. (I 2.21), -rL.. may be determined.

Note, the subscripts in parenthesis should be interpreted

as follows: The first subscript refers to the state of the

initial fit (T-tight) or (L-loose), the second subscript refers

to the rotational speeds (T-Total) or (L-Limit). For instance,

LUr. refers to the change in inner ring rolling path radius due

to the rotational speed at which the initially tight shaft fit is

lost.

After determining UL.yEqs. (I 2.23 - I 2.26) are resolved

twice for the four integration constants, with Ifset to zero.

First, for the full rotational speeds, yielding UT-and then

for the tight fit speed limit, yielding ULL . This is accom-

plished by changing the values of Nz and Ns through a change

in the value of SL in Eq. (I 2.20). Utilizing super-position,

the change in rolling path radius resulting from rotation is given

in Eq. (I 2.31).

9A -l. 9TL (1 " " [ 2.31)

Eq. (1 2.31) is presented graphically in Fig. I 2.2. Then

is calculated from Eq. (I 2.30).
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FIGURE I 2.2

Ring Radial Expansion vs. Rotational Speed Squared
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I 2.6.2 SITUATIONS 3 AND 4 INITIALLY LOOSE FIT

The integration constants KY , zz, , and %$.s are

unknowns. , , L and are all set to zero, and

only Eqs. (I 2.23 - I 2.26) are solved. Using the integration

constants thus obtained, Eq. (I 2.28) is solved for S . If

e IT rrI where To.m is negative, the loose fit remains

loose at operating conditions. The constants and K are

used to calculate U&_ . Using Eq. (I 2.30), Uior is

calculated. If FAoc', the shaft has expanded further

under the effects of rotation than the inner ring, and the

initially loose fit becomes tight. This requires additional
solutions to Eqs. (I 2.23 - I 2.26).

S is set equal tor-Wi.rand the equations are solved

for the integration constants plus the speed at which the init-

ially loose fit becomes tight EL.. Using the integration

constants L0T and kg7 along with Eq. (I 2.32), 96L. is

determined. Eq. (I 2.23 - I 2.28) are again resolved twice at

-. and 61 for P,. and the integration constants, after

setting :* to zero. 6T, and S',r can be obtained by from

eq. (I 2.29) using the two sets of integrati1 constants . The

operating fit pressure is then given by;

1 -rT (1 2.32)

and Eq. (I 2.30) is used to determine gor. Where

represents the total change in the radius to the rolling path

of the section as the bearing is taken off the shelf at 680 F,

mounted on the shaft subjected to load and rotated up to

operating speed.
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I 2.7 BEARING DIAMETRAL CLEARANCE

The preceeding sections dealt primarily with the shaft-

inner ring section. However, the equations presented are valid

for all four of the assembly sections. For both sections, a value

is deternined for 9T, cold fit pressure, operating fit pressure

and the speed at which an initially tight fit loosens.

As noted earlier, Eq. (I 2.6) can be-used to determine this

change in rolling element diameter such that:

eg" =(1 2.34)

The change in bearing diametral clearance is given by

- - (1 2.35)

The bearing operating diametral clearance equals the initial

clearance plus the change in clearance PI
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APPENDIX 1 3

ELASTIC SHAFT ANALYSIS *

1 3.1 COORDINATE SYSTEM, LOAD AN) GEOMETRY CONSIDERATIONS

The shaft subprogram calculates the deflection characteristics of

a general shaft in two planes, one plane at a time, by solving

the differential equation for the deflection curve of

the shaft,
= _ M (1 c 3.1)

where M = moment

E = modulus of elasticity

I = moment of inertia

The coordinates X and Y are shown in Fig. I 3.]

Figure I 3.1 Shaft Coordinate System and Shaft Loading

The shaft load may consist of concentrated loads, moments, or

linearly varying distributed loads, Fig. I 3.1. The shaft may

be hollow, and the inner and outer diameters may vary stepwise

or linearly, Fig. I 3.2

Figure I 3.2 Shaft Schematic Showing Stepwise and Linear

Dianeter Variation

*This Appendix is based upon the original work (1i
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The shaft may be supported by bearings at up to five locations.

The bearings may take force and/or moments and they may be initially

displaced ( yo )

Figure 1 3. Schematic-Shaft Supports

The bearing subprograms calculate the reaction forces and moments

on the shaft from the bearings as functions of bearing deflections.

The bearing deflections can be looked upon as shaft support displace-

ments , (S , )o

I 3.2 SIAFT BEARING EQUATIONS

The shaft reaction at any location i is calculated as the shaft

reaction, FO; , at i when all additional displacements of the shaft

supports are zero, plus the additional reactions at i., caused by all

additional displacements, or bearing deflections:

I* F . -* I- &,r -~ (1 3.2)

The reactions Fo are calculated using the shaft program with the

given initial displacements and spring constants. The constant

derivatives J/j and cl/< are calculated by introducing

one initial displacement at a tine. If the bearing mounts are

rigid, i.e. spring constants are zero, then the reaction at loca-

tion i depends only on the deflections at i-l, i,and i+l. The

other derivatives are zero. The present program uses the shaft

program this way, and has not yet been extended to include all

derivatives. Thus the influence of housing elasticity is not

taken into account.
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I 3.3 METHlOD OF SOLUTION

The object is to calculate the shaft deflections and slopes

at the bearing locations along the shaft. The shaft may be arbi-

trarily loaded and have arbitrarily varying cross-section. The

supports may take force or moment load, they can be initially

displaced. These deflections and slopes are found by going through

the following steps:

Step 1. Take away all supports (support and bearing are

synonomous) except two. In the following, these two sup-

ports are called the initial supports. In the steps to

follow, slopes, deflections and initial displacements

refer to a coordinate system with the X-axis along the

center-line of the unloaded shaft when it is supported

by the initial supports. The relation between this co-

ordinate system and the original system is given by the

coordinates ; andp of the left end of the shaft as de-

fined in the original coordinate system.

The problem is now statically determinate and the reac-

tions of the initial supports are calculated.

Step 2. Define a new coordinate system. Fix the left

end of the shaft in that system so that deflection and

slope are zero at that end. Let the load acting on the

shaft still be the external load plus the reactions from

the initial supports as calculated in Step 1.

Since these reactions were obtained from equilibrium

equations of the shaft, there is no reaction at the

fixed end. Therefore, all shaft loads are known and the

moment M of the shaft can be calculated at any section X
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from an equation of equilibrium of the shaft to the left

of the section. The slopes and deflections are calculated

from the Moment-Area theorems by numerical integra-

tion of the following equations.

®Oc) =CI 3.3)

Step 3. Put the shaft back on the initial supports and

correct the slopes and deflections accordingly. The

resulting calculated slopes and deflections are in the

following denoted by &C.

Step 4. The reaction forces and moments, here called

Vi .at all supports except the initial supports are now

introduced. Their magnitude is determined from the condi-

tion that the deflection at each support location goes

back to zero + initial displacement, •

• ... "" 3.5)

where

are influence coefficients

(is the deflection or slope at location i from a

unit force or moment at location j.

The influence coefficients are obtained by introducing

a unit force or moment at one support at a time and then

calculating the deflections and slopes starting from

Step 2.

There is one equation for each of the n bearings except

the two initial supports. The linear system of equations
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can be written

(I 3.6)

where A is a matrix Nb x Nb

the vector of unknown reactions

= - - (1 3.7)

The reactions are obtained by solving this system of equations.

Step 5. Calculate the reactions at the initial supports

again, this time with both the external loads and the cal-

culated reactions acting on the shaft.

Step 6. The deflections and slopes are calculated again

as in Step 2, this time with external loads and all reac-

tions acting on the shaft.

Step 7. The deflections are expressed in the original co-

ordinate system by addition of SVC to the lateral deflec-
tion and IO to the slopes.
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APPENDIX I 4

CONCENTRATED CONTACT CALCULATIONS *

I 4.1 INTRODUCTION

This section deals with the calculation of the forces which

develop in rolling element-raceway contacts in ball and cylindrical

roller bearings.

I 4.2 COORDINATE SYSTEMS

Consider a plane through the bearing axis and the center of a

rolling element Fig. 2.4. The position of the center of the rolling

element relative to the outer ring is described as a coordinate system

fixed to the rolling element center, having its x-axis parallel

to the bearing X-axis and y-axis radially outward from the bearing axis.

I 4.3 BALL RACEWAY FORCES

In a ball bearing, the outer and inner ring groove curvature

centers EC and IC, are defined by the vectors 9, and

respectively, Fig. 4.1 and 4.2.

The normal force Q is obtained from the Hertz theory for bodies

in contact under load.

Q K1 s- el3 (1 4.1)

where K1 = a function of the initial geometry and of the material

properties.

Sel = the elastic deflection

*This Appendix is based upon the original work (11
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The elastic deflection at one ring is obtained from the distance

between the ball center and the groove curvature center, that is

1.9,1 I$ . When the elastic deflection is zero, this distance is

r A- o.d5 where rg is the groove curvature radius. When there is

elastic deflection, this distance is greater by the amount Seq of

the elastic deflection. Thus,

The dimensions of the contact ellipse are obtained from the same

theory,

a = K2 Q1/3 (I 4.3)

b = K3 QI/3 (I 4.4)

where a = the major half-axis

b = the minor half-axis

K2 and K3 = functions of the initial geometry and of the
material properties

4XI-
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FIGURE 1 4.1

Ball Bearing Geometry
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FIGURE I 4.2

Ball Coordinate System Showing Ball Center Position Vectors

Final position

inner rinO groove
curvatire center

ic
original position

EC X1
outer ring
groove cur ature
ce n t er
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where = a vector from ED to the original position of IC

9= a vector between ICo and IC

where (I 4.6)

the total clearance at one ball in the direction of

C is the displacement of the inner ring groove curvature center

at a ball from original position to loaded position in the bearing

coordinate system. S)'A is the vector Q in the rolling element

coordinate system.

