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Summary

This investi gation concerns equilibrium fields with discontinuous

displace men t g rad ients , but continuous displacements , in the theory of fi-

nite plane deform ations of possibl y anisotropic , compressible elast ic sol-

ids. “Elastostatic shocks” of this kind , which resemble in many respects

gas-d ynamical shocks associated with steady flows , are shown to exist on-

ly if and when the governing field equations of equil ibrium suffe r a loss of

ellipticity . The local s t ruc ture  of such shocks , near a point on~ the shock-

line , is studied with part icular  attention to weak shocks , and an example

pertainin g to a shcF~k of finite s trength is explored in detail . Also , neces-

sary and suff icient  conditions for the “dissipat ivi ty ” of time-dependent

equil ibr ium shocks are established. Finally ,  the relevance of the analysis

carried out here to localized shear fai lures  — such as those involved in the

fo rmation of Ltider s bands — is discussed.

Introduction

Several years  ago — in connection with asymptotic studies of

*The results  communicated in this pape r we re obtained in the course of an
investigation supported by Contract N 00014-75-C-0196 with the Office of
Naval Research in Washington , D . C.
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crack problems within finite elasticity theory — we encountered the fact

that the field equations of nonlinear elastostatics may suffer  a loss of eulip-

ticity for some elastic materials in the presence of sufficiently severe lo-

cal deformations. A special isotropic material of this kind was explored

in [ ii ,  where we determined all three-dimensional homogeneous defo rma- 
S

tions at which such a breakdown of ellipticity occurs .  More recently [z i ,

we deduced explicit necessa ry  and sufficient  conditions , in te rms of re-

I - strictions upon the principal stretche s and upon the dependence of the

strain-energy density on the principal stretches , for  ordinary and strong

ellipticity of the equations governing finite plan e deformations of general

S homogeneous and isotropic , compressible hyperelastic solids.

A fai lure of elli pticity of the elastostatic equations appropriate to

such solids suggests  the possible emergence of solution fields exhibiting a

loss of smoothness. In the present  pape r our interest is directed in par-

ticular at the possibility of solutions that possess finite jump discontinu-

ities in the f i r s t  displacement gradients across certain curves , while the

displacements themselves still remain everywhere continuous . We call

solutions of this kind “elasto~ tatic shocks ” in allusion to gas-dynamical

shocks associated with stationary inviscid flows , to which they bear a

more than casual resemblance. Moreover, since our current concern is

with the local state of affairs  near an interior point on a shock-line (line of

displacement-gradient  d iscont inui ty),  it will be sufficient  to confine our at-

tention here to piecewise homogeneous elastostatic shocks~ thus we assume

S 
the shock-l ine to be a strai ght line , on eithe r side of which the plane defor-

• niation under consideration is homogeneous.

Before we proceed to outline the content of this pape r , we should
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make clear that our motivation in studying elastostatic shocks is physical

in ori gin. Discontin uities of the kind described above arise typically in

the idealization of localized shear failures , such as those involved in the

S formation of Lliders bands . S

In Section 1 we recall some prerequisites from the nonlinear theory

of plane elastostatic defo rmations, including the relevant notions of ellip-

ticity . Here we also cite the explicit conditions of ordinary and strong ci-

lipticity established in [2] for the special case of material isotropy, as

well as results derived there regarding the inclination of the characteris-

tic curves that accompan y a loss of ordinary ellipticity .

S Section 2 contains a detailed discussion of response propertie s in

plane strain of two special isotropic elastic materials, which are used in

the remainder of the paper to illustrate various general conclusions. The

first of these materials, which was also the object of [1], is governed by

a stored-energy fun ction originally proposed by Blatz and Ko [3] on the ba-

sis of experiments with a highly defo rmable rubberlike material. The sec-

ond particular material introduced in Section 2 is strictly hypothetical in

nature and is employed later on to bring into evidence certain constitution- S

ally dete rmined qualitative differences in behavior.

A complete definition of piecewise homogeneous elastostatic shocks

is spelled out in Section 3 , where their kinematics is analyzed in detail.

Further , we prove here that the existence of such an equilibrium shock is

contingent upon a loss of strong ellipticity of the displacement equations of

equilibrium , appropriate to the material at hand, at some homogeneous de-

• formation. The results obtained in Section 3 — like most subsequent re-

suits — are not restricted to isotropic mate rials.

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 
4~~ 
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• The considerations carried out in Section 3 suggest  that if there ex-

ists any piecewise homogeneous shock corresponding to a pre-assigned,

defo rmation on one side of the shock-line , there is a one-parameter farni-

S ly of such shocks. In Section 4 we take for granted the existence of a

smooth family of shocks in a nei ghborhood of the shockless state . We then

deduce various “weak-shock” results — encompassing the jumps across

the shock-line of physically significant field quantities — to dominant or-

der in a shock-strength parameter that measures  the departure from the

shockless solution . One of the conclusions reached in thi s manner is that

the existence of the presupposed family of equilibrium shocks demands a

S 
loss of ordinary ellipticity at the given homogeneous deformation . More-

over , the limiting shock-line at zero shock-strength is found to be a char-

acteristi c line associated with this defo rmation . It should be mentioned

that Rudnicki and Rice [41 1 had previously arrived at the required fai lure

of ellipticity in dealing with we ak shocks of a related type for a broade r

class of materials that includes the elasti c solid.

Section 5 is devoted to an instructive example of a global an alysis

of a piecewise homogeneous equilibrium shock of finite strength , based on 
S

the f i rs t  of the two special isotropic elastic materials discussed in Sec-

tion 2 . In this instance explicit results for all possible shocks can be ob-

tam ed in a transparent elementary fo rm . In particular we find here that

every shock admitted is accompanied by a breakdown of ordinary elliptic-

ity at least on one side of the shock-line, regardless of the strength of the

shock.

S In gas dynamics the si gn r the shock strength is determined by the

‘See also Rice ’s Es ] more recent paper.

~~~~~~~~~~~~~~~~~~~~~ — - • •~~
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entropy inequality, which models the dissi pative characte r of the process

of shock formation in the absence of vi scosity . Guided by this fact we

generalize in Section 6 the results of Section 3 to time-dependent piece-

wise homogeneous quasi-static shocks and then establish an energy identi-

- ty that serves as a basis for a proposed criterion of dissipativity appropri-

ate to such shocks. Thereafter we obtain necessary and sufficient dissipa-

tivity conditions , which lead to an inequality analogous to the entropy con-

dition of gas-dynamics . The dissipation inequality is applied at the end of

Section 6 to dete rmine the si gn of the shock strength in the special global

solution arrived at in Section 5, as well as for weak shocks in the second

of the two particular isotropic materials mentioned earl ier . This si gn , in

turn , gove rns the si gn of the jump in the mass density as the shock-line is

t raversed.  We find that the shock strength may be positive or negative de-

pending on the part icular nature of the elastic material experiencing the

shock.

In Section 7 we combine the special results of Section 5 and the gen- 
S

eral conclusions reached in Section 6 in an attempt to illustrate the rele-

vance of elastostatic shocks to the phenomenon of Ltiders bands in a slab

unde r uni-axial tension or compression. For this purpose we view the

evolution of such a band — in the vicinity of a point on the interface be-

tween band and slab — as a bifurcation from a homogeneous defo rmation

that has become dynamically unstable following a loss of ellipticity , into a

time-dependent piecewise homogeneous equilibrium shock. The ensuing

results , though tied to a very limited elastic material , display various

str iking qualitative features  that are reminiscent of famil iar  experimental

observations. In this connection we refer  to the work of Hill and

- - ~ -~~~~~~~~~ -~~~~~~ -~~ - ~~~~-~~~~~ - ~. ~~~~~~~~~
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Hutchinson [6], where va r ious  bifurcat ions from a state of plane-s t ra in  uni-

axial tension are  investigated for  a class of incompressible, incrementally

l inear  t ime-independent materials. Among these bi furcat ions are localized

shearing modes.

- 1. Preliminaries on finite ela stostatic plane strain.

5 In thi s expository section we recall from [21
1 certain resul ts  pertain-

ing to the nonlinear theory of plane elastostatic deformations which are  es-

sential to the analys is  of the class of discontinuous plane elastostatic fields

that consti tutes our main objective.

S As for  notation , we shall use boldface le t ters  to denote vectors and

second-order  tensors  in two dimen~ ions , as well as two-rowed column and

square matr ices .  Furthe r , the same boldface lette r will be employed to

designate a vector or tensor and its matrix of scalar components in the un-

d en y i n g  rectangular carte sian coordinate frame.

Let ~ be the open region of the (x 1, x2) -p lane occup ied by the interior S

of the middle cross-section of a cylindrical or prismatic body in its unde-

formed configurat ion.  A plane deformation of such a body — parallel to the

(x 1, x 2 ) -p lane — is described by a suitably smooth and invertible transfo r-

mation S

for  all x in R , (1 . 1)

which maps ~ onto a domain of the same plane. Here ~ is the position

vector of a generic  point in R ,~~(~ ) is its deformation image in 
~~~~~~~ 

while u

is the displacement vecto r field . Accordingly, x~ and y~ 
are the cartesian

1 Parts of this  resume’ are  taken verbatim f rom Section 1 of [2]. 

-~~~~- ‘  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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mate r i a l  and spat ial coord i na tes , r espect ivel yi 1 We call F the defo rmation -

g rad ient  tenso r be lon g in g to the i-napp ing (1 . 1) and J its Jacobian determi-

- 

nant (area ra t io) .  Thus ,

• 
~ =v~=[ay~/ax~] , J=det~~> O  on ~~~ . ( 1 . 2) 2

Le ts  be the in-plane Cauch y s t r e s s -t e n s o r  field accompany ing the

de f orma t io n at hand , so that T~ p 
stands for  the prevail ing components of

“ac tual” or “true ” s tre ss. The appropr ia te  two-dimensional s tress  equa-

tions of equilibrium , in th e absence o f body forces , then take the form

S div~~~~ , T T ~~ or aT~~ / a y~ =O , on 
~~*. ( 1 . 3)

3

Next , su pp ose ,~~ represents  the in-p lane Piola st r e s s - t ensor  field corres-

ponding t o T , whence

~l T  - 1
~~~~~~~ 

) or (Y
~~~

JT
~ pF~ r

(1 . 4)

1 FT or T p =~~~~~p F
~~r~ J

where are  the components of “no minal ’ or “ p s e u d o- s t r e s s ” and

with the components F~~~, designates  the inverse of the nons ingu la r  tensor

F. Equations (1 . 2), (1. 3), (1.4) lead to the equilibrium conditions

divcy — O or aa~~ /ax~ =O on ~~~ , 
(1 . 5)

but ~ is in genera l  not symmet r i c .

• ‘G re ek s u b s c r i p ts have the ran g e (1 , 2) and we shall  employ the usual sum-
mation co nv en t io n .

S Zii M is a two-by-two matr ix  with elements M~~~, we a l ternat ively wr i te
[M~ ] in place of ~~~ .

A s u p e r s c r i p t T will alway s indicate t ransposi t ion.

~~~~~~~~~~~ I
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Turning  now to the governing cons t i tu t ive  re la t ions , we a s sume  that

S the bod y i s elas t ic and p o s s e s s e s  an e las t i c  po t ent ial  W , which re p resen t s

5
. the s t ra in - energy densi ty pe r  unit undeformed volume . Moreove r , we re-

str ic t the material  to be homogeneous. Consequentl y ,  W depends upon po-

sition on ~ exc lusively throug h the de fo rma t ion -g rad ien t  tensor  F , and the

consti tu tive law — as fa r  as the in-plane Piola s t resses  ar e  concerned —

beco mes

or a~~ =aW/ 8F~~~. (1 . 6)

Substi tuting f rom (1 . 6 )  into (1 . 5),  and invoking ( 1 . 1) ,  ( 1 . 2 ) ,  on e a r r i ves at

the d is p lac ement eq ua t io n s of eq ui l i b r i u m

-
- 

~~~~~~~~~~~~~~~~~~~~~~ (1 . 7 ) 1

• 

- 

p rovided

c~~~~6(F ) = O 2 W/ 3F 6 8F~~~. ( 1 . 8 )

For all un i t -vectors  N , le t Q( N ; F ) be th e s y mm et ri c tensor  de f ined by

Q~~~(N;F ) =c~~~~6 (F)N~ N 5. (1. 9) 2

The quas i - l i near  system of par t ia l d i f fe ren t ia l  equations (1 . 7) is elli ptic at

a solution ~ (with continuous f i r s t  and p iecewise cont inuous  second pa r t ial

- ~~• derivative s on 
~~

) and at a ma ter i al point x , p rov ided

detQ (N;E (,~ ) ) / O fo r  all ~ with ~~~~~~ (1 . 10)

where F(~) is the value at~~ of the deformation gradient field generated by~~.

S 
‘Subscripts preceded by a comma indicate partial differentiat ion with
spect to the corresponding material car tes ian  coordinates.
2 The symmetry of Q(~ ;~

) follows from ~~~~~~~~~~~~~ S

L 1W’~â~~~~~i .- ..-. ~~~~~~~~~~~~~ 
-

- ~~~~~~~~~ 
,
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If ( 1 . 10) fails to hold , so tha t

detQ(~~;F(x))=0 for some N with IN I= l , (1 . 11)

S then N is normal to a character is t ic  curve ( r e fe r r ed  to the undeformed S

state) associated with the solution u at x . The charac te ri stic c u rves , in

turn , a re  the only possible c a r r i er s  of “weak discontinuit ies” of u: a c r o s s

such a curve the second normal derivat ive of ~ may exhibit a Lnite jump

• discontinuity, whereas  its second tangential derivative , as well as the

mixed tangential-no rmal derivat ive a re  bound to remain continuous.  Thus ,

the ellipticity condition (1 . 10) precludes the existence of real charac ter i s -

• t ics; ( 1 . 10) is necessa ry  and suf f ic ien t  in order  that eve ry solution u of the

presupposed smoothness be f r ee  of weak discont inuit ies  and hence in fact

twice continuously dif f e r ent iable at the mat er ia l  point under considerat ion.

Following common usage , we call the system (1 . 7 )  strong ly elliptic

at a solution ,~~ and a mater ial  point ~~~~, provided Q(~;~ (,~) ) is positive-defi-

nite for every uni t -vector  N , i. e. provided

M.Q(~~;~~(~ ))M>0 ( 1 . 12)

for  all uni t -vectors  ~~ and ~~. Clearl y ,  the strong ellipticity of (1 . 7 ) at u

and ,~~ implies its ordinary elliptic ity.

We proceed next to the par t icular  case of an isotropic bod y under-

goin g a plane deformation of the form (1 . 1). To this end let Q and Q, re-

spectively,  be the rig ht and the left Cauchy-Green defo rmation tensors as-

sociated with the mapping (1 . 1), whence

S 
C F TF G F F T ( 1 . 13)

___ S
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These two symmetric, posi t ive-def ini te  tensors  have Lie sam e fundamental

scalar invar iants  and hence common principal  values , which  a re  the squares

of the local pr inc ipal s t re tches  (leng th- ra t ios ) ;  the la t ter  will be denoted by

X~ >0. In view of (1 . 13) and the second of (1 . 2) ,  the deformation invariants

jus t  mentioned obey

~~~~~~~~~~~~~~~~~~~~~~~~~~ 1
~. (1 . 14) ~

J=~/det~~ =/d~ fG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J
in which stands for  the components of the two-dimensional  al ternato r .

In the special instance of an isotropic material subjected to a plane

deformation ( 1 . 1), the s t ra in-energy density W involve s ~ merely throug h

the two deformation invariants I and J. In these c i rcum stances  one has

W(F) =W(I , J)~ W( X 1, X 2), ( 1. 15)

where — in order to avoid unduly cumbersome notation — we have employed

5 
the same functional symbol in three distinct conn otations. In pa rticular ,

W(I , J) and W(X 1, X2) stand for  the plane-strain elastic potential2 of the mate-

rial at hand in te rm s of the deformation invariants and the pr inci pal stretche s ,

respectively. From (1 . 14) one has

‘For convenience we use J , rathe r th an the common determinant of ~ and G ,
as the second invariant .

S 2 These two alte rnative fo rms of the potential are the res t r ic t ions  to plane
deformations of their spatial coun te rpar t s , which in general  depen d upon the
three invariants  of the three-dimensional  deformation tensors  and on the

S t r ip let of p r inc i pal s t retches .  While W(I , J) fully c h a r a c t er i z e s  the in -plane
S response to a plane deformation , it is insuf f i c i en t  for  the determination of

the ou t -o f -plane s t resses  so induced.

