AD=AO42 513 CALIFORNIA INST OF TECH PASADENA DIV OF ENGINEERING==ETC F/6 20/11
ON THE FAILURE OF ELLIPTICITY AND THE EMERGENCE OF DISCONTINUOU==ETC(U)
JUN 77 J K KNOWLES, E STERNBERG NOOD14=75=C=0196
UNCLASSTFTED TR-37 NL
| &




||||| 1.0 e e

=7
.
e
22 s nie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-/




OFFICE OF NAVAL RESEARCH
CONTRACT NO0O0OO14-75-C-0196

TECHNICAL REPORT NO.37 "

ADAO42513

ON THE FAILURE OF ELLIPTICITY AND
- THE EMERGENCE OF DISCONTINUOUS
‘DEFORMATION GRADIENTS
IN PLANE FINITE ELASTOSTATICS

P o
o
S
L 'DIVISION OF ENGINEERING AND APPLIED SCIENCE
;.:'._ : CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA
2
e

JUNE 1977

AU T S B i1 1w

O
Wo :
. ) BY C
“\\ \ J. K. KNOWLES AND ELI STERNBERG
‘ V2 -
- /
\




Office of Naval Research

Contract N00014-75-C-0196

Technical Report No. 37

3 On the failure of ellipticity and the emergence of
- discontinuous deformation gradients

in plane finite elastostatics

by

J.K. Knowles and Eli Sternberg

f‘ Division of Engineering and Applied Science
California Institute of Technology

Pasadena, California

June 1977

“
b o)
a3l




o r

On the failure of ellipticity and the emergence of

kS
discontinuous deformation gradients

&
in plane finite elastostatics

by

- USIEBTon o g
J.K. Knowles and Eli Sternberg E

ALY ey

California Institute of Technology

Summary

This investigation concerns equilibrium fields with discontinuous
displacement gradients, but continuous displacements, in the theory of fi-
nite plane deformations of possibly anisotropic, compressible elastic sol-
ids. '"Elastostatic shocks'' of this kind, which resemble in many respects
gas-dynamical shocks associated with steady flows, are shown to e:::ist on-
ly if and when the governing field equations of equilibrium suffer a loss of
ellipticity. The local structure of such shocks, near a point on the shock-
line, is studied with particular attention to weak shocks, and an example
pertaining to a shoek of finite strength is explored in detail. Also, neces-
sary and sufficient conditions for the ''dissipativity'' of time-dependent

equilibrium shocks are established. Finally, the relevance of the analysis

carried out here to localized shear failures — such as those involved in the
formation of Liilders bands — is discussed.
Introduction

Several years ago — in connection with asymptotic studies of

*The results communicated in this paper were obtained in the course of an

investigation supported by Contract N00014-75-C-0196 with the Office of
Naval Research in Washington, D. C.
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crack problems within finite elasticity theory — we encountered the fact

that the field equations of nonlinear elastostatics may suffer a loss of ellip-
ticity for some elastic materials in the presence of sufficiently severe lo-
cal deformations. A special isotropic material of this kind was explored
in [l], where we determined all three-dimensional homogeneous deforma-
tions at which such a breakdown of ellipticity occurs. More recently [2], 4
we deduced explicit necessary and sufficient conditions, in terms of re-
strictions upon the principal stretches and upon the dependence of the
strain-energy density on the principal stretches, for ordinary and strong
ellipticity of the equations governing finite plane deformations of general
homogeneous and isotropic, compressible hyperelastic solids.

A failure of ellipticity of the elastostatic equations appropriate to
such solids suggests the possible emergence of solution fields exhibiting a
loss of smoothness. In the present paper our interest is directed in par-
ticular at the possibility of solutions that possess finite jump discontinu-
ities in the first displacement gradients across certain curves, while the
displacements themselves still remain everywhere continuous. We call
solutions of this kind 'elastostatic shocks" in allusion to gas-dynamical
shocks associated with stationary inviscid flows, to which they bear a
more than casual resemblance. Moreover, since our current concern is
with the local state of affairs near an interior point on a shock-line (line of
displacement-gradient discontinuity), it will be sufficient to confine our at-

tention here to piecewise homogeneous elastostatic shocks: thus we assume

the shock-line to be a straight line, on either side of which the plane defor-

mation under consideration is homogeneous.

Before we proceed to outline the content of this paper, we should




make clear that our motivation in studying elastostatic shocks is physical
in origin. Discontinuities of the kind described above arise typically in
the idealization of localized shear failures, such as those involved in the
formation of Liiders bands.

In Section 1 we recall some prerequisites from the nonlinear theory
of plane elastostatic deformations, including the relevant notions of ellip-
ticity. Here we also cite the explicit conditions of ordinary and strong el-
lipticity established in [2] for the special case of material isotropy, as
well as results derived there regarding the inclination of the characteris-
tic curves that accompany a loss of ordinary ellipticity.

Section 2 contains a detailed discussion of response properties in
plane strain of two special isotropic elastic materials, which are used in
the remainder of the paper to illustrate various general conclusions. The
first of these materials, which was also the object of [1], is governed by
a stored-energy function originally proposed by Blatz and Ko [3] on the ba-
sis of experiments with a highly deformable rubberlike material. The sec-
ond particular material introduced in Section 2 is strictly hypothetical in
nature and is employed later on to bring into evidence certain constitution-
ally determined qualitative differences in behavior.

A complete definition of piecewise homogeneous elastostatic shocks
is spelled out in Section 3, where their kinematics is analyzed in detail.
Further, we prove here that the existence of such an equilibrium shock is
contingent upon a loss of strong ellipticity of the displacement equations of
equilibrium, appropriate to the material at hand, at some homogeneous de-

formation. The results obtained in Section 3 — like most subsequent re-

sults — are not restricted to isotropic materials.




The considerations carried out in Section 3 suggest that if there ex-~
ists any piecewise homogeneous shock corresponding to a pre-assigned,
deformation on one side of the shock-line, there is a one-parameter fami-
ly of such shocks. In Section 4 we take for granted the existence of a
smooth family of shocks in a neighborhood of the shockless state. We then
deduce various "weak-shock'' results — encompassing the jumps across
the shock-line of physically significant field quantities — to dominant or-
der in a shock-strength parameter that measures the departure from the
shockless solution. One of the conclusions reached in this manner is that
the existence of the presupposed family of equilibrium shocks demands a
loss of ordinary ellipticity at the given homogeneous deformation. More-
over, the limiting shock-line at zero shock-strength is found to be a char-
acteristic line associated with this deformation. It should be mentioned
that Rudnicki and Rice [4]l had previously arrived at the required failure
of ellipticity in dealing with weak shocks of a related type for a broader
class of materials that includes the elastic solid.

Section 5 is devoted to an instructive example of a global analysis
of a piecewise homogeneous equilibrium shock of finite strength, based on
the first of the two special isotropic elastic materials discussed in Sec-
tion 2. In this instance explicit results for all possible shocks can be ob-
tained in a transparent elementary form. In particular we find here that
every shock admitted is accompanied by a breakdown of ordinary elliptic-
ity at least on one side of the shock-line, regardless of the strength of the

shock.

In gas dynamics the sign ¢ * the shock strength is determined by the

lSee also Rice's [5] more recent paper.




entropy inequality, which models the dissipative character of the process
of shock formation in the absence of viscosity. Guided by this fact we

generalize in Section 6 the results of Section 3 to time-dependent piece-

wise homogeneous quasi-static shocks and then establish an energy identi-
ty that serves as a basis for a proposed criterion of dissipativity appropri-
ate to such shocks. Thereafter we obtain necessary and sufficient dissipa-
tivity conditions, which lead to an inequality analogous to the entropy con-
dition of gas-dynamics. The dissipation inequality is applied at the end of
Section 6 to determine the sign of the shock strength in the special global
solution arrived at in Section 5, as well as for weak shocks in the second
of the two particular isotropic materials mentioned earlier. This sign, in
turn, governs the sign of the jump in the mass density as the shock-line is
traversed. We find that the shock strength may be positive or negative de-
pending on the particular nature of the elastic material experiencing the
shock.

In Section 7 we combine the special results of Section 5 and the gen-
eral conclusions reached in Section 6 in an attempt to illustrate the rele-
vance of elastostatic shocks to the phenomenon of Liiders bands in a slab
under uni-axial tension or compression. For this purpose we view the
evolution of such a band — in the vicinity of a point on the interface be-
tween band and slab — as a bifurcation from a homogeneous deformation
that has become dynamically unstable following a loss of ellipticity, into a
time-dependent piecewise homogeneous equilibrium shock. The ensuing
results, though tied to a very limited elastic material, display various
striking qualitative features that are reminiscent of familiar experimental

observations. In this connection we refer to the work of Hill and
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Hutchinson [6], where various bifurcations from a state of plane-strain uni-
axial tension are investigated for a class of incompressible, incrementally
linear time-independent materials, Among these bifurcations are localized

shearing modes.

1. Preliminaries on finite elastostatic plane strain.

In this expository section we recall from [2]1 certain results pertain-
ing to the nonlinear theory of plane elastostatic deformations which are es-
sential to the analysis of the class of discontinuous plane elastostatic fields
that constitutes our main objective,

As for notation, we shall use boldface letters to denote vectors and
second-order tensors in two dimenrions, as well as two-rowed column and
square matrices. Further, the same boldface letter will be employed to
designate a vector or tensor and its matrix of scalar components in the un-

derlying rectangular cartesian coordinate frame.

Let R be the open region of the (xl,xz)-plane occupied by the interior

of the middle cross-section of a cylindrical or prismatic body in its unde-

formed configuration. A plane deformation of such a body — parallel to the
(xl,xz)-plane — is described by a suitably smooth and invertible transfor-
mation

X:X(ﬁ)zf"'}.‘,(f) for all X inR, (L. 1)

which maps R onto a domain ®, of the same plane. Here x is the position
vector of a generic point in R, y(x) is its deformation image in ®,, while u

is the displacement vector field. Accordingly, x andy are the cartesian

(o]

1
Parts of this resume are taken verbatim from Section 1 of [2].




material and spatial coordinates, respec:tively.l We call E the deformation-
gradient tensor belonging to the mapping (1.1) and J its Jacobian determi-

nant (area ratio). Thus,
2
E:Vx:[ayalaxﬁ] , J=detE>0 on R. (1.2)

Let T be the in-plane Cauchy stress-tensor field accompanying the
deformation at hand, so that T°43 stands for the prevailing components of
Mactual' or ''true" stress. The appropriate two-dimensional stress equa-

tions of equilibrium, in the absence of body forces, then take the form

Nt N I y 3
divy=0 , T=1 or a'rals/ayp_o X Torﬂ_Tpa on R,. (1. 3)

~

Next, suppose g represents the in-plane Piola stress-tensor field corres-

ponding to T, whence

1, T -1
ng (F ) or Oap:JTaprc

X (1.4)

L T X
l‘JEE or Taﬁ'JoapFﬁo’

: -1
where Gaﬁ are the components of ''nominal' or "pseudo-stress' and F -,

with the components F‘;é, designates the inverse of the nonsingular tensor

E. Equations (1. 2), (1.3), (1. 4) lead to the equilibrium conditions
divg:g or Boaﬁ/axp=0 on R, (1.5)

but g is in general not symmetric.

rGreek subscripts have the range (1, 2) and we shall employ the usual sum-
mation convention.

21{ M is a two-by-two matrix with elements Maﬁ' we alternatively write
[Maﬁ] in place of M.

A superscript T will always indicate transposition.

3




Turning now to the governing constitutive relations, we assume that

the body is elastic and possesses an elastic potential W, which represents

the strain-energy density per unit undeformed volume. Moreover, we re-

strict the material to be homogeneous. Consequently, W depends upon po-

sition on R exclusively through the deformation-gradient tensor F, and the
constitutive law — as far as the in-plane Piola stresses are concerned —

becomes

g=W_org (1.6)

F op =9W/ BFQ

B
Substituting from (1. 6) into (1. 5), and invoking (1.1), (1.2), one arrives at

the displacement equations of equilibrium

1
Caﬂyé(g)uy,éﬁ_o on R, (L. 7Y

provided

F)=0°W/oF_ oF (1.8)

apys Y6 T op

For all unit-vectors N, let Q(N;F) be the symmetric tensordefined by

RN 2
Qu E) =c 0. s (EIN (1.9)

aPy b ﬁNé'

The quasi-linear system of partial differential equations (1.7) is elliptic at
a solution u (with continuous first and piecewise continuous second partial

derivatives on f) and at a material point X, provided
detQ(N;F(x))#0 for all N with |N|=1, (1. 10)

where F(x) is the value at x of the deformation gradient field generated by u.

Subscripts preceded by a comma indicate partial differentiation with re-
spect to the corresponding material cartesian coordinates.

ZThe symmetry of Q(N;F) follows from CaByazcyéaﬁ'




If (1.10) fails to hold, so that
detQ(N;F(x))=0 for some N with IEI =1, (1,11)

then N is normal to a characteristic curve (referred to the undeformed

state) associated with the solution u at x. The characteristic curves, in
turn, are the only possible carriers of ''weak discontinuities' of u: across
such a curve the second normal derivative of u may exhibit a {inite jump
discontinuity, whereas its second tangential derivative, as well as the
mixed tangential-normal derivative are bound to remain continuous. Thus,
the ellipticity condition (1.10) precludes the existence of real characteris-
tics; (1. 10) is necessary and sufficient in order that every solution u of the
presupposed smoothness be free of weak discontinuities and hence in fact
twice continuously differentiable at the material point under consideration.

Following common usage, we call the system (1.7) strongly elliptic

at a solution u and a material point x, provided Q(N;E(x)) is positive-defi-

nite for every unit-vector N, i.e. provided
M+ Q(N;E(x))M>0 (1. 12)

for all unit-vectors M and N. Clearly, the strong ellipticity of (1.7) atu
and x implies its ordinary ellipticity.

