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ABSTRACT

The paper is concerned with the asymptotic behavior as t - © of
solutions u(x,t) of i f(u) = 0 (x ¢ (-»,o)) in the case
f(0) = f(1) = 0, f(0) <0, f'(1) <0. Commonly, a travelling front solution
u= Ux-ct), U-») =0, U(o) = 1, exists. The following types of global
stability results for fronts and various combinations of them are given:

1. Let ulz, 8) = uo(x) satisfy O S =L Let a_ = lim sup uo(x),
X =+ =00

e lim inf uo(x). Then u approaches a translate of U uniformly in x
X >0 Fi ;
and exponentially in time, if a_ is not too far from O, and a, not too

far from 1.
1
2. Suppose f f(u)du > 0. If a_ and a, are not too far from O,
0
but u0 exceeds a certain threshhold level for a sufficiently large x-interval,

then u approaches a pair of diverging travelling fronts.
3. Under certain circumstances, u approaches a ''stacked"

combination of wave fronts, with differing ranges.
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THE APPROACH OF SOLUTIONS OF NONLINEAR DIFFUSION
EQUATIONS TO TRAVELLING FRONT SOLUTIONS

Paul C. Fife and J. B. McLeod

: 7
1. Introduction  ACUESSION for G
HTIS v 4 Sactic
This paper is concerned with the pure initial value problem for | boc B.fi Se:tiom
1NANNOUNCTD
the nonlinear diffusion equation HEHAEATOH
{3.1) u, - u ~flu) =0 (-wo<x<w, t>0), 8Y
5 OISTRIBUTION /AVAL: ABRITY 72
s :
the initial value being, say, I - LR ‘ -
(1:2) u(x,0) = ¢(x) (-0<x<wo). H { ‘
{

One of the central questions of interest for this problem is the behavior

as t — o of the solution u(x,t), and in particular one would like to
determine under what circumstances it does (or does not) tend to a

travelling front solution. This problem has attracted an increasing amount

of attention in recent years, and some of this work is given in references
[1-5, 11 =17, 21, 23]. We mention in particular the classic paper of
Kolmogorov, Petrovskii and Piskunov [16 ], the extensions by Kanel' [14, 15]
and the more recent work of Aronson and Weinberger [ 1, 2]. These papers
assume, as do we, that f e C1 with £(0) = f(1) = 0, so that =0

1 are particular solutions of (1.1). A travelling front is a

and u

solution of (1.1) of the form u = U(x - ct) for some c (the velocity),

’
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with the limits U(+®) existing and unequal, and for definiteness we

take U(-o) = 0 and U(+) = 1. With the above assumptions on f,

it is a standard result that if ¢ is piecewise continuous and 0 < ¢(x) <1,
then there exists one and only one bounded classical solution u(x,t)
to(1.1-2), and 0 <u(x,t) <1 forall x,t. We shall always make

these assumptions on ¢ and f, and shall be concerned only with

this unique bounded solution.

A particular case of (1.1) was introduced by Fisher [ 9 ] to model
the spread of advantageous genetic traits in a population. A mathematical
treatment was given in [16], assuming

flu) >0 for u e (0,1), £(0) >0, f'(1) <0, f'(u) < £(0) .
It is shown there that if the initial function ¢ is chosen so that
p(x) =0 for x<0, o(x) =1 for x>0,

then it is indeed true in a certain sense that the solution of the initial

value problem ''tends'' to a travelling front. Specifically, there exists
a travelling front U(x - ct) and a function (t) such that, as t -+ o,

R (1.3) u(x,t) - U(x - ct = §(t)) = 0 uniformly in x,

and '(t) - 0. Because it is not true that ((t) tends to a finite limit

1 -  as t - o, u does not approach a travelling front uniformly in x; what does

happen, however, and what (1. 3) implies, is that the x-profile of the function

an

u (monotone in x for each t) approaches that of the travelling front U.

‘ In [ 14], Kanel' proves similar convergence results for the case
f(lu) <0 for ue [0,a], @ <1,

flu} >0 for we {a,l).

o
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He also assumes f'(l) <0, f f(u)du > 0. This set of conditions
0

includes the equation for combustion of certain gases, in which f(u) =0
for u e (0,a), and also the important case in which f(u) <0 in (O, a).

The latter case, when f has exactly one intermediate zero in
0,1), is called the "heterozygote inferior' case by Aronson and
Weinberger [ 1], reference being made to the genetical context envisaged
by Fisher. But it is relevant in other contexts besides Fisher's. It serves
to describe signal propagation along bistable transmission lines (19],
and is a degenerate case of the FitzHugh-Nagumo model for the propagation
of nerve pulses. See also [18]. Finally, this case is also very relevant
to models recently devised by Fife in connection with pattern formation
and wave propagation in a diffusing and reacting medium {6, 7]. This
bistable case of Fisher's equation, and its generalizations, are the
principal objects of study in the present paper.

In his paper [14], Kanel' allows ¢ to be more general than a
step function (as in [16]), though he still requires it to be either monotone
and 0 or 1 outside a finite interval, or a perturbation of a travelling
front. The convergence statement is stronger than that in [16], in that
¢ = constant.

Aronson and Weinberger [ 1] introduce also the 'heterozygote -
superior'' case

f(u) >0 for ue (0,a), f(u) <0 in (a,l), f'(0) >0, f'(l1) >0 .
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In relation to the travelling front question, they show that in

each case mentioned above, there is a number c* >0 with the

[l

property that every nonzero disturbance of the state u =0 which is

initially confined to a half-line x <x. (so that ¢(x) = 0 for x> xo)

0
and which exceeds some threshhold value propagates with an asymptotic

speed c*, in the following sense:

lim u(x +ct,t) = 0 for each x and each c >c*,
t -00

and lim u(x + ct,t) >a for each x and each ¢
- 00
with 0 <c i c,

Rothe [21], Hoppensteadt [12], McKean [17], Stokes [23], and
Kametaka [ 13] have recently taken another lo;>k at the case f(u) >0 for
ue (0,1). Stokes, taking ¢ to be a step function or a sufficiently steep
monotone function, improves the convergence result in [ 16] by showing
that ¢ = constant in the case 4f'(0) < (c*) 2 Rothe, Hoppensteadt, and
Kametaka show, among other things, that by prescribing the precise
asymptotic (in x) behavior of ¢ ahead of the front, one can obtain
uniform convergence to travelling fronts. McKean applies probabalistic
methods to the case f(u) = u(l - u) to obtain similar results.

Chueh [ 4] has treated the case when f is allowed to depend on

U and a travelling front represented by a saddl e-saddle phase plane

trajectory exists. He obtains convergence of the profile of u to that

of the front.
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Our main object in the present paper is to show that under minimal
assumptions on ¢, when f'(0) <0, f'(1) <0, the solution converges
uniformly to one of various types of travelling front configurations. A

later paper will present convergence results for more general functions f.

Typical results obtained here for the bistable case are the following. l

Let f ¢ Cl[O,l] satisfy, for some a € (0,1),

fu) <0 for uce (0,a), fu) >0 in (1), £(0) <0, f(1) <O . 1

A

By [14], there exists a unique (except for translation) monotone travelling

front U(x - ct). Suppose that 0 <e¢(x) <1 for all x, with

lim inf ¢(x) > @, lim sup ¢(x) <a . i
X+ 00 X—+- 00
Then for some X the solution of the initial value problem approaches ;

>
U(x - ct - xo) uniformly in x as t —=. Further, cZ 0 according

1
<
as f f(u)du ; 0, and the rate at which the limit is approached is
0

exponential.

On the other hand, suppose that ¢ is of bounded support (or more

generally, that lim sup ¢(x) <ea), and that o(x) >a + n for some n>0
X -+ 00 1

and |x| <L. If L is large enough, depending on n, and f f(u)du > 0,
0

then the solution develops (uniformly in x) into a pair of diverging

travelling fronts

U(x-ct-x0)+U(-x-ct—xl)—l.
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We also treat cases where f{ has more than one internal zero.
To each triple of adjacent zeros of f with properties analogous to the
zeros (0, a,l) in the heterozygote inferior case, there of course
corresponds a travelling front with characteristic speed and characteristic
limits at £%. For simplicity consider the case of two adjacent triples
of this type (thus five zeros in all), and a solution of (1.1) with range
equal to the combined ranges of the two travelling fronts. Let Cgr ©

1

be the two velocities, ordered by increasing u. If c  <c we can

0 17
show that the solution will tend to split into two separate travelling
fronts, becoming very flat for u near the center zero of the five, and

that there exists no single travelling front with range from the first to

the fifth zero. If o > Cyr however, there exists a unique such

travelling front, and this corresponds to the fact that in this case a
splitting as described above would be conceptually impossible. The
solution wiil develop into the unique travelling front. The case co = cl is
one which we are unable to discuss by the methods of the present paper.
The principal tools used throughout the paper are a priori estimates
and comparison theorems for parabolic equations. It may be well to
state here the particular results of this type that we shall need. The
indicated Schauder estimates can be found, for example, in [10, Thm. 4
of Chapter 7, and Thm. 5 of Chapter 3], and the comparison theorems
in [20] with extensions in [1].
Let Q be a rectangle [XO’XI] X [to,tl] in the (x,t) plane

t. either finite or infinite.