— ——.5 ——------,5 • - - S 5 ~--5-——- ~~~~~~~
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~~~~~ =2F~~ , 3F~~~~~P Y Ô
FoY~~~

’
P~

I (1 . 16)

and (1 . 6) ,  (1 . 15) ,  ( 1 . 16) fu rn i sh  the s t ress -deformat ion  relations

a=W F~
ZW IF+JW J (F ) T 1

( 1 . 1 7 )

or ~ =Zw 1F + w J€~~ C~~6F 5~ J
S 

in case of mate r ial isot ropy , where W1 and W~ are the partial  derivat ive s

of W(I , J) with r espect  to its a rguments .  The corresponding constitutive re-

lations for  the actual s t resses  are obtained by means of ( 1 . 4 )  and , because

of (1. 13), may be wr itten as

T T
T Z w G+w i 1

(1 . 18)

o r T = T ~~~~~~W1G~~~+W J Ô~~ , ~~~~~~~~~~~~~ J
if 1 is the two-dimensional idem-tensor and S the Kronecker-del ta. Ac-

S -~ cw~3

cording to ( 1 . 18) the tensors  i and ~ have the same principal axes. Finally,

( 1 . 17) togethe r with

aF~ ’
- —~~~= -F ~~ F~~ (1 . 19)

yield the appropr ia te  special izat ion of (1 . 8) in the fo rm

c 6 =2W 15~~ 
~~~ 

6+JW3 
(F~~~F~~ -F~~~F~~~) ~~~~~~~~~~~~~

- :  +J 2 WJJ F~~ F 5~I +2JW IT ~~~~~~~~~~~~~~~~ . ( 1 . 20)

For a pure  homogeneous plane deformat ion , r e f e r r ed  to its pr inci pal

.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ __94
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axes , (1 . 1) become

~~~~~~~~ (no sum) , (1 . 21)

in which the coefficients k~~are positive constants and are  readily identified

as th e as sociated p r i n c i pal s tre tches. If the mater ial  is isotropic , the co-

ordi nate axes — in this particula r instance — are  at the same time pr incipal

axes common to the now constant symmetric tensor f ields ~~~~, ~~~~, and ‘r , as

well as to a , which at present is also symmetric. On adopting the notation

W _ 8W w _~~~W 1 22_ .
~
3:— , 

p
-

a~~~~~~~ 
. )

wh eneve r W i s  to be r ega rded as a func ti on of and X2 ,  one finds tha t

(1 . 21) reduces (1 . 17),  (1 . 18) to

a~~~~~~~ W~ (no sum) , a0~~=0 (cr /~3) ,  ( 1 . 23)

T T
~~~~

=
~~~~~~~

W
~~ 

(no sum) , T~ p~ O (~~~ P)~ 
(1 . 24)

S where ‘r~ a re  the pr inci pal Cauch y s t resses .  As is easily seen , (1 . 24) con-

tinue to hol d local ly for  an a rb i tr a ry  plane deformation (1 . 1), provided X~

S 
and are  the local pr inci pal s tretches and princ ipal Cauchy s tresses.  In

what follows we will need to re fe r  to the two-dimensional B a k er - E r i c k s e n

inequal i ty ,  according to which

(T 1- r 2 ) (X 1-X 2)>O ~ X 1/X 2 (1 . 25)

for  all pure  homogeneous deformations.  In view of (1 . 24) , this condition is

• - 
I equivalent to

(X 1W 1 -X 2 W 2 ) ( X 1 -X 2 )> 0 if X 1~~~2, (1 . 26)

Ii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--- -
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We shall f rom here on assume that the s t ra in-energy density and all

stresses vanish in the undeformed state and thus require that W(X1,X2) obey

W( 1,l)=0 , W~ (l ,1)=0. (1. 27) 
S

The transition to the infinitesimal theory of elastostatic plane str a in , which

aims at a neig hborhood of the undeformed state , is effected through a sys -

tematic l inearization with respect to the displacement gradients of the fin ite

• theory recalled above . The underlying limit process , which corresponds to

confi rms that and T~~~ coincide to dominan t order in this approxi-

mation. Upon setting

l ) — W 12 (1 , 1)] , ~ =W 12 ( 1 , 1) , ( 1. 28)

one recovers in this manner from (1 . 17) or (1. 18) and (1. 7), (1 . 20) the

s t ress -d i splacemen t relations and the displacement equation s of equilibrium
• 

of the l inear theory for isotropic materials with ~ as shea r modulus and ~. as

Larn~~’ s modulus. Accordingly , Poisson ’ s ratio for infinitesimal defo r rna-

tions is given by
S 

W 12 ( 1 , 1)
S 

V_
z~~+~)

_
W (l l)+W.

2(l 1).  (1.29)

With reference to the definitions (1 . 10) and (1 . 12) we now cite from

[2] necessary and sufficient condition s, in terms of restrictions upon

W(X 1, X2) and the principal stretches for the ordinary and strong ellip-

ticity of the two-dimensional disp lacement equations of equi’ ’urium (1 . 7) in

the presence of material isotropy. For thi s purpose let

~~~~~~~~~ 
- -- -- S-- - ~~~~~~~~~~~~~~~~~~~
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D4(x1W,-x 2W2) if X 1~~X2, 1
~- ( l . 30)

j f X J -.X 2 -X , J
and define a symmetric matrix E~ E(X 1, X 2 ) as follows: for all ~~>0  such

that

E~~~=DW (no sum ) 1
~ r ~~1~~~ 2 w,+w2 ~ 

~~(l 31)
E lz =E zl z.

~
.tW l l Wzz

~ 
W 12 + 

~1-
~ 2 12 X 1+X 2 J ’ J

for all X~>0 such that X 1 =X 2 =X ,

E~~ =DW 11. (1.32)

Bearing in mind the symmetry of W( X 1, X 2 ) and taking for  granted that this

function is twice continuously differentiable, one sees that D(X 1, X 2 ) and

E(X 1, X 2 ) defined by (1 . 31), (1 . 32) are continuous on the entire f i r s t  quad -

rant of the pr inc ipa l - s t re tch  plane.

As shown in Section 2 of [2], for  an isotropic material the system

(1 . 7) is elliptic at a solution and at a particula r material  point if and only if
S 

•
~~ the corresponding local principal stretches satisf y the inequalities

S 

E 11 E22 > 0  , T1E ,2 + ,/E 11E22 >0 , (1 . 33)

S where S

fl=sgnE~~ (no sum); (1 . 34)

S f u r t h e r , necessary and sufficien t for the strong ellipticity of this system is

that

-



_ 5 5_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-15-

D>0 , E 11> 0  , E22> 0  , E 12 +JE 11 E22 >0. (1 . 35)

Note f rom (1 . 30) tha t D>0 , if X 1/ X 2 , i s  equivalent to the Baker-Ericksen in—

S equality (1 . 26) ,  the latter being a necessary  condition for strong elli pticity .

Moreover , (1 . 35) evidently imply (1 . 33), as should be the case.

At the undeformed state , charac ter ized by X 1 =X 2 =l , the strong-ellip-

ticity conditions (1 . 35) by vir tue of (1 . 32),  (1 . 30), and (1 . 27) reduce to

W 11 (l , 1)> 0 , W 11 (1 , l ) - W 12 (1 , l)> 0. (1 . 36)

S These inequalities , in turn , becau se of ( 1. 28),  become

S ~& > 0  , ~+2I~ > 0 , (1 . 37)

which are precisely the familiar conditions for the strong ellipticity of the

l inearized displacement equations of equil ibrium in case of isotropy . We

proved at the end of Section 2 in [2] that when ( 1 . 37) hold t rue  — so that

strong ellipticity prevail s at infinitesimal deformations — every open con-

nected set of ordinary ellipticity in the (X 1, X 2 ) -p lan e that contains the un-

deformed state (1 , 1) is necessari ly al so a domain of strong ellipticity .

Finally, suppose ell ipticity has failed , so that (1 , 33) are violated at
S 

some material point , for a particular plane deformation. Then there must

exist at least one (real)  characterist ic  curve passing through this point.

We call such a curve a “material characterist ic” when it is re fe r red  to the

undeformed configuration and app ly the term “ spatial characterist ic” to the

defo rmation image of a mate rial character is t ic.  Let y be the angle of in-

clination of a local spatial character is t ic  relative to the f i r s t  principal  axi s

of the local Ca uchy s t ress  tensor r and hence also of the left deformation 
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tensor  G. As shown in Section 3 of [2], cos Zy is a solution of

(X ~ E 11+X~ E22 _ 2 X ~~X~ E 12 )cos 22Y

+2 (X ~ E22 -X ~ E 1 l~ 
cos 2y + R ~ E 1 1+X~ E22 +ZX ~~X~ E 12

) 0. (1 . 38)

where E(X 11X 2 ) is the symmetric matrix introduced in (1. 31), (1 . 32). The

S

. 
discriminant of thi s quadratic equation is non-negative throug hout the com-

plement Wof the domain of ellipticity e, character ized by (1 . 33), with re-

spect to the open f i r s t  quadrant of the (X 1, X 2) -plane.1 In the interio r of W

equation (1 . 38) in general  has two distinct real roots within the interval

[- 1 , 1], corresponding to four distinct spatial character is t ic  directions.

The latter evidently occur in two pairs , each symmetrically situated with

respect  to y=O . In contrast , for points on the common boundary of e and 1 5

(elliptic ity boundary),  which are associated wi th an “inci pient fai lure of el-

S • li pticity ” , there is at most one such pair of characteris t ic  directions, the

two real roots of (1. 38) being necessarily coalescent.
2

2 . Two special elastic materials  and some of their response propert ies .

For future illustrative purposes we turn here to a class of homoge- S

neous and isotrop ic elastic materials, whose in-plane response to a plane

deformation is governed by an elastic potential of the form

W(I , J ) = ~~[If(J)+g(J) ]  (~. i> 0) ,  (2 . 1)

~The set W of non-elliptic points in the pr inc ipa l -s t re tch  plane may of
course  be empty for a particula r elastic material .

Sec the exhaustive discussion of inci pient fa i lures  of elli pticity at the end
of Section 3 in [2]. In thi s degenerate case there  may exist onl y a single
cha rac t e r i s t i c .

- S :’~S~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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in wh ic h ~ is a material  constant. Note tha t this potential depends l inear ly

S upon the inva r iant I. Since the corresponding W(X 1 , X 2 ) i s  to sa t i sf y (1 . 27) ,

the func t ions  f and g a r e  subject to the r equ i remen t s 
S

Z f ( 1) + g ( l ) = 0  , 2 f ( l ) + 2 f ’( l ) + g ’( l ) = O , (2 . 2)

the p r imes  denoting d i f fe ren t ia t ion .  For every f i xed c h o ice  of th e fu nct ions

f and g cons is ten t  with (2 . 2) one can readil y exhibit  an inf ini te  class of

three-d imensional  elastic potentials , each of which y ields (2 . 1) upon spe-

cia l izat i on to plane strain.

We now par t icu lar ize  (2 . 1) in two d i f f e r en t  way s and hereaf ter  r e fe r

to the corresponding materials  as Material 1 and Material  2 . Let

f(J) J 2 
, g( J ) =2 J -4  for  Material 1, 1

S 

~. ( 2 . 3)
f(J )=J , g(J) =8J 4-10 for Material  2 , J

Accordingly,  for  Material 1,

W(X 1~ X 2 ) =~~[2X 1X 2 +X~
2 +X~

2 -4} . (2 . 4)

wh ereas  fo r Mater ial 2 ,

W( X 1, X 2 )=~~[X ~ X 2 +X 1X~ +8(X 1 X 2 ) 1- l 0 }  . (2 . 5)

Both materials  conform to (2 . 2),  whence the energy density and all stresses

vanish in the undeformed state. Fur ther , the f i r s t  of ( 1 . 28) gives ~~~~~~ in

eithe r instance , so that Li. is the shear modulus for  in f in i tes imal  deforma-

tions; on the other hand , the second of (1 . 28),  togethe r with (1 . 29),  f u r n i s h

Material l and ~ =4 Lt,~~~~~ for Material 2 . Therefore , ( 1 . 37)

a s su re  strong ellipticity at infini tesimal deformations for  both mater ia l s . 

:.; i~~~~~ . ~• _L: ~5 ~~~~~~~~ - -

. - 
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In contras t , as will become apparent  in what follows , nei t her  material  re-

mains elli ptic at  all plane deformations.

Our next objective is a deta iled discussion of relevant  response

proper t ies  perta ining to Material  1. In this c onnection we note f i r s t  that

W( X 1, X 2 ) in (2 . 4) is the res t r ic t ion  to plan e st ra in  o f an e last ic  potent ial

pro posed by Blatz and Ko [3] in an attempt to ma tch experimental  data ob-

-
• 

tam ed in tests of a hig hly compressible  rubberl ike mate rial . The idealized

ma terial  thus adopted in [3] was the subjec t of [1], which contain s a compre-

hensive three-dimensional t reatment  of its response charac te r i s t i c s  and el-

lipticity restrictions . Since [1] also deals explicitly with the special case

of plane deformations to which we confine our attention at present , the sub-

sequent results  are mostly cited f rom [1] without intermediate detail.

For a pur e homog eneous plane defo rmation of the form (1. 21) one

in fe r s  from (2 . 4) and (1 . 23) ,  (1 . 24) the in -p lan e r e s pon se

(2 . 6 )  
5

appropriate  to Material  1. Special izing (2 . 6) for  the case of isotrop ic plane

strain,  one has

X 1 X 2 X , T 1=T 2 eT~~ ( 1~ X
4) , 

~~~~~~~~~~~~~~~~~ 
(2 . 7)

In the par t icular  instance of plane-s t ra in  uni-axial  s t ress,  parallel to the

:~ x 1-axis , (2 . 6) fu rnish

(2 . 8)

• We consider now a homogeneous p lane deformat ion  corresponding to a state

of simple shear of the form

p 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~
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y 1 =x 1+t x 2 
(2 . 9 )

S in which ~. is a constant , tan~~~t being the angle of shear. The principal

stretches of this deformation are related to ~t throug h

(2 . 10)

The response of Material 1 to such a simple shear is readil y deduced with

the aid of (1 . 17) and ( 1 . 18). In this manner one ar r ive s at

T l1 0 , T 22 -~~ (2 
, ¶

12 -T 21 -~~~ , 1
S 

(2 . 11)

- G l l
_0 ZZ --~~ O~~~~~~~t a2l

_
~~~~~~

). J
As is clear from (2 . 7),  in isotrop ic plane strain, ‘r(X ) and ~ (X ) are

concave , monotone increasing functions for 0<X<w and T(X) - * - OD, a (X ) -+-w as

X~ 0 , but T(X ) *LL , a (X) ~ W as X-~co. The response of Material 1 to plane-s t ra in

uni-axial stress is dep icted in Figure 1. According t o ( 2 . 8 ) ,  here ‘r 1(X 1) is a

concave , monotone increasing function for  0<X 1<w and 11(X 1).1I-cD as X 1-’O ,

while T 1(X 1)-+~ as X 1-*co. In contrast , the axial nominal s t ress  a 1(X 1) in-

creases steadily f rom a 1 (0+) =-co to a positive maximum at X 1=3 4
~ 2 . 28 and

- thereafter diminishes steadily towa rd zero. The behavior of Material 1 in

4 simple shear is immediate f rom (2 . 11). Both the actual shear stress

and the nominal shear s t ress  a 12 are directly proportional to the amount of

shear ~t , but G2j (
~
t) is a convex s tr ict l y increasing function for 0<~t<w . A

S signif icant  nonlinear  effect  is reflected in the fact that the shear deforma-

tion (2 . 9) induces an actual normal s t ress  the latte r is compressive 

‘t- ~~~~~~~~~
• -.• -&•~

• 
S 

-. 
•,
~~ 

S 

-~~~ 
~
. 
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for  the material under consideration.

From (2 . 4) , (1 . 30), (1 . 31),  as well as the continuity of D(X 1, X 2 ) and

~~~~~~~ X2 ) , follows for Material 1 at all X~ >0 , 
S

D= 2~ 2 >0 , E 11 = ~~~~>0 , E22 = ~~~~>0 , 1X 1X 2 ~ l x 2 I
(2 . 12)

E 12 =~~~~~6 (8x~ X~~-x ~~-x~ ) .  

J 

15

Hence ~ =l in (1 . 34) and the f i r s t  of the conditions of ordinary ellipticity

( 1 . 33) holds t rue for all plane defo rmations of thi s material , as does the

Baker-Ericksen inequality ( 1 . 26). On the other hand, (2. 12) , the second

of (1 . 33), and (1 . 14) reveal that ellipticity prevails at present if and only if

14X ~ X~~-X ~~-X ~~~Q or 4<4 , (2 . 13)

eithe r of which is equivalent to

x

~~~~~ p =2-j’~. (2 . 14)
2 p

Moreover , in view of (1. 35), these conditions are also necessary and suffi- 
S

cient for strong ellipticity.

Let (r , 8) be polar coordinates in the (X 1, X2)-plane, defined by S

X 1=rco se , X2 =rsin 8 (0<r<co , 0<9< ir/2 ) .  (2 . 15)

Then (2 . 14) may be written as

5ir0<r<a~ , -j -
~~~

<O<-j -
~~~

. (2 . 16)

This wedge-shaped domain of ellipticity e in the principal - stretch plane is

— 5 •5 - S 5~ ~~
__

~~~ • 5-~
IS  5 5 5~ —. 

ft •
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shown in Figure 2. The figurealso displays the “isotropic extension path”

the “uni-axial stress path” X2=X~
3, and the “ simple-shear  path”

X 2 —X 1 ,  supplied by (2 . 7) ,  (2 . 8), and (2 . 10). Since the first of these paths

lies wholly in e, Material I does not suffer  a loss of elli pticity in isotropic

extension. On the other  hand , each of the other two paths intersects  the

bounda ry of C twice . Ellipticity is seen to fail in both uni-ax ial  tension ~~~~

compression according as

X 1�p 4
~~2. 68 or X 1�p4&0 . 37; (2 . 17)

the li mits of ellip ticity for uni-axial stress are also ma rked in Figure 1. Fi-

nally,  in simple shear a breakdown in elli pticity is found to occur whenever

either principal stretch equals or exceeds the value p~~~~l . 93 , which corre-

sponds to a shear angle of approximately 55’.

