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ABSTRACT

For most applications in radar data processing, the Fourier

transform performs satisfactorily. However, other methods of

spectral analysis can offer some advantages when a data set is

too short for a Fourier transform to resolve or detect important

spectral features. This rep-jrt describes one alternative

technique, maximum entropy spectral analysis (MESA), and suggests

possible radar applications including range-Doppler sizing and

the coherent measurement of range rate, Practical examples

demonstrate an improvement in velocity resolution and cross-

range resolution. Computer codes are listed that calculate

MESA power spectra for a real or complex discrete time series.
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1. INTRODUCTION

The interpretation of coherent radar signals often involves

the calculation of a power spectrum or a periodogram that

describes the frequency content of data. The conventional

Fourier approach, based on the work of Wiener (1950) and of

Blackman and Tukey (1959), relates the autocorrelation function

of a signal and its power spectrum through the Fourier transform.

Cooley and Tukey (1.965) popularized the Fourier approach with

the computationally efficient fast Fourier transform (FFT),

which has dominated the analysis of radar data until the present

time.

Notwithstanding the speed and mathematical elegance of the

Fourier transform with its entourage of weighting functions and

tapering schemes, it is troubled by several unavoidable limita-

tions that become serious as the temporal length of the data

set shortens. However, alternative methods of spectral analysis

do exist that have not as yet found wide application in radar.

Among es tha hechniqueo s "maximum entropy spectral analysis"

(MESA), an outgrowth of the pred..ctive deconvolution filtering

techniques developed by geophysicists for oil exploration. The

primary purpose of this report is to introduce MESA to radar as

a means of improving the velocity resolution and cross-range

resolution currently limited by conventional Fourier concepts. 0

1E
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Section 2 briefly identifies some of the problems with the

Fourier approach to spectral analysis. Se,:tion 3 describes the

MESA procedure for which more detailed derivations are given in

the appendices. Comparing conventional and MESA spectra,

Section 4 treats several radar applications to include the

measurement of range rate and the range-Doppler sizing of hard

bodies. Many other applications are feasible. In principle,

MESA can replace a Fourier transform wherever the latter may

occur, whether a transformation is to be made from the time

domain to the frequency domain, or from the frequency domain to

the time domain.

2
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2. CONVENTIONAL FOURIER TECHNIQUES

Conventional methods of spectral analysis make unrealistic

assumptions about the nature of data outside of the observation

interval. The periodogram approach (Jones, 1965) projects the

data set as an infinite periodic repetition of itself, while

the familiar autocorrelation approach (Blackman and Tukey,

1959) assumes a zero extension. These schemes attempt to

lessen the effects of the finite length of a data set upon

Fourier transformation.

One may think of a data set truncated in the time domain

as the product of an infinite data set and a window function

that has non-zero amplitude only within the observation interval.

The measured power spectrum of this product is the convolution

in the frequency domain of the true spectrum of the data set

(which one would like to have measured) and the spectrum of the

window function itself. The measured spectrum is unavoidably a

distortion of the true spectrum; the convolution allows the

calculation of the spectrum at one frequency to be contaminated
by energy at all other frequencies (loosely termed "leakage

through the sidelobes" of the window function). The measured

power spectrum can even take on physically meaningless negative

values if negative lobes in the window spectrum are being

convolved with strong frequency components in the true spectrum.

3



For example, a rectangular window (the default window) has

a spectrum of the form

W(f) - sin(CfT)/TfT

where T is the length of the data set. The first zero occurs

at f - l/T and, by rule of thumb, frequency components in the

true spectrum spaced more closely than l/T are not easily

resolved in the measured spectrum owing to the smearing caused

by convolution. The frequency resolution of the measured

spectrum is therefore 6f e l/T.

In radar applications, frequency shift and velocity are

related by the equation

v - Xf/2

so that velocity resolution becomes the fariliar result

6v - X6f/2 - X/2T.

Here X is the radar wavelength. We observe that this limitation

on the resolution of velocity is a result of using conventional

Fourier spectral analysis and does not necessarily apply if

another method of spectral analysis is used.

The rectangular window is sometimes replaced by a tapering

function (Hamming, Bartlett, and Taylor windows are a few

examples), designed to reduce the effect of the window sidelobes

when the window spectrum is convolved with the true spectrum.

r t - ' . -... . .. , . .. . . . ..A.
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The choice of a window always involves a compromise between

frequency resolution and the extent to which window sidelobes

allow the calculation of the m~easured spectrum at one frequency

~1 to be contaminated by components at all other frequencies.

The F~ourier transform loses resolution when the data set

is short compared to the periods of the spectral components in

the data. Toman (196S) and Jackson (1967) have~ shown, for

example, that most of the energy of a sinusoid will appear near

zero frequency in a spectrum. calculated with a Fourier transform

if the length of the data set is less than S8% of the period of

that sinusoid. Interference effects caused by the window

*1 sidelobes can also produce spectral shifts as large as 16%.

Basically, the problems from which conventional techniques

suffer are caused by the finite length of the data set. While

window theory is elegant,, it treats only the symptoms of trunca-J

tion and, in doing so, corrupts perfectly good data with weight-

ing functions. Ables (1974) cites what he calls the "First

Principle of Data Reduction":

The result of any transformation imposed
on experimental data shall incorporate
and be consistent with all relevant
data, and be maximally non-committal
with regard to unavailable data.

Conventional Fourier techniques clearly violate this

principle: data not in evidence are unrealistically assumed
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and true data are changed by weighting functions. Conventional

techniques are therefore philosophically objectionable and

become less reliable when the data set becomes short - and it

is pre-1sely the short data set with which radar is usually

concerned.

1-2
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3. MAXIMUM ENTROPY SPECTRAL ANALYSIS (MESA)

3.1 Deconvolution Filtering

The maximum entropy approach to spectral analysis is a

variation of the deconvolution filtering techniques developed

by geophysicists for processing seismic signals. A deconvolu-

tion filter whitens the spectrum of the signal on whict. it

operates; that is, when convolved with the original signal, it

outputs a new signal with a constant (white) spectrum. Mathemat-

ically expressed, the convolution of a discrete-time series

x(n) with a digital filter with coefficients a(n) is

M
f(n) - • x(n) a(n - k). (3-1)

kmo

The spectrum of f(n), which is the product in frequency space

of the spectrum of x(n) and the transfer function (or impulse

response function) A(f) of the filter, is a constant:

F(f) - constant - X(f) A(f). (•-Z)

The po-wer spectrum of x(n) is thesi

Pcf) - IXMf)I - K/IA(f)I 2  (3-3)

where K is a constant. Simply stated, deconvolution filtering

involves finding the digital filter that changes the input

signal into an output signal with a constant spectrum.

7 U
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This approach to spectral analysis is also known as the

Markov spectrum or the autoregressive spectrum described by

statisticians (see, for example, Parzen, 1969). Burg (1967;

1968; 1975) realized that this approach yields the spectrum

having the "maximum entropy" (explained below) of all possible

spectra that are consistent with the measured autocorrelation

function of x(n). Burg also devised methods of efficiently

calculating the filter coefficients from which A(f) can be

determined.