We proceed next to the particular case of an isotropic body under-
going a plane deformation of the form (1.1). To this end let C and G, re-
spectively, be the right and the left Cauchy-Green deformation tensors as-

sociated with the mapping (1. 1), whence

GE'E. GEE . (1.13)




These two symmetric, positive-definite tensors have tae same fundamental
scalar invariants and hence common principal values, which are the squares
of the local principal stretches (length-ratios); the latter will be denoted by
xa>0. In view of (1. 13) and the second of (l.2), the deformation invariants

just mentioned obey

22

I=trC=trG=F
s TS T o o

(1. 14)"
J= /TG =/AETT =detE =748, sF, (Fyg =\ Az,

in which eaﬁ stands for the components of the two-dimensional alternator.
In the special instance of an isotropic material subjected to a plane
deformation (1. 1), the strain-energy density W involves F merely through

the two deformation invariants I and J. In these circumstances one has
W(E)=W(L, J)=W(X;,%,), (1. 15)

where — in order to avoid unduly cumbersome notation — we have employed
the same functional symbol in three distinct connotations. In particular,

W(,J) and W()\l - )\2) stand for the plane-strain elastic potentiad2 of the mate-

rial at hand in terms of the deformation invariants and the principal stretches,

respectively. From (l.14) one has

1 . :
For convenience we use J, rather than the common determinant of C and G,
as the second invariant.

2Thes;e two alternative forms of the potential are the restrictions to plane
deformations of their spatial counterparts, which in general depend upon the
three invariants of the three-dimensional deformation tensors and on the
triplet of principal stretches. While W(I,J) fully characterizes the in-plane
response to a plane deformation, it is insufficient for the determination of
the out-of-plane stresses so induced.




aJ -1

aI_:ZF

F
aFaﬁ

Qp ’ ﬁa—ﬁ' :eBYeaéFéY:J pQ" (1. 16)

and (1.6), (1.15), (1.16) furnish the stress-deformation relations

- ! SN
g-W£-2W1E+JWJ(E )
(1.17)
) g
or 00[3_ 31‘“0,;5 _ZWIFO‘ﬁ+wJ€py€aéF6y

in case of material isotropy, where WI and WJ are the partial derivatives
of W(I,J) with respect to its arguments. The corresponding constitutive re-
lations for the actual stresses are obtained by means of (1. 4) and, because

of (1.13), may be written as

Nz
L= ‘Twng’WJL

(1.18)

Z

or TQ’ﬁ: ﬁa:? +W

WiGap*Wrlap + Cap Ty oy’
if 1 is the two-dimensional idem-tensor and 50/[3 the Kronecker-delta. Ac-
cording to (1. 18) the tensors T and G have the same principal axes. Finally,

(1.17) together with

=1
oF
o =1..-1
== oA
aFyé FﬁYFéa ( 9

yield the appropriate specialization of (1.8) in the form

-1_.-1 _.-1
+JWJ(F(30F6Y-F60F

c =2W_5 B

1
apys -2V iday s ) W LFGF o

‘;;FY6+F ' B (1. 20)

2 o
+I°W Fp Fo +2IJW,  (F BF 5y

JJI” Ba by

For a pure homogeneous plane deformation, referred to its principal




axes, (1.1) become

ya:)‘axa (no sum), (1.21)

in which the coefficients kaare positive constants and are readily identified
as the associated principal stretches. If the material is isotropic, the co-
ordinate axes — in this particular instance — are at the same time principal
axes common to the now constant symmetric tensor fields C, G, and T, as
well as to g, which at present is also symmetric. On adopting the notation

oW 9%W

b Vap=on, 075

= " (1.22)
o 8)\0{

whenever W is to be regarded as a function of )\1 and A, one finds that

(1.21) reduces (1.17), (1.18) to

0y=0qq=W, (no sum), %a‘o («£B), (1.23)
T :__)‘a
a oo )\l)\z

5 Wa (no sum), Ta[S:O («£B), (1.24)

where Ty 2re the principal Cauchy stresses. As is easily seen, (l. 24) con-
tinue to hold locally for an arbitrary plane deformation (1.1), provided )‘a
and Ty are the local principal stretches and principal Cauchy stresses. In
what follows we will need to refer to the two-dimensional Baker-Ericksen

inequality, according to which
(71-72)()\1-)\2)>0 if )\lﬁ)\z (1. 25)

for all pure homogeneous deformations. In view of (l.24), this condition is

equivalent to

(WA W) (4 -2,)>0 if X Fhy. (1.26)

S Ci e s el i A i St Lot et
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We shall from here on assume that the strain-energy density and all

stresses vanish in the undeformed state and thus require that W()\l,)\z) obey
Ww(l,1)=0, Wa(l,l)=0. (1.27)

The transition to the infinitesimal theory of elastostatic plane strain, which
aims at a neighborhood of the undeformed state, is effected through a sys-

tematic linearization with respect to the displacement gradients of the finite
theory recalled above. The underlying limit process, which corresponds to
)‘a_)l’ confirms that 00“3 and Taﬂ coincide to dominant order in this approxi-

mation. Upon setting
° 1 e
a=5[W, (1, 1)-W (1, 1], i=W,,(1,1), (1. 28)

one recovers in this manner from (1.17) or (1.18) and (1. 7), (1.20) the
stress-displacement relations and the displacement equations of equilibrium
of the linear theory for isotropic materials with 4 as shear modulus and X as
Lamé's modulus. Accordingly, Poisson's ratio for infinitesimal deforma-
tions is given by

\.)-’- s L — 0 (1. 29)
2(){*‘“) Wll(l,l)'l'le(l,l)

With reference to the definitions (1. 10) and (1. 12) we now cite from
[2] necessary and sufficient conditions, in terms of restrictions upon
LACSTRPY and the principal stretches \ , for the ordinary and strong ellip-
ticity of the two-dimensional displacement equations of equilivrium (l.7) in

the presence of material isotropy. For this purpose let




e

LB a ;
B3k -hy » D=Z (MW =X, W,) if X £),,

(1. 30)
-l l ) 3 - -
D_Z()‘w1+w“.w12 if A=), =0,

and define a symmetric matrix EEE()\I, )\2) as follows: for all )‘oz>0 such

Eaaszaa (no sum)

> (1 31)
ST R e YT
TS N R bl ) Rab e Rl Ll ey 12- % %% .
1%z 1 "2
J
for all A >0 such that X =), =1,
EapzDW“. (1. 32)

Bearing in mind the symmetry of W()\l, Ay) and taking for granted that this
function is twice continuously differentiable, one sees that D()‘l’ )\2) and
E(Xl,)\z) defined by (1.31), (L. 32) are continuous on the entire first quad-
rant of the principal-stretch plane,

As shown in Section 2 of [2], for an isotropic material the system
(1.7) is elliptic at a solution and at a particular material point if and only if

the corresponding local principal stretches satisfy the inequalities

E,,E,,>0, nE ,+/E E

11522 i s

where

n:sgnEaa (no sum); (1. 34)

further, necessary and sufficient for the strong ellipticity of this system is

that




D>0, E“>0 . E22>0 " E12+ E11E22>°- (1. 35)

Note from (1. 30) that D>0, if )\lﬁkz, is equivalent to the Baker-Ericksen in-
equality (1.26), the latter being a necessary condition for strong ellipticity.
Moreover, (l.35) evidently imply (1. 33), as should be the case.

At the undeformed state, characterized by >‘l =)\2 =1, the strong-ellip-

ticity conditions (1. 35) by virtue of (1. 32), (l.30), and (1.27) reduce to

W (L1)>0, W (1,1)-W ,(1,1)>0. (1. 36)

These inequalities, in turn, because of (1.28), become
u>0, X+2u>o0, (1. 37)

which are precisely the familiar conditions for the strong ellipticity of the
linearized displacement equations of equilibrium in case of isotropy. We
proved at the end of Section 2 in [2] that when (1. 37) hold true — so that
strong ellipticity prevails at infinitesimal deformations — every open con-
nected set of ordinary ellipticity in the ()\1, Xz)-plane that contains the un-
deformed state (1,1) is necessarily also a domain of strong ellipticity.
Finally, suppose ellipticity has failed, so that (1. 33) are violated at
some material point, for a particular plane deformation. Then there must
exist at least one (real) characteristic curve passing through this point.
We call such a curve a ""material characteristic' when it is referred to the
undeformed configuration and apply the term ''spatial characteristic' to the
deformation image of a material characteristic. Lety be the angle of in-
clination of a local spatial characteristic relative to the first principal axis

of the local Cauchy stress tensor T and hence also of the left deformation




Fb~
tensor G. As shown in Section 3 of [2], cos2y is a solution of

4 4 2.2 2
(M Ep 1E =20, E ;) cos 2y

2.2

4 4 4 )
+2 (0,E,, -\ E A,E 5 20N E ) =0, (1.38)

4
1 11) cosZy+()\lE

11

where g(xl,x?_) is the symmetric matrix introduced in (1.31), (1.32). The
discriminant of this quadratic equation is non-negative throughout the com-
plement ¥ of the domain of ellipticity €, characterized by (1.33), with re-
spect to the open first quadrant of the ()‘l’ )\2)-pla.ne.1 In the interior of ¥
equation (1.38) in general has two distinct real roots within the interval
[-1,1], corresponding to four distinct spatial characteristic directions.
The latter evidently occur in two pairs, each symmetrically situated with
respect to y=0. In contrast, for points on the common boundary of € and ¥
(ellipticity boundary), which are associated with an "incipient failure of el-
lipticity'', there is at most one such pair of characteristic directions, the

2
two real roots of (1. 38) being necessarily coalescent.

2. Two special elastic materials and some of their response properties.

For future illustrative purposes we turn here to a class of homoge-
neous and isotropic elastic materials, whose in-plane response to a plane

deformation is governed by an elastic potential of the form

W(L,3) =5 (1£(2)+g(D)] (u>0), (2.1)

lThe set ¥ of non-elliptic points in the principal-stretch plane may of
course be empty for a particular elastic material.

See the exhaustive discussion of incipient failures of ellipticity at the end
of Section 3 in [2]. In this degenerate case there may exist only a single
characteristic.
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in which u is a material constant. Note that this potential depends linearly

upon the invariant I. Since the corresponding W(Xl. )‘2) is to satisfy (1.27),

the functions f and g are subject to the requirements

2f(1)+g(1)=0 , 2f(1)+2£'(1)+g’(1)=0, (2.2)

the primes denoting differentiation. For every fixed choice of the functions
f and g consistent with (2. 2) one can readily exhibit an infinite class of
s three-dimensional elastic potentials, each of which yields (2. 1) upon spe-

cialization to plane strain.

We now particularize (2.1) in two different ways and hereafter refer

to the corresponding materials as Material 1 and Material 2. Let

f(J)=J-2 , g(J)=2J-4 for Material 1,

(2. 3)
13
£(J)=J , g(J)=8J 2-10 for Material 2,
Accordingly, for Material 1,

" WO, h) =220, 0,0 2408 4) (2. 4)
: 7522 12 1 2 s ;
: whereas for Material 2,
o U 3 3 _%-
: WA, 0)=5[ A At A A5 48(0 1) 2-10] . (2. 5)

Both materials conform to (2. 2), whence the energy density and all stresses

vanish in the undeformed state. Further, the first of (1.28) gives uz;..l in

»
2 an

either instance, so that y is the shear modulus for infinitesimal deforma-
tions; on the other hand, the second of (1.28), together with (1. 29), furnish
.l i:Zu,\.)=% for Material 1 and i=4p.,{)=-2§ for Material 2. Therefore, (l.37)

assure strong ellipticity at infinitesimal deformations for both materials.
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In contrast, as will become apparent in what follows, neither material re-
mains elliptic at all plane deformations.

Our next objective is a detailed discussion of relevant response
properties pertaining to Material 1. In this connection we note first that
W(M'Xz) in (2. 4) is the restriction to plane strain of an elastic potential
proposed by Blatz and Ko [ 3] in an attempt to match experimental data ob-
tained in tests of a highly compressible rubberlike material. The idealized
material thus adopted in [3] was the subject of [1], which contains a compre-
hensive three-dimensional treatment of its response characteristics and el-
lipticity restrictions. Since [1] also deals explicitly with the special case
of plane deformations to which we confine our attention at present, the sub-
sequent results are mostly cited from [1] without intermediate detail.

For a pure homogeneous plane deformation of the form (1. 21) one

infers from (2. 4) and (1. 23), (1.24) the in-plane response

o =l =3
T MI-0g25) X715 0,7 A0, -1 ,7) (2.6)

appropriate to Material 1. Specializing (2. 6) for the case of isotropic plane

strain, one has

-4 -3
ApFAEN, Ty ET,ET=U(L-N ), 07=0,=0=u(A-) ). (2.7)

In the particular instance of plane-strain uni-axial stress, parallel to the

xl-axis, (2, 6) furnish
o 4% : -3 et~y <3
T230,=0 , Ap=hy® 5 Ty=R(1-23%) » op=u(X %=X 7). - (2.8)

We consider now a homogeneous plane deformation corresponding to a state

of simple shear of the form
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y1=x1+11.x2 » Yo %5 (2.9)

in which » is a constant, tan_ln being the angle of shear. The principal

stretches of this deformation are related to # through

nz ’ 2 1

The response of Material 1 to such a simple shear is readily deduced with

the aid of (1.17) and (1.18). In this manner one arrives at

X de i 4L = a
T1130 » Tap=-bn , Tyo=Ty =N,
(2.11)

=L . il
SgrtmT V| G Oy SURTCL,

As is clear from (2.7), in isotropic plane strain, T(\) and o(}) are

concave, monotone increasing functions for 0O<\<oo and T(\)=-o, 0(A)2>-0 as

A\~0, but T(\)?u,c(\)?c as \@?®. The response of Material 1 to plane-strain

uni-axial stress is depictedin Figure 1. Accordingto(2.8), here T,(},) is a
concave, monotone increasing function for 0<X1<m and Tl(xl)—»-oo as )\1->0,
while 'rl()\l)-"u as )\1->oo. In contrast, the axial nominal stress Ol()‘l) in-
creases steadily from 0,(0+)=-co to a positive maximum at )\1=3%52. 28 and
thereafter diminishes steadily toward zero. The behavior of Material 1 in

simple shear is immediate from (2.11). Both the actual shear stress 7, 1

and the nominal shear stress 0y are directly proportional to the amount of
: shear %, but oZl(n) is a convex strictly increasing function for O<u<c. A
significant nonlinear effect is reflected in the fact that the shear deforma-

‘ tion (2. 9) induces an actual normal stress T22} the latter is compressive




for the material under consideration.