According to (1 . 38) and (2 . 12), the inclination of the spatial charac-

teristics relative to the f i rs t  principal axis of Cauchy stress , for  Material I

obeys S

/ 4  4 2 2
S cos2y~~

± 2 2 (2. 18) S.

When ellipticity has failed , so tha t (2 . 13) is violated , (2 . 18) evidently fur-

nishes two distinct pairs  of real characteristic directions , except on the

boundary of C , where y = i i r / 4  are the only solutions of (2 . 18) within ~11<y�1~.

Thus , at an incip ient fa ilure of ellipticity the spatial characterist ic  direc -

tions for  Material  1 coinc ide with the local direction s of the lines of maxi-

mum and minimum actual shearing stress. Because of (2 . 15), equation (2 . 18)

a l ternat ively becom es



cos 2 y = ~~J1~~
48m

2
8 (2 . 19)

f rom which one infers  that the character is tic  direction s do not vary along

any ray 8=constant in the non-elliptic par t  of the (X 1, X 2 ) -p lane. This com-

pletes the discussion of Material 1.

A parallel discussion of Material 2 , the plane-s t ra in  elastic poten-

tial of which is given by (2 . 5),  is anal ytically more awkward. Here (2 . 6)

give way to

~~=~~
[ 3X Z + (X l X 2 ) Z X 2

~ 4( X 1X 2 )~~ ] ,  1
~~ (2 . 20)

o~~~=~~~~[ 3X 1 X 2 1X 2 ) - 4 1X 2 ) I . J
Hence for isotropic plane strain, S

X 1 X2 X T
1~~~T 2

a T 2 ~~ (X
2

X
3

) o 1 =a2 5a=2~ (X 3 -X 2 ) . (2 .21)

In the case of plane-strai.n uni-axial stress, parallel to the x1-axis, one 
S

has by vir tue of the f i r s t  of (2 . 20),

1
2

=a
2

=0 , 3X~ +X~~ 4( X 1X 2 ) 2 =0 , (2 . 22)

the last of which implicitl y determine s the t ransverse  stretch as a func-

tion of the axial stretch X~ . Thus ,

X~~- .X(X 1) (0<X 1< o )  (2 . 23)

a~ d (2 . 20),  (2 . 22),  (2 . 23) lead to

(2 . 24)

_ _  ~~
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Although (X 1) is not obtainable in elementa ry form , one shows without dif-

ficulty that thi s function is strictl y decreasing.  Fu r the r, it is easy to de-

duce an explicit parametric representation, in te rms of the polar angle 8

introduced in (2 . 15), for the curve corresponding to (2 . 23) . This repre-

sentation was used to plot the uni-axial tension path appearing in Figure 4 ,

as well as the s tress-stretch curves dep icted in Figure 3. For a simple

shear deformation, cha racter ized by (2 . 9), (2 . 10), one finds at present ,

2 23~~t u~.2 ‘ 
T22~~—2— ,

(2 . 25)
2 3

a 11 -a22- 2 ‘ ‘

The preceding equations reveal certain essential qualitative diffe r-

ences between Material 2 and Material 1, as far  as their response to the

special homogeneou s deformations under consideration is concerned . The

function s T( X ) and i.y (X) in (2 . 2 1), which govern the response of Material 2

to isotropic plane strain, are both monotone increasing and , as i s the case

for  Material  1, ¶ (X) ~~-co , a (X) ~~-co for  X-*0; howeve r , now both the actual and

the nominal stress tend to infinity as X-’w. Similarly, it is clea r f rom

• Figure 3 , which pertains to uni-axial s tress,  that the true axial s tress

T 1(X 1)-~co as X 1’OD , while the behavior of the nominal stress  a 1(X 1) is quali-

S tatively the same as in Figure 1. Further, we observe on the basis of (2 . 25)

that a simple shear of Material 2 induces non-zero  actual stresses r 1 1 and
I L

.5 

~~~~~~~ 
both of which are tensile.

In place of (2 . 12) one obtains for Material 2 at all X > 0 ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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D=~ X 1X 2>0 , 1
E 3 ~

2 
X~~X~ + (X 1X 2 )~~X

2 >0 (no sum) ,  (2 . 26)

E 12 =~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . J
5

’ 
In view of (2 . 26) ,  (1 . 30),  the Baker-Ericksen inequality (1 . 26 ) is sat isf ied

also for Material  2 . Moreover , an appeal to (1 . 33) ,  (1 .34 ) ,  (1 . 35) con-

f i rms  that ordinary and strong elli pticity once again prevail if and only if

the last of ( 1 . 35) holds true . The latter may , with the aid of (2 . 26) and

(2 . 15), be written as

(l 0w 2 -1)C+3+6w~/w
2

C
2

+~ + l >0 , (2 . 2 7)

provided one sets

5 3
w= ~~ sin28 , ~ =r w2 . (2 . 28)

Upon exclusion of the extraneous root of the quadratic equation in ~ obtained

S by squaring (2 . 27) ,  one ar r ives  at a necessary and sufficient condition of el-

li pticity for Material 2 in the fo rm

L-g
• 5 OJ ~~ 1 it Sir ir\

r< ~ ~
O<e<.j -

~ , 
.
~-~~z9< .2j .  (2 . 29)

S (1-Zsin2 8)(s in28)~

where (r , 8) are the polar coordinates in the pr incipal-s t re tch plane , de-

S fined by (2 . 15).

Figure 4 , which is the counterpart  for Material 2 of Figure 2 , shows

S 
the domain of ellipticity C appropriate to the second material. Thi s f igure

also exhibits the deformation paths in the (X 1,X 2 ) -p lane corresponding to

isotropic extension , simple shear , and uni-axial s tress — the f i rs t  two of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
-
— ~~~~~~~ -~~~5__ 5 5
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which a r e , of course , the same as in Figure 2 . Here again ellipticity never

fai ls in isotropic extension and break s down for  all sufficiently severe sim-

ple shears .  In contras t  to the results  for  Material 1, however , those given

in Figure 4 reveal the analytically ve rifiable fact  that Material  2 cannot suf fe r

a loss  of el l ip ticity in uni-axial compression;  the fa i lure  of ellipticity in uni--

axial ten sion is seen to occu r at an axial s t retch t 3• 04 (see also Figure 3) .

S The inclination y of the real spatial character is t ics for  Material 2 ,

whose existence is assured  if the elli pticity condition (2 . 29) is violated ,

f ollows f ro m ( 1. 38) by- recourse  to (2 . 26) and (2 . 15). In this manner one is

led to

cos2 y = 4~~~~528 [3(l+~ ) ±J(c~~3) 2
~~l6w 2

~ 2] .  (2 . 30)

to and ç bein g th e auxi l i a r y func t ions  of the polar coordinates (r , 5) ado pted

in (2 . 28) . Equation (2 . 30) is the analogue for  Material 2 of (2 . 19). At all

points  in the complement of e wi th r espect to the op en f i r s t  quad ran t of the

(X 1 , X 2 ) -p lane , exce pt f o r  th e poin ts on th e bounda ry of e, (2 . 30 ) y ield f o u r

dis t i nct cha rac t e r i s t i c  d i rec t ions .  On the boundary of C there results  a sin-

gle pair  of d is t inc t  c h a r a c t e r i s t i cs , whose inclincation s are  de termined  by

- Z - s i n Z 9
C O 5ZY 2 2 5  , (2 . 31)

where  S is the angula r polar coordinate  of the boundary point in ques t ion .

S T hus , the cha r a c t e r i s t i c  d i r ec t i ons  at  an inc i pient f a i lu re  of elli pt i c i t y of S

Mater ia l  2 , un l ik e those a s soc i a ted wi th Ma te r i a l  1 , a re  no longer  constant.

In pa r t i cu la r , at an incip ien t break down of elli pt ic i ty  in uni-a xial tens ion

pa ra l le l to the x 1 -a x i s , one has 5 ’-3 . 51 (see Figure 4) and ( 2 . 3 1 )  y ields 
S

y +9.46’. S

Ia ~~~~~ S 5 - • iS~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3. Elastostat ic fields with d i8cont inuous  deformat ion  g r a d i e n t s .  Piece-

wise homogeneous elastostat ic  shocks.

At this stage we tu rn  to our main objective , which concerns  the ex-

istence and na tu re  of a class of elastostatic f ie lds  with discontinuous defo r-

mation gradients  appropr ia te  to a homogeneous , bu t not necessa r ily iso-

trop ic , hyp ere las tic solid . Suppose such a solid , in i ts undeformed config-

u r a t ion , occu pies the en t i re  (x 1 , x2 ) -p lane ~ spanned by a rectangular car-

-
‘ tes ian coordinate  f r ame  X. Let £ , with the unit direct ion vecto r J~, be a

s t ra ig ht line throug h the or igin  of X , so that

C: i~=~~( E ~) = ( -c .o<~ < x ) ,  (3 . 1)

arid call N the uni t  normal  vec tor  of £ obtained by a counter-clockwise ro-
S + -

S tation of L th roug h a rig ht ang le . Next , we de signate by R and R the two

open t i a l f - p la n e s  into wh ich  £ d iv ides  l~, with the understanding that ~~ points
Sf

in to ~ (Fi g u r e ) ).  Cons ider  now a p iecewise  homogeneous plane deformation

o f the  to r~~

+ + +
F x f or al l  x in ~ , J=detF>O S

S 

~ -~~(x)~ (3. 2)

~Fx m r  all x in~~ , J =detF>0 .

Here  F and F a r ’  cons tan t  (nonsingu la r )  tensors , which evidently represent
+

the pos i t i on - independen t  de fo rmat ion-grad ien t  fields prevailing on R and ~~~~,

~+
respec t ive l y ,  while J and J are  the coriespondin g Jacobian determinants.

A c c o r d i n g  to (1 . 6 ) ,  the nominal s t ress  field induced by the defo rma-

~~ 1 t ion (3 . 2 ) is g iven by

+ + + - -

a= W F(F) on ~~~ , 
~~~

=W
F

(F) on ~l (3 . 3)

La. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and automatically sa t i s f ies  the equi l ibr ium equation ( 1 . 5) on either side of

C. We shall assume that the disp lacement field associated with (3. 2 ) is

continuou s ac ross  C , so that

+ -

~~~~~~~~~~~~ for every ~ on C , (3 . 4)

wh ich — in view of (3 . 1) — is equivalent to

+ -

(3 . 5)

This assumption permits  us to extend the mapping (3 . 2) continuously onto

£ and excludes from our present  consideration s any separation or gliding

S of material along the unique deformation image C~. of C. Moreover , as is

clea r f rom (3 . 1), (3 . 5),

+ -

S 
£*:X j (~~) F L ~~ FL~ (-co<~ <w) . (3 . 6 )

Figure 5(b) i l lustrates typical deformation images of the three rectang les

shown in Figure 5(a) under the mapping (3. 2), subject to the continuity re-

quirement (3 . 4).

Finally,  equilibrium , i. e. the balance of forces across C, demands

the continuity of the Piola tractions at C , so that

~N =äNas , (3 . 7)

where s is the nominal traction exe rted on the material  in ~ by the mate-

• . + • •r & a l  occupying ~ in the undeformed conf igura t ion .
+ -

When F/F , we shall refe r to the elastostatic field charac te r ized  by

(3 . 2) ,  (3 . 3), together with the continuity condition s (3 . 5), (3 . 7),  as a piec e-

wise homogeneous elastostatic shock (equilibrium shock); furthe r , we shall

~~~~~~~~~~~~~~~~ T .. i:~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
S 
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c aLl the straight lines C and £
*, 

gove rned by (3 . 1) an d (3 . 6),  the mater ial

and the spatial shock- l ine .

The f i r s t  question that arises in con nection with piecewise homoge-

neous elastostatic shocks as character ized above concerns their  existence:

are  there such shocks for a given hyperelast ic material  and a given defo r-
+

mation gradient  F? If so , how many ? Is their  existence conting ent upon

restr ict ion s on the governing elastic potential ? Fur ther , in case such

shocks exist , what are the corresponding orientations of the shock-lines

and values of F? Also , what is the na ture  of the emerging elastostatic

fields and what kind of field discontinuit ies at the shock-lines do they entail ?

Before we can attempt to find at least partial answers to the fore-

S goin g questions we need to explore in some detail the kinematics  of equi-.

librium shocks. To this end we designate by I the unit  direction vector of

£*, 
no te on the basis of (3 . 6) that

+ - 1 1
I= cFL=cFL , c= - 

, (3 . 8)

- :  I~~ I~~ I

and assign to £~~. the unit  normal vecto r n result ing from a counter-clock-

wise rotation of I throug h -in 2 . Clearly,  ~~ separates  the two open half-
+ - +

planes 
~~ 

and 6~~. that are  the defo rmation images of R and R; also , n points
+

into R~ (see Figure 5).  Now let ~‘ and ~p stand for the angles of inclination,

relative to the x 1 -ax is , of C and £
*, 

respectively. Both of these angles ,

hereafte r r e f e r r ed  to as the material  and spatial shock-angles , may be

I 

confined to the interval  [ - i i/2 , rr / 2J and

L 1 =c os~~ , L2~~sj n~~ , N 1~~ -sin~~ , N2 =coscl ,
~ (3 . 9)

1l~~~
05

~~ , lZ
SiflCp fl1 -sincp , fl2~~cosCp , J

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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L = ~~~~N~ . N~ =c~~~L~ 1 = € ~~~n~ n = c ~~~I~ . (3. 10)

Further, from (3. 8), (3. 10) and the last of (1 . 16) follows

1 +~~~l 1 - - I  1 + T  l - T
J~-~

( €)  L=~
(
~

) L~ ~~~
=—

~~~~~ ~~
=—

~~~~ 
~~~. (3 . 11)

cJ cJ

Because of (1. 13), the left defcrrnation tensors of the homogeneous defor-

+
mations on R and R are given by

+ + + T - - - T
S 

, , (3 . 12)

S whence , squaring the last of (3. 11) , one has

2 n.Gn n.Gn
c 

~~~~~~~~~~~~~~ -2 (3 . 13)
S 

3. J

Also , (3 . 8) and (3 . 9) y ield the relation

+ +
F21 +F22 tan~

tancp = + + (3 . 14)

F
11

+F 12tan~

between the material and the spatial shock-angle.

+ -

Since ~ and F are , by hypothesis , nonsingular tensors  with positive

dete rminants , there is a tensor B such that

- +~~~l - +
B =F ( F )  , F=BF , detB>0. (3 . 15)

One may there fore  resolve the mapping (3 . 2) into the two successive plane

defo rmations:

+
I z~ Fx for  all x in ~~~, (3 . 16)

~I.