(I 4.7)

The vector is the projection of on the x-y plane, i.e.

with the z-component equal to zero.
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Sis the rotational transformation matrix which transforms

forces and moments described in the bearing coordinate system to

their equivalents in the rolling element coordinate system.

0 0

(i 4.8)

where 0 is the rolling element aximuth angle described in Fig. 2.4.

The vector Z is obtained from the bearing linear deflection vector

and angular deflection vectors

where 1 (1 4.9)

1 4.4 ROLLER RACEWAY FORCES

In a roller bearing the position x1  0 and y, = 0 for the roller

center is defined as the position of the roller center when it is

centrally located in relation to the raceway in the x-direction, and

when the roller under no load and no misalignment touches the outer

raceway, Fig. I 4.3.
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FIGURE I 4.3

Roller Bearing Geometry and Roller Coordinate System
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To obtain the normal forces on the roller, it is thought of as

divided into YIK slices. The force on each individual slice is

calculated separately, as though the entire length of the roller

was deflected to the amount which obtains at the actual slice. Shear

forces between slices are neglected. The relation between deflection

and force is given by the following formula, J 2 5

K4 '.~ t- . .I (1 4.10)

where Q = roller load

Iq= roller length

Yt = elastic deflection

The load per unit length of the contact is q.

Q
q(I 4.11)

The slice load, Qk is obtained from:

~ .% i ~re = ai.L A r. K re ' ZeW (1 4.12)

At the outer race, the deflection ,Eat slice k is the difference

between the normal approach 9 and the crown drop - . See

Fig. 3.3.

9 e 1K -jat( 
(I 4.13)
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where sum of roller and race crown drops

g~= ~(1 4.14)

A
y = a unit vector in the y-direction

0

The vector Irv, from the rolling element center to the center of

slice k in the roller raceway contact is defined as follows:

(I 4.15)

At the inner race, the deflection at slice k is:

+ Ovc K X (1 4.16)

where the vector from the inner ring center to the contact at

the inner race, - is
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Since the roller rotates only about its geometric axis, the

angular alignment of the roller may be described in terms of the

orthogonal components of the roller rotational speed (W) as follows:

I 4.5 SUMMATION OF CONTACT TRACTION FORCES

Of all the forces which develop within various concentrated

contacts, only the elastic Hertz force in a ball raceway contact

may be treated as a point force. The elastic forces which develop

in a roller raceway contact and both ball and roller traction forces

cannot be treated as point forces since they are not necessarily

symmetric. Within the extremely small areas which develop in

concentrated contacts, the variation in surface pressure is extreme.

Despite the small area, significant variation in rolling element-

raceway, relative surface velocities may occur within the contact.

The acute pressure variations plus the changes in surface veloci-

ties necessitate that concentrated contact areas be subdivided into

smaller elemental areas. Over the latter the assumptions of a

circular pressure distribution and constant relative sliding

velocity closely approach the physical situation.

For the roller raceway contact, the same contact sub-areas used

to calculate the elastic force distribution are subsequently used

to evaluate the traction force distribution. For the ball

raceway contact, the sub-areas consist of slices perpendicular

to the contact major axis.
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1 4.5. I V[CTOR TO 'TiIl CON'ACT (AiN'IR FkOM TlE ROLLINC EL..MENT CENTER

For roller bearings the vector i has been given previously.

In a ball bearing the vector i- is required to calculate the

ball raceway friction forces and is given by its components n and t.

See Fig. I 4.4.

,. t. (1 4.19)

the upper and lower signs apply for outer and inner ring contacts

respectively.

The radius of the deformed surface, Fig. I 4.5, is given by

Eq. 1 4.20.

- " ' (1 4.20)

(I 4.21)

0 t-A ((sL ~lci a (1 4.22)

The coordinates t and n are used with the other components of the ball

rotational speed to calculate the ball surface velocity components.

1 4.5.2 SIMMINC THE TRACTION FORCE OVER A CONCENTRATED CONTACT AREA

In computing the traction force acting in a contact, the high

pressure contact region is divided into a number of slices parallel

to the minor axis. In a roller raceway contact, these slices are

the same as those used to calculate the normal force. In a ball

raceway contact the total contact length as determined by the Hertz

analysis is divided into approximately 21 slices. The tractive

force is computed for each lice and then summed to give the total.
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FIGURE 1 4.4

Ball Coordinate System Showing Ball-Race Contact
Position Vectors
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FIGURE I 4-S

Rail Race Deformed Contact and Deformed Surface Radius

origin of radius of

original groove siirface
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Figure I 4.6a shows a Llertzian contact area with the semi-

elliptical distribution of pressure due to elastic deformation

(effects of the lubricant on the pressure distribution are

neglected) and a local coordinate system established at the

contact center (t-O ).

By considering a sufficient number of slices the variation of

prevsure in the x-direction over a slice width may be neglected,

i.e. each slice is regarded as the contact zone due to a cylindrical

disk (without edge effects).

Sliding velocities at a typical race slice are shown in Fig.

I 4.6b. A sliding velocity in the x-direction results if the ball

rotational vector has a component LJ The sliding velocity u5s is

always equal for all slices.

Because of groove curvature the sliding velocity component u

will vary from slice to slice across the contact ellipse.

Figure I 4.6c shows the traction components Tx and Tz on the

slice. T indicates the resultant for the given slice. The forces

T and T are computed for each slice and summed to give the

components of the total traction force acting at the contact.

Additionally, during the integrations, friction moments of the

tractions about the rolling element center are obtained, using the

radius vector coordinates n and t.
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FIGURE I 4.6

Calculation of Traction Force Components
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APPENDIX I 5

LUBRICANT PROPERTY AND EHD FILM THICKNESS MODELS *

I 5.1 LUBRICANT PROPERTY MODELS

Many of the calculations performed by computer program SHABEPTH

require that the viscosity 7 and the pressure-viscosity coefficient

of, be known at a given temperature.

Accordingly, the program employs subroutines which, when given

lubricant kinematic viscosity V at 1000F (37.78°C) and 210°F

(98.890 C), density ' at 60'F (15.560C) and the thermal coefficient

of expansion, determine the lubricant density, viscosity,

and the pressure-viscosity coefficient at any temperature required.

The kinematic viscosity V (cs) at atmospheric pressure is

calculated at a given temperature t (OF) from Walther's relation 113

log1 0 logl 0 (V1+0.6) = A - B log 10 (t + 460) (I 5-1)

where A and B are constants determined by substituting the known

values of V at t = 100°F and t = 2100F into Eq. (I 5-1) and

solving the two equations which result for A and B.

Having calculated at a specific t, I is comnuted as

(T S-2)

* This Appendix is basedpon the original work [93
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where the lubricant density at temnerature t is given by,

Ct C6o.) - Ci-o (1 53)

where G is the lubricant coefficient of thermal expansion.

The pressure-viscosity index o( is defined implicitly by the

relation

(I 5-4)

where I (p) denotes the viscosity at pressure p at an arbitrary

temperature.

The value of a( itself varies with pressure, The appropriate

value of c7 to use in the film thickness prediction equations

wherein it appears, is the value applicable at the inleti.e.,at

atmospheric pressure.

The value ofCo( at a given temperature and at atmospheric

pressure is calculated by the relation developed by Fresco, j14

(560)

= (2.303) 10 "4 [C+Dlogl0 + E(lOgl, )21(t + 460)(in.2/lb) ( 5-5)

wherein V is evaluated at temperature t (OF) and C, D, and E are

constants tabulated by Fresco as a function of S* 0.2B where B is

the coefficient in Walther's equation.
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Another lubricant property that appears in the model for film

thickness reduction due to inlet heating is the temperature viscosity

coefficient , that appears in Reynolds' exponential temperature

viscosity relationship.

is computed from the viscosity values at t = 100F

and 210 F as follows,

0.00909 ln jj(t = 100°F) (I 5-6}

0 (t = 2100F)

Relevant lubricant properties for the oils whose properties have

been preprogrammed in SHABERTH are listed in Table I 5-1. These

property values have been supplied by the manufacturers.

I 5.2 LUBRICANT FILM THICKNESS

The elastohydrodynamic (EHD) film thickness,h, at each contact

is computed as the product of the film thickness predicted by the

Archard-Cowking 20 (point contact) or by the Dowson-Higginson t2j (line

contact) formulas and two reduction factors 0t and s The factors

ot and 0s account respectively for the reduction in film thickness

due to heating in the contact inlet and the decrease in film due

to lubricant starvation, i.e.,due to the finiteness of the distance

between the contact zone and the inlet oil meniscus. In equation

form,

h t O s hA.C.3 (I 5-7)

D.H.
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The Archard-Cowking and Dowson Higginson film thickness formulas

take the following forms respectively.

2 3 -0.93 0.740 0.407 -0.074
hA.C7 2.04 1 + R( IV) R (Q/E') (I 5-8)

Pyo

•~~~~ 
0. 13 

V 
5 9

Rx, Ry - effective radii of curvature parallel and transverse

to the rolling direction respectively

- pressure viscosity coefficient

V - lubricant entrainment velocity

R - = + Ry11 -1

q = maximum load per unit length

Q load -1

E= 2 1 + 21

E 1  E 2

absolute viscosity

EIE 2  = Young's modulus for the contacting bodies

= Piosson's ratio for the contacting bodies
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1 5.2.1 Inlet hleating Factor 0t

A Grubin type inlet film thickness analysis considering full

thermal effects was developed for line contact by Cheng 110 .