Xl, 1

with t0 > 0 and with any of the xo,




Let the sides be of length > 2. Corresponding to Q, let Q' be
the smaller rectangle [xo +1, X) = 1] X [t0 +1,t.]. For a function u with
derivatives appearing in (1.1) defined and continuous in Q, let

wI®=  sup luxnl, lul@=luld+ |

IQ
O (x,0)¢Q i

Q_ Q Q Q
’le = ’u’l + ’uxxIO 7 ]utlo .

Consequences of interior Schauder estimates: Let u be a solution of

(1.1) in Q. Then for some C >0, independent of u and Q,

(1. 4) |u|?|§C(1f°u|§+‘u|§),
(1.5) |u|§' <c(lf °u|? + lul(?)»ﬁ c(lf °u|(?|u|lo + lul(?) .
(1. 6) the moduli of continuity of Moo and u, in Q' are subject

to a bound depending only on |f ° uliD and 'ul?

An immediate consequence of the above is that the uniform boundedness
of u in the half-space {t >0} implies that of Uy Uy and u, in
the half-space {t > 1}. We shall use this boundedness property throughout
the paper without further mention.

The comparison arguments we use are quite standard. Let N be
the nonlinear differential operator, acting on functions of x and t,

defined by

- -cu - f(u) .
LA cx (u)

(1.7) Nu




Consider the initial value problem

(1.8) Nu =0 for (x,t)e (-0, ©) X (0,%)

? ’

(1.9) u(x, 0) = Y(x) .

A reqgular subsolution u(x,t) of (1.8-9) is a function defined

and continuous in (-%,%) x[0,T), T< ©, with derivatives appearing
in (1.7) continuous in (-%,®) X (0, T), and satisfying
Nu<0 in (-%,0)x(0,T), u<y for t=0.

A subsolution is defined to be a function of the form

u(x,t) = Max{u
i

l(x,t),...,_um(x,t)}

for some set {%} of regular subsolutions with common domains.

Supersolutions are defined analogously.

Comparison Theorem: Let u be a subsolution, and u a supersolution,

of (1.8-9). Then u(x,t) <u(x,t) in (-, ) x[0,T).

In this theorem either u or u could, of course, be an exact
solution.

The plan of the paper is as follows. In §2, we review the existence
and uniqueness of travelling front solutions, primarily for the case where
f(u) < 0 for u sufficiently small and positive and f(u) >0 for u
sufficiently near 1. Many, but not all, of the results covered in this
cection are known and have appeared previously.

In § 3, we state our precise results on uniform convergence. These

are proved in §4-6.

Most of the results of the present paper were announced in [8].
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2. Existence and uniqueness of travelling fronts

We assume throughout that f e CI[O, 1] and £(0) = £(1) = 0.
We first make the point that any travelling front with range [0,1] is
necessarily monotonic.

Lemma 2.1: Any solution u = U(x - ct) of (1.1) with U e [0,1],

U(-©) = 0, U(®) = 1, necessarily satisfies U'(z) > 0 for finite 2z = x - ct.

Proof: Such a function U(z) satisfies the ordinary differential equation
(2. 1) U"+cU +£U) =0,
and so corresponds to a trajectory in the (U, P) phase plane of the system

du

{z.2) = =r,
(2.3) % = -cP - f(U)

connecting the stationary points (0,0) and (1,0). This trajectory is a
simple curve, since the differential equation (2.1) is of the second order,

and it has the properties that it stays in the strip 0 <U <1, and is directed

toward the right for P> 0, al;ld toward the left for P < 0. Any simple
curve with these properties must be such that P >0 throughout its
length. If it contains a point (UO,O) with UO € (0,1), then there
would exist a travelling front U(z) such that U(0) = UO’ U'(0) = 0.
Then U"(0) # 0, for otherwise by uniqueness of solutions of (2.1},

U= UO' This means that P would change sign as the point (UO, 0)

is crossed, which we have seen to be impossible. Therefore P = U'>0

except at the endpoints. This completes the proof.




In view of Lemma 2.1, to any travelling front with range [0, 1]
there corresponds a function P(U) defined for U € [0,1], positive
i ; , , du
in (0,1), zeroat U =0 or 1, representing the derivative E ;

From (2.1), we see that it satisfies the equation

f
1 co
(2.4) PY 4 P c
or, eliminating c,
f !
(2.5) Prris) =0,

where c is the corresponding wave speed. Moreover P has to satisfy
the boundary conditions
(2.6) RP(O) ="RBOL) =F0".
Conversely, given such a function P satisfying (2.4), (2.6), we
may obtain a corresponding solution of (2. 1) by integrating
£l
> -
This equation may be solved for 2z 1in an interval (zo, zl) to obtain

a monotone solution with  lim U(z) = 0, lim U(z) = 1. To show that
z! z0 z Tzl

u(x,t) = U(x - ct) is a travelling front as we have defined it, we have
only to verify that zy = =00 . z1 = 00,

Since f(0) = 0, we have that |§(U)| < BU for some B. Let vy
be a positive number such that % -c<vy. Let S be theline P = yU

in the (U,P) plane. If the graph of the given solution P(U) touches S

=]Q=




at a point in the first quadrant distinct from the origin, then at that
polnt, Pl=i-c = Ef <=-ct ‘% <y, so that the trajectory immediately
goes below S. This implies that for some 6 >0, either

(i) P(U) > yU for U e (0,6),
or (ii) P(U) < yU for U € (0,8) .

In the former case we have, from (2.4),

P'(U) = -C'EfS-C+%< y, sothat P(U) < yU.

Therefore (ii) must hold. But then

L
Y o u
Similarly, 2z, = .

Hence if f e Cl[O,l], f(0) = £(1) = 0, there is a one-one
correspondence between travelling fronts (modulo shifts in the independent
variable z) and solutions of (2.4), (2.6), positive in (0,1).

The form of the equation (2. 4) makes it clear that for every solution-
pair (P,c), there is a second pair (-P, -c), so that our theory applies
to monotone decreasing solutions of (2.1) as well.

Integration of (2.4) (after multiplication by P) vyields
1

1
¢ [ Pu)du = - [ fu)du,
0 0

so that, for a positive solution of (2.4-6), we have

1

(2=7) c % 0 according as f f(u)du
0

0.

V/A
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1
(For a negative solution, the sign of ¢ is the same as that of f fdu.)
0

1

Lemma 2.2 (Kanel' [14]): Let fe C[0,1] satisfy £(0) = 0 and

f(u) < 0 for small positive u. Let Pi(U)’ i =1,2, be solutions of

(2.4) with corresponding speeds Ci' Assume Pi(O) = (0] Pi(U) >0

2

for U ¢ (0, UO). Then for each U ¢ (0, UO],

P

AV

<
] <
l(U) Z(U) according as ¢, > ¢, .

Proof: From (2.4), we have ~

f
{ I L — = = - -
s T rE el et R
2
so that
dF(U) U
= ~(c,-c)exp [ (=f(t)/P(t)P_(1))dt,
du 1 2 2
u./2
0
where

U
F(U) = (P, - P,) exp S/ (=£(t)/P ()P, (t))dt .
u./2
0
As U 10, we have F(U) -0 since Pl - P2 -+ 0 and the exponential

factor is bounded as U | 0 because of the sign of f. If c; = S, F(U),

being constant, is zero, so that Pl = PZ' But if ) > 5 E' is strictly

decreasing, so that P1 < P2 for U > 0.

In the remainder of this section, we shall usually assume that f

satisfies the following conditions:

-12-




fe C'lo,1], with #0)= K1) =0,
(2.8) f(u) < 0 for u sufficiently small ,
f(u) > 0 for u sufficiently near 1.

Corollary 2.3: Let f satisfy (2.8). Then there exists at most one solution

to (2.5-6), positive in (0,1).