5 5 5 5 5~~~~~~ 5~~ 5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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r +
I z fo r all z in R *

(3 . 17)

Bz for all z in

We shall call the mapping (3 . 16), which is homogeneous on the entire plane

~~~, the intermediate deformation belonging to the orig inal deformation (3 . 2)

and re fe r  to (3 . 17) as the supplementary deformation. The displacement

continuity condition (3 . 4) evidently demand s tha t the supplementary defo r-

5
5 5 mation car ry  £

* 
into itself , i. e.

(3 . 18)

as is also apparent from (3 . 5) and (3 . 15), (3 . 11). At this stage we intro-

duc e a second coordinate f rame X’ with the same origin and the unit base

vectors  (I , n ) ,  so that X’ is obtained by a rotation of the original f rame X

through the spatial shock-ang le cp (see F igure  5). On r e f e r r i ng  (3 . 18) to

the f rame X ’ one finds at once that the disp lacement field of the deforma-

tion (3. 2)  is continuous if and only if

[1 ?(1
~~ ‘ a(  B~~~) I (3. 19) 1

~ LO oJ

S where  ~. and ~ a re  two as yet a r b i t r a r y  constants , whose kinematic signifi-

S 

- cance will emerge  presently. Meanwhile we take note of the matrix relation

T + + T N 0 S~P s incp i

~~ ‘~~9~ 
,
~~= I  (3. 20)

S • L-sincp coscp J

1Boldface le t ters  c a r r y ing a prime stand exclusively for  the matr ix  of

S 
scala r components in X ’ of the corresponding tensor or vector.

______ 55
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and thus conclude with the aid of (3 . 9) that (3 . 19) is equivalent to

S B =1 1 +t1 n +ôn n . (3 . 21)c~I3 ~~~~~~ ~~~~~~~

Furthermore, from (3 . 2) ,  (3 . 15),  (3 . 20) follows

- - + +
J=detF~ detBdetF =JdetB ’, (3. 22)

S so that by v i r tue  of (3 . 19),

I ;  - + +  1J~~~J , J = X 1X 2, (3. 23)

+S if X 1,X 2 are the princ ipal s tretches of the deformation on R and henc e also of

5 
the intermediate deformation (3 . 16). Next , (3. 12), (3. 15) give

- + T  - + TG’=B’G’(B ’) , (3 . 24)

the second of which , in conjunction with (3 . 19), leads to

- +1 + 2 + - 2 +
G

’

11 G 11 +2,tG~~~
2

+~t G~~~2 
, G~ 2 =6 G~ 2,

~ (3. 25)

ã~ 2 =G~ 1 = o ( G ~ 2 + ’22 ) .  J
As for the physical interpretation of the parameters ~t and 6 , we in-

fe r  f i r s t  from (3 . 15), (3. 19), (3 . 20) that

if and only if t = 0 , 6= 1 , (3 . 26)

in which case the supp lementary deformat i- rn  (3. 17) is the identity mapp ing

S 
and the or iginal  deformat ion  (3 . 2) is tr ivial  in the sense of being

1
Recal l  (1 . 14).
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homogeneous on ~~~, and thus no longer const i tu tes  an equi l ibr ium shock.

Moreove r , (3 . 2 3) and th e princ iple of mass conservation imply

6=~~ =~~>O , (3 . 27)

+ +where p and ~ a re  the mass den si ties of the m ater ial occupying i~ ,. and in

the deformed configurat ion . Thus (3 . 27) supp lies an interpreta t ion of 6 in

te rms of the area-rat ios or the ratio of mass densities appropriate  to an

equilibrium shock.

S An additional kinematic meaning of 6 ,  as well as a geometric inter-

pretation of the paramete r ~t , come into evidence if one fac tors  the mat r ix

B’ of (3 . 19) as follows: 
S

rl ~i r’ ol r i  ~~B’= I I I I  . ( 3 .  28)
S ‘

~~ Lo oJ Lo 6J LO lJ

This factor izat ion reveals that the supp lementa ry deformation (3 . 17) ad-

S mits a decomposition into a simp le shear  of amount ~t, parallel to the z’1 -

axis (spatial shock-line),  followed by a uni-axial stretc h , with the stretch- 
S

ratio 6, at r ight ang les to this axis. The preceding resolution is illustrated

in Figure 6: the diagram in Figure 6(b) depicts the supplementa ry-deforma-

tion history of the two unit squares shown in Figure 6(a) ,  which pertains to

the inte rmediate configuration. It should be emphasized that Figure 6 is

based on ô<l ,t>0 and requires obvious modifications if 5�1 or t�0.

For future purposes we mention here the important special case in

+
which the deformation on ~ in (3 . 2) is pure homogeneous, havin g X as a

pr inc ipa l  f r ame . If X 1,X 2 are  once again the corresponding principal

s t ret ches , one has in thi s part icula r ins tance

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



-33-

+ X 1 0 + X~~ 0
2 (3 . 29)

0 0

whil e (3 . 14) reduces  to S

tan~ =~~—tan~ . (3. 30)
1

We note also tha t the second of (3 . 29) holds true for an arbitra ry hornoge-

neous deformation on ~~~, p rovided X is a p r i nci pal f rame for  its deforma-
+tion tensor G.

We re turn  now to the traction continuity condition (3 . 7) ,  which — on

acc ount of (3 . 3) — is equivalent to

+WF (F )N =W F (F)N .  (3 . 31)

Suppose and i represent  the constant Cauchy (actual) s t ress  field to which
I

. +
S the p iecewise homogeneous deformation (3 . 2) gives rise on a. ,. and 

~~~~~
, re-

spectively. Then , by (1 . 4 )  and (3 . 3),

~~~~ , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ on R , . (3 . 32)

An appeal to (3 . 11), the validity of which depends on the continuity of the dis-

placements , at onc e confirm s that (3 . 31), (3 . 32) imply

+ -

~~3 = T n E t ,  (3 . 33)

where t denotes the Cauchy (actual) traction exerted by the mater ia l  occu-

py ing in the deformed conf igura t ion  on the mater ia l  in iL~ . Conversely ,

(3 . 33),  (3 . 32) ,  ( 3 . 1 1)  a s s u r e  that (3 . 3 1) ,  and hence ft 7) ,  holds true.

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S 

- S S
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Thus, in the presence of continuous displacements,  the nominal traction s

are  continuous across  the material  shock-line C if and only if the actual

tractions are continuous across the spatial shock-line

For later convenience we cite at this place also the par ti cu lar  fo rm

a ssumed by the traction continuity condition (3 . 33) in the event the hyper-

elastic material under consideration happen s to be isotropic. In th is case S

(3 . 33),  beca use of (1. 18), fu rn i shes  S

r2 + + +  + +  1 r _ _ -l

LT w1(1
~

J
~

+wj (1? ! i ~~L~
w1 1 ~J) Q+W J

(I~ J)!]22~. - 
(3. 34)

J J

+ +  - -  +
provided I , J and I , J stand for  the scalar invar iants  of G and ~~~~, so that  in

acco rda nce wi th ( 1. 14),

+ + 2 2 + 1  + +
I= t rG =X 1+X 2 , J=VdetG =detF =X 1X 2, I

_ _ _  

~~(3. 35)

I~ trG , J=’/detG =detF. J
It is clear from the second of (3. 15), togethe r with (3 . 9) and (3 . 21) ,

that

- - +
F=F(cp ,~t , 6)= B( cp ,~t , 6)~~. (3 . 36)

S H ence , bearing in mind the developments leading up to (3 . 21),  one sees

that the disp lacement continuity condition (3 . 5) alone constrains  the possi-
+

ble values of F, in a shock corresponding to a fixed prescribed F, to a

th ree-parameter family. The existence of such a shock the re fo re  hinges

on the ex i s tence  of a spatial shock-angle  cp in [ -ir / 2 , -ir / 2], a re al value of

the shear  paramete r ~t , and a posit ive value of the s t re tch pa ramete r 6,

such tha t the t rac t ion continuity condition (3. 33) has a solution ~~~~~~ 6)

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.~~~tLL 
__5 .5 S 5_ _ ___S5-_ S__

~
_

~~~~~~ S



-35-

othe r than the trivial solution supplied by

+ +
F=F(cp , 0 , l ) = B (cp , 0 , l)F=F (-ir/2 �cp �ir/2) . (3 . 37)

Furthermore, since (3. 33) constitute only two scalar restrictions on the

three parameters  (cp , it , 6) ,  one would anticipate that if there  exists an equi-

librium shock for a g iven deformation gradient there exists a one-param-

ete r family of such shocks.

We now prove the following theorem , which establishes a necessary

condition for  the existence of shocks of the kind under consideration :

If there exists a piecewise homogeneous elastostatic shock in a h yper-

elastic material,  then the displacement equations of equilibrium associated

with this material must  suffer  a loss of strong elliptic ity at some homogene-

ous deformation.
+

With a view towa rd establishing this claim , let F and ~ be the defor-

mation gradients of the existing shock , so that f rom (3 . 2) ,  (3. 5),  and (3 . 31),

S + - + - + -
S detF>0 , detF>O , F L = F L , W

F
( F ) N = W

F
( F ) N , (3 .  3 8 )

where L and N are  the unit direction and the unit normal vecto r of the mate-

rial shock-line C. Next define a family of tensors by mean s of

+
F(~~) = ~ F+( l -~~)F (0 �o �l). (3 . 39)

Then ,

+
F ( l )= F , (3 . 40)

while (3 . 39) and (3 . 15) give

-f
F(c~) =[c~1+( 1 -c~)B ]F (O�c~�1) . (3 . 41 )

~ 

~~~~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~ 
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From thi s relation , in tu rn , because of (3 . 20) ,  (3 . 19), (3 . 27) ,  and the

f i r s t  of (3 . 38), fo ll ows

+
det F (~~) = ( c r 6 + l -~~)detF>0 (0 �~ �l) , (3 . 42)

whence F(~~) is admissible as a deformat ion-gradient  tensor of a homogene-

ous plane deformation for every ~ in the interval [0 , 1].

According to the third of (3 . 38), the re is a vecto r K such that

K~ O. (3 . 43)

Let ~ be the scalar-valued function defined by

+
®(

~ ) = K • [ W F(F(
~

) ) -W F( F ) ] N  (0�~ �l ),  (3 . 44)

• so that owing to (3. 38) and (3. 40),

(3 . 45)

S Thus , by virtue of the mean -value theorem , there is a number & in (0 , 1)

such that

— -=0 (3 . 46)
d~~ ~~~~~

But (3. 44), (3. 46) in conjunction with (3. 39), (3. 43), and (1 . 8) lead to

c~~~, 6 (~~(&) ) N~ N 6K~ K~ =0. (3 . 47)

Finally ,  set

M— K / I K I  (3 . 48)

and appeal to (1 . 9) to a r r ive  at

~~~~ ~~~~J!~~~~II,S ~
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~ ~~~~~~~~~~~~~~~~ ~~~~ 5 —5. 5-
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(3 . 49)

which contradicts the s t rong-e l l i pticity condition (1 . l i) .  This completes

the proof .

It remains a matter of conjec ture as to whether  or not the existence

of an equilibrium shock necessitates not only a loss of strong ellipticity but

also a fai lure of ordinary ellipticity, a s is in tu i t ively plaus ible. In this

connection we refe r once more to a result  obtained in [2] and cited in Sec-

tion 2 of the present paper.
1 

It follows from this result that for an isotropic

S 
hyperelastic material  a fai lure of strong ellipticity implies a fa i lure  of or-

dinary ellipticity, if the set of all points in the pr incipal -s t re tch  plane at

which strong ellipticity prevail s is a domain , i . e . open and connected , and

includes the undeformed state .

A related comment pertains to the existence of a piecewise homoge-

neous equilibrium shock within the linear theory of homogeneous and iso-

trop ic elastic solids . One ve rifies easily that in this setting such a shock

exists if and only if the elastic constants satisf y

~t / O and ~+2~t=0 or ~ = 1 , (3 . 50)

which require a failure of ordinary ellipticity of the l inearized disp lace-

ment equation s of equilibrium.

4. Weak piecewise homogeneous elastostatic shocks.

Taking fo r  g ranted the existence of piecewise homogeneous equilib-

rium shocks in the (possibl y anisotrop ic) hypere las t ic  material  under

1See the discussion following (1 . 37).
2 We recall f rom Section 2 that these conditions a re  met for the two special
isotrop ic mater ia ls  discussed there.  See also Figure  2 and Figure 4.

- 
-•~~-—-- 
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consideration, we confine our attention in this section to shocks that are
+

weak in the sense that F remains close to F . Indeed , motivated by (3 . 36),

(3 . 37), and the observations following (3 . 37), we assume here that there

exists a one-parameter family of shocks corresponding to the given gradi-
+

ent F, depending on the pa rameter

e = l - 6 ,  (4 . 1)

S and suitably smooth near c =0 .

Specifically ,  we presuppose that there are functions cp(c) and i t (e ) ,

- S 
both twice continuously differentiable in a neighborhood of c =0 , such that

defined by

+ +
F(~ )=B(cp(€), t(C), 6(e))FeB(€)F, (4.2)

where

S 
6(~~) = 1-€ , it(0)=O (4 . 3)

and B(cp , it , 6) is the tensor characterized by (3 . 21) ,  conforms to the traction

continuity condition (3. 33) — or , equivalently, to (3 . 31) — throug hout the

neighborhood at hand. Since at present the trivial ( shockless) solution (3 . 37)

corresponds to € =0 and e is evidently a measure of the departure from this

solution, we shall henceforth refe r to c as the shock-strength parameter.

S The kinematic significance of € in terms of the supplementary deformation

is immediate from that of 6 (see Figure 6); also, (4. 1) and (3 . 27) yield

14 4
S J p

Our cur ren t  objective is to explore various implications of the

~ 

~~~~~~~~~~~~~~~~~~~~~~~ S 5 S~~ 14
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ex is tence uf the c- f ami l y of shocks postulated above , to the lowest  signifi-

ca nt order  in c. For this pu rpose we observe f i r s t  that the ma te r i a l  shock-

line and the spatial shock-l ine are  now c-dependent .  We thu s wr i te  £( e) , C. (c)
+

in place of £ ,C.~. and consequently also L(c) , N ( € ) , 1 ( e) , n ( c) , as well as
- + - - 

S

l~( e ) , ( c ) , (c)  and ‘I(e). Fur the rmore, any f unction p rev ious ly defined on

or 
~~~~

. and de pendent on the value of the g radient F is at present  to be regarded

as a f unc t ion of c. With this understanding all of the resul ts  in Section 3 up

throug h (3 . 35) hold t rue  identically in c.

In view of the assumed smoothness of cp ( e) ,  i t ( e )  and by vi r tue  of the

second of (4. 3), one has the Taylor expansions

~~(c)=N(0)+N(0)c+o(c) , n(c)=n(0)+x~i(0)e+o(€),

S ~�( 4 . 5)

i t (€ )= i~(0) e+o (€ )  as e-’0; J
here  and in what follows a dot placed above a letter indicates different iat ion

with res pect  to th e pa r amete r c. On the other hand , u s i ng (3 . 2 1) ,  (3 .  9) ,  as

well as ( 4 . 3), one fi nds that B ( € )  obeys

B~~~(0) = ~~~ , B~~~(0) = q n~ (0 ) ,  (4 . 6)

provided ~ is th e vec tor de fi ned by

(4. 7)

From (4 . 6) follows

B~~~( c ) = 6~~~+q~ n~~( 0)c+o(c ) (4 . 8)

S and , keep ing (4 . 2) in mi nd , one thus draws

+ +
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4 9 )

U••54_~-. 
_ _ _  5
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Consequent ly ,  an app rop r i a t e  t wo - t e r m  Tay lor expansio n leads to
- + 2 +8W ( F ( ~~)) 8 W ( F )  8 W ()~~~ +

S 

8F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4 . 10)

F inally ,  enter ing (3 . 3 1 ) with ( 4 . 10) and us ing  the f i r s t  of (4 . 5), as well as
(3 . 1 1 ),  one sees that  the trac t ion  continuity condition is fulf i l led up to the
o rder of c if and onl y if

2 +S 

a W ( F )
(4 . 11)

This equation , in turn , may be writ ten as

+
S 

~~(~~~O) ;~j )~~=O , (4 . 12)

where  Q( N ;F) is the symmet ric ten sor int roduced thr ou gh (1. 8), (1 . 9).
Now~~~ O acco r din g to ( 4. 7). Th:refore (4 . 12) implie s that

detQ (N( O ) ; F ) 0 (4 . 13)

Drawin g on the discussion of (1 . 10), ( 1 . 11) in Section 1 , on e i s thus l ed to
S the following conclusions;

(i) A necessa ry  condition for  the existence of a one-parameter  fam-

~~~~of equi l ibr ium shocks (of the kind under  present  considerat ion)  is tha t
the ~j~placement ~quations of equil ibrium associated with the hypere las t ic
ma te r i a l  suffe r a loss of ordina ry elli pticj ty at the given homogeneous de-

+formation on ~~~.

( i i )  In the weak - shock limit,  i. e . as €-~0 , the ma te r ia l  shock- l ine

£ ( e)  and the spatial shock-line £
~~

(e) ,  respect i vel y, tend to a ma te r i a l  and

S 
a spatial cha racte r i s ti c  associated with the homogeneous defo rmation on ~~ .

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In comparing conclusion (i )  with the theorem proved at the end of

Section 3 , we note that the present  resul t  y ie lds a breakdown of o rd inary

elli pticity — ra ther  than merely of s trong elli ptic ity ; on the other hand (i)

p resupposes  the existenc e of an entire family of elas tosta t ic shocks , wh ile

in the theorem r e f e r r e d  to but a single such shock was required to exist .

Conclusion (i i)  res t r ic ts  the number  of possible distin ct l imit in g

mater ia l  (and spatial) shock-lines to the number of dist inct  character is t ic

di rec t ions  admitted by ( 1 . 11),  which cannot exceed four.  In particula r , if

the mater ia l  is isotropic and X is chosen to be a principal f rame for  and

the inclination cp(0) of the limiting spatial shock-line C~ ( 0) must be such

S that cosZcp (0) is a real root in the interval [- 1 , 1] of the quadratic equation

(1 . 38) for  cosZy , with y rep laced by cp (0).  As an illustrative example con-
S 

+
sider the isotropic Material  1 discussed in Section 2 and suppose that F in-

duces  an inci pient fa i lure  of ell ipticity.  Then , as is clear f rom the rema rks

followin g (2 . 18), c p ( 0 ) = ± r n / 4  so that C~~(0) necessar i ly coincides with a trajec-
+tory of the maximum actual shear s t ress  of the constant  s t ress  field ,~~ pre-

+
S vailing on 6%.

A kinematic interpretat ion of the vector q introduced in (4 . 7 ) is

S r eadily a r r ived at . Let w(z ; c )  be the famil y of supplementary displacements

corresponding to the c - fami ly of equil ibrium shocks at hand. Then , by (3 .17)
S 

and (4 . 8),

+
~~ 6% >~(c), (4 . 14)

w(z;c)=[B (c)-1Jz=[n(O).z}
~
c+o(c) on 

~~(c). 
(4. 15)

From (4 . I 5) and the second of (4 . 5) one i n f e r s  that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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on l%
*

( e)
~ 

(4 . 16)

provided Vw(z; c)  is the tensor field with the components 8w~ ( z ;€ ) / 8z~ in the

f r ame  X. For fu tu re  convenience we now adopt the following notation: if
+ - -f -

f is a scalar or a vecto r field defined on 6% and 6% (or on and that suf-

fe r s  a f in i te  jump discontinuity ac ross C (or across  £
*

) ,  we wr ite

+ - + 

(4 . 17)

fo r  the jump in f as C (or C~ ) is t raversed from 6% to 6% (or from to 
~~~~~~

Equation s (4. 16), (4. 14) thu s justif y the asser t ion s

[Vsvn]~~=q€+ o(€ )  , { V j = Q ~. (4 . 18)

S Hence qQ,c is the lowest-order  approximation to the jum p across  £
*

(€ )  in

the derivative of w (z;e)  normal to £~ (c ) , wherea s the directional deriva-

tive of w~ (z ; c)  parallel to £
~

(c)  is continuous at
+

S 
While the character is t ic  lines of the deformation on 6% that emerge

upon a loss of ordinary ellipticity are associated with jumps in the second

normal derivatives of the displacements1, equilibrium shocks a r e  seen , on

the basis of (4. 18), to involve discontinuities in the f i r s t  normal derivatives

of the displacements across  the shock-line. Also , it should be emphasized
S 

that C,~( c)  is in general not a character is t ic  line of the deformation on 6 % ( € ) ,

although it tends to such a line as £-~O , i. e . in the weak-shock limit.

