
I
St anford Artificial Intelligenc e Laboratory

I Memo PJM-290 —

/

October 1 976

Computer Science Department

I Report No. STAN-CS-76-575

I SAIL TUTORIAL

I Length . l O ft
Beam 6 ft 6 n HEADBOARD —.._

Draft: 4 ft IV/2 in .

I We ight 700 lbs minimum

JUMPER STRUTS

BATTEN POCKET

I MAINSAIL SPR EADER

-~
/‘

~~~~JJ BSTAY

MAST —

I BACKSTAY -
~~~~~ -— JIB

>
1

I REEF POINTS

SHEET
MOORING CLEATI BOOM

JIB

TILLER ~~~~~ —

‘ —MAIN SHEET_ .. I \~~I
_ _ _ _ _ _ _RUDDER

/ ~SHROUDS
CENTERBOARD TRUNK

CENTERBOAR DIi
• I >- R esea rch sponsored by

I
~~~~ Natt onal Ina t tlutes of HealthC....) andI ARPA Order No. 2494

Advanced Research Project s Agency

~~~~~
COMPUTER SCIENCE DEPART MENT

I~~~~j
~~~~~~ 

Stanfor d Un tver slt y

_ _ _ _ _  
_ _ _ _ _  



C L  ~S , F I C A  r io ’ ~ 0F TW I  I P A G E  ( .‘7. n 0.t. Eni.r.d)

~~~~~~~~~~~~~~~~~ REPORT DOCUMENTATION PAGE BEFORE FORM

j~~~~~~~~~~~~~~~~~~~ l.SUR 2. GOVT ACC ESSION NO. ~ . Rec ;p,ENrs C A T A L O G NUMBER

cTAN -CS -’ t ’ 575, A Th-29ø’~_J _____________________________

• T I T L E (~~
.
~

Sob IS It.)
-

e: —Ty.e-.~.agaa&r_a..PrRI~ o co ~zago_ ._J Technical) /b9J12’
• i r.nrenl7IN • neR o N uM a S

3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

(2’ Nanc~~ W ./mith

~1 MDA~~3_76_C-ci~~~57’~~~
9. PE~~FoR ~4 I p 4~~ O R G A N I ZA T I O N NAME AND A DOR ESS 10. PROGRAM ELEMENT. PROIECT . T A SK

AREA a WORK UNIT NUM ~~ERS
Artificial Intelligence Laboratory
Stanford University ARPA Order-211.
Stanford , California 9~~05

I I. CO NTROL LING OFFICE N A M E AND ADDRESS 4L MErenT 01T-a--

Col . Dave Russell , Dep . Dir., ARPA IPT , // 0cte~~ c 1976
ARPA Headquarters , 111.00 Wilson Blvd . .I3~ tiuultrl Br ~~~~~
Arlin2ton. Vjr~ inia 22209 5~4.

IC. MONITORIN G AGENCY NAME & AOO RES S(I l dllf.on~I Iron, Conirolt lng OfIte.) IS. SECURITY CLASS. (.1 thu 1.pOrt)

Philip Surra , ONR Representative
Durartd Aeronautics Building Room 165 15
Stanford University IS.. DECLASSIFICATION /DOWNGRA O ING

Stanford, California 911305 SCHEDULE

IS. DISTRIBUTIO N STATEMENT (of hi. R.port)
~
-. ,.

I

Releasable without limitations on dissemination.

P7. DIST RI8I.JTJON STAT EMENT (of (h. .b.tr.c i .nt.r.d in Block 20. II dill.,,,, ft’s.. M .po~i)

1$. SUPPLEMENTARY NOTES -

IS KE Y W ORO S (Continu. on ,.v.ra. .Id. if n.e.... ,? ond Idontlfy by block nu .b..)

20 A B S T R A C T (ConflnPrs en ,...,. . .Id. It n.c...ay end Id..iIIfr by bloaM n. b.i)

‘ This tutorial is designed for a beginnin~ user of Sai l, an ALGOL-like language for
the PDP-lO. The f i r s t par t covers the basic statements and expressions of the language;
reinainthg topics include nacros, recordo, conditional compilation, and input/outp~.~t.
Detailed ex amples of Sail program~n.trag are included throughout, and only a minimum of
progrscssl~g background is assume d.

• DO ~ 1413 E DI T ION OF I NOV as is Oa$OLETI
S/N 0 l 0 2 0I4 660 1

SECURITY CLASSIFICATION OF THIS RA G E (Iê~ en D•l. ~~~~~

I
I I Stanford Artificial Intelligence Laboratory October 1 976

Memo AIM-290

I Computer Science Department
Report No. STAN-CS-76-575

SAIL TUTORIAL

by

I Nancy W. Smith
SUMEX -AI M Computer Project

I Depar tmen t of Genetics
Stanford Univers ity Medical Center

I ABSTRACT

I This TUTORIAL is designed for a beginning user of Sail, an A LGOL-like language for the
PDPIO. The first part covers the basic statements and expressions of the language; remaining
topics include macros , records, conditional compilation, and input/output. Detailed examples of

I Sail programming are included throughout, and only a minimum of programming background is
assumed .

I
I
I Thu manual was prepared as part of the SUMEX.A IM computing resource suppo rted by

the Biotechnology Resources Program of the National Institutes of Health under grant RR .

I 00735 . PrInting and preparation for publication were supported by ARPA under Contract
MDA9O3.76 -C .0206.

The views and conclusions contained in this document are those of the author(s) and should not be

I interpreted as necessaril y representin g the official policies , either expressed or im plied, of Stanford
University, NIH , ARPA , or the U. S. Government.

Reproduced In the U.S.A. Available from the National Technical Information Service , Springfield,
i ’Irginia 22161.

i
I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _  

_ _ _ _- —- 
— 

~~~ ‘~~i~~ 7W’ ___ -
~~~~~~~~~~ 

—



I
* I SAIL TUT ORIAL TABL E OF CONTENTS

I T A B L E  OF C O N T E N T S
1 The Load Module 45
2 Source Files 46
3 Macros and Conditional Compilation 47

I . SECTION PAGE

APPEND4X A: Sail and ALGOL W Comparison
48

1 1 Introduction 1

REFERENCES 49

I 2 Thp ALGOL-Part of Sail 2
INDEX 50

1 Blocks 2
1 2 Declarations 2

3 Statements 5
- 4 Expressions 10

5 Scope of Blocks 13
6 More Control Statements 15
7 Procedures 19

3 Macros 25

4 String Scanning 27

1 5 Input/Output 30

1 Simple Terminal I/O 30

I 2 Notes on Terminal I/O for TENEX Sail Only
30

3 Setting Up a Channel for I/O 30
4 Input from a File 37
5 Output to a File 39

6 Records 40

1 1 Declaring and Creating Records 40
a 2 Accessing Fields of Records 41

3 Linking Records Together 41

7 Conditional Compilation 44

‘ I
$ 1

II 
_ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



SAIL TUTORIAL Introduction

SECTION 1 language. If you have no programming
experience , you may need help getting

Introduction started even with this TUTORIAL. Sail is
based on ALGOL so the general concepts
and most of the actual statements are the
same in what is often calle d t he “ALGOL
part” of Sail. The major additions to Sail

The Sail manual  [1] is a reference manual are its input/output routines. Appendix
contai ning complete information on Sail but may A contains a list of the differences
be difficult for a new user of the language to between the ALGOL W syntax and Sail.
work with. The purpose of this TUTORIAL $ is to
introduce new users to the language. It does not Programs writt en in standard Sail (which will
deal in depth with advanced features like the henceforth be called TOPS-lO Sail) will usuall y
LEAP portion of Sail , and uses pointers to the run on a TENEX system through the emulator
relevant portions of the manual for some (PAIO5O) which simulates the TOPS-la UUO’s,
descriptions. ,Following the pointe rs and reading but such use is quite inefficient. Sail also has a
specific portions of the manual will help you to version for TENEX systems which we refer to as
develop some familiari ty w ith the manual. After TENEX Sail. (The new TOPS-20 system is very
you have gained some Sail programming similar to TENEX; either TENEX Sail or a new Sail
experience , it will be worthwhile to browse version should be running on TOPS-20 shortl y.)
through the complete reference manual to find a Note that the Sail compiler on your system will
variety of more advanced structures which are be called simply Sail but will in fac t be either the
not covered in the TUTORIAL but may be useful TENEX Sail or TO PS-b Sail version of the
in your particular programming tasks. The Sail compiler . Aside from implementation differences
manual also covers use of the BAIL debugger for which will not be discussed here, the language
Sail. differences are mainly in the ir~put/output (110)

routines. And of course the system level
The TUTORIAL is not at an appropriate level for commands to compile, load, and run a finished
a computer novice. The following assumptions program differ slightly in the TENEX and TOPS-
are made about the background of the reader: 10 systems .

1) Some experience with the PDP-
10 including knowledge of an editor ,
understanding of the file system, and
familiarity with routine utility programs
and system commands. If you are a new
user or have previous experience only
on a non-timesharing system, you should
read the TENEX EXEC MANUAL (7) (for
TENEX systems) or the DEC USERS
HANDBOOK (6) (for standard TOPS-b
systems) or the MONITOR MANUAL (3]

f and UUO MANUAL [2] (for Stanford Al
Lab users). In addition, you might want
to glance through and keep ready for
reference: the TENEX JSYS MANUAL [8]
and/or the DEC ASSEMBLY LANGUAGE
HANDBOOK (5]. Also, each POP-b
system usually has its own introductory
mat .r ia$ for new users describing the ___________

operation of the syst.m . * I would like to thank Robert Smith for editing
the final version; and Scott Daniels for his

2) Some experience with a contributions to the RECORD section. John
programming language--probably Reiser, Les Earnest, Russ Tayl or , Marney Beard,
FORTRAPi~ ALGOL or an asumbly and Mike Hinckl.y all made ~sluabIs suggestions .

H 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~~~~~~~~~~ ~~~~~~~~~ -



//
/

/

The ALGOL-Part of Sail SAIL TUTORIAL

SECTION 2 which will print out on the terminal:

The ALGOL—Part of Sail SQUPRE ROOT OF S IS 2 .236568

2.1 Blocks 2.2 Declarations

Sail is a block—sfructursd language. Each block A list of a ll the kinds of declarations is given in
has the form: the Sail manual (Sec. 2.1). In this section we will

cover typ. declarations and array declarations.
BEGIN Procedure declarations will be discussed in

Section 2.7. Consult the Sail manual for
cd.ciar~ t iena, details on all of the other varieties of

declarations listed.

2.2.1 Type Declarations
stat..ent.~ The purpose of type declarations is to tell the

compiler what it needs to know to set up the
storage locations for your data. There are four

ENO data types available in the ALGOL portion of Sail:

Your entire program will be a block with the 1) INTEGERs are counting numbers
above format. This program block is a somewhat like -1, 0, b , 2, 3, etc. (Note that commas
special block called the outer block. BEGIN and cannot be used in numbers, e.g., 15724
END are r.s.rvsd wor ds in Sail that mark the not 15,724.)
beginning and end of blocks, with the outermost
BEGIN/END pair also marking the beginning and 2) REALs are decimal numbers like
end of your program. (Reserved words are -1.2, 3.14159, 100087.2, etc.
words that automaticall y mean something to Sail;
they are called “ reserved ” because you should 3) BOOLEANs are assigned the
not try to give them your own meaning.) values TRUE or FALSE (which are

reserved words). These are predefined
Declarations are used to give the compiler for you in Sail (TRUE — -1 and FALSE —information about the data structures that -you 0).
will be using so that the compiler can set up
stora g. locations of the proper types and 4) STRINGs are a data type not
ass oc iat , the d.slred name with each location. found in all programming languages.

Very often what you will be working with
Stat.m.nts form the bulk of your program. They are not numbers at all but text. Your
are th. actual commands available in Sail to use program may need to output text to the
for coding the task at hand. user’s terminal while he/she is running

the program. It may ask the user
All declarations in each block must precede all questions and input text which is the
stat. m nts In that block. Here Is a vsry simp l. answer to th, question. It may in fact
one-block program that outputs the square root process whole files of text. One simple
of 5: example of this is a program which works

with a file containing $ list of words and
BEGIN outputs to a new file the same list of

D(CLRI~TIO5S ..~ INTCGL R 
~i 

words in slphabetical order. It is
1E*. ~ 

possible to do these things in languages
syaivic uts .., .. with Only th. integer and real dat a types

~ . SOR T( U 1 but very clumsy. Text has certain
paipTc”saua~

g eooi cc “, i , prop erties different from those of
is “, ~~ numbers. For example, It is very useful

INO

________ - - -~~~ - -~ -~~~~~~ 
. 

I



I
SAIL TUTORj.~L The ALGOL-Part of Sail

I

I to”be able to point to certain of the expression like 2 + 31 + 25 + 5 you need an

,/~haraicte rs in the text and work with just expression like X + V + Z + W or
/ those temporarily or to take one letter WEEK I + WEEK2 + W EEK3 + WEE K4 . This is done

,‘ off of the Iext at a time and process it. by declaring (through a declaration) that you will

I ,“ Sail has the data type STRING for holding need a variable of a certain data type with a
“s trings ” of text characters. And specified name. The compiler will set up a
associated with the STRING data type are storage location of the proper t ype and enter

I string operations that work in a way the name and location in its symbol table. Each
analogous to how the numeric operators time that you have an intermediate result which
(+ ,- ,s , etc.) work with the numeric data needs to be stored , you must set up the storage
types. We write the actual strings location in advance. When we discuss the

I enclosed in quotation marks. Any of the various statements available , you will see how
characters in the ASCII character set can values are input from the user or from a file or
be used in strings (control characters , saved from a computation and stored in the
letters , numerals, punctuation marks). appropriate location. The names for these

I Some examples of strings are: va riables are often referred to as their
identifier;. Identifiers can be as long (or short)

OUTPUT FILE, as you want. However , if you will be debugging
HELP’ with DOT or using TOPS- b programs such as

g ‘Piu s. typ. you r nCms . ’ the CREF cross-referencing program , you should
aardvark make your identifiers unique to the first six

‘5123456189’ characters , i.e., DOT can distinguish LONGSYMBOL
from LONGNAME but not from LONGSYNONYM

‘AaBbCcDdE.Ft’ because the first 6 characters are the same.
Identifiers must begin with a letter but following

(the empty st ring) that can be made up of any sequence of letters
NULl. (ats o th, empty s t r ing ) and numbers. The characters and $ are

I considered to be letters. Certain res.rv.d words
I Upper end lowercase letters are not and predect arsd identifiers a re unava i lable fo r

equivalent in s tr ings, i.e., “a” Is a use as names of your own identifiers. A list of

I 
different string than “A”. (Note that to these is given in the Sail manual in A ppendices B
put a “ in a string, you use ““, e.g., “quot, and C.
a ““word”””.)

Typical declarations are:

I In your programs, you will have both variables
and constants. We have already given some INT EGER ~~~~~~
exam ples of constants in each of the data types. REAL x ,y, z~REAL and INTEGER constants are just numbers as STRING s , t~

I you usually see them written (2, 618, -4.35, etc.)-,
the BOOLEAN constants are TRUE and FALSE; and where these are the letters conventionall y used
STRING constants are a sequence of text as identifiers of the various types. There is no
characters enclosed in double quotes (and NULL reason why you couldn’t have iNTEGER ~ RE A L

I for the empty string), except that other people reading your program
might be confused. In some languages the letter

Variables are used rather than constants when used for the variable automaticall y tells its type.
you know that a value will be needed in the This is not true in Sail. The type of the variable

I given computation but do not know in advance is established by the declaration. In general ,
what the exac t value will be. For example , you simple one-letter identifiers like these are used
may want to add 4 numbers, but the numbers for simple, straig htf orward and usually
will be specified by the user at run t ime or taken temporary purposes such as to count an

I from a data file. Or the numbers may be the iteration. (ALGOL W users note that iteration
results of previous computations. You might be variables must be declared in Sail.)
computing weekly totals and then when you have
the r•sults for each week adding the four weeks Most of the variables in your program will be

I together for a monthly total. So instead of an declared and used for a specific purpose and the

i



The ALGOL-Part of Sail SAIL TUTORIAL

name you specify should ref lect the use of the
variable.

2.2.2 Array Declarations
INTEGER n.xtUord , pag. count;
PERI. total , sub lota 1 An array is a data structure designed to le t you
STRING autnam., I ,rslnamu ; deal wi th a group of variables together. For
5OOLE~H pa r t i a l , •bor t Sw i t c h , ouipu tsw; exampl e, if you were accumulating weekl y totals

over a period of a year , it would be cumbersome
Both upper and lowercase letters are equivalent to declare:
in identifiers and so the case as well as the use
of ! and $ can contribute to the readability of REAL .asskl , w.uk 2 , w. ek 3 w. s k5 2
your programs. Of course , the above examples
contain a mi~ lure of s ty les; you wi ll want to and then have to work with the 52 variab les
choose sO~~e st y le that looks best to you and each having a separate name. Instead you can
use it consistentl y. The equivalence of upper declare:
and lowercase also means that

REAL ARRAY W S~~kS (1:52)
TOTAL I to tai I Tot a l I toT al .ic.

The array declaration consists of one of the data
are all instances of the same identif ier. So that type words (REAL, INTEGER, BOOLEAN, STRING)
while it is desirable to be consistent , forgetting followed by tne word ARRAY followed by the
occasi onally doesn’t hurt anything. identifier followed by the dimensions of the

array enclosed in [ )‘s. The dimensions give the
Some programmers use uppercase for the bounds of the array. The lower bound does not
s tandard wo rds like BEGIN, I1’JTEGER, END, etc. need to be 1. Another common value for the
and lowercase fo r their identifiers. Others lower bound is 0, but you may make it any thing
reverse this. Another approach is uppercase for you like. (The LOADER will have di f f icul t ies if the
actual  program code and lowercase for lower bound is a number of large positive or
comments. It is important to develop some style negative magnitude.) You may declare more than
which you feel makes your programs as easy to one array in the same declaration provided they
read as possible. are the same type and have the same

dimensions. For example , one array might be
Another important element of program clari ty is used for the total employee salary paid in the
the format. The Sail compiler is free format week which will be a real number , but you mig ht
which means that blank lines, indentations , extra also need to record the total employee hours
spaces , etc. are ignored. Your whole program worked and the total profit made (one integer
could be on one line and the compiler wouldn’t and one real value) so you could declare:
know the difference. (Lines should be less than
250 characters if a listing is being made using INTEGER ARRAY hours (1:52 1 ;
the compiler listing options.) But programs REAL AR RAY s a l a r i e s , prof it .  (1:521 1
usuall y have each statement and declaration on a
separate line with all lines of each block These 3 arrays are examples of parallel arrays.
indented the same number of spaces. Some
programmers put BEGIN and END on lines by It is also possible to have multi-dim.nsioned
themselves and others put them on the closest arrays. A common example is an array used to
line of code. It is very important to format your represent a chessboard:
programs so that they are easy to read.

INTEGER ARRAY chessboard (1:8,1:8);

1,1 1,2 1,3 1,4 1 ,S 1,6 1,7 1,8
2 ,1 2,2 2,3 2 ,4 2 ,5 2 ,6 2 ,7 2 ,8 I
5,1 L2 8,3 L~

iI



SAIL TUTORIAL The ALGOL-Part of Sail

I n fact even the terminology used is the same, that an expression can be evaluated. It is a
Arrays , like matr ices and chessb oards have rows symbol or sequence of symbols that when
(across ) and columns (up-and-down). Arrays evaluated produces a value that can be assigned ,
which are stat ical l y allocated (all outer block and used in a computation , tested (e.g. for equalit y
OWN arrays ) may have at most 5 dimensions. with another value), etc. An expressi on may be
Arrays which are allocated dynamicall y may have
any number of dimensions. a) a cons tant

Each element of the array is a separate variable b) a variable
and can be used anywhere that a simple variable
can be used. We refer to the elemen ts by giving c) a construction using constants ,
the name of the array followed by the particular variables , and the various operators on

J coordinates (called the subscripts ) of the given them.
element enclosed in [J’s, for examp le: wee~s (34 ) ,
w..ks(271 , ch.s.board(2,5J , and eh.s;board ($,81.

Examples of these 3 types of expressions in
assignment state ments are:

2.3 St atements DON’T FORGET TO DECLARE VARIASLE S FIRST !

All of the statements available in Sail are listed I N T E G E R  i , j ;
in the Sail manual (Sec. 1.1 with the syntax for REAL ~~~
the statements in Sec. 3.1). For now , we will STR ING s , t ;

discuss the assig nment statement , the PRINT BOO LEAN ~~~~~~~ osu;
statement , and the lF...THEN stateme nt which will INTEGER ARRAY arry (1:181 ;
allow us to give some sample programs.

s~ t 2; COMMENT now i - 2;
2.3.1 Assignment Statement x 2.4; COMMENT now x . 2 .4~s “ abc ” ; COMMENT now LOUIs , “abc ”) ;
Assignment statements are used to assign values iw • TRUE; COMMENT now is~ TR UE ;
to variables: osw • FALSE ; COMMENT now o;w . FALSE ;

arry (41 22; COMMENT now ~rr y(4)  — 22;
varia b l e • expres sion

b) J • I; COMMENT now i j — 2;
The variable being assigned t o and the x; COMMENT now x . y • 2.4 ;
expression whose value is being assigned to it t • s ; COMMENT now EOU (s , “abc ”)

are separated by the character which is a AND (OU(t , “ab c ’) ;
backwards arrow in 1965 ASCII (and Stanford arry i8l • j ; COMMENT .j.arry (81~~2;
ASCII ) arid is an underbar (underlining character )

F in 1968 ‘ASCII. The assignment statement is c) I • a • ~ ; COMMENT • 2 AND i . 6;
often read as: x 2y — I; COMMENT y.2.4 AND .6

AND x — 1 . 2 ;
var i able becomes expr ession arry (3J • i/j ; COMMENT .6 AND j 2

OR var~ abi e is ass igned h, valu e of expres sion AND arry (3)-3;
OR variable gets •xpre ;sion Iosw • sw OR osw; COMMENT sw — TRUE

AND o;w . FALSE

You may assign values to any of the four types AND ecu - TRUE ;
— I of variables (INTEGER, REAL , BOOLEAN , STRING)

or t o the individual variables in arrays. NOTEI: Most of the operators for strings
are differ ent than those for the

Essent iall y, an expression is something that has a arithmetic variables. The difference
value. An expression is not a statement between s and EQU will be covered
(although we will see later that some of the later.
constructions of the language can be either
statements or expressions depending on the NOTE2: Logical operators such as AND
current use). It is most important to remember and OR are also available for

boolean expressions.