Results presented in J10) covering wide ranges of loads, speeds, and

lubricant parameters were used to develop regression formulas for

the thermal reduction factor $t" Based on 28 sets of data, each

containing 15 data points, the regression formulas obtained take the

following form:

x
t =e 0 t (I 5-10)

where

(1) x = -0.3011 - 0.00432 In (p0 /E') - 0.03469 In (1 + S)

-0.16423 in Qm- 0.01728 (lnQm) 2 + 0.00389 l'I

- 0.06316 in

for 0 < Qm< 0. 1, ' 11.5 and 0< Q< 0,4,

(2) x = -1.119304 - 0.16192 in (p /E') - 0.0895 In (1+S)0

- 0.29 In Qm - 0.04572 (lnQ M) 2 + 0.13615 In o '

- 0.31615 In

for 0.14 Qm <.1 ' 11.5 and 0.4 Q 1, 1 , ' 11.5

(3) and x° = -3.66426 -0.48511 In (p0/E') + 0.00568 * ,

- 0.05491 ' - 0.1678 In (1+S) - 0.19573 lnQm
2

- 0.09392 (lnQ ) + 0.20908 - In O

for Qm > 1

where, o ' = Po
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S = (u2 -u1 )/2V

Qm= 2 V2/Kf to

0(- pressure viscosity coefficient, in 2/lb.

b - half of Hertzian width in the rolling direction, in

Po- maximum Hertz pressure, lb/in
2

- temperature viscosity coefficient, oR I computed via

Eq. (4-6)

t - ambient temperature, oR

2- ambient viscosity, (lb.sec/in2 )

U, 2 - surface velocity of bodies No. 1 and 2, (relative to the

contact) in/sec

Kf- conductivity of the film (lb/°F.sec)

V - (ul+ u2)/2, lubricant entrainment velocity Cin/sec)

It is noted that for siall values of Qm' t computed from
Eq. (I 5-10) may be larger than unity. Ot = 1.0 is used whenever

the value computed using Eq. (I 5-10) is larger than 1.0.

In evaluating 0t for the elliptical point contacts in a ball

bearing, p0 is taken to be the maximum of the Hertzian pressure

ellipse.

The point contact is thus treated as if it were a line contact

having a maximum contact pressure p0 along its entire length of

contact. This is a conservative approximation inasmuch as it will

tend to underestimate 0t and hence underestimate film thickness.
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The magnitude of the error resulting from this approximation is

small as p0 is not a highly influential variable in the expression

for $t"

I. 5.2.2 Starvation Reduction Factor 0s

A hydrodynamic analysis of an elliptical point contact having

two equivalent principal radii of curvature R and R (parallel andx y

transverse to the rolling direction, respectively) is used for

calculating 0 s" Finite thickness of the half films (h1 ,1and h1 ,2)

upstream from the inlet are set. The flow rate in the center plane

at the meniscus line is set equal to the incoming flow rate at the

contact centerline. The complete analysis is given in jllj and

Figure I 5-1 shows the geometry considered. The starved

plateau film thickness is 6 3 and the meniscus distance from the

contact center along the direction of rolling is r *. The ambient

film layers move toward the contact zone with velocities u 1 and u2.

The analysis shows hs and r* to be related to hi, the sum

of the upstream ambient film layer thicknesses, (h1 = h 1,1 + h 1 2)

through the following two equations:

S.5V~ R - 2V r* 1.0 (I 5-11)

hs3/ 2 (3+2k) (3+2k) (hs+ r* 2/2R x) 2

5 x

and h1 = 2(24k) (hs )+ kr* 2  (I 5-12)

3+2k (3+2k)Rx
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FIGURE I S-1

Film Geometry
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where k R x /Ry, J is the viscosity of oil at the contact inlet,

OK the pressure-viscosity coefficient and V 3 ( u1 + u 2) is the

entrairment velocity in the x-direction.

The simultaneous solution of Eqs. (I 5-11) and (I 5-12) for

given values of Rx, Ry, V, , o( and hl yields the associated

values h and r*. Subroutine STARFC performs this calculation.
s

As the meniscus distance r* increases, the film thickness hs

increases, asymptotically approaching a value hf as r*-P al,

Therefore, hf is the film thickness under fully flooded conditions.

On letting r*--aocand hs-- hf in Eq. (I 5-11), the second

term on the left hand side vanishes and one may solve for hf as

2/3
112

hf S.5V o( (Rx ) (I 5-12)

(3t2k)

Note that for line contacts, the contact curvature ratio k is

set equal to a small value.

K = R = 0.01.

This k value results in a contact length to width ratio of 18 : 1.

The lubricant meniscus distance in the rolling element-cage

contact is assumed to be proportional to the rolling element radius.

r* = 0.25 r
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Subroutine STARFC evaluates hf from Eq. (I 5-13) and then

calculates the ratio Os = hs/hf" As given by Eq. (I 5-13), it

does not indicate a dependence upon load. This is characteristic

of film thickness formulas derived from a Grubin type assumption

applied to rigid bodies. It is considered preferable to use the

Archard-Cowking and Dowson Higginson formulasfor the unstarved cases

rather than hf since these formulas better describe the dependence

of film thickness upon the influential physical variables. The

onl-y role played by hf is to scale hs to yield the ratio which

is applied as a multiplicative factor on the Archard-Cowking and

Dowson Higginson predictions of unstarved film thickness.

I 5.3 Film Replenishment

As noted above, it is necessary to know the combined oil layer

thickness h1 to calculate 0s and r*.

As a rolling element passes a point on the inner or outer raceway

of a bearing, a very thin lubricant film remains on each of the

components and is of the same order of magnitude as half the

plateau film thickness in the EHD contact. Replenishment of the

lubricant layer on the raceway is required in order to assure

sufficient lubricant in the inlet region of the succeeding contact,

so that the EHD film thickness will be the same as in the preceding

contact. If replenishment fails to occur, each successive rolling

element pass would have a thinner EHD film and steady state operation

with EHD lubrication would not be possible.

I 5-12
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Many mechanisms serve to replenish the lubricant in the track

of a high speed bearing. Of prime concern is replenishment at the

inner race in high speed ball bearings since centrifugal force tends

to direct free fluid away from that surface. Seven replenishment

mechanisms have been identified:

(1) Centrifugal flinging of the lubricant from the ball.

(2) Centrifugal travel of oil along the surface.

(3) Random splashing of lubricant in the bearing cavity.

(4) Direct deposition from a jet.

(5) Back flow along the surface into the track, from its

edges resulting from lubricant surface tension.

(6) Carrying into the contact, of lubricant adhering to

the ball.

(7) Back flow into the gap behind the contact exit due to

vacuum in the cavitated area.

A model exists for item (5) above. In view of the other,

possibly more influential sources of replenishment enumerated above,

this model has not been adopted in this program. Instead, it is

assumed that an externally supplied replenishment, amount

adds to the plateau film thickness to yield h1 .

As a simplification, since A is usually much larger than h,

the approximation h vh is used so that,
s

h.h s + A(I-S-13)

Subroutine STARFC uses Eq. (I 5-13) in solving Eqs. (I 5-10) and

(I 5-11), with a user specifified & value.

Criteria for estimation of 4 I are presented in Sect. 3.3.15.
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APPENDIX I 6

TRACTION AND INLET FRICTION CALCULATIONS

I 6.1 INTRODUCTION

The traction model developed for use in program SHABERTH

is applicable to the partial EHD regime in which the lubricant

film separating the contacting surfaces may be small enough to

permit some degree of asperity contact. The model computes the

traction coefficient as a function of the ratio (h/gj, film

thickness h to composite surface roughness Ir. For small values

of h/ir (h/r-<6(LO the model represents dry friction. For large

values of h/ (h/T> 3) the model becomes a non-Newtonian semi-

empirical fluid film model in which the traction coefficient,

IEHD' depends upon sliding rate, as well as the load, rolling

speed and lubricant properties at operating temperture. For

intermediate values of h/q the model is a combination dry and

fluid film friction. Essential features of the model are described

below.

A single, two dimensional, functional relationship is used

to model aspects of both wet and dry friction. The function is

plotted in Fig. I 6-1 and is valid over the range.

O '-
o

and has the following characteristics.

L (1 6-1)

j.- . IS *Yb V, X ") (I 6-2)

where:

x to7) - xL

defines the value of y below which y'is a linear

function of X.

defines the value of X* below which y

is a linear functionof X I 6-2
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Note that y* increases monotonically with x* and that

is continuous at x* = xB.

Both wet and dry friction coefficients will be defined in

terms of Eqs. (I 6.1 and I 6.2).

I 6.2 ASPERITY TRACTION MODEL

If Q is the total load applied to a concentrated contact (or

to a suitable sub-element of a contact), a portion of this load,

designated Qa will be carried by elastically deformed asperities

and the remaining, Q-Qat will be carried by the EID film. The

traction force Ts then is,

Ts =4a Qa +,'4EHD 
(Q - Qa) (I 6.3)

Under the assumption that the rough surface consists of two-

dimensional ridges of random height and slope angle, the average

asperity borne load Qa is the following function of the ratio h/q.

a I (h/- A(I 6.4)

where

F1,E 2 Young's moduli of the contacting bodies

A = contact area

To = RS value of the distribution of asperity slope

angles (radians)

I(h/V, a)= function defined in (121 of the filn parameter h/q"

and a statistical micro-geometry parameter V defined

in Nayak (261.