S 
According to (4 . 1), (4 . 2) ,  and (3 . 23) ,  the jumps ac ross C(c ) in the

area- ra t io  and the mass density obey

[JJ ~~=- ~~c = - X , X 2c , [p J =~ c. ( 4 . 19)

‘Recall the role of the cha rac te r i s t i c s reviewed in connection with ( 1 . 1 1 ) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In order to compute the jump across  £(€ ) in the s t ra in-ene rgy density ,  we

f i r s t  rel y on (4. 9) to see that

- + 8W(~~ )
W( F ( € ) )  =W( F) + 8F q~ n (0)F~~ c+o(c).  (4 . 20)

c4~

On account  of (1 . 4) and (1 . 6) ,  this equation may be written as

+ + +S W ( F ( c ) )  =W ( F )  +J~, .T n( 0) e+o(c ) (4 . 21)

or , by v i r tue  of (3 . 33) and (4 . 17),

+ +
[W]~~Jt(O).q€+o(e) , t ( 0 ) = in ( 0 ) .  (4 . 22)

We calculate next the jump across  C~ (c) in the Cauchy stresses T~~~.

From (3 .3 2 ) ,  (4 . 19) follows

- ~ aW ( F ( ~~)) .. - +

~13~~~J(€ ) aF~ 
F~~~(c) . J(€ ) =(1- c)J. (4 . 23)

These formulas , together with (4. 9),  (4. 10), and ( 1. 8), permit one to de-

duce

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~ (~~
) ~~~~~~~~~~~~~~~~~~~~ (4 . 24)

Finally, it is of interest  to compute the jump ac ross £
~

(e )  of the S

scala r normal stress acting pa rallel to the spatial shock-line , i. e. of T j 1 ,

if T’
p 

are the components of T when the lat ter  is decomposed in the f rame X’ S

(see F igure  5). Clearl y,

(4. 25)

~~~~~~ 
~~~~~5 5~ 5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !1 ~~ S t t~~~~~~~~~~~~__5._
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S and (3 . 10) y ield

I
~

(c) i
~

(c) =l~ (O) ~p (O)+o ( l ) ô~ p n~~(O)n p ( O ) + o ( l ) .  (4 . 26)

Subs t i tut ion f rom (4 . 24) and (4. 26) into (4. 25 ) ,  a f ter  a lengthy calculation

that  makes use of (4. 7) ,  (3 . 11), (1 . 9 )  and the traction continuity condition

in the form (4 . 12), eventually lead s to the result:

(4 . 27)

+ +
• where w=~~( F ) ,  while w(F) is the tensor with the components

28)

in the f rame X and T(F) the actual s tress tensor associated with ~ throug h

(1 . 4), (1 . 6 ).
‘S The lowest-order jump approximations (4. 18), (4. 22), (4. 24) , and

+
(4 . 27) involve — beyond quantities full y dete rminable from the given ~ and

the known response function W(F) — the vector ~ originally introduced in

(4. 7).  Furthermore, this vecto r involves , in addition to the unit direction

vector L(0) and the unit normal vecto r n(0) of the spatial characteristic

C(0),  also the still unknown value

S We now determine i’t (0) from (4. 12),  and for  this purpose exclude
+

the degenerate case in which Q (N(0);F)  is the null tensor. Thus assuming

QaQ(N(0) ;F) / 0 , (4 . 29)

- t we show f i r s t  that

‘1 t(O)=O if and only if ~~(°)=2~ 
(4 . 30)

5.
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To see this , su ppose i~(0)=0.  Then Qn(0 ) = O follows at once f rom (4 . 7) ,

(4 . 12). N ext, if ~.(0 ) / 0 , ~~~(0) cannot vanish ei ther  since then and n(0)

would be linearly independent null vectors  of the tensor  Q, so that Q would

have to be the null tensor , contrary to (4. 29).  Hence ( 4 . 30) is t rue . One

confirm s similarly that

n (O) .Q 1(0 ) / 0  if Qn(0) �0. ( 4 . 3 1 )

Now (4 . 7), (4 . 12), beca u se of ( 4. 30), (4 . 31),  fu rn i sh

n(0)  ‘~~n(0)

S 

i~.(0)=0 if Qn(0) =O , ~~~~~~~~~~~~~~~~~ if Qn(0)~~O , (4 . 32)

S 

where Q again abbreviates Q(N(0);~~). Moreover , (4 . 32) and the last  of (4 . 5)

g ive
n(0 )  ‘Qn(O)

if Qn ( 0 ) / O  (4 . 33)

as a lowest-order weak - shock approximation to the amount of shear inherent

in the supplementary deformation .

Our next task is to specialize some of the foregoing results for the

case of material  isotropy. In this in stance one find s with the aid of ( 1 . 9 )

S and ( 1 . 20) tha t , for  every unit vector N ,

Q (N;F) =2W 16 +

4W
11
F~~N~F~ ~N~+J2 ~~~~~~~~~ F~4N+

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4 . 34)

We n ow use ( 4 . 34) in ( 3. 66) ,  invok e (3 . 11),  (3. 12),  (3. 13),  as wel l as (3 . 9),

- S  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5.— —-—.- - --5 .-
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and choo se X as a p r inc i pal f r am e  f or  G , so that  the component ma t r ix  of
+
G in X is g iven by the second of (3 . 2 9) .  In this  manner  we eventuall y ar-

r ive at the fol lowing r e su l t  fo r  i t(O )~ p rov i ded (4 . 2 9) holds and Q(N ( 0 ) ; F ) n ( 0 )

also fa i l s  to van i sh :

2 +a +
2a W 1+4a W11+J W~ 3+4aJW 1~

+ 
(4 . 35)

2 (Z aW
~~+JW ij )b

whe re

a =X ~~sin 2
~~( 0)+ X ~ cos 2

~~(0) , b = ( X~~-X ~ )s i n~~(0)cos~~(0) (4 . 36)

S an d the par t ia l  de r iva t ives  of W with respect  to the defo rmation invar iants
+ +

a re  understood to be evaluated at (I , J ) ,  the la t ter  being supp lied by (3 . 3 5).

If one adheres  to the above special choice of the f rame  X , (4 . 22) is

in the p resen t  c i rcumstances  foun d to imp ly

+
- (ZdW 1+JW~ )€ + o( c )~ (4 . 37)

provided

+2 +
2 a W 1+J W~~~+ZaJW 1~d-a 4 bi~( O ) =  - 

+ 
(4 . 38)

Z ( Z a W 11+JW 1~ )

S and a is g iven by the f i r s t  of (4 . ~ô) .  The t enso r  w in t roduced  in (4 . 28) in

th e case of th e i s o t r o p ic h ype  re last i c  sol id t u r n s  out to have  the components

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~(IW 1-J 2 W JJ -IJW 1J)6~~~. (4 . 39)

F inal l y ,  (4 . 2 7)  and (4. 39) enable one to ( :on h i rn l  that  

7’.~t~-5 ~~~~~- -~~ —5._—
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- T [Z d(W l+IW ll~~ WIJ ) 1W 1-fJ W 33+1JW 13]e+o(e ) , (4 . 40)

J S

if the previous  choice of X is reta ined. Also , the der iva t ives  of W appear -
+ +

ing in (4 . 37) ,  (4. 38) , (4 . 40) stand for  their  corresponding values at (1, 3) .

For f u t ur e  purposes  we record here  the weak-shock approximation s

of i t ( c )  for the two special  isotrop ic mate r ials d iscussed  in Sec tion 2 . Re-

calling (2 . 1), (2 . 3) ,  we note that the s t r a in - ene rgy  densit ies governing the

S r eponse of these mate r ia l s  obey :

W(I , J) (1J 2 +2J 4) (~ >0) for  Mater ia l  1 ,

~~(4 4 l )

W(I , J)~~~ (IJ +8J~~~~l0 )  (~t>0) for  Material  2 . J
On the basis of (4 . 35), (4. 41) and (4 . 5) one finds tha t

for  Material 1 ,

~. ( 4 . 42)

it( c)  ~~~~(a+J 2 )€ + o (€ )  fo r  Material  2 , J
with a and b given by (4 . 36).

In connection with the weak-shock j ump es t imate s deduc ed in this

sect ion , it is essential  to recognize  that the signs of some of these j umps

may depend not onl y on the p a r t i c u l a r  mater ia l  considered , but also on the
+

par t i cu la r  na ture  of the p re -ass ign ed  deformat ion on 1%; moreover , the sign

of each j ump de pend s on the si gn of the shock- s t r ength parameter  e. The

I
S sign of c , in turn , cannot  be de te rmined  in the absence of information be-

yond that contained in our present characterization of piecewise homoge-

neous elastostat ic  shocks.  In Section 6 we shall , on energet ic  grounds ,

~

U - 5

~ 

~~~~~ 
~~~~~~~~~~~~~~~~~ 
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propose an additional r equ i rement  that leads to a removal of this

indeterminacy.

5. Equi l ib r ium shocks of f inite s t rength for  a par t icu lar  isotrop ic hyper -

elastic mater ia l .

We turn now to an instructive illustrative example concerning the

global existence and character of p iec ewise homog eneous ela stos tatic

shocks in a special (homogeneous) isotrop ic hyp erelast ic  mater ial . The

following analy si s is base d on Mater ial 1 of Section 2 , the strain - energy

density of which is given by the f i r s t  of (4 . 41) . To simplif y this anal y sis

we shall assum e here f rom the start  that the second of (3 . 29) is in force ,

so that X is a p ri n ci pal f rame for  the defo rmation tensor of the g iven de-

+ +
S format ion on 6% , an d hence for  the actual s tress  tensor T as well .

The tract ion continuity condition (3 . 34) at present reduces to

• l~~~~ + 1 - -
~— ( G - I l ) n =~ -~~(G-I1 )n .  (5. 1)

- S 

~~~~ 
____

~~~~J ~~~

U pon r e f e r r i n g  (5. 1) to the f rame  X’ introduced in Section 3 (see F igure  5)

and bearing the f i r s t  of (3. 35) in mind , one ar r ive s at S

+ ~~I ~~I -,
= ._:.L~. , .-~! = 4J.. (5 . 2)

~ 3 J 3 
J 3 J3

On setting

+~~ 
(X 1>0 , X 2>0) ,  (5. 3)

1 2

one obtains by mean s of th e second of ( 3 . 29) and the second of (3. 20):

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-. -I .
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+ 1 2 2G~~1~~~~(X 1+X 2 ) ( l - 2~ cos2cp +~ ) ,

~~~, 1 2 2
G22 =-~.(X1 +X2) ( l + 2~ cos 2cp +~ ) ,  (5 . 4)

+, 1 2G12
z~~ (X 1+X 2 ) t3sinZcp .

The components a re  now computable f r o m  (3 . 25) ,  while J is related to

J throug h the f i r s t  of (3 . 27). In this  manner  (5. 2 ) lead to the two sca lar

traction continuity conditions

2 ó2I3sinZcp = it( l  +ZPcosZcp+ 13 2 )+ZP sinZcp ,

S 6~~( 1-Zpcos2cp +~3
2

) =  ( 5. 5)

1 -2~~cos2cp +~3
2 +it2 (l +2~3cos2cp +p 2 )+4 itI3sin2cp.

+
- :  Observe that the given defo rmation on 6% , in the example under con-

sideration , en t e r s  (5. 5) exclusively through the principal - s t re tch param-

S 
eter ~3 adopted in (5. 3). Also , ( 5. 3) and (3 . 27) r e qu i re  that ~3 and 6 satis fy

-l<~~ l , ôa l -€ > 0 , ( 5 . 6 )

w r i e r e  € is the shock-strength paramete r introduced in (4. 1). F rom here

on we shall give p re fe rence  to € over 6. The t r iv ia l  solution of (5 . 5), which

signifies the absence of a shock, is furnished by c=0 (6~~l), it=0, and

-n/Z �cp �-ir/2 . We now seek the answe r to the following question.  For what

values of ~3 in (- 1 , 1) and € .< 1 do there exist nontr ivial  solution s t~~t ( € ; ~~) and

c=~o (e;~3) of the simultaneous equation s (5. 5), such that it is real and ~ in the

S interval  [-,T/2 ,1r/2 1? Moreover , we wish to find all such solutions.

It is clear f rom the s t ruc tu re  of (5 . 5) that if a pair  of values (it ,.~)

~~

_ _ _ _ _  S S
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sa t i s f i e s  t hese two equations , then so does the pai r  (~~it , - v ) .  Consequentl y ,

the limitation of the spatial shock-ang le to the r ange

0~ cp~ir/2 (5 . 7)

S 

en tails no loss in gene ra l i ty . From the f i r s t  of (5. 5) and the second of

(5 . 6) one has
2 • 

S

~~~
2

~~
6 - l ) ~~sin2cp (5 . 8)

l+2~~cos 2cp+~

and subs titution for  it f rom (5. 8) into the second of (5 . 5) ,  in view of (5 . 6)

and (5. 7), is found to yield

2 . 3
sinZ~~= l-~ . k(€)= >0 , 6 = 1 -€ ,  (5 . 9 )

2 l ~3 I k ( e) .16 +6+ 1

if on ce and for  al l we remove the indeterminacy in cp at e=0 by requ i r ing

co ntinuity . Since cp is to he real , the positive rig ht member 1 of the f i r s t  of

( 5. 9) cannot exceed un ity . Hence ,

(-~~ <c< 1)  , ~~~~kl . (5 . 10)

These two inequalities are easily seen to be equivalent to

h ( c ) �l p l < l  , h( c)=[k (e)+ ,/k2 (€ ) + l ]~~ (-co<€< 1) (5 . 11)

and are necessary  in o rde r  tha t (5 . 5) admit  a solution (it , cp), subj ect to S

(5 . 6) ,  ( 5 . 7 ) ,  for  a given pai r  of values (€ s l - 6 , 13 ) .  Conversel y, if (5 . 11) is

ful f i l led , suc h a solut ion is  su pp l ied by (5 . 8), (5 . 9).

1Recall (5 . 6).