From (2. 4), (1.30), (1.31), as well as the continuity of D()‘l')‘z) and

o:ﬁ()‘l' )\2), follows for Material 1 at all )\ >0,

%
"
D= Z 2>° En= '6&2'>° )\zxé
A2
T(Z 12)
2.2
Eeyas —%'3‘87‘ Ag-A1-Ag)
J

Hence n=1 in (l. 34) and the first of the conditions of ordinary ellipticity
(1. 33) holds true for all plane deformations of this material, as does the
Baker-Ericksen inequality (1.26). On the other hand, (2.12), the second

of (1. 33), and (1. 14) reveal that ellipticity prevails at present if and only if

2 4 1
14X )‘Z X X2>0 or T<4' (2.13)
either of which is equivalent to
Mo
p<-r< , p=2-/3, (2. 14)
2

Moreover, in view of (1. 35), these conditions are also necessary and suffi-

cient for strong ellipticity.

Let (r, 0) be polar coordinates in the ()‘l’ )\2)-plane, defined by
X1=rcose » \,=rsin@ (0<r<oo,0<f<m/2). (2.15)
Then (2. 14) may be written as
5w

O<r<oo , 12 — <0< 1z (2.16)

This wedge-shaped domain of ellipticity € in the principal-stretch plane is




e

shownin Figure 2. The figure also displays the '"isotropic extension path"
T
)\l:)\z, the ""uni-axial stress path" >\2=)\Ia, and the ""simple-shear path'

)\2=)\il, supplied by (2.7), (2. 8), and (2.10). Since the first of these paths

-

lies wholly in €, Material 1 does not suffer a loss of ellipticity in isotropic

extension. On the other hand, each of the other two paths intersects the

boundary of € twice. Ellipticity is seen to fail in both uni-axial tension and

compression according as
2 3
A zp “£2.68 or xISp‘&o.37; (2.17)

the limits of ellipticity for uni-axial stress are also marked in Figure 1. Fi-

nally, in simple shear a breakdown in ellipticity is found to occur whenever

either principal stretch equals or exceeds the value p-iél. 93, which corre-
sponds to a shear angle of approximately 55",

According to (1.38) and (2. 12), the inclination of the spatial charac-

teristics relative to the first principal axis of Cauchy stress, for Material 1

obeys

Mag-1ahd
il N
cos2y==% s
Rk
1722

(2.18)

When ellipticity has failed, so that (2. 13) is violated, (2.18) evidently fur-

nishes two distinct pairs of real characteristic directions, except on the

boundary of €, where y=%m/4 are the only solutions of (2. 18) within -w<y=sw.
4 Thus, at an incipient failure of ellipticity the spatial characteristic direc-

tions for Material 1 coincide with the local directions of the lines of maxi- ]

{ mum and minimum actual shearing stress. Because of (2.15), equation (2.18)

alternatively becomes




-22-

_, [1-4sin"20
cos2y=% /—————COSZG . (2.19)

from which one infers that the characteristic directions do not vary along
any ray f=constant in the non-elliptic part of the (X;»X;)-plane. This com-
pletes the discussion of Material 1,

A parallel discussion of Material 2, the plane-strain elastic poten-
tial of which is given by (2. 5), is analytically more awkward. Here (2. 6)

give way to

o
5 2 2, -2 -2
T E 3NN a0 1) 2],
> (2.20)
u 3,-3_ -3, -1
0= F L3N AN F O A TA =400 5) BN T
J
Hence for isotropic plane strain,
. - 2 23 i 3 ,-2
A=A S, Ty =T,ET22u(07-077) , 0=0,50=2u(A7 -2, (2.21)

In the case of plane-strain uni-axial stress, parallel to the xl-axis, one

has by virtue of the first of (2. 20),

T,=0,=0 3x2+x24xX)'%~o (2. 22)
Rl R e '

the last of which implicitly determines the transverse stretch A, asa func-

tion of the axial stretch )\1. Thus,
Ap=A(r)) (0« <) (2.23)
and (2.20), (2.22), (2.23) lead to

T =] RE0] L 0 RO (2. 24)
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Althoughx(kl) is not obtainable in elementary form, one shows without dif-
ficulty that this function is strictly decreasing. Further, it is easy to de-
duce an explicit parametric representation, in terms of the polar angle 6
introduced in (2.15), for the curve corresponding to (2.23). This repre-
sentation was used to plot the uni-axial tension path appearing in Figure 4,
as well as the stress-stretch curves depicted in Figure 3. For a simple

shear deformation, characterized by (2.9), (2.10), one finds at present,

3Hn2 nz 7
T T =E T127T21 =44
2 25
KZ x3 > ( )
T11%22% 7 » TR, Oy (K- )

S

The preceding equations reveal certain essential qualitative differ-
ences between Material 2 and Material 1, as far as their response to the
special homogeneous deformations under consideration is concerned. The
functions T(\) and o(A) in (2. 21), which govern the response of Material 2

to isotropic plane strain, are both monotone increasing and, as is the case

for Material 1, T(\)? -00, 0(\)? -0 for \20; however, now both the actual and
the nominal stress tend to infinity as \?co. Similarly, it is clear from
Figure 3, which pertains to uni-axjal stress, that the true axial stress
T1(A{)Pc0 as Ao, while the behavior of the nominal stress 01()\1) is quali-

tatively the same as in Figure 1. Further, we observe on the basis of (2.25)

that a simple shear of Material 2 induces non-zero actual stresses 11 and

T2 both of which are tensile.

In place of (2.12) one obtains for Material 2 at all )\a>0.
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sz.)\l)\2>0, w
E-32)\)\+)\)\%2>0 L(?-Zé)
o= ASH A2 >0 (o sum), .

2
. 3 R &
E =5 10a A2-A1- x2+3(x +x2) (A X,)

S
In view of (2.26), (1.30), the Baker-Ericksen inequality (1.26) is satisfied
also for Material 2. Moreover, an appeal to (1. 33), (1.34), (l.35) con-
firms that ordinary and strong ellipticity once again prevail if and only if
the last of (1. 35) holds true. The latter may, with the aid of (2. 26) and

(2.15), be written as

(10w2-1)g+3+6m/w2g2+g+1>o, (2.27)

provided one sets

[[A]

w=1sin28 , C=r u?. (2. 28)

Upon exclusion of the extraneous root of the quadratic equation in { obtained
by squaring (2.27), one arrives at a necessary and sufficient condition of el-

lipticity for Material 2 in the form

6/2

(1 -ZsinZG)(sinZG)g

r< (o<e<ll’z , 2‘2'-<e<§>, (2.29)
where (r, 8) are the polar coordinates in the principal-stretch plane, de-
fined by (2.15).

Figure 4, which is the counterpart for Material 2 of Figure 2, shows
the domain of ellipticity € appropriate to the second material. This figure
also exhibits the deformation paths in the (\\,)-plane corresponding to

isotropic extension, simple shear, and uni-axial stress — the first two of
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which are, of course, the same as in Figure 2. Here again ellipticity never
fails in isotropic extension and breaks down for all sufficiently severe sim-
ple shears. In contrast to the results for Material 1, however, those given
in Figure 4 reveal the analytically verifiable fact that Material 2 cannot suffer

a loss of ellipticity in uni-axial compression; the failure of ellipticity in uni-

axial tension is seen to occur at an axial stretch )‘1.:3' 04 (see also Figure 3).

The inclination Yy of the real spatial characteristics for Material 2,

whose existence is assured if the ellipticity condition (2. 29) is violated,
follows from (1. 38) by- recourse to (2.26) and (2.15). In this manner one is

led to

CosZyzzzzéﬂﬁag[3(1+g)i4&g-3)2-16w2g2], (2. 30)

w and ( being the auxiliary functions of the polar coordinates (r, §) adopted
in (2.28). Equation (2. 30) is the analogue for Material 2 of (2.19). Atall
points in the complement of € with respect to the open first quadrant of the
(XI,XZ)-plane, except for the points on the boundary of €, (2. 30) yield four
distinct characteristic directions. On the boundary of € there results a sin-

gle pair of distinct characteristics, whose inclincations are determined by

2-sin2f

2coslf ’ {5 Sa)

cos2y =

where 6 is the angular polar coordinate of the boundary point in question.
Thus, the characteristic directions at an incipient failure of ellipticity of
Material 2, unlike those associated with Material 1, are no longer constant.
In particular, at an incipient breakdown of ellipticity in uni-axial tension

parallel to the x -axis, one has 0%3. 51" (see Figure 4) and (2.31) yields

Y249, 46 .
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A Elastostatic fields with discontinuous deformation gradients. Piece-

wise homogeneous elastostatic shocks.

At this stage we turn to our main objective, which concerns the ex-
istence and nature of a class of elastostatic fields with discontinuous defor-
mation gradients appropriate to a homogeneous, but not necessarily iso-
tropic, hyperelastic solid. Suppose such a solid, in its undeformed config-
uration, occupies the entire (xl,xz)-plane R spanned by a rectangular car-
tesian coordinate frame X. Let £, with the unit direction vector L, be a

straight line through the origin of X, so that
£:x=%(8)=LE (-o<i<m), (3.1)

and call N the unit normal vector of £ obtained by a counter-clockwise ro-
+ -

tation of L through a right angle. Next, we designate by ® and R the two

open half-planes into which £ divides R, with the understanding that N points

+
into R (Figure 5). Consider nowa piecewise homogeneous plane deformation

of the form

+ + 4+ +

Fx for all x inR , J=detE>0
y-y(x)= (3.2)
= Ex for all x in R , J=detE>0.

. -
Here F and F are constant (nonsingular) tensors, which evidently represent
+ -
the position-independent deformation-gradient fields prevailing on ® and R,

1 2
3 respectively, while J and J are the corresponding Jacobian determinants,

According to (1.6), the nominal stress field induced by the deforma-

tion (3. 2) is given by

i
!
(F) on R (3. 3} g
;




and automatically satisfies the equilibrium equation (1. 5) on either side of

£. We shall assume that the displacement field associated with (3. 2) is

continuous across £, so that
e
Ex=Fx for every x on &, (3. 4)
which — in view of (3. 1) — is equivalent to
£
FL=FL. {3. 5)

This assumption permits us to extend the mapping (3.2) continuously onto
£ and excludes from our present considerations any separation or gliding
of material along the unique deformation image £, of £, Moreover, as is

clear from (3.1), (3.5),
+ .
£,:y=y(8)=ELE=FLE (-co<f<co). (3.6)

Figure 5(b) illustrates typical deformation images of the three rectangles
shown in Figure 5(a) under the mapping (3. 2), subject to the continuity re-
quirement (3. 4).

Finally, equilibrium, i.e. the balance of forces across £, demands

the continuity of the Piola tractions at £, so that
AR
ON=3Ns=s, (3.7)

where s is the nominal traction exerted on the material in ® by the mate-
rial occupying 5 in the undeformed configuration.

When +E/:—£, we shall refer to the elastostatic field characterized by
(3.2), (3.3), together with the continuity conditions (3.5), (3.7), as a piece-

wise homogeneous elastostatic shock (equilibrium shock); further, we shall
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call the straight lines £ and .S*, governed by (3.1) and (3. 6), the material

and the spatial shock-line.

The first question that arises in connection with piecewise homoge-
neous elastostatic shocks as characterized above concerns their existence:
are there such shocks for a given hyperelastic material and a given defor-
mation gradient E? If so, how many? Is their existence contingent upon
restrictions on the governing elastic potential? Further, in case such
shocks exist, what are the corresponding orientations of the shock-lines
and values of :E? Also, what is the nature of the emerging elastostatic
fields and what kind of field discontinuities at the shock-linesdo they entail?

Before we can attempt to find at least partial answers to the fore-
going questions we need to explore in some detail the kinematics of equi-
librium shocks. To this end we designate by (£ the unit direction vector of

£,, note on the basis of (3. 6) that

+
fzcEL=cEL , c=——=——, (3.8)

and assign to £, the unit normal vector n resulting from a counter-clock-
wise rotation of £ through w/2. Clearly, £, separates the two open half-
planes a*and Q* that are the deformation images ofa and R; also, n points
into E‘E*(see Figure5). Nowlet ® and ¢ stand for the angles of inclination,

relative to the x, -axis, of £ and £,, respectively. Both of these angles,

hereafter referred to as the material and spatial shock-angles, may be

confined to the interval [-w/2,nw/2] and

L1 =cos® , L2=sind> 5 Nl = -sind , N2 =cos®,
(3.9)

ll=coscp 5 12=s'mco ¥ nl:-sincp » N,=cosy,
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L,=¢4gNg » Ny=egolig » Lo=€ogPs » By=€pg ta- (3.10)

Further, from (3. 8), (3.10) and the last of (1. 16) follows

= vl iy
y"le, N=%F n-

1 =T
= J cJ

g+

E (3.11)

i+

-
L=c(E) L=

'Sl
-]

Because of (1.13), the left defcrmation tensors of the homogeneous defor-

+ =
mations on R and R are given by

* . GEET, (3. 12)

~

M+

+
=E

W+

whence, squaring the last of (3.11), one has

2 neGn n.Gn
~ A~y Y~

c :Tz_ 32 3 (3.13)

Also, (3.8) and (3. 9) yield the relation

(3. 14)

between the material and the spatial shock-angle.
+ -
Since F and F are, by hypothesis, nonsingular tensors with positive

determinants, there is a tensor g such that

-1 = +
, E=BF

N ’

- F
B=F (E)

~

detB>0. (3.15)

One may therefore resolve the mapping (3. 2) into the two successive plane

deformations:

~

+
z=Fx for all x in R, (3.16)




+
z forall zin R,

y= (3.17)

1}3 for all z in ﬁ*.