It is shown in f271 that O = 2 is a reasonable value to use

for rolling bearing surfaces. The following polynomial fit to the

function I(h/q,o< =2.0) is used ini computation:

I(h/q,2)=2.3le-l.8 4h/q" +0.ll75(h/1-f.4) 0 "6 (2-h/q )2 (I 6.5)

0.4 h/q 2

I(h/q,2) = 17e -2.84h/,- + 1.44 x 10- 4 (h/T-2)1 .1 (4-h/r)7.8

2 ch 1"

When h/V4O.4 the asperities are assumed to carry the entire

contact load.
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The asperity friction coefficient (ja) is calculated as

follows:

4 a /1* y* (I 6.6)

* is supplied by the user, 0.1 to 0.2 is the recommended

range of values.

where y* is calculated from Eq. (I 6.1 or I 6.2) in which:

YB is 0.66

XB is 0.005

x* - U-UI) calculated, local

U V+Uj slide to roll ratio

U2 and U 1 are defined in Fig. I 6.4

This relationship is believed to better approximate the

asperity friction phenomena than the coulomb friction model.

This relationship causes the friction coefficient to be a

function cf the small tangential displacement of the surface of

one body with respect to the other. The slide to roll ratio

provides a measure of the displacement.

In the numerical solutions being employed, it is important

that the functional relationships produce a unique set of forces

for a given set of rolling element rotational speeds. The use of

the above asperity friction model helps guarantee this uniqueness.

The value = 0.1 was recommended in (277 as being consis-

tent with values deduced in traction measurements in the partial

EiHD regime.

I 6.3 FLUID TRACTION COEFFICIENT EHD

The general behavior of the fluid traction coefficient 1 E11D

as a function of sliding rate is illustrated by the curves in

Fig. (I 6.2). (Throughout this section the subscript on EHID will

be omitted.)

I 6-5
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In the curve in Fig. (I 6.2a) the traction coefficient

increases linearly, at low sliding speeds, reaches a maximum/-/*

at speed us = us*, and decreases thereafater.

In the curve in Fig. (I 6.2b) the traction coefficient

increases linearly at low sliding speeds and then approaches an

asymptotic valueA*.

Both types of traction curves have been experimentally

observed. Both signify a departure from isothermal Newtonian

fluid behavior since for this situation the traction coefficient

increases linearly with sliding speed.

For the curve of Fig. (I 6.2b),/A* denotes the asymptotic

traction coefficient. Define us* = 3 x usc, where usc is the

sliding speed at which the lineM= *intersects the extended linear

portion of the curve /Mvs. us.

It has been found that/A* for either type of curve increases

with the contact pressure and decreases with rolling velocity

and lubricant viscosity (and hence ambient temperature) /(s* on

the other hand decreases with pressure and increases with rolling

velocity and viscosity. This joint variation has been found to

result in a scale change in the two axes but not in a substantial

change in the character of the traction curve.

This means that traction curves obtained under widely dif-

ferent conditions of pressure, rolling velocity and temperature

when plotted on a grid with coordinates/Ar =/ k* and x - us/us,

yield substantially the same curve ,L'.

A characteristic of the curves of the type of Fig. (I 6.2a)

is that /Ur decreases indefinitely with large x. Curves of this

type can cause convergence difficulties in a bearing computer

program because there are two sliding speeds associated with

each value of the traction coefficient. The solution may cycle

I 6- 6
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FIGURE 1 6.2

Typical Traction Curves
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between two values in seeking an equilibrium condition.

An approach to avoiding this difficulty is to use the

previously mentioned monotonically increasing curve Eq. (I 6.1 and

I 6.2) that is a good match to the actual curve over the increasing

portion of that curve. If the program then converges at a sliding

speed that is within the range where the curves match, the solu-

tion is valid.

In the present context, let yo and x * from Eq. (I 6.1 and I 6.2)

correspond to the relative traction coefficient (,MR) and the

sliding speed LIS , respectively.

If we now define /A as the asymtotic EHD traction coefficient

the acatual coefficien kEHD is:

/14 EHD /IA' * +/AR  (I 6.8)

For a given oil, the maximum traction coefficient/U* has

been found J273 to vary with pressure, viscosity, rolling velocity,

and film thickness in the following manner:

4C'P")°' ob 14)C (0,59)v(o40 ' a'6 ' )kk (-u,4 (I 6.9)

where

2
Po = the maximum contact pressure (lb/in )

h = plateau EHD film thickness (in)

f(po) = a function governing the dependence of viscosity on

pressure po (oil parameter)

= a visco-elastic constant (oil parameter)

Similarly, us* exhibits the following dependence on Po'Iop

Van . ,(-o, o (-L -0.09) , (I 6.10)
LA5 A (V ? j Vh)(16.10

The quantities# *,,s * and h can be measured experimentally

for a set of given values of po, 1, and V. For the oils thusfar

examined, the function f(po) has been found to follow a law of

the form, f%(PO/p1)A4 PO4P,

At Pa. " 1P

I 6-8 (I 6.11)



where A1 , A 2 and p1 are lubricant dependent constants.

Values of A1 , A 2 and P1 for four oils are listed in Table (1 6.1).

The procedure for determining these values for other oils is given

in j23,2 .

Making use of Eq. (I 6.11), Eqs. (1 6.9) and (I 6.10) can be

expressed in the following form on introducing C1 and C2 as propor-

tionality constants.,y.¢ 1.-,,4 AL. ,.o (o. ') (o.-,,5o"

f•.I . V h (I 6.12)

, - 0.1o 4 .,A (1 O DA -0.09). l -
FO~ '' v (I 6.13)

The values of C1 and C2 are evaluated by substituting measured

*, Us * and h values for a specific test condition. Then knowing

values of C1 , C2, Pl, Ai and h (starved), it is possible to pre-

dict values of/* and us* as functions of the operating parameters

po, V, and £ by Eqs. (I 6.12) and (I 6.13). Values for C1 and C2

thus calculated for four oils are tabulated in Table (I 6.1). The

units in Eqs. (I 6.12) and (I 6.13) are V (in/sec), I (cp), Po (ksi)

and h (microinches). Also shown in Table (I 6.1) are the values of

( Ar)B and (us)B used for the four oils. These data have been

preprogramned into SItABERTH.

In summary, the calculation of /4EIID at a given sliding velocity

us and for a given pressure po, film thickness h, rolling velocity

V and temperature t, proceeds as follows:

1. Calculate viscosity I at temperture t.

2. Using appropriate constants from Table (I 6.1), calcu-

late/,4s* and/A* for given po, h, V and

3. Calculate x - us / U *

I 6- 9
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4. Use Eq. (1 6.1 and I 6.2) with values of (/,r)B and

(US)B from Table I 6.1 to calculate / r associated with

the value of x calculated in Step 3.

5. Compute #EID =MA r ./A*

I 6.4 INLET REGION HYDRODYNAMIC FRICTION FORCES

I 6.4.1 ELLIPSOIDAL CONTACT

The contacts between ball and race and between ball and

cage pockets are "point" contacts. Under lubricated conditions,

the surfaces are separated by a fluid film and there is a

pressure build-up around the contact caused by the sweeping-in

motion of the surfaces. This pressure build-up contributes to

the friction in rolling, Tangential surface forces are required to

pump the oil into the high pressure zone.

The pumping forces are due to rolling, (FR), and sliding (FS).

Expressions as a function of a finite meniscus distance r*

have been found for these forces. The complete analytical develop-

ment is contained in ill and 27j .

Since these forces arise in the contact inlet region,

elastic deformation is not considered to have a significnat effect

and the analysis invokes a rigid body assumption.

Figure (I 6-3 ) shows the relevant geometry. Two rigid bodies

are shown in nominal point contact separated by an oil film and

undergoing relative rolling and sliding. A local cartesian co-

ordinate system is established with the x-y plane parallel to

the tangent plane of the two bodies and with the origin coincident

with the surface of body 2. The coordinate system remains fixed

in the contact as the surfaces of the two bodies move. The prin-

cipal radii of curvature of the two bodies are (Rx) i and (Ry)i ,

i - 1,2. The eauivalent radii are
p , + l. e (1 6.14)
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FIGURE 1 6.3

Notation for Rolling Sliding Point Contact
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FIGURE 1 6.4

Friction Forces on Sliding and/or Rolling Disks

FORCES ON SOLID BODIES

y

u 1 < U 2 ( FORCES ON FLUID
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1 6-13



The normal separation of points on the two bodies near the

origin is given by

h = h + + V2 (I 6.15)
0 7x My

where h is the minimum film thickness at the origin. This

separation function is applicable if the width of the tlertzian

flat region in the contact is negligible compared to the

relevant x and y dimensions in the inlet and outlet.

The surfaces are assumed to be moving with velocities u.1

and v i (i = 1,2) relative to the origin in the x and y directins.

The rolling velocities in the x and y directions are defined

respectively as V x = (u1 and u2)/2 and V. = (vI and v2)/2 and

sliding velocities in the respective directions are usx u l-u 2

and usy = v 1 -v 2 "

) is the portion of the normal load that is being supported

by hydrodynamic forces in the inlet. For elastic ball race con-

tact 0 is considered negligible when compared to the load sup-

ported over the Hlertzian contact zone.

The forces F., F s and Fn are displayed in Fig. (I 6.4). For

clarity the special case of contact between two disks is illustrated.

In this case, R, is infinite and the forces are directed along the

x axis. In the general point contact case the forces have both x

and v components.

The force FR acts in the same direction on both contacting

bodies and opposite to the direction of motion. F s acts in

opposite directions on the two bodies in such a way as to tend to

increase the speed of the slower body and to decrease the speed of

the faster body.

The forces F1 and F2 are the resultants of the hydrodynamic

pressure distribution in the inlet and act through the centers of

the two bodies. The component of these forces in the y direction

1 6-14



represents the (synail) portion of the total load supported

hydrodynamically. The components Fn adFn acting in the x

direction contribute to the force balance in the rollinxi direc-

tion.

The magnitudes of F R, FS and Fn depend upon the meniscus

location r*. The calculation of r* for the rolling element race

and rolling element cage contacts is discussed in Appendix I S.