One advantage of deconvolution filtering is immediately

obvious: finding X(f) does not involve a convolution in frequen-

cy space with a cumbersome window spectrum that (unavoidably)

destroys spectral resolution. The convolution has already

taken place in the time domain between the input signal and the

digital filter. Therefore, there ar.: no window sidelobes or

serious end effects as occur uponl conventional Fourier transfor-

mation. The truncation of the data set is important only to

the extent that enough data must be available to allow the

construction of an efficient whitening filter that can reduce

the data to a random series.

Other comparisons between the characteristics of Fourier C7

and MESA spectra will "he drawn later and are summarized in the

appendices. However, a discussion of the philosophy of maximum

entropy is first in order.

8
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3.2 The Maximum Entropy Philosophy

Choosing the best spectral-domain representation of a

truncated discrete time series, for which only an imperfectly

[ ~determined autocorrelation function can be calcI~.ated, is a

major problem in signal analysis. Among the countless spectra

that may be consistent with a given autocorrelation function,

only one spectrum can be optimal. A set of rules governing

that choice must be established.

Jaynes (1957) introduced a method of statistical inference

called the "maximum entropy estimate". He showed that informa-

tion theory (Shannon and Weaver, 1949) provides a criterion for

selecting the best statistical description of a process when

only a partial knowledge of that process is available. The

optimal choice is the one which is maximally non-committal with

regard to any missing data, and which is simultaneously con-

strained to be consistent with all available data. The result

is the best estimate that could have been made on the basis ofI

the data at hand. (Actually, Ables's first principle isa

rest4"atement of Jaynes's conclusion.)

The term "entropy" is used in an informational sense, such

that a measure of the entropy of a process is a measure of our

ease in coping with data that we do not have. We must make no

assumiptions and impose no constraints that cannot be justified

directly witemu the data that we do have.

9
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What is needed is an expression for the entropy of a

process in terms of its spectrum. That expression is then

L. maximized subject to the constraints imposed on the spectrum by

the available data.

Shannon and Weaver (1949) have shown that the appropriate

expression for the entropy of a process in terms of its power

spectrum P(f) is

00

E = f log P(f) df. (3-4)
-00

The values of the autocorrelation function calculated from the

available data comprise the constraints on P(f). Ideally,

every value p(m) of the autocorrelation function calculated at

lag m is related to P(f) by

00

f= P(f) exp (-i2¶TmfAt] df (3-5)
-00

where At is the time spacing of the data.

Maximizing Eq. (3-4) subject to the constraints of Eq. (3-

5) (one for each known value of 4(m)) becomes a problem in the

calculus of variations. In the case where the 4(m) are equally

spaced and centered at zero lag, P(f) may be determined with

Lagrange multipliers (Edwards and Fitelson, 1973).

10. . .;.p ,7 !iTTT
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However, a more direct approach, which is equivalent to

the formal use of Lagrange multipliers but which allows a more

tangible appreciation of the MESA procedure, is the determina-

tion of the deconvolution digital filter that transforms a

given time series into a random series with a white spectrum.

The next section and Appendix I outline this calculation from

which A(f) in Eqs. (3-2) and (3-3) is found.

3.3 Predictio'A,-Error Filtering

The whitening of a discrete-time series can be done with a

prediction-error filter (Peacock and Treitle, 1969; Makhoul,

1975). A complex measurement x(n) is approximated by the

weighted average of the preceding M terms, or by the weighted

average of the successive M terms. The former is a forward

prediction, and the latter is a backward prediction:

M
xf(n) = aM,k x(n-k) (3-6)

k=l

xb(n) laM,k x(n+k) (3-7)• ~~k= 1i

where the asterisk denotes complex conjugation, and aMk is the

kth filter coefficient out of a total of M coefficients. The
prediction filter is a linear zombination of M data points that

11
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predicts the data point immediately preceding (or following)

-the M points. The errors in the forward or backward prediction

of a given data point x(n) are

ef(n) = x(n) - xf(n) (3-8)

eb(n) = x(n) - xb(n) (3-9)

and, for the linear prediction to be optimal, the errors should

be minimized simultaneously in a least squares sense. Therefore,

we minimize the total error power

P efeb)n2]
M efn +ebn) (3-10)
n

with respect to the M coefficients. P is the power of the

output crror series left behind after the x(n) have been predic-

ted. The spectrum of the output series is a constant because,

if the spectrum contained any recognizable frequency components,

then we could use the knowledge of those components to improve

the prediction by editing the filter coefficients until the

"spectrum does become white. b
Therefore, the prediction filter can be used to transform

the data x(n) into another series (the ejror series) that has a

constant spectrum: each point x(n) is replaced by the error in

its prediction. The prediction-error filter is represented by

12
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Eqs. (3-8) and (3-9) which use the prediction filter. The

output of the former is the error in the prediction of a known

measurement; the output of the latter is simply the prediction

itself.

Van Den Bos (1971) has shown that the prediction-error (P-

E) filter is equivalent to the least-squares fitting of a

discrete-time all-pole model to the data. Anderson (1974) ex-

tended this work in real form, and a complex formulation of

Anderson's algorithms, which calculate the P-E filter coeffi-

cients, is derived in Appendix I.

The impulse response function of the P-E filter is its z-

transform

M
A(f) = 1 + E aM,k z (3-11)

k=1

z = exp (i21fAt]. (3-12)

There is one coefficient aM,k for each of the M constraints put

on the power spectrum during entropy maximization.

The choice of M is somewhat arbitrary, although Akaike

(1969a, b; 1970) has argued that the length M of the filter

should be chosen so as to minimize the error power PM" An M

should be chosen so that increasing the filter length to M + 1
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no longer significantly reduces the error in prediction; that

is, P is not much smaller than P Of course, M cannot
M+l M

exceed the number of data points. (See the review article by

Ulrych and Bishop, 1975.) Using too small an M results in a

highly smoothed spectrum, obviating the improved resolution

capabilities of MESA; using too long a filter allows noise to

introduce spurious detail into the spectrum. A reasonable

initial value of M is one fifth the number of the data points

of the input sequence.

3.4 Power Spectrum and Power Spectral Density

Both Lacoss (1971) and Burg (1975) have pointed out that

the MESA power spectral density function is a better measure of

the amount of power in a small bandwidth than is the power

spectrum. The two are related by

f 6 f/ 2

PSD(f) = f P(f) df/6f (3-13)

f-Sf/2

where PSD(f) is the power spectral density, P(f) is the power

spectrum (Eq. (3-3)), and Sf is the small bandwidth over which

P(f) is integrated. Since P(f) is calculable at any frequency,

A(f) being an analytic and continuous complex polynomial,

Eq. (3-13) is easily implemented using numerical integration

(see appendices).

14
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3.5 MESA and Non-Linearity

One attractive property of conventional Fourier techniques

is linearity: the power spectral density of the sum of several

signals is the sum of the power spectral densities of the

individual signals. Moreover, the square root of the Fourier

PSD(f) gives a reliable amplitude spectrum of the input signal.