Proof: Suppose there exist two; let them be those in Lemma 2.2, wherein

UO = 1. The fact that Pl(l) = Pz(l) = 0 implies, by that lemma, that

s

.cl = Cy, and in turn that Pl = PZ'

Theorem 2.4: Let f e Cl[O,l], and f(0) = £(1) = 0. For some «a € (0,1),

suppose that one of the following assertions holds:

I
E : (@) £<0 in (0,a); £>0 in (a,1); / fu)du>0;
." 0

1
(b) £<0 in (0,a); £>0 in (e,1); [ f(u)du<o;
0

(¢) £<0 in (0,a); £>0 in (a,1) .

Then there exists one and (by Corollary 2. 3) only one solution of

(2.5-6), positive in (0,1).

7 Remark: The theorem is in some sense best possible. For if we relax

the restriction

1
[ f(u)du >0
0
in case (a) and consider instead
) 1
f f(u)du = 0,
0

E - ™
; } 13




with f=0 1in (0,p), say, where 0<p <a, then the only possible

solution is, by (2.7), a solution of (2.4) for which ¢ = 0; and since

f=0 in (0,B), we have P =0 in (0,B), which shows a positive

solution to be impossible.

Proof: This theorem (in case (a)) was proved in [14], [1, Thm. 4.2] and

[2, Thm. 4.1]. Case (b) follows from case (a) by replacing U by 1- U,

and f by -f. Case (c) for ¢ # 0 follows from the other two cases.

For ¢ = 0, (2.4) can be integrated, and the result is the required solution.
Our object now is to extend this existence theorem to a wider class of

functions f, still retaining the hypothesis (2.8). At the same time, we

shall consider the possibility of solutibns of (2.4) with internal zeros, which

represent phase-plane images of ''stacked'' combinations of travelling fronts.
The following preliminary lemmas will be needed.

Lemma 2.5: Let f ¢ Cl[O,l] with f£(0) = 0, f(1) = 0, and let

there exist a solution PO(U) of (2.4), positive on (0, a),

g
-
+
=3
i
o
1

0 and 'velocity' c¢ = S Then for any c¢ <c

there exists a solution P(U) of (2.4) on (0,a) with P(0) = 0 and

0!

P(U) > P_(U). There exists a maximal such solution, which we denote by

0

PC(U), so that for any other solution P with the given c¢ satisfying

f’(O) = 0, and for U in the domain of E, we_have Pc(U) ZI;(U).

Moreover, PC(U) depends continuously on ¢ for c ¢y

Proof: We follow the construction used in [2]. For v >0, c < Cyr let

PC V(U) be the solution of the regular initial value problem

=] 4=




P'+;f+c=0, P(0) = v .

Clearly P (U)>P (U) for Ue€[0,a]. Since P (U) is monotone
C,V 0 C,v

in v, P (U)=1lim P_ (U) exists and satisfies P (U) > P_(U).
vio SV c 0

Furthermore, by the monotone convergence theorem, PC satisfies (2.4), and

~

o is the required solution. If PC is another solution, clearly Pc,v Z‘E’C‘\
for all U where the latter is defined, and so passing to the limit, we
obtain that Pc is maximal. Its continuous dependence on c is proved
as in [2, Prop. 4.5].
In the following when we speak of a ''travelling front over [a,B]
with velocity c¢' we shall mean a solution of (2.4) with the given c,

positive in (e, ) and vanishing at o and B.

Lemma 2.6: Let f satisfy (2.8). For 0<a <p<l, assume that

there exist travelling fronts over [0,1], [0,e], and [B,1], with

(e respectively. Then necessarily

velocities and c

01’ “0a’ Bl

(2.9) c0a>c01>cpl.

Proof: We apply Lemma 2.2 with Pl the solution over [0,1], P2 the

solution over [0,a], and U, = a. Since Pz(a) =D L Pl(O), we have that

o = , < c, = €0a" The other inequality in (2.9) is proved in a similar fashion.

Theorem 2.7: Let f e Cl[o,l] with f(0) = f(1) = 0, and let there exist a

travelling front over [0,o] with velocity ¢ and one over [a,l] with

0c’
velocity ) <Chy’ Then there exists a travelling front over [0,1] with

velocity 001 satisfying

Oa 01 al ’

«]B=




oy

Remark: For this theorem to hold, it is not necessary that f satisfy

(2.8). Butifit does, then Lemma 2.6 shows the inequality .1 < 0a

to be a necessary as well as a sufficient condition for the existence of
a travelling front over [0,1].

Proof: For all c¢c < o’ let PC(U) be the (maximal) solution of (2.4)

guaranteed by Lemma 2.5, and let g(c) = Pc(a), c < 00" It is continuous ,

in ¢, and satisfies lim g(c) = 0.
e e =
O«

By the symmetrical argument, for each c¢c > c, there is a positive

l’
solgnon PC(U) of (2.4) satisfying Pc(l) = 0, with h(c) = Pc(a)

continuous, and lim h(c) = 0. Hence there is a solution ¢ = ¢
(e lca1 :

01
of g(c) = h(c). For this value of c, T’C is the continuation of Pc’
which is therefore the required travelling front over [0,1].
Definition: A closed interval IC [0,1] is called admissible if f
vanishes at the endpoints, f< 0 near the left endpoint, f> 0 near
the right endpoint, and there exists a travelling front over I.
Suppose we have given a decomposition of [0,1] into nonoverlapping

m
adjacent admissible intervals [0, =) 3 ordered from left to

)
j=1 )

right (so that the right endpoint of Ij is the left endpoint of Ij +1)° Let

{cj} be the associated velocities of the travelling fronts over the Ij‘
Definition: Such a decomposition is called minimal if cj is

i i e C > C..
nondecreasing in j j+1 = S

[l




Theorem 2.8: If there exists a decomposition of [0,1] into admissible

intervals, then there exists a unique minimal decomposition.

Remark: The significance of minimal decompositions will be seen in Theorem 3.3
and in a later paper. In fact, monotone solutions of (1.1) with range [0,1] will
split into a "“stack' of travelling fronts, each with range in one of the
intervals of the minimal decomposition and with its distinctive
asymptotic speed, and (at least when the cj are distinct) spreading
away from each other. ’
Proof: The existence of a minimal decomposition is trivial. In fact, if
the original decomposition is not minimal, there will be two adjacent
intervals Il and 12’ say, with associated-velocities satisfying c > C,-
By Theorem 2.7, we may combine them into a single admissible interval.
Thus proceeding in a finite number of steps (since each step reduces by one
the total number of intervals), we arrive at a minimal decomposition.

We now show that there cannot be two distinct minimal decomposi-

tions. Let two minimal decompositions be given. If they are distinct,

there will be an interval of one, call it I, which overlaps at least two

intervals of the other. Call the latter overlapping intervals Il’ S
q
ordered from left to right, so that I1C U I and IN J, #8, 1<k <aqa.
k=1

The interval I N Il’ being a union of the original intervals, has a
minimal decomposition I ]l = I again ordering from left to right.

Let the velocities associated with I, Ik’ and Il'( be c, dk’ and c;(
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respectively. By Lemma 2.6, ci > c and c;1 <d

By minimality,

1
ci < c;l. Hence c < dl' A similar argument shows that c¢ > dq. Hence

d1 > dq. But this contradicts the minimality of the second decomposition,

and proves the theorem.




3. Uniform convergence results

Beginning with this section, we take up the question of the
asymptotic behavior as t - © of solutions of the initial value problem

(1.1-2). We deal with circumstances under which a solution approaches

~ travelling front, or a combination of fronts, uniformly in x and
cxponentially in t as t - . Conclusions to this effect, under minimal
assumptions on ¢, can be made when the travelling front or fronts
concerned are over u-intervals at the endpoints of which f'(u) < 0. The
basic result is the following.

Theorem 3.1: Let f ¢ Cl[0,1] satisfy f£(0) = f(1) = 0, £'(0) <O,

f'(l) <0, f(uy<0 for 0<u<a,, f(u)>0 for a <u<l, where

o 1

0<aO§al<l.

Assume there exists a travelling front solution U of (l1.1) with speed c.