Expressions for the x and y components of the forces F R,

F sand Fn are given below in terms of the dimensionless quanti-

ties F T and Fs.

Pumping Forces
Roli-nF component

Fv = 11C F RCos It (1 6.16)

Fx= 11 C0 FR (sinV) (Rv/Rx)il (1 6.17)

Sliding component

F V FS usx ( RR )i (1 6.18)

F T= F5 .u 5s (IRR) (1 6.19)
sxxy

Normal Forces (on ball)

F C o* (1 6.20)
ny Co R r o~

Fn =C FR - . (sinys) (R/Rx)" (1 6.21)

(For a ring, r is replaced by the raceway radius) where

2 -1 2( . 2
Co Vx (TRXV) (.3,2k)- + (Vx/v )2 (3+2k yk13 ( .2

ta-1 3 +2k X(6.3
=~~ ~ tn **k(3+2k-) t y4 I6.3

k R /RxIx

)=absolute ambient viscosity~
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The ouantities 7R and 7s are dimensionless and depend upon

two further dimensionless parameters 9 and 1 1 is a

dimensionless meniscus distance defined as

[r*/(2hoRx) ][(cos2i + (l/k)sin2 6) ] (I 6.24)

ho for ball-race contact is taken as the plateau EHD film

thickness.

For ball-cage contact ho is as calculated in Appendix I 8.

r* is the distance of the oil meniscus from the contact

center along the rolling direction.

is the product of the pressure viscosity coefficient of

the lubricant and the maximum fluid pressure qmax

that prevails if the lubricant is isoviscous.

assumes values between 0 and 1 with f= 0 indicative

of purely hydrodynanic and = 1 of purely elasto-

hydrodynamic conditions. a = 1 is taken for ball-race

and = 0 for ball-cage pocket calculations.

Plots of s and FRas a function of ?l for various values

of 3 are given as Figs. (I 6.5) and (I 6.6) taken from 123

For the EIID ball race contacts the following expressions

have been fit to the FR VS. 1 curve in Fig. (I 6.6)

for = 1.

FR = 23.59 in l - 10.1; ?1A 5 (I 6.25)

FR = 36.57 in R1 - 22.85; ,1 5

Fs is not considered for a ball-race contact because the

amount of sliding is so small.

For the predominantly hydrodynamic contacts, (= 0) which

arise between the ball and the cage web, both pumping and

sliding friction are considered. The following equations were

fit to thea = 0 curves in Fig. (I 6.5) and (I 6.6).
I 6-16
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FIGURE 1 6.5

Variation of F5 with P
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FIGURE I 6.6
Variation Of FR With the Dimensionless Meniscus Distance p1
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FR = 8.53 x In-" tln(1000 ,1.70 4 5.4 (I 6.26)

FR = 36.576 In 1 - 29.32; ? 1  S.4

TS = 1.71 x 10-9 [Ln (l OO t j1) - nl 1'  2 1 2
- (I 6.27)

Ts = 10.115 (lntl) .965 + 1.5; '1 k 2

In applying the above results to ball-cage web and ball-

race contacts, it is necessary to interpret the geometrical

parameters of the general configuration of Fig. (I 6.7) in terms

of the appropriate bearing dimensions.

Figure I 6.7 shows the relevant geometry for the two contact

types as well as the direction of the various force components.

In this figure r denotes the ball radius,r' the cage pocket

radius, rg the outer ring groove radius, R the radius to the

center of the contact ellipse and 0( the outer ring contact angle.

I 6.4.2 INLET REGION IIYDRODYNAMIC FRICTION FORCES LINE
CONTACTS

A nodel has been developed for calculating hydrodynamic

pumping and sliding friction forces in the inlet regions of

roller bearing race contacts wherein film variable viscosity

and starvation effects are included. The contacting bodies are

assumed to be rigid. The model was developed by Dr. Y. P. Chill

of S K F Industries.

Consider two rigid cylinders of radius R y and Ry2 moving

at surface velocity UL1 and LA2 as shown in Figure I 6-4. Floberg

ino3 has obtained expressions for the fluid pressure distribution

P,. normal rolling friction forces F and Fn2 and tangential

friction forces FR as functions of a dimensionless meniscus

distance X.1 = r*/( R-ho r Isoviscosity is assumed. ho is the

minimum film thickness and R = (1/RyI + 1/Ry 2 )
'1
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FIGURE 1 6-7 Configuration of Contacts
(a) Ball-Cage Contact
(b) Ball-Race Contact (Outer Ring)
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Spec if i cal ly', tlie ,ax i)irnur fluid pressure Pmax is given by

nax Po* (2-3 u!)h 0  /2 (I 6.29)

where Po* is a function of X0 1 as shown in Table I 6. 2. The

normal friction forces acting through the centers of the two

cylinders of length I are

The pumping forces are

FR = 0.5 (Fnll + F n2 ) (I 6.31)

where u = (u2 + ul)/2

The dimensionless coefficients Pxo1 A, B and C, given in

Tablel 6.2below, are functions of X.1 and were calculated by

Floherg Table I 6.2

.Dimensionless Coefiicients for the Calculation of

Line Contact Inlet Friction
X01  OXo A C B

- 4.6 3.5 4.485 3.41
-2.245 0.81 2.72 0.877 2.94
-1.380 0.25 2.27 0.322 2.92
-0.9S4 0.11 2.02 0.176 3.22

For the case that the fluid viscosity increases exponentially

with pressure, i.e. -1=ae it is desireable to use the Archard-

Snidle approximation 1311 that the minimum film thickness ho in

an EI) contact is deterniend from Eq. (1 6-25) by setting p max
-1

equal to the reciprocal of the pressure viscosity coefficient (o( ).

Usinp P max 1, one then has,

Pa 0 a-"/(zI 12,/,t ) (I 6.32)

and (t,\(r 2) -t /(rt~
1) (1 6.33)

kL ,.,A . (I 6 .34)

where C .P X o X i )AP.)V
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The values of C and B, as functions of X0 1 , are tabulated in

the last two columns of the above table.

For the case where one has pure rolling suach that k a 1.0,

Eq. (I 6.30) yields,

F~c ~ t 'e/Q.) (1 6.36)

The forces Fn exerted on the roller race contacts are,

[ F (outer ring) R°1/3

(innering) C ( 6.37)

n ~RI R
where Rm = R- r = R i + r = roller pitch radius.

Chiu I has determined in his analysis that contact load has

a negligible effect on the above pumping forces, and has obtained

good agreement with experiment for his rigid body assumption.

Sliding friction has been determined to be U,

/~~ ~~ ~ (o teb o j C - Z /

SS(i.v e=tr rl'i.a )) ('4 j( :fl1 "L .j L(I 6.38)

where u = entrainment velocity = (u2 + ui)/2 and V = sliding

velocity = u2 - u 1

I 6.4.3 HEAT GENERATT )N RATES

In the ball-race and ball-cage inlet regions, the heat

generated due to the sliding force Fs and sliding force FR is

calculated as,

= 2F RV + Fsu (I 6.28)

where V = fluid entrainment velocity at the contact center

u = sliding velocity at the contact center

I 6.5 BALL DRAG FORCE IN BULK LUBRICANT

In[ 33the following form of "churning friction force" is

cited, to account for all friction losses on the ball other than

EHY) sliding traction in the ball/race contacts:
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Fw = Av Cv (dmiAo)- (I 6.39

8g

where Fw  is the drag force

A : the ball frontal area

Cv: a drag coefficient given int353as a function

of the Reynolds number

diM: the bearing pitch diameter

W0: the ball orbital angular velocity

g: the gravitational constant

the density of the air-oil mixture in the bearing

cavity

= XCAV . (I 6.40)

XCAV: the fractional amount of lubricant assumed to

be in the bearing cavity

o: the density of the oil

In the present model, three hydrodynamic force components at

each point contact on a ball have been defined.

These components tend to retard ball motion as would Fw.

Since two race contacts and a cage contact exist for each ball,

15 force components have been made explicit. After accounting

for all contact friction forces, there is left a residual loss

due to "windage" or "drag" acting on a ball as it moves through

the air-oil mixture in the' bearing cavity. Eq. (I 6.37) has been

used to model this windage force., Although the effect of the drag

force is less significant than calculated in 3 , it remains impor-

tant.

XCAV values of one percent or less are recommended. In actu-

ality,XCAV is a function of lubricant supply rate, method of

supply, speed and bearing and bearing cavity geometry.
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APPENDIX 1 7

ROLLING ELEMENT INERTIA FORCES AND MOMENTS

A rolling element, Fig 2-4, traveling between azimuth locations,

is forced to undergo changes in its rotational velocity components

(x' 9 y' and 1z as well as in its orbital velocity W0 o . The

forces which must act on an element to produce time variations in

its rotational and orbital velocities may be deduced from Newton's

Laws of Motion as follows:

F Fyy-W0(R+y) (1 7.1)

where Fx , F and F are the components of the forces in the rotating

coordinate system attached to the element, m is the ball mass, x and

y are the element center displacements shown in Fig. 2-4, and R is

the radius of outer ring groove centers,

A rough estimation assuming stable operation yields that the

term x is smaller than & 02 .(R+y) by a factor of the order of

x /R, where xm is the maximum variation of x. Similarly, the
m

terms y and 2 4oy are smaller than 0 R by a factor in the order

of y /R where ym is the maximum variation of y. Note that both

x m/R and ym/R are very small in magnitude. The second derivatives

with respect to time of x and y are thus neglected as is the

Coriolis term 2 4 o. The term d) is expressible as follows:
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= dl o  d d do dSO (I 7.2)
ko 0 -- (1 .2

dT d dT do

The term db0 is approximated for ball i as follows:
d

CdA) 1_ (6o) i + 1 (Aio)i - 1 (I 7.3)

dO 2 A

where At is the angular distance between rolling elements.