5

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Tb. ALGOL-Part 0$ Sail SAIL TUTORIAL

NOTE3: You may put “comments ” NOTE: The printing f ormat for reals
anywhere in your program by using (number of leading zeroes printed
the word COMMENT followed by the and places after the decimal point)
text of your comment and ended is discussed in the Sail manual under
with a semi- colon (no semi-colons t ype conversions.
can appear wi thin the comment ).
Generall y comments are placed
between declarations or statements
rather than inside of them. 2.3.3 Built-in Procedures

NQTE4: In all our examp les , you will see Using just the assignment statement , the PRINT
that the declarations and statemen ts statement , and three built-in procedure s , we can
are separated by semi-colons , wri te a sample program. Procedures are a very

important feature of Sail and you will be wri t ing
In a later sect ion , we will discuss: 1) type many of your own. The details of procedure
conversion which occurs w hen the data types of writing and use will be covered in Section
the variable arid the expression are not the 2.7. Without giving any details now , we will
same , 2) the order of evaluation in the just say that some procedures to handle very
expression , and 3) many more complicated common tasks have been writ ten for you and are
expressions including string expressi ons (first we available as built-in procedures. The SORT,
need to know more of the string operators) . INC HW L and CVD procedures that we will be

using here are all procedures which return
values. Examples are:

2.3.2 PRINT Statement . - INCHUL;
I • CvD (s ) ;

PRINT is a relatively new but very useful x • 2 • SQ RT ( i ) ;
sta tement in Sail . It is used for outputting to the
user ’s terminal. You can give it as many Procedures may have any number of arguments
argumen ts as you want and the arguments may (or none). SORT and CVS have a single argument
be of any type. PRINT firs t converts each and INCI4WL has no arguments (but does return a
argument to a string if necessary and then value). The procedure call is made by writing
outputs it. Remember that only strings can be the procedure name followed by the argument(s)
printed anywhere. Numbers are stored in parentheses. In the expression in which it is
internall y as 36-bit words and when they are used, the procedure ca ll is equivalent to the
output in 7-bit bytes for text the results are value that ii returns.
very strange. Fortunately PRINT does the
conversion to strings for you automatically, e.g., SORT returns the square root of its
the number 237 is printed as the string “237’. argument.
The format of the PRINT statement is the word
PRINT followed by a list of arguments separated CVD returns the result of converting its
by commas with the entire list enclosed in string argument to an integer. The
parentheses. Each argument may be any string is assumed to contain a
constant , variable , or complex expression. For number in decimal representation--
example , if you wanted to output the weekly CVO converts strings containing
sa lary totals from a previous example arid the octal numbers, e.g., after executing
number of the current week was stored in
INTEGER cu rMee~, you might use: i CVD (” 14724 ” ) ; • CVO ( ” 14 7 24 ” ) ;

PRINT( WEEK “, cur WeeS , then the following
Sa la r i es  “, s a ia r i .s I curW ee~f l ;

I • 14724 AND • 6612
which for curWe.~ • 28 and the array element
s a i a r i es ( 251  • 27S43. 52 would print .~ut: would be true.

W E LL 28: Salar ies 27543.12 INCHWL returns the next line of typing

6



I
SAIL TUTORIAL The ALGOL-Part of Sai’

f rom the user at the controlling

£ terminal . nuilib — CVO (INCHiJL) ;

NOTE: In TENEX -Sail the INTTY procedure and eliminate the declaration of the STRIHG r.pii~.
is ava ilable and SHOULD be used in Next we can eliminate numb and take the SORT
preference to the INCHWL procedure directl y:
for inputting lines. This may not be
mentioned in every exam ple , but is sq roo l • SORT (CVo ( INCH UL i ) ;
very impor tant for TENEX users to
remember. At first you might think that we could go a step

further to
So, f or the statement s INCHUL ; , t he value of
INCHWL will be the line typed at the terminal PRINT t’ANSi “,SORT~CVOI1$CHULfl);

I (minus the terminator which is usually carriage
return). This value is a string and is assigned and we could as far as the Sail syntax is
here t o the string variable s . concerne d but it would produce a bug in our

program. We would be printing out “ANS: - right
f So fa r we have seen five uses of expressions: as after “T ype number: “ before the user would have

the right-hand-side of the assignment statement , time to even start t yping. But we have
as an ac tual par ameter or argument in a considerabl y simp lified our program to:
pr ocedure call , as an argument to the PRINT
statement , for giving the bounds in an array BEGIN
declaration (except for arrays declared in the REAL sqroot;

outer block which must have constant bounds), PRINT (“T y pe numb er: “I ;

and for the array subscripts for the elements of sqro ot • SORT (CVD (INCHUL)) ;
arrays. In fact the whole range of kinds of PRINT (“AN Si “ ,sqr oo t ) ;

expressions can be used in nearly all the places END;
tha t constants and var iables (which are
par ticular kinds of expressions) can be used. Remember that intermediate results do not need
Two excep tions to this that we have already to be stored unless you will need them again
seen are 1) the left-hand-side of the assignment later for something else. By not storing results
s tatement (you can assi gn a va lue to a var iable unnecessarily, you save the ex t ra  assignment

i but not to a constant or a more complicated statement and the storage space by not needing

I expression) and 2) the array bounds for outer to declare a variable for tempora ry storage.
block arrays which come at a point in the
program before any assignments have been

I made to any of the variables so only constants
I may be used--the declarations in the outer block 2.3.4 IF...THEN Statement

are before any program stateme nts at all.
The previous examp le included no error

In general , any construction that makes sense to checking. There are several fundamental
I you is probably legal in Sail. By using some of programming tasks that cannot be handled with

the more complicated expressions, you can save jus t the a~c’gnrnent and PRINT statements such
yourself steps in your program. For examp le, as 1) conditiona ’ tasks like checking the value of

a number (is it negative?) and taking action
I BEGIN according to the result of the test and 2) looping

REAL sqroot ; or iterative tasks so that we could go back to
— T INTEGE R numb 1 the beginning and ask the user for another

STRING rs p I~~; number to be processed. These so rts of
PRIN T (”T ype number : ‘ ; functions are performed by a group of
repiy ~ INCHWL ; sta tements called control state ments. In this

I numb..CVU repl y ;  secti on we will cover the IF..THEN statement for
sqroo ;~ SORT (numb ); conditionals. More advanced control statements
PRINT (”RNS: “,sqroot) ; will be discussed in Section 2.6.
END;

I 
There are two kinds of IF...THEN statements:

can be shortened by several steps. First , we
can combine INCHUL with CVO : IF boo iean expression THEN Sta tement

1
I

t 
______- .~~~~~~- - — - .



The ALGOL-Part of Sail SAIL TUTORIAL

IF b o oigan express i on THEN s ta tement COMMENT “3 RHO p~2 ;
ELSE statem ent END 1

A boolean expression is an expression whose It is VERY IMPORTANT to note that NO semi-colon
value is either true or false. A wide variety of appea rs between the statement and the ELSE.
expressions ca n effec tivel y be used in this Semi-colons are used a) to separate declarations
position. Any a rithmetic expression can be a f rom each other , b) to separate the final
boolean; if  i ts  value 0 then it is FALSE. For any decla ration from the first statement in the block ,
other value , it is TRUE. For now we will just c) to separate statements from ea~h other , ar~d
consider the followin g three cases: d) to mark the end of a comment. The key point

to note is that semi-colons are used to separate
1 ) BOOLEAN variables (where and NOT to terminate. In some cases it does&t

• rrorgw , bas e 8, and •iniVsr sio n are hurt to put a semi-colon where it is not needed.
declared as BOOLEANs): For examp le , no semi-col on is needed at the e”

of the program but it doesn’t hurt. However , t r c ~
IF errOrsw THEN format

PRINT( ”Th.re ’s been an error. ’)

IF base8 THEN d i g i t s  • “I ‘34567” IF exprus sion THEN s i ats m.r i t ; ELSE si ai e m er t
ELSE d i g i t s  ‘d123456789’

IF miniVersion THEN countir • ia makes it d ifficult for the compiler to understand
ELSE count e r • 188; your code. The first semi—colon marks the end

of what could be a leg itimate IF...THEN state ment
2) Expressions wit h relational and it will be taken as such. Then the com piler

operators such as EQU, — , <, >, LEO, is faced wi th
NEQ, and GEQ:

ELSE state me nt

IF x < currentSmall.st THEN
current5ma l i e st  • x ;  which is meaningless and will produce an error

IF divisor NEQ 0 THEN message.
quot i e n t x d i v i ~ end/d iv i sor ;

IF I GE Q 0 THEN l .i+1 ELSE i .i-1 ; The following i s a part of a samp le program
which uses several IF...THEN statements:

3) Complex expressi ons formed
w i t h  the logical operators AND , OR , and BEGIN BOOLEAN verbe ssew ; STRING rep i y ;
NOT:

PR INT (”Verb ose ode~ (Typ a V or N ) : “) ;
IF NOT •rror;w THEN reply • INCHUL; COMMENT INTTY for TENEX ;

answ er sl cou nte rJ • auotis n t ;
IF x<0 OR y<O THEN IF rsply.. ’V” OR re piy .”y ” THEN verbosesw • TRU E

PR IN T (”Ne gat iv, numb ers not allowed. ”) ELSE
ELSE z SQ RT (x ) .SO RI ( y l; IF repi y. ’N” OR rspl y.’n’ THEN verbosesw .FRLSE ;

In the IF..THEN statement , the boolean expressio n IF verbose iw THEN PRIP4T (”- long msg- ”)

is evaluated. If it is true then the statement ELSE PRINT (” —ihor t msg- ”);

foll owing the THEN is executed. If the boolean
expr ession is false and the particular statement COMMENT now a l l  our messages p r i n ted  out to
has no ELSE part then nothing is done. If the terminal w i l l  be cond i t iona l on verb ois i w ;

p. boolean is false and there is an ELSE part then ENDS
the statement following the ELSE will be
execu ted. There are two interesting points to note about

this sample program. First is the use of — rather
BEG IN BOOLEA N boot ;  INTEGER I, j ;  than EQU to check the user ’s reply. EQU is used
booI~ TRUE ; .1; j~ 1~ 

to check the equality of variables of type STRING
IF boo i TH EN i~ I.1; COMMENT .2 AND j.1~ and — is used to check the equality of variables
IF boo i THEN i~~I,1 ELSE j.j.1 ; of type INTEGER or REAL. If we were asking the

COMMENT .3 AND ~ 1; •iser for a full word answer like “yes” or “no””
boo l~~f a I s e ;  instead of the single character then we would
IF boo t TH EN .1,1; COMMENT .3 ANO j.1; need the EQU to check what the input string was.
IF boo i THEN I..i,1 ELSE ~.j •1;

8



I

SAIL TUTOR IAL The ALGOL-Part of Sail

However , in this case where we onl y have a tes ted in a nested IF...THEN statement. If that
si ng le character , we can use the fact that when a likely case is true , no fur ther testing will be
string (either a string variable or a string done.
constant ) is put somep lace in a pr ogram where
an integer is expected then Sail automaticall y To avoid ambiguity in parsing the nested
converts to the integer which is the ASCII code IF ..THEN..ELSE construction , the following rule is
for the FIRST character in the string. For used: Each ELSE matches up with the last
examp le , i n the environment unmatched THEN. So that

STRING s t r ;  s t r  • “A ’ 1 IF ex pl THEN IF isp? THEN si ELSE s2

all of the followin g are true: will group the ELSE with the second THEN which
is equivalent to

“R ” - sir — 65 • “ i l l
P” NED “a ” IF aspi THEN

Sir NED “a ” BEGI N
sir • 1 • P • 1 • ‘152 “B” IF e xp2 THEN .1 ELSE s2 ;
s i r  • “Aard .~ai i ” END;
NOT EQU ( s t r , “P a rdv ar ~ ” )

and also equivalent to
(‘10 1 is an octal integer constant.)

IF aspi RH O ex p 2 THEN ci ;
When you are dealing with single character IF exp i RHO NOT exp 2 THEM s2;
strings (or are only interested in the first
characte r of a string) then you can treat them You can change the structure with BEGIN/END to:
like integers and use the arithmetic Operators
like the — operator rather than EQU. In general IF aspi TH EN
(over 90% of the time), EQU is slower. BEGIN

IF ex p 2 THEN si
A second point to note in the above IF...THEN END ELSE s2
examp le is the use of a nested IF...THEN. The
state ments following the THEN and the ELSE may which is equivalent to
be any kind of statement including another
IF..THEN statement. For example , IF •xpi RHO exp2 THEN 51;

IF NOT sspi THEN s2 ;
IF upp erOn l y THEN letters • “ABC”

ELSE IF lower Ovi ly THEN l e t t e r s  • “abc ” There is another common use of BEGIN/END in
ELSE l s t t e r s  • “PB Cabc ” ; IF..THEN statements. All the examples so far

have shown a single simple statement to be
This is a very common construction when you executed. In fact , you often will have a variety
have a small lis t of possibilities to check for. of tasks to perform based on the condition
(Note: if there are a large number of cases to be tested for . For example , before you make an
checked use the CASE statement instead.) The entry into an array, you may want to check that
nested IF..THEN..ELSE statements save a lot of you are within the array bounds and if so t hen
processing if used properly. For example , both make the entry and increment the pointer
without the nesting this would be: so that it will be ready for the next entry:

iF uppsr On i y THEN l e t t e r s  • “RIC” ; IF pointer LEO max THEN
IF IowerO niy THEN l e t t e r .  • “ abc ” ; BEGIN
IF NOT upp.rOniy AND NOT lowerOrt l~ THEN da t a ipo i nter ) • ne wEn try ;

l e t t e r s • “A BC abc ” ; p O i nter ~ poi nt s r  • 1;
END

Regardless of the values of upperOn l y and ELSE PRINT (”Rrray DATA Is alread y f u l l . ” ) ;
iow .rOnI~ , the boo lean expressions in th. three
IF ..THEN statements need to be checked. In the Here we see the use of a compound statement.
nested version, if uppe rOn l W is TRUE then lower On l y Compound statements are exactl y l ike blocks
will never be checked. For greatest efficiency, except that they have no declarat ions. It would
the most likely case should be the firs t one also be perfectly acceptable to use a block with

9



The ALGOL-Part of Sail SAIL TUTORIAL

dec la ra t i ons  where the compound state ment is COMMENT updates ptr  S f,li, nest  arra y

used here . Ir, fa r t both blocks and compound slot in  single step;

statements ARE statements and can be used ANY
place that a simp le statement can be used. All of Note that the assignment operator has low
the stateme nts betwee n BEGIN and END are precedence and so you will often need to use
executed as a unit (unless one of the statements parenthesizing to get the proper order of
itself causes the fl ow of execution to be evaluation. This is an area where many coding
changed) errors commonly occur .

IF lx j OR boo le THEN

2. ~i Expresstons is parsed like

We h? .n a irea dy seen many of the operators IF l~~( j OR boo l e) THEN
used in ex~~essions. Sections 4 and 8 of the Sail
manual cover the operators , t he order of rather than
eva luat io n of expressions , and type conversions.
Append ix 1 of the manual gives the word IF ( l x J )  OR boole THEN
equivalents for the sing le character operators ,
e . g L~Q for the less-than-or-equal-to sign, See the sections in the Sail manual referenced
which are not available except at SU-Al. You above for a more complete discussion of the
should read these sections especially for a order of evaluation in expressions. In general it
comp lete list of the arithmetic and boolean is the normal order for the arithmetic operators ;
oper3to rs available (the string operato rs will be then the logical operators AND and OR (so that
covcred s ho rt l 1 in this TUTORIAL ). A short OR has the lowest precedence of any operator
discussion Of type conversion will be g iven later except the assignment operator ); and left to right
in this s ec f i oo  but you should also read these order is used for two operato rs at the same
se tions in the Sail manual for complete det ails level (but the manual gives examples at
on type conversions , excep tions). You can use parentheses anywhere

t o specif y the order that you want. As an
There are three kinds of expressions that we examp le of the effect of left-to-right evaluation ,
have not u”~ed yet : assignment , conditional , and note that
case exp ressions. These are much like the
statements of the same names. indexe r~ 2;

arry ( index er) .( indexer . nd. xer.1 )

2.4 .1 Assignment Expressions
will put the value 3 in arry l2 l , since the

Anywhere that you can have an expression , you destination is evaluated before indexer 15
may at the same time make an assignment. The incremented.
value will be used as the value of the expression
and also assigned to the given variable. For A word of caution is needed about assignment
example: expressions. Make sure if you put an ordinary

assignment in an expression that that expression
IF (rep I 9x INCHUL) • “‘“ THEN .... is in a position where it will ALWAYS be
COMMEN T inputs repl y and mac as f i r s t  tes t  evaluated. Of course ,

on it  in s i ng l e  st e p;
IF i j  THEN .1.1;

—. ., IF (co unt sr .counter ,1) ma cEntry THEN
CO MMENT updates counte r and c h.c 5s it for will not always increment i but this is the

over t  l ow in one step;  intended result. However , the following is
unintended and incorrect:

couri t er .ptr .next ioc~ 8;
COMMEN T i n i t i a l i z e s  several  var iab les  t o l  IF v erbol uiw THEN

in one saat. .ent; PR INT( ”The square roo t of “ ,numb ,” is ,
sqroot .SORT Inumb ) ,

arry lp ir .ptr +1) . new Entr y ELSE PRINT (sqroo l)

10

A



I
SAIL TUTORIAL The ALGOL-Part of Sail

If verbo cecw • FALSE, the THEN portion is not converted to INTEGER and then converted to
executed arid the assignment to sqroot is not REAL for the assignment to
made. Thus sqroot will not have the appropriate 1-IF flag THEN 2 ELSE 3.5 ; wi l l  assign either 2.1
value when it is PRINTed. Assigning the result of or 3.1 to (assuming s is REAL). Examples are:
a comput ation to a variable to save recomputing
it is an excellent practice but be careful where RERL ARRAY rss u l  5

you put the assignment. IIiI F m i n i v e r s i o n  THEN ii ELSE Ill);

Another very bad place for assignment PRINT (IF found THEN words ( I)
expressions is following either the AND or OR ELSE “Word not found. ”) ;
logical operators. The compiler handles these uy COMMENT w o r d s t i )  must be a s t r i n g ;
performing as little evaluation as possible so in

profit • IF (net • income—cost ) ‘ 8 T H E N  net
.spl OR •x p2 ELSE Ii

the c ompiler wilt first evaluate expi and if it is These conditional expressions will often riced to
TRUE then the compiler knows that the entire be parenthesized.
boolean expression is true and doesn ’t bother to
evaluate axp 2. Any assignments in exp2 will not
be made since asp? is not •valuated. (Of course ,
if espi is FALSE then •sp2 will be 2.4.3 CASE Expressions
evalua ted.) Similarl y for

CASE statements are described in Section
as p i AND exp 2 2.6.4 below. CASE expressions are also

allowed with the format:
if es pi is FALSE then the comp iler knows the
whole AND—expression is FALSE and doesn’t CA SE intege r OF (s x p B , es p l esp N)
bother evaluating esp2 .

where the first case is always 0. This takes the
As with nested IF...THEN...ELSE statements , it is a value you give which must be an integer
good coding practice to choose the order of the between 0 and N and uses the corresponding
expressions carefully to save processing. The expression from the list. A frequent use is for
most likel y expression should be first in in OR error handling where each error is assigned a
expression and the least likely f irst  in an AND number and t he numbe r of the cu rr ent error is
expression. put in a variable. Then a statement like the

following can be used to print the proper error
message:

f 2.4.2 Conditional Expressions PRINT(CPSF errno OF
(“Zero d i v i sion at t e mpted ,

Conditionals can also be used in expressions. “No neg a t i v e  nu~t~irs a l i ow .d” ,
These have a more rigid structure than “Input not a .

r conditional statement s. It must be
Remember that •rrno here must range from 0 to

IF boo lean express Ion THEN aspi ELSE asp2 2; otherwise, a case overflow occurs.

where the ELSE is not optional.

N. 8. The type of a conditional expression is the 2.4.4 String Operators
type of espi. If .sp2 is evaluated , it will be

f converted to the type of espi. (At compile time The STRING operators are:
it is not known which wIll be used so an
arbitrary decision is made by always using the LO U Test for strIng equal i t yi
t ype of aspi .) Thus the statement , s.”A B C” ; t . abc ; test.EQu (a ,ti ;
c-IF f l ag  THEN 2 ELSE y; , will always assign an RESUtTI test • FRLSE
INTEGER to c. If s and y are REALs then ~ is

11



Th. ALGOL-Part of Sail SAIL TUTORIAL

S Con c a l e r i at s two strin gs toge ther ; From this we can see that LENGTH and LOP are
s .. abc ” ; t - ” def ; u .slt; very eff icient operations. LENGTH picks up the
RES ULT S EOU (u ,”abc def ”) • TRUE . length from the descriptor word; and LOP

decremen ts the length by 1, picks up the
LENGTH Retu rn,  the len gt h o f a s t r i n g ;  character designated by the byte pointer , arid

s - ” abc ” ; i. LENGT H( s ) ; increments the byte pointer. LOP does not need
RESULT: • 3 . to do anything with string space. Concatenations

with & are however fairl y inefficient since in
LOP Rss o ~ es the f i r s t  ch ar in a string general new strings must be created. For s S

arid re ; u~ r’s i t ;  th ere is usuall y no way to change the descriptor
s- abc ” ; i . LO Pis l ; w ords to come up with the new string (unless s
RESULT: (EQIJ(, , “bc ”) AND and t are already adjacent in string space) .

E Q U ( t , a ” ) )  • TRUE . Instead both s and t must be cop ie d into a new
string in string space. In general since the

Although LE r~GTH and LOP look like procedures pointer is kept to the beginning of the string, it
s y n t a c t a l l y ,  they actuall y compile code ‘ in-line ”. is less expensive to look at the beginning than
This means that they compile ve ry fast code. the end. On the other hand, when concatenating,
However , one unfortu nate side-effect is tha t LOP it is better to keep building onto the end of a
cannot be ur .ed as a statement , i.e., you cannot given string rather than the beginning. The
say LOP is ) ; if you j u~t want to throw away the runtime routines know what is at the end of
f i r s t  charac ter  ot the string. You mus t always string space and, if you happen to concatenate
ei t her u’e or assign the character returned by to the end of the last string put in, the routines
LOP even if you don ’t want it for anything, e.g., can do that efficiently without needing to copy
j unk .LOP isi ; . Another point to note about LOP is the last string.
t h at  it ac tua l l y removes the character from the
original string. If you will need the intact string Assigning one string variable to another , e.g., for
again , you should make a copy of it hefore you making a temporary copy of the string, is als o
star t  LOP’ ing, e.g., ;aw p Copy .s ; . fast since the string descriptor rather than the

text is copied.
A l i t t le background on the implementa tion of
strings should help you to use them more These are general guidelines rather than str ict
e f f ic ient l y. Inefficient use of strings can be a rules. Different programs will have different
significant ineffic iency in your programs. Sail specific needs and features.
sets up an area of memory called string space
where all the actual  strings are stored. The
runtime system increases the size of this area
dynamicall y as it begins to become full. The 2.4.5 Substrirtgs
runtime system als o performs garbage collections
to re t r i e ~~r space taken by strings that are no Sail provides a way of dealing with selected
longer needed so that the space can be reused. subportions of strings called substrings. There
The text of the str ings is stored in string space. are two different ways to desi gna te the desired
Nothing is put in string space until you actually substring:
specif y what the string is to be, i.e., by an
assignment statement. At the time of the s t i  TO ~)
declarati on, nothing is put in string space. s (i FOR ji
Instead the compiler sets up a 2-word string
descriptor for each string declared. The first where Ii TO j I means the substring starting at
word c ontains in its left-half an indication of the ith character in the string through the jth
whether the string is a constant or a variable character and Ii FOR j i is the subs tring start ing
and in it s rig ht-half the length of the string. The at the ith character that is j characters long.
second wo rd is a by te pointer to the location of The numbering starts with 1 at the fi rst
the start of the string in string space. At the character on the left. The special symbol INF can
time of the declaration , the length will be zero be used to refer to the last character (the
and the byte pointer word will be empty since rightmost ) in the string. So, s(IN F FOR n is the
the string is not yet in string space. last character ; and at ? TO INfl is all but the first

six characters. If you are using a substring of a

12 

II



I
SAIL TUTORIAL. The ALGOL-Part of Sail

string a rray element then the format is STRING ~
arr y t i nd ex ) Ci  TO j I .  , • • 18 1  S ~iS2 S ‘i13;

Suppose you have made the ssi gr. ient will make the string “ABC .
5 abcd. i”  . Then,

The other common conversions that we have

~
t i  TO 3) ii “abc ” seen are integer /real to boolean and string to

ii? FOR 3) is “ bed ” boolean. Integers and reals are true it non-zero;
sti TO INFI is “abcdef ” strings are true if they have a non-zero l eng th
s C I N F - 1  TO I NFJ  is “ e t ”  and the first character of the string is not the
it )  TO 1)S ”X Ss (4  TO INF) is “abcXd e f ” . NUL character (which is ASCiI code 0).