Let ¢ satisfy 0<¢ <1, and

(3.1) lim sup ¢(x) < @ liminf ¢(x) > a
X = =00 X -0

K
Then for some constants 24 K, and w, the last two positive,
the solution u(x,t) of (1.1-2) satisfies

(3.2) lu(x, t) - U(x - ct - zo)| < Ke—wt :

Remark: It is clear from §2 that the existence of a travelling front is by

no means guaranteed. However, in that section readily verifiable conditions

on f were given which ensure its existence. If f satisfies these

conditions, the existence assumption in the statement of Theorem 3.1

«}g=
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may of course be omitted. A particularly important case is that of the
degenerate Nagumo's equation, in which @y = - A travelling front does
exist in this case.
Theorem 3.1 implies that a solution which vaguely resembles a
front at some initial time will develop uniformly into such a front as t - .,
""Vaguely resembles' simply means that the solution is less than @,
far to the left, and greater than @) far to the right. Of course, if the
words ''left' and 'right'' are interchanged in this statement, the same
conclusion holds; the front will then face right rather than left, and will
travel in the opposite direction.
There are also situations in which the 5olution will develop into
a pair of such fronts, moving in opposite directions. That is the gist of the
following result.
Theorem 3.2: Let f satisfy the hypotheses of Theorem 3.1, and in
addition
1
(3.3) f f(u)du > 0 .
0
Let ¢ satisfy 0 <e¢ <1, and

(3.4) lim sup ¢(x) <a0, o(x) >a, + n for Ix| <L ;

X| =+

1

where n and L are some positive numbers. Then if L is sufficiently

large (depending on n and f), we have for some constants Xy Xp K,

and  (the last two positive),

e[




(3.5a) ,u(x,t) - U(x - ct - xo)l < Ke-wt, Srac(ofee

(3.5b) Iu(x,t)— U(-x-ct—xl)l <Ke_wt, %200,

Note that (3. 3) implies ¢ < 0. The intuitive meaning of (3.5)
is that the x-interval on which u is near the value l is finite and is
elongating in both directions, with speed lc | If the inequality in (3. 3)
is reversed, and appropriate changes in (3.4) are made, then an analogous
convergence result is still 9btained. In the latter case, the interval
on which u is near 0 will elongate.

Finally, we consider the possibility of the solution developing
into a combination of fronts with different, but adjacent, ranges. As in
§2, we call them a stacked combination of fxzonts, and for simplicity

treat only the case when there are two of them.

Theorem 3.3: Let f(ui) = 0 and f'(ui) <0, i=1,2,3, where

u <u, < u3. Let there exist travelling fronts U

] 3 X - c.t) and Uz(x - czt)

l( 1

? ; . <c..
with ranges (ul,uz) and (uz,u3) respectively. Assume ¢, <c,

Let a«. be the least zero of f greater than u and a_, the greatest

1 I 2
zero less than u,- Suppose u < @(x) < us, and
(3.6) lim sup ¢(x) < @, lim inf ¢(x) > a, -
X —» =00 X =+ 0

Then there exist constants X XZ’ K, and w, the last two positive,

such that

-wt
- - - - - - < K .
{(3:7) lu(x, t) - U (x Clt Xl) U.(x czt xz) + uzi e

1( 2

=21~




Note that (3.7) implies, in particular, that

v for B <€y 4
lim u(pt,t) = u, for c, <P <c
A 2 1 2°

<
u, for c2 B .
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4. Proof of Theorem 3.1 (Beginning)

In this section we establish the uniform convergence of
u(x,t) - U(x - ct - zo) to zero as t - ©, the exponential nature of
this convergence being deferred to section 5.

Several lemmas will be needed in the proofs of the theorems given
1 the previous section. Some arguments are easiest to give in terms
0! a moving ccordinate system. For purposes of Theorem 3.1, we set
z = x - ct, and write the solution of (1.1-2) as

vlz, t) = uix, t) = ulz + ct, t) .

Our basic lemma in the following.
Lemma 4.1: Under the assumptions of Theorem 3.1, there exist constants

2 and u (the last two positive), such that

r %2 9

| il Sine . =k i -ut
(4.1) U(z Zl) q,e <v(z,t) <U(z 22) tqye

Proof: We prove only the left-hand inequality; the other is similar. The
function v satisfies

(4. 2a) N[v]Evt—vzz-ch-f(v) =0, ze (=o00) £t>0,
(4.2b) v(z,0) = ¢(2) .

Functions £(t) and g(t) (q(t) positive) will be chosen so that

Max[ 0, U(z - &(t)) - a(t)]

mn

v(z,t)
will be a subsolution.

<]- q, < lim inf ¢(z).
Z >

First, let 9 > 0 be any number such that a

Then take z * so that U(z - z*) - q. < ¢(z) forall z. This is possible,

0

=)=




T ETR——T T e

for sutficiently large positive z*, by virtue of (3.1). Let
[ o= g} - Hull/q, g>0,
% (u,q) =
-f'(u) T =R
Then <@ is continuous for g >0, and for 0 <qg < q, we have
@ < 1 - qq < l-q<1, sothat @(l,q) >0. Al @(1,0) = -f*(1) > 0.
Thus for some >0, we have @(l,q)>2u for 0<g< q,- By
continuity, there existsa & >0 such that @(u,q) >p for 1 -6 <u<]l,
< g= 95- In this range, wo have
flu - q) - f(u) > pg .
Setting { = z - £(t), and using the fact that
(4.3) AR e UL OB =01
we find that, if v >0,
N{y] = -€"(t)U (L) - cU' (L) - q'(t) - U'(L) - £U - q)
= =gMEIUNL) = q'(t) + HU) - (U - q) -

Thus when U e [1-6,1], qe [O,qo],

N[y] <-£'U' - q' - pg < - (q' + pq),

-ut

provided £' >0, since U'>0 (see Lemma 2.1). We choose q(t) = q,e

which results in N[v] <0 when 1-6 <UZ<I.
By possibly further reducing the size of p and & and using the
same arguments, we may be assured that N[v] <0 whenever 0 < U <0,

s welil.

o

Now consider the intermediate values, 6 <U <1 - &é. In this range

we know that U'(z) > B for some B >0. This fact was shown in Lemma 2.1.

-




Also, by the differentiability of f, we have that f(U) - f(U - q) < «q
for some « > 0. Thus

N[v] <-p&' - q' +«q .
We now set

£'(t) = (-q' +«q)/B = (u +«)a/B >0, with £(0) = z*.

(Specifically,
-t
(4. 4a) £ = z tz,e B
where
(4. 4b) 2, = —qo(p + «)/uB, z) = z* - 2'2')

Thus £(t) is increasing and approaches a finite limit as t = . Then
N[v] <0 whenever v >0, and by our condition on z*, v will be a
subsolution. Thus

vz, t) > wlz,t) > Ulz = Zl) =igt) = Uz - Zl) - qoe-"uL 3

which completes the proof.

Lemma 4.2: Under the assumptions of Theorem 3.1, there exists a function

w(e), defined for small positive €, such that lim w(e) = 0, and such

el0
that, if 0< ¢ <1 and lo(z) - U(z - zo)l < ¢ for some Z» then
lv(z,t) - U(z - z) | <w(e)

0

for all z andall t >0.

| 25 - ZO, = O{e). Hence also lzl- zo| = Ole), lz, -z, | = O(e), and

the conclusion follows from that of the lemma.




Remark: Lemma 4.2 already yields the stability of travelling fronts in
the CO norm. But Theorem 3.1 claims much more.

In the following development, it will be necessary to have asymptotic
estimates for the derivatives of v.

Lemma 4. 3: Under the assumptions of Theorem 3.1, there exist positive

constants ¢, w, and C with o > |cl/2, such that

(4.5a) |1 - v(z, t)l, !vz(z,t)i, |sz(z’t)" |vt(z,t)| <C(e(—éc-0)z+e-“t), z>0;

(4.5b) lv(z,0)], Ivz(z,t)l, (vzz(z,t)l, lvt(z,t)l <C(e('5c+")z+e"‘t)

Proof: The wave front U(z) approaches its limits exponentially; this
is easily seen by linearizing (2.1) about the constant states U = 0 and

U = 1. In fact, this analysis shows that U(z) =1 as 2z — ® at the

b 1 Z
approximate rate cxp {5 [-c - ¥¢™ - 4f'(1)]z}, and so at an exponential
rate faster than e,\.p{(-é'c -‘lec [)z}. A similar analysis holds as z = - .

This, together with (4.1), establishes (4.5) for the undifferentiated

function v. Since |f(u)l <k|u| for  u near 0 and |f(u)| < k(l - u)

) =
2CZ U‘Z,+e p.t) for

for u near 1, we also have that ,f(v(z, t) | < C(e
some C >0. From this and (l.4) it follows that (4. 5) is satisfied for v

The same estimates for Ve follow then from (l.5), and (4. 2a) yields

them for vt. This completes the proof.