We shall call the mapping (3.16), which is homogeneous on the entire plane

R, the intermediate deformation belonging to the original deformation (3. 2)

and refer to (3.17) as the supplementary deformation. The displacement

continuity condition (3. 4) evidently demands that the supplementary defor-

mation carry £* into itself, i.e.,

Be=4, (3.18)

as is also apparent from (3. 5) and (3.15), (3.11). At this stage we intro-
duce a second coordinate frame X’ with the same origin and the unit base
vectors ({,n), so that X’ is obtained by a rotation of the original frame X

through the spatial shock-angle ¥ (see Figure 5). On referring (3.18) to

the frame X’ one finds at once that the displacement field of the deforma-

tion (3.2) is continuous if and only if

1 % 1
EE(Baﬁ): .y 7 (3.19)

where % and 6 are two as yet arbitrary constants, whose kinematic signifi-

cance will emerge presently. Meanwhile we take note of the matrix relation

+ + cos®p sin®
B-RTER , G'-RGR" . R= ] (3. 20)
-sin® cos®

Boldface letters carrying a prime stand exclusively for the matrix of
scalar components in X’ of the corresponding tensor or vector.




and thus conclude with the aid of (3. 9) that (3. 19) is equivalent to
Bdﬁ =lalp+nlan‘3+6nanﬁ. (3.21)

Furthermore, from (3.2), (3.15), (3.20) follows

. 5 + +
J=detF =detBdetF =JdetB’, (3.22)
so that by virtue of (3.19),
o & 1
J=8J, J=\|),, (3.23)

+
if )\1,)\2 are the principal stretches of the deformation on f and hence also of

the intermediate deformation (3.16). Next, (3.12), (3.15) give

+
=BGBT ,

~~

+
‘=B'G'(B"" (3. 24)

ok
W

the second of which, in conjunction with (3. 19), leads to

- +/ -+ 2t - 2t
B ’ ’ a2 ’
Gy17G) ¥21G )+ Gy, Gy p =8 Gy

(3.25)

GGl 5 (G nG )
12 21 12 77

As for the physical interpretation of the parameters # and §, we in-

fer first from (3. 15), (3.19), (3.20) that

-E=} 7 §=§' =l if and only if =0, §=I1, (3. 26)

~

in which case the supplementary deformation (3. 17) is the identity mapping

and the original deformation (3. 2) is trivial in the sense of being

r
Recall (1. 14).




homogeneous on ®, and thus no longer constitutes an equilibrium shock.

Moreover, (3.23) and the principle of mass conservation imply

>0, (3.27)

where 3 and p are the mass densities of the material occupying t?y* and Q* in
the deformed configuration. Thus (3.27) supplies an interpretation of § in
terms of the area-ratios or the ratio of mass densities appropriate to an
equilibrium shock.

An additional kinematic meaning of 5, as well as a geometric inter-

pretation of the parameter x, come into evidence if one factors the matrix

1 I ol 11 =
B'= = ; (3.28)
Y R 0 &5/ L0 1

This factorization reveals that the supplementary deformation (3.17) ad-

B’ of (3.19) as follows:

mits a decomposition into a simple shear of amount x, parallel to the z'l-
axis (spatial shock-line), followed by a uni-axial stretch, with the stretch-
ratio §, at right angles to this axis. The preceding resolution is illustrated
in Figure 6: the diagram in Figure 6(b) depicts the supplementary-deforma-
tion history of the two unit squares shown in Figure 6(a), which pertains to
the intermediate configuration. It should be emphasized that Figure 6 is
based on 6<1,%>0 and requires obvious modifications if §21 or x<0.

For future purposes we mention here the important special case in
which the deformation on 5, in (3.2) is pure homogeneous, having X as a

principal frame. If )‘l')‘l are once again the corresponding principal

stretches, one has in this particular instance




while (3. 14) reduces to

A

tancp:-x-z—tanQ. (3.30)
1

We note also that the second of (3.29) holds true for an arbitrary homoge-

neous deformation on é, provided X is a principal frame for its deforma-
+

tion tensor G.

We return now to the traction continuity condition (3. 7), which — on

account of (3. 3) — is equivalent to

(E)N. (3.31)

+ =
Suppose T and T represent the constant Cauchy (actual) stress field to which
+ =
the piecewise homogeneous deformation (3. 2) gives rise on R, and R, re-
spectively. Then, by (1. 4) and (3. 3),

o

+ o+ 4 i
WF(E)E onR, , T==W_(F)E" onR,. (3.32)

~

+
l:

]
=
ie!

¢
¢

An appeal to (3. 11), the validity of which depends on the continuity of the dis-

placements, at once confirms that (3. 31), (3. 32) imply

e
In=Tn=t, (3. 33)

~e A~

where t denotes the Cauchy (actual) traction exerted by the material occu-
+ <
pying ®, in the deformed configuration on the material in R,. Conversely,

(3.33), (3.32), (3.11) assure that (3. 31), and hence (3. 7), holds true.
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Thus, in the presence of continuous displacements, the nominal tractions

are continuous across the material shock-line £ if and only if the actual

tractions are continuous across the spatial shock-line £,.

For later convenience we cite at this place also the particular form
assumed by the traction continuity condition (3.33) in the event the hyper-

elastic material under consideration happens to be isotropic. In this case

(3.33), because of (1.18), furnishes

2 ++ + + 4 Gl e = * =
}_-WI(I,J) GHWy (LD Ll p=l =W (L, D) GeW (LIL e, | (3.34)

+ + e + -
provided I,J and I,J stand for the scalar invariants of G and G, so that in

accordance with (1. 14),

+ + 2 o F + L3 1
I=trG=)\1+)\2 o i detg :det£=)\l)\2,

~

(3. 35)

I-:trg , J= deté :det-g.

It is clear from the second of (3. 15), together with (3. 9) and (3. 21),

that

& w +

E=E(p,n, 8)=B(p,n, d)E. (3. 36)
Hence, bearing in mind the developments leading up to (3.21), one sees
that the displacement continuity condition (3. 5) alone constrains the possi-
ble values of -E, in a shock corresponding to a fixed prescribed E, to a
three-parameter family. The existence of such a shock therefore hinges
on the existence of a spatial shock-angle ¢ in [-w/2,7/2], a real value of

the shear parameter #, and a positive value of the stretch parameter §,

such that the traction continuity condition (3. 33) has a solution E (¢, x, §)
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other than the trivial solution supplied by

= + o+
E:E(C\O; 01 1):,%(@» 0: l)F:F (-‘IT/ZSCPSﬂ/Z). (3. 37)

~ ~

Furthermore, since (3. 33) constitute only two scalar restrictions on the

three parameters (9, #, §), one would anticipate that if there exists an equi-

+
librium shock for a given deformation gradient F, there exists a one-param-
eter family of such shocks.
We now prove the following theorem, which establishes a necessary

condition for the existence of shocks of the kind under consideration:

If there exists a piecewise homogeneous elastostatic shock in a hyper-

elastic material, then the displacement equations of equilibrium associated

with this material must suffer a loss of strong ellipticity at some homogene-

ous deformation.

+ i
With a view toward establishing this claim, let P and E be the defor-
mation gradients of the existing shock, so that from (3.2), (3.5), and (3. 31),
+ b T S + &
detF>0 , detF>0 , FL=FL , WF(E)Nsz(E)g, (3.38)
where L and N are the unit direction and the unit normal vector of the mate-

rial shock-line £ Next define a family of tensors by means of

E<°f>=°f$:+(l-a)§: (0sas1). (3. 39)
Then,
- +
E(0)=E , E(1)=E, (3. 40)

while (3. 39) and (3. 15) give

+
E(e)-[al+(1-0)BJE (0sos<l). (3.41)
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From this relation, in turn, because of (3.20), (3.19), (3.27), and the

first of (3. 38), follows

+
det{(a)z(aé+l-a)det£>0 (Osas<l), (3.42)

whence F(a) is admissible as a deformation-gradient tensor of a homogene-
ous plane deformation for every « in the interval [0, 1].

According to the third of (3.38), there is a vector K such that

- o
F 5 Fy 5K Ny, KEO. (3. 43)

Let @ be the scalar-valued function defined by

+

8(2) K+ [WL(E@)-WL(E)]N (0sosl), (3. 44)
so that owing to (3. 38) and (3. 40),
8(0)=6(1)=0. (3. 45)

Thus, by virtue of the mean-value theorem, there is a number & in (0, 1)

such that

ae|  _
o i

But (3. 44), (3. 46) in conjunction with (3. 39), (3. 43), and (1. 8) lead to

é(,lig(c‘a‘r))N N.K K_=0. (3.47)

Capy Bs oy

Finally, set

F-E@& , M=K/ |K| (3. 48)

and appeal to (1. 9) to arrive at
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M.Q(N;E)M =0, (3. 49)

~

which contradicts the strong-ellipticity condition (1. 12). This completes
the proof.

It remains a matter of conjecture as to whether or not the existence
of an equilibrium shock necessitates not only a loss of strong ellipticity but
also a failure of ordinary ellipticity, as is intuitively plausible. In this
connection we refer once more to a result obtained in [2] and cited in Sec-
tion 2 of the present paper.1 It follows from this result that for anisotropic
hyperelastic material a failure of strong ellipticity implies a failure of or-
dinary ellipticity, if the set of all points in the principal-stretch plane at
which strong ellipticity prevails is a domain, i.e. open and connected, and
includes the undeformed state. 2

A related comment pertains to the existence of a piecewise homoge-
neous equilibrium shock within the linear theory of homogeneous and iso-
tropic elastic solids. One verifies easily that in this setting such a shock

exists if and only if the elastic constants satisfy
G40 and X+20=0 or V=1, (3. 50)

which require a failure of ordinary ellipticity of the linearized displace-

ment equations of equilibrium.

4. Weak piecewise homogeneous elastostatic shocks.

Taking for granted the existence of piecewise homogeneous equilib-

rium shocks in the (possibly anisotropic) hyperelastic material under

ISee the discussion following (1. 37).

Z‘We recall from Section 2 that these conditions are met for the two special
isotropic materials discussed there. See also Figure 2 and Figure 4.

o e e

Tt




consideration, we confine our attention in this section to shocks that are
- +
weak in the sense that F remains close to F. Indeed, motivated by (3. 36),

(3.37), and the observations following (3. 37), we assume here that there

exists a one-parameter family of shocks corresponding to the given gradi- ‘

+
ent F', depending on the parameter

e=1-3%, (4. 1)

and suitably smooth near €=0.
Specifically, we presuppose that there are functions ©(e) and w(e),
both twice continuously differentiable in a neighborhood of €=0, such that

F(c) defined by

; + +

F(e)=B(®(€), *(€), 5(¢))E=B(e)E, (4.2)
where

6(e)=1-¢ , n(0)=0 (4. 3)

and B(yp, %, 6) is the tensor characterized by (3.21), conforms to the traction

continuity condition (3. 33) — or, equivalently, to (3. 31) — throughout the
neighborhood at hand. Since at present the trivial (shockless) solution (3.37)
E corresponds to € =0 and ¢ is evidently a measure of the departure from this

solution, we shall henceforth refer to € as the shock-strength parameter.

The kinematic significance of ¢ in terms of the supplementary deformation
is immediate from that of § (see Figure 6); also, (4. 1) and (3.27) yield
- T

=
e=L1-022 (4. 4)
R

Our current objective is to explore various implications of the




existence of the ¢-family of shocks postulated above, to the lowest signifi-

cant order in €. For this purpose we observe first that the material shock-

line and the spatial shock-line are now ¢-dependent. We thus write £(g), £, (€)

in place of £,£* and consequently also k(e),g(e),’{’(e).g(e). as well as E(e),
;’%(e),a*(e),é*(e) and ®(e). Furthermore, any function previously defined on R
or é* and dependent on the value of the gradient:li‘ is at present to be regarded
as a function of €. With this understanding all of the results in Section 3 up

through (3. 35) hold true identically in €.

In view of the assumed smoothness of ®(e), #(e) and by virtue of the

second of (4. 3), one has the Taylor expansions

N(e) =N(0)+N(0)e +o(e) , n(e)=n(0)+a(0)e+o(e),
(4. 5)

u(e)=n(0)e+o(€) as €=0;

here and in what follows a dot placed above a letter indicates differentiation
with respect to the parameter €. On the other hand, using (3.21), (3.9), as

well as (4. 3), one finds that B(e) obeys

Bop(0)=8,5 » Bog(0)=a,ng(0), (4. 6)

provided g is the vector defined by
q=#%(0)£(0)-n(0). (4.7)
From (4. 6) follows

B, p(€) =5 4ptagng(0)e to(e) (4. 8)

and, keeping (4.2) in mind, one thus draws

- + +
Fop(€)-Fagtagn, (O)F, getole). (4.9)
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Consequently, an appropriate two-term Taylor expansion leads to

- 23 2 %
W (E(e)) dW(E) 3“W(E)

4+
= + 0)F _ e+o(e). (4.10)
3 q,.n _(
BFQY FQ’Y OF war: Al AP e]V1

Finally, entering (3. 31) with (4. 10) and using the first of (4. 5), as well as

(3.11), one sees that the traction continuity condition is fulfilled up to the

order of € if and only if

+
°W(F)

= N, (0)N (0)g, =0. (4.11)
aFa aF)\u Y J: A

3
This equation, in turn, may be written as

+
Q(N(0);E)g=0, (4.12)

where Q(N;F) is the symmetric tensor introduced through (1.8), (1.9).