Unfortunately, MESA is ultimately not a linear technique.

Indeed, Eq. (3-3) is the inverse of the square of a complex

polynomial. Therefore, a comparison of relative power at

different frequencies can be misleading. Parseval's theorem

notwithstanding, the integral of the MESA PSD(f) may not equal

the total power of the input signal.

The value of MESA lies in frequency detection and frequency

resolution, as discussed later in Section 3.7. It is not as

useful for determining the relative strengths of different

frequency components. MESA can be used in conjunction with

Fourier techniques, for example, by identifying the important

frequency components with MESA and then performing a DFT (dis-

crete Fourier transform) only at those frequencies to estimate

their strengths and phases. Section 3.6 offers another alterna-

tive in which a Fourier transform can be taken for a data set

extended beyond the observation period by the linear prediction I

filter.

•: •' 1
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It is worthwhile at this point to mention the non-linear

effects of noise on the MESA spectrum. We can rewrite Eq. (3-

3) as

P~f) - K/Iz'l-z, 11 Iz Z21 2... Iz--z MI1 (3-14)

z - exp (iG) - exp (i2nfAt)

where we have factored A(f) in the denominator. If we plot the

poles zj (1-l to M) of P(f) in the complex plane, as demonstrat-

ed in Fig. 3-1 for M-5, they will all lie within the unit

circle. (This is because the set of prediction filter coeffi-

cients is "minimum phase",, as explained, for example, in Robinson

(1967) or Claerbout (1976).) As A(f) is evaluated on the unit

circle, the angle O=27fAt varies from -r to 7. Therefore, f

varies between -1/2At and 1/2At, that is, between minus and

plus the Nyquist frequency. For a given frequency at point F,

each factor in the denominator of Eq. (3-14) is the square of

the distance between point F and one of the poles. As f changes

and point F passes by a pole near the unit circle, P(f) will

exhibit a local maximum.

The frequency components in the input data set will corre-

spond to those poles of P(f) closest to the unit circle.

Clearly, there can be no more maxima detected in P(f) than

there are poles of P(f) or coefficients of the filter. In the
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case where there are actually fewer frequency components in the

data than there are poles available for placement, the extra

poles can be eliminated by reducing the number of filter coeffi-

cients, as M is the degree of the complex polynomial A(f) that

is factored to locate •he M poles.

Noise can affect the location of the poles in the complex

plane. Since Fq. (3-14) involves the inverse squares of the

distances between a point on the unit circle and the poles, a

small change in the position of a pole that is already near the

unit circle can cause a large change in the magnitude of P(f)

near that pole. It is for this reason that the amplitude of

P(f) may not accurately reflect the true power spectrum. Also,

since the PSD(f) is the line integral of P(f) over a small arc

on the unit circle (a small frequency interval 6f), the ampli-

tu6e of the power spectral density similarly may not be accurate.

Burg (197%) has recognized that both the peak value and

width of an appprer.t spectral line in P(f) strongly depend on

the backgro'ind noise. However, he maintains that the product

of the peak value and line width, whichi is proportional to the

total power in the spectral line, will be estimated accurately

if the samplir.g of the spectrumn is fine enough Lo trace out the

shape of the spectrum. In general, the unequivocal detection

of a spectral component is much more reliable than an estimate

17



of its strength in a MESA spectrum. Therefore, locating the

poles of P(f) may be sufficient for frequency detection.

Akaike (1969), Baggeroer (1976), and others cited therein

have investigated some confidence intervals and the statistical

variability of the MESA technique.

The MESA user must decide if the non-linearity poses a

problem for his specific application. If the detection of

frequency components in a data set is the primary goal, MESA

will iuideed be useful. However, the procedure may not be

totally adequate if precise amplitude and phase information is

also required. In that case, a DFT can be computed at the

frequencies already identified by the MESA procedure.

3.6 Linear Prediction and the Fourier Transform

The MESA procedure is linear up to the point at which the

prediction filter is calculated. The filter itself is a linear

operator that, as we have seen, uses a weighted average of M

data points to estimate the adjacent data points.

We propose the following procedure to take advantage of

the linearity of both the prediction filter and the Fourier

transform: A prediction filter is calculated from a data set

of N, points. The filter is then used to extend (or predict)

the original data set to a total of N2 points, outside of the

18



observation interval in both forward and back'ward directions.

Then 4 conventional Fourier spectrum is calculated with the

larger data set of N2 Points.

The data points that are predicted by the filter will have

essentially thz same spectral composition as the original data,

as a knowledge of the spectrum of the original data is contained

in the filter coefficients.

Since additional signal is being created and subsequently

transformed, the normalization of the power spectrum of the

extended data set should be done with respect to the total

number of samples N. Any weighting window should be applied

across the N2 samples, after the extension has been done.

The deterministic spectral components having been reinforced

in the process of prediction, the apparent signal-to-noise

ratio is improved; the contribution of noise cannot be predicted

and therefore does not appear in the extension. Of course, the

quality of the prediction will depend on the extricable determin-

ism and the SNR of the original data. If the original data areI

pure noise, the poles of' P(f) will be near zero (clustered at

the origin of the complex plane) and the magnitudes of the

predicted points will be very small or zero. Otherwise, the

sinusoid'dI components of the original data dominate the extension.
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Linear preuiction is less likely to improve the regions of

a power spectrum for which a band or continuum of frequencies

contains energy. In this case, discrete poles will position

themselves in the complex plane in the vicinity of the arc on

the unit circle corresponding to that band of frequencies.

Some frequencies in the band may be enhanced slightly more than

others because the poles are points, each of which is closest

to a single point (frequency) on the unit circle. The uneven

effect will be small, however. and the poles will move farther

away from the arc on the unit circle as the band of frequencies

broadens. Indeed, if there is equal energy at all frequencies

(noise), the poles cluster near the origin, which is the only

point equidistant from every point on the unit circle.

Predicting the data beyond the observation interval is

more palatable than assuming such data are zeroes. The predic-

tion, is as self-consistent with the original data as is possible

with the information at hand. Conventional zeroes would be noI

more consistent with the original data as would be any other

constant randomly chosen.

The appendices contain a FORTRAN program "LNPREIY' that

linearly extends a complex data set from N 1 to N2 points. A

user-supplied Fourier transform can then be performed on the N2

points output from this prediction subroutine.
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F
3.7 Improved Frequency Resolution with MESA

Because a data set could, in principle, be extended to

infinity, spectra based on linear prediction have a better

chance both of separating closely spaced frequency components

and of locating them more precisely in frequtncy space. In

this section, we demonstrate that MESA can more accurately

estimate the frequency of a single noisy sinusoid, as well as

detect two closely spaced sinusoids, than can conventional

techniques.

First consider a noisy sinusoid sampled in time:

x(nAt) - A sin(2yf 0 nAt * + N(nAt) (3-1S)

where f0 is the basic frequency, * is a phase constant, At is

the sample spacing, A is the sinusoid amplitude, n is a sample

counter, and N is Gaussian noise. We want to calculate the

error in measuring fre as a function of a given signal-to-noise

power ratio (A/N) 2 and of a fixed number of data samples, when

either MESA or conventional techniques are used.