Lemma 4.4: Foreach & >0, the 'orbit'" set

fvl-,tj 2 €26},

: 2 ; .
considered as a subset of C (-w,®), is relatively compact.

.-




Proof: We know from (l.4-6) that v, vz, and vzz are bounded and equicontinuous

for t > 6. Let {tr'x} be a given sequence. If there is a finite accumulation point
. then the (uniform) continuity of v and its derivatives implies that v(-,t)
approaches the limit wv(- ,tw) ""along a subsequence''. So assume

there is none. For any_ K >0, let VK(Z,t) be the restriction of v to

the set |z| <K

- b

t > 6. By the Arzela theorem, for each K =1,2,...,

1
| such that the sequence {vK(z, tn, K)}

)
J

there is a subsequence {t
S, K

B S i :
converges in CT[ -K,K]. We may always, in fact, choose *tn K+l
’

to be a subsequence of {tn }. We then take a diagonal sequence,

K

’

denoted by {tn}, so that {v(z, tn)'r converges uniformly on each
interval [-K,K] to a limit w(z), the derivatives to order two converging
to those of w.

Since v satisfies (4.5), we pass to the limit as t - © to obtain
that w satisfies (4.5) with t = oo.

Given any € >0, one may choose T and K so that

|k
Z

(v(z,t) - w(z))| <¢, k = 0,1,2, for |z | >K, t>T. Thisis
possible by Lemma 4.3. One may also choose N so that tN >
and Iat(v(z,tn) -w(z))|l <& for n>N, 2| <K. This proves that

lim v(z, tn) = w(z) in CZ(—OO, ©), and completes the proof of the lemma.
n—®

Lemma 4.5: Under the assumptions of Theorem 3.1, there exists a value

z, such that

lim lv(z,t) - U(z - zo)i AL

t—+o

uniformly in z.

w D




Proof: Let & >0 be a number satisfying lcle < 2u, where
the constant in Lemma 4. 3. Let w be a truncation of v in the
following sense:

w(z,t) = v(z,t) for |z| <et,

w(z,t) = 0 for z<-get-1,

1
—

w(z,t) = for z>et+1,

and w satisfies (4.5). It is clear from (4.5) that v may be smoothed

s

off in this manner so that the truncation w also satisfies (4.5).

We define the Lyapunov functional
i b2
Viw] = f e [=w” - F(w) + H(z)F(1)]dz ,
W 2E 7 3

v

is

where H(z) is the Heaviside step function, and F(v) Ef f(s)ds.

0

clearly converges, as do the integrals below, because of the truncation.

In fact, V[w] is bounded independently of t. To see this, we use (4.5)

to estimate it as follows:

et+l
IV[W] I _<_Cl eCZ(e CZ ZUIZ| I Zpt)dz
~et-1
4
502 (& 20|z|+e|c|z Zpt)dz'

0

Since |c |€ - 2p <0, the right side is bounded for all time.
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Setting V(t) = V[w(*,t)], we have, by integration by parts,

AV(t) V(t +At) - V(t f

{ w (z,t) +wz(z,t+ At) w, AF(w)
At At At

2 ) At
z

Passing to the limit as At - 0 and using the uniform (in t) convergence

of the integral, we obtain that V(t) - &Y exists, and

dt
o
s b z
V(t) = {we (wzz + oW, + f(w))wtdz 4
w > 4
: & cz
Letting Q[w] =f e [wZ +cw + f(w)] dz we calcula:e
-00
e e ad
V(t) + Qlwl(t) = fe [wzz+cwz+f(w)]N[w]dz ;

where N is given by (4.2a). Since N[w] = 0 for |z] <et and w

satisfies (4. 5),

C Eht cz, (=3c-0)z it 2
[V(t) + Q[w](t)] <C [ e (e ? +e ') dz
et
< Cz(e—Zcret " e(EIC,‘Zp.)t) .
Again, since ¢ lc| - 2u. <0, we obtain
(4. 6) lim [V(t) + Qw](t)] = 0.
t o0 |

Since Q[w] >0, it follows in particular that lim sup V(t) <0. We
t -0

deduce the existence of a sequence {tn} with tn - o such that

(4.7) lim V(tn) — 08
n -+

for otherwise lim sup V(t) <0, implying that V(t) - -, whereas we
{~»0o0
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know from above that V(t) is bounded. Combining (4.6) and (4.7),
we obtain

(4.8) lim Q[w](tn) =0,

n—o

By Lemma 4.4, there is a subsequence of {tn}, call it {tr'l}, along
which v(-, t;l), and hence w(-, tl"l)’ converges in the norm of CZ(—OO, ©)
to a limit function ;(z). From this and (4.8), we obtain, for any finite
interval I, that

cz 2 cz,~ i A
+ rs + + f(v =
{e (w cw + f(w))l dz {e (v cv f(v)) dz = 0,

t=t
n

and so v__ +cv +£(v) = 0.
zz z )

We also have :/(-00) = 0, v(o) = 1, and so by the uniqueness of
travelling fronts (Corollary 2.3), we have ;(z) = U(z - zo) for some z,-
This establishes that v(z,tn) approaches U(z - zo) in the sense of
C2 as n —- o,

To finish the proof of Lemma 4.5, we now merely apply Lemma 4. 2,

which indicates that once v is close to U(z - zo) for some tn, it

remains close for all later time.
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5. Proof of Theorem 3.1 (Conclusion)

Lemma 4.5 asserts the convergence of v to a travelling front;
we now show that the rate is exponential. This conclusion can be obtained
by appealing directly to a theorem of Sattinger [22], the conditions of
which are satisfied'by virtue of Lemma 4.5. We give, however, an
alternative proof which is in some ways simpler than Sattinger's,
though more limited in scope.

Recalling the definition of w(z,t) in the proof of Lemma 4.5, we set

hiz,t) = w(z,t) - Ulz -2 = a(t)) ,

0

where z. is the constant in that lemma, and «a(t) is chosen so that

0

for large t, h is orthogonal to eCZU', i.e.,

0

(5.1) [ e“%h(z,t) Uz - 2

-00

5 a(t))dz = 0 .

The existence of such an @, with a(®) = 0, follows from the implicit
function theorem. In fact, by Lemma 4.5 and estimates (4.5) (which
also hold for w, U, and h), the left side of (5.1) vanishes at

a = 0, t = . Furthermore its derivative with respectto a is

f ecz(U'(z -z

-00

2 (¢ ]
cz
0" a)) dz -_fwe h(z,t) U'(z - 2, - a)dz ,

which is nonzero at « = 0, t = ©, because the right-hand integral
then vanishes. The implicit function theorem also yields that a is

continuously differentiable.

=3]=




Theorem 3.1 will be proved by showing

vi

(i) .Jh(z, )l <Ce” " and

(i) la(t) | <ce™t .
This will imply that w converges exponentially to U(z - zo). But

we know from (4.5) and the definition of w that

Iv(z,t) - w(z, t)] < Sl

for some (possibly different)/positive v. We shall thus obtain that v

converges exponentially to U(z - z as desired.

O)’

To establish (i), we work with a diffusion equation for h. First
we note, by the definition of w, that w = v for lz] < et, and that
w and its derivatives satisfy (4.5). We therefore have that

w, =w +cw_+ f(w) +0(r),
zZ z

t
0 , lzl <et :
where r(z,t) = e-%cz-nt+e-“t, et< lz| <et+1 ;
i 0 , lzl>et+1.
Therefore
t ht =w +aq'U!'= L. + cw, + f(w) = U" = cU' - £(U) +a'U" + 0(r)

=h +ch +f(Uh+a'U" + o(hz) + 0(r) .