Now 3/22 according to (4. 7). Therefore (4. 12) implies that

+
detQ(N(0);F) =0, (4. 13)

Drawing on the discussion of (1.10), (1.11) in Section 1, one is thus led to

the following conclusions:

(1) A necessary condition for the existence of a one-parameter fam-

ily of equilibrium shocks (of the kind under present consideration) is that

the displacement equations of equilibrium associated with the hyperelastic

material suffer a loss of ordinary ellipticity at the given homogeneous de -

+
formation on R.

(ii) In the weak-shock limit, i. e. as €-0, the material shock-line

£(e) and Qs spatial shock-line £,(€), respectively, tend to a material and

+
a spatial characteristic associated with the homogeneous deformation on R.
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In comparing conclusion (i) with the theorem proved at the end of
Section 3, we note that the present result yields a breakdown of ordinary
ellipticity — rather than merely of strong ellipticity; on the other hand (i)
presupposes the existence of an entire family of elastostatic shocks, while
in the theorem referred to but a single such shock was required to exist.

Conclusion (ii) restricts the number of possible distinct limiting
material (and spatial) shock-lines to the number of distinct characteristic
directions admitted by (1. 11), which cannot exceed four. In particular, if
the material is isotropic and X is chosen to be a principal frame foré} and
:'r:, the inclination 9(0) of the limiting spatial shock-line £,(0) must be such
that coslep(0) is a real root in the interval [-1, 1] of the quadratic equation
(1.38) for cosly, with y replaced by ©(0). As an illustrative example con-
sider the isotropic Material 1 discussed in Section 2 and suppose that E‘ in-
duces an incipient failure of ellipticity. Then, as is clear from the remarks
following (2. 18), (0)=%+m/4 so that S,*(O) necessarily coincides with a trajec-
tory of the maximum actual shear stress of the constant stress field E pre-
vailing on 6{

A kinematic interpretation of the vector q introduced in (4.7) is

readily arrived at. Let w(z;€) be the family of supplementary displacements

corresponding to the €-family of equilibrium shocks at hand. Then, by (3.17)

and (4. 8),
4 +
' w(z;€)=0 on R (€), (4.14)
w(zie)=[B(e)-1]z=[n(0)+z]qe to(e) on R (€). (4.15)

From (4. 15) and the second of (4. 5) one infers that
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Yw(z:€)n(e)=geto(e), , Yw(z;e)L(e)=0 on é*(e). (4.16)

provided Vw(z;€) is the tensor field with the components awc_‘\((’%;(-:)/az‘3 in the
frame X. For future convenience we now adopt the following notation: if

+ = + -
fis a scalar or a vector field defined on ® and R (or on R, and R ) that suf-

fers a finite jump discontinuity across £ (or across £,), we write

[f];=f_? (4.17)

+ - g -
for the jump in f as £ (or £,) is traversed from R to R (or from f, to R ).

Equations (4. 16), (4.14) thus justify the assertions

[Vwn]. =qe+o(e) , [YwL];=0. (4.18)

Hence q,€ is the lowest-order approximation to the jump across §,(€) in
the derivative of wa(g;e) normal to £,(¢), whereas the directional deriva-
tive of wa(g;e) parallel to £, (¢) is continuous at £*(e).

While the characteristic lines of the deformation on 5 that emerge
upon a loss of ordinary ellipticity are associated with jumps in the second
normal derivatives of the displacementsl, equilibrium shocks are seen, on
the basis of (4. 18), to involve discontinuities in the first normal derivatives
of the displacements across the shock-line. Also, it should be emphasized
that S*(e) is in general not a characteristic line of the deformation on s(e),
although it tends to such a line as €-0, i.e. in the weak-shock limit.

According to (4.1), (4.2), and (3.23), the jumps across £(€) in the

area-ratio and the mass density obey

-1 5
[J1,=-Je=-X x,e , [p], =pe. (4.19)

lRecall the role of the characteristics reviewed in connection with (1. 11).
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In order to compute the jump across £(€) in the strain-energy density, we

first rely on (4. 9) to see that

o +  ow(k) ;
(E(e))‘W(E)+3T:‘;E—qan(o)pr€+°(€)° (4.20)

On account of (1. 4) and (1. 6), this equation may be written as
- + o+ ¢
W(E(€)) =W (E) +Jg+1n(0)e+o(e) (4.21)
or, by virtue of (3. 33) and (4. 17),

+
[W],=J£(0)+geto(e) , £(0)=Tn(0). (4.22)

We calculate next the jump across £,(e) in the Cauchy stresses Toﬁ'

From (3.32), (4.19) follows

© oo L DWLEED AR e
aﬁ(e)_j(E) 8FQY BY(e) » J(e)=(1-€)J. (4. )

These formulas, together with (4.9), (4.10), and (l. 8), permit one to de-

duce

= ) i 2
[Tap]- Taﬁ+Torppp(o)qﬁ+}:cay)\u (E)Fquﬁan(o)q)\ et+o(e). (4.24)
Finally, it is of interest to compute the jump across S.*(e) of the

3

11’

if T;p are the components of Twhen the latter is decomposed in the frame X’

scalar normal stress acting parallel to the spatial shock-line, i.e. of T

(see Figure 5). Clearly,

(711 )= [Tapl (€N g (e) (4. 25)
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and (3.10) yield

£,(6)45(6) =4, (0)45 (0) +o(1) =8 g -n (0)ng (0) +o(1). (4.26)

Substitution from (4.24) and (4. 26) into (4.25), after a lengthy calculation
that makes use of (4.7), (3.11), (1.9) and the traction continuity condition

in the form (4. 12), eventually leads to the result:

[7} 1529 @n(0)e+o(e), (4.27)

+
where ,‘I’,:}B(E)' while w(F) is the tensor with the components

1
W (E) =g (E)-bap Tyy (E)* 73 v E)F) Fy, (4.28)

in the frame X and T(E) the actual stress tensor associated with F through

(1.4), (1.6).
, “ The lowest-order jump approximations (4. 18), (4.22), (4.24), and
‘ (4.27) involve — beyond quantities fully determinable from the given E‘, and
the known response function W(E) — the vector g originally introduced in
3 (4.7). Furthermore, this vector involves, in addition to the unit direction
E° vector £(0) and the unit normal vector n(0) of the spatial characteristic

7 £(0), also the still unknown value ;1.(0).
We now determine #(0) from (4.12), and for this purpose exclude

: +
1 the degenerate case in which Q(N(0);F) is the null tensor. Thus assuming

Q=Q(N(0); )0, (4.29)

we show first that

%(0)=0 if and only if Qn(0)=0. (4. 30)




To see this, suppose }.t(O):O. Then Qn(0)=0 follows at once from (4. 7),

(4.12). Next, if i(O)/:O, Qn(0) cannot vanish either since then g and n(0)
would be linearly independent null vectors of the tensor Q, so that Q would
have to be the null tensor, contrary to (4.29). Hence (4. 30) is true. One

confirms similarly that

n(0)+QL(0)£0 if Qn(0)£Q. (4.31)
1
i Now (4.7), (4.12), because of (4. 30), (4.31), furnish
h : . . 1(0)*Qn(0)
n(0)=0 if 92(0) =2 ’ K(O)=m if '9\13(0)#2’, (4. 32)

where Q again abbreviates Q(N(0);E). Moreover, (4.32) and the last of (4.5)

give
n(0) +Qn(0)

K(S)=W€+o(€) if Qn(0)£0 (4. 33)

as a lowest-order weak-shock approximation to the amount of shear inherent
in the supplementary deformation.

Our next task is to specialize some of the foregoing results for the
case of material isotropy. In this instance one finds with the aid of (1.9)

and (1.20) that, for every unit vector N,

Quy NE)22W 5+

Moy

2 -1 =¥
AW, F N.F N +J°W_.F-. NaF 'N +
B oy 'p

3 II"af B ye p JJ” Ba

'lN F N +F‘1N F_N). (4. 34)

2IW 3 (FaaNgFy oNptFg NaFo Ny

We now use (4. 34) in (3. 66), invoke (3.11), (3.12), (3.13), as well as (3.9),
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+
and choose X as a principal frame for G, so that the component matrix of
+
G in X is given by the second of (3.29). In this manner we eventually ar-

+
rive at the following result for #(0), provided (4. 29) holds and Q(N(0);F)n(0)

also fails to vanish:

2 +2 &
2aW_+4a WH+J W . +t4aJW

7(0) = - ——L — 1] o (4. 35)
2(2a W +IW )b
where
a=)\?sin2:p(0)+)\§coszfp(0) , b:(x‘i‘-xg)smcp(O)coscp(O) (4. 36)

and the partial derivatives of W with respect to the deformation invariants
+ 4+
are understood to be evaluated at (I,J), the latter being supplied by (3. 35).
If one adheres to the above special choice of the frame X, (4.22) is

in the present circumstances found to imply

+
[W],=- (2dW +IW )eto(e), (4.37)
provided
2aW +T2W._+2a]W
aW_+J t+2a
AenA bR = L LJ (4. 38)
2(2aW +IW )
and a is given by the first of (4. 36). The tensor y introduced in (4.238) in

the case of the isotropic hyperelastic solid turns out to have the components

4 .2 2
W= (WHIW +TW, )G o= FUW =T W - 1TW, )8

JJ 1 % 2

ap”

Finally, (4.27) and (4. 39) enable one to confirm that
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eto(e), (4. 40)

IJ]

P :
[T“]+_- }[Zd(wlﬂwn

* 2 t2 +4+
+J IJ)-I 1+J WJJ+IJW

if the previous choice of X is retained. Also, the derivatives of W appear-
ing in (4.37), (4.38), (4. 40) stand for their corresponding values at (},}).
For future purposes we record here the weak-shock approximations
of #(e) for the two special isotropic materials discussed in Section 2. Re- ;

calling (2.1), (2.3), we note that the strain-energy densities governing the

reponse of these materials obey:

W(I.J)=%(IJ-2+ZJ-4) (uw>0) for Material 1,

v (4. 41)
1 3
W(I,J)z%ansr"’-m) (u>0) for Material 2.
On the basis of (4. 35), (4. 41) and (4. 5) one finds that
3 +
n(e)=-zg(1-a)e+o(e) for Material 1,
(4. 42)

+ 2
nie)= -%(3+J-2)e+o(e) for Material 2,

with a and b given by (4. 36).

In connection with the weak-shock jump estimates deduced in this
section, it is essential to recognize that the signs of some of these jumps
may depend not only on the particular material considered, but also on the
particular nature of the pre-assigned deformation on E,; moreover, the sign
of each jump depends on the sign of the shock-strength parameter €. The
sign of €, in turn, cannot be determined in the absence of information be-

yond that contained in our present characterization of piecewise homoge-

neous elastostatic shocks. In Section 6 we shall, on energetic grounds,
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propose an additional requirement that leads to a removal of this

indeterminacy.

5. [Equilibrium shocks of finite strength for a particular isotropic hyper-

elastic material.

We turn now to an instructive illustrative example concerning the
global existence and character of piecewise homogeneous elastostatic
shocks in a special (homogeneous) isotropic hyperelastic material. The
following analysis is based on Material 1 of Section 2, the strain-energy
density of which is given by the first of (4. 41). To simplify this analysis
we shall assume here from the start that the second of (3. 29) is in force,
so that X is a principal frame for the deformation tensor § of the given de-
formation on &, and hence for the actual stress tensor E as well.

The traction continuity condition (3. 34) at present reduces to

AL

e
-I~)£: 3 (

o+

(

{ol

-Il)n. (5.1)

C—cw+| -
(&S]

Upon referring (5. 1) to the frame X' introduced in Section 3 (see Figure 5)

and bearing the first of (3. 35) in mind, one arrives at

& &, & &
12 g i, il (5. 2)
+3 =i ’ +3 = >
J J ) J
On setting
;\2')\1
ﬁ=m (A;>0,1,>0), (5. 3)

one obtains by means of the second of (3.29) and the second of (3. 20):
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+
1 2 2
G'“=z(xl+x2) (1-2Bcos2p+B°),

E’ i ra) 2142 20048 5.4
22‘1()\1*’ 2) ( ﬁCOS ¢1+B7), ?( . 4)

al 1 Y P 2
12=Z (A1 t23) Bsin2o. y,

The components (-};‘3 are now computable from (3. 25), while J is related to
+
J through the first of (3.27). In this manner (5.2) lead to the two scalar

traction continuity conditions

ZGZﬁsinZw:n(l+Zﬁc032cp+ﬁz)+2ﬁsin2cp, )
3 2
5 (1-2Bcos2p+p°) = > (5. 5)
2N 2 ;
1-2Bcos2p+B” +x" (1 +2Bcos2p+p ") +4uBsin2y. )
+

Observe that the given deformation on ), in the example under con-
sideration, enters (5. 5) exclusively through the principal-stretch param-

eter B adopted in (5. 3). Also, (5.3) and (3. 27) require that  and 6 satisfy

-1<pB<l , 6=1-€>0, (5.6)

wnere ¢ is the shock-strength parameter introduced in (4.1). From here

on we shall give preference to € over §. The trivial solution of (5. 5), which

signifies the absence of a shock, is furnished by ¢=0 (§=1), »=0, and
-w/2sp<w/2. We now seek the answer to the following question. For what
values of B in (-1,1) and €<l do there exist nontrivial solutions =« (e;B) and
w=p(e;B) of the simultaneous equatibns (5.5), such that « is real and ® in the
interval [-m/2,7/2]? Moreover, we wish to find all such solutions.