We assemble an ensemble of 100 data sets {x(nAt)) by

making 100 random draws on * between 0 and 2w. Each data set

has the same number of samples and the same signal and noise

amplitudes. A spectral transform is done on each of the 100

data sets in an attempt to extract f0. Then the standard

deviation of the 100-member set Ifmeasured - fo} is calculated,
0
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and a/fo becomes a measure of the precision with which we can

find fo for a given SNR and number of samples. We can con-

struct a family of curves by holding the SNR constant and

varying the number of samples, or vice versa.

As long as fo0 < 0.5/At, the sinusoid is properly sampled

and the actual values of f and At are irrelevant.0

Figures 3-2(a-b) compare the expected error in measuring

Sfor a data set that is processed with either MESA or an FFT.

We have taken fo 0.25/At (four samples per period).

As expected, either an improvement in SNR or an increase

in the number of samples reduces the error. However, for a
KL

given SNR and length of data set, the error in the MESA estimate

of fo is consistently smaller than the error in the FFT estimate

of fo.

This reduction in expected error demonstrates that conven-

tional Fourier techniques do lose some information owing to the

problems discu-sed in Section 2. Although we do not expect the

Fourier transiorm of a linearly predicted data set to render an

error as small as MESA, it should show improvement over the

conventional Fourier transform that uses an extension of zeroes.

As an example of the ability of MESA and Fourier tech-

niques to resolve closely spaced frequencies, consider a two-

component signal sampled in time

22
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2
x(nAt) = A [cos(27rf nAt) + i sin(2fff nAt)] + N(nAt)m m mm=l1

(3-16)

The shaded part of Fig. 3-3 displays 25 samples of the

real part of Eq. (3-16), for which A1 =A2 2 units, At = 0.01 sec,

f = -15.3 Hz, and f 2 = -13.3 Hz. Enough white noise is added

to give a SNR of 10 dB.

Since only 0.25 sec of data is transformed, conventional

Fourier techniques (zero extension) will be unable to res6lve

frequencies spaced more closely than 1/0.25 = 4 Hz. In Fig. 3-

4 the conventional power spectral density shows only one peak,

as expected. The MESA PSD of Fig. 3-5, however, detects the

presence of both frequencies in the 25 samples; the unequal

power amplitudes are the result of non-linearity.

If we extend the 25 samples to 100 samples with a 5-point

prediction filter (the extension is the unshaded region of

Fig. 3-3), then the conventional Fourier PSD does resolve both

frequencies, as is shown in Fig. 3-6. The power amplitudes in

Fig. 3-6 are almost equal and yield a more reliable estimate of

the relative strengths of the two frequency components.

Thus, we find that both the MESA spectrum of the original
data set and the Fourier spectrum of the linearly-predicted

I'
data set can resolve closely spaced frequencies with more

success than can the traditional Fourier spectrum.

23
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3. 8 Additional Use of the z-Transform

The calculation of a power spectrum or a power spectral

density is really unnecessary if only frequency information is

required. The z-transform A(f) of the prediction filter can be

factored to give

A(f) = (z -l (z-" - (3-17)
-Z)( -z 2 ) ... (z

as in Eq. (3-14), where z (1= 1 to M) are the zeroes of A(f)

and z = exp(ie) = exp(i2nfAt). The magnitudes of the zeroes

:z~J are always between zero and unity, and the zeroes with the

largest magnitudes are likely to correspond to the frequency

components in the data. If we choose some minimum magnitude

which z, must have to be considered as a candidate frequency

component (IzAI > 0.8, for example), then we can calculate the

corresponding frequency since

0 27fAt = arctan[Im(z 1 )/Re(z 1 )]. (3-18)

For radar applications, range rate R = Xf/2 so that

R = Vamb arctan[Im(zj)/Re(z 1 )]/2• (3-19)

where Vamb = X/2At is the ambiguous velocity. Equation (3-19)

is easily interpreted geometrically because one trip around the

unit circle is one foldover in velocity. A target's range rate

can be estimated accurately in this way without the use of a

Fourier transform.
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I 3.9 Additional Comments

This section has presented the essence of the linear

prediction - maximum entropy approach to spectral analysis,

avoiding many of the mathematical complexities th~at are treated

extensively in the literature and briefly here in the appendices.

IThe reader interested in more detail is referred to the biblio-

V1  graphy in the review article by Ulrych and Bishop (1975) and to

Burg's (1975) dissertation which explores many topics not

discussed here.
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Fig.3-l. Zeroes of the z-transform of a five-point
prediction error filter are plotted in the complex plane.
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Fig.3-2a. Percent error in estimation of the frequency
of a noisy sinusoid as a function of SNR for a given num-
ber of data samples.
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Fig.3-2b. Percent error in the estimation of the frequency
of a noisy sinusoid as a function of the number of samples
at a given SNR.
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Fig.3-3. A two-frequency signal (-15.3 Hz and -13.3 Hz)
is sampled 25 times, every 0.01 second (shaded region),
and linearly predicted to a total of 100 samples.
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Fig.3-4. Conventional Fourier PSD of shaded region in Fig.3-3.
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Fig.3-S. MESA PSD of shaded region in Fig.3-3.
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Fig.3-6. Fourier PSD of linearly extended data (all 100
samples) in Fig.3-3.
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4. MESA APPLICATIONS FOR RADAR

4.1 Radar Data Preparation

A coherent radar records the amplitude and phase of the

energy coming from each range cell along the radar line of

sight (RLOS). For a given range cell or range gate, we form a

complex sample at time t

x(t) - ACt) coseCt) + iA(t) sinO(t) (4-1)

where A(t) is the radar cross section in volts (or in meters or

an equivalent linear unit) and 0(t) is the phase. Since the

data are recorded pulse by pulse, x(t) is a discrete-time

series.

If the object is moving, then 0(t) changes in time since

phase is governed by

G(t) a 4wR(t)/X, (4C-2)

"where R(t) is the one-way distance between the object and the

radar, and X is the radar wavelength. Pulses must occur often

enough that 0(t) does not change more than 2w between pulses;

otherwise, the phase is aliased and becomes ambiguous.

The amplitude A(t) may change in time if the orientation

of the radiation pattern of the object changes with respect to

the RLOS, owing to the overall body velocity or to body motion

about the center of mass (spin, tumble, precession, etc.).
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Hence, x(t) contains information about the scintillation

of reflected energy and about the velocities of objects in the

range cell. Indeed, A(t) and 0(t) represent the resultant

* vector sum of the individual returns from all. unresolved scatter-

ers in the same range cell, each of which contributes a frequency

component to A(t), to G(t), or to both.

A non-coherent radar does not record phase, for which case

we take G(t) 0 in Eq. (4-1) and x(t) reduces to the real

series

x(t) - A(t) + iO = A(t). (4-3)

In this section, we present examples of the use of Fourier

and MESA algorithms to measure body velocity (range rate) and

to perform range-Doppler sizing of an object with motion about

its center of mass.