- s 5CZ
Setting h = e ° "y, we have

1 1
2C2 2C2

(5.2) b S {:i‘ c2 - f(U)}y +a'e U' + 0(hy) + O(e i

t zZ

The linear operator L given by

G .
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= -lz_l
Ly ==y, +{4 c” - f(U)}y,

with appropriate domain in £ (-%,®), is self-adjoint with a continuous

spectrum to the right of Min{z1 c'2 = £A0), ZICZ - f'(1)}, which is

strictly positive, and a discrete spectrum to the left. Furthermore, we
know by differentiating (2.1) that the eigenvalue 0 lies in this discrete
1

spectrum with eigenfunction ezczU', and since this eigenfunction is
of constant sign, 0 must be simple and the least eigenvalue, with
all other eigenvalues strictly positive. Let ” : “ denote the norm in

¥ 2 icz, _ g .

i £7(-o, o). We know that e h = y lies in this space.
Multiplying (5.2) by y and integrating over (-%,®), we obtain, by

virtue of (5.1), that

2 1 1
22 0yl% = (-1y,v) + o(lln®yI%) + o(llex% Il liyll) .
1
Now since y is orthogonal to the eigenfunction eZCZU' corresponding

to the zero eigenvalue of L, the right side will in turn be

< -Mlyl? + Clsuplnz | Iyl + e [y [l 43 lele=wlty oy
2

with M >0 independent of t. Since h - 0 uniformlyas t - and
2p > lcle, we have, finally, that

1d
2 2 dt

2 M 2 =
Iy l® <= S lyl™ + o Kt
for large enough t and some K > 0. Integration of this inequality shows
" that
-yt
(5.3) Iyl <ce™

for some v >0 .
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At this point we need an interpolation lemma. Though somewhat

standard, its proof will be given later for completeness.

Lemma 5.1: Let f ¢ Cl(IR), and denote f. = [ £l s Il .. Then
SSREA. 208 22 == 0 o *1 1 ==
C C
1/3 0
3 1/3 2 1/3
S s B (f £(xax)7 .
-00
We apply this to the function y(*,t). Since “y(' ,t) [ 1
C

is bounded independently of t, estimate (5.3), and the above lemma, imply

(5.4) -, 0l = et

C

For each 6 >0, we have from (5.4) and the definition of y that

e opk 2
In(z, 1) < cel2lele-v)t

for |z| < &6t. Let 6 be such that %Iclé - v <0. For 'z, > 6t, however,
(4.5) yields that

(5.5) Ih(z,t)| <ce™t, v>o0.

Therefore (5. 5) holds, in fact, for all z and all t > 0.

The proof of Theorem 3.1 will be complete if we can merely show that

la(t)] = o(e™™Y) .

1
For this purpose we multiply (5.2) by e"'czU' and integrate over (-, )

(the integrals converging because of the asymptotic behavior of U'). Thus

P | 1
(5.6) (e2°%Ur,y) = -(e2°%U', Ly) + a'(e“%U', UY)

2 1 1
+0((U", ¥y9) + o(le2®%ell le2®?urll) .

Differentiating

o Y




we have

A Lo
(ezczU',yt) = a'(e?®u",y)

and the scalar product on the right is seen to decay exponentially by use of
the Cauchy-Schwarz inequality and (5.3). Also

1
5 CZ

(e u', Ly) = (L(e1

and the remainder terms in (5.6) also decay exponentially. We can therefore

conclude from (5.6) that

@l O(e-Vt)

’
and so « = O(e-Vt). This completes the proof of Theorem 3.1.

O)szo-é.

Proof of Lemma 5.1: Given 6 >0, let X be such that |f(x

There is no loss of generality in supposing f(x_ ) >0, so that

0

fix ) > fO - &. Then

0
X - —

+f f'(x)dxzfo-é— lx—xolfl,
*6

for Ix - xo’ g(fo - tS)/fl = f. Thus

b x_ +1
2 il Y IR 3
[ Cax> [ fax> [ (5, -6~ |x-x 1) 7ax = 55, - )7/ -
-0 xo—l xo—l

Letting ¢ - 0, we obtain the assertion of the lemma.
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6. Proofs of Theorems 3.2 and 3.3

The following is the basic lemma we shall need for Theorem 3. 2.

Lemma 6.1: Under the hypotheses of Theorem 3.2, there exist constants

2, 2, 9 and . (the last two positive) such that
(6.1) U(x - ct - zl) + U(-x - ct - zl) -1- qoen“t <u(x,t)
et AR 4 ~ut
< U(x - ct 22) + U(-x - ct 22) 1+q0e

Proof: First, note that (3.3) implies c <0. The right-hand inequality

of (6.1) follows from the proof of Lemma 4.1. More pfecisely, that proof
_P'Ot
shows that u(x,t) <U(x - ct - ZZ) + qe for some z,, 4 and T

The same argument applied to u(-x,t) reveals as well that
_p‘ t

0
u(x,t) <U(-x-ct-2')+q'e . Since decreasing z_ and z' and increasing g

2 1 2 2 1

and qi strengthens the inequality, we may assume z, = z'2 <0, ql = qi. Hence

_p. t
(6.2) u(x,t) < Min[ U(x - ct - zz), U(-x - ct - 22)] + qe 8

If x>0, then the monotonicity of U and its exponential rate of

convergence to its limits at *o imply

—vlct+22,
l-U(x-ct-zz)sl-U(—ct—zz)fKe

for some positive constants v and K. Furthermore
) for x>0, and so from (6.2),

Ux=-ct=-2,)>Ul-x=-ct-2z

2 2
_Pot
u(x,t)iU(—x-ct-zz)qule
“pnt -v etz |
2
5U(-x—ct-zz)+U(x—ct-zz)—1+q1e + Ke
-pat
-X - - Ux=-ct-2.)-1+q.e &
< U(=x - ct ZZ)+ 2 0 .
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if we choose 9 > q1 and further require Mo to be small enough and
(-zz) large enough. A similar argument may be used for the range x <O0.
We shall now prove the left-hand inequality of (6.1). Let
u(x,t) = U (x,8) + U_(x,t) = 1 - a(t) ,
where ¢ =x-ct-g(t), L_=-x-ct- g(t), U (x,t) = U(L,), for
some gq(t) >0 and £(t) <0 (with §£'(t) >0) to be determined. Then

Nu = u - f(u)

B, - ey
= —N(B(UNL,) +UE ) = (UML) + UL )= o(U (L) + V(L)) -a'(t)
~HY *U_ ~1-4gf,

Since U'" + cU' + f(U) = 0, we have

(6.3) Nu = -§'((U'L ) +UML )+ U ) +HU_)- U, +U_=L=q) - at) -

Let q(') and q.2 be such that

<]~ <] -q' < +

and let 6 be as in the proof of Lemma 4.1. As in that proof, we then
see that for some H =0

(U ) - HU_-(1-U, +@)<-w(-U_+a

for 1-6<U <1,0<1- U+ +qg < qz. This latter inequality will be
guaranteed if 0 <qg < qb, x >0, and (-¢) is sufficiently large, for then

-vlé‘ (

1-U++q51—U(—g)+q6_<_q0+Ke q

3

We finally note that U'(Qt) >0 and f(U+) <b(l - U+) for some b > 0.
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Therefore we have from (6.3) that for 1 -6 <U <1, 0 <g < ),
x>0, (~¢) sufficiently large, and £' > 9,

NBS‘HIU‘U++Q) ‘rb(l‘U+)‘Q':(b‘pl)(1‘U+)'ulq-q'

 ~vlE+c
< bKe vl; ct‘ L qu__q, )
—Hzt
Setting q = qb e for 0 < iy < b we have for the above range,
= =i €
-v |E+ct
Nu < bKe vlgsetl (w) = wylale “za,

provided Ky <vc and (-§¢) is sufficiently large.
A similar argument holds for 0 < U £35,0<q< qb, x >0, provided
that u >0. Finally for 8§ <U <1-6, x>0, we have
U; +U' 2B >0,

HU_)- (U, +U_-1-9<=<C1-U_+aq),

-vl§+ct]

’

f(U+) <b(l - U+) < bKe

so that from (6. 3),

~v | g+ct| 5 ot

Nu < -pg'(t) + (C + b)Ke (C +u,)qpe

We now choose £&(t) so that

_ gt
-BE'(t) + (C + b)Ke viclt + (C + p.z)qbe e 0,

with £(0) = £ sufficiently large and negative. Then from the above we

0

obtain Nu <0 forall (x,t) with x>0, u(x,t) >0. A similar argument

shows that Nu <0 for x <0 as well.

«3B=




Now Max[0,u(x,t)] will be a subsolution if we can show that
¢(x) > u(x,0). But
ux,0) = Ulx - £)) +Ul-x-§3) -1-q5<1-gqf <a;tn<e(x)

for ’xfiL, and

for |x| > M, for some M depending on go. Therefore if L > M,
we shall have u(x,0) <e¢(x) for all x.

With this condition on L, it now follows that

_p. t
u(x,t) > u(x,t) > U(x - ct = £(»)) + U(-x - ct - £()) -1 - aje .

We set z) = £(©) and p = Min[pz,po], and this completes the proof.