It is clear from the structure of (5. 5) that if a pair of values (#,v)




satisfies these two equations, then so does the pair (-, -v). Consequently,

the limitation of the spatial shock-angle to the range
Os<epsw/2 (5. 7)

entails no loss in generality. From the first of (5. 5) and the second of
(5.6) one has

K:Z(Gz-l)ﬁsin&p
142Bcos2up+p>

{5 8)

and substitution for x from (5. 8) into the second of (5. 5), in view of (5. 6)

and (5.7), is found to yield

Z 3
, 1-8 [ o
sin2¢p= . k(e)= S0 o o=k=e, (5.9)
21p[x(e) N 82 +5+1

if once and for all we remove the indeterminacy in ® at €=0 by requiring

continuity. Since @ is to be real, the positive right member1 of the first of

(5.9) cannot exceed unity. Hence,

2
LB skte) tomaeet) . Jpla, (5.10)

218

These two inequalities are easily seen to be equivalent to

h(e)<|p|<1 .h(e)=[k(e)+«/£2(e)+1]'l (-oo<e<l) (5.11)

and are necessary in order that (5. 5) admit a solution (x,®), subject to
(5.6), (5.7), for a given pair of values (€=1-5,p). Conversely, if (5.11) is

fulfilled, such a solution is supplied by (5. 8), (5.9).

lReca.ll (5. 6).
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Thus, in the present circumstances, an elastostatic shock of
strength €<l exists if and only if the principal stretches x,, %, inherent in
the pre-assigned deformation on :%., which determine the parameter
through (5. 3), are such that the point with the rectangular cartesian coor-
dinates (e, |B|) of the (e, |[3|)—p1ane lies in the "admissible region'' G char-
acterized by (5. 11) and shown in Figure 7. In this connection we note on
the basis of the definitions of k(e) and h(e) in (5.9), (5.11) that

k_=k(0)=h(0) =—,
- VE]

k(1-)=0 , h(1-)=1 , h{-0)=0 , k(1-)=h(1-)=0, rioae)

ﬁ(e)<0 : ﬁ(e)>0 (-oo<e<l), )

provided primes denote differentiation with respect to the shock-strength
parameter €.
According to (5.9), every pair of values (¢,B) admitted by (5.10) or
(5.11) gives rise to two spatial shock-angles in the interval [0,7/2]:
2

‘Cl(e;ﬁ):—é—sin'l[_l_'p_] (OSCplSn/‘l) .

2|Blk(e) (5. 13)

,(€:B) =5 -9, (e3B).

The amounts of (supplementary) shear, %y and Koo associated with the re-
4 spective shock-angles © and ©, are readily found by recourse to (5. 8) and

(5.13). In this manner one obtains

' ( -(3)-—5??;1—— =1,2), 6=1 5.14
. KQG' _Ra(e;p) (CY— ’ )) ooy ‘en ( . ) *

where
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2 2, 2 z
Ra(€;5)=sgnﬁ-i—+%2‘k(e)+(-l)aHQ(e;ﬁ) , Q(e;p):[ﬁ—z%l-‘} . s
- (1-p%)

We observe that Q(e;B) is real whenever (e, ) conform to the admissibility

requirement (5, 10) and that
2
1-p

2(g|

0 (€:B)=,(eiB)=F . %) (€:B)=n,(e;B) if =k(€), (5. 16)

i. e. » if (€; “3‘) is a point on the boundary of the admissibility region G dis-

played in Figure 7. Further, as is apparent from (5. 14), (5.15),

nyle;-B)=-ny(e:B) , %p(e5-B)=-n,(e;P). (5. 17)

With reference to the remark preceding (5. 7) we emphasize that (5. 13),
(5.14) in general determine four distinct equilibrium shocks appropriate to
the particular material at hand.

One confirms easily with the aid of (2. 13), (3.35), and (5. 4) that the
displacement equations of equilibrium are elliptic at the homogeneous de-

+
formation given on ® if and only if

1
|Bl<ky=—. (5. 18)

+
For the sake of brevity we shall say that ""ellipticity prevails on R'" when-

ever (5.18) holds true, Evidently, such is the case at all points (e, ‘B\) of

the admissible region G (Figure 7) that lie below the line |B| =k, while all

. %
points of G on or above that line correspond to a failure of ellipticity on R.

+
{ In particular, such a failure of ellipticity on ® occurs for all admissible

pairs (€, IBI) with €=0.
We now seck to ascertain for what points in G the ensuing homoge-

neous deformation on v is elliptic or otherwise. According to (2. 13),
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ellipticity prevails on R if and only if

1<47. (5.19)

On appealing to (3. 35), (3.25), (3.23), (5.4), remembering that ’(:.} and é’
have the same trace, we find with the aid of (5. 8) — after a rather lengthy

computation — that

2
(e )]
1:14—2 [(1+B2)(1+62)+26(62-1)cosZcp

+26%(6% - 1sin” 28|, F=b1%,, (5. 20)
142Bcos2ip+p’ IE

in which cpcha(e;B) is furnished by (5.13). Owing to (5.20) and (5. 3), the

ellipticity condition (5.19) for R becomes

2.7
———l--———[(l+{32)(1+62)+2ﬁ(62-l)cosZQp+4p (6 -1)sin 2QPJ<0. (5.21)

45(1-p%) 1 +2Bcos2o+p

The inequality (5.21), together with (5.6), enables one to prove that there

is a failure of ellipticity on é all admissible pairs (e, |B|) with €<0; in

contrast, the subregion of G corresponding to €>0 contains points (€, Iﬁl) at
which ellipticity prevails on R, as well as points at which it does not.

For reasons that will become apparent later on, we confine our at-
tention in the remainder of this section to shocks of strength €=0.

Figure 8, which relies on (5.13), (5.14), illustrates the dependence
of the two spatial shock-angles cpa(e;ﬁ) within the interval [0,w/2], and of the i
associated amounts of shear na(e;ﬁ), upon € for €20 and f=0.65. At this val- |
ue of B the maximum possible € is approximately 0.22, as is clear from

Figure 7. Both ®y and m, are negativel for O<€Semax. Observe that, in

1 .y ? ! s
The schematic inset diagram at the top of Figure 8 corresponds to a posi-
tive value of «.
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in agreement with (5. 16), P =P, -w/4 and *y =Ry when € .S in which case
(e, |l3|) is a point on the boundary of the admissibility region G. While Py»
P2 and ®y vary monotonically with €, the curve for ®o in Figure 8 exhibits a
minimum in the interior of the interval [0,¢ |2

max
The jump in the strain-energy density W, across the appropriate ma-

terial shock-line, is deducible from the first of (4. 41) by means of (3. 35) 1

and (5.20). The result of this computation may be put into the form

2 2
(w); - o-1) [gH010e8) p,2,2.2] (5. 22)
25 )\1}\2 5(1+2Bcoslp+P)

where cp::pa(e;ﬁ) is available from (5. 13) and @=1 or a=2 depending on the

particular shock at hand. Since §=1-¢>0, it follows that all shocks of posi-

tive strength € possible in Material 1 give rise to a decrease in the energy
+ =
density as the shock-line £ is traversed from R to R.

Because of (5.12), (5.13),

2
w1<o;p>:%sm‘1[@—<z“ﬁ| ’} (0sw,sm/4), 2,(0:B)=F-0,(0:B). (5.23)

It is not difficult to verify by recourse to (5. 3) that equations (2. 18) are
satisfied if y equals either of the limiting spatial shock-angles in (5.23).
Hence, in the limit as €20, the spatial shock-lines appropriate to Material 1
tend to the spatial characteristics associated with the prescribed homoge-
neous deformation on ;, the latter being accompanied by a loss of ellipticity.
This conclusion reflects a general result concerning weak elastostatic
Shocksl established in Section 4. Similarly, a Taylor expansion about €=0
applied to (5. 14) confirms the consistency of this global result with its weak-

shock counterpart in (4. 42).

lgee the discussion of (4. 13).




6. Time-dependent piecewise homogeneous elastostatic shocks. Energy

considerations. Dissipativity,

The loss of ellipticity of the field equations of elastostatics at par-
ticular — sufficiently severe — deformations of certain hyperelastic solids is
analogous to the change of type that may occur in the partial differential equa-
tions governing steady irrotational flows of a compressible, inviscid fluidl.
These equations are elliptic or hyperbolic at a point of the flow field accord-
ing as the corresponding particle velocity is subsonic or supersonic.

One of the important features of compressible flows is the possible
occurrence of shock-surfacesacross which the fluid pressure, density and
velocity, as well as the entropy, suffer jump discontinuities. The simplest

example of this kind in the theory of steady plane flows is that in which a

plane of discontinuity separates two uniform flows. Further, this discontin-
uous flow field is a close analogue of a piecewise homogeneous elastostatic
shock. The mathematical counterpart in the foregoing fluid-flow problem of
the conditions of displacement and traction continuity are restrictions aris-
ing from the balance of mass, momentum, and energy across the gas-dynam-

ical shock-plane. The ensuing one-parameter family of shocksz may be re-

ferred to the shock-strength parameter

g, (6.1)

See Courant and Friedrichs [7] for a general treatment of compressible
flows. A detailed discussion of the strict analogy between steady gas flows
and anti-plane shear in finite elastostatics may be found in [8].

ZActually there are two symmetrically located families of shocks; in contrast,
the higher-order elasticity problem gives rise to two pairs of symmetrically
situated one-parameter families of equilibrium shocks — at least in the exam-
ple of Section 5.




where 5 and p are the respective fluid densities on the upstream and down-
stream side of the shock. Equation (6.1) is identical with the second of

+ - - .
(4.4), in which p and p are the mass densities of the elastic material occupy-

+
ing R, and R

e’

respectively, in the deformed state.

In gas dynamics the shock conditions mentioned above are accom-
panied by the independent requirement that the entropy of a fluid particle
shall increase as the shock-surface is traversed. This entropy condition
models the dissipative nature of the process of shock-formation in the ab-
sence of viscosity; it leads directly to the conclusion that ¢ must be positive
and hence 5>3

The role of entropy-like conditions was studied extensively by Lax
[9]1 for quasi-linear hyperbolic systems of conservation laws in two inde-
pendent variables. Lax's work is motivated primarily by the initial-value
problem for a system of partial differential equations in which time appears
explicitly as one of the two independent variables.

In view of our remarks concerning stationary shocks in gas dynam-
ics, as well as on independent physical grounds, it is natural to subject elas-
tostatic shocks likewise to an additional limitation that assures their dissi-
pative character. For this purpose we find it essential to generalize the no-

tion of an elastostatic shock defined in Section 3 to a time-dependent family

of such equilibrium shocks. It should be made clear that time will play merely
the part of a history parameter in this context since there are no inertia ef-

fects involved in the following quasi-static considerations.

lThis paper contains references to related earlier investigations by the same
author.
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As in Section 3, let R stand for the entire (x,;,X,)-plane spanned by
a fixed (time-independent) rectangular cartesian coordinate frame X. Let

£(t) (tlStStZ) be a time-dependent family of straight lines, which conforms

to the parametrization

£(t): x=X(8, t) =p(t) +EL(t) (-co<E<co,t Stst,). (6.2)

1

Here L(t) is the orienting unit direction vector of £(t) at the time t, while
p(t) is the instantaneous position vector of a point that is attached to £ and
participates in the rigid motion of £ relative to the frame X; evidently, £ is
the directed distance from this point, measured along £ (see Figure 9). We
take for granted that p and L are continuously differentiable functions of the
time on the interval [tl,tz]. Further, paralleling the agreements intro-
duced at the beginning of Section 3, we call N(t) the unit normal vector of
£(t) resulting from a counter-clockwise rotation of L(t) through w/2. Also,
we denote by ;i(t) and é,(t) the open half-planes into which R is divided by
£(t) at the instant t, with the proviso that N(t) points into a(t).

At this stage we define a time-dependent, piecewise homogeneous,

family of plane deformations through

+ + o+

E(t)xtb(t) for all x in R(t) (tIStStZ)
Y=y, t)= _ g g

F(t) +f3(t) for all x in R(t) (t;Stst,), \ (6.3)

~

i f - g
J=detF>0 , J=detE>0 on [tl, tZ]'

These equations are thg time-dependent counterpart of (3.2). Note that
the translation vectors b,b are needed here since £(t), given by (6. 2), may
not pass through the origin at all times. Actually, but for a lack of sym-
metry, one of these two vectors could have been omitted.

e et

e il el A Sl o i
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+ -
The (position-independent) deformation gradients F,F, as well as the

s
translation vectors b,b, are required to possess continuous first time-de-

rivatives on [t;,t,].

Instead of (3. 3) we now have
+ s + = e o
al(t) =WE(§(t)) on R(t) , g(t)=W£.(E(t)) on R(t) (t <tst,), (6. 4)

+ -
where g and § are the nominal stress fields produced by the time-depend-
+ =
ent deformation (6. 3) on R and R, if the solid occupying R in its undeformed
configuration is hyperelastic and W is its strain-energy density. The dis-

placement-continuity condition (3. 4) at present gives way to
+ + = =
E(t)x+b(t) =F(t)x+b(t) for all x on £(t) (t;stst,); (6.5)
because of (6. 3), this requirement is met if and only if
2 - + cE =
FL=FL , Fptb=Ep+b on [tl, tz], (6.6)

which take the place of (3.5). Assuming the mapping (6. 3) to have been
extended continuously onto £(t), we let £ (t) stand for the deformation im-
age of £(t) (tlststz).