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5.- _ _ _ _ _ _  414
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Thu s , in the present  c i rcumstances, an elastostat ic shock of

s t rength e<l exists if and only if the pr inci pa l s t re tche s ~~, ?~ inh e ren t  in

+
the p r e -a s  signed deformation on 6% , which determine the pa ramete r  ~

th roug h (5 . 3), a r e  such that the point with the r ec tangu la r  car tes ian  coor-  S

dinates (e, 
~~

3 l )  of the (c , ~P I ) - plane l ies in the “admissible re g ion ” C cha r-

ac te r ized  by (5 . 11) and shown in F igu re  7 . In this c onnection we note on

the basis of the definitions of k( c)  and h (c)  in (5 . 9) , (5. 11 ) that

k( 1~~) = 0 , h ( 1 -) = l  , h ( - w) = 0  , ~~ ( l - ) = ~~ ( 1 -) 0 , 
(5 . 12)

h(c)>0 ( -m < c < l ) ,

provided pr imes denote di f ferent ia t ion with respect  to the shock - strength

parameter  e. 
S

Accord ing  to (
~~~

. 9) ,  ever y pair  of values  (c, 13) admitted by (5 . 10) or

(5 . 11) g ives  r ise  to two spatial shock-ang les in the interval [0 , rr / 2 J :

(0 �
~~l

�u/4) 
(5 . 13)

ii

The amounts  of (supp lementa ry ) shear , it 1 and it 2,  associated with the re-

spective shock-angles  ~~ and cp2 a r e  readily found by r e c o u r s e  to (5 . 8) and

(5 .  13). In this  manne r one obtains S

S 
it~ ( P)= R

Ô
( ; ~~) (a= 1 , 2) , 6 = 1- c ,  (5 . 14)

where  S

— -.wr
~~ 

S S S~~• 5
- 4~~ ~~~~ ~~~~~
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2 r 2 2  -I’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , Q( c ; P ) = l ~~ 
k (

~ L l l~ (5 . 15)
‘-P L ‘-P ) J

We observe that Q ( c ; P)  is real whenever  (c , P) confo rm to the admiss ib i l i t y

requ i rement  (5 . 10) and tha t

S ~~ ( c ;P ) 2 (c ;P ) ~~~ , it 1( c ;P ) = i t 2 (c ;P ) if =k (c ) ,  (5.  16)

i. e. , if (c , k~~
) is a point on the boundary of the admissibi l i ty  region C dis-

S played in F igure  7. Fu r the r , as is apparen t  f rom ( 5 . 14), (5 . 15) ,

(5 . 17)

With referenc e to the remark preceding (5. 7) we em phasize that (5 . 1 3 ) ,

(5 . 14) in general  determine four dis t inct  equil ibrium shocks appropriate  to

the par t icular  mate r ial at hand .

One conf i rm s easil y with the aid of (2 . 13), (3 . 35) ,  and (5 . 4 ) that the

- S displacemen t equa tions of equi l ibr ium a r e  elliptic at the homogeneous de-

+
fo rmation given on 6% if and only if

I 
p J < k = —

~~= .  (5 . 18)

+
For the sak e of brev i ty  we shall say that “ ellipticity preva Ll s on 6 % l  when-

ever  (5 . 18) hold s true . Evidently ,  such is the ca se at al l points (c,  ~3~ ) of

the admissible reg ion C (F igure  7) that lie below the line ~Pl rk
0

, while all

S points of C on or above that line correspond to a f a i lu re  of ell ipt ici ty on s% .

In par t icu lar , such a f a i l u r e  of ellipticity on occur s  for  all admissible

p a i r s  (€ , I P I )  with c~~0 .

We now seek to a scer t a in f o r  what points  in C the ensu ing homoge-

f l C O t t $  (li-IIIr,u;tt iofl on ~ is  el l i p t i c  or  ot h er w i s e . A c c o r d i n g  to (2 . 1 3 ) ,

~I S S S  5.~~~ S5.~ 5.• -5.5-•S 5.5
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elli pticity p r eva i l s  on 6%. if and onl y if

I<4J. (5 . 19)

On appea l ing to (3 . 35) ,  (3 . 2 5 ) ,  (3 . 23 ) ,  (5 . 4) ,  r e m e m b e r i n g that  C and G’

have the same t r ace , we find wi th the aid of (5 .  8) — a f t e r  a r a t h e r  l eng th y

computat ion — that

- (X 1+X 2 ) 2 1 2 2 2
1= [(l+P ) ( l + 6 )+ Z~~( 5 -1 )cos2~

2 4  . 2 1
+~P (6 - 1 ) s m n  

~~ 
, ~ =ox 1x 2 , (5 . 20)

1+Z ~~cos Z~~+~ J

in which cp =cp~ (c ;P )  is furn ished by (5. 13). Owing to (5. 20) and (5 . 3) ,  the

elli p tic ity condition (5. 19) fo r  6% becomes

1 
2 [( l+p

2 ) ( l + ô 2 )+2p(6 2~~l)cosZ ~)+ 4P
2 

<0. (5 . 21)
4 6 ( 1 - p  ) 1+Z ~~cosZcp +~

The inequali ty (5 . 2 1 ) ,  toge the r  with (5. 6 ) ,  enables one to prove that there

i s a  failure of ell ipticity o n 6 %  for  all admiss ib le  pa i r s  (c, P1 )  with c~~0; in

contras t , the subregion of C cor responding  to ~>0 contain s points (C , P1 )  at

S which el l ipt ic i ty  p reva i l s  on 6% , as well as points at which it does not .

For reasons that  will become apparent  later  on , we con fine our at-

ten t½n in the r ema inde r  of this  section to shocks of s t rength c�0.

F igu re  8, which re l ies  on (5. 13) ,  (5 . 14), i l lus t ra tes  the dependence

of the two spatial shock-ang les cpa(c; 13) wi thin  the interval  [0 , i r/ 2 ] ,  and of the

as sociated amoun ts of sh ea r it~~( c ; ~~) ,  upon c fo r  c�0 and ~ =0 . 65 . At this val-

ue of ~ the maximum possible c is approximately 0. 22 , as is clear from

F i g u r e  7 . Both it and it a r e  nega t ive 1 for  0-~:€~~€ . Observe  that , in2 - max

‘The schematic  inset  d i a g r a m  at the top of F igure  8 cor respond s to a
tive value of it.

~~ 
~~~~~~ SS . 5 - •~~ --—---.5-- - —--5--
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in ag ree men t wit h ( 5 . 16), ~p =cp -— tr / 4  and it =it when C , in which case1 2 1 2 max

( c ,  I P I )  is a point on the bounda ry of the admiss ib i l i t y  reg ion C. While

and it 1 var y monotonica l ly with c , the curve  fo r  it 2 in F igure  8 exhibi ts  a

minimum in the in te r ior  of the interval  [0 c J .max

The jump in the s t ra in - energy den sity W , ac ro s s  the appropr ia te  ma-

te rial shock-lin e , is deducible f rom the f i r s t  of (4 . 4 1) by means  of (3 . 35)

• and (5.  20) .  The resul t  of this computation may be put into the form

~i ( ô - l )  1~~
2 1+6 ) +2X~?46~l ,  (5. 22)

26 X 1 X 2 [ô(1+2t3cos2cP+ 13 ) J
where  ~p =~~~(c ;P )  is ava ilable f rom (5. 13) an d c~=1 or c~=2 depending on the

part icular  shock at hand . Since 6 = l -€ > 0 , it fol lows tha t all shocks of posi-

S tive strength € possible  in Material  1 give r i se  to a decrease  in the energy

density as the shock-line £ is t r aversed  f rom to l~.

Because of (5 . 12),  (5.  1 3 ) ,

~ l ( O ; P ) = ~~ sin
[
~~~ ,

t
1
~~ )] (0�

~~i
�
~~/4 ) , ~ 2 (0 ;P)4-~~1( 0;P ) .  (5 . 23)

It is not d i f f i cu l t  to verif y by r ecourse  to (5. 3) that equat ions  (2 . 18) a r e

sa t i s f ied  ii v equal s e i ther  of the l imit ing spatial shock-ang les  in ( 5. 23) .

Hence , in the limit as €~~0 , the spatia l shock-l ines  appropr ia te  to Material 1

tend to the spatial  c h a r a c t e r i s t i c s  associa ted  with the p r e s c r i b e d  homoge-

+
— neous deformat ion  on 6% , the la t te r  being accompanied by a loss  of el l ipticity .

S This conclusion re f l ec t s  a general  r e su l t  concern ing  weak elastostatic

shocks ’ es tablished in Section ‘~~. Sim i lar l y ,  a Tay lor expa nsion about e 0

app lied to (5 . 14) c o n f i r m s  the consis tency of th is  globa l r e su l t  wi th  its weak-

shock counterpa r t in (4 . 42).

See the discussion of (4 . 1 3) .

- —c__~~~ ~ ‘~~
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6. Time-dependent  piecewise homogeneous e lasto s ta t i c  shocks. Energy

con siderat ions.  Dissipa tivi ty .

S The loss of el l i pt ic i ty  of the field equations of e las tos ta t ics  at par-

t i c u l a r  — s uff ic ien t l y severe — deformat ions  of cer ta in  hyp ere l as t i c  solids is

ana logous to the change of type that may occur  in the par t ia l  d i f ferent ia l  equa-

tions gove rni ng stead y i r ro t at ion al f lows of a compress ible , inv isc id  f l ui d ’.

These eq uations are  ell ip t ic or hyperbol ic  at a point of the flow field accord-

ing as the co r respond ing  part ic le  velocity is subsonic or supersonic .

S One of the important  f ea tu re s  of compress ible  flows is the possible

occur rence of shock - su r f aces  across  which  the fluid p r e s s u r e , de nsi ty  and

velocity , as wel l as the entropy , s uffer  jum p discont inui t ies.  The simplest

example of this kin d in the theory of stead y plane flows is that in which a

plane of discontinuity separate s two unifo rm f lows.  Fur ther , this discontin-

uo u s fl ow f ie ld is a close analogu e of a pi ecewise homogeneous ela stostat ic

shock . The mathematical counterpart  in the foregoing  f lu id-f low problem of

t he condit ions of dis placement and traction continuity are res t r ic t ions  aris-

ing from the balance of mass , momentum , and ene rgy  across  the gas-dynam-

S ical shock-p lane. The ensuing one-paramete r family of shocks 2 may be re-

f e r r ed  to the shock-s t reng th  parameter

(6.  1)

‘See Couran t and F r i edr i chs  [ 7]  for  a genera l  t rea tment  of compressible
flows . A detailed d iscuss ion  of the s t r ic t  analo gy between steady gas f lows
and anti-plane shear in f in i te  e las tostat ics  may be found in [ 8 ] .
2A ct u all y there  are two symmet r i ca l l y located fami l i e s  of shocks;  in c o n t r a s t ,
the hi gh e r - o r d e r e las t i c i ty  problem gives  r i se  to two pa i r s  of s y m m e t r i c a l ly
si tuated o ne - p a r a me t e r  f a m i l ie s  of e q u i l i b r i u m  shocks — at least  in the exam-
ple of Section 5 .

liii 
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where and ~ a re the respective fluid densities on the upstream and down-

stream side of the shock. Equation (6.  1) is identical with the second of

(4 . 4), in which and ~ are the mass densit ies of the elastic mater ia l  occupy -
+

ing 6%~,. and 6%, , res pect ivel y, in the deformed state .

In gas dynamics the shock conditions mentioned above are accom-

panied by the independent requirement  that the entropy of a f luid par t ic le

shall increase as the shock-su r face  is t r ave r sed .  This entropy condition

models the dissipative na tu re  of the process of shock-fo rmation in the ab-

• sence of viscosity ; it le ads directly to the conclusion that  € m u s t  be pos i t ive
S 

and h ence~~ >~~.

The role of en t ropy- l ike  conditions was studied extensively by Lax

[9 ] l for quas i - l inear  hype r bolic systems of conservat ion laws in two inde-

pendent variables.  Lax ’ s work is motivated p r i r r - a r i l y by the i n i t i a l - v a l u e

problem for a system of partial different ia l  equat ions  in which time appears

explicitl y as one of the two independent var iables .

In view of our remarks  concerning stat ionary shocks in gas dynarn-

S • ics , as well as on independent physical grounds , it is na tu ra l  to subject elas-

S tostatic shocks likewise to an additional limitation that a s su re s  thei r  dissi-

pative character .  For this purpose we find it essential  to genera l ize  the no-

tion of an elastostatic shock defined in Section 3 to a time -dependent family

of such equil ibrium shocks. It should be made clear that time will  p lay merel y
S the part  of a hi story paramete r in thi s context since there are rio inert ia  ef-

fects involved in the following quasi-s ta t ic  cons idera t ions .

pape r contains references  to related earlie r investigations by the same
author .
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As in Section 3 , let 6% stand for  the ent i re  (x 1 , x2 ) - p lane spanned by

a f ixed ( t ime- independent)  rec tangular  ca r t e s i an  coordina te  f r am e X . Let

C(t) (t 1�t~ t2 ) be a t ime-dependent famil y of s traig ht lines , wh ic h c o n f o r ms

to the parametr iza t ion

£ ( t ) : x ( P ~, t)~~~( t)+~ L(t) (-co<~ <co, t ,�t�t 2 ) . ( 6 . 2)

Here L(t)  is the orienting unit d i rect ion vecto r of £(t) at the time t , while

~~(t) is the instantaneous position vecto r of a point that is a t tached to £ and

pa rtici pates in the rigid motion of £ relative to the f r ame  X ; evidently,  ~ is

S the directed distance f rom thi s point , measured  alon g £ (see F igure  9) . We

take for granted tha t and L are continuously d i f ferent iable  functions of the

time on the interval [t ,, t2 ]. Further , paralleling the agreements  intro-

duced at the beginn ing of Section 3 , we call N(t) the unit normal vector of

£(t)  resulting from a counter-clockwise rotation of L(t)  throug h n- IZ . Also ,

÷
we denote by 6% (t)  and 6% (t) the open hal f -p lanes into which 6% is divided by

+
£(t) at the instant t , with the proviso that N(t)  points into R ( t ) .

S At this stage we define a t ime-dependent, p iecewise homogeneous ,

family of plane deformations through

: 1 (+ + + 
5 5

lF (t )~~ (t) for all x in 6% (t)  (t 1
�t�t2 )

(~F( t )x+~ (t) for all x in ~ (t) (t 1�t�t 2 ) , (6. 3) 1

+ +
J=detF>0 , J=detF>0 on [t 1, t 2].

‘These equation s are  thf time-dependent  counterpar t  of (3 . 2) . Note that
S the translation vectors  ~~~~ are  needed here since £( t ) ,  given by (6 . 2) ,  may

not pass throug h the orig in at all times . Actually ,  but for a lack of sym-
met ry ,  one of these two vectors could have been omitted.

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ d • ~~~~~~~~~~~~~~ 
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The (position-independent) deformation gradients  F , F , as well as the
+ -

t ranslat ion vectors j~, b , are  required to possess  continuous f i r s t  time-de-

r ivatives on [t ,, t2 ].

Instead of (3 . 3) we now have

+ + + -a(t) =W
F

( F(t ) )  on 6% (t ) , a(t) =W
F

(F( t) )  on 6% (t)  (t 1�t~ t2 ), (6 . 4)

S where and a are  the nominal s t ress  fields produced by the time -depend-

ent deformation (6. 3) on 6% and 6% , if the solid occupy ing 6% in its undefo rrned

- 

S 
confi guration is hyperelastic and W is its s t ra in-energy  density . The dis-

placement-continuity condition (3 . 4) at present  gives way to

S 

+ ÷ - -F(t)x+b(t) =F(t)x+b(t ) for all x on £(t) (t 1�t�t 2 ); (6. 5)

S because of (6. 3), this requirement  is met if and only if

+ - + + _  -
F L=F L  , F~+ b F ~ +~~on [t1, t2], (6.6)

which take the plac e of (3 . 5). Assuming the mapp ing (6 . 3) to have been

extended continuously onto £(t) , we let £~~~(t)  stand for the deformation im-

ag e of £( t) (t1~ t�t2).

The stress field (6. 4) clearly sat isf ies the equilibrium equation ( 1 . 5)
+ -on 6% (t)  and 6% (t) at each instant; but the balance of force  across £(t) demands

S the continuity of the nominal tractions ’ at £(t) :

~N=&N as on [t ,, t2 J . (6 . 7)

+ -When F(t) (t) for  t 1�t�t2, we shall r e fe r  to the family of elastostatic

1Owing to the continuity of the disp lacements , the balance of mass on either
side of £(t) a ssures  the mass balance ac ross £(t) .

S ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
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f ie l d s  c h a r a c t e r ized by (6 . 3) ,  (6 . 4) ,  togethe r with the continuity condition s

(6 . 6 ) ,  (6 . 7) .  as a time-dependent (p iecew ise homogeneous)  elastostatic

shock with the (moving) mater ial  and spatial shock- l ine s 1 £(t)  and £,: (t)

(t 1
�t�t2 ) . Observe that at any fixed instant t suc h a shock is an equi l ibr ium

shock of the type def ined in Section 3 , if B(t) O and the translat ion vectors
+ •. 

S

b(t) , b( t ) al so van i sh . S

It is readily seen that equations (3 . 8) throug h (3 . 15 ) hold ident ically

on [t ,, t2 ] for  t ime-dependent shocks provided i , n , c~, cp and all f ield qua nt i t ies

retain their previous meaning but are  now regarded as functions of t ime. On

the other hand , at any fixed instant the mapping (6. 3 ) admi t s th e reso lut ion

+ +
z=F(t )x +b (t )  for ali x in 6% ,

for all z in ~~ (t) (6 . 8)

+ -

S 1~
B ( t ) z - B ( t ) b ( t ) + b ( t )  for  all z in

+ - +
• where 6%~~(t) and 6%~~(t) a re  the instantaneous deformat ion images of R ( t )  and

6% (t)  associated with (6 . 3) ,  while B obeys the f i r s t  of (3 . 15) on [t ,, t2 ]. Argu-

ments strictly parallel to those employed in Section 3 c o n f i r m  that equation s

• (3 . 18) throug h (3. 37) are  valid on [t ,, t2 ] in the p resen t  c i r cums tances .

Note that the fra m e X’ wi th the base vectors (L , n )  is now t ime-dependent ,

as are  the parameters  it , 6 , and c ,  whose k inematic sign i f icance rema ins S

unaltered. Figure 6 is applicable to the instantaneous supplementa ry de-

fo rmation inherent  in the decomposi t ion (6. 8), except that  the spatial shock-

line £
*~ while parallel to — need not be coincident with the -axis. 

S

Consider a t ime-dependent  elastostat ic shock of duration [t , , t
2 ] and

1 The te rm “material  shock-l ine” is somewhat misleading in the present
sett ing since £(t ) ,  being occupied by d i f f e r e n t  par t ic les  at d i f f e r en t  t imes ,
is not a mater ial  line .

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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let  to be in the open interval (t 1, t2 ). With a view toward a r r iv ing  at the no- S

tion of dissipativity of the given shock at time to we adopt the following

de finition. A domain ~ of the (x 1, x2 ) -p lan e is a tes t  domain admissible at

time t
o, ~f ~ 

is the interior of a fixed, smooth and convex , s imple closed

curve  C and the material shock-lin e £(t ) i n t e r sec t s  ~~~. Then, evidently,

£(t)  intersects ~ for all values of t in a neig hborhood of to , which we shall

call a “ t ime-range of intersection of s. ” Further , f or eve ry t in such a

range of time , £(t) intersects  the convex boundary C of ~ in two distinct

points — say with the position vectors ~c(~ 1(t),t) and ~ (~ 2 (t ) , t ) ,  where

as indicated in Figure 9. Also , £(t)  divide s the stationary do-
+

main ~ into the two time-dependent sub-domains £(t)  and ~ (t) , which are  the
+

intersections of ~ with the half-planes 6% (t )  and 6% ( t ) ,  respectively (see Figure 9).

At this stage we choose a test domain £ admissible at the given instant

and let U(t) stand for  the total strain energy in a slab of unit thickness — at

any time t within a t ime-range of intersection of £ — stored in the material

that occupies £ in the undeformed configurat ion . According ly,  we have

+ + - - + +
U(t )  W ( t ) A ( t ) + W ( t ) A ( t )  , W(t)  =W(F(t) )  , W (t )  zW ( F ( t ) ) ,  (6 .  9)

+ - +
where A(t)  and A(t)  are  evidently the respective areas of £(t)  and £(t) .  Dif-

ferentiation of the first of (6. 9), in view of (6. 4) and the second of (6. 9),

S yields the time-rate of change of the strain energy U in the form

+ +  - -  + + + _ - - 1
U =WA +WA ÷a~~~~F~~~~A+o~~~~F~~~~A .  (6 . 10)

From the divergence theorem follows at once

1Here and in the sequel dots used as superscr ipts indicate dif ferent ia t ion
with respect  to the time.

~ 
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ô p~~(t) =~~x~ v pdA~~ ~A(t) x~ v~ d,1~1 ( 6. 11)

8~~(t)

+ - +
i f . ~ is the arc-leng th along the boundaries a~~(t) ,  8~~(t) of the domains £(t) ,

£(t) and ~ is the appropriate unit outward normal vector . On the othe r hand ,

it is readily shown , and intuitively obvious , that

+ -

A’(t)= -A’(t)=- ,~ V(~ ,t).N(t)d~ , (6 . 12)

provided

(6. 13)

S so that 1 V(~~, t) is the velocity , relative to the f r ame  X , of the point on the

moving shock-line £(t) with the position vector ~ (~~~t).

We now use (6. i i ) ,  (6. 12) in conjunction with (6. 10) and then invoke

(6. 2) ,  the continuity conditions (6. 5), (6. 7), as well as the overall equilib-

+
riumn of the material occupy ing £(t) and £(t).  In this manner we are  led to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.[v(x ,t)]~Jd~ . (6. 14)

S Here s(x , t) is the Piola traction on the oute r side of a~~, v(x , t) is the parti-

cle velocity given by

1+. + +
1.g (t )~~+~~ (t) o n 6 % ( t )

S v(x~ t) j~~(x~ t)~~~ - - 
(6. 15)

F’(t)x+b ’(t) on

while the notation [ ]
~~ 

is employed at present  to denote the jump in the 
S

S ‘Recall (6. 2).

tS_~ 
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+appropriate  field value s as £(t) is t raversed f rom 6%( t )  to 6% (t) ; thus , in pa r-

ticular, S

[W(t ) ]~~=w(F(t )) -w(~~W) , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (6 . 16)

From the second of (6. 16), together with (6. 2), (6. 5),  and (6 . 13 ) follows

[
~~~(2~~’ 