Since substrings are parts of the text of their You may also call one of the built-in t ype
source strings , it is a very cheap operation to conversion procedures explicitl y. We have used
break a string down, but is fairl y expensive to CVD extensivel y to convert strings containing
build up a new string out of substrings. digits to the integer number which the digits

represent. CV D and a number of other useful
type Conversion procedures are described in
Section 8.1 of the Sail manual . Also this secti on

2.4.6 Type Conversions discusses the SETFORMAT procedure which is
used for specif y ing the number of leading zer oes

If you use an expression of one type where and the maximum length of the decimal portion of
another type was expected , then automatic type the real when printing. SETFORMAT is extremely
conversion is performed. For example , useful if you will be outputting numbers as

tables and need to have them automaticall y line
INTEGER i~ up ver ticall y.
i • SORT (S ) ;

wilt cause 5 to be conve ted to real (because
SQRT expects a reat argument) and the square 2.5 Scope of Blocks
root of 5.0 to be automaticall y converted to an
integer before it is assigned to i which was So far we have seen basicall y only one use of
declared as an integer variable and can only inner blocks. With the IF..THEN statement , we
have integer values. As noted in Section 4.2 of saw that you sometimes need a block rather than
the Sail manual, this conversion is done by a simple statement following the THEN or ELSE
truncating the real value, so that a group of statements can be executed

r as a unit.
Another example of automatic type conversion
that we have used here in many of the sam ple In fact , blocks can be used within the program
pr ograms is: any place that you can use a single statement.r Syntacticall y, blocks are statements. A typical

IF rep i~ • Y” THEN program might look like this:

where the — operator always expects integer Or BEGIN “ prog ”

f real arguments rather than strings. Both the
value of the string variable r•piy and the string
constant “y will be converted to integer values BEGIN “ i n i t i a l  cat ion ”

— before the equality test. The manual shows that
this conversion, string-to-integer , is performed
by taking the first character of the string and END “ i n i t i a l i z a t i o n ”
using its ASCII value. Similarly converting from
integer to string is done by interpreting the BEGIN “main part ”

integer (or just the rightmost seven bits it it is
less than 0 or it is too large——that is any number BEGIN p~o~e,s data ”
over 127 or ‘177) as an A SCII code and using the
character that the code represents as the string.
So, for example , BEGIN “ outpu t re s u i t s ”

~1
~1



The ALGOL-Part of Sail SAIL TUTORIAL.

block UNLESS the inner block also has a variable
(NO ou tp u t results ” of the same name declared (a very bad idea in

general). The portion of the program , i.e., the
E N D  “ process data ” blocks , in which the variable is available is called

the scope of the variable.
(NO “main par t ” BEGIN main

INTEGE R I, ;;
BEGI N “ f i n i s h  up ” i.5 ;

p.?;
PRIPIT ( ”CA S( A ; i.~~, ,~ j .” , j) ~

E N D  “ f i n i s h  up ” BEGIN “inner ”
INTEGER i , &;

(NO “prog ”
k .3;

The declarations in each block es tablish variables PRINT(”CAS ( B; i. ” i , ” j. ” , j , ” ~~~~~~~~~
which can only be used in the given block . So
another reason for using inner bl ocks is to END “inner ”

manage variables needed for a specific short PRINT (”CRS( C; i. ” , i,” p.” , j i;
range task . (ND “main ”

Each block can (should) have a block name. The Here we cannot access k except in block “inner ’”.
name is given in quotes following the BEGIN and The variable j is the same throughout the entire
END of the block The case of the letters , program. There are 2 variables both named i.
number of spaces, etc. are important (as in string So the program will print out:
consta nts ) so that the names “MAIN LOOP”,
“Main Loop”, “main loop”, and “Main loop” are all CA SE A : .5 p.2
differ ent and will not match. There are several CASE B: “)S p.2 k.3
advantages to using block names~ your programs CASE C; t.S p.5
are easier to read, the names will be used by the
debugger and thus will make debugging easier , Variables are referred to as local variables in the
and the compiler will check block names and block in which they are declared. They are
report any mismatches to help you pinpoint called global variables in relation to any of the
missing END’s (a very common programming blocks nested in the block of their declaration.
error) . With both a local and a global variable of the

same name , the local variable takes precedence.
The above examp le shows us how blocks may There are three relationships that a variable can
nest. Any block which is completel y withi n the have to a block:
sc ope of another block is said to be nested in
that block. In any pr ogram, all of the inner 1) It is inaccessible to the block if
blocks are nested in the outer block. Here, in the variable is declared in a block at the
addition to all the blocks being within the “pro( same level as the given block or it is
block, we find “output results ” nested in declared in a block nested within the
“process data ” and both “output results ” and given block.
“process data ” nested in “main part”. The three
blocks called “initialization ”, “main part” and 2) It is local to the block if it is
“finish up” are not nested with relation to each declared in the block.
other but are said to be at the same level. None
of the variables declared in any of these three 3) It is global to the block if it is
blocks is available to any of the others. In order declared in one of the blocks that the
to have a variable shared by these blocks , we given block is nested within.
need to declare it in a block which is “outer” to
all of them, which is in this case the very
outermost block “prog . Often the term “global variables ” is used

spec ifically to mean the variables declared in the
Variables are available in the block in which they outer block which are global to all the other
are declared and in all the blocks nested in that blocks.

14

I



I
SAIL TUTORIAL The ALGOL-Part of Sail

In reading the Sail manual , you wil l see the arithmet ic variables unless you need some other
terms: allocation, deallocation, initialization , arid specific initial value. You should also init ial ize all
reinitialization . It is not important to comp le tel y global scalars (and outer block arrays ) at the
understand the implementation details , but it is start of your program to be on the safe side.
extremel y important to understand the ef fects.  They are initialized for you when the compiled
The key point is that allocating sto rage for data program is later run, but their values will not be
can be handled in one of two ways. Storage reinitia lized if the program is resta r ted while
allocation refers to the actua l setting up of data already in core and the results will be very
locations in r,iemory. This can be done 1) at strange.
compile time or 2) at runtime. If it is done at
runuime then we say that the allocatio n is One exception is the blocks in RECURSIVE
dynamic. Basicall y, t is a rrays which are PROCEDUREs which do have all non-OWN
dynamicall y allocated (excluding outer block variables pr operly handled and ;nitialized as
arrays and other ar rays which are declared as recursive calls are made on the blocks.
OWN). LISTS, SETS, and RECORDS which we have
not discussed in this section are also allocated If you should want to ctear an array, the
dynamicall y. The following are allocat e d at command
compile time and are NOT dynamic: scalar
variables (INTEGER, BOOLEAN, REAL and STRING) ARRCtJ (arr~ )

except where the scalar variable is in a
recursive procedure, outer block arrays , and will clear arry (set string arrays to NULL and
other OWN arrays. ALGOL users should note this arithmetic to 0). For arithmetic (NOT string)
as an important ALGOL/Sail difference. arrays ,

Dynamic storage (inner block arrays , etc.) will be RRRCLR (a rry , vat )

allocated at the point that the block is entered
and deallocated when the block is exited. This will set the elemi~.nts ot m y  to ~si .
makes for quite efficient use of large amounts of
storage space that serve a short term need. See Sections 2.2-2.4 of the Sail manual for more
Also, it allows you to set variable size bounds information on OWN, SAFE, and PRELOADED
for these arrays since the value does not need arrays arid Section 8.5 for the ARRBLT and
to be known at compile time. ARRTRAN routines for moving the contents of

arrays.
At the time that storage is allocated , it is also
initialized. This means that the initial value is
assigned---NULL for strings and 0 for integers,
reals , •nd booleans. Since arrays are allocated 2.6 More Control Statements
each time the block is entered, they are
reinitialized each time . We have not yet seen 2.6.1 FOR Statement
any cases where the same block is executed
more than once but this is very frequent with The FOR statement is used for a definite number
the iterative and looping control statements , of iterations. Many times you will want to

repeat certain code a specific number of times
Scalar variables and outer block arrays are not (where usually the number in the sequence of
dynamically alloc ated. They are allocated by the repetitions is also important in the code
compiler and wi li receive the inital null or zero performed). For example ,
value when the program is loaded but they will
never be reinitialized. While you are not in the FOR i • 1 STEP 1 UNTIL S 00
block, the variables are not accessible to you but PRIN T ( i , “ “, SQR T ( i ) ) ;
they are not deallocated so they will have the
same valus when you enter the block the next which will print out a tab le of the square roots
time as when you exited it on the previous use. of the numbers 1 to 5.
uau.iiy ~uu will find tha i this is not what you
want. You should initialize all local sca lar The syntax of the (simple) FOR statement is
variables yourself somewhere near the start of
the block—-usually to NULL for strings and 0 for FOR var i ab le • sta .”tinq—va lue STEP increment

UNTIL end-va lue DO statement

15

I



Tb. ALGOL-Part of Sail SAIL TUTORIAL

The iteration variable is assigned the starti ng- BEG IN ~useArray
value and tested to check if it exceeds the end- INTE GER A RRAY esiSco r.,t1 ;numbTeitsl ;
value; if it is within the range then the state ment COIIflINT array has var i ab ie  bounds so •uit
after the DO is executed (otherwise the FOR be in inner bioc ~ ;
statement is finished). This comp letes the first INTEGER i

execution of the FOR-loop. COIiIIENT b r  us. as th . I t e ra t  ion v a r e a b i e ;

Next the increment is added to the va riable and FOR I • 1 STEP I UNTIL num bl es t s DO
it is tested to see if it now exceeds the end- BEGIN “ i i  arra y ”
value. If it does then the statement is not P R I P i T ( ”T , s t  Score I , ,  : “I ;

executed again and the FOR statement is finished. t e s t S c o r e s t  1 • CVD C INCHW L) ;
If it is within the maximum (Or equal to it) then (NO “I I i a r ray ” ;
the statement is executed again but all instances
of the i terat ion variable in the statement wil l FOR i I STEP 1 UNT IL nuebTests DO
nUw ha,e the new va lue. This incrementing and t o ; a i . i o i a i , t e s i S c o r e s l i l ;
checking and executi ng loop is repeated until the COrINENT not,  th a t t o i a i  was nit i a i ized to

iteration variable exceeds the end-value. 8 aco . s ;

For those users familar with GOTO statements (NO us.Array ” ;

and LABELs, the following two program
fragments for computing an, FRCT (n are IF numbT.si~ nsq 8 THEN avsra ge~ to ta i / n u m bT .et s ;
equivalent. P R I N T ( ” T i ~e averag , i s “ av erage , ” .” ) ;

END ‘averager~ ;
a’s
FOR i • 2 STEP 1 UNTIl n DO ens • ans * i ;  In the first FcP-loop, we see that i is used in the

PRINT statement to tell the user which test score
is equivalent to: is wan ted then it is used again as the array

subscript t o put the score into the i’th element
ans • of the array. Similarly it is used in the second

2; FOR-loop to add trie i’th element to the
ioo pi IF I n THEN GOTO beyond ; cumulative tota l .

ens • ens $ i;
, The iteration variable , start-value , increment , and

GOTO loop; end-value can all be reals as well as integers.
beyond: They can also be negatives (in which case the

maximum is taicen as a minimum ). See the Sail
There is considerable dispute on whether or not manual for details on other variations where
the use of GOTO statements should be multi ple va l ues can be given for more comp lex
enc ouraged and if so under what conditions. stateme nts (these aren ’t used often ) . One point
These statements are available i n Sail but will to note is that in Sail the end-value expression i~
not be discussed in this Tutorial , evaluated each time through the loop, while the

increment value is evaluated only at t he
Very often FOR-loops are used for indexing beginning if it is a complex expression , as
through arrays. For example , if you are opposed to a constant or a simp le variable. This
computing averages , you will need to add means that for efficiency, if your loop will be
toge ther numbers which might be stored in an performed very many times you should not have
arr ay. The following program allows a teacher very comp licated expressions in the end-value
to input the tota l number of tests taken and a position. If you need to compute the end-value ,
list of the scores; then the program returns the do it before the FOR-loop and assign the value
average score. t o a variable that can be used in the FOR-loop to

save having to recompute the value each time.
BEGIN “ averaqer ” This doesn’t save much and probabl y isn’t worth
PERt. avera get INTEGER numbT.st s , to ta I~ it for 5 or 10 iterations but for 500 or 1000 it
average•n umb Tests .to Ial~ Ip can be quite a sav ings. For example use:
COIItI(NT remember I. n It ai ls .  variables;
PPINT( ”Tota l number ef tes isi “I ; .ax~ I p t r — o f i s e t ) / 2;
numbTests~ CVD(1NCHUt ) ; FOR l~of fset STEP 1 UNTIL mas 00 $

I’



I
SAIL TUTORIAL The ALGOL-Part of Sail

rather than continues UNTIL the boolean becomes true rather
than WHILE it is true.

FOR ‘ o f f s e t  STEP 1 UNTIL (pir—o f f s e t ) / 2  DO i;
DO stateme nt UNTIL bo oi .an—e x pression

For example , suppose we want to get a series of
names from the user and store the names in a

2.6.2 WHILE...DO Statement and DO...UNTIL string array. We will finish inputting the names

Statement when the user types a bare carriage-return
(which results in a string of length 0 from

Often you will want to repeat code but not know INCI”fWL or INTTY).
in advance how many times. Instead the iteration
will be finished when a certain condition is met. ‘.5;
This is called indefinite iteration and is done with DO PRINT(”Name I” , i.I,1,” is :  “)

either a Wl-4ILE...DO or a DO...UNTIL statement. UNTIL (l(NCTH (namests).IN CHUL) • B

The syntax of WHILE statements is:
The equivalent of the DO...UNTIL statement using

IJH ILE boo lean—e xp ress ion DO s i a i s m e n t  LABELs and the GOTO statement is:

The boolean is checked and if FAL SE nothing is loop; si a tem snt ;
done. If TRUE the statement is executed and IF NOT booiean expres s ion THEN GOTO ioop ;
then the boolean is checked again, etc .

Note that the checks in the WHILE...DO and
For examp le, suppose we want to check through DO...UNTIL statements are the reverse of each
the elements of an integer array until we find an other. WHILE...DO continues as long as the
element containing a given number n: expression is true but DO...UNTIL continues as

long as the expression is NOT true. So that
INTEG ER ARRAY arry (1:usaxI i
ptr • 1; MIllIE I ( IS DO 
MHI1E (arry lpir) NED n) AND (p1.” max ) DO

pir.pt r, 1; is equivalent to

If the array element currentl y pointed to by ptr
is the number we are looking for OR if the ptr is DO UNTIL I CEO 155
at the ’ upper bound of the array then the WHILE
statement is finished. Otherwise the ptr is except that the statement is guaranteed to be
incremented and the boolean (now using the next executed at least once with the DO...UNT IL but
element) is checked again. When the WHILE...DO not with the WHILE...DO.

r statement is finished, either ptr will point to the
array element with the number or ptr— max will The WHILE and DO statements can be used, for
mean that nothing was found, example, to check that a string which we have

input from the user is really an integer . CVD
The WHILE...DO statement is equivalent to the stops converting if it hits a non-digit and returns
following format with LABELs and the GOTO the results of the conversion to that point but
statement: does not give an error indication so that a check

of this sort should probably be done on numbers
— loop; IF NOT boo bean express i on THEN input from the user before CVD is called.

COb bsyond;
s ta t ement ;
GOTO ioop;

*
The DO...UNTIL statement is very similar except
tI at 1~ ~he statement is slways executed the
first time and then the check is made before
each subs.qusnt loop through and 2) the loop

i
1

‘ -- ,



Th. ALGOL-Part of Sail SAIL TUTORIAL

CO’4TINUE app lies to the innermost loop unless
INTEGER numb , char , there are nariies on the blocks to be exec u ted by
STRING rep i y, tsmp; BOOLE RN srror; each loop and the name is given explicit l y, e.g.,
PR INT ( ” 1 9p. the number : “i p DONE ,omeloop . With the DONE and CONTINUE

statements , we can now give the comp lete code
B E G I N  to be used for the sample program given earl ier

error~~ flLS( ; where a number was accepted from the user and
t e n i . .~~e p i y~~1NCP1U L~ the square root of the number was returned. A
W H ILE L E N G T H it s m p )  oo variety of error checks are made and the user

IF NOT (“0 LEO (c Pia r .LOP (t em p ) )  1( 0 “9 ~~ can continue giving numbers until finished. In
THEN .rror.T RUE , this example , block names will be used with DONE

er or TH EN PRINT (” Oops , try again : ~~; and CONTINUE onl y where they are necessary
END for the correctness of the program; but use of
UNT IL NOT error ; block names everywhere is a good practice for

numD.CVO( repiy ); clear programming.

BEGIN “prog ’ STRING temp ,repiy; INTEGER numb ;

2.6.3 DONE and CONTINUE Statements W HILE TRUE 00
CONMENT a v.ry common conitruct ion which just

Even with definite and indefinite iterations loops unt i i DONE;
available , there will still be times when you need BEGIN “proc essn umb ’

a greater  degree of con trol over the loop. This PR INT rT ype a number , <C R> to end , or : “I ;
is accomplished by the DONE and CONTINUE WH IL E TRU E DO
statements which can be used in any loop which BEGIN “ c hec ker ’
begins with DO, e.g., IF  NOT LENG TH (temp~r.pi y.-INCHI.lL ) THEN

DONE “ proc essn umb ’ ;

~OP .1 STEP 1 UNTIL DO ... IF rep l y • “‘‘ THEN
DO . . . uNTIL .>p BEGI N
W HILE •~~ p DO . . . PR INT ( ” . . P i s i p t e x t  I repro m pt. . “) ;

CONT INUE ;
(See the manual for a discussion of the NEXT COITrIENT de f a u i ts to “checker ” ;
statement which is not often used.) DONE means END;
to abort e ”ecution of the entire FOR, DO...UNTIL WHILE LEN GTH ( ts mp ) DO
or WHiLE.,.DO statement immediately. CONTINUE IF NOT (“8” LED LOP(temp ) LED “9”) THEN
means to stop executing the current pass BEGIN
through the loop and continue to the next PR INT (”Oops , t ry again; “ I ;
iterat ion . CONTINUE “ checker ” ;

END;
Suppose a string array is being used as a IF (numb.CVO(r.piy ))  B THEN
dictio nary ” to hold a list of 100 words and we BEGIN
want to look up one of the words which is now PRI N I( ” Ne g at ive , tr y again:  “) ;
stored in a string called Iar5.I: CONTINUE;

(N O ;

IOR i • 1 ST E P 1 UNT IL III 00 OON( ;
IF ( O u (w o rds (u J , tar q .t )  THEN DONE ; COMMENT i f  a l l  the chicks have been

IF >185 THEN PR I NT ( ta rq . t , ” nd found. ” ) ; passe d then dons;
END “che cke r ” ;

If the target is found, the FOR-loop will stop PRINT (“The Square Root  of “ ,numb ,” is “ ,

regardless of the current value of i. Note that SQRT (numb ) ,” . “) ;
the iteration variable can be checked after the COMMENT now we go back to top of i oop
loop is terminated to determine whether the for next input;
DONE forced the termination (i LEO 100) or the (NO “processnumb ” ;
target was never found and the loop terminated (NO “ prog ”
naturall y (i > 100).

If th, loops are nested then the DONE or

11

1



I
SAIL TUTORIAL Th. ALGOL-Part of Sail

2.6.4 CASE Statement CASE cha r - ” A ” OF
COMMENT “A ” — ”A ” is 5 , and ii thus case  8 ;

The CASE statement is similar to the CASE BEGIN
expression where SO,SL..Sn represent the cods for A optIon,;
statements to be given at these positions. ‘co de for B opt ion>;

CASE in ieger OF
BEGIN <code for C option,
SB ; END;

COMMENT the euipiy siate m ent ;
S2;

2.7 Procedures
Sn
END; We have been using built-in procedures and in

fact would be lost without them if we had to do
where ;‘S are included for those cases where no all our own coding for the arithmetic functio ns,
action is to be taken. Another version of the the interactions wi th the system like
CASE statement is: Input/Output , and the general utilit y routines that

simplif y our programming. Similarl y, good
pr ogrammers would be lost without the ability to

CASE integer OF write their own procedures. It takes a l i t t le time
BEGIN and practice getting into the habit of looking at
(8) SI ; programming tasks with an eye to spotting
18) S4 ; COMMENT cases can bi .5 ipped ; potential procedure components in the task , but
(31 S3 ; COMMENT need n o t  be In ord er; it is well worth the effort.
(5) 55 ;

16) (7) 56; COMMENT may be s ame s ta t e m en t ;  Often in programming, the same steps must be
18) SI; repeated in different places in the program .