4.2 Measurement of Range Rate

The projection of the velocity vector of an object along

the RLOS is its range rate, which can be estimated from a

coherent data set by the spectral analysis of x(t). For the

moment we assume A(t) is a constant and temporal changes in

x(t) can be ascribed to changes in R(t) [Eqs. (4-1) and (4-2)].

The frequency axis of the PSD function can be scaled in

velocity since v )Xf/2. One ambiguous velocity interval spans
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JI
I! the Nyquist range from -l/26t to l126t, such that Vamb:1

X(2/2At)/2 - A/2Ut. An object may be seen to fold over as the

range rate, which is measured modulus Vamb, Moves from one

ambiguous interval to another.

This effect is shown in Fig. 4-1 where the range rate of

an object observed by a UHF radar gradually changes in time

(X - 0.69 m, At - 1/160 sec). Here, consecutive data sets of

16 pulses are transformed with a conventional FFT. A zero

extension to 2S6 samples begins at sample 17 and a rectangular

window is used. There is a 50% overlap of data from line to

line, 8 old pulses dropped and 8 new pulses added each time a
new PSD is calculated and plotted.

The main lobe of each power spectral density function

locates the range rate of the object during the processing

interval T. Here T - 0.1 second. The third dimension, a
linear scale from 0 to 1, shows the sidelobe structure of the

sin(irfT)/(irfT) window spectruw. that has been convolved with the

true spectrum (a delta function at the true range rate).

We can extend each set of 16 pulses to 48 pulses with a 4-

point linear prediction filter before Fourier transformation,

as if we were processing 0.3 second of data instead of 0.1 sec-

ond. Figure 4-2 shows a marked reduction in sidelobe levels

and a proportional narrowing of the main lobe. A zero extension
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to 256 samples and a rectangular window are used, although the

zero extension here begins at sample 49. A 50% overlap of

original data points allows Figs. 4-1 and 4-2 to be compared
Sline-by-line.

Figure 4-3 displays the analogous MESA results. The

sharpness of the peaks and the absence of sidelobes are two

immediately apparent features. As we have seen earlier, the

error in locating the position of each peak is considerably

less with MESA than with the conventional techniques. Rather

than computing the full MESA PSD, the "largest zero" procedure

suggested in Section 3.8 could have been used to locate the

peaks in Fig. 4-3 with the same precision.

Even when the data set is short and only a few radar

pulses are processed, conventional Fourier techniques may

perform satisfactorily if there is only one velocity to be

estimated. However, when the data are limited, the conventional

techniques are less able to detect closely-spaced velocities of

multiple objects unresolved in range. For this application the

linear prediction and MESA algorithms may prove useful.

4.3 Range-Doppler Sizing

The size estimation and imaging of a hard body rely on

cross-range (Doppler) measurements made in each of the range
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cells that overlay the target. For example, if an object is

spinning, then each frequency component fi (that is, each

velocity component vi) in the radar return is proportional to

the distance r. from the spin axis at which a scattering center

on the target is located. That is,

vi = Xfi/2 = wspirisinQ (4-4)

1 i spin i

where X is the radar wavelength,.wspin is the spin angular

frequency, and S is the aspect angle between the spin axis and

the RLOS. We seek the frequency components f With a knowledge

of Wspin and Q, a range-Doppler image can be constructed from a

collage of the cross-range plots from all range cells containing

the object.

Figure 4-4 displays the evolution of the conventional

Fourier PSD for the radar return coming from the base of a

spinning and precessing conical target. The wavelength X is
5.3 cm, At is 0.01 sec, and 32 pulses are processed at once

with a 50% overlap of pulses from line to line. Because the

spin period is 0.5 second and 0.32 second of data is being

transformed per line, the velocity spectrum is not time station-

ary and, therefore, becomes smeared within a band of frequencies

thrcugh which many scattering centers move during the processing

interval. The band is modulated by the precessional motion,

which changes the aspect angle in time. However, the base
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radius can be estimated with Eq. (4-4) and a knowledge of the

spin rate and time-dependent aspect angle. The edges of the

precessional envelope correspond to the horizons of the base

that are spinning toward and away from the radar, so a lower

limit on the base radius can be made with Eq. (4-4) where the

velocity spectrum has its greatest width.

Analogous to Fig. 4-4 is Fig. 4-5, for which the 32 pulses

are extended to'96 before Fourier transformation. Because the

data are not initially time-stationary owing to the long process-

ing interval, there is not a significant improvement. Use of

"the MESA procedures in Fig. 4-6, however, does suppress the

sidelobes and allows a clearer definition of the precessional

envelope.

A reduction in the length of the data set makes time-

stationarity approachable. When the processing interval is

small, the scattering centers on the target base cannot exhibit

as large a change of range rate and hence severely smear the

velocity spectrum. However, conventional Fourier techniques

have poorer resolution as the data set becomes shorter; in the

effort to detect single frequency componz'nts in approximately

time-stationary data, we paradoxically lose the ability to

resolve them.
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For example, Fig. 4-7 shows conve:ntional Fouriey spectra

when only 8 pulses are processed at a time, as opposed to the

32 pulses used earlier (a 50% overlap is retained). Even

though Fig. 4-7 is centered where the precessional envelope

necks down (about t = 7.5 seconds ini Fig. 4-4), there is no

distinct indication that the target is precessing.

If, however, the 8 pulses are linearly extended with a 3-

point filter to 24 pulses before Fourier transformation, the

precessional envelope becomes evident in Fig. 4-8. In this

example, linear prediction has provided the same information

about the dynamic motion of the body with one-fourth the amount

of data previously used.

Analogous MESA spectra are shown in Fig. 4-9. The absence

of sidelobes more clearly reveals the precessional envelope.

Moreover, there are suggestions of the paths of individual

scattering centers where the spectral peaks sweep diagonally

from right to left as time increases (see arrows). An ability

to track individual scattering centers would be sufficient to

estimate, for example, the spin rate of a target unambiguously.

On the one hand, any of the three methods of Doppler

processing seems to provide essentially the same spectral

information if the data set is long or if it is not time-

stationary. The spectra computed with the linear prediction
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and MESA algorithms are, however, less cluttered with sidelobes

to allow better definition of the qualitative features in the

V, spectra.

On the other hand, the linear prediction and MESA algorithms

can analyze short data sets with more success than can conven-

tional Fourier techniques. Features which the latter may fail

to resolve may be detected by the alternative techniques.

4.4 Other Radar Applications

Only two applications have been mentioned here that,

nevertheless, demonstrate the utility of predictive deconvolution

concepts. Other applications might include

(1) Radar metrics - updating Kalman filters
with fewer radar pulses;

(2) Drag measurements - measuring target
range rates in less time and with more
"precision;

(3) Discrimination in clutter - detecting
objects in velocity space that scatter
weakly compared to the background noise;

(4) Pulse compression - improving range
resolution when frequency data are
digitally transformed into the time or
range pulse shape.