The stress field (6. 4) clearly satisfies the equilibrium equation (1. 5)
on a(t) and @(t) at each instant; but the balance of force across £(t) demands

the continuity of the nominal tractionsl at £(t):

+ -
ON=GN=s on [tl’tZ]' (6.7)

+ -
When FE(t)£E(t) for tIStStZ, we shall refer tothe family of elastostatic

Owing to the continuity of the displacements, the balance of mass on either
side of £(t) assures the mass balance across £(t).
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fields characterized by (6.3), (6.4), together with the continuity conditions

(6.6), (6.7), as a time-dependent (piecewise homogeneous) elastostatic

shock with the (moving) material and spatial shock-lines1 £(t) and £ (t)

(tIStStZ). Observe that at any fixed instant t such a shock is an equilibrium
shock of the type defined in Section 3, if p(t)=0 and the translation vectors
g(t),}é(t) also vanish.

It is readily seen that equations (3. 8) through (3. 15) hold identically
on [tl’tZ] for time-dependent shocks provided &,R,Qcp and all field quantities
retain their previous meaning but are now regarded as functions of time. On

the other hand, at any fixed instant the mapping (6. 3) admits the resolution

+ +
5=E(t)25+3(t) for all'zg in R, W
z for all z in a*(t) L (6. 8)
a5 e !
B(t)z-B(t)b(t)+b(t) for all z in R*(t), )

where :%*(t) and i-i*(t) are the instantaneous deformation images of 6+E(t) and
E—E(t) associated with (6. 3), while B obeys the first of (3.15) on [tl,tz]. Argu-
ments strictly parallel to those employed in Section 3 confirm that equations
(3.18) through (3. 37) are valid on [tl,tz] in the present circumstances.

Note that the frame X  with the base vectors (L.g) is now time-dependent,
as are the parameters u, §, and ¢, whose kinematic significance remaips
unaltered. Figure 6 is applicable to the instantaneous supplementary de-
formation inherent in the decomposition (6. 8), except that the spatial shock-

line £,, while parallel to — need not be coincident with the yll~axis.

Consider a time-dependent elastostatic shock of duration [tl ,tz] and

The term '""material shock-line' is somewhat misleading in the present
setting since £(t), being occupied by different particles at different times,
is not a material line,
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let to be in the open interval (tl,tz). With a view toward arriving at the no-
tion of dissipativity of the given shock at time t, we adopt the following

definition. A domain 8 of the (xl,xz)-plane is a test domain admissible at

th_E to’ if 8 is the interior of a _fi_xe_d, smooth and convex, simple closed
curve C and the material shock-line °t(to) intersects 8. Then, evidently,
£(t) intersects & for all values of t in a neighborhood of t _, which we shall
call a "time-range of intersection of 8.'"" Further, for every t in such a
range of time, £(t) intersects the convex boundary C of 8§ in two distinct
points — say with the position vectors g(gl(t), t) and %(éz(t), t), where
§l(t)<§2(t), as indicated in Figure 9. Also, £(t) divides the stationary do-

+ =
main § into the two time-dependent sub-domains §(t) and 8(t), which are the

intersections of § with the half-planes &(t) and é(t), respectively (see Figure 9).
At this stage we choose a test domain 8 admissible at the given instant

and let U(t) stand for the total strain energy in a slab of unit thickness — at

any time t within a time-range of intersection of § — stored in the material

that occupies 8 in the undeformed configuration. Accordingly, we have
+ 4+ et b + + . B
U(t)=W(t)A(t)TW(t)A(t) , W(t)=W(E(t)) , W(t)=W(E(t)), (6.9)

+ P £ -
where A(t) and A(t) are evidently the respective areas of 8(t) and 8(t). Dif-
ferentiation of the first of (6.9), in view of (6. 4) and the second of (6. 9),

yields the time-rate of change of the strain energy U in the form

U -WA' fWA* 43 T A+5. FA 6.10)!
= + : .
“ByT By OBy By

From the divergence theorem follows at once

Here and in the sequel dots used as superscripts indicate differentiation
with respect to the time.
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Bt =§ixavﬁd/5 ; 5aﬁA(t)=<j_5xavpd/«, (6. 11)
ad(t) 98 (t)

+ E +
if 5 is the arc-length along the boundaries 88(t), 38(t) of the domains 8(t),

:Q(t) and v is the appropriate unit outward normal vector. On the other hand,

it is readily shown, and intuitively obvious, that

. X ngz(t)
A'(t)=-A"(t)= -] V(5,1)N(D)dE, (6.12)
g, (1)
provided
X(E,t)=%—tg(§.t), (6.13)

so tha’cl V(E,t) is the velocity, relative to the frame X, of the point on the
moving shock-line £(t) with the position vector %(8,t).

We now use (6. 11), (6.12) in conjunction with (6. 10) and then invoke
(6.2), the continuity conditions (6. 5), (6.7), as well as the overall equilib-

+ =
rium of the material occupying #(t) and 8(t). In this manner we are led to

€,(t)
U'(t)=r,§(,§,t)',y,(,§,t) s+.r{[W(t)]’X(§,t)-y(t)+s(t)-[x(x,t)]'}dg. (6.14)
J - + ~ ~ it
08 5,0

Here 5(35, t) is the Piola traction on the outer side of 39,)\1’(3\5, t) is the parti-

cle velocity given by

t, + +
E°(t)xth' (t) on R(t)

vix, t)=g—tx(§, =1 (6. 15)
E'(t)x+b' () on R(1), |

while the notation [ ],

+ is employed at present to denote the jump in the

lRecall (6.2).
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+ -
appropriate field values as £(t) is traversed from R(t) to R(t); thus, in par-

ticular,
[W(t)];=W(:Fj(t))-W(:fj(t)) [ O =[E LK, 04k (0], (6.16)
From the second of (6. 16), together with (6.2), (6.5), and (6. 13) follows
[v(x, 0]} =-[E®O]; V(5 1. (6.17)

Substituting from (6. 17) into (6. 14), and appealing once more to the traction-

continuity condition (6. 7), one finds after elementary manipulations:

£, (t)
U (0=[36, 0 ex(x, D8+ [ [ROIN( -V (5, )dE, (6.18)
a9 g, (1)
provided
+ + " -
P(E)=W(E)L-E g(E) . P(t)=P(E(t) , PO)=P(E ). (6. 19)

The first integral in (6. 18) is evidently the power of the tractions
external with respect to the material occupying 8 in the reference configu-
ration; the second integral, which vanishes when :Ll':(t) :E(t), represents the
contribution to U'(t) arising from the deformation-gradient discontinuity at
£(t). Moreover, P is the energy-momentum tensor originally introduced
by Eshelby [10]l into the theory of defects in elastic bodies. Eshelby es-
tablished the relation between the tensor P and the '"force exerted on the
defect'; this relation — in the absence of such defects — gives rise to a
familiar conservation law in finite and linearized elastostatics. The two-

dimensional version of the conservationlawto whichwe are alluding asserts

This recent expository paper contains references to Eshelby's related
earlier work,
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b3 =

that

JE@E(E)H@& =0 (6.20)

~

r

for all plane equilibrium deformations (of a homogeneous hyperelastic sol-
id) with twice continuously differentiable displacements, if I" is the bound-
ary of an arbitrary regular region within the domain of regularity of the
elastostatic field at hand and N is the outward unit normal vector of . The
fracture-mechanical implications of (6. 20) and, in particular, the connec-
tion between the so-called J-integral and the energy release rate at the tip
of a crack, were first recognized by Rice [11].

For our purposes it is useful to cast the energy identity (6. 18) into
a different form. To this end we use (6.19), (6.7), and the first of (6. 6) to

infer that

[E(t)];m(t) o« L(t) = - s(t) -[E(t)];k(t) =0, (6.21)
whence

[BOINE®) ={[B(t)] N(t) *N() IN (t). (6. 22)

Accordingly, the energy identity (6. 18) is equivalent to

8,(t)
U'(t) =LS,(’£' t) e v(x, t)d,o-[H(t)];jX(é, t) «N(t)dE, (6.23)
9% 5 (B

where

H(E,N)= -P(E)N«N= -W(E)+EN«o(F)N,
5 4 (6.24)
H(t)=H(E(t), N(t)) , H(t)=H(F(t), N(1)).

In view of (6. 24) and (6. 7) one has

(HH] =s(t) [EM],N®-[WB)], , (6.25)

e e A ——— T ———
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so that the jump in H(t) is the excess, over the jump in the strain-energy
density W(t), of the ""internal work' done by the Piola traction g(t) through
the jump [E(t)];g(t) in the deformation gradient normal to the material
shock-line £(t).

Bearing in mind the physical significance of the second term in
(6.23) as the contribution to the energy rate U’ (t) due to the deformation- ?
gradient discontinuity at the shock-line £(t), we introduce the following def-

inition. A time-dependent elastostatic shock is dissipative at an instant t ?

5, ()
[H®]; [V(E, 0 N(©)ag>0 (6.26)
g, (1

for every test domain 8 admissible at this instant.

We now establish necessary and sufficient conditions in order that
a time-dependent piecewise homogeneous elastostatic shock be dissipative

at a given instant. Suppose such a shock is dissipative at t. Then, we

show first, its material shock-line £ must be in a state of translation at
that moment and the direction of this instantaneous translation cannot be

parallel to £(t):

V(E,t)=V(0,t)=V(t) (-c0<E<oo) , V(t)N(t)£0. (6.27)

Indeed, if the first of (6. 27) were false, there would exist an instantaneous
center of rotation for the rigid motion of £ at the time t. In this event
- Vi (15:5:t) *N (t) would range continuously over all real numbers as & ranges

over (-oo,) and thus the inequality (6.26) could not possibly hold for every

£ that is the interior of a sufficiently small circle centered on £(t). Further,
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the first of (6.27) is incompatible with (6. 26) unless the second of (6. 27)

holds true. Next, from (6.26), (6.27) follows

[H(t)];>0 (6.28)

provided £(t) is oriented by means of L(t) in such a way that

V(t) N(t)>0. (6.29)

Consequently, H(t) must increase as £(t) is traversed from é(t) to é(t), if
§(t) is understood to be the half-plane into which £ is advancing at the in-
stant under consideration. Also, (6.28), (6.29) and the first of (6.27) are
evidently sufficient for the dissipativity of the shock at tinie t. Finally, it
is clear from the above that a piecewise homogeneous time-dependent shock
cannot be dissipative throughout a time-interval (’cl »t5) unless the motion of
its material shock-line is purely translatory.

The dissipation inequality (6.28), as will become apparent later on,
assumes a role analogous to that played by the entropy inequality in connec-
tion with gas-dynamical shocks. Our immediate goal is to deduce a useful
alternative representation for the jump [H(t)]; appropriate to a time-depend -
ent elastostatic shock. The subsequent considerations apply to any fixed in-
stant in the time interval (tl,tz); for the sake of brevity we shall suppress
the argument t in the equations to follow. Because of (6.24) and (3. 3), (3.32)

we are entitled to write

H(E,N)= -W(E)+J(E)ENT(E)E )TN if F=F or E-F, (6. 30)

~ ~ ~

where T(F) is the actual stress field associated with the nominal stress

field g(F). On the other hand, (3.11), (3.12), (3.13) and the traction con-

tinuity condition in the form (3. 33) easily lead from (6. 30) to




26h~
J{F)t(F)*G(F)n + B
H(E,N)= -W(F)+—2==x=_= >= if F=F or E=F, (6.31)
nG(E)n

in which n is the unit normal vector of the (moving) spatial shock-line £
and L(E‘)ig(:ﬁ‘) the actual traction vector along £,. Recall now that £ is the
unit direction vector of £, and X' the (time-dependent) coordinate frame
with the base vectors (£,n) and the same origin as X. On expanding the

two scalar products entering (6. 31) in Xl, noting that n and t have the com-

ponents (0, 1) and ('1‘12, 2) in this frame, we obtain
G'12<F> )
HE, )= -WEI E) | g7 15y T, (E)+15,(E)t if E=For E=E. (6.32)

Finally, from (6. 32) and (3.25), (3.27), the continuity across £, of the
stress components T’IZ’ Tt?.Z’ and the last two of (6.24), follows the useful
result
o e X 7
[H] =-[W] +J(x7),-€T),) , €=1-9, (6.33)

where
?12:7’12@“) , jl:122:1"22(3)- (6.34)
In (6. 33), # and & are the values of the amount of shear and of the relative
stretch at right angles to £, inherent in the instantaneous supplementary
deformation. |

At this point we employ (6. 33) in applying the dissipation condition
(6.28) to the special case of a piecewise homogeneous time-dependent elas-
tostatic shock occurring in Material 1. To this end we observe first that

the results of Section 5 continue to hold at present if proper allowance is

made for the time-dependence of the equilibrium shock. In particular, the

lRefer to the decomposition (6.8)and to (3.19), (3.28). Seealso Figure 6.
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jump [W(t)]; in the energy density is available from (5. 22) if in this equa-
tion ST :\Z,p,.-,;, and & are replaced by )\l(t),)\z(t),ﬁ(t),w(t), and §(t). Fur-

ther, (1.14), (1. 18) and (4. 41) yield the stress components

357,
G
f/ +., +, . 11
Tl&}%Glz ¥ 'TZZ—L,L ].—'—}_T} on [tl,tz] (6 55)

The required jump in H(t) may now be calculated from (6. 33) with the aid of

+
(5.22), (6.35), the formulas (5. 4) for Gla and equation (5. 8) for the amount

‘31

of supplementary shear n. This computation ultimately gives

3

u(1-p%)(2-¢e)e
S—E

3 on [tl’tZ] el =6, (6. 36)
2J(l-e) (1+2Bcos2p+B )

+
Now }1>0,J>0, whereas lp|<1 and €<l according to (5.6). Hence (6. 36)
implies

[H(t)],>0 if and only if e(t)>0, (6.37)

so that the dissipation condition (6. 28), which rests on the assumption that
the shock is advancing into é(t) at the time t, leads to the shock-strength
restriction ¢(t)>0 in the case of Material 1 (for all admissible homogeneous
deformations on 5{(1:)) This restriction was anticipated in Section 5, when
the detailed discuscion of some of the results deduced there was confined to
non-negative values of ¢.