Another way of looking at it is to say that the
same task must be performed in more than one

In) Sn context. The way this is usually handled is to
END ; write a proc.dur. which is the sequence of

s tatements that will perform the task. This
where explici t numbers in fl’s are given for the procedure itself appears in the declarati on
cases to be included, portion of one of the blocks in your program and

we will discuss later the details of how you
it is ve ry IMPORTANT not to use a semi-colon declare the procedure. Essentially at the time
afte r the final statement before the END. Also , that you are writing the statement portion of
dc NOT use CASE statements if you have a your program, you can think of your procedures
sparse number of cases spread over a wide as black boxes. You recognize that you have an
range because the compiler will make a giant instance of the task that you have designed one
table, e.g., of your procedures to perform and you include

at that point in your sequence of state ments a
CASE number or procedure call statement. The procedure will be

BEGIN invoked and will handle the task for you. In the
II) 55; simplest case, the procedure call is accomplished
(11511 $1115; by just writing the procedure ’s name.
(255 5) 52555
(NOp For example , suppose you have a calculator-type

program that accepts in arithmetic expression
would produc, a 2001 word table! from the user and evaluates it. At suitable

places in the program you will have checks to
Remember that the first case is 0 not 1. An make sure that no divisions by zero are being
ei~ample is using a CASE statement to process attempted. You might write a procedure called
lettered Options: zereOfv which prints out a message to the use r

say ing that a zero division has occurred, re peats
INTEGER Cfsl~’ p
PRINT(”T yp. R I C O , or £ i “I ;
char.INCHI& p 19

I



The ALGOL-Part of Sail SAIL TUTORIAL

the current  a r i thmet ic e~ press ion , and ,isks if the S Q R T C 8 )
user would like to see the prepared help text  for SORT (numb )

the program . F.ver y  time you check for zero SO RT ( CV D i INL H~L ) )
di~ ision a n.,p lace in your program and lind it , SO R T inu’.,o,di~~ ior)
you will cal l  this procedure w ith the statement :

z . ’ o O i~~; When Sai l  c ornpile~. the code for these procedure
c a Hs , if f i r r ~t nc luaes code to ass oc iate the

and it ~~~ l do ever y thing it is supposed to do. appropriate va lues in the procedure cal l  wi th the
v ar i a o ,e s given ri the pa rameter l ist of the

So meti mes the general format of the task will be procedure d ec la ra t ion  and then includes the code
the Ca me  but some details will be d i f feren t. to execute the procedure. When e r ro rHand i er
Tr,ese c a ~.es can be covered by writ ing a PRINTs the erro r message , the var iable errno will
parameterized procedure. Suppose that we have the ap propr iate value associated wi th  it.

a~~ted something like Our ze ro D lv  procedure , but This is not an ass ignment such as those done by
n~ore genera,  that would handle a number of the assignment statement and we will also be
Othe r I’ nds Of err ors. It still needs to print out a discussing calls by REFERENC E as well as calls by
d e s c r s L t i O n  of the error , the current express i on VALUE; but we don’t need to go into the detai ls
being e .  a ’ ua ted , and a suggestion that the user of the actua l implementat i on - -  see the manual if
consu lt the help tex t ;  but the descripti on of the you are interested in how procedure call s are
erro r wi l l  be dif ferent depending on what the implemented and arguments pushed on the stack.
error was .  We accomp lish this by using a
var iable when we wri te the procedure; in this Just as we o f ten  perform the same task many
cas e an integer var able for the error number , t imes in a given program so there are tasks
T i~e pr3cedure includes code to print out the performed frequentl y in many programs by many
a;.p ro~ ‘ a te message for each error number; and programmers. The authors of Sail have w r i t t e n
t t ~€ i.it ~~ ger variable errno is added to the procedures for a number of such tasks which can
parame ter list of the procedure. Each of the be used by everyone. ihese are the bui l t- in
parameters is a va riable that will need to have a procedures (CV D, INCI-IWL , etc. )  and are actual l y
va l i  e assoc iated wi th it automaticall y at the time declared ir’ the Sail runtime package so all that is
the procedure i’ called. (Actuall y arrays and needed for you to use them is placing the
ot~er pr ocedures can also be parameters; but procedure calls at the appropriate places. Thus
the~ wil l re discussed later.) We won ’t worry t hese procedures are indeed black boxes when
ab out the handling of parameters in procedure they are used.
dec larat ions now. We are concerned wi th the
way the pa rameters are specified in the However , tO r our own procedures , we do need to
procedure call. Our procedure errorH a nd ie r will wr i te  the code ourselves. An examp le of a
haie one integer parameter so we call it with useful procedure is one which converts a str ing
the expression to be associated with the integer argument to al l uppercase characters. First , the
variable errno given in parentheses following the program with the procedure call to upper at the
procedure name in the procedure call. For approp riate place and the position marked where
examp le , the procedur e declarat i on will go:

er ror Hand ie r (S ) BEGIN
0’ ror’ H~ n d i e r( 1) S T R I N G  rep i y, name ;
.rrorHandier (2 ) •*>procedur . d e c i a r a i i o n  here ses

would be the valid calls possible it we had th ree PR I NT 1” T yp e  REA D , WRITE , or SEARCH: “) ;
different possible errors. rep ) y~Uppe r( INCHW L)

IF EOU( rep i y ,  “REA O ” )  THEN .

If there is more than one parameter , they are ELSE IF (OU;rep iy, “WRITE ”) THEN
put in the order given in the declaration and ELS E IF (QUirepi y, “SEARCH” ) THEN

separated by c ommas. (Arguments is another ELSE . . . .

term used for the actual parame ters supplied in (ND;
a procedure call .) Any expression can be used
for the parameter , e.g., for the built-in procedure We put the code for the procedure right in the
SORT:

20 

1I



I
SAIL TUTORIAL The ALGOL-Part of Sail

procedure dec laration which goes in the PROCEDURE s o r t E n t r  el
declara tion portion of any block. Remember that ( INTEGER ptr , f i r s t ; REAL A RR PY unsorted )
the procedure mus t be declared in a block which STRING PROCEDURE upper (STRI NG ra w S i r  ing )

will make it accessible to the blocks where you
are going to use i t ;  in the same way that a Each of these now needs a procedure body.
variable must be declared in the appropriate
place. Also , any variables that appear in the PROCEDURE oifer f4e ip
code of the procedure must already be declared
(even in the declarat ion immediatel y preceding BEGI N “ o f i e r H e i p ”
the procedure declara tion is fine). COIi IiENT the procedure name is usua i i y used

as biocb name;

Here is the procedure declaration for upper which PRINT (“IJou id you I ike he l p (V or N > :
should be inserted at the marked position in the IF upper ( IN CHUL ) • “Y” THEN PRINT ( “ . . he i p. . “I
above code: ELSE RETURN 1

PRIN~ ( ”Wo u ld you l i k e  more heip (V or N) :  “) ;
STRING PROCEDURE upper (STRING raw st r ing ) ; IF  upper( INCHUL) • “ V ”  THEN

BEGIN “upper ” PRINT (” . more h e l p . . ’) ;
STRING tmp ; INTEGER char; END “ol ierHeip ” ;
(mp..NULI;
WHILE LENGT H ( rawst r i ng ) oo This offers a brief hel p text and if it is re jected

BEGIN then RETURNs from the procedure without
char” .L OP (rOws (r ing > ; printing any thing. A RETURN statement may be
ieip~ tmp& ( IF “a ’ LEO char LEO z ” included ri any procedure at any t ime.

THEN ch ar— ’40 ELSE char ) ; Otherwise the brief help message is printed and
END; the extended help offered. A f te r  the extended

RET u RN (fmp ) ; help message is printed (or not printed), the
(NO “upper ” ; procedure finishes and returns without needing a

specific RETURN statement because the code for
The syntax is: the procedure is over. Note that we can use

procedure calls to other procedures such as
t y p e - q u a l i f i e r  PROCEDURE I d e n t i f i e r  $ upper provided that we dec lare them in the

s ta temen t  pr oper order with upper declared before
of i.rHeip.

for procedures wi th no parameters OR
PROCEDURE declarations will usuall y have type-
qualifiers. There are two kinds: 1) the simp le

ty pe-qualif i er PROCEDU RE I d e n t i f i e r  types--INTEGER , STRING, BOOLEAN, and REAL and
I parame ter- f i s t  ) ; et a teme nt 2) the special ones--FORWARD , RECURSIVE , and

SIMPLE.
where the parameter-list is enclosed in 0’s and a
semi-c olon precedes the statement (which is FORWARD is typicall y used if two procedures call
often called the procedure body). The <type- each other. This c reates a problem because a
qualifier>’s wil l be discussed shortl y. procedure must be declared before it can be

called. For example , if o i i e rHe ip  called upper , and
J The parameter list includes the names and types upper also called of ierHeip then we would need:

of the parameters and must NOT have a semi-
colon f ollowing the final item on the list. FO RWARD STRING PROCEDURE upper

Examples are: (STRING raws tr lng )

PROCEDURE o f f e r H e l p
PROCEDURE efferH. p BEGIN “ o f f e r Heip ”
INTEGER PROCEDURE I IridWor d

(STRING target; STRING A RRAY words ) code for offer Heip Inciudi ng c a l l  to upper,
SIfl PL( PROCEDURE erro rNandlir .

(INTEG ER errno ) (NO o f f e r f4 e lp ” ;
RECURSIV E INTEGER PROCEDURE f ac to r i • l

( INTEGER number) $ STRING PROCEDURE upper (STRING raws t r l ng ) $

2 1

II



The ALGOL-Part of Sail SAIL TUTORIAL

BEG IN “ upper ” Procedures wr r ich are declared as one of the
s i r pie t ypes (R EAL INTEGER , BOOLEAN, or

~coae for upper inc i ud ing c c i i  to o f  l erHe i STRING) a re called typed procedures as opposed
to unt yped procedures (note that the SIMPLE,

END “upper ’ ; IORWA RD , and RECURSIVE quali f iers have no
d Ied on this dis t inct ion ).  T ype d procedures can

The F~~PW A RD dec la ra t ion  does not include the retu rn ~a:ue5. T hus t yped procedures are like
bod y but does r~~ u~ie the parameter list ( i f  any). FORTRA N functions and unt yped procedures are
This dec larat ion gives the compiler enough l l~p FORTRAN subroutines. The type of the value
informat ion about the uppe r procedure fo r it to returned corresponds to the type of the
process the  c i f e r f l e i p  procedure. FORWARD s procedure declaration. Onl y a single value may
also used whe n there is no order of declarat ion be returned by any procedure. The format is
of a ser ies of procedures such that every RET URN ( e x p r e s s i o n  > where the expression is
proced ure is declared before it is used. enclosed in U’s. Procedure up per which was
FC)RWARD declarations can sometimes be g ivt n above is a typed procedure which returns
e im inated by putting one of the procedures in as its value the uppercase version of the string.
f e~ body of the other , which can be done if you Another example is :
doni need to use both of them later .

REA L PROCEDUR E a .er age ’

RECURSIVE is used to qualif y the declarat ion of ( IN TEGER A RRPY sco re s ;  INTEGER ma,) ;
any procedure which calls itself . The compiler BEGIN ‘a . . r a g er ” REAL t o t a l ; INTEGER I ;
will add specia l handling of variables so that the total 8;
values of the variables in the block are FOR I • 1 STEP 1 UNTIL rax DO
preserved when the block is called again and io t a  Io t a  I s c o re s ( i I
restored af ter  the return fr om the recursive call. I~ ma, NEQ 8 THEN RETURN ( t o t a l / m a x )
For examp le , ELSE RE iN N (8 ) ;

LNL : “av er aqe r ’ ;
RECURSIV E INTEGER PROCEDURE fa ctori al

‘ I NTEGER i) ; We rr~~ ht have a var ie ty  of calls to this
RETURN ( IF , • B THEN 1 ELS E f a c f e r i a l ( i — 1 ) t i > ; procedur e:

The compiler adds some overhead to procedures leg lA ~erag e a. .ragsr ( ( es  t Scor es , number Scor.s) ;
that can be omitted if you do not use any saia ry R’~erag . a~ .rag. r (sa iar  is ; , riumber Emp ioyee s ) ;
comp licated structures. Declaring procedures s peed Pie rage a .erager (s peeds , n u m be rTr i a ls ) ;
SIMPLE inhibits the addition of this overhead.
However , there are severe restr ict ions on w here ie stSco re s , s a l a r i e s , and speeds are all
SIMPLE proced ures; and also, BAIL can be used INT EGER A RRAYs.
more etfecttvely with non-SIMPLE procedures.
So the appropriate use of SIMPLE is during the Procedure calls can always be used as
opt imization stage (if any) after the program is statements , e.g. ,
debugged. At this time the SIMPLE qualifier can
be added to the short , simple procedures which I> IF d i v sor~ 8 THEN error Handier (1) ;
will save some overhead. The restrictions on 21 offe rHeip;

SIMPLE procedures are: 3) u p p e r i i ex t ) ;

1) Cannot al locate storage but as in 3) it makes litt le sense to use a
dynamically, i c , no non-OWN arrays can procedure that returns a value as a statement
be declared in SIMPLE procedures. since the i,alue is lost. Thus typed procedures

which return values can also be used as
2) Cannot do GO TO’s outside of expressions , e.g.,

themselves (the GO TO s~atement has not
been covered her e), r e p  ly.~vpper ( INCHUL) ;

PR INT (vpper  m a s s ) ) 1
3) Cannot , if declared inside other

procedures , make any use of the It is not necessary to have a RETURN statement
parameters of the other procedures.

22



I
SAIL TUTOR IAL The ALGOL-Part of Sat (

in unt y Lec i procedures. If yOu do haj e a RETU PrJ specif ied ri the parameter  list so you don ’t have
s ate rne nt n an untyped O ro C el ure 1 CANNOT to remembe ’ them ) and the s ubtas k is ‘Rk P n c a re
s peci f y a . ali r , and if you ha ,e a RETURN of . If you don’t modularize your programs in th ic
s ta tement  r a tyu i  ~ p ocedu re if MUST s peci f y way , you are lugg Ing too many Open fa ~~~ at
a va lue  to he r p irned, If thn re is no RET U~ ’J th e same time. Another approach is to tac ~~e
s t a teme nt  in a typ ed procedure t hu n t i e  value major ta s ks f i rs t  and every time you ‘ r e  a
returned w i l l  be garbage for inie V e ’  and rea l subtas lc put in a procedure call w i t h  reasonable
procedures Or the null s t r ing for str ing arguments and then later actual l y wr te the
pr ocedu reT .; this is rot  good coding p ract ice.  procedures for the subtas ks . Usuall y a m ix t j r e

of these approaches is appropr iate;  and you ~~. Il
Procedures f re q u e nt l y will RETJ~ Nt r ue )  or also find yourself carrying pa r t ’cu la r l y good
RETURN(fa lse) to indicate success or a problem . utilit y procedures over from one program to
~~or ex amp le , a prc .cedure which is supposed to another , building a l ibrary of your own general
get a f i lename from the user and open the fi le utility routines.
wil l return true i ’ successful and false if no fi le
was actual l y opened: The second advantage of parameters  Over global

variables is that the global variables w ; l l  ac tua l l y
I F  q e t F i  is THEN p ro ce s s l npu f  be changed by any code with in the procedures

ELSE er r o r Handi .r (
~ 2 )  but variables used as parameters to procedures

wi ll not. The changing of global variab les is
This is quite t ypical code where you can see that sometimes called a side -effect of the procedure.
all the tasks have been procedurized. Many
progra ms will ha. e ?~ pages of procedure Here are a pair of procedures that illustrate both
decla rat ions and then o ny  I or 2 pages of actual  these points:
statements ca ll ing th e appro pr iate procedures at
the appro priate times. n f a c t , p r o g r a m s  can be BOOLE RN PROCEDURE Dues > ( STRING i> ;
wr i t t en  wi th  pages of procedures and then Onl y BEGIN “Oue;1
a sing e statement to call the main procedure. IF ““ • LOP(s) THEN RETURN iru,

ELSE RETURN (fai;. ) ;
BasIca ll y t here are  two  w a y s  of giving END “Dues !” ;
info rmation to a procedure and three ways of
r eturning in format ion.  To give information you STRING sIr;
can 1) use par a mefers to pass the information BOOL ERN PROCEDURE Dues?
ex pl ic i t l y or 2) make su re that the appropriate BEGIN “Du es ? ”
.a 1 ues are in global variables at the time of the IF “‘“ LOP (s i r )  THEN RETU RN (t ru e )
cal l  and code the procedures so that they access ELSE RETURN ais s ;
those variables , There are several END “Dues ? ” ;
disadvantages to the latter approach although it
ce r ta in l y does have its uses. The second procedure has these problems: I) we

have to make sure our string is in the str ing
First , once a piece of information has been variable sI r before the procedure call and 2) ltr
assigned to a parameter , the coding proce eds is actuall y modified by the LOP so we have to
smoothly. When you write the procedure call , make sure we have another copy of it. With the
you can check the parameter l i s t  and see at a f irst procedure , the string to be checked can be
glance what arguments you need. If you instead anywhere and no copy is needed. For examp le ,
use a global variable then you need to remember if we want to check a string called coismar,d, we
to make sure it has the right value at the time of give Oueil(com.and> and the LOP done on the
each procedure call. In fact  in a comp licated string in Dues > will not affect co meand.
program you wil l have enough f roub le
remembering the name of the variable. This is Inf ormation can be returned from procedures in
one of the beauties of procedures. You can three ways:
think about the task and all the components of
the task and code them once and then when you 1) With a RETURN va Iue statement.
are in the middle of another larger task , you onl y
need to give t he procedure name arid the values 2) Through global variables. You
for all the parameters (which are clearly may sometimes actually want to change a

23

I



The ALGOL-Part of Sail SAIL TUTORIAL

global ~~ria ble. Also , pr ocedures can
onl y re turn a sing le value s o if you have
several  values being generated in the
procedure , you may use global variables
for the ol ners

3) Through REFERENCE parameters.
~r aniete~ c c~~’~ be either VALUE or

REFERENCE. By default all sca lar
paramete rs  are VALU E and array
pa r a m e t e r s  are REFERENCE. Array
parameters  CANNOT be value; but scalars
c .~n be declared as re ference parameters.
V ,uux’ par ar r ’ t e r s  a~. we have seen are
~ irnplv used to pass a value to the
..~~~ dbIe’ u .hc h appears in the procedure.
Re fe rence  parame ters  actual l y associate
the va r iah e address given in the
p o c e c u re ca l l  w i th  the var iab le in the
procedure so that any changes made will
be made to the calling variable.

PROCEDURE s,any Re turn ;
(REFE RENCE INTEGER i , j ,~~~, i ,m( ;

BEGIN
I. ,!; j . . j +1;  k~~~~+ ! ;  i..i.1; m~m.i;

END ;

w ren  ca lmed w i th

eany Re t urns I var!, ‘.ar2 , var3 , var~ varS)

wil l  ac tua l l y change the var l ,..,var5
variables themselves. Arrays are always
c alled by reference. This is useful; for
examp le, you migh t ha ve a

PROC EDURE sorter (STRING RRRRY arri~)

w hich sor ts  a string array  alphabet ical l y.
It will actuall y do the sorting on the
array that you give it so that the array
w i l  be sorted when the procedure
returns. Note that arrays cannot be
returned with the RETURN statement so
this eliminates the need for making all
y O ur  arra ys global as a means of
returnin g them.

See the Sail manual (Sec. 2) for details on using
procedures as parameters to other procedures.

p

I
24 

1
I



4 SA IL TUTORIAL Macros

SECTION 3 names for constants are 1) a name i.e ma~ 5 z e
used in your code is easier to understand (han

Macros an arbitrary number when you or someone else
‘s reading throug h the program and 2 1 -;~ S z e
aul l undoubtedl y appear in m?n N c O n t e w t c  in the
program but if it needs to be cha nged . e g , to
200, onl y the sing le definition needs chang~ -g If

Sail macros are bas ica l l y st r ing sub stitut ions you had used 100 instead of ea,S z. thro ug hout
made in your source code by the scanner during th~ program then you would ha.~e to change
compilati on. Think of your source f i l e as being each 100 to 200.
read by a scanner that substitutes definitions
into the token stream going to a ‘ogic al “inner Before giving your DEFINEs you should r e qu i r e

compiler ”. Any thing that one ca r. do with some delimiters. {}{~
, 

~[), or <‘~~‘ are good
macros , one could have done without them by choices. If you don’t require any del imite rs then
editing the file differentl y. Macros are used for the defaults are “ “ “  which are probabl y a poor
several purposes. choice since they make it hard to define string

constants. The f irst pair of delimiters given in
They are used to define named constants , e.g., the REQUIRE statement are for the rig ht-hand-

side of the DEFINE. See the Sail manual for
BEGIN details on use of the second pair of delimiter s
RE QUIRE “Ii 1 i DELI M ITERS;

DEF (NE ma ”Si ze liBel DEFINEs may appear anywhere ri your p~ogram .
REPI PA RRY arr y I!:ma iiSiz.I ; They are neither statemen ts nor dec lara t ions.

REQUIREs can be either declarat ions or
statements so they can also go anywhere in your
program .

The {)‘c are used as delimiters placed around the
rig ht-hand-side of the macro definition. Another use of macros is to define octa l
Wherever the token ea ,S i r e  appears , the scanner characters. If you have tried to use any of the
will substitute iee before the code is compiled. sample programs here you will have discovered
These substitutions of the source text on the a glaring bug. Each time we have output our
rig ht-hand-side of the DEFINE for the token on results with the PRINT statement , no account has
the left- hand-side wherever it subsequentl y been taken of the need for a CRLF (carriage
appears in the source file is ca lled expanding the return and line feed) sequence. So all the lines
macro. T he above array declaration af ter macro will run togethe r . Here are 4 possible soluti ons
expansion Is: to the problem:

BEGI N 1) PR INT ( ”Some t e x t . ” , ( ‘ i S d ’ 1 2 ) ) ;
RERI ARRAY arry thlSSl j

2) PRINT (”Som, t e , c t .

which is more efficient than using: 3) S T R I N G  c r i i 1
c r l f. ”

B E G I N  INTEGER m a c S i z e ;  “ ; PRINT (“Some te xt. ” ,c r l i );
.asS i;s.1IO;

BEGIN 4) REQUIRE “ I I”  DELIMITERS ;
REAL ARR AY arry t l ;maa Siz .) ; DEFINE c r l f  • I ”

“i i PRINT ( ”Some te xt . ” ,c r l f ) ;

Also , in this examp le, the use of the integer
variable for assignment of the max Sizs means that The f irst solution is hard to type frequentl y with
the array bounds declaration is variable rather the octals. (In general , concatenations should be
than constant so it must be tn an inner block; avoided if possible since new strings must
with the macro , masS lie IS a constant so the array usually be created for them; but in this case with
can be declared anywhere. only constants in the concatenation , it will be

done at compile time so that i s not a
Other advantages to using macros to define consideration.) The second solution with the

25

I



Macros SAIL TUTORIAL

st r ing exte nding to the nec t  line to get the c r lf  is Here are some samp le definitions f ollowed by an
unwieldy to u’e in your code. The fourth examp le of their use on the next line:
solution is both the easiest to type and the most
efficient REQUIRE “<...“ D E L IM ITERS 1

You may also want to define a number of the DEFINE upto • .5T(P I UNTIL~ ;

other cemmonl y used contro l characters: FOR i upto lB DO ....;

tEQ U I RE “ .~~,..,
‘ DELIMITERS; DEFINE i • ~COMMENT,.