This list is by no means exhaustive. The potential user

must decide if the linear prediction and MESA procedures

afford an advantage for his own application. In any case,

these new techniques are well worth trying and offer an alterna-

tive to the conventional Fourier transform.
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Fig.4-1. Range rate history calculated with conventional
Fourier transform.
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Fig.4-2. Range rate history calculated with a Fourier
transform after data have been linearly extended.
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Fig.4-3. i ge rate history calculated with MESA.
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Fig.4-4. Doppler history of base range cell of spinning
and precessing cone using conventional Fourier transforma-
tion of 32 samples.
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t'p

5 ^&'- 1~ 14-

-I 0

VELOCITY (MISEC)

Fig.4-S. Similar to Fig.4-4, but data are linearly extended
before Fourier transformation.
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to -

0-

VELOCITY WM/SEC)

Fig.4-6. MESA Doppler history analogous to Fig.4-4.
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IN'P-122 (4-7)

..... . .-

1 0

VELOCITY (MISEC)

Fig.4-7. Similar to Fig.4-4, but only eight pulses
are Fourier transformed at a time.
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VELOC ITY (MISEC)

Fig.4-9. MESA Doppler history analogous to Fig.4-7,
Precessional envelope becomes apparent, and tracks ofR
individual scattering centers are perceptible (arrows).
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APPENDIX I

CALCULATION OF PREDICTION-ERROR FILTER COEFF-CIENTS

FOR COMPLEX DATA

Van Den Bos (1971) has shown that MESA is equivalent to a

least-squares all-pole model of the data being aaalyzed. This

means that a data point is predicted by the weighted average of

its neighbors. The all-pole model is also known as the autoregres-

sive model (Box and Jenkirs, 1970). Anderson (1974) used this

formalism to develop algorithms for calculating the prediction

filter coefficients for a real input time series. Since a complex

time series is often of interest, we shall modify Anderson's work

here and extend it to complex form. The same notation is used

for ease in comparison. The reader should note that Anderson

defines his filter coefficients as -amn instead of +amn (the

latter is the convention in most MESA literature). Then, the

MESA power spectrum is written

P At
P(f) = m (I-1)

m 2
1- a, e 2 7rfnAt

n=l

The frequency f is limited to the Nyquist range Ifi < (i/2At).

Pm (the residual error power remaining after an (m+l)-point
mi
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filter is convolved with the data) and each filter coefficient

amn (the nth coefficient out of the total m coefficients) are

determined by the solution of the equation

O(R) 4(i) O(m) 1 Pm

ý(-(O) 4(m-l) -a, 0

... (1-2)

¢ ( - ) € (- e+ l) ¢ (0 ) -a m _ 0

where *(A) is the value of the autocorrelation function at lag 1.

For 1=0, we have

N

P = 1 (1-3)
t-1

as the (real) variance of the complex series {xt} of N points.
t

1The solution of (1-2) involves the stepwise increase of the

matrix dimension by one and the determination of (m+2) unknowns

as the known autocorrelation function is being calculated. These

unknowns include the m filter coefficients, the next value of the

autocorrelation function, and the error power: (am,, am,,

F(m), Pm). There are only (m+l) equations in Eq. (1-2), so an

additional relation is necessary. Burg (1968) suggested that the

additional relation is the minimization of the total error power

(the sum of the forward error power and backward error power).

For example, the forward and backward error power for a two-point

- ~51
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prediction-error filter (1, a1 1 are

e = 1 ~N-i1a(142 Ixt5 X alixti 14

tN-1

2 2eT T F, Ixt al,lxt+ll
eb = ( -aI

t=i

2 2Minimizing the sum e e e with respect to a 1 gives

f b"

N-Ni N-

a1 ,1  2 F, x. x t+1  (xt x. t x tl+, (1-6)
S1 t=l

N- I 2

2 1.M

e b 2(N -m) xt - am,kXt+lk (I-7)

t=1 k-l
2 .1

The sum e + e is minimized with respect to a Adding a
b M,rn

new coefficient will require editing the old coefficients (k=1,

rn-i) by the rule

e mk a -k )mm -- ,mk (1-9)

to update the filter. Equation (1-9) is the result of the Levin-

son recursion relations (Wiener, 1949; Robinson, 1967) for the
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solution of Toeplitz matrix equations like Eq. (1-2). The updated

error power becomes

P 1 a a ).(1-10)rn ~m- 1  
- I arMm,m

If we set moa -1 and am~ 0 for k > m, we can rewrite

Eqs. (1-7) and (1-8) as

N-rn m 2
21

m7 , 1, amkxt+k (-1
t=l k=o

1 N-rn m *2
eb a M~ mx t+rnk (1-12)

t=l k=o

Inserting Eq. (1-9) into Eq. (I-11) and Eq. (1-12) we obtain

ef 1 ~N-rnm m m t( - 32 1 2~-
t=l

e2 - 1 N-rnm
- "2 1; . '1P lb -~am b' (1-14)b TC'h nt m~r m,t

where we have defined the series

m *m *

v~,t am-l1k t+k- Zam_ l,m-.kxt+m..k (-

1 b.,ktm arnr~tk (1-16)
k=o k=o
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The alternate forms of b and b' are obtained by changing thern,t nip t

index k to rn-k and reversing the order of summation (cornrutativ-

2 2

ity), Minimizing the sum ef + eb with respect to arn gives

N-rnN-
a 2 1; b bf (b~ b +bf bf

t~l (1-17)

It is easy to show that

b b -am,t M-ltt am-l,rn-l m-,l,t (-8

1', b,.} a b (1-19)rn~t m-1t~l n-1m-l n-1,t+1

so that the series b and b' can be constructed from theirrn,t Vitt
previous values as m increases by one. The initial values are

b bbmt t x (1-20)

opt 0, t

and

bit

It iseasytosw tha

bi't =X+b (1-21)

Then b and b' can be calculated from Eqs. (1-18) and (1-19)
m,t r,t

as m is incremented from 1 to the desired filter length M.
Clearly, the solution of (1-2) is a "bootstrap" process

based on a recursion from m = 1 to M. Figure I-I shows a flow

chart for the recursive procedure that calculates the complex

filter coefficients. Following Anderson's Figure 1, bm is bl-i li!,t

54 U



e nd b' is b2. The array aa(t) is temporary storage of the!i. m ,t

filter coefficients before being updated into array a(t) by

Eq. (1-9), and array P(m) is the error power updated by Eq. (I-

10) as m ranges from one to its maximum specified value. Element

P(M) is the final error power used in the MESA spectrum.

Figure 1-2 gives a FORTRAN listing for the flow chart of

Fig. I-1. The arguments of the subroutine are

NPTS number of data samples

X complex array of data samples

NC0EFF number of filter coefficients to be

calculated

A complex array of coefficients

PM real array of updated error power

P0 initial variance

AA

BI work arrays.

B2

The storage for all arrays must be supplied by the calling pro-

gram. Inputs are NPTS, X, and NC0EFF.