The moments necessary to cause the elemient velocity to change are

as follows:

x  0 0

0 13 0 & (I 7.5)

00 0J
Z

r a ball:

2* I - ,1 = *D2/10 (I 7.6)
, V 7
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for a roller:

Jx = mD 2/8

J = Jz = m/12 (3/4 D2 + Xre 2) (I 7.7)

yz

m is the element mass

D is the element diameter

ire is the element length

The time variation of the rotational velocity components

4,3 y and uz are approximated in the same manner as 4o e.g.,

45 &[ ( i+l (x i=l (I 7.8)

Using D'Alembert's principle, forces -F and moments -M

calculated as described above are imposed on the element along with

the other forces and moments due to friction and elastic contact.

The combined system of forces is then regarded as being in static

equilibrium.
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Because the time rates of change of 6o' 0&x',Jy andAMz are

included by approximation as described above, the analytical treat-

ment is considered to be quasi-dynamic as distinct from analyses

wherein these terns are neglected and only the centrigufal force

m 4) 2 (R+y) and gyratory moments JW o. W Q and -JW) W are considered.

The description "quasi-static" has been applied to slutions of

this type.
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APPENDIX 1 8

ROLLING ELEMENT BEARING CAGE MODEL*

I 8.1 INTRODUCTION

The cage is driven by normal and friction forces which act

at the interfaces between balls or rollers and cage pockets, and

at the cage rail(s) and ring land(s). These forces are calculated

as functions of the separation and speeds of the interfacing mem-

bers. In this analysis it is assumed that:

normal forces exerted by the rolling element on the

cage pocket act in the plane of cage rotation which

is coincident with the cage axial midplane.

friction forces exerted by the rolling element on

the cage pocket act orthogonal to a corresponding

normal force and at the normal force point of appli-

cation.

the only friction force components considered in the

cage equilibrium equations are those which lie in the

plane of cage rotation. It is assumed that each rolling

element is axially centered within its pocket.

cage rail normal forces act at the cage midplane and

pass through the axis of the cage. These forces are

coplanar with the rolling element normal forces.

cage-land friction forces act in the cage midplane such

that any resulting torque tends to drive or retard the

cage rotation.

*This Appendix is based upon the original work G53
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The analysis is used to determine the normal and traction forces

at each rolling element and ring land on the basis of hydrodynamic,

elastohydrodynamic and Hertzian concentrated contact theory.

I 8.2 GEOMETRY

Figure 2.4 shows a coordinate system (XYZ) with the origin on

the outer ring axis in the plane of the outer raceway centers. A

local coordinate system (x,y,z) is established at the center of each

rolling element. The azimuth angle 0 defined in the (X,Y,Z) coord-

inate frame locates the x axis penetration through the Y-Z plane.

The x axis is parallel to X. The y direction is radially outward

and the z direction is tangent to the direction of rolling.

A local coordinate z c is also defined for each cage pocket,

wherein the origin is located on the cage pitch circle. We wish

to determine the position of each rolling element center with respect

to the cage pocket center along zc' in terms of the rolling element

orbital speeds Wo, the cage rotational speed C and the cage

rotational and translational displacement components.

I 8.3 CAGE MOTIONS

The equilibrium solution considers that the cage operates

in one of three modes:

(1) The cage is outer ring land riding such that radial

and small circumferential motions of the cage with

respect to the rolling elements are resisted by hydro-

namic fluid film forces that develop between the cage

rail land outside diametral surface and the bearing outer

ring outside diametral surface, Three degrees of freedom
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apply to the cage motion. These are the circumferential

position of the cage relative to the rolling elements ( )

and two components of radial displacement (AY and AZ

in rectangular coordinates, or e and *'c in polar coord-

inates.) When the bearing is subjected to axial load

only, or when the rolling element speed variation is in-

consequential, the radial degrees of freedom are neglected.

(2) The cage is inner ring land riding when motions are re-

sisted by hydrodynamic forces which develop at the cage

inside surface and the bearing inner ring outside surface.

Three or one degrees of freedom also apply.

(3) The cage is ball or roller riding in which case there

are no net radial fluid film forces between the bearing

rings and the cage, and consequently, no radial motion

of the cage relative to the bearing axis of rotation.

Angular motion of the cage relative to the roiling

elements is the only applicable degree of freedom.

The circumferential displacement of rolling element No. 1 at

azimuth location = 1 relative to its cage pocket center is

designated

I 8.4 ROLLING ELEMENT MOTIONS

Returning to Fig. 2-4, the velocity with which the moving

coordinate system rotates about the X axis is designated o0 and

is also assumed to be a function of azimuth angle, i.e. to =0 o ( ).
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The rolling element is assumed to rotate relative to each of

the axes in the moving system of coordinates. The angular

velocities about each of the axes x, y, z are denoted 0, o , and

4z respectively and are shown as the orthogonal components of the

rotational velocity vector )in Fig. 2-4

The value of the ball center-cage pocket center offset zc

applicable at other ball positions is deduced relative to ball

position No. 1, which remains fixed at its aximuth position.

The cage is assigned a rotation , so that the offset of cage

pocket no. 1 relative to bal no. 1 is

g ---- ge (1 8.1)

In so doing, it is assumed that a rolling element orbital

velocity remains constant as it traverses the distance corresponding

to one half of the pitch spacing on either side of the nominal

azimuth position. As a rolling element enters the azimuth location

of the next adjacent rolling element the orbital speed undergoes a

step change. This is illustrated in Fig. I 8.1 for ball Nos. 1 and

2. The top half of Fig. I 8.1 is a plot of the assumed variation

of orbital velocity with respect to ball position.

The cage orbital velocity is denoted bycj3 and is assumed

uniform and equal to the average of the ball orbital velocities, i.e.

M jL& (1 8.2)

where n is the number of rolling elements.
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Figure 1 8-1

Cage and Rolling Element Speeds and Displacements
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The distance between ball positions is the quotient of the

circumference 11 dm of the locus of rolling element centers

(neglecting small excursions) and the number of rolling elements.

The time 4 T for the cage to traverse this distance is then

ATz- (1 8.3)

In this time period the center of rolling element No. 1 moves

a circumferential distance of

Z., A (1 2..8.4)

The circumferential distance between the rolling element and cage

pocket center at position No. 2 is obtained as the difference

between the rolling element travel and cage travel in time A T,

less the initial offset of the cage pocket center at rolling element

position 1 with respect to the center of rolling element 1,(Y), see

Fig. I 8.1, plus the components of the radial eccentricity

(6Z and4Y) of the cage axis with respect to the bearing axis. Then

(I 8.S)

Letting AT = then Eq. (I 8.5) becomes for the general

i-rolling element;
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FIGURE I 8-2

Cage Pocket Geometry
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(I 8.6)

I 8.5 CALCULATION OF CAGE POCKET NORMAL FORCES

A means for calculating the cage driving forces due to the

balls was developed in J23 I. The analysis has been extended to

include roller-cage pocket,line contacts, by approximating the

line contact to be an elliptical contact that has a large

curvature ratio (e.g.: a*/b* = 18 ).

The analysis is applied to determine the normal forces acting

at two diametrically opposite points on a rolling element, i.e., the

points of nearest and furthest approach of the ball or roller

relative to the cage. The net normal force acting on the rolling

element is the resultant of these two forces. The discussion

below considers ball-cage; but it applies to roller contact.

The typical ball geometry is shown in Fig. I 8.2. z c denotes

the offset between the ball and cage pocket centers in the direction

of rolling. Wx and W y denote the components of the ball rotational

velocity vector that result in relative surface speeds of the

ball and cage pocket.

The closest approach h0 is the minimum film thickness when the

cage is lubricated.
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Given the ball cage pocket eccentricity the associated cage

pocket load P can be calculated. When z c is small the load is

small and borne hydrodynamically by the lubricant film, which then

has minimum thickness h0 = r' - r - z c In this regime, the load for

a given value of the ball and the cage pocket clearance is that

supported by a hydrodynamic contact of minimum thickness h0.

Elastic deformation is negligible in this regime, As z c increases,

h decreases until it reaches a critical value h below which a

further increase in z c results in elastic deformation hut no further

decrease in film thickness, In this regime

h =h (I 8.7)

and the elastic deformation is calculated from,

e = Zc + hc - Cr (I 8.8)

where Cr is the cage pocket radial clearance (r' - r).

The load P in this case is assumed to be the sum of the load P
c

hydrodynamically related to the film thickness h c' and an

additional load Pe associated with the elastic deformation through

the Hertzian and flexural equations of contact elasticity.

An analysis was performed as described in t23j of the relation-

ship between normal load P and minimum film thickness h0 in a

lubricated point contact between two rigid bodies, each having two
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principal radii of curvature, assuming, that the luhricant

viscosity increases exponentially with pressure. The analysis

yielded a relationship between the nondimensional load parameter (7

and the nondimensional film thickness parameter IT, as shown by the

solid curve in Figure I 8.3. These nondimensional variables are

defined as:

= P. ( Ry /C 2 1/3 (RxRy - i1/2 P D (I 8.9)

H= h Rx (Co R x- o 0 B (I 8.10)
C

r

where:

C0 = o o Vy (RXRY) 1/2k (I 8.11)

-2V-l22 -l
k = (3+2k)-2  + (3+2k- ) - 2  k - 1  ) J (I 8.12)

V
y

k Ry /R x  (I 8.13)

D ,( yC21/3 -1/2
D (P( R IC ) (Rx R y (I 8.14)

B . C P (C R )2/3 (I 8.15)
r x o x

R ( 1) - (I 8.16)
x r rV C r

P. = r

y

C r r' r, cag- pocket radial clearance

r
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FIGURE I 8-3
Load Capacity Vs. Film Thickness for Hydrodynamic

and Elastohydrodynamic Operating Regimes
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V = 1/2 W.y r

= bulk viscosity

Vy = -1/2L x * r

It has been found that the relationship between'Q andH for an

unstarved point contact can be approximated by the following formula:

Q = 53.3 (H)-1/2 + 163 H)-' ( I 8,17)

provided that:

&-e c= 37.6

I 8.5.1 ELASTOHYDRODYNAMIC (EHD) CONTACT

For Q 37.6, the film thickness is independent of load and the

nondimensional parameter H remains constant at H . Operation in this

case is in the EHD region.