t)] = - [F(t)]~ v(~~, t). (6. 17)

Substituting from (6. 17) into (6. 14), and appealing onc e more to the traction -

continuity condition (6 . 7) ,  one find s a f te r  elementary man ipulations:

U. (t) =$s(x , t) .v(x , t )dA+$ {P(t)]~~~(t) .V( ~~, t)d~~ , ( 6 .  18)

S provided

T + + - -P(~’)=W(F)i-F ~~~(L) , P( t ) =P (~ ’( t ) )  , P(t)~ P (F (t ) ) .  (6 . 19)

The f i r s t  integral in (6. 18) is evidently the powe r of the t rac t ions

external with respect  to the material  occupying £ in the re fe rence  configu-

ration; the second integral , which vanishes when F(t) F(t ) ,  represents  the

S contribution to U (t) a r i s ing  from the deformat ion-gradient  discontinuity at

£(t). Moreove r , P is the energy-momentum tensor originally int roduced 
S

S by E shelby [101
1 into the theory of defects  in elastic bodies. Eshelby

tablished the relation between the tensor P and the “force  exerted on the

defect” ; this relation — in the absence of such defects  — give s r ise to a

familia r conservation law in finite and linearized elastostatics. The two-

dimens ional  vers ion of the conse rva t ion  l awto  which we a re  al luding a s s e r t s

1 
This recent exposi tory paper contains r e fe rence s  to Eshelby ’ s related

e a r l ier  wo rk.

I~ s ..15.L~~~~ q~~~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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that

(6. 20)
F

f or all plane equi l ib r ium deformation s (of a homogeneous hype re l a s t i c  sol- 
S

id) with twice continuously di ffe r entiable d is placements, if F is the bound-

ary of an arb i t ra ry regular  region within the domain of regular i ty  of the

elastostatic field at hand and N is the outwa rd unit normal  vecto r of F. The

f rac tu re -mechanical implication s of (6. 20) and , in pa r t i cular , the connec-

S tion between the so-called J - in tegra l  and the energy release rate at the ti p

of a c rack , were  f i r s t  reco gnized by Rice  [11].

For our p urposes  it is useful to cast the energy identity (6. 18) into

a d i f fe ren t  form . To thi s end we use (6. 19), (6. 7 ) ,  and the f i r s t  of (6 . 6 ) to

infe r that

[~~(t)] ;~~(t) .L (t)  = - s ( t )  . [F(t )] ;L(t) =0 , (6 . 21)

whence

[P(t)]~ N (t )  = [[P (t ) ] ;N(t)  ‘N(t) I N (t)  - (6 . 22)

Accordingly, the energy identi ty (6 . 18) is equivalent to

~~2
(t) 

S

U (t) =rs (~
, t) .v( x , t) _ [ H (t ) ]~ j V (~~. t) .N(t )d ~~, (6. 23)

S 

where

H(F , N ) = - P ( F ) N .N = - W ( F ) + F N . c~(F)N , 1
~~(6 . 24)

+ + -

H(t)=H(F(t),N(t)) , H(t) =H(F( t ) , N ( t ) )  .

In view of (6. 24) and (6. 7 ) one has 
S

S 

[H(t)] =s (t )  ‘[F(t)]~,~~(t ) - [W (t f l~ , ( 6 .  25)

IL .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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so that the jump in H(t)  is the excess , ove r the jump in the s t r a i n - e n e r g y  S

dens ity  W( t ) ,  of the u inte rnal wo rk ” done by the Piola t ract ion s(t) throug h

the jump [F(t)]~~~(t) in the deformation gradien t  normal  to the mater ial

shock-line £(t).

Bearing in mind the phy sical si gn if icance of th e second t e rm in

(6. 23) as the contribution to the energy rate U~ (t) due to the defo rmation-

S g radient discontinui ty at the shock-l ine £(t) , we in t roduce the following def-

inition. A t ime-dependent  elastostatic shock is dissipative at an instant t

n the interior  of its interval of duration [t 1 , t 2
] if and only if

[H(t ) ]~~$V(~~. t) .N (t)d~ >0 (6 . 26)

for every test domain £ admissible at this instant.

We now e stablish necessary  and sufficient condition s in order  tha t

a t ime-dependent piecewise homogeneous elastostat ic  shock be d iss ipat ive

at a given instant . Suppose such a shock is d iss i pative at t. Then, we

show f i r s t , its mater ia l  shock-lin e £ must be in a state of t ranslat ion at

S that moment and the di rect ion of this instantaneous translation cannot be 5

S 
parallel to £(t) :

V (~ ,t)=V (0,t)a~ ’(t) (-c <~ <co) , V(t)  .N ( t ) / 0 .  (6 . 27)

Indeed , if the f i r s t  of (6. 27) were false , th ere would ex ist an ins tantan eous

center  of rotation for  the rigid motion of £ at the time t . In this  event

V (~~ 
, t ) ’N ( t )  would range con t inuous l y over al l  real number s  as ~ ranges

over (-w ,w) and thus the i n e q u a l i t y  (6 . 26)  could not possibly hold for  every

~ that is the interio r ol a s u f f i c i e n t l y sma l l  c i r c l e  cen te red  on £( t ) .  Fu rther ,
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the f i r s t  of (6. 27) is incompatible  with (6.  2 6 )  un less  the second of (6. 27)

holds t rue . Next , f r o m  (6. 26) ,  (6. 27 ) fol lows

[H(t )] ~ >o (6. 28)

provided £(t)  is o r ien ted  by means  of L( t )  in such  a way that

V( t ) . N ( t ) > 0 .  

+ - 

(~~. 29)

Consequen t ly ,  H( t )  mus t  i nc rea se  as £( t )  is t r a v e r s e d  f r o m  6 % ( t )  to 6 % ( t ) ,  if
S 

~ ( t) is unders tood  to be the ha l f -p l ane  into w h i c h  £ is advanc ing  at the  in-

stant  under cons ide ra t ion.  A l so , (6 . 28) ,  (6 . 2 9) and the f i r s t  of (6. 27)  a re

evidentl y su f f i c i en t  fo r  the d i s s i p a tiv i t y  of the shock at t ime t .  Finall y .

is clear  f rom the above that a p iecewise  homogeneous  t ime-dependent  sho k

canno t be d i s s ipat ive  throug hout a t i m e - i n t e r v a l  (t 1 , t 2 ) un l e s s  the mot ion 01

i ts  ma te r i a l  shock- l ine  is pure l y t r a n s l a t o r y .

Th e d i s s i pation inequali ty (6. 28) ,  as will becom e app a r e n t  l a t e r  on ,

a s s u m e s  a role analo gous to that  p la y ed by the en t ropy  inequa l i t y  in connec-

tion wi t h ga s -d ynamica l  shock~~. Our immediate  goal is to deduce a u se fu l

a l te rna tive r ep re sen t a t ion  for  the jump [H (t) ]~ ap propr i a t e  to a t ime-depend-

ent elasto static shock. The subsequent  cons ide rat ions  app ly to any f ixed in-

stant  in the t ime interval (t 1, t2 ) ; for  the sak e of  brev i t y  we shall suppress

the a rgument  t in the equat ions to follow . Because  of (6. 24 ) and (3 . 3) ,  (3 . 32)

we are entitled to write S
H(F , N) - W ( F ) + J ( F) FN . T ( F ) ( F~~~) TN if Fz~~ or  F F , ( 6. 30)

wh e r e  ~r (F)  is the actual  s t ress  f ie ld  a ssoc ia t ed  wi th  the nominal  s tress

f i e ld  Iy ( F). On the o t h er  hand , (3 . 1 1) ,  ( - 12) ,  (3 . 13 ) and the t r a c t i o n  con -

t i n u i t y  cond t t i o n in the  f o r m  (3 . 33) e a s i l y lead f r o m  (6 . 30) to S

p :. -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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F J (F ) t ( F )  .G(F)n + -
H(F , N ) =  -W (F)+ - j f =  or F= F , (6 . 31)

in which n is the un it no rma l  vecto r of the (moving) spatial s h o c k - l i n e  ~~~~

+ -
and t(~ ’)=t (F)  the actual  t ract ion vector along £ S 5 • Recall  now that j  is the

unit direction vecto r of £~~ and X’ the ( t ime-dependent )  coord inate f r a m e

with the ba se vec to r s (~f , n) and the same or ig in  as X. On expandin g the

two scala r products  enter ing  (6 . 31) in X’, no ting that ri and t have the c orn-

S ponents (0 , 1) and (T 12,  T
22 ) in this f r ame , we obtain

1G ’ (F) -
Hc~J,~~T) =  

~
W(

~~
)+ J(

~’)1 
12 

T 2 (F)+ ’r~ 2 ( F) if ~~~~ or F=F. (6 . 32 )G22 (F) I — ~~ —~ — -
~~

S Finally,  f r o m  ( 6 . 32) and ( 3 . 25) ,  (3 . 27) ,  the continuity across  £ : of the

s t ress  components T’12,  T 22, and the last  two of (6. 24) , fol lows the useful

re suit

[H]~~= -[ W]~~+~ (i t T~ 2 - € T ~ 2 ) , € = 1 - 6 , (6 . 33)

whe r e

+1 I + +1 I +
T 12 T 12LF) , T 22 T 22(F) ,  (6 .34)

In (6 . 33) , it and 6 a r e  the values of the amoun t of shear and of the relative

stretch at rig ht ang les  to £~ inheren t in the in stantaneous supplementa ry

de fo rma t ion .  1

At this point we employ (u . 33) in apply ing the di ssipat ion co ndition

(6. 28) to the special case of a piecewise homogeneous t ime-dependent  elas-

tos tatic shock o c c u r r i n g  in M a ter i a l  1 . To this end we observe f i r st  tha t

the resu l t s  of Sec t~~~n 5 c ontinue t~ hold a .  present  if p roper  al lowance is

made  for  t he t imt -d pen ienc~5 - of the eq u i l i b r i u m  shock . In par t icu la r , the

1 Refe r to the decom posit ion (b . 8 )and t o ( 3 . l9 ) ,  (3 .28). Scea l soF igu re  6.

~t-~~~ 
S $ S  
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j u m p  [ W ( t ) J ~ in  t he  ~ i 1t - r g y  d e n s i t y  is a v a i l a b l e  f r o m  (5 . 22)  if in t h i s  c-qua-

tion ~ 1 ,  ~~~~~ ~~ ~~, and 6 a r e  r ep laced  b y X 1 (t) , X 2 ( t ) ,  ~ ( t )  , ~D ( t ) , and -~ ( t ) .  Fu r  - j
t h e r , ( 1 . 14) , ( 1 . 18) ~n d (4 . 4 1 )  y ield the s t r e s s  com ponents

~ ~~~G 12 ‘ 
=5u ~l 1i }  on [t 1 , 

t 2 J . (6 . 3 5 )

T h e  r e q u i r e d  j u m p  in H ( t )  may  now be ca lcu la t ed  f r o m  (6 . 3 3 )  with the aid of

~~1
(5 . ~~) . (6 . 3 5 ) ,  the f o r m u l a s  (5 4) f o r  G~~~, and equa t ion  (5 . 8) f o r  the amount

of supp lem e n t a r y  shea r  it. T h i s  compu ta t i on  u l t i m a t e ly g i v e s  
S

S 
[H ]~~~= ~ ~~~)~ 2-~~~ 

2 Ofl It 1 ,  t2 ] , c ~ l -6 . (6 . 36)
Z J ( l - c )  ( l + 2 ~~cos2~p+ f3

+
Now ~~>O , J>O , w h e r e a s  ~3~~<l  and € < l  a c c o r d i n g  to (5 .  6 ) .  Hence  (6.  3o )

imp l i e s

[ H ( t ) J ~~>O if and  onl y if e (t )>0 , (6 . 37)

so tha t  the d i s s i p a t i o n  c o n d i t i o n  (6.  28 ) ,  which  r e s t s  on the a s s u m p t i o n  tha t

the shock is a d v a n c i n g  in to  ~~~~ at the t ime  t , l eads  to the shock - s t r e n g t h

r e s t r i c t i o n  € ( t )> 0  in t h e  c a s e  of Mater ia l  1 ( fo r  all admissible  homogeneous

d e f o r m a t i o n s  on ~~( t ) ) .  Thi s  r e s t r i c t ion  was anticipated in Section 5 , when

the ( I l t a l l e d  cl iscu~~sioti  of some of the r e s u l t s  deduced t he re  was confined to

non - nI-I~at i vc  v a l u e s  ul ~ -

One g a t h e rs  f ro ~n (6 .  36) t h a t  for  M a t e r i a l  1

t l41~~~0(c~ as c~~~0 ( 6 . 3 8 )

a t any p a r t i c u l a r  in~ t m t  The g I - n Y r ~ t 1 v a l i d i t y  of t h i s  es t ima te , even fo r

e l ast o s t at i  shocks in ~t n i - . o t r p~~ 1~~~~~~ S i l  a - i  r n . t t I r l ~i l s  , can be I - s t .I b l i ! - hcd

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j
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b y means of an appropriate  weak - shock  expansion 1
. F u r t her m o re , ( t ~ 38)

is the analogue of a f ami l i a r  p roper ty  of the ent ropy jump in gas -d y n a m i c a l

shocks.

We now list various implications of the conclusion that € (t)>0 for a

dissipative shock in Mater ia l  1 if the shock happens to be advancing into

~~( t )  at this moment . The following resul ts  apply to the instant  under con-

sidera tion , althoug h the a rgument  t will be suppressed .