This subroutine can be used with the program CPSPEC given in

Fig. 1-3 to calculate a MESA power spectrum. The argument names

are

NC0EFF number of filter coefficients

A complex array of coefficients
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PSPEC array of values of power spectrum

FREQ array of frequencies at which PSPEC is

"calculated

NPSPEC number of frequencies in array FREQ

PLAST PM(NC0EFF) from above = Pm in Eq. (I-1)

DT sample spacing of data points. 4

Inputs are NC0EFF, A, FREQ, NPSPEC, PLAST, and DT. Sub-

routine CPSPEC is written with Anderson's negative coefficient

convention (Eq. (I-I)). Again, array storage must be supplied by

the calling program.

Figure 1-4 lists the subroutine LNPRED by which complex data

may be linearly extended. All arguments are input, but array X

must be large enough to accommodate the extension. Anderson's

negative coefficient convention is incorporated into the code.

NI original number of data points j
N2 number of data points after extension

X complex data array

NC0EFF number of coefficients

A complex array of filter coefficients.
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START

It IN b2(t)zb2(t*I)-oa(m-l)*bl(t41)

P(o) P/ TW7
Mul omen= (0, 0)

bI (1) x(I) jtz l,(N-m) 't Zt

b2 (N -1) x(N) nom znorn At bi (t
don zdon * 1~t)12 Ib.t1

bi W) x(t) amu W nom/den
b2 (t -1) x(t) p(m)_ p(m-l)0(1l-a(m)12)

0 0*
Fig.I-l. Flow chart describing calculation of complex
prediction filter coefficients.
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C
SUBROUTINK COMF IMPTSX. MCOEFF* A, PN,PO~kk BA.31.2)

C
C TdLS SUBlEOUTIN& CALCULATES THE CONPLEX FILTER COEFFICIENTS.
C THE ALGORITHNS USED HERB ARE A N3DIPICATIOW OF TRE
SALGORITHMS DESCRIBED 61 ANDERSON IGEOPHYSICSDVOL. 39,138. 1974b)

C FOR MH CASE UT A COMPLEX SERIES. REAL DATA CAN BE PROCS351D BY
C SETTING THE IMAGINARY PART OF THE DATA STORED 1N X TO ZERO.

C INPUTS AbE NPTS.X,NCO7FF
C
C NPTS - THE MUMBFfi OF DATA POINTS iN THE DATA SET
C x - A ^OKPLZI ARMA CONTAINING THE ORIGINAL DATA
C NCU2FF - THE NUN13ER OF FILTER COEFFICIENTS TO 51 CALCULATED
C a - THE MAYRA CONTA1NING THE COMPLEX FILTER COEFFICIENTS
C P1t a tEAL AURA? CONTAINING THE UPDATED BRROR POVIN
C. PO - REAL VARIANCE OF TH4 DATA
C A&, 91, b2 ARE MOiK AIAIVS
C
C STORAGE FOR Till ARRAYS RUST HE SUPPLIED BY THE CALLING
C P 10G ItA M. X(NP'. S) , A INCO9F FI , A k(NVC0i F F) , BI( NP T S) B 2 (N PT S) .Ph(N (N;IE F
C ARL T((4 MINIMUM STORAGE BtCQUIR!!NBNTS FOR THIS SUBROUTENE.
C
C P14OGFAMMEE BY S.B. BOWLING, SIT-LINCOLN LABORATORY, FEB. 1977.
C

COMPLEXX.AAN.2NO.NO
DIN4.N1SION X¶ A1 A~hl()B()*N1
7hOmCRPLI (2.0 *O.O)

0c-.
DO 10 IT-1.NPTS
DUMMY- X(IT)*CONJG(X(ITj)

10 p0- PO+ DUHNN
PO- PO/FLOAI (NPrS)
NMI-NPIS-I
11 (1) X (1)
82 (NMI)-X (MPTS)

S1 (IT) -I(IT)

20 N1 (IT 1) l(T

DO 2O IT-1.N(1OBF

DO 22 IT-¶.NNEM
B1(11)- B¶(IT)-COMJG(kA(MMl)18H2(IT)

22 B2 (IT)- 82 (1T41)AkA(NI) M*I(Iti)
2S XNOM&CMPLX(O.0,O.0)

DEN-COkPLX0.0.O.01
DO 30 ITu-1.nMM
11~XNO~aMO + B2(IT)*COVJG(ml (IT))

30 DIN-DEN + 9I(IT)'CONJG(3I(IT1) + d2(I?)*CO1JG(B2(IT)l
IF( RXAL(D8EN) .*E. 0.0) GO TO 3S
kill* TUO*(XNO8/D1N)
GO TO 36

JS A(N)-CNPLX(.Q.O.O)0
36 POMER-PO

Ikl GT.0. 1) DOWESP~PIM -I)
DUNMM!A (N)*CONJG (A (N))

PRMIN-PONZWO(1.0 - DUMIY)_________________

DO (40 IT-i ,RM1
(40 A(ITj* AA(IT)-AQI)'*CONJG(AA(M-IT))
So CuNIINUE

RETURN P-2 IjI

Fig.I-2. FORTRAN listing for flow chart in Fig.I-1.
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C
SUIROUTINS CPSPEC INC0SPF.A. PSPDC, FRIO, VPSPI'UL'LAUT.DT)

C
i~THIS SOUICUTINE COMPUTES THIS P013k SPECTRUR PSPIC AT THEl PIQUI3U(X3l

C STORED III FRIOJ. IT USES RECURSION DILATIONS PON CCSIU'TMUTA)
C &NO 310(N*THSlA) TO S3AVE TINS. IT IS CAST 21 CONPLE! FORM
C SINCI THE P1EDICTION COEFFICIENITS AR! GRNuRALLY CORPLIR.
C
C INPUTS ARE NcoKFV.A.FIIIQ.NPSPECPLASTeDT.
C

%. COEFF a UNUMER OF FILTER3 COETPICIUNTS
C a a C03PLEX ARRAY OF FILTER COSPFICIZNTS
C PkkEQ -ARRAY OF FPLQUENCIES h? WHICH THE POWER SPZCTROU
C IS TO BE ChLCULATID
C PSPIC - &BRAY Of VALUES Of TUS POWER SPECTRIJI
k' NP3VFC a NURBkR Of' F9SQUHWCIES aT WHICH THE POWER SPECTRU14

C IS TO BE CALCULATED - D.wuINSION bf FRIO AND P3PZC
C PLAS'i a R!SIDUAL ERROR POWER AFTER VIS FILTER HAS OPERATID
C ON THE DATA a SLENHEIT ?N(MCOEFF) FROM1 SUBROUTINE 6COEFF4
C Dr - SPACING OF THE DATA
C
C STORAGE FOR ABRAVS IS SUPPLIED IT T48 CALLING PROGRkN. MINIMUM

C STORAGE REQUZRINRNTS &IS h(NC0EFV).PSPICtMPSPEC).flEQ(NPSPI.)
C FOR THI3 SUDIOUTINI.