H = H = 3.122 (I 8.18)c
for EHD Contact

= 37.6 (I 8.19)

Equations (I 8.18) and (I 8.19) result in the following for the EHD

region of operation,

= c = 37.6/D (I 8.20)

h o = h c  3.122 Cr/B (1 8,21)
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The -lastic deformation e is given by,

= z + h Cr (I 8.22)

Pe (9e) was originally calculated according to Hertz Theory.

This model has been changed, however, in an attempt to reduce the

nonlinearity of rolling element-cage load displacement relationships.

This was done through the assumption that the cage will respond

to large rolling element loads through flexing as well as

through the local contact displacements.

It was assumed that 95 percent of -e would be acc'mmodated

by cage flexing and the remainder would be accommodated by the

Hertz deformation. The Hertz calculations are made based on the

assumptions of a 9:1 major to minor contact axis ratios for a

ball-cage contact and an 18.2:1 ratio for the roller-cage contact.

The cage flexure deflection is calculated from

Pel(fex) = (0.9Se) R, 13500 (I 8.23)

The spring constant 13500 R where R is the cage rail radius,

was derived using circular ring theory, considering the cage

material to be steel. The total ball-cage contact load P is

thus

P = Pc + PHZ ( .e) + Bflex) (0. 9qSe) (I 8.24)

I 8.5.2 HYDRODYNAMIIC (HD) CONTACT

If the contact film thickness h is greater than the critical0

value hc, the contact is assumed to be hydrodynamic:

H Hc = 3.122 for HD contact

The minimum film thickness for this case is given in terms of the

ball-cage clearance and eccentricity zc as:
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h= C - z c  (I 8.25)

the calculation procedure is,

(a) Calculate h as above

(b) Evaluate H = h o Rx (C Rx)-j

(c) For H from (b) find Q = 53.3 () -1' / 2 + 163 (H) 3

(d) Calculate cage-ball load P as Q/D

The procedure for determining the ball-cage normal load is

performed for the points of nearest and further approach (h0 min

and h max). The net normal load acting on the ball is given by:

ZP = P (h0 minimum) - P (h0 maximum) (1 8.26)

I 8.5.3 DRY CONTACT

Normal cage-pocket rolling element contact forces for con-

ditions of dry contact are calculated for the h0 (minimum) contact

only. A continuous force displacement function is assumed for

this calculation. A soft spring and low force values occur for

4 0.99, where Z = 2 7c/tr'-r); such that,

P = 10 . r . e for e 4- 0.99 (I 8.27)

A hard spring function is assumed for Z > 0.99, such that

- = 0.99 + 0.01 ( - 0.99)/;*e1

e1  + 1.01

P ~ 00506rA rl -(l/ ) I( . 1 2) 3 ( .88[1-e15p (e/2)" "1 p 1  (I 8.28)
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I 8.6 CAGE POCKET/ROLLING ELEMENT FRICTION FORCES

Friction forces which arise in the rolling element/cage

pocket contacts are calculated according to Appendix I 6 for

wet friction. Dry friction forces are calculated with a Coulomb

model.

I 8.7 CALCULATION OF CAGE LAND NORMAL FORCES AND FRICTION MOMENT

The lubricant forces which develop between a cage rail and

its supporting ring surface are obtained using the hydrodynamic

solution for self-acting short-journal bearings. According to[34

the resultant of the pressure distribution on the cage has orth-

ogonal force components, one of which lies along the cage lin

of centers (the line which passes through the cage center and its

point of closest approach to the ring). Both components pass

through the cage center.
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Figure 2.5 depicts the geometric and operating parameters

for the inner land riding situation, and Figure 2.6 the outer

land riding situation. ui, u0 , uc are the surface speeds of

the inner ring, outer ring, and cage land, respectively. The

cage undergoes a displacement in the bearing XYZ frame of a

magnitude e and direction ' C. An xyz frame is attached to

the cage, such that the y axis passes through the point of

minimum film thickness. The y axis is rotated 1c from the

ring Y axis. The short bearing solution for an isoviscous,

Newtonian fluid gives the magnitude of the normal first terms

in Eq. (I 8.29) through Eq. (I 8.31). The second terms account

for cage elastic flexure.

Wy= JoU L 3  
2 50

c (1 8.29)

3
w = J23/2 -475 S- (I 8.30)

and of the friction torque as,

Mc =0 VR 2L 8.1
C (1-2 1 / E I7 VI (1 8.31)

where ;el = E 0.999 C

C = radial clearance, (in.)

0 = viscosity, (lb-sec/in.2)

L = cage ring width, (in.)

R = cage ring radius, (in.)

U = entrainment velocity, )(in/sec)

V = (ui + uc) for inner land riding cage

V = (u0 + uc) for outer land riding cage

V = (ui, - uc) sliding velocity

= eccentricty ratio, e/C

I 8-17



W = cage land normal force component along line of centers, (lb)
y

Wz = cage land normal force component normal to line centers,(lb)z(

Mc = cage land friction torque, (in-lb)

In using Eqs.(I 8.29) and (I 8.30),the upper sign applies to an

inner ring riding cage and the lower to an outer.

Subroutine CGWET makes the calculations.

For dry contact a load displacement relationship is assumed

which has the following form.

W = XK a : = + F (I 8.32)y - y

XK = L3/C 2 forC_60.9 (I 8.33)

XK = 0.2111 L 31C 2 C /(1- E 2) >0,9

Wz = , -- +F z JI 8.34)

MC = WZ* R (I 8.35)

Subroutine CGDRY makes the calculations.
In order to insert the values for Wy, Wz and Mc into the cage

equilibrium equations, the following transformations are made for

inner and outer rings:

Mcx 1 0 0 Mc

Fcy , 0 cosO -sinO c  F= c c y (I 8.36)

Fcz 0 sinO c  cos9 c  z

where tanOc (-A Z/-AY) for an inner ring riding cage and tanOc

AZ/ j Y for an outer ring riding cage.
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I 8.7 FRICTION HEAT GENERATION RATES

The heat generated by fluid shearing between the cage and land

is calculated as the product of the cage friction moment and

rotational speed, i.e.,

qc := Mc'. 1 0 'tc I (1 8. 3 7)

where M c is calculated according to Equation 18.31 and - 4-cliS

the absolute value of the difference between the cage speed and the

speed of the ring that guides the cage.
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APPENI)TX 1 9

BEARING FATIG[E LIFE CALCULATIONS

I 9.1 INTROI)IJCTION

Within SIIABERTt, ball and roller bearing raceway fatigue life

is calculated with the methods of Lundberg Palmgren f33jandJ343.

The life thus calculated is modified by multiplicative factors which

account for material and lubrication effects.

I 9.2 BALL BEARING RACEWAY LIFE

Bearing raceway L1 0 fatigue life in millions of revolutions 
as

determined by Lundberg-Palmgreni,{33 3is expressed by

Qc I 3  
(I 9.1)

loi \em )

Qcm is the raceway dynamic capacity, the load for which 
the bearing

raceway will have 90 percent assurance of surviving 1 million

revolutions. From ref.133J.

2 fm1 0 4 1  (1+ 0m l 'm 3 1.80cm 7140 2 fm- )Z (1 m m I0 " 3 3  cos.m

(I 9.2)

where:

f groove curvature, raceway radius/ball diameter

(rm/D)

D Cos 611/dm

I) = Ball diameter

*C= Raceway contact angle

dm = Bearing pitch diameter

Z = Nunber of rolling elements

m = is a subscript, it is 1 for the outer raceway and 2 for

the inner raceway.
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The upper sign is used for the outer race, the lower for the inner

race.

Qem is the raceway equivalent load,

. (1 9.3)

where 0 is the individual ball contact load, and L- or C-- 3

depending respectively upon whether the applied load rotates or is

stationary with respect to the raceway in question.

1 9.3 ROLLER BEARING RACEIWAY LIFE

To account for non symmetrical load distributions across a

line contact, the roller and raceways are thought of as being

comprised of a number of sliced discs. Raceway L1 0 fatigue life,

in millions of revolutions at a given slice as determined by Lundberg-

Palmgren, {34 is expressed by

LlOmk (Qm;k ( 9.4)

Qcmk is the dynamic capacity of a raceway slice, defined as the

load for which the slice will have a 90 percent assurance of

surviving 1 million revolutions. n refers to raceway, k refers

to slice, n is the index of the last slice, from 343

1 6 0 ,1 7 f . Z Z 2

QCW sA- 0)I -I. "- e .a. Ar -e' Cc.

The upper sign is used for the outer race, the lower sign refers to

the inner race.

0mek is the equivalent load for the slice.

Onek =( ok) (I 9.6)
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0 mkj is the individual roller contact load on the k-th slice and

= 4.0 or C = 4.5 depending respectively upon whether the

applied load rotates or is stationary with respect to the raceway

in question.

The L life of a raceway is given by

1,10 CLZt'= CLJ Lo M (1 9.7)

where e is the Weibull slope exponent here taken to be 9/8
for roller bearings and 10/9 for ball bearings

a2 is a life improvement factor to account for improved

materials.

a3 is a life improvement factor to account for full film lubri-

cation which

a*3 is less than 1 when full film lubrication is not obtained.