One gathers from (6. 36) that for Material 1,
lkﬂ;;O(€5 as ¢20 (6.38)

at any particular instant. The general validity of this estimate, even for

elastostatic shocks in anisotropic hyperelastic materials, can be established




by means of an appropriate weak-shock expansionl, Furthermore, (6.38)

is the analogue of a familiar property of the entropy jump in gas-dynamical
shocks.

We now list various implications of the conclusion that ¢(t)>0 for a
dissipative shock in Material 1 if the shock happens to be advancing into
g%(t) at this moment. The following results apply to the instant under con-
sideration, although the argument t will be suppressed.

First, in view of the kinematic significance of the shock-strength
€, the supplementary deformation involves a contraction at right angles to
the spatial shock-line £, . Second, it is clear from (5.3) and (5.6), (5.8)
that the sign of the supplementary amount of shear » depends on the nature
of the instantaneous principal stretches inherent in the given homogeneous

+
deformation on f . One has

u<0 if >0 (x2>xl) , #>0 if B<0 (%, *1) (6.39)

for shocks with a spatial shock-angle in the first quadrant (0,w/2).

Next, from (4.4)2, (5.6), and (5.22) one draws

[91;<0 , [p1;>0 , [W]}<0. (6.40)

Consequently, in the present instance, the area-ratio and the energy
density decrease, while the mass density increases — as the material

e :
shock-line £is traversed from ® toR. Further, we recall from the discus-

sion at the end of Section 5 that in the case of Material 1, ¢ >0 assures a

4.
loss of ellipticity on R at all admissible deformations on ?Q; in contrast,

1For this purpose one requires a weak-shock expansion of higher order
than that considered in Section 4.

2Note that (4.4) holds true for shocks of finite strength.
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the ensuing deformation on R may or may not be accompanied by a failure

of ellipticity of the displacement equations of equilibrium. Thus, at least
for Material 1, the situation is parallel to that encountered in gas-dynamical
shocks, where —as a consequence of the entropy inequality — the flow is
necessarily supersonic on the upstream side but may be either supersonic
or subsonic on the downstream side.

Finally, consider a time-dependent piecewise homogeneous equilib-
rium shock in Material 1 that is dissipative at all times in the interior of
its interval of duration [tl,tz]. Suppose, in addition, that the material
shock-line £(t) of the shock advances steadily into'&(t) for t1<t<t2. Then,
€>0 on (tl,tz) and — as was shown earlier in this section — the motion of

£ is one of pure translation throughout this range of time. Thus, the

material shock-angle obeys

<I>(t):<I>0 (t1<'t<t2), (6.41)

in which CPO is a constant. In these circumstances according to (3.14),

i
for a given (admissible) deformation on R(t) (tls ts tz),

angle ® becomes a known function of <I>o and the time, i.e.,

the spatial shock-

cp:cp(t;tbo) (tl< t<t Also, one confirms easily that the first of (5.9) may

2)'
now be inverted to give e:e(t;tbo), so that the shock-strength becomes a
fully determinate function of time for every fixed value of tbo. We shall

not explore the specific properties of e(t;d)o), however, since the fore-

going considerations are strictly limited to piecewise homogeneous shocks

and have no local analogue in connection with more gencral equilibrium
shocks.

For comparison purposes we cite also, without proof, some results

obtained by applying the dissipation condition (6.28) to a weak
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time -dependent shock in Material 2. Here one finds that ¢<0, so that the

instantaneous supplementary deformation involves a stretching perpen-
dicular to £,. On the other hand, (4.42) and (4.36) imply that the in-
equalities (6.39), governing the sign of the supplementary amount of shear
%, remain valid for Material 2 if |e\ is sufficiently small. Also, since

€<0, the first two inequalities in (6.40) now give way to
[J];>0 : [p];<0. (6.42)

The sign of the energy-jump [W]; can no longer be inferred from the sign
of € alone in this special case; it is found to depend on the instantaneous

+
character of the deformation pre-assigned on R.

7. Equilibrium-shock formation as a bifurcation process. Liiders bands.

Discussion.

The analysis in Section 4 led to the conclusion — valid under certain
assumptions spelled out there — that the existence of a piecewise homo-
geneous elastostatic shock, and hence the emergence of discontinuities in
the first deformation gradients, is contingent upon a breakdown of ellip-
ticity in the displacement equations of equilibrium associated with the
homogeneous deformation prescribed on ﬁ{ As is well known and easily
verifiable, this failure of ellipticity in turn renders the given deformation
dynamically unstable: there are initially periodic, small-amplitude, dis-
turbances of the above uniform elastostatic field that give rise to solutions
of the appropriate linearized displacement equations of motion which grow
beyond bounds with time.

The foregoing state of affairs suggests the possibility of viewing

the process of shock formation as a bifurcation from a homogeneous




equilibrium field in an elastic body. Such an interpretation of equilibrium
shocks leads one to wonder about their relevance to the familiar failure
phenomenon of Lilders bands, commonly observed in mild steels, which
has received repeated analytical attention within plasticity theory. 1

Liders bands are known to developz in specimens subjected to uni-
axial tension or compression once the loads have exceeded the yield limit;
their inclination relative to the load axis is often close to 45 degrees, al-
though considerable departures from this angle have been reported. Fig-
ure 10, which follows Nadai [13], shows a schematic diagram of Luders
bands. The experimental findings indicate abrupt changes in the deforma-
tion gradients across the interfaces between such a band and the adjacent
material, the deformation within each band being predominantly one of
shear parallel to the interfaces. Further, the sense of this shear deforma-
tion undergoes a reversal as the loading is changed from tension to com-
pression.

In assessing the extent to which predictions based on the theory of
piecewise homogeneous equilibrium shocks resemble experimental observa-
tions pertaining to the formation of Liders bands, it should be kept in mind
that the actual test situation, which is in fact three-dimensional, comes
closer to conditions of plane stress than to plane strain. Moreover,

elementary equilibrium considerations preclude the existence of a homo-

geneous field of deformation and stress in a Liiders band of finite width

(see Figure 10) since such a uniform field is incompatible with the boundary

lSee, for example, Thomas [12].

2See Nadai [13], Chapter 18, for a detailed description of the pertinent
experimental observations and for references to the previous phenomeno-
logical literature on Liders bands.
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conditions at the load-free parallel edges of the specimen. For this reason
a piecewise homogeneous elastostatic shock cannot possibly describe the
observed behavior near the edges of the slab. On the other hand, it is a
simple matter to symmetrize the elastostatic field of an equilibrium shock
and thus arrive at a piecewise homogeneous field involving three homo-
geneous zones: two half-planes in which the same given deformation is
sustained, separated by a strip that undergoes a distinct deformation, the
displacements and cractions being continuous across the interfaces.

Despite the limitations pointed out above, the present theory of
equilibrium shocks exhibits certain striking features that support its
relevance (within the framework of continuum mechanics) as far as Liiders
bands are concerned. The following considerations pertain to the local
behavior near a point such as P in Figure 10, on an interface of a Liiders
band.

To fix ideas and solely for illustrative purposes we draw once
more on the special isotropic hyperelastic Material 1. Suppose an all-
around infinite slab of this material occupies the entire (xl,xz)-plane ®
in its undeformed configuration and is subjected to the time-dependent

quasi-static pure homogeneous plane deformation:

Y=Y (x,t)=A(t)x for all x ing (0st<co), (7.1)
where
Alu) 0
Q(t): (0st< ), (-2}
0 )

A (t) being the deformation-gradient tensor and )\O/(t) the principal stretches

at time t. We shall assume that the foregoing deformation process starts
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from the undeformed state at the instant t=0 and at all times thereafter
corresponds to a state of uni-axial tension or compression parallel to the

xz-axis. Thus,l

A (0)=1, T, (t)=0, (t)=0, xl(t)=>\;_'%(t).

2 L (7.3)
=~ -8/3 _ '% =3 ,
To2(=R[1-A2 (0], 0,5 (H)=ul), (1) -25 (1)] (0st<w).
J
In addition we require that in the case of uni-axial tension,
)‘Z(t) is steadily increasing, )\Z(t)éoo as t- oo, (7.4)
while in the case uni-axial compression
)‘Z(t) is steadily decreasing, )\Z(t)"O as t> . (7.5)

We now recall from Section 2 (see Figure 1) that the homogeneous
time -dependent equilibrium deformation characterized by (7.1), (7.2),
(7.3) entails a loss of ellipticity whenever the stretch )\Z(t) equals or
exceeds a certain critical value in the tension case or fails to be above
another critical value in the compression case. Hence, by virtue of (7.4),
(7.5), in either case there is an instant L such that the deformation pro-
cess under consideration is accompanied by a loss of ellipticity — and
thus also by a loss of dynamic stability — at all times t2t . Moreover, it

is now clear from the conclusions reached in Sections 5, 6 that if t Zto

1
the following bifurcation of the homogeneous time-dependent deformation
at hand into a piecewise homogeneous time-dependent equilibrium shock

becomes possible:

1

Recall (2. 8), which apply to uni-axial stress parallel to the 3 -axis.
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=7l

e+

(t)x for all x in ste(t), i(t):é(t) (tls t< )
x=y(x,t) = (7.6)
(t)x +b(t) for all x inR(t) (tSt<oo),

ol

provided

l’/(t)-lﬂ(t)>0 (t, <t<o). (7.7)

1

Here i/(t) is the velocity of the material shock-line £(t) dividing R into the two
half-planes %(t), é(t); also £(t), whose unit normal vector N(t) points into

;(t), is in translation because of the dissipativity of the shock. The assump-
tion (7.7) amounts to the physically motivated requirement that the deforma-
tion in ﬁ-i(t) — associated with the local deformation in the Liders band — stead-
ily encroaches upon the as yet unencumbered deformation prevailing on ﬁ(t)

Because of (7.7) we may appeal to (6.37) and the dissipativity of the shock

to infer that its strength ¢(t)>0 for t, <t<co.

The results pertaining to Material 1 in Sections 2,4, 6 now permit
various inferences that bear on the significance of equilibrium shocks in
connection with Liiders bands. First, in the tension case the shock-
bifurcation (7.6) can arise only after the nominal stress 05, associated
with the homogeneous deformation (7. 1) has passed its peak (see Figure 1).
Second, in both the tension and the compression case, the angle of inclina-
tion of the ""emerging' spatial shock-line relative to the load-axis, i.e.
the limiting value of this angle at zero shock-strength and at an incipient
failure of ellipticity, is 45 degrees for Material 1. In general this angle
is a material property and may be different for tension and compression.

Next, the shock-formation in the present instance involves a sup-

plementary contraction at right angles to the interface between the half-

planes separated by the spatial shock-line. On the other hand, according
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to (6.39), the amount of shear x accompanying each instantaneous supple-
mentary deformation is positiv«.‘l in the case of a compression-induced
shock and negative for a tension-induced shock in Material 1. The last-
mentioned conclusion is at variance with the usually observed deformation
pattern of Liders bands, schematically depicted in Figure 10. We do not
know whether the opposite sense of over-all shear has been encountered in
tests of actual materials. Be this as it may, one can show by asymptotic
means that there are strain-energy densities, even within the limited
class characterized by (2.1), that lead to #>0 in weak tensile-shocks.

The above predictions concerning the sign of #therefore merely reflect a
peculiarity of the particular idealized material under discussionz,

The preceding remarks suggest a word of caution regarding the
highly special nature of the two hypothetical materials used in this paper
to illustrate the theory of elastostatic shocks. With a view toward physical-
ly realistic applications of the theory it would seem essential to explore a
wider range of hyperelastic solids that can sustain a loss of ellipticity.

In particular, it would be of interest to construct ideal materials that
admit a loss of ellipticity in uni-axial tension and compression at pre-
assignable stretch levels. Unfortunately, such an adaptability of the as-
sumed constitutive behavior is bound to incur mounting analytical

complexities.

The analysis carried out in this investigation may be generalized
Y ! g

lSce Figure 6(b) for the geometric meaning of »>0.

2/\ weak tensile shock in Material 2 also involves #<0, as follows from the
observations at the end of Section 6. We recall that a compressive shock
cannot occur in Material 2 since the latter does not suffer a loss of ellipti-
city in uni-axial compression.
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to encompass no longer piecewise homogeneous plane elastostatic deforma-
tions with continuous displacement fields and merely piecewise continuous
first and second displacement gradients, whose discontinuities are permit-
ted to occur along curved shock-lines. Further, it is a priori clear that
the results deduced here for piecewise homogeneous equilibrium shocks

at once apply to the local situation at an interior point of a curved shock-
line in a non-homogeneous elastostatic field. The emergence of weak
shocks of this more general type evidently necessitates a breakdown of
ellipticity in the displacement equations of equilibrium at the shock-line,
which — in the weak-shock limit — must be a characteristic line associated
with these equations at the prevailing deformation. Also, the dissipation
inequality (6.28) remains locally valid in the present circumstances, but
the dissipativity of such a shock no longer requires that the motion of the
shock-line be translatory.

Presumably non-homogeneous equilibrium shocks would arise in :
boundary-value problems of finite elastostatics at loads that cause suf-
ficiently severe local deformations — severe enough to induce a local
failure of ellipticity in the governing field equations, provided of course
the underlying elastic potential admits such a failurel. In the presence
of geometric or material sources of stress concentrations (such as holes,
notches, or inclusions) elastostatic shocks could thus evolve at compara-

tively moderate loads.

lThe situation envisaged here is analogous to that encountered in boundary-
value problems for stationary flows ingas dynamics that give rise to super-
sonic regions and concomitant shocks.
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