C PROGitANMBL BY S.D. BOWLIN-3, MIT-LIhCJLN LADOAATOR!. FEb. 1977.
C

COHPLEX A1EbN,DEN

PACTOR- -6.2831s)53*D?
Do 100 EU1.NPSPfC
CuI 1.0

CIWIINCPLI(1.O.O.0)
1RGmFACTOR6TREQ (I)
CAitG-COS (ABU)
SAi&WvS1H (hUG)
DO SO N1.NMCOeFF
LI'M? CARG*CN - Sh

t
.G*SN

S;- CAFG-SN * SA!IC.SCH
CN- Tzkt

50 ENO LI.N - A(H) *N
50CONTINUE

CSQ. Drh*CONJG(DI.N)
IF4 DSQ .10.ý 0.1) 1J~1.EV
PSPIC(Ij- (1.0/OS~j)*&PL-ST*DT

100 CONTINUE
RETURN 3
AND

Fig.I-3. FORTRAN listing to calculate MESA
power spectrum.
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SUBROUTINE LNPRRD(N1, 3, , CoEFF.A)
C
C TdIS SUBROUTINE LINE&ALT EXTIENDS TUB COUPLEX DATA 010
C FbON N1 POINTS TO N2 POZITS. THI ORIGINAL DATA , POSIT8onED
C ZIN Ii FIRSET N1 ELEMENTS OF ANAYT 1, ARE SHIFTED TO TU11 MIDDLE OF 1.
C pORWARD AND BACKWARD PREDICTIONS All DONE UNTIL THE TOTAL
C NUMBkR Of CATA POINTS O IS .2.
C
C NOTE I HAl THE N2 POINTS CONTAIN TdE ORIGINAL Ni POINTS.
C
C INPUTS &PE .42,h2,iNCOBFTA.
C
C AARRAY IS nODIFIED ; THE ORIGINAL DATA POINTS HAVE BIEN
C SliflED TO THE NIDDLE. AND PREDICTIONS ABE DOME ON BOTH SIDES.
C
C TIlt FILTIL, COLFFIC.Z.bTS SHOULD ALE1ADY HAVE BEEN CALCULAThD
C 1Of PROGRA4 *COEF*.'
C
C I1 * ORIGINAL NUMiM3 OF POINTS ZN AREAY I
C N1 a NUHBER OF PCINTi TO WHIC ARIRAY I IS TC, BE EXTENDED
C I a COMPLEX ARRIP OF DATA SAMPLES
%; NUCOEF a NUHDEý OF PREDICrION FILrER COEFFICIENTS
C k - COMPLEX A.RAY OF FILTER COEFFICIENTS
C
C STOEAGE Fal TILE A&EATS SHOULD 83 SUPPLIED BY THE CALLING
SPREOGRAMa: ¶MINIMUM STORAGE 13F991,3EENTS ARE X(N2),A(NCOIFF)
C FOR THIS SUBROUTINE.
C
C PAQGTAMMEr BY S.B. 83kLING. 4IT-LINCOLN LIBOEATOhY, FEB.1977.
C

CvMPLEX X1,
ErMENSIOO X1l),A(1)

C
C SET UP LIAITS FOR DO LOOPS

Lim 12/2 - N1/2
L2- M2/2 * N1/2
IF(J OD(N1,) .39E. 1 ) 121L2*I

C
C SHIFT ChIGINAL DATA TO iiIDDLe. OF AbRPA X

co 10C Il.N1 4.

J= Ni - (1-1)
K- L2 - (!-1)

100 X(K) -X (J)
C
C DO FOERABL PCDICT10O
C

N3- N2-L2
CO OO ul.,3
J- L2*Z
I (J) UCxPLX (0. 0 .C3)
DO 20C K-1,NCOEFF

GO0 X(0). - (J) * A(K)AX(J-K)
C

CC DO ei4CKWA1%D PIULDICTIOW

CO 30C I-1.10
J- L1- (I-1)Z (J)-CflPLX (%,.O.C.O)

CU 300 KI.lCOkFF
300 1(01X-(J) + CONJG (A(K))$*(J3K)

NSTURN Lrmp- 122 14
IND

C

Fig.1-4. FORTRAN listing to linearly extend a complex
data set.
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APPENDIX II

A COMPARISON OF SOME OF THE CHARACTERISTICS

OF MESA AND CONVENTIONAL FOURIER SPECTRAL ANALYSIS

Here we tabulate some of the salient features of the two

methods of spectral analysis. For a more mathematical presen-

tation, the reader is referred to Lacoss (1971) and to Chen and

Stegun (1974). The notation in the table is

N = number of values of known autocorrelation

function

P = power of a pure tone in the spectrum

At = spacing of input data

NPTS = number of data samples.

6 I
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APPENDIX III

ON INTEGRATING THE MESA POWER SPECTRUM

TO FIND THE POWER SPECTRAL DENSITY

Lacoss (1971) has pointed out that it is the MESA power

spectral density which is the more appropriate measure of the

relative power of spectral components. Since the power spectrum

P(f) is calculable at any frequency I£f < i/2At (assuming the

data are band-limited and properly sampled), in principle it is

easy to perform a numerical integration over a small bandwidth 6f

to calculate a power spectral density. However, some of the

peaks in P(f) may be so narrow and sharp that they may be diffi-

cult to detect if the initial grid spacing in frequency is coarse.

Radoski t al. (1975) emphasize that if the signal-to-noise

ratio is high, a coarse frequency grid can be insufficient to

determine the actual locations of spectral peaks in the MESA

power spectrum. As the number of filter coefficients increases,

the peaks tend to approach line spectra (delta functions). 'I

Radoski et al. (1975) have suggested a systematic search procedure

(used in this report in a modified form) to calculate the power

spectral density from the MESA power spectrum:

(1) The data are normalized to unit variance. Each datum x

is replaced by (x - i)/a where 3 and a are the (com-

plex) average value and (real) standard deviation of
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the original data. By Parseval's Theorem, the integral

of the power spectral density (PSD) must be unity.

Therefore we can feel confident that the PSD has been

correctly estimated, the spectrum integrated, and all

spectral lines detected, if numerically fPSD(f)dfwl.

(2) Triplets of points in the power spectrum are examined

such that, for (fi+l - fi-I) = 6f, whenever

P(fi-l) < P(fi) > P(fi+l) (Il-)

the midpoint is near a possible spectral peak. P(f) at

two intermediate points is calculated and the five are

examined to extract a new triplet. Simpson's rule is

used to integrate P(f) as the search procedure works

its way up into the peak until two calculations of the

integral over the bandwidth 6f are within 1% of each

other. Then the procedure shifts to the next triplet

of points in the power spectrum spanning 6f and the

integration process is repeated. If Eq. (III-1) is not

satisfied, Simpson's rule integrates P(f) over 6f with

enough points so that two successive integrations are

within 1% of each other. See Radoski et al. (1975) for

details.

Normalizing the data to unit variance removes the dc or zero

frequency part of the spectrum, which may not be appropriate for
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some appl-Ications. If the data are not normalized, then fPSD(f)df

should equal the variance a2 of the data (which is equal to the

zero-lag value of the autocorrelation function). Depending on

the form of Parseval's Theorem used, 2PSD(f)df and may differ

by a factor of 2rr or (27r)/ 2 . (Parseval's Theorem states that

the total average power (or mean-square value) of x(t) is equal

to the integral of the power spectral density over all relevant

frequencies.)

4ii

: ),
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