See I 9,5.

1 9.4 BEARING LIFE

The L1 0 life of the bearing considering both raceways is:

,1 0  (LlOm) e - (I 9.8)
m=l

I 9.5 BEARING LIFE REDUCTION DUE TO ASPERITY INTERACTION

IntlSland 1 the form of a reduction factor accounting for

the effect of surface asperity interaction was deduced and its

parameters were set to best fit to a large body of rolling con-

tact life tc..t data.

As employed in Program SHtABERTH, the reduced tenth percen-

tile life L10 is calculated as follows,

a + 4 2) h/_ - / (I 9 .9)
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where

Y J (h/q) = .(h/q) (I 9.10)
1- (h/-)

S(') = density function of standard

normal distribution

(') = cumulative distribution function

of standard normal distribution

= ratio of plateau film thickness

to surface roughness for most

heavily loaded ball

(L1 0)= the full film life

L = a3* (Llo)f (1 9.11)

The term (Llo)ao is calculated using the principles of

Lundberg-Palmgren and multiplying by the user supplied product

of two factors which represent by Industry practice the life

improvement due to the type of material from which the bearings

is fabricated and the life improvement due to full EHD film

conditions. (L1 0)O is then down-rated to actual film conditions

by Eq. (I 9.11).

1 9-5
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AIPIiNDIX II 1

S K F COMPUTIR PROGRAM AT75YOO4 FLOW CHART

Flow Chart

The hierarchical flow chart presents the program
structure, listing the program elements in the order in which
they would be called to solve the shaft-bearing dynamic, as
well as steady state and transient temperature distribution
problems. The various solution loops are indicated, as well
as notes which indicate the functions of various subroutine
groupings.

Each line in the flow chart represents a program element,
subroutine, function or the main program ALWAYS. The call of
one subroutine by another is dencted by indenting the called
subroutine relative to the routine doing the calling. As an
example, subroutine SKF calls subroutines FLAGS, TYPE, PROPST,
LUBPROP, LUBCON, DATOT, CNVRT, CONS and SPRING.
Subroutine CONS calls CONST, CONST calls BCON and CRCON and BCON
calls ABDEL.

The first mention of a subroutine within the flow chart
includes the entire list of subordinate program elements.
At subsequent calls to that subroutine the list of subordinate
elements is omitted. As an example the first call to subroutine
AXLBOJ is followed by the subordinate elements JHVIKT, SNITHT,
NUMILOS, DUBSIM, HEIE, MEIL and SIMQ. After the call of AXLBOJ
from INDEL, the subordinate elements are not listed but are,
nevertheless, employed. The list of subordinate program ele-
ments are omitted in repeated calls of subordinate GUESS, BEAR,
SOLV13 and DELIV3 as well as AXLBOJ.

As noted earlier, rolling equilibrium is calculated, first
without, then if required, with friction forces included.
Whether or not friction is considered is highlighted with
the words Frictionless or Friction beside subroutine BEAREQ.

If the Program is too large to fit in its entirety on
the user's computer, segments of the program may be "overlaid".
For this purpose the Program is subdivided into ten (10) modules
which can be sequentially "overlaid". The contents of the ten
modules are listed below.

The Program segments SKF, TEMPIN, SHAFT and GUESS all
perform initiation functions and with the exception of GUESS,
are called only once per program execution.

The real problem solving portion of the program is
embodied in segment ALLT. Within this segment the shaft bear-
ing solution is obtained through the call to SIIABE, then the
steady state or transient temperature distributions are obtained.
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This scheme is repeated until the end objective, steady state
thermal equilibrium or time up for the transient scheme, is
realized.

The nonlinear equation solver SOLV13 is central to the
program and deserves special discussion as related to the flow
chart. The first call to SOLV.3 is from BEAR. Only for this
first call are all of the SOLV13 subordinate subroutines
listed as noted earlier. These include INSOLV, EQS, PARDER,
SIHQ, EOCIIEK, ERWRIT and ERCHEK. In the subsequent call to
SOLV13 in which the steady state temperatures are being calcu-
lated, the above listed subroutines are again called but
these calls with the exception of EQS are not listed on the
flow chart.

EQS is the name given by SOLV13 to a subroutine which sets
up the system of equations to be solved. EQS is brought into
SOLV13 through the argument list. When the bearing equations
are being solved, subroutine BRGGEQ is brought into SOLV13
and within SOLV13 is referenced by the name EQS. When the heat
transfer equations are being solved as a consequence of the
call of SOLV13 from ALLT, NET is brought into SOLV13 and is
referenced as EQS.
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NO. AT75YO04

PLOW CHART

ALWAYS

IKF Road and set bearing and bearing solution
LAGS control dataTYPE_/

PROPST Set lubricant properties and calculate

LUPROP constants for temperature dependency calculations
LUBCON
DATOT

ITLE Write bearing input and hardcoded. preset data
IT-AT

CNVRT
CONS

r BCON Calculate bearing related constanLa
ADDEL

CRCON
SPRING_

TENPIN
INDUN Read and write thermla and thermal solution
RWHTC control data and calculate heat transfer
RWG coefficients

THAp

SHAFT
ARRANG Read and write shaft gometry, loading

ORDERR and bearing position data
AXLBOJ

IJNVIXT Calculate shaft deflection constants
ISNi m
UNULOS flake initial guesses of bearing reaction loads
DUBSIN and displacementsIFIEE

RACT
INDEL
AXLBOJ-

PART
PAR . Calculate shaft influence coefficients

UESSXLBOJ
GGBRG

GROLL Guess values of bearing variables
GBRG

GBALL
VARRDC
GUESCG Begin the solution of the steady state or transient

ALLT __ thermal and temperature dependent shaft-bearing
SHABE anslysesFIT'

INTFIT Calculate bearing diametral clearance

SIHEQ
SONRI3BEAKC

EAR
PREPAR

1INITX Establish iteration scheme to satisfy
UNLOAD inner ring equilibrium
X14IN

SOLVI5
INSOLV
EQS - BRGGEQ

EARFO (FRICTIONLESS)
GCIRL

I ALLIN
I IALLEQ

ROLLR IIOLLEQ

I TNOR1.
PARDER Calculate rolling element raceway normal

EQS - BRGGEQ forces
SI ?4FQ
EQCHEK
IEQS - BRGGEO
IERWE IT
IDAHPCO.
ERCIIEK- Sum the rolling element forces and moments
pSUNK acting on the inner ring

LIFE Calculate bearing fatigue life
BFILL Add bearing inner ring forces and moments to the
SHAPA

FILL8 shaft equilibrium equations and predict new shaft

SIMEQ displacements
BEAR_ CElculate rolling element raceway normal loads
GUESS _:ith the new shaft displacements and guess
VISC0- bearing component speedsALPHAO
DRAGNO Calculate temperature dependent lubricant

STCON . properties
EVALUT (IF NPASS 1) Begin the calculation of bearing friction with

BRCGEQ the guessed component speeds

BEAREQ (WITH FRICTION)
iGCTRL-
BALLIN
BALLEQ

B INT Calculate ball-race film thickness plus the
THERFC hydrodynamic and concentrated contact

TARPC frictiom forces



shalt .,III) t Iq3r iun3

ISLMEQL displacements

gEAR _Calculate rolling element raceway normal loads
GUESS with the new shaft displacements and guess
VISCO2 bearing component speeds

ALPHAO Calculate temperature dependent lubricant
DRAGNO properties
STCON
EVALUT (IF NPASS 1) Begin the calculation of bearing friction with
PREPAR the guessed component speeds
BRCGEQ
BEAREQ (WITH FRICTION)

BGCTRL
BALLIN
BALLEQ

FMIX
TINT Calculate ball-race film thickness plus the
THERFC hydrodynamic and concentrated contact
STARFC friction forces
HOHI

HDFRIC
ASLOAD
FRINT

EHIDSKF
- FRICTN

ROLLIN
ROLLEQ
TNORN
I4XR

HDFRIC
THERFC Calculate the raceway normal and all friction
STARFC forces acting on each roller

HOHI
ASLOAD
EHDSKF

FRICTN
CAGESP Calculate the bearing cage speed
CAGGEQ Calculate the forces acting on the cage
CGLAND

CGDRY Calculate the cage-ring land forces and moments
ICGWCET.

CGRE
CGBALI
CGNRHW
1 CGEHDP Calculate the ball/cage normal and friction
CGHDP forces for the ball in question

CGFRN
ICGNOF
JCGEHi

EHDSKF
J FRICTN

i CGNRMDCGFRD, D

E SUNRE Calculate the cage equilibrium equations

BRAX Calculate the rolling element inertia terms

LIFE Calculate bearing fatigue life and bearing
LRHS) heat transfer coefficients

BEAR IF (NPASS - 2)""

PREPAR Calculate component equilibrium using the inner
4ISOLVXX ring positions determined with elastic rolling

EQS - BRGGEQ element-raceway forces
II BEAREQ (WITH FRICTION)

SONRI IF (NPASS - 3)'
EBARC Calculate inner ring and component equilibrium

EAR using friction as well as elastic component
PREPAR forces14 ISOLVXX

III - BRGGEQ
SuMFBEAREQ (WITH FRICTION)

DELPV3
TITLE
RITE Write bearing output
REOUT3
RITE2

FILLGT
SOLVXX

BQS T NET Calculate the steady state temperature distribu-
DELIV3 tion and write results

STEPNA

NETEET
DELIV3
NET Calculate transient temperature distribution
NETEET and write results

TNAP
DELIV3
TAP

Solution Loops
1. Steady State and Transient Thermal
2. Change in Clearance
S. Shaft-Inner Ring Equilibrium
4. Rolling Element and Cage Equilibrium
S. Temporntsm i g 41 hru
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INPUT FORMAT FORMS
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