OFF INE If  ~ l’144NULI. ) x , i..i+l; i increment i here ;
i f  • (‘i~ 5NU LL )> ,
Cr t ’ ISBNULI I , D E F I N E  forever • U H I L E  TRU E ;

tab . ( ‘ l I & N u L L ) > , fore ver DO ....;

ct i O “
DEFINE e l f • <ELSE IF>1

The c ’ ara c ters which will be used as arguments IF . . .  THEN

in t he PRINT statement must be forced to be El F . . . .  THEN
s t r ri~~s If f f  — <‘14~ were used; then PRINT(ff) ElF . . . .  THEN
wou ld print the number 12 (which is ‘14) rather
thar ~o print a formfeed because PRINT would Macros may also have parameters:
t re~t the ‘14 as an integer . For all the other
places that you can use these sing le chara cter DEFINE ap pe n d tx ,y ) •
def init ions , they wi l l  work correctl y wh ether IF LENGTH (s ) THEN •pp end (t ,LOP (s)) 1
defined as strings or integers , e.g.,

DEFINE m c m l • c(i’i.n,l),,
IF char • c tiO THEN • . . .  d ec i n )  •

IF iric (ptr ) < max Slz e THEN . . .

as we l l  as COMMENT watch that you don ’t forget
nieôed parent h.se; hare;

IF char i i  THEN .

DEFINE c t r i ( n )  •
IF char • c t r i ( O )  THEN abe r tPr in t ;

Note that string constants like ‘15&’12 and
‘14&NULL do not ordinarily need parenthesizing As we saw in some of the sample macros , the
but ( 15&’12) and (‘14&NULL) were used above, macro does not need to be a comp le te statement ,
This is a l i tt le trick to compile more efficien t expression, etc. It can be just a fragment.
code. The compiler wi ll not ordinaril y recognize Whether or not you want to use macros like this
these as string constants when they appear in is a matter of personal taste. However , it is
the middle of a concatenated string, e.g., quite clear that something like the following is

simply terrible code although syntacticall y
i m el. . . “4 ’ 154’ >24” .... line?... ” correct (and rumored to have actuall y occurred

in a program):
but with the proper paren thesizing

DEFINE pr inter  • cPRI NT (, ;
. . i , n e l . . . L ( ’ I S I ’ 12 ) 6 ” . .  . . i i n . 2 . . . ” printer “Hi there. ” ) ;

the c ompiler will treat the crlf as a str ing which expands to
constant at c ompile time and not need to do a
concatenation on ‘15 and ‘12 every time at PRI NT(” H i there. ”) ;
runt i me.

On the other hand, those who completely shun
Another very common use of macros is to macros are erring in the other direction. One of
“personalize ” the Sail language slightly. Usually the best coding practices in Sail is to DEFINE all
macros of this sort are used either to save constant parameters such as array bounds.
repetitive typing of long sequences or to make
the code where they are used clearer. (Be
careful--this can be carried overboard.)

26

1
I



I
SAIL TUTORIAL String Scanning

SECTION 4 SET BREAK function . You can also use
RELBREAK(tab lem) to release a table number for

String Scanning reassignment when you no longer need that
break table.

SE T BR EPrt tab ie I , ‘br.a~ —c ha ract .rs ” ,
“0Mm t — c h ar ac i e r x ” , ‘modes ’)

We have not yet c øvered Input/Output w hich is
One of the most impo rtant topics. Before we do where the f irst argument is an integer and the
that , however , we wil l  cover the SCA N function ‘“s around the other argument s here are a
for reading s tr ings. SCAN which reads existing standard way of indicating , in a sample
str ings is ve ry  simila r to INPUT which is used to pr ocedure call , that the argument expected is a
read in text from a fi le , string. For examp le:

Both SCAN and INPUT use break tables. When REQUIRE “< > > ~ DEL IMITERS;
you are reading, you could of course read the DEFINE i f  • < ‘12> , cr • < ‘15> , f t  • < ‘ 14>;
entire f i le in at once but this is not what you INTEGER llneB r , nonOi g i tB r , noSpaces ;

usuall y want even if the file would all f it (and
wi th the case of SCAN for strings it would be SE T BRE AE ( I ine8r..GEIBR(AK , i f , f f 4c r , “ ins ’)

point lesc) . A break table is used to 1) set up a SET BRE PK (noS pace s.G ET B RER* , NULL , “ “ , ina ’) ;
list of charac ters which when read will terminate SETBRE RL (nonDi g itB r .GET BREPE , “8123456789 ” ,
the scan , 2) set up characters which are to be NULL , “ xns ” ) ;
omitted from the resulting string, and 3) give
instructions for what to do w ith  the break The characters in the “break-characters ” str ing
character that terminated the scan (append it to wi ll be used as the break characters to terminate
the result string , throw it away , leave it at the the SCAN or INPUT. SCAN and INPUT return that
new beginning of the old string, etc. ) . During the portion of the initial string up to the f i r s t
course of a program , you will want to scan occu rrence of one of the break-characters.
strings in different ways , for example: scan and
break on a non-digit to check that the string The characters in the “omit-characters ” str ing
contains only dig i t s , scan and break on lmnefeed will be omitted from the string returned.
( If) so that you get one line of text at a time ,
scan and omit all spaces so that you have a The “modes ” es tablish what is to be done wi th
compact string , etc. For each of these purposes the break character that te rminated the SCAN or
(which will have different break characters , omit INPUT. Any combination of the following modes
charac te rs , disposition of the break character , can be given by putting the mode le t ters
and set t ing of certain other modes available ) , together in a string constant:
you will need a different break table. You are
allowed to set up as many as 54 different break CHARACTERS USED FOR BREAK CHARACTERS:
tables in a program. These are set up with a
SETBREAK command. “I” (inclusi on) The characters in the break-

characters string are the set of characters
A break table is referred to by its number (1 to which will terminate the SCAN or INPUT.
54). The GET BREAK procedure is used to get
the number of the next free table and the “X” (eXclusion) Any character except those in

L. number is s tored in an integer variable , the break-characters string will terminate
r I GETBREAK is a relative l y new fea ture. the SCAN or INPUT, e.g., to break on any digit

Previousl y, programmers had to keep track of Use:
the free numbers themselves. GETBR EAK is
highl y recommended especially if you will be INTEGER tb i ;
interfacing your program with another program SETBREAK (tbi .GETBR (AK,”1123456789” ,NULL ,’ i ”) ;
which is also assigning table numbers and may
use the same number for a different table. and to break on any non-digit use:
GET8REAK will know about all the table numbers
in use. You assign this number to a break table INTEGER t b l ;
by giving it as the first argument to the SETB REA Ibi.G(TSR EAk ,”1123456789” ,” ” , x ” ;

27

I



String Scanning SAIL TUTORIAL

where NULl. or ““ can be used to indicate no SETBR (RC (r eiam n 8r ~ GE 1BREAF , .‘,N U I L , “r ” ) ;

characters are being given for that argument.
. i pS tr .appe ndS ir’ x r et a riSlr ..” f rs tssecond ” ;

DISPOSITION OF BREAK CHARACTER: r es u i  i • SCA N ls~ pSir , sk pBr , brchar) ;
COMMENT E O u i r e s u i t , t i r s t ” )  AND

“S” (s~ p) The cha racter  which actua ll y £ O U i s t i p S t r , ” s eco nd ’ ) ;
te r minates the SCAN or INPUT will be
“s ., pped ’ and thus will not appear in the rs su i i  SCAhi a p pendS i r , app .nd Br , br ch ar ) ;
re su l t  s t r ing returned nor will it be still in COM ME NT EOiJ ir.;uit ,”t rs i , ) A14fl

t he original strin g~ EQUiappend St r , ” i.co”m d ” l ;

“A” (appendl The terminat ing character  will be - e s u i f  • S C A N i r e i a i n S t r , r.ta in 8 r , br char ) ;
appended to the end of the result str ing. CO MM ENT EQ Ui re s u i  t , “ I i ri f  “I AND

EQ U i re Ia inS Ir , “ si ec on d “I
“U” ( re ta in )  T he terminat in g cha racter  will be

retar ’ed in its position in the original string COMMENT in each ca s e abo v e brc har • “ C ”

so t i ’~~t it will be the f irst character  read by a f t e r  the SCAN ;
the ne x t SCAN or INPUT.

Now we can look again at the break tables given
OTHER MISCELLANEOUS MODES: above:

“K” This mode w ill convert characters to be put SE T BR EAF(ii reBr .if ,fficr ,” in s ) ;
in the result string to uppercase.

This break table will re turn a single line up to
“N” This mode w il l  discard SOS line numbers if the If . Any carr iage returns or formfeeds

any and should probably be used for break (usually used as page marks) will be omitted and
tables which will be scanning text from a file, the break character is also omitted (skipped) so
1hi~ is a very good Sail coding pract ice even that just the text of the line will be returned in
i f  it seems highly unlikel y that an SOS file the result string. The more conventional way to
will eier be given to your program . read line by line where the line terminators are

preserved is
“r e s u i t _ I i r m n q ” SCAN (I ”source ,ta bi el , tbrchar) ;

SETBRERK (rea dL ine , i f ,Nul.L ,” ir m a ”) ;
I n these sample formats , the ‘“‘s mea n the
argu ment is a string and the ~ prefix means that Note here that it is extremel y important that If
the argumen t is an argument by reference, rath er than cr be used as the break character

si nce it follows the Cr in the actual text.
When you call the SCAN function , you give it as Otherwise , you’ll end up wi th strings like
arguments 1) the sour ce string, 2) the break
table number and 3) the name of art INTEGER te xt of I m ne <cr >
variable where it will put a copy of the lf ,tsx i of I ine<cr>
character that terminated the scan. Both the < I f >

source string and the break cha racter integer
are reference parameters to the SCAN instead of
procedure and will have new values when the
pr ocedure is finished. The following example tex t  oi ins~cr n~ i t >
i l lustrates the use of the SCAN procedure and t e x t  of i , ne c r , < f f ,
also shows how t he “5”, “A”, and “R” modes
affect  the resulting strings with the disposition After the SCAN, the brchar variable can be
of the break character. either the break character that terminated the

scan (If in this case) or 0 if no break character
was encountered and the scan terminated by

INTEGE R is ipSr , append$r , ret ai nBr , brc h ar ; reac hing the end of the source string.
STRING resuit , sCi p Str , appendS tr , re ta inS tr ;

DO process L i ne (SCAN (str ,readL ine ,brchar))
S E T B R EPF (s k  mpBr. .GETB REAF , s ” , NUL L , ” s ” ) 1 UNTIL NOT brchar ;
SF IBREAK (appendlr .GETBR(* , e ”,NUL I ,”a”) i

28

I
1



I
SAIL TUTORIAL String Scanning

This code would be used if you had a long multi- nuMb INT$C AN(re p iy , brchar ;
lined text stored in a string and wanted to IF brch~r THEN error ;
process it one l ine at a time with PROCEDURE
procca s i Ins.

SE TPEAC m onO gi l  Br , “8123456 189 “ , NULL , “ xs ” )

This break table could be used to check if a
number input from the user contains only digits.

WHILE tr ue DO
BEGIN
PR INT ( ”T ypi a numberm “I ;

t rep i y .INCILWI ; i INTTY for TE NEX ;
SCAN (r.pi y,nonD sqi iBr ,brchar);
IF brcN*r THEN

PR IN T (brchar&$ULL ,” ii not a d i g i t . ” ,e r ) f )
ELSE DONE ;

END;

Here the value of brc ha- (converted to a string
constant since the integer character code will
probably be meaning less to the user) was
printed ou’ to show the user the offending
charac ter. There are many other uses of the
brc har variable particularly if a number of
characters are specified in the break-characters
string of the break table and different actions
are to be taken depending on which one actually
was encountered.

SETBREAE CnoSpa ces ,NULL , ” “ “ m a ”);

Here there are no break-characters but the
omit-char acter(s) will be taken care of by the
scan , e.g.,

str .”a b c d” ;
resu I t.SCRN Is Or ,iwSpaces ,brchar);

wii l return “ abcd ” as the result string.

If you need to scan a number which is stored in
* string, t wo speci al scanning functions, INTSCAN
m d  REALSCAN, have been set up which do not
require break tables but have the appropriate
code built in:

int ege rVar . INTSCA N(” nuMb.r-string”,ibrchar) 1
rea iVar • R(A LSCAN ” nuMber-s t r i n g ” , ebrchar) ;

w$’tere the integer or real numbe r read is
returned; and the st ri ng argument after the call

f contains the remaindir of the string with the
numb r removed. We could use INTSCAN to
check if a string input from a user is really a
proper numbu.

P*IUT~~ T~~e the nta~~ eri ) ;
hICNIt 1 I IWY1Y lii- ytgx1

. 29



Input/Out put SAIL TUTORIAL

SECTION 5 are in ~ RAlSE mode in £ NIX) will convert the
characters ‘

~ 73 to ‘ 176  to altmodes.
Input/Output

5 ?  Notes on Termmnal I/O for TENEX Sal
Only

~ i Simple Terminal I/O
i f ~ Ou are progr xim r l~ ri ‘T E i~E X  Sail , you should

We have been doing input/ output  (I/O) from the use INTTY n pre ft~e nce to the various te le t ype
c o n t r o l I n~ terminal wi th INCHWL (Or INTT Y for rout ines Ii’ ted in t he  manual TENEX does not
T L ’~E ~

) a PP~~ T ~ number of o t le r  f e i e t y pe have a line editor built in You can get Ui’
I/O r . ‘ ne- are l isted in the Sail manual in e f fec t  of a line ed to r b~ using INTTY which
‘~ t o ’ ~s 7 5 a n ;  12 ‘~ but they arc ’ less often a . ’ ow s tr ie u~~’r t o  ed it his/her t yping wi th the

u c’u ~
. c an of the f i le I/O routines which will usua l TA , IR, IX , etc. up until the point where the

re co .  e~~ncj n e x t  can be used wi th  the TT Y: line t e r m n a ~or i~ lu pec ~ if you use i r~CHWL , the
l € .d ri pace .  of a f i le. Before we cover f ile en t in g  c ha ’ a c te rs  are onl~ DEL to ruhout one

‘/0, a f e, i .  commen ts are needed on the usual character  and TU to S t d r t  c , e n . Ef for ts  have
termina l input and output Oeen made in TENEX Sail to provide line-editing

where needed in the vario us I/O ro utines when
‘The N1 HWL l I N t TV ) that  we have used is like an accessing the co nt rol l ing terminal . Complete
INPUT ..~ t i  f lue source of input pres pec if ied as details are contain ed in Sect ion 12 of the Sail
the t e r m inal and the break cha rac te rs  given as rr anual
the line terminators. Should you ever want to
oiu~ at the break ch a r ac te r  which terminated an T ENEX a lso has a non-standard use of the
l’,C-~WL or INTTY , i t w i l l  be in a special variable character set which can occasionall y cause

ca l led SKIP! ~ hmch the Sail runtimes use for a problems T i e ’  orig inal de~~gn of T ENEX called
w O e  v a r i e t y  of purposes. INTTY will input a for rep lac ng cr l f  sequences w i th  the ‘37
rn ,~, ,mri urr of 200 characters. If the INTTY was character  (aol). Th is has since been large l ,
t er r~~’~ate d ~or reaching the maximum limit then aban ooned and most TENEX programs w i l l  not
!SKIP! w be set to - 1. Since this variable is output tex t  w i t h  eol’ s but rather use the
dec lared in the runt ime package rather than in standard c r l f .  Eoi’ s are sti l l  used by the T ENEX
your program , if you are going to be looking at system itsel f . The Sail input routines INPUT ,
it , ,ou will need t o declare it also , but as an INTTY, etc . c o n ,e r t  eol ’s to c r l f  sequences. See
EX’rERNAL , to tell the compiler that you want the the Sail m. ”ual for de ta i ls , if necess ary; but in
runt me variable , general , the onl y time that you should ever have

a problem i~ if s~ou input from the terminal w i th
EXT E RNAL  INTEGER iS FI Pi ; some rout ni’ t h i t  iii~)i~t 5  a si ng le charact er  at a
P R I N T  VN um b sr fo i iew ed by nC R> or .RLT > “) ; time , e.g. , Ci~~kiN Iii the~ e cases you will need
rep  iy. INCHUL ; i DITTY for T ENEX ; to remember that end-of—line will be signalled by
IF i5~ IPi • cr THEN In eOl r a~nr’r than a cr . The user of c ourse

E L SE IF ISr i p i c i t  THEN t~ pes a Cr b i t  T ENEX converts to eol; and the
Sai l  sing le character input functions do not

Attmode (esca pe , enter , etc. ) is one of the reconvert to Cr as the other Sail input functions
charac te rs  which is dif ferent in the di f ferent do.
ch aracter sets. The standard for most of the —
worl d including both TOPS-b and TENEX is to
have altmod e as ‘33 At some point in the past
lOPS 10 used ‘176. This is nOw obsolete; 5.3 Sethng Up a Channel for I/O
howe .,er , the SU-Al character set follows this
convention but does so incorrectl y. It uses ‘175 Now we need I/O for fi les. The input and output
as aitmode. This will present a problem for operations to f i les are much like wha t we have
p’ o ’ r a m s  transported among s ites, It also done for the terminal . CPRI NT will wr i te
p d rti a ll / ex plains why most systems whe n they arguments to a f i le  as PRINT wri tes them to the
bel ieve the 1 are dealing wi th a MODEL”33 terminal. It is also possible with the SETPRINT
Te t’t ype or other uppercase only terminal (or

30

I



I
SAIL TUTORIAL Input/Output

command o specif y that you would rather send 10 OPEN (or INIT) ULJO. OPEN has eight
your PRINT’ s to a file (or to the terminal AND a param eters. Some of these re fer  to pa ra m ’ e te r s
named file ) . See the manual for detai ls. that the OPEN UUO will need; other paramete rs

speci f y the number of buffers des ired , W i t h

There are a number of other tuncti ons available other UUO’s cal led by OPEN to set up this
for I/ O in addit io n to INPUT and CPRNT , but they buffering; st i l l  other parameters are internal Sail
~I l  h~xv e one common fe atu re that we have riot bookkeeping parameters.
seen befo re. Eac h requ ires as 4 rst argument a
channe l numb er . The CPU performs I/O throug h The parameters to OPEN are:
input/output chan nels Any dev ice (TTY ~, LPT: ,
DTA: , DSK:, etc. )  can be at the other end of the 1) CHANNEL: channel number ,
channel . Note that by opening the controlling typ i c a l l y the number returned by
terminal (TTY: )  on a channe l, you can use any of GETCHAN.
the input/out put routines available. In the case
of directory devices such as DSK: and DTA:, a 2) “DEVICE”: a string argument that
filename is also necessary to set up the I/O. is the name of the device that is desired ,
There are several steps in the process of such as “DSK” for the disk or “TTY” for
estab lishin g the source/destination of I/O on a the controlling terminal.
numbered channel and getting it ready for the
actual  t ransfer . This is the area in which TOPS- 3) MODE: a number indicating the
10 and TENEX Sail have the most differences due mode of data transfer . Reasonable
to the dif ferences in the two operat ing systems. values are: 0 for characters and strings
Therefore separate secti ons will be included and ‘14 for words and arrays of words.
here for T OPS-j O and TENEX Sai l and you should Mode ‘17 for dump mode transfers of
read only the one relevan t for you. arrays f S  sometimes used but is not

discussed here.
5.3 J TQPS-IQ Sail Ct~enne( and File
Handling 4) INBUFS: the number of input

buffers that are to be set up.
Routines for opening and clo sing files in TOPS- lO
Sail correspond closel y to the UUO’s available in 5) OUTBUFS: the number of output
the TOPS 10 system . The main routines are: buffers.

GEI .i4,~II OPEN LOO~UP ENTER RELEASE 6) COUNT: a reference parameter
specifying the maximum number of

Additional routines (not discussed here) are: characters for the INPUT function .

USETI USETO ?ITRP( CLOSE CLOSIN CLOSO 7) BRCHAR: a reference parameter
in which the character on which INPUT
broke will be saved.

5.3.1.1 Device Opening
8) EOF: a reference parameter

cfx ari • GETCHflN; which is set to TRUE when the file is at
the end.

GETCHAN obtains the number of a free channel.
On a TOPS-j o system , channel numbers are 0 The CHANNEL, “DEVICE”, and MODE parameters
through ‘17. GETCHAN finds the number of a are passed to the OPEN UUO INBUFS and
channel not curr ently in use by Sail and returns OUTBUFS tell the Sail runtime system how many
that number. The user is advised to use buffers should be set up for data transfers; and
GETCHAN to obtain a channel number rather than the COUNT, BRCHAR and EOF variables are cells
using absolute channel numbers. that are used by Sail bookkeeping. N.B.: many of

the above parameters have additional meanings
OP&N(ci~•n, dev f ce ” , mod. , Inbu fs , as given in the Sail manual. The examples in this

ou t b u f i , Icount , (brc f~ar , h o t ) ; section are intended to demonstrate how to do
simple things.

8 The OPEN procedure corresponds to the TOPS-

31

I



inp ut/Output SAIL TUTORIAL

bL 1IRSt (ci’~an) ; BEGIN
IN TE G E R INCHA N , INBRCI’IRR , INEO F 1

The RELEASE function , which takes the channel
number as an argument , finishes all the input and OPEN (INCHAN • GETC HAPI , “ T T Y ” , 0 , 2 , 0 , 20e .
output and makes the channel available for other INBRC HAR , IME OF ) ;

COrI 1TENT
Opens the TTY in mode 0 ich aracter s ) , w i t h

lii , ’ folIc~~~ g routine i l lustrates how to open a ~‘ i nput b u f l s r s , 0 Out put b u f f e r s .  A t most

dev ice (in this case, the dev ice is only the 208 cH a r a c t e r s  w i i  be read in w i t h  each

t e Ic t  pe t  and output to that device. The CPRINT INPUT s i a t e m e n t , &nd ne b re ak c h a r a c t e r

fun ion, ~s’ hich is like PRINT except that its w i  i i  be pu i i n t o  var iab is INBRC.HA R.  The
out put goe~. to an arbi trary channel destinati on, end~of ~~f l .  w i l i  be s ig na i  ied by I~ E O F

is u’.ed be ing se t t o  TRUE a f t e r  some c a i t  t o  an
input f u n c t i o n  has found tha i ihe re is no
mo re data in the f i f e ;

~i,T E G E R  OUTCHAN ,
W H iL E NOT INEOF DO

OP [N1OuTC HAN G ET CH AN ,”T IY ” ,0 ,8,2 ,8 ,8 ,0) ; BEGIN
code to do input - .  see be i ow .

(1) O b t a i n  a channe l number , using END;
GET CHA N , and sa~, i t  in v a r i a b i e  OUICIIPN. REL EA SE CINCHAN ) ;

(2) Specify device ITY , in mode 0 ,
w i t h  8 input and 2 output buf fe rs .  END ;

(3) Ignore the COUNT , BR CHAR , and (OF
~a r i a b I s s , which are typicaity not needed i f
the f i l e ii oni y for ou t put.