First , in view of the kinematic s ignif icance of the shock- s t r ength

€,  the supplementary de formation involves a contraction at rig ht angles to

S the spatial shock- l ine  
~~~~

. Second , it is c lea r  f r o m  ( 5 . 3 )  and (5.  6) ,  ( 5 . 8 )

that the si gn of the supplementary amount of shear ~ depends on the nature

of the instantaneous principal s t re tches  inherent  in the given homogeneous
+

deformation on ~ . One has

it<0 if 13> 0 (x 2> X 1) , i t>0 if 13~~0 (~~~
< - x~~) (6.  39)

for shocks with a spatial shock-angle in the f i r s t  quadrant  (0 ,~~/ 2) .

N ext , from (4~ 4) 2 , ( 5 . 6 ) ,  and ( 5 . 22 )  one dra w s

S 
[J]~ < O  , {p}~~> 0  , [wj~5-O . (6. 40)

Consequently, in the presen t  instance , the a r e a - r a t i o  and the energy

dens ity decrease , while the mass density i n c r e a se s  — as the mater ia l  
S

shock-l ine L i s  t r aversed  f rom to ~~ . Fur the r , we r eca l l  f r o m  the discus-

sion at the end of Section 5 that  in t h e  case of Mater ia l  1 , € > 0  a s s u r e s  a

loss of elli pticity on ~ at al l  admi s s ib l e  d e f o r m a t i o ns  on ~~; in c o n t r a s t ,

For this purpose one requi res  a weak- shock  expansion of hi gher  orde r
than that considered in Section 4 .

2 Note that ( 4 . 4 )  holds t ru~ for  shocks of f i n i t e  s t r eng t h .

S - 
~~~~~~~~~~~ —— 5--.~~--- --5 
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t he ensuing deformation on Q may or may not be accompanied by a f a i lu re

of elli pticity of the displacement equations of equ i l ib r ium.  Thus , a t leas t

for  Mater ia l  1, t he situation is parallel  to that encountered  in gas -d ynamical

shocks , wl~~re — as a consequence of the entropy inequality — the flow is

necessa ril y supersonic  on the upst ream side but may be e i ther  superson ic

or subsonic on the downstream si de.

Finally,  consider a t ime-dependent  piecewise homogeneous equilib-

rium shock in Material  1 that is dissipative at all t imes in the in ter ior  of

its interval of duration [t 1, t2}. Suppose , in addition , that the mater ia l

S shock-l ine £(t)  of the shock advances steadily into~~(t) for t 1<t<t 2 .  Then ,

e> 0 on (t
1 

,t 2 ) and — as was shown ear l ie r  in this sect ion — the motion of

£ is one of pure t ranslat ion thr oug hout this rang e of t ime . Thus , the

mater ia l  shock-angle obeys

~ ( t ) = ~ (t
1

- t < t
2

) , ( 6 . 4 1 )

in which c1 is a cons tan t . In these c i r c u m s t a n c e s  accord ing  to ( 3 .  14),

for a given (admiss ib le)  deformation on ~ (t) (t 1
s t�t

2 ) ,  t he spatial shock-

ang le tp becomes a known funct ion of and the t in ie , i . e . ,

cp= .~(t;c 1 ) (t
1
<t < t

2
).  Also , one conf i rms  easil y that the f i r s t  of ( 5 . 9 )  may

now be inverted to g ive c= e ( t ; ~~~), so that the s h o c k - s t r e n g t h  becomes a

fully determinate  funct ion of t ime for every  f ixed value of 
~~~~

. We shall

not explore the spec i f i c  proper t ies  of c ( t ;~~~),  however , si nce the fore  -

going considerat ions arc s t r i c t l y limited to piece wise homogeneous shocks

and have no local analogue in connect ion with more  gene ra l  equ i l ib r ium

S shocks.

For compar ison  purposes we l i l t  a l s o , w i t h o u t  proof , some r e s u l t s

obtained by appl ying the diss ipat ion condit ion ( o .  28) to a weak
1

ii 
S _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~



5-- S S S ~~~~- 

-70-

time -dependent shock in Material 2.  Here one finds that € <0 , so that the

instantaneous supplementary deformation involve s a stretching perpen-

dicular to £
*

. On the other hand , (4. 42) and (4. 36) imply that the in- S

equalities (6. 39), governing the sign of the supplementary amount of shear

it , remain valid for Material 2 if 
~~ 

is sufficiently small. Also , si nce

c<0 , the f i rs t  two inequalities in ( 6 . 4 0 )  now give way to

[JJ~ >0 , [p}~ < O .  (6. 42)

S 
The sign of the energy-jump {W}~ can no longer be inferred from the sign

of c alone in thi s special case; it is found to depend on the instantaneous
+

character of the deformation pre -assigned on ~~ .

7. Equilibrium-shock formation as a bifurcation process. LUders bands.

Discussion.

The analysis in Section 4 led to the conclusion — valid under certain

assumptions spelled out there — that the existence of a piecewise homo-

geneous elastostatic shock , and hence the emergence of discontinuities in

the f i rs t  deformation gradients , is contingent upon a breakdown of ellip-

S ticity in the displacement equations of equilibrium associated with the

S homogeneous deformation prescribed on ~~ . As is well known and easily

verifiable, this failure of ellipticity in turn renders the given deformation

dynamically unstable: there are initially periodic , small-amplitude , d is-

turbances of the above uniform elastostatic field that give rise to solutions

of the appropriate linearized displacement equations of motion which grow

beyond bounds with time .

The foregoing state of affairs suggests the possibility of viewing

the process of shock formation as a bifurcation from a homogeneous

II .~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “—- - - -5 5 — S - - S  

~~~~~~~~~ ~~~—S-— _ 5-
~ ~~~~~~~~~~~~ ~~~~~~~~~~~
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equilibrium field in an elastic body. Such an in terpreta t ion of equilibrium

shocks leads one to wonder about their  re levance to the fami l ia r  f a i lu re

phenomenon of LUders bands , commonly observed in mild steels , which

has received repeated analytical attention within plasticity theory . 1

2 .Luders bands are known to develop in specimens subje cted to uni-

axial tension or compression once the loads have exceeded the yield limit;

their inclination relative to the load axis is often close to 45 degrees , al-

though considerable departures  from this ang le have been reported. Fig-

ure 10 , which follows Nadai [13], shows a schematic diagram of Lilders

bands.  The experimental f inding s indicate abrupt  changes in the deforma-

tion g r a d i e n t s  ac ross  the in te r faces  between such a band and the ad jacent

material , the deformation within each band being predominant l y one of
S shear paral le l  to the in t e r f aces .  Fur ther , the sense of thi s shear  deforma-

tion undergoes a reversa l  as the loading is changed f rom tens ion to corn-
-

S pression .

In assess ing  the extent  to which predic t ions  based on the t h e o r y  of 
S

piecewise homogeneous equi l ibr ium shocks resemble  exper imenta l  observa-

t ions pertaining to the formation of LUders bands , it should be kept in mind

S that th e act ual t e s t  si tuation , which is in fact  th ree-d imens iona l , comes

S . close r to cond itions of plane st ress  tha n to plane s train. Moreover ,

elementary equilibrium considerations preclude the exis tence  of a homo-

geneous field of deformat ion and s tress  in a LU ders band of f in i t e  width

(see Figure 10) s ince  such a uniform field is incompatible  with the boundary

¶ ‘See , for example , Thomas [12].

2See Nadai I 13], Chapter 18 , for  a detailed descr i ption of the p e r t i n en t
experimental observations and for references to the previous phenorneno-
logical literature on LUders bands. S
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conditions at the load-free  parallel edges of the specimen. For this reason

a piecewise homogeneous elastostatic shock cannot possibl y de scribe the

observed behavior near the edges of the slab. On the othe r hand , it is a

simple matter to symmetrize the elastostatic field of an equil ibrium shock

and thus arrive at a piecewise homogeneous field involving three homo-

geneous zones: two half-plane s in which the same given deformation is

sustained , separa ted by a strip tha t under goes a distinct de for mation , the

displacements and cractions being continuous across the in te r faces .

Despite the limitations pointed out above , the present theory of

equilibrium shocks exhibits certain striking fea tures  that support its

relevance (within the f ramework of continuum mechanics) as far  as LUders

bands are concerned.  The following considerations pertain to the local

behavior near a point such as P in Figure 10 , on an inter face of a Lilders

band .

To fi x ideas and solely for  i l lustrative purposes we draw once

more on the special isotropic hyperelastic Material 1. Suppose an all-

around infinite slab of this material occup ies the entire (x 1, x 2 ) -plane i~
in its undeformed confi gurat ion and is subjected to the t ime-dependent

quasi - static pure homogeneous plane deformation:

S 

£=Z (~~, t)= A(t)x for all x in ~ (0 �t<cxi) , (7 .  i )

where
0

A(t)~ (0�t< co), ( 7 . 2 )
0 X 2 (t)

A( t )  being the deformat ion-gradient  tensor and \ (t) the principal s t re tche s

at time t . We shall assume that the fore-going deformation process starts

S 
55 ~~~~ S__ . 55_555 - S
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f rom the undeformed state at the instant t=0 and at all times thereaf ter

corresponds to a state of uni-axial tension or compression parallel to the

x2 -axis.  Thus~ 
S

1
x (0)=l , ‘r 11(t)=o 11( t)=0 ,
a ( 7 . 3 )

T
22 (t)~~~[l -X 2~~ (t )] , a22 (t)=~~[> ~~~~( t ) -X 2

3 
(t)}

In addition we require tha t in the case of uni-axial tension , S

X 2(t) is steadily increasing , X 2
(t)-’ co as t-~~co, (7 .4 )

while in the case uni-axial compression

X 2(t ) is steadily decreasing , A 2(t)~~0 as t-’ co . (7 . 5)

We now recall f rom Section 2 (see Figure 1) that the homogeneous

time-dependent equilibrium deformation character ized by (7.  i ) ,  (7 .  2) ,

(7. 3) entails a loss of ellipticity whenever the s tretch X 2 (t) equals or

exceeds a certain critical value in the tension case or fails to be above

another critical value in the compression case. Hence , by virtue of (7 .  4) ,

(7.  5),  in either case there is an instant to such that the deformation pro-

cess under consideration is accompanied by a loss of ellipticity — and

thus also by a loss of dynamic stability — at all times t�t0. Moreover , it

is now clear from the conclusions reached in Sections 5 , 6 that if t �t
l o

the following bifurcation of the homogeneous t ime-dependent  deformation

at hand into a piecewise homogeneous t ime-dependent equilibrium shock

becomes possible:

‘Recall (2.  8), which apply to uni-axial pt ress  parallel to the x 1-axis.

J’~~. 
.. 

rt~~~ ~ ~~~~~~~~~ ~~gi
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If +
for all x in ~ ( t ), F( t ) =A ( t )  ( t

1~ t<~ co)

~~(x ,t) 
~~ (7 b )

F ( t )x +b(t) for all x in ~ ( t )  (t
1

�t ~~w) ,

p rovided

~~(t) N(t) > 0 (t
1�t<co). ( 7 . 7 )

Here  ~~(t) is the velocity of the material shock-line £(t) dividing R into the two

S half-plane s ~ ( t ) ,  ~~( t ) ;  also £(t) ,  whose unit normal vector N( t )  points into

c~(t ) ,  is in translation because of the dissipativity of the shock. The assump-

tion (7.  7) amounts to the physically motivated requirement  that the deforma-

S tiori in ~ (t) — associated with the local deformation in the LUders band — stead-

ily encroaches upon the as yet unencumbered deformation prevailing on

Because of (7.  7) we may appeal to (6.  37) and the dissipativity of the shock

to infe r that its s t rength e(t)>0 for t 1<t< co.

The resul ts  pertaining to Material 1 in Sections 2 , 4 , 6 now permit

various inferences  that bear on the significance of equilibrium shocks in

connection with LUders bands. First , in the tension case the shock-

bifurcation (7.  6) can arise only aft e r the nominal s t ress  associated

S with the homogeneous deformation (7. 1) has passed its peak (see Figure 1).

S Second , in both the tension and the compression case , the angle of inclina-

S tion of the “emerging ” spatial shock-line relative to the load-axis , i . e .

the limiting value of this ang le at zero shock-s t rength  and at an inci pient

fa i lure  of ellipticity , is 45 degrees  for Material  1. In general  thi s ang le

is a material  property and may be different  for  tension and compression .

N ext , the shock-format ion in the present  ins tance  involve s a sup - S

plemen tary  contract ion at rig ht ang les to the in t e r face  between the half-

plane-s separated by the spatial s h o c k- l i n e .  On the othe r hand , according

-
. L ~~~~~~~~~~~~~~~~~~~~~~~~~ -
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t o  (o  - ~~~ i h -  a m o u n t  of s he ar  a a c c o m p a n ying  ~-a eh ins tantaneous  supp le -

n ien t  ar y  d e f o r m a t i o n  i s  p o s i t i v e  in tb e  ca se  of a on ip r e s s i on - i n d u c e d  S

shock and n e g a t i ve  for  a t e n s i o n — i n d u c e d  shock in M a t e r i a l  1 . The las t  —

ment ioned  c o n c l u s i on  is at v a r i a n c e  wi t l i  the usua l l y obse rved  deformat ion

p a t t e r n  of LUders  b a n d s , s c h e m a t i c a l ly dep i c t e d  in Fi gure -  10. We do not S

know w h e t h e r  th~ opposite sense  of o v e r - a l l  shea r  has been encoun te red  in

t e s t s  f ac tua l ma te  i- I 5 m l s .  Be th i s  as it may , one can  show by asymptot ic

- . means t h a t  t h e r e  a re  s t r a i n — e n e r g y  d e n s i t i e s , ev e n  wi th in  the l imi ted

(-lass  cha r a c t e r i ~ .~ U by (~ . 1) ,  tha t  lead to a >  0 in weak t e n s i l e- s h o c k s .

The above  p -I - d i c t i o n s  c o n c e r n in g  t he  si gn of a t h e r e f o re  m e r e l y r e f lec t  a

- S S S . . 2
p e c ul ia r i ty  of ~l~~- p a rt i c u l a r  idea l i zed  m a t e ria l  under  d i s c u s s i o n

The p r e c .  c l i n g  r e m a r k s  s u g ge s t  a word  of cau t ion  r e g a r d i n g  the

hi g hl y spec~ . l  n a t u r e  of the t w o  h yp ot l i et i  al ~i i ~ t ’~r i a l s  used in this paper

to i l l u s t r A t e  t h e  t h e o r y  of e l a s t o s t a t ie  s h o c k s .  With a v iew t o w a r d  phy s i c a l-  S

ly r e a l is l .i’ app l i e a t i n c m s  of thc t h e o r y  it would seem e s sen t i a l  to exp lore a

S wide r  r a n ge  t~ f } - ~p- re~ a st i c  sol ids  t h at  can s u s t a i n  a loss  of e l l i p t i c it y .

In p a r t  e ’ l c  r , it vs u u l d  h of i n t e r e s t  to c o n s t r u c t  i dea l  m a t e r i a l s  that

admit  a loss of el l i p t i  i l y  i i i  u c i i  -axial  t e n s i o n  and c o m p re s s i o n  at p re  - S

assi g c~ t L] e  SI r e L  1(~~~S l b  U n i o n o a a t t . - l y ,  sa c -h  an adap tab i l i t y  of the as — 
S

sun’ ri con s i  t u t i v e  b~ Ha v i a  r is bound t o  i t e a r  m o u n t in g  ana l y t i c a l

c ornp lexi t I IS _ s  . S

The a i c c ~~y s i 5  .- a r ru d a c t  i c t  t h c s  i~ i v e s t i g at i o n  may  lie g e n e r a l i z e d

l l e u r e 6 ( l ~ f t r  i i -  g ’  ~~~~~~~~~~~~~~~~~~ O u r  of a > 0 .

2 A wea k t -  n H l t  S L I ) ( ii ~n M a t e r i a l  ? a~ so i f l V o l \ c - S  <:0 , as f o llo w s  f r o m  the
obs’ r~~at i  OtIS  - I I  l I c e  en’! ( i f  ~-~I ( l j - ~ r 1 ‘VI r al l  t h a t  a c o m p res s i v e  shock
c a n i c t  o c e c i r  i n  ‘ t r i a l  ~ Sn ~~ t h  ‘ it i t d I ~~m n o t  m i c f h - r  a loss of e ll i pti-
c i t y  111 urn - . t ’ . i ; c l t

~

‘S .

IL -~~~~~~~~~ ~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~ - ~~~~
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to encompass  no longer  piecewise homogeneous plane elastostat ic  deforma-

tions with cont inuous disp lacement f ie lds  and mere l y piecewise continuous

f i r s t  and second displacement  g rad ien t s , whose  discontinuit ies a re  permit-

te(l to occur along curved shock-l ines.  Furthe r , it is a priori  clear that

the r e su l t s  deduced h e r e  for  piecewise  homogeneous equi l ibr ium shocks

at once apply to the local situation at an inter ior  point of a curved shock-

line in a non-homogeneous elastostatic field. The emergence  of weak

shocks of this more general  type evidently necess i t a tes a b reakdow n of S

S 
ellipticity in the d isplacement  equations of equi l ibr ium at the shock-line , 

S

which — in the weak-shock limit — must be a charac te r i s t i c  line associated

with these equations at the prevailing deformation. Also , the dissipation

inequality (6 .  28) remains locally valid in the p r e sen t  c i r cums tances , but

the dissipativity of such a shock no longer  r equ i res  that the motion of the

• 
shock-line be t rans la tory .

Presumably non-homogeneous  equi l ib r ium shocks would a r i se  in

boundary-value  problems of f inite e las tos ta t ics  at loads that cause suf-

ficiently seve re  local deformations — severe  enoug h to induce a local

-
: failure of ellipticity in the governing f ie ld equat ions , p rovided of cou rse

the underly ing e las t i c  potential  admits such a fa i lure’. In the p r e sence

of geometr ic  or material  sources  of s t ress  concentrations (such as holes ,

not ches , or inclusions ) c las tost c~tic shocks could thus evolve at cornpara-

tively moderate loads.

1 The s i tua t ion  env i sage d h er e  i s  analogous to that encountered in boundary-
value problems fo r  s t at i o n a r y  fl ow s in gas dynamics  that give rise to super

S sonic reg ions and concornit a t nh oc ks.

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ , 
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