Lemma 6.2: Let f and ¢ satisfy the hypotheses of Theorem 3.2. There

exist functions w(e) and T(e), defined for small positive & and

satisfying lim w(e) = 0, such that if
el0

(6.4) lu(x,t)—U(x—cto—xo),<s

some t. > T(e), and all x<0, then

for some x 0

0’

lu(x,t) - U(x - ct - x )| <w(e)

o)

for all t > X < 0,

to,
Proof: Consider the subsolution v(z,t) used in the proof of Lemma 4. 1.

We express it in the original coordinates as

(6. 5) u(x,t) = v(x - ct, 1) = U(x - ct - £(t)) - qoe"*t ,

=30«




where § = gl + gze-“t. It was shown that if w is sufficiently small

(positive) and gz = A1q0 for a certain constant A depending only
b M

on u (see (4.4)), then for arbitrary &1 and qo,

Nu = - = <0 .
BEa - e fle) 540

We shall now use u (with appropriate F,l, 9 and p) as a

comparison function in the region x <0, t > to. If we can show that

u<u on the boundary {x= 0} U {t = to}, then it will follow that

u(x,t) <u(x,t) in the quarter-plane under consideration.
First, consider the portion {t = to} of the boundary. From (6.4)

we have

.

u(x,t.) > U(x - cty - xO)

=B
ko ko

If we now set q, = €&, &2 = eAue , and gl S eAp, then

0

u(x, to) = U(x - ct. - xo) ~ g ux t. ).

0

Next, consider the portion {x = 0}. From (6.1) and the exponential

approach of U(z) to its limits, we have, for some v, Ml’

il e |
u(0,1) > 2U(-ct - z)) - 1 - gle W= 1-qle BE S < Uleest = 2.))

1
=yl -
>1—qbe PLt-Mle VICIt,

the primes added to distinguish these constants from the 9, and u in

(6.5). On the other hand," for t > tor
-p(t-t )
- -ut 0
u(0,t) = U(-ct - £(t)) - q,e ot 1- q,e Bt = ] - ge
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Thus

u(t-ty)

(6.6) u(0,t) - u(0,t) > e - Mle

—vielt | -u't
ape .

The constant p can be taken as small as desired. We choose
itsothat 0 <p<up', u<vlcl|. Then from (6.6),

-p(t=t_)

u(0,t) - u(0,t) > ee YoM+ q('))e—“t

1
-ut, —p.(t-to)

+ql)e )e >0

= e =M g

for sufficiently large t. (depending on &).

0

This completes the comparison argument, and we conclude that

for tZtO, x <0,
-p,(t-to)
u(x,t) > u(x,t) = U(x - ct - £(t)) - ee

>2Ux=-ct-x_)- w(e).

o)

A similar type of argument can be used to show that

u(x,t) < U(x - ct - x.) + w(e), and this completes the proof of the lemma. |

0

‘ ik Proof of Theorem 3.2: We define the 'left truncation"
|
u(x,t) , <0, 1
L 3 J

ul(x, =
1= g(x)1 - u(x,t), x>0,

p where {(x) € Cw(-oo,oo), E(x)=1 for x<0, Ux)=0 for x21, |

and Vt(z’t) = ul(x,t) = ul(z +ct, t).
o Then with the aid of Lemma 6.1 and essentially the same proof as in

; Lemma 4.3, we conclude that v, satisfies (4.5), and hence (as in

1

: 2
i Lemma 4. 4) the set {vl(-,t), t > 6} is relatively compact in C"(=%,®).




e —

Exactly as in Lemma 4.5, we next establish that

lim v (z,t) - U(z -x0)| =40

1
t +
for some Xq uniformly in z.

It is now trivial to extend the proof in §5 to show that

-wt

lv,(z,t) - Uz - x.)| <Ke :

1( 0)
which establishes (3. 5a).

The symmetrical argument establishes (3.5b), completing the
proof of Theorem 3. 2.

The following lemmas lead to the proof of Theorem 3. 3.

Lemma 6. 3: Under the hypotheses of Theorem 3.3, the following holds

for some numbers L and p (the last two positive):

(6.7) Ui - et = ] = qoe-“t Lulx. 1) < Uslz=rc i

| ) t-a)+q0e

2 2

Proof: Taking sufficiently the left-hand inequality, we observe that it
follows at once from the left-hand inequality of Lemma 4.1 applied to the
u-interval (ul,uz).

For simplicity, we assume from now on that cl <0< cz. If this

is not the case, we may use a moving coordinate frame to reduce the

problem to one for which it is so.

As m the proof of Theorem 3.2 above, we define the left truncation

ui,t) x <0,
ul(x, t) =
u, - é(x)(l-l2 - ux,t)), %20,
and vl(z,t) = ul(x, t) = ul(z + clt,t), where z = x - Clt'
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Lemma 6.4: For some numbers a;, g tor 90 and up (the last three

positive),

(6.8) Uia =2 g "

1 )= qoe-Flt <v,(zt) U

1 et L

= e
for t2t,
Proof: The left inequality follows directly from Lemma 6.3, and so we prove

only the right one. Let n be such that lim sup o(X) <n < a For

X = =00
some constants XO’ y, and k, to be determined below, let

1"

N, x <X
V(ix) =
r]+y(X—X

and L—l(x, t) = Min] us, V(x + kt)]. First, it is clear that V >¢ for

large enough negative X We so choose XO.

0
For V = n, we have = n and Nu = - f(n) >0, since a is the first
zero of f greater than ul.

For n<V<u we have

3’
Nu = kV' = V'' = f(V) = 2ky{ - 2y - £(V),

o

where ¢ = x + kt = XO' But
f(V) <f(n) +m(V-m) (for V>n, some m >0) = f(n) + mvéz,

so that

Nu > - f(n) - 2y + 2kvy¢ - myéz v

We first choose y so small that =-f(n) - 2y >0, then k so large that

2kyt - myg2 >0 for ¢ suchthat V is in the indicated range.




S o

L

This shows that u is a supersolution, and so u < u. In particular,

it follows that at each value of t >0,

(6.9) u(x,t) <n< @), for (-x) large enough .

=W lZ,
Next we observe that since Uz(z) Su, ¢t Ke ; for z <0,

the right-hand inequality in (6.7) implies

=it
(6.10) u(x,t) < u, + Ke

for x <1.

We now consider the function

. i
u(x, t) = Ul(x - clt + £(t)) + q,e

in the domain x <1, t >t . With appropriately chosen §, dyr Ky

0
and ty, it will be a supersolution.

First of all, from the proof in Lemma 4.1, where a similar comparison

function was used, we know that NGZ 0, provided q. and b, are

_“Zt 0
sufficiently small, and §£' = -f;le for some appropriate gl.
We shall show that u(x,t) >u(x,t) for t = to and/or x = l.
- t
20
First, with to to be specified later, we choose q0 so that qoe =
Taking the constants K and w, from (6.10), we note that
-, t pz(to‘t)

(6.11) u, + Ke < Ul(l - clt) + ne

for sufficiently large to, t2 tO’ and sufficiently small Hos by virtue

of the facts that < <0 and Ul(z) - u_ exponentially as z =». We

2

.




choose t_. and K, SO that (6.11) holds for t >t and also so that

0 01

the last term in (6.10) satisfies

~w, t

(6-12) Ke 20<r].

Next, we choose X so large that (from (6.9)) u(x, to) <n

for x <-X, and g(to) so large that

Tty 95t
(6.13) Ul(x—clto +§(t0)) tqye = Ul(x-clto +§(t0)) +n> u, + Ke

for x > -X. This is possible, by virtue of (6.12) and the fact that

(6.10) and (6.13) yield that u(x,t)) < u(x, ty). For

x =1, (6.10), (6.11), and the fact that £(t) >0 imply u(l,t) <u(l,t)

> to. By the maximum principle, we conclude that
. Thiat
u(x,t) <u(x,t) < Ul(x - clt - a3) +q,e 2 for all x<1, t>0. Since

u(x,t) = vl(x - Clt’ t) for x <0, this establishes the right side of (6.8)

for z < -clt = ,Cl lt. But for small p  and large t,

U (z

- -t -
1 a3)+q0e Pu, 2v,(eg,t) for z > lcllt,

2 1

and so (6.8) can be guaranteed by (if necessary) further reducing p and

increasing to. This completes the proof of the lemma.