5.3.2 Reading and Writing Disk Files
CP RIN T ( O UTC HAN , “Message for OUTC HAN
“I ; Most input and output will probabl y be done to
CO IIMEN T A ctu a data transfer.; the disk. The disk (and, typicall y, the DECtape>

are directory devices , which means that logicall y
REL EASE ( O UTC f4A N) ; separate files are associated wi th the device.
CO rIiIENT C l o s e  channe i ; When using a directory device , it is necessary to
[ NO associate a fils name with the channel that is

open to the device.
The following example illustrates how to read
t e x t  f rom a device , again using the te letype as L O O E U P ( C H A N , “ FILENA ME” , S FLACI
the device. ENT E R (CH AN , “ FILEN A ME ” , C FLAG ) ;

File names are associated wi th c hannels by three
functions: LOOKUP, ENTER , and RENAME. We wil l
discuss LOOKUP and ENTER here. Both LOOKUP
and ENTER take three arguments: a channel
number , such as returned by GETCHAN, which
has already been opened; a text  str ing which is
the name of the file , using the file name
conventions of the operating system; and a
reference flag that will be set to FA LSE it the
operation is successful , or TRUE otherwise. (The
TRUE value is a bit pattern indicating the exact
cause of failure , but we will not be concerned
w ith that here.) There are three permutations of
LOOKUP and ENTER that are useful:

1) LOOKUP alone: this is done when
you want to read an already existing file.

2) ENTER alone: this is done when

32



SAIL TUTORIAL I nput/Output

you want to wri te a file , If a f i le already ENTE R (OUTC HAN , F ILENA PIE INCHWL , FLAG) ;
exists with the selected name , then a new IF NOT FLAG THEN DONE ELSE
one is created , and upon closing of the PRINT (”Cannot w r i t e  f i l e  “ , FIL ENA ME ,
file , the old versi on is deleted altogether. try again.

This is the standard way t o wr i te  a fi le. “I ;
END;

3) A LOCKUP followed by an ENTER
using the same name: this is the standard . . .  now write the t e s t  to DUTC HAN
way to read and write an already
exist ing f i le.  RELEA SE (OUTCH A N) ;

END~
The following pr ogram will read an already
exist ing text  fi le , (e.g. , w i t h  the INPUT, REALIN, 5.3.2.1 Reading and Writing Full Words
and INTIN functions , which scan ASCII text. ) Note
that the LOOKUP function is used to see if the Reading 36-bit PDPIO words , using WORDI N and
file is there , obtaining the name of the file from ARRYIN, and wri ting words using WORDOUT and
the user . See below for details about the ARPYOUT , is accomplished by opening the fi le
functions that are used for the actual reading of us:ng a binary mode such as ‘14 . We recor i~~pnd
the data in the f ile. the use of binary mode , w i th  2 or more input

and/or output buffers selected in the call to the
BEGIN OPEN function. There are other modes availa ble ,
INTEGER INCHAN , INBRCHPR , INEOF , FLAG; such as mode ‘A7 for dump mode tran sfers; see
STRING FILEN AME ; the timesharing manual for the operating system .

OPEN (INCHAN • GETCHAN , “OSK” , 8, 2, 8, 288 ,
INBRCi4AR , INEOF );

5.3.2.2 Other Input/Output Facilities
WHILE TRUE DO

BEGIN Files can be renamed using the RENAME funct io n .
PR I NT ( ” Input f i t s  name e ”l ; Some random input arid output is o f fered by the
LOO EUP(INCHPN , F I L E N A M E  • INCHUL , FLflG)~ USETI and USETO functions , but random i nput and
IF FLAG THEN DONE ELSE output produces strange results in TOPS- 10 Sail.
PR )NT (”C~nnot find fi t s  “ , FILENA ME , Best results are obtained by using USETI and

try again.  USETO and reading or writ ing 128-word ar rays
‘I ; to the disk with ARRYIN and ARRYOUT .

END ,
Magnetic tape operations are performed w i th  the

W H I L E  NOT INE O F oo MTAPE function .
BEGIN “ INPUT ”

see bei ew for reading characters... See the Sail manual (Sec. 7) for more details
END “ INPUT” ; about these functions. In par ticular , we stress

that we have not covered all the capabil i t ies of
RELEASE ( INCHA N) ; the functions that we have discussed.
(ND ;

The following program opens a file for writing
characters . 5.3.3 TENEX Sail Channel and File Handling

BEGIN TENEX Sail has included alt of the TOPS-b Sail
INTEG ER OUTCNRN , n A G1 functions described in Section 7 .2 of t he S ai l
STRING FILENAM (~ manual for reasons of compatibility and has

implemented them suitabl y to work on TENEX.
OPEN (OUTCHA N • GETC HAN , “ Ds~” , a , I, z, a, Descriptions of how these functi ons actuall y

•, •~ . work in TENEX are given in Section 12.2 of the
manual. However , they are less efficient than

W H ILE TRUE DO the new set of specificall y TENEX routines which
BEGIN

PRINT (”Duiput f is name e ” ) ;

1I



input/Output SAIL TUTORIAL

ha. e been ai~ned to T~ ~ X Sa i l  so ,Ou p’obabl y that has not been used Ue ’O r e ~ does not r r ea n

shoul d ni’~p t t ~ ”e  sect io ns of the rt ,anuai The a new ve rsion as one might ha~’e expected. in

nt ’w T [NEX rout ines are also g r e a t y simp lif ied genera , the I/O rout ines use the relevant JSYS’ s
for the ij ’.er ~O t h a t  a number Oh the step s  to a i r e c t l y and t h u~ include all of the design er rors
establ ishing the I/O a re done t r a ns paren t l y .  and bugs in the .JSYS’ s themselves.

Bas ic a 1 , i i  on n,’ed to I L W  th ree  INTE SE R r~ i~ is , out f . is , de l au i t  sF i I c

corn rnanu’, ~ ~~ ~ i L l  ~ hich e’ I~~t P is t n s  a f i le PR INT  i l r p . t  i i  l 5~ “ ) ;

On a channel , 2) SE T INPUT w r i c h  e c ta t u ish es  r~ i is  .. OP[N~ I..F N:ILI , ‘ rc ”)
c e r t a i n  par arnn t e r s  for  the su;: ’.€’ui.~’~ t inpu ts P R I N T  (“O utpu t  f i ie~ “I

f r om Inc Iii, , arid 3> CFILE wh ich closes the t I e  Dull i~ OPE NF I L L  iN ., ,

and re leases  the channel wrieri you are f n , , n e a ,  d 5 t d u i i s V  i s
OP E i’ iFILE i ” u$er—de i a u i t s ,  imp ” , ‘u ”) ;

cha rI - OPEN~ ILE i ” f i ie na ms ~~, ‘isodis ’ l
Van now have f i les “open ” on 3 channels--one for

The OPENF’IL E function takes 2 arguments: a reading and tw o fo r wr i t ing.  We have the
str ing containing the device and/or f i lename and cuannel numbers stored in inFile , outFile , and
a s t r ing  constant  containing a ist  Of thi~ desired deta ultsF ie so that we can refer to the
modes. OPENFILE returns an integer w h ich is the appropr iate channel for each input or output.
c hannel number to be used in a l t  s : n ~equent Next we need to do a SETINPUT on the channel
inputs or outputs. If you give t~LJ~L as the open for input (reading).
fi lename then OPENFILE goes to the user ’s
terminal  to get the name. (Be sure if you do this S ET IN PUT ( c han l , count , Obrchar , € e o f )
that you f i rs t  PRit~~ a p’o~~ol to the
termina l . The modes are listed in the Sail There are four arguments:
manual (Sec. 12.3) but not all of those l isted are
commonl y used. The following are the ones that 1) The channel number .
you will usuall y gtve:

2) An integer number which is the
R or W or A for Read , Write , or A ppend maximum number of characters to be

depending on what you intend t o do read in any input operation (the default if
with the file. no SETINPUT is done is 200).

* if you are allowing rn j l t i - f i le  3) A reference integer variable
specifications , e.g., data.s;s . where the input funct ion will put the

break character .
C if the user is giving the

filename from the terminal , C mode 4) A reference integer variable
will prompt for [confirm ) . where the input func tion will put true or

false f or whether or not the end-of-f i le
E if t he user is giving t he was reached (or the error number if an

filename and an error occurs error was encountered while reading).
(typical l y when the wrong filename
is typed) , the E mode r~ .urns So here we need:
control to your program. If E is not
specif ied the user is automa tical l y INTEGER i nf i i e B r C h r , , n f i i e Eof ;
asked to t r y  again. SET INP U T f i n f l l e , 290 , n i  i iebrc hr , n i t  ie Eo i ) ;

Modes 0 and N for Old or New File are also Now we do the relevant input /output operations
allowed but probabl y shouldn ’t be used. They and when finished:
are misleading. The defaults , e.g. without either
0 or N spec if ied , are the usual conditions (read CF lIE I ni i f s ) ;
an old version and wri te a new versio n) . The 0 CF I LE lou t f i l e ) ;
and N options are peculiar . For examp le , “NW” CF ILE ( d e f a u i  sF i c ) )

means that you must specify a comp l.t.Iy new
filename for the file to be wri t ten , e.g., a name A simple examp le of the use of these routines

fo r opening a file and outputting to it is:

1
l i i



SAIL TUTO RIAL Input/Output

IN T (GLR o u t f  l i e ;  the user gives an i nc o r r e c t  f : * ’ na ’- n e t 1 ’nr
PR I N T 1 ” T ype f i i . n a m s  fo r  ou t p u t :  •l ; OPENFILE w i l  re turn  -1 rather than a channel

out i i  i,.OPENF) LE iNULI , “uc ”i ; number and the T ENEX error number wil l  be
C PR I N~~i o u t f i l e , ~m sssa ge . . . ” ) ; returned in !SKIP! . Remember to de c lare
CFI LE ( o u t f i t s ) ; EX T ERNAL INTEGER !SKIP! if you are goin’~, to be

looking at i t .  Handling the er ror s you r s e l f  is
where CPRINT is like PRINT except  for the often a good idea. TENEX is unme rci fu l , If the
additional f i rst  argument which is the channel user gives a bad filename , it v~ill ask again and
number . keep on asking forev er even when it i s obvious

af ter  a cer ta in  number of t r ies that th nre is a
The OPENFILE , SET INPUT , and CFILE commands genuine problem tha t needs to be resolved.
will handle most situations. If you have unusual
requirements or like to get reall y fancy then Another use for the ‘~E” mode is to o f fer  the user
there are many variat ions of file handling the option of t yping a bare <CR> to get a defaul t
ava ilab le. A few of the more commonl y used will f ile, If the “E” mode has beer~ specified arid the
be co~ered in the next secti on; but do not read user t ypes a carriage-re turn for the fi lename
this sect ion until you have tr ied the regular then we know tha t the error number returned in
routines and need to do more (if ever) . On first SKIP! will be the number ( l is ted in the JSYS
reading, you should now skip to Section 5.4. manual ) for “Null filename not allowed. ” so we

can intercep t this error and simp l y do another
OPENFILE w ith the defa ult filename , e.g.,

5 3.4 Advanced TENEX Sail Channel and EXTERNAL INTEGER ~ Ipi ;
Fil e Handling out file. ’- );

W HILE ou t f i i e  • -I DO

If you want to use multi ple file designators with BEGIN
*‘s, you should give “t” as one of the options to PRINT ”F I iename (<CR > for T IV i I s ” )
OPENFILE. Then you will need to use INDEXFILE out Ii ts ..OPE NFILE (NULL , “we ”) ;
to sequence thr ough the multiple files. The IF i 5~ p i • BOtlIS THEN

syntax i~~ o u t f i i s - O P E N I I LE ) ” T TY: ” ,”w ”) ;
(NO ;

found i another i f i l e  IN OEX FILE ( c ha n l )
The GTJFNL and GTJ FN routines are useful i f  you

where fou nd anot hs r ’ i i  is  is a boolean variable , need more options than are provided in the
NDEXFIL[ accomp lishes two things. Firs t , if OPENFILE routine , but neither of these actual l y

there is another file in the sequence , it is opens the fi le so you will need an OPENF or
-h roper l y initialized on the channel; and second , OPENF’ILE after the GTJFNL or GTJFN unless your
~DEXFl1E returns TRUE to indicate that it has purpose in using the GTJFN is speci f ical l y that

gotten another file. Note that the or iginal you do not want to open the f e ~ The GTJF NL
OPENFILE gets the fir st file in the sequence on routine is actuall y the long form of the GTJFN
the channel so that you don’t use the INDEXFILE JSYS; and the GTJFN routine is the short form of
until you have finished processing the first file the GTJFN JSYS. See the TENEX JSYS manual for
and are ready for the second . This is done details.
convenientl y with a DO...UNTIL where the test is
not made until after the f irst time through the Another use of GTJFNL i~ . to combine filenam e
loop, e.g., speci f icat ion fr om a str in g wi th  f i lename

specif icat ion from the user . This is a simp le wa~
mul t iF ice OP(NFILE ( “ d a t a . e ” , “rs ’); t o preprocess the filename from the user , i .e., to

check if it is rea ll y a “‘?“ rather than a filename.
BE(.IN First , you need to declare !SKIP! and ask t he use r
. . .<input and proce ss Curr ent i i i e ~ . . . for a filename:
END
UNT IL NOT INDEXFILE( ~ . ,itiF iiss) ; EXTERNAL INTEGER i sri p i ;

WHILE TRUE DO
Another available Option to the OPENFILE routine BEGIN g e t f i  tenams
which you should conside r using is the “‘E” option PRINT (“T ~p. input ii isnaise or t “I ;
for error handling. If you sDecify this option arid

35

I



Input/ Output SAIL TUTORIAL

Next do a r egula r INTTY to get the repl y into a confir ml are turned on Remerr her that the bit&
string: star t  w i th  Bit 0 on lire le f t ,  The j f n 1 4 n ,v I

probabl y always be ‘000100000101. This
S • :51Ti ~ argu ment is f or the inpu t and output deuces to

be used if  t r y  str ing needs to be supplemented.
‘T hen vc’u p r o c e ~~’~ the s t r i n g  in any w a , that you i-ie r e  the contro l l ,ng e’ mina l  is used for bole .
choose , e g., c~ c’ f i t  a “?“ or some ot her Devices on the system ha. e an octal number
spe c ia ke~ w o r d ,  ass ociated w i t h  Inem 1

~ e control l ing ter mi ” aI  as
inpu t devic e i ’ ‘100 a ” ; as output is ‘101. Fo’

IF 5 ““ THEN BEG IN b’ o~ t purposes ui can refer hi the lerm nal by
q . e n e i p ;  its “na me ” whic h is TTV . but here the number is
CONTINUE “gel f i l e n a m e ” ; requir ed. The input and o u t p u t  devi ces are
END ; g iven in half wo rd format  which means that  ‘100

is in I re le f t  and ‘10 1 in the right half of the
if you decide it i s a proper filename and want to ~ ord w ; t h  he appropr iate 0’s f i l led out fo r the
o’ .e it t ’~er you give t hat  str ing (with the break rest.
ch a r acte r f r O m  NT T Y  which will be in !SKIP!
ap; ended bac k on to the end of the string ) to The nex t  S i a  arg ume nts to GTJ F’L are for
t ’  G fj r r’.j~ defaults if you w a n t  to gi .c them for: device ,

d i r e c t o r y , f ile r a e , f i le  e> tensio n , f i l e
— CT J F i,i is~ ~Sf IP , ‘ 160000080 808 , pro tec t ion , ar c; f i le account  I’ no c iu fa u l t  is

‘000100800181 , NULL , NC , I, NUL L , g. en for a f i e l d  then t i r e  s tandard  defaul t  ( f
Nu; L • ‘ii I , NIJ LLi ; a” , usec , e.g , DS’ . for device and Connected

Di rec to r 1  f 0  a i r ec to r i  Tb~ is anot rier reason
‘I t he s t r i ng  ended in a ltmode meaning that the wn ,’ you nra ,  choose GTJFN L ove r OPENFILE for

i’r a n ted  r ename recogni t ion then that  wi l l  ge tt i ng a f iename , In this way,  you can set up
hi’ do”n , and if the string is not enough for defaul t s fo r the filename Or ext e ns i on , YOj  can
‘F” o r r t io n  and more typein is needed then the 0.50 u’e GTJ FN~ to simulate a d i rec tory  search
G I L  r~ 1 w i l l  ring the bell and go bac k to the path. F or examp le , t i e  EXEC w hen a c c e p t n~’. the
user ’ s te rmin a l  wi thout the user knowing that rarir e of a p rogram to be run follows a nc’a rch
an 1 p’ocessl ng has gone on in the meantime , i .e., p,,tr to locate the f i l e F r ’ .t it loo’ .s on
to the L. 5” r it looks exac t l y like the ordinar y < 5 J8SY S> for a f ee of that  name w , t b  a SAV
(PL r i f  ILl Thus the GTJFNL goes fir st to the ext ensi o n . Nc’ i t  it b oss on the C on re i. t e d

s t r ing  that  you give it but can then go to the d i rectory  and f i n . 1 .~ on t h e  login d i rec to ’~~. ~
termina l  if more is needed. you have an analogous si tuat ion , you can use a

hierarchical ser ies of GTJFNL’ s w t ’r the
A f t e r  the GTJFNL don’t for get that you sti l l  need appropriate de fau its  spec i f ied :
to OPENF the f i le. For reading a disk file ,

[ l T ( R i 4 ~ L I N T E G E R ~~ IP ’ ,
OPINF (cha nt, ‘440000288888i IN ’EGER logl i r ,co nd ’ r , t t yno;

STRI NG loqiiir~~r .  . cona r s t r ;
is a reasonable default , and for writing:

io qd r r ,con d :r , i t yno)

OP E NF (char’I, ‘~~ 0008)00008); COII ItENT p . r x  i r e  d . r e  t .,r,., r’,,’ n e ’e  for b ri m
,irmd c r ’ ’ ’  t c I e t  l ir , c i or,, a d  1h5 t i . ~ S ri

The arguments to GTJFNL are: t~ r s i ~~i s r c e ini,qe.’ a ’ q ~.” . ” t s ;
i o g d m r s t r . D I R S T i i o q d m r ) ;

chCnl • G TJ FN L 1 ” ii i e n am e ” , flags , j f n j iri , c o n d m r s t r - O i ’ S l i c o n d m r ) ;
“ ds~~” , “d ir ” , “name ” , “ e ’i ” , COII ITEN T r . tu rre  a st r in g for the name
‘protec t ion ” , “icc’ ’) ; corre spond ing to d i rector y S

,H IL (  tr~’. DO
where the f lag specif icat i on is made by ioo~.ing BEGIN “qs tn ame
up the FLAG S for the GTJFN JSYS in the JSYS PR IN T “l y pe the name QI  t he program’ “I ,
manual and figuring out which bits you wa n t IF EQU (upper (HAIt I • INT T V ) , ‘I ~LC “ 1 THEN
turned on and which off, The 36-bit resulting BEGI N
word c an be given here in its octal nime.. ”~ SV S T F t t r E X E C . S A V ” ;
representation. ‘160000000000 means bits 2 DONE “ getname ” ;
(old file only), 3 (give messages) and 4 (require END;

IF name • “‘“ THEN

36



SAIL TUTO RIAL Input/Out put

F~ , i ~’ ~~l l be diff ic u lt to use i f you are no ’ fam i l i a r  w i t h

~~
. . ~ h~~ ’ r I ‘e JSYS’s and the JSYS manual

, T IN I “ qe i na.. e ’ ;
i N ’

CD r” f  “ ‘I put ‘s  b r. a I ch .n ba n on; 5.4 input from a File
DU NE f l a g • ~‘ 1f8R it0880PP8, ,

4,. f r  ‘ l888ee1BI ~ 
In  t ” is section , we will assume tha t  ~ d i  ha .e  a

IF lt ,. .ni~L”a” . G iLN i  ira-i c . $ iaq , j $n j f n . N . 1 , ~‘ opened for reading on some channel  ar’ d a ’e
“SU BSY S ” ,N .L , “SPV ” , N .iL L , Ni.~ L )  • -1 rea d , to i’ ;ut A s o  that you have a p p r o p r ia t e  y

TH EN e’ ,I abI.shed tne end-of - f i le  and brea , . c ha r a c t e r
‘ (t .mpChan~ GT ; NI m ae,, , i ag, variables to be used by the inpu t routines and

~~~~~ ~ . cr”i irs t . N ..1, fte’ break table if needed.
‘sP v~ . N : L N :)) —1 TH IN

IF I i em p Cf ’ m a n —G’ Ji Ni m nams , f ; Another funct ion which can be ~~~~~ n

j f nj f n ,N U L L , iog dirst r , 44, L , con lur ic t ion with the various input fu nc t ions is
“ SA V ’,NULL ,NULI)) • -1 ‘iiLN SET” L.

BEG I N
P R INT I” ~‘ , c’~i f i ; SET PL ic han l , • i m n e l . !paqel , IsosIi
CONTINUE “getr i ame ” ;

END ; This allows you to set up the three reference
COMM E NT tr y each d e f a u l t and i f r io t f o u n d integer var iables m e l , pag sl, and sosl to be
then tr y ne. ’ u’r t i i r a re a re found then associated wi th the channel so that an~ inpu t
or r I ‘ arid try a g a in ; funct ion on the channel wil l update Ibe r ‘,‘a ues

bar. - JINS I tem p C $ran , RI ; The m e l var iable is incremented each t imP a ‘12
C 1) I MLN I g e t s nam, of i i l c 0” chan--8 (if) is input a-r d the pa qe l va riable is incremented

means in norma l fo rma t ; (an d i m e l reset to 0) e a c h t i n e a ‘l 4 (fo rm f e e d)
Cc t LE t i smpth5 ’~. is input. The last SOS line number input (i t any)
CO r ’P’T channe l rio t opined but does WIll be in the iosl variable , The SETPL should be

need t o F p re ‘ea sed ; given before the inputting begins
DONE “ qe t nam e ’ i

Tne major input function for text is INPUT .

this c~ .~e did not want to open a cha”ne ~re s u i I” • INPUT ich aril , tab ieli
at al l sir u.t ~ e wil l not be e t h e - reading or
wr i ting the SAy f i le. At the end of the above whe re you give as arguments the channel
code , the complete f i lename is stored in STRING number and the break table number; and the

We might wish In run the program wi th the result ing input string is returned. This is very
RUNPRG routine. GIJFN and GTJFNL are o f ten s imilar to SCAN.
used fo r the purpose of establishing f i lenames
even though the y are not to be opened at the To input one line at a time f rom a f i le (where

m~~r’ rent l~loweve r, the Sail channel does need to m iii. is the channel number and in4 s l o t is the
be rel eas ~~’I af te rwards , end-of-f i le variable) :

Some of the other JSYS’ s which have been SEIBRERE (readL lne~GETBREAF , if , N U L L , ‘ na ”) i
imp lemented in the runtim e package were used 00
in this program: GJINF, DIRST , and .WN S. JFNS in BEG IN

1~
particular is very useful. It returns a strin g STRING line ;

which is the name of the file open on the i mne ~ I N P U T (i n f i l e , readL ine) ;
channel. You might need this name to record or .. . ~p roces, the I in e ...

t o print on the te rminal or because you wil l be END
output ting to a new ~,ersion cii the input f i le UNTIL inf i id o l ;
w h i c h you can ’t do unless you know its name.

If the INPUT fu nction sets the eof variable to
These and a number of other rout i nes are TRUE then either the end-of- f i le was
covered in Section 12 of the Sai s manual . You encountered or there was a read error of some
should probabl y g lance through and see what is sor t,
there. Many of these comma nds correspond
direct l y to utility JSYS’s available in TENEX and

1

~ I

Input/Out put SAIL TUTORIAL

It I’ €‘ lr~PUT t e r t r , i n a t e d because a b reak ‘res i n i ”

c h a r a ct er w a s read then the break cha racter will S I NI (ch an l , ra~~I e ng th , brea f r — c h a r a c i e r)
be in t e b r c h a r var iabl e. If brc har=O then you
h,i ir to look a t the eof v a r iab le asO to does a ve ry fas t input of a s t r ing w h c h mc
determ i ’ ., hat happened: It eof — T R UE then that te rminated by either reading m a i m sng tlr charac ~e rs

as w ‘ a t t e r m ’ r r a t e d t i e INPUT but if eo f —F ’ALSE or encounteri ng the bre a i - c h a r a c t e r . t~o te t h a t
ar c ; ‘ r c ia’ =0 t I r t . r r t r i m INPUT was terminated by the bre at -character here is not a r e f e r e n c e
reacil ing I’ ,’ max rnum count per input that was integer where the break character is to be
‘.p , , f t c ; for the channe l. re turnea; rather it ac tua l l y is the break

charac ter to be used like lir e “b reak -charac te rs ’
I f Ciu ~~r F ’ p t t n g numbers from the channel establ is hed ri a break tas le e F c e p t that oil , one
the- ’ charac ter can be specif ied. If the SlNl te rmina ted

fo r reaching xi. ,er~g th then !SKIP! -1 e lse !SKIP!
• RI O: IN i ch inl) a, II contain the break c h a ra c t e r

in t e qa .a’ • IN T I h ic ha n h i
TENEX 5 1 . 1 a iso o t t e r s random I/O w h iC h mc not

i” a~~mr ’ ‘5’ PEAL~~CAN and IN1 SCAN can be a. a lab e in ‘fl,.~S 10 S o : . A f i r byte poi~~t e r is

~~~~ P ,‘ i r r c m ’ a r  e’ . t a i r i ’shec i  for the  c l r a nnes  rr a in ta inec l  f o r  each file and is ‘r t a i ize d to point
II be used ra t he r  t iran nee ding to give it as an a~ the b e g i n n i n g  of h e  f i le which ;s h, Ic  0. It

ar , r.’.ir’rl as in t he RLA L~~CAN and INISCAN. s uos e ou ent l y’ moves throug h t h e  f ’ i e  a ’ ~~a y 5
pointing to t i re c h a r a c t e r  where the neat r ead  or

is desig ned f~~r f i les of tex t ,  Several other wr i t e  will begin . In fac t  the same f i le m a 1 be
“p, t f u nctions are available for other sorts of read and written at the same time ba ’.summn g it

i rs has been opened in the appropr ia te w a / I  If the
pointer could onl y move in t h i s  way then onl y

Number - W O R DIN ic han l) sequential I/O would be ava ilable However , you
can reset the pointer to any random posit ion in

wi l l  read in a 36-bit word from a binary format the file acid begin the read/write at that point
f i c  For c~e’ai ls see the manual . which is ca : ed random I/O.

ARR Y IN(c hanl , Ri oc , co unt )  c liarpir - RCHPTP (chanui

is used for fi l l ing arrays with data from binary returns the current  position of the c h a r a c t e r
format f i l e s ,  Co u nt is the number of 36-bit words pointer . This is given as an integer representing
to be rear ; in fr om the file. They are placed in the number of characters  (bytes) fr om the s tar t
consecut ive locations start ing with the locatIon of the file which is byte 0. You can reset the
specif ied b y ioc , e.g., pointer by

INTEGER ARRAY num bs (1:saxI ; SCHPTR lehan l , nsw p tr )
A R R Y  IN ( di $ aF m Is , n umbs ( LI , ema~~

It rm iw pt r  is gi .en as -1 then the pointer will be
A PRY Irri can onl y be used for INTEGER and REAL set to the end-cf-fi le.
a r r a y s  (not STPING arrays ) .

There are many uses for random I/O. For
5.4 Additional TENEX Sail Input Routines example , you can s tore  the help tex t  for a

program in a separate file and keep track of the
Two e r t r a  input routines which are quite fast by te pointer to t he s ta r t  of each individual
have been added to TENEX Sail to utilize the message. ‘Then wF’ vi you wa nt to print out one
availab le input JSYS’s. of the messages, you can set the file pointer to

the start  of the appropriate message and print it
c Har = Cf’iARIN (ch an l)  out.

inputs a single character which can be assigned P~’JDP ~ P AND SWD PTR are also available for
to an integer variable. If the f ile is at the end random I/O w i th  words (36-bit bytes) as the
then CHARIN returns 0. primary unit rather than characters (7-bit bytes).

I1



SAIL TUTOR IAL Input/Output

5.5 Output to a File

The CPRINT function is used for outputting to
tex t files.

C P P I N T  (cha nl , arg l , arg2 , .... , argN)

CPRINT is just like PRINT except that the channel
must be given as the fi”st argument.

FOR =1 STEP 1 UNTIL max W o r ke rs DO
C P R I N T ( o u t l l i s , nam. t l ) , “

s a i a ry ( i )  ,c r i t ) i

Each subsequent argument is converted to a
string if necessary and printed out to the
channel,

W ORDOUT (chanl, number)

writes a sing le 36-bit word to the channel.

PRRYOU T(chanl , h o c , Count )

writes out an array by outputting count number
of consecutive words starting at location b c .

REITL ARRAY riiui)i Llt*axl ;

A R R YOUT ( r es u i t F  l i e , rs,u i t s  C I I  , ma,)

TENEX Sail also has the routine:

CfIAROUT (cha mS , char )

which outputs a single character to the channel.

The OUT functio n is generally obsolete now that
CPRIN1’ is availab le.

t T

J 1
I



Records SAIL TUTORIAL

SECTION 6 rp N EW i RECO RD ( person ) ;

Records creates a person , with all f ields initiall y 0 (Or
NULL for str ings , d c). Reco rds are created
dynam ical l y by the program and are garbage
collected when there is no longer a way to
access them .

Recordc a’e the newest data structu re in Sail .
t a~ ” u’ e ,o n d the basic part of the When a record is created , NEW!RECORD returns a

Ian gria u .P . h t  we describe them here in the hope pointer to the new record. This pointer is
ts’ ,1 ‘ i., will 1cc’ ve ry  useful to users of the t ypicall y stored in a RECORD!POINTER
Ia!i, .. m ;~. c 5a i records are sim ilar to those in RECORD!PQINTERs are var iab les which must be
A , G I L  ~ ( ‘c i  Appendix A for the d i f fe rences ) ,  dec la red. The RECORD!POINTER r p  w a s  used

Seine o t m u r  languages that contain record - l ike above. There is a very  important d is t inc t ion  to
‘,t r ij c t~.~e5 a ’ c  SIMULA and PASCAL. be made between a RECORD!POINTER and a

RECORD. A RECORD is a block of var iables cal led
Qrç1’~ can be ex t remel y useful in set t iu i g  up f ie l ds , arid a RECORD!POINTER is an ent i t y that

c o r i . p ’ m c a ’( d data  s t ructures.  The’, allow the Sail points to some RECORD (hence ca r be thought of
progr amnnier: 1) a means of program controlled as the “name ” or “address ” of a RECORD). A
s to rage  a i i o c a t on, and 2) a simp le method of REC ORD has fields , but a RECORD!POINTER does
ref err ing to bundles of information . ( Locat ion ( s )  not , althoug h its associated RECORD may have
and mc ,,uor~~Ci, I, which are not discussed here and fields. The following is a comp lete pr ogram that
sr ,oc . ’c f be thoug ht of as liberation from S ail , declares a RECORD!CLASS, declares a
a l low  Oni to deal w i t h  addresses of things.) RECORD!POINTER, and creates  a record in the

RECORD!CLASS with the pointer to the new
Declaring and Creating Records record stored in the RECORD!POINTER.

A rec ord is rather l ike an array that can have BEGIN
ob j e c t s  of d i f fe rent  syntact ic types. Usually the RECOR Di CL A SS person (STRING name , addre s s ;
record  represents  d i f ferent  kinds of information INTEGER account;
about o”ir onject .  For examp le , we can have a REAL ba lance ) ;
c I a ’ s  o~ recor ds called person that contains RE C ORD i POI NTER (person) rp~
re c o r d  w i l l  information about people for an
1( co u r r tm ng  pr ogram . Thus , we mig ht want to COI1IIENT program s t a r t s  here. ;

I- i’e p: the p~ ’r  son ’s name , address , account rp = NEI4 iRECORO (person ) ;
number , n~’cneIa’ y ba la nce We could declare a (NO;
record c las s  thus:

R E C IJ ’ O i C L A S S  person (STRING name , ad dress; RECORD!POINTERs are usuall y associated w i th
INTEGER accoun t ; particular record c lass (es) . Notice that in the
REAL ba i anc. i above program the declaration of

RECORD!POINTER mentions the class person:
This occurs at declaration level , and the
ident i f ier pers on is availabl e with t n t he cu rr ent R ECO R D’ PO INTE R (perso n) rp ;
bloc k - -  st like any other identifier .

This means that the compiler will do type
PECORD’CLASS declarat ions do not actual ly  checking and make sure that only po inte rs  to
reserve an y s torage space. Instead they define rec ords of class per eon i will be stored into rp. A
a pa t te rn  or temp late for the c lass , showing what RECORD!POINTER can be of several classes , as in:
fields the pat tern  has. In the above , nam e , edd rese ,

a ~~ ni arid balance are all fields of the RECORD POINTER (p.rson, univ.rsity) rp ;
RECORO!CLASS person.

assuming that we had a RECORD!CLASS
To crea te  a record (e.g., when you get the data u n ive r smim ,~.
on an actual person) you need to call the
N[W’RECORD pr ocedure , which takes as its RECORD!POINTERs can be of any class if we say:
argument the  RECORD!CLASS. Thus,

40

I



SAIL TUT ORIAL Records

REC O R D m PD I N I ( R (ANY !CLASS) rp;

but declaring the c las s (es ) of record pointers 6.3 Linking Records Together
gives c ompilation time checking of record class
agreement . This becomes an advantage when Notice , in the above example , that as we create
you have severa l classes , since the compiler will the persons , we have to store the pointers to
complain about many of the simple mistakes you the records somewhere or else they will become
can make by mis-assigning rec ord pointers. “missing pers ons ”. One way to do this would be

to use an array of rec ord pointers , all ocat ing as
many pointers as we expect to have people. If
the number of people is not known in advance

6.2 Accessing Fields of Records then the more customary approach is to link the
records together , which is done by using

The fields of records can be read/writ ten just additional fields in the records.
like the elements of arrays. Develop ing the
above program a bit more , suppose we have Suppose we upgrade the above examp le to t he
crea ted a new record of ctass person , and stored following:
the pointer to that record in rp. Then, we ca n
give the “person ” a name , address, etc., wi th the RECO RD CLASS person (STRING name , address;

foll owing statements. INTEG ER account ;
REA L balance;

p mrs o n : nam e( r p l “ j o hn Doe ” ; R E C O R D i P O I N T E R ( A N Y i C IA S S  ne xt );
p e rso n :ad d re ss ( r p )  “181 Ea st Lan sin g Stre e t ” ;
person :account IrpI = i* , Notice now that there is a RECORD!POINTER field
person :baia n c .IrpI = 3088.87 ; in the template. This may be used to keep a

pointer to the next person, The header to the
and we c ould write these fields out ‘~sth the entire list of persons will be kept in a single
statement: RECORD!POINTER.

P R I N T  (“Name u s , par son: n amel rp )  c r l f , Thus , the following program would create
“Address i s  “ , person: addr e ss (rp ) , c r l f , persons dynamicall y and put them into a “linked
“A ccount is “ , p e r s o n : a c c o u n t ( r p ) , crlf , li st” with the newest at the head of the list. This
“ Ba lance ix “ , p . rs ’ n : ba i anc , t rp ) , Cr I f ) ; technique allows you to write programs that are

not restricted to some fixed maximum number of
The syntax for fields has the following features: persons, but instead allocate the memory space

necessary for a new person when you need it.
1) The fields are available within

the lexical scope where the
PECORD!CLASS was declared , and f ollow BEGIN
ALGOL block structure. RECORD CLASS person (STRING name , address;

INTEGER account ; R EAL b a ta n ce ;

2) The fie!ds in different classes R(cOR D i PO I NTER (A NY i CLA SS ) next ) ;
may haie the same name , e.g., par .nt :name
and ch iid:na me . RECORO IPOINTER (ANYiCLASS ) header;

3) The syntax is rather 111cc that for WHILE TRUE DO
a r r a y s  - - using brackets to surround the BEGIN
record pointer in the same way brackets STRING s ;
are used for the array index. RECORO iPOINTER (ANY iCLA SS) temp ;

4) The fields can be read or written PRINT (”Nii ,ie of nes t person , CR if dOne; ” ) ;
i nto , also like array locat ions. IF NOT LENGTH (s INCHWL) THEN DONE ;

5) It is necessary to write COMMENT put new person at  head of l i s t ;
c i a s s ; f ) e i d tpo ln te r )  -- i.e., you have to temp NEWiR(CORO(person) ;
include t he name of the c l ass (here COMMENT ma Se a new record ;
p.r eon) with a “:“ before the name of the per son in estlt emp l = header ;
f ield . CONIIENT th, old head becomes the second;

‘I

I



Records SAIL TUTORIAL

- tem p;
CO r 1M EN T the new record become S the head; P • 0 (P Iii J :3) (B 1:1 , J 2 )

(C I;!, J :3) (0 1:1 , J :3 )
COMII E NT now ( i i i  information f ie lds ;
pe rson~ name ( temp t  s;  Note that two RECORD!POINTERs are onl y equal if
COrt IIINT now we can f i l l  addre ss , account , they point to the same record ( regardless of
ba ia nc e i f  we want...; whether the fields of the records that they point

END; to are equal). At the end of executing the
previous example , there are 3 distinct records ,

EN D; one pointed to by RECORD!POINTER b, one
pointed to by RECORD!POINTER c , and one
pointed to by RECORD!POINTERs a and d. When

A ~.er ~ powerfu l  feature of record structures is the line that reads: pa i r :  j Cd) 3 ; is executed ,
r ab l to have di f ferent sets of pointers , the j - f ie ld of the record pointed at by

Fu’ e~ anc ple , there might be both fo rward and RECORD!POINTER d is changed to 3, not the j - f i e l d
b~ 

iw a r d  l , r c ~~c ( in the above , we used a forward of d (RECORD!POINTERs have no fields ) . Since
link . ~i ruc tu re s  such as binary trees , sparse that is the same record as the one pointed to by
r’ .’ l r i c e s , or qLir’c . p r ior i ty  queues , and so on are RECORD!POINTER a , when we print p a i r : )  (a] , we
“,~‘ ral  applications of records , but it wil l take a get the value 3, not 2.

: .~ stud , of the structures in order to
unccr’: .tand how to build them, and what they are Records Can also hel p your programs to be more

~‘. ood for . readaole , by using a record as a mean’ . of
returning a collection of values from a procedure

13c’ warned about the dif ference between (no Sail procedure can return more than one
record ’ , record pointers , record classes , and the value). If you wish to return a RECORD!POINTER,
fi elds of records: they are all distinc t tnings, and then the procedure declaration must indicate this
you can get in trouble if you forget it. Perhaps as an additional type-qualifier on the procedure
a simp le examp le will show you what is meant: decla ration , for examp le:

E l G i ’ ~ 
RECORO iPOINTER ( per s on ) PROCEDURE maxB a ia nce ;

R E C ’i~DiCL R SS pa i r  ( INTEGER I, j ) ; BEGIN
PECORD i POI N TER (pair) a , b , c , d ; RE C O RO m POINTER (person) temp header ,

curr en t Ma sPers on
a .. N ( W i R E C O R D  (ç a i r ) ; REAL cur ” ent f l as;
pair: (a) 1; temp Header header ;
pair ; (a) 2 ; current tlax = perso n: baianc e (tems p i’leader )
d • a; cu rrent flaxP er ion = t empHeader ;
b ‘. NEU REC O RO ( p a i r ) , WH iLE tempheader • person :ne s t (tempH eader ) DO
p air: (bI 1, IF pers on:ba l ance (tempHeader ) curre nt Mas ‘T HEN
pa i r : )  (b) ~; 

BEGIN
c - N E W ’ R ECO PD (pa i r ) ; curr ,ntfla s • person :baiance (temp hea ler ) ;
p , m r ;  C c l = 1 ; c u rren tf l ax Per s on • ;emp Hea der ;
p a i r ; ;  Ccl  • 3 ; END;
IF a • b THIN PR INT (  “ A • B ) ; REIU RN(c urrent Mas P. rson ) ;
p a i r : ]  ‘11 3; END;
IF a • c TH IN PRINI( A • C
IF C • d THEN PR(NT ( c • o “ This procedure goes through the linked list of
I F  a • d T H E N  P R I N T I  “ P • o “ records and finds the person with the hig hest
P R ] N 1 l  ‘ CA  I: , p ai r:I (a) , “ , i: ” , balance. It then returns a record pointer to the

p a ir ) (a) , i ”  ; rec ord of that person . Thus , through the single
PRINT  i “ (B I; ” , p a i r ;  i Ib) , “, J: ’, RETURN statement allowed , you get both the

p a i r : ;  Ib) , “ I ’  ) ; name of the person and the balance.
PR INt ( (C I: , pa i r ;  i Cc l , , J:

p a r : ;  Cc l , “ I ” ) ; RECORD!PQINTERs can also be used as arguments
PR N T C “ CD I;~~, pa i r ; i  Cd l , , Ji ” , to procedures; they are by default VALUE

pair :) Cd) , ) “  ) ; parame ters when used. Consider the following
(xO; quite complicated exam ple:

will print: RECOR DiCLASS pn i (REAL x ,y, z);
RECOR D I PO INT EM (pnt ) PROCEDURE midpoint

(RECORO ’ PO I NTE R (p nt )  a , b) ;

42

I



I

SAIL TUTORIAL Records

B EGIN
PECO RD iPOINT ER Cpn t ) re l v a i ;
ret~ ai = NEW iREC O RD (pnt) ;
pnt :s (ret .~a t) = ( p n t : x  (a) • pnl :x (b)) / 2i
p n t : y  ( r e i v a l )  = ( p n t ; y  (a) • pnt ;y (b)) / 2;
pn t : ~ ( r e t v a t )  — (pnt;z (a) • p n t iz  Ib) ) / 2;
RETURHC r e t v al ) ;
END ;

j p • s i m d p o . n t (  q, r

While this procedure may appear a bit clumsy, it
makes it easy to talk about such things as p n t S

later , using simp l y a record pointer to represent
each p nt .  Another common method for
“re turning ” more than one thing fr om a
procedure is to use REFERENCE parameters , as in
the f ollowing examp le:

PROCEDURE midpo in t  (REFERENCE REAL rx ,ry, rz;
REAL ax , ay, az , bx , by , bz ) ;

BEGIN
• (ax • bs ) / 2;

ry • Cay • by ) / 2;
rz • Caz • bz) / 2;
END;

MIOPOINT ( piu , py, p2 , qx , qy, qZ , rs , ry, rz , );

Here the code for the procedure looks quite
simple , but the re are so many arguments to it
tha t you can easil y get lost in the main code.
Much of the confusion comes about because
procedures simpl y cannot return more than one
value , and the record structure allows you to
re turn the name of a bundle of information.

1~

43p9
j 1  

_ _ _ _ _ _



Conditional Compilation SAIL TUTORIAL

SECTION 7 If this tea t ur ,’  were not available then the
fol lowing would have to be used:

Conditional Compilation
B OO1 (P N s n , a i i V e , s i o n 1
s m a i l V e r s i o n  = TRUE ;

(F seal iV eri i on THEN sax = lO T i otai

Conditional Com pilat ion is ava :ah le  so lhal the ELSE max - j8 8sto ta i ;
same source f i le can be used to comp ie sii g htiy

di f fe rent  ve rsions of t i e  pro g ram f~~r d i t e rent
purposes. Conditional compilat ion is h~ Oled by so that a conditional would actual l y appear in
the scanne r in a way s imilar to l I e  handling of your program
macros. The tex t  o ’ the 5 O ’j r ( C  f i le is
manipulated before it is compiled T I e  format  is Some t ypi cal uses of co ndit ional compi l at ion are:

( FCR boo lean THEN . code ELS EC c i x  EN~ 1) Insertion of debugging or test ing
code ~or experimental ve’sions of a

This c o n st r u c t i o n  is not a s t a t e m e n t  Qr an program and then removal for the f inal
p .  pressi on. It is not fol lowed b~ a semi-c olon version. N o t e  that the code will s t ; l l  be
but j us t appears at any point in ,our progra m . in your source fi le and can be turned
The ELSEC is opt ional The ENDO must be bacir on ( recompilat ion is of course
included to mark the end but no begin is used, requiredi at any time that you again need
The code wh ich  t Ol i0w ~ the THE NC ,irid ELSEC if to debug. W hen you do not turn on
u’.ed) can be an~ va l id Sa il syntax or fragment of debugging, the code comp letel y
s y n t a x .  As wi th  mac ros , the scanner is simply disappears from your program but not
ma nipulating t e x t  and does not check that the from your source fi le.
text  is valid syn tax.

2) Maintainen e of a sing le source
The boolean must be one which has a value at file for a program which is to be
compile time. This means it cannot be any value exp orted to several sites with minor
computed by your program. Usuail y, the boolean differences.
will be DEFINEd b,’ a macro. For examp le:

DEFINE s u mex • CTR UE ,,
C(FIN E sma i iVe ri ion • • ‘TRUE ; s i  •

IFCR sma iiV .rs on THENC max - ~i l x t o i C i ; IFCR sumex T HENC d o c d m r  — DOC” ; ENOC
ELSEC ma . = l P O o t o t a i ; E N OC I FCR s m  THENC d o cdmr  - “DOCUME N TAT ION” ; ENDC

where every dif ference in the program betwee n
the small and large vers ions is handled wi th  a where Onl y one si te is set to TRU E for
s im mla r IFCR . . THENC. . £ tJ DC construct ion . For th is each compilation.
co -is truct i on, the scanner chec lc s the value of the
boolean; and if it is TRU E , the tex t  following 3) “Commenting out” large portions
7HENC is inserted in the source being sent to the of the program . Sometimes you need to
inner compi ler--otherwi se the text  is simpl y temporaril y remove a large section of the
thrown away and the code following the ELSEC program. You can insert the word
(if any) is used. Here the code used for the COMMENT preceding every statement to
above wil l be ma. = iBs totat ;, and if you edit the be removed but this is a lot of extra
pr ogram and instead work. A better way is to use:

DEFINE s m a i i V e r s m o r u  • xFRLSE x , IFCR FALSE THENC

the result will be ma , = I88.i olal ;. a i i  the code to be “ reeiove d ” ~

The code following the THENC and ELSEC wi l l be ENDC
tak en exactly as is so that statements which
need fi nal semi-colons should have them. The
above format of statement ELSEC is co rrect.