Proof of Theorem 3.3: With inequality (6.8) at hand, we may prove, as in

the proof of Theorem 3.1, that for some X

lim lv!(z,t) - Ul(z -x)]| = v,

t—+o00

1

uniformly in z. And again using the argument in §5, we find that

’




'vl(z,t) -U

and hence

(6.14) Nuﬁ)-%u-cﬁ-ﬂngKgm

for x <0. A similar argument using the right truncation yields

X-cC t-x)nge-wt

(6.15) lu(x, 1) = U L

for x >0. Combining (6.14) and (6.15), we obtain (3.7), completing

[ the proof.

| -46-




REFERENCES
L. D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population

genetics, combustion, and nerve propagation, in Partial Differential

Equations and Related Topics, ed. J. A. Goldstein. Lecture

Notes in Mathematics No. 446, Springer, New York (1975), 5-49.
2. D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear

diffusions arising in population genetics, Adv. in Math., to appear.

3. G. I. Barenblatt and Ya. B. Zel'dovi::, Intermediate asymptotics in

| mathematical physics, Usp. Mat. Nauk 26 (1971), 115-129;
Russian Math. Surveys 26 (1971), 45-61.

4. K.-N. Chueh, On the asymptotic behavior of solutions of semilinear
parabolic partial differential equations, Ph.D. Thesis, University
of Wisconsin, 1975.

5. H. Cohen, Nonlinear diffusion problems, in Studies in Applied

Mathematics, ed. A. H. Taub, Studies in Mathematics No. 7, Math.

Assoc. of America and Prentice-Hall (1971), 27-64.

6. P. C. Fife, Pattern formation in reacting and diffusing systems, ]J.
Chem. Phys. 64 (1976), 554-564.

T P. C. Fife, Singular perturbation and wave front techniques in reaction-
diffusion problems, Proc. AMS-SIAM Symposium on Asymptotic Methods

and Singular Perturbations, New York, 1976.

-]




10.

11.

14,

13.

14.

15.

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear

diffusion equations to travelling wave solutions, Bull. Amer. Math.
Soc. 81 (1975), 1075-1078.

R. A. Fisher, The advance of advantageous genes, Ann. of Eugenics
7(1937), 355-369.

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-

Hall, Englewood Cliffs, N. J. (1964).

I. M. Gelfand, Some plroblems in the theory of quasilinear equations,
Usp. Mat. Nauk (N.S.) 14 (1959), 87-158; A. M. S. Translations (2)
29 (1963), 295-381.

F. Hoppensteadt, Mathematical Theories of Populations: Demographics,

Genetics, and Epidemics, CBMS-NSF Regional Conference Series

in Applied Mathematics, Society for Industrial and Applied Mathematics,
Philadelphia, 1975.

Y. Kametaka, On the nonlinear diffusion equation of Kolmogorov-
Petrovskii-Piskunov type, Osaka J. Math. 13 (1976), 11-66.

Ya. I. Kanel', On the stabilization of solutions of the Cauchy problem
for equations arising in the theory of combustion, Mat. Sbornik 59
(1962), 245-288. See also Dokl. Akad. Nauk SSSR 132 (1960),

268-271 (= Soviet Math. Dokl. 1 (1960), 533-536) and Dokl. Akad. Nauk

SSSR 136 (1961), 277-280 (= Soviet Math. Dokl. 2 (1961), 48-51).
Ya. I. Kanel', On the stabilization of solutions of the equations of the
theory of combustion with initial data of compact support, Mat.

Sbornik 65 (1964), 398-413.

-48-




r‘:‘*———-«-‘

16.

17.

18.

19.

20.

21.

2d.

23.

A. N. Kolmogorov, I. G. Petrovskil, and N. S. Piskunov, A study
of the equation of diffusion with increase in the quantity of matter,

and its application to a biological problem, Bjul. Moskovskogo Gos.

Univ. 1:7(1937), 1-26.

H. P. McKean, Application of Brownian motion to the equation of
Kolmogorov-Petrovskil-Piskunov, Comm. Pure Appl. Math. 28 (1975),
323-331.

E. W. Montroll, Nonli;\ear rate processes, especially those involving

competitive processes, in Statistical Mechanics, ed. Rice, Freed,

and Light, Univ. of Chicago Press (1972), 69-89.

J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission
line simulating nerve axon, Proc. Inst. Radio Eng. 50 (1962),
2061-2070.

M. H. Protter and H. F. Weinberger, Maximum Principles in

Differential Equations, Prentice-Hall, Englewood Cliffs, N. J. (1967).
F. Rothe, Gber das asymptotische Verhalten der Losungen einer
nichtlinearen parabolischen Differentialgleichung aus der Populations-
genetik, Ph.D. Dissertation, University of Tubingen, 1975.

D. H. Sattinger, Weighted norms for the stability of travelling waves,

preprint.
A. N. Stokes, On two types of moving front in quasilinear diffusion,

Math. Biosciences 31 (1976), 307-315. 1




BECURITY CLASIFICATION OF THIS PAGI (When Date Futersd)

s REPORT DOCUMENTATION PAGE AR HISTRUCTIONS

Fr—atponT numsrn ; 2, GovTr Accuuoztﬂ:bvl._ummmﬂ_r.mjm HUMELR
— £,/ i
; v A5

1736 _
/4 TITLE (and Sudtitle) s / S PyPE-OF-NREPORT-EPEHIOD COVLRED
THE APPROACH OF, SOLUTIONS OF NONLINEAR /] 3/\1"1"\0!7 )Zepert + no specific
DIFFUSION EQUATIONS TO TRAVELLING FRONT repOr!!h‘U'Uéﬂod
’ SUI U IIONS |5 6. PENFORMING ORG. REPORT NUMBER
& St
‘,'1,' 'AUTHOH(.) ; .//‘ €. CONTRACT OR GRANT NUMBER(s) :
[ ooy nis SR - DAAG29-75-C - |
' ¥Y'Paul C ./mt aaj B. /\/Ic,Lg_od \ 4 “”24.- ¢
/ . fi i ol / N&F-MPs-74- abszsﬁxm :
{ i e———————— L
} 6. PLRFOHMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM FLEMENT, PROJECT, TASK
| Mathematics Research Centery University of ABRE & NGRS GNIT MUMBEES -!
1610 Walnut Street Wisconsin 1 (Applied Analysis) :
! Meadlson, Wisconsin 53706 )
)H. CONTROLLING OFFICE HNAME AND ADDHF« CA T }IZ REPQﬁW I
i \y W Mareh 1977 | P
f See Item 18 below. /’{ 5 AGES :
: 49
:mHTORING AGENCY NAME & ADDRE S(M ditiorent from erolunn Otfice) 15. SECURITY CLASS. (of thie report) ‘
1 . 3 | NCLASSI )
) ’ 15a. DECL ASSIFICATION/ODOWNGRADING i
i SCHECULE ’
{-lc. DISTRIGUTION STATEMENT (of thls Report) ?
; ;
i [
Approved for public release: distribution unlimited.
i 2
.‘ 17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, If dilferent from Report) '
b |0 SUPPLEMENTARY NOTES ) . . . e
i U Army Research Office National .Science Foundation Science Research
! P. O. Box 12211 Washington, D. C. Council '
- Research Triangle Park 20550 London, England |
3' North Carolina 27709 o 8 ;
«: { 19. KEY WORDS (Continue on reverse eide if necessary and ldentify by block number) ]
: ¢ Fisher's equation wave fronts ]
i nonlinear parabolic equations asymptotic behavior_ £
( travelling waves & oo 4T @ int b
i travelling fronts 50, > ( ‘
''20. ABSTRACT (Continue on reverse eide It ‘fia;con.nq and Identily by block number) 7 !
The paper is concerned with the asymptotic behavior as t L® of solutions
- i

u(x,t) of e S f(lu) = 0 (x € (-»,®)) in the case f(0) = f(1) = 0,
f'(0) <0, f'(1) <0. Commonly, a travelling front solution u = U(x - ct),
U(=o) = 0, U'w) - 1,' e,xists.&e\following types of global stability results for

fronts and varicis combinations of them are given:

. s ———— ———g———-

b~ - e -

DD ':2:“” 1473 E0iTION OF 1 NOV 63 1S OBSOLETE UNCU\SSIFIED _ (o




20. ABSTRACT - Cont'd.

1. Let u(x,0) = u (x) satisty O guo <1l. Let a_= lim sup uo(x),

0

X =+ =00

a, = lim int uo(x). Then u approaches a translate of U uniformly in

X+

x and exponentially in time, if a_ is not too far from 0, and a+

not too far from 1.
1
2. Suppose f f(u)du > 0. If a_ and a, are not too far from
0

G, but U exceeds a certain threshhold level for a sufficiently large

x-interval, then u approaches a pair of diverging travelling fronts.

3. Under certain circumstances, u approaches a ''stacked"

combination of wave fronts, with differing ranges.