I1



I

SAIL TUTOR IAL Syst.ms Building in Sail

SECTION 8 2) Code them in a x im i la r  ‘ st  / 10 ’ f o r
readability among programmers.

Systems Building in Sail
3> Make the points of n t e r f a r e  and

comm unicat ion between the progra n- ’. as
clear and expl ic i t  as possible.

Many new Sail .i’. r’~s wil l f in d thei r  f i rs t  Sail 4) Clear up questions about whi ch
pro ject  invoked w m t l i  adding to an alread y- modules govern system resources (Sail
e x i s t i ng  system of large size tha t  has been and the timesharing system) , suc h .v.
worked on h~ many people over a period of files , terminals , etc. so that they are not
years . These systems include the speech competing with each other for these
reco gnition programs at Carnegie-Me llon , the resources.
hand-eye so f tware  at Stanford A l , large CAl
systems at Stanford IMSSS , and various medica l 8.1 The Load Module
programs at SUMEX and NIH. This section does
not attempt to deal with these individual systems The most effective separation of modules is.
in any detail , but instead t ries to describe some achieved through separate compi lat ions.  J r ’ s  is
of the features of Sail that are f requentl y used done by having two Or more separate source
in systems building, and are common to all these f iles , which are c ompited separatel y and then
sys tems. The exac t  documentation of these loaded together. Consider the fol lowing desi gn
features is given elsewhere; this is intended to for an A] system QWE RT . QWE RT wil t  contain
be a guide to tho~e fea tures , three modules: a scanner module XSCAN , a

parser module PARSE, and a main program
The Sail language i t s e l f  is procedural , and th i s QWE RT . W~ give bel ow the three fi les for
means that programs can be bro ire n down into QWERT .
comp onents that represent conceptual blocks
comorisin g the system . The b lock structuring of First , the QWERT pr og r a m , contained in fi le
ALGO L also allows for loca l var iab les , which QWERT.SA I:
should be used wherever possible. The f i rs t  rule
of sys tems building is: break the sys tem down B EGI N ”QW ERT”
into modules corresponding to conceptual units.
This is part l y a ques tion of the design o1 the EX TERN A L STRING PROCEDUR E X SCPN ( STRING S)
system--indeed , some systems by their very REQUIRE ‘XSC AN” LOA D’ MOOULE ,
design philosophy will def y modularit y to a
certain extent. As a theory about the ESTE RHAL STRI NG PROCEDURE PQRSE (STRI NG SI ;
represen tation of knowledge in computer REQUIRE “PARS E LOA D iMO DULE ;
programs , this may be necessary; but pr ograms
should, most people would agree , be as modular WHILE TRUE DO
“as possible ”. BEGIN

PR INT C “s” , PARSE (XSCAN C (NCHW L) ) )

r Once modularized , most of the parts of the (NO;
system can be separate files , and we shall show
below how this is possible. (if course , the ENO ” QW ERT ” ;
modules will have to communicate together , and

‘1’ may have to share common data (global arrays, Notice two features about QWERT.SA I:
f l ags , etc.). Also , since the modules will be
sharing the same core image (Or job), there are 1) There are two EXTERNAL
cer tain Sail and timesharing system resources dec larations. An EXTERNAL declaration
that will have to be commonly shared. The rules says that some identifier (procedure or
to follow here are: variable ) is to be used in the current

pr ogram , but it will be found somewhere
1) tvlake the various modules of a else. The EXTERNAL causes the compiler

system as independent and separate as to permit the use of the idrntifier , as
design philosophy allows, requested , and then to issue a request

for a global fixup to the LOADER
pr ogram.

45

I



Syst.ms Building in Sail SAIL TUT ORIAL

?) Serondl y, h er e are two REQUIRE LINK IO > that  are available on the system .
LOAD!MODULE statements in the in particular , there is no way to associate

program . A l oad module is a file that is an external symbol with a particular
loaded hr the loader , presumabl y the LOAD!MODULE.
output of some compiler or assembler.
These PEQUIRE statements cause the 2) The names of identifiers are
c orm ri ler to re ..~~est  that the loader load limited to s ix cha racters , and the
mod es X~~CAN .P[L and PARS E. REL when character set permissible is slightl y less
we load MA]N.PEL. ‘this w i l l hopefu l1 j tha n might be expected The sy mbol

5.~* is f ~ l t .e  globa l requests: i .e., the is , for exam ple , mapped into “.
“ in global

loader ~ i Il f i rd  the  two procedures in the symbol requests.
tw o rien ti o n e d fi l e s , and link the
progra n .  all together  into one “system ”. 3) The “semantics ” of a symbol

(e.g., whether the symbol names an
Second , t he code for modules XSCAN and PARSE: integer or a string procedure) is in no

way checked during loadi ng.
i N T P ’ ~ ~S C i N ,
BEG IN Initializati on routines in a LOAD!MODULE can be

performed aut omat icall y by including a REQUIRE
N~~ERNfli. STR ING PROCEDURE XSCAN (STR NG SI; ... INITIALIZATION procedure. For example ,

BEG I N suppose that INIT is a simple parameterle ss ,
code ior xSCQN ,. .,  valueless pr ocedure that does the initialization

R( It QN (resu l tin g s t r i ng ); for a given module:
(ND;

SIMPLE PROCEDURE ( NIT ;
END , BE GIN

, . . i n i t l a i i z a t m o n  code...

and now PARS[. SAl: END;

E ’x ’RV PARSE 1 RE QUIRE INIT INITIALIZATION ;
BEGIN

will run lNlT prior to the outer block of the main
INTE R N~~L STR INS PROCEDURE PARSE (STR ING s 1  program. It is diff icult to control the order in
BEGIN which initializations are done , so it is advisable

to make initializations that do not conflict with
.code ior PARSE,.,. each other .

RLTURN (r .suit ing s irin g );
(ND ;

END 8.2 Source Files

Both of these modules begin with an ENTRY In addition to the abil ity to compile programs
deda- ,~tion. This has. the e f fec t  of saying that se paratel y, Sai l a i ’ ows  a single compilat i on to be
the program t o be compiled is not a main ” made by inserti ng ent ire files into the scan
p ro l--am (there can be onl y one main program in stream during compilation. The construction:
a c i::=e image), and als o says that PARSE is to be
f ound as an INTERNAL within this file. The lis t of REQUIRE F IL(Nn .SAI ” SOURCE i~~ ILE;
tokens a f te r  the ENTRY const ruction is mainl y
used for LIBRARYs rather than LOAD!MODULEs, inserts the text of file FILENM.SAI into the stream
and we do not discuss the diffe rence here , since of characters being scanned--having the same
L BRARYs are not much used in system building ef fect  that would be obtained by copy ing a l l  o f
due t o the d iff iculty in const ructing them. FIL ENM.SAI into the current file.

A few important remarks about LOAD!MODULES: One pedestrian use of this is to divide a file into
smaller f iles f or easier editing. While this can be

1) The use of LOAD!MODULES convenient , it can also unnecessarily fragmen t a
depends On the loaders (LOADER and program into little pieces without purpose.

46 

- - _ _ _ _ _ _ _ _ _ _ _  . - . - .  - . .~~~ - . .-



SAIL TU TORIAL Systems Building in Sail

T here are , however , some real purposes of the OEIINE DEBUGGING.~FALS E > ;
SOURCE’F’ILF c o . s t r uc t i o n  in system’. buildin g. COMMENT ia i se I f  not debugging;

One ; J ’ .e is to inciude code that is needed in
sever ? places in f r  one li lt’ , t h en  “REQUIRE” that and then use it
file in the p i a m  es t a t  t is npi’ led. Macros are a
common e ~amp Ie F or e. amp le , a fi le of global 11CR DEBUGGING THENC
def in i t ’ nn ’~ mig ht t~e p i t  r .tO a file MACROS .SAI: P P ( N T ( ” N o w  at  PROC PR “ , I, ” “ ,J ,CRLI I ; E ’~fl1

R(OUIR ( .’-. DEl : “ :  ~l ~s 1 (See Sectio n 7 on condit ional compi lat ion for
0(1 (NE P P P S ’ S I , ’I ~~iee. , more details. > In the above examp le , the code wi ll

N “r I 5’~i i S T UL1 ~~’dS~~~:e 8, , define the swi tch to be FALSE , and the PRINT
1(1 E N C . ”’ t .~~~i IL .D P T ” x’ ; statement will not be compiled , s ince it is in the

FAL SE consequent of an IFCR ... TH ENC. In using
A comm on use of so u r c e files is to provide a switches , i t  is common that there is a def ault
SOUPCE!FILE that links to a load module: the setting that one generall y wants. The fol lowing
source f i le conta ins the EXTERNAL declarations conditional compilation checks to see if
fo r the procedures (and data ) to be found in a DEBUGGING has already been defined (Or
module , and also requires tnat file as a load declared ) , and if not , defines it to be false. Thus
module. Such a f i le  i~. sometimes ca lled a the default is established.
“header ” f i fe .  Consider the file X SCAN.HDR for
the above X SCAN load module: 11CR NOT O EC IA RA T ION ( DE BU GG ( NG ) TH ENC

DEFINE DEBUGGING .xFALSEx ; (HOC
E ’ ’ f P 5 f l i S T R I N G  PROCED URE X SC AN ( S T I i ] N G SI ;
REQUIRE X SC PN” LOAD MODULE; Then , another file , inserted prior to this one , sets

the com pilat :on mode to get the DEBUGGING
The use of header C u p s  am elio rates some of the version if needed,
def ciencies of the loader: the header file can ,
for ~~,i am ple, be ca ref u l l y designed to contain the Macros and conditional compilation also allow a
dec !arlti ons of the EXTERNAL procedures and number of complex compile-time operations , such
c’a t a  reducing the likelihood of an error caused as building tab les. These are beyond our
b y misdec larat iOn . Remember , if you declare: discussi on here , excep t to “ite that complex

macros are often used (overused? ) in systems
N~~EP5 L1 L S T P I N G  PROCEDURE X S C A N ( S T R ( N G  SI ; building with Sail.

UG] N [ND~

‘i one file and

EX TE RNA L INTE G E P PROCEDURE XS~PNi STR IN G Si ;

i n another , t he correct  linkages will not be made,
and the progra m may crash quite strangel y.

8.3 Macros and Conditional Compilation

J 
Macros , es pec ial l y those contained ri global
macr o files , can assist in system building.
Parameters , file names , and the like can be
“macro ized ”.

Conditional compilation also assists in systems
building by allowing the same source files to do
diff e rerm i things depending On the setting of
switches. For example , suppose a file FIL E is
being used for both a debugging and a
“production ” version of the same module. We
can inc lude a definition of the form:

1
I

-.• ,
~~-- 

—~~ 
‘—---

~~ 
-.-.



Sail and ALG OL W Comparison SAIL TUTORIAL

APPENDIX A 5) T i e  fi r S t  case in t he ~~~ s ta te  ~‘nt in Sail  it.
0 r ather  than as in A~ G ’ . W ( I~of e tha t

Sail and ALGOL W Comparison Sa also has CASE! ex press lo n~ I

6) <, ~ , and ‘ . i i  not wo r k  for  a l p i i a r c  li zmng
Sail t frin ~s. T i e ,  are ar i thmet ic  Opera to rs .

Th prp a re rr ’a~ ~‘ v a r  ants of A 1 GOL. This O ’Tl ,.

Appena.* a~i lI co~er onl y the main differences
be tw een  5a . l and ~ ‘ . GOL W. 7) ALGuj~ V~ p,~’a e  ~. io r  pa’. ’ ,r ron e~~li ons

‘ ‘ a r Sli~’ Ii] , iram Sa . i T he  AL~’~ )L W
The f o i i ow ng are di f ferences in terminology:  PESU LT parameter it, c ase to t r ip Sail

PEl E P E NOt pa’ ar . , e t e r , li t P u r e  is a
ALGOL ‘~ S a l  d i f f e i e r t  p in t h a t  li p Sa il P E F E P E  NCE

pa ’ a r r ’e ’e’ ~~~~~~ an ?ii:L’i” . ’, , a, 1 e rea ’, t t e
As5 m qnme nt operator ALG.:L W Pt SULT o,.m r ,~‘ ptu ’ r  c r e a t e s  a copy’

*c E ~porre”t m a t  i on ope rator  of th e value d i r  ing t 1 e e x e c i h o n  of the
— : Not  •q.i~~i — or N c Q  procecii j ’p

~~~~ than or equa i or L ES

G m-ca ic .~~“ or equa i or SEQ 81 A ClP~~’A P[) PPOCEDUP din I a~ a ’ i on is
D i . is cmi erna mnd er operato r ~5C needeci in Sa il it another procedur e calls an

N t P ro g r a m - e n END as yet unurt lared procedure. 5a I is a one -
Pl SUL T Procedure r ~ ‘ a me t e r t i ,~p~ RE1EIi~ N C E pass~ COr r i O i l f ’ r

~~‘ ‘ i i l j) 5 ii’ n r i ’ q ’ . ~ t r (i . tOr j)

S ’ i N G (i i s S i ’ m g de c i a ra ; ions STRING s 9) Sa il ~~.r S l’ .~ ’l
) ‘ .‘ it ’E~ ’. ~ P;;, CE ~U°L ,

~~. m - y i i > Pm ,i.~ ~,mh~ cr p aem -m~ t (I and Rt.’oJP’,.,iV t P u i l ’sLE DU~E where AL c; T l ,..
C, “‘i ii:: jØi Pr, ay dec l a r a t m o n ~r ry (1: 18) has c r . ’ PROCE DUu r ii ~um .‘aient to Sail ’ s

RECURSIVE PPOCE DUPE) .

T~ e fo l l o,’ ing are not avai lable in Sail: 10) Sca lar va iabie’ , i n 5~ : i are not cleared on
block ent r y in non-RECUR SIVE pro ce d Lres .

00~ P
~~~ E NT I I P

11) Outer blOc i~ a rays in Sail must have
TPm J N~ PIE T runcation . i  d e t a u i t  con~er sm o n , constant bounds.

U X L  T (  , Ui’ , i L ii Use P P L N T  &t aiem en i for both. 12) Thp P~ C( PD ‘., ‘ t I m ’  u ’ . cO ns.ider,ih y
d i t f e r f  ri See t o w

RIg O :)i. U~ e I N PUT , P EA L] N , (NUN.

Bi oc~ e . o r e s s i o - .s
Sai l feai ’i or i rnii rQ.. t r n i n r i ’  I mii)~ i~~u At Cii,

Pr or.~~.i’ e e.pr ess ions
Use RE T U R N  statemen t a) Better ci nr~ f a t  i t  ii’ . w i t  11 n’mo re f ,e~ b il it ~

p r o cedure s .
b) M.j r p con p left’ hi (1P3 ‘ t r u c l i . i ru ’ t .

(Jt i. ,. r  d i f f e rences  a re:
c ) Use of Ds.~u a i d  C ,iN1.~~t l E s t a t e m e n t s  for

1) l I p, a l ie n var ia bles and Labe ls must be ea ter  c o n t r a  Ol lo l L , ,

c u t  lai in Sail , but the i terat ion var iable 5
“ O re  general Since it can be tested after d) A st .g nr i  ri e ’ p ’css io ns  fur c u r e  compact
the loop, code .

2) ST EP UNTIL cannot be left Out in the FOR- i)  Complete i/U la I t’ ..
statement in Sa il .

I) Easy interface to machine inst ruct ions
3) Na strings do nUt have leng th decl ared arid

are not filled out wi th blanks.

4 IQU riot — is used for Sail str ings

48



I

SAIL TUTORIAL Sail and ALGOL W Comparison

The fol lowing compare s Sail and ALGOL W REFERENCES
records in several important aspects.

Aspec t  S a t  ALGOL U
1. Reiser , John (ed ), Sail , Memo A I) ?~~ 9 ,

D.c iarat on RECORD ‘CL A SS RECOR D Stanford A r t i f i c i a l  lnle f l .gence L a h i s m - a t o r ’y,

~~‘ ~ i~~5% August 1976.

Dec Ler a l ion of R [CORD’POINTER REF E PENC E 2. I r o’.t Martin , UUO Manual ltT ,e~ orid E d i t i o n ),
record p o i n t e r  Sta nford  ~ r l ’ f c i a l  Intel l igence L a b o r a t o r y

Po mn i. r s can be po m n t e r s  m u s t  Ope rating Not e 55.4, Jul y 1975
s e .e r a i  c i a s s e s  or be t o  on.
AN~ ‘CL A S S c l a s s  3. H?’ w e , , Brian IV Frost , ed I , Monitor Command

Manual , Stanford Ar t m f i c  ‘ a ;  i nte l l igence
Emp t y record  Reserved word Res e r ,sd  word Labo ratory Operatin g Note hIT N, January

NU I L ’ RECORO NiJ~ L 1976.

F.. i d~ of record 4 Ft r r ,in J.A., Low , J A , N w rieha rl , ~T C
Use b r a c t e t s  Use pa m -ens Ta ,~l O m - , RH , “Recent Dc .‘e lopment t, in Sa il ” ,

AFIPS FJCC 1972 , p. 1193-120 2.
Ilust us. Don ’ t use
CLASS: before the ciCss nam e 5. OECSVTEMIO Assembl y Language Handbook
f i e l d  name b e f o r e  I m e i d  (3rd Ec ;  t on) , D g m t a l  Equipment Corpor at  s m -’ ,

Maynard , Massachusetts , 1973.

6. DEC~~’STEMlO Ussr, Handbook (2nd Edit ion) ,
Digita l EQuipment Corporation , Maynard ,
Massachusetts , 1972.

7. Myer , Theodore and Barnab y, John, TENEX
EXECUTIVE Manual (revised by William
Plurnmer) , Bolt , Berariek and N e w m a n ,
Cambridge , Massachusetts , 1973.

8. JSYS Manual (2nd Revision) , Bolt , Beranek and
Newman , Cambridge , Massachusetts , 1973.

‘

‘p

I
I
I
I

- r 
~~~~~~~~~~~~~~~~~~~~ 

..__
~

—- - .— ——. -~

INDEX SAIL TUTORIAL

i t ~
[) E X

da ta 38
ni’ a Io at io n 15
deb ugging 44
DedaratiOns 2

Sic i r ’ .h. DEF INE 25
delimi ters 25

C., .Ji ’ ec t o ry devices 31 , 32
DIRST 37

ALG OL IT& m -) UNTl L 7
a l l oca t ion IN DONE 18

I n ooe dynamic 15
AN~~ At ASS ‘Ti
A r g ,mi’nts 20 ELSEC 44
.i’ r ,,, IT , 7 emulator 1
a ra , t. 15 , 16 , 38 END 2
,‘ n .- .

‘
. R i~ end-of-f i le 37 , 38

A ‘r~~Y ; I n 3J , 3~’ ENDC 44
.~~~, ~“~~ UT 33, 39 ENTER 32
a’ ‘ t-” n r’nt expressions 10 ENTRY 46
a’ ‘. L ’ . mnrn f ’nt Ope rator 10 eol 30
A c ’ . gnrnent statement s 5 EQU 8, ii

equalit y 8
ft biN 2 error handlin g 35
him.~~r f o r m a l f i l e t . 38 expre ssion 5, 6
b i t’ . :11 . expressions 10
n o t~ 2 EXTERNAL 30, 45
~~‘ Q r t , name 14
blocks 9, 13 FAL SE 2
13. it ’ i~ AN 2 fields 40
000 ean p~~p r p r 5 i O n 8 file bytepointer 38
h r p ’ac . c ’ . a r a c t e r 27 , 30, 38 file name 32
break t a o es 27 f i les 30
built -in proceti ures 6, 19 f lag s; ‘ cm l ica t i o n 36

FOR ,tatement 15
CASE express ions 11 format 4
C~~H L F 34 FORWARD 21
C 1i~~r,n e , 34 , 37 free format 4
ch anne l number 31
C I hA PIN 38 garbage collections 12
CH,4ROUT 39 GETB PEAK 27
Commenting 44 GETCHAN 31
corr iole time 15 GJINF 37
compound statement 9 global 14
Conditiona l compilation 44 GTJFN 35
condit ional expressions ii GTJFNL 35
conditionals 7
connected directory 36 half word format 36
co nstants 3
CliNT lhJU[18 I/O 30
contr ol statements 7 identif iers 3
controllm n,(terminal 30, 36 IF .. THEN statement 7
CPRINT 39 IFCR 44
cr l f 30 NCHW L 6, 30
CVD 6 indefinite iteration 17

50

I

I

SAIL TUTORIAL INDEX

INDF XF ILF 35
i n . f i a l iza t io n 15 RCHPTR 38
n t ia f i z a t i o n routines 46 read error 37

INPUT 27 , 37 REAL 2
i nput /output 30, 31 REALIN 38

EGER 2 REA LSCAN 29
INTIN ~~ RECORD!CLASS 40
INT SCAN 29 RECORD!POINTER 40
lr 4 T y 30 Records 40
iteratio n variable 16 RECURSIVE 15, 2 1

REFERENCE 24
JFNS 37 rein lt ia l izat ion 15

RELEASE 32
LENGTH 12 RENAM E 32
line terminators 28 reserved words 2, 3
l m mni -editin g 30 RETURN statement 21
LIA D’hAu) DUl E’ 45 runtim e 15
[; ; A)I R 45
Ci(~l 14 s calar variables 15

login d i recto y 36 SCAN 27
LOOKUP 32 scanner 25
LI1P 12 SCHPTR 38
lowerca se 4 scope of the variable 14

search path 36
macro expansion 25 semi-colon 8
rr. a ros 25 sequential I/O 38
modul arity 45 SETBREAK 27
MTAPE 33 SETFORMAT 13
multi-dimensioned arrays 4 SETINPUT 34
ret . . ip le file designators 35 SETPL 37

SETPR INT 30
nestea g, 1 4 side-effect 23
NEW !RECORD 40 SIMPLE 2 1
NUL character 13 SINI 38
NULL 3 SOS line numbers 28

SOURCE’FILE 47
oc ’al representation 36 SORT 6
OPEN 31 Statements 2
OPENFILE 34 statements 5
order of evalua tion 10 Sto rage allocation 15
oiter block 2 STRING 2
(WN 15 string descriptor 12

STRING operators 11
PAIO 5O 1 string space 12
r a r a l i e l arrays 4 strings 27
param eter l it. t 20 subscripts 5
parameterized procedure 20 substrings 12
parenth es i zed 11
predecl a red identifiers 3 tables 13
PRINT 6 Telet ype I/O 30
PRINT statement 25 TENEX Sail 1
procedure 19 THENC 44
proced ure body 21 TOPS- tO Sail 1
procedure call 19 TRUE 2

TTY : 36
random I/ O 38 type conversion 6

51

I
a.’

INDEX SAIL TUTORIAL

typed procedures 22

untyped procedu res 22
uppercase 4, 20, 28, 30
USETI 33
USETO 33

VALU E 24
variables 3, 14

WHILE...DO 17
WORDIN 33, 38
WORDOUT 33, 39

~1

~~~~~~~~~~~~~~S2 

__________


