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On Dynamic Plastic Mode Form Solutions

by P, 8, Symondsl and C. T. Chon?

Abstract

The paper discusses the significance and calculation of dynamic plastic
mode form solutions for small deflections of structures of rigid-perfectly
plastic materials subjected to load systems of fixed distribution and magnitude.
These solutions have separated form, with velocity the product of a scalar
function of time by a vector-valued function of space variables. The relation
is shown on the one hand to mode form solutions for a structure of viscoplastic
material, and on the other hand to limit load solutions for those of perfectly
plastic behavior. Numerical examples are given for circular plates of material
obeying Tresca and Mises'laws.

1. Introduction. '"Mode form'" solutions of the equations governing the
plastic response of a structure to dynamic loads are ''particular incegrals' in
separated form: the velocity, for example, is the product of a function of
space variables by a function of time. In this paper we are concerned with
solutions of this type which hold throughout the motion, which we call '"permanent"
mode form solutions. They satisfy at all times the stated field equations of
dynamics, kinematics, and material behavior, together with loading and boundary
fixing conditions [l].3 As will be seen, such solutions exist for certain ideal-
izations of material behavior and loading, and when geometry changes are neg-
lected in the governing equations. They are to be distinguished from "instantan-
eous' mode form solutions which satisfy the field equations only in a special sense
[2 - 6]: regarding the displacement field as instantaneously fixed, and a scalar
magnitude of the velocity field also as fixed, an instantaneous mode form solu-

tion has acceleration and velocity fields over the structure that are identical

¢
apart from a scalar factor. The common shape function satisfies the field jj:::!
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equations appropriate to the stated instantaneous displacement function and
velocity magnitude.

Both types of mode form solutions have been used to obtain relatively
simple approximate solutions of problems of structures loaded impulsively,
i.e., by very short high-intensity pressure pulses whose effect can be spec-
ified by a field of initial velocities, with initial displacements taken as
zero. Structures both of conventional plastic (time independent) and of rate
dependent plastic (viscoplastic) material behavior have been treated. Perm-
anent mode form solutions, when they exist, provide extremely simple solutions
of initial motion problems that are appropriate for conditions in which geo-
metry changes are negligible. However, in certain technically important
cases the finite deflections have a large influence on the response and must
be included. Approximate solutions for such cases have been constructed
from a sequence of instantaneous mode form solutions, appropriate to successive
stages in the response [5, 6]. In both types of application the specified
initial velocity conditions are not satisfied exactly, but only in a "least
squares' sense. This starting point also provides a measure of error, useful
at least for comparing two such solutions.

Fundamental properties of dynamic-plastic structural motion underlie
these methods [1-4]. The response of a structure to dynamic loading, how-
ever started, tends toward a mode form solution. Both types of mode solu-
tions render a certain functional an extremum. Linear equations of dynamics
and kinematics are presumed for these properties, which hold for a wide class
of plastic/viscoplastic behavior.

Some of these properties are illustrated by a very simple structural
model with two degrees of freedom [5, 7]. As shown in Fig. 1(a), the model

simulates a simply supported beam by two mass particles connected by rigid
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massless rods, with joints at the two masses. The loads are forces Pl, P2
applied to the masses. Deformation can occur only at the joints, and the
material behavior is specified in terms of moment--rotation rate etc. character-
istics. For rigid-perfectly plastic behavior, the characteristic curve is

shown in Fig. 1(c); fully plastic moments # Mo are associated with rotation

rates of corresponding sign and arbitrary magnitude. The rotation rates

@l, &2 (Fig. 1(b)) are related to the transverse velocities u, U, by
fom i GE - 0) 5 e, b o3) (1a,b)
E 28 1 2 Rhe 2ma s N 2 2 ’
The equations of motion of the two masses can be written
P. = Y, = Gu 3 P, - Y, = Gu (2a,b)

2 2 2

where G 1is the mass of each particle and Yl‘ Y2 are the structural re-

action forces; for small deflections, with notation as indicated in Fig. 1(d),

1 1
o e (3 - . 2 e (=
Yl 31 JMl M2) - Y2 ) ( Ml + 3M2) (3a,b)
We take the bending moments Ml X M2 as satisfying
HoeH 28 (4)

where a = 1, 2. Considering these inequalities, the locus of forces Yﬁ

such that either M. or M, is equal to * Mo is shown as curve ABCD of

L 7
Fig. 2(a). By definition this is the '"yield surface'" of the structure. For
Pu = Pz = Yﬁ , unlimited slow deformation can occur, while load states Pa

inside the curve can be supported without deformation; none occurs unless due
to previous loading history. Kinematic relations obey the standard normality

rule of yield surfaces; here the 'strain rate'" vectors of the structure are the




velocity vectors da = (ﬁl, 62). For example, side AB of the structure yield

curve corresponds to M, = Mo " -Mo < M2 < Mo . TFor any load point not at either
1 =

of the corner points A, B the velocity diagram has the shape shown in Fig.

2(b) with Gl = 3&2 , Since &2 = 0 for lM2| < MO . The velocity vector,

as indicated in Fig. 2(a), is perpendicular to the line AB , whose equation is
Y. + = 4M .
3 Y? o/2
The discussion above assumes static behavior. Now we consider dynamic
problems, the structure having non-zero accelerations u, as well as veloci-

ties ﬁa . The dynamical equations (2) may be written in vector form with

the dimensionless variables as

Petey (5)
210y ~ T
where P = ﬁo(Pl’P2) e FO(YI,YQ) ; u= t (ul,u?) (6)

A typical dynamic case is shown in Fig. 2(a) for a load vector P' which can-

not be supported statically. The instantaneous stress vector Y and velocity

~

vector g must be related through the normality rule. Suppose the velocity

~

vector has the direction of vector u' . The stress state vector must cor-

respond to the corner point B for this direction, which lies between the nor-
mals to the adjacent sides at point B. The acceleration vector ; is required
by Eq. (5) to have direction and magnitude as shown. Evidently this is not a
mode form motion, since the vectors ; and é are not parallel. However, it
can be seen that if the load é' remains constant the velocity vector must
change with time until its direction and that of the acceleration vector become
normal to side AB of the yield diagram. This '"mode form'" motion is indicated

by the dashed vectors. This example illustrates the convergence property on

which the mode approximation technique is based [1].




Several different types of mode form solution are illustrated in Fig.

2(b). They have the common feature that

i o= At (7)
a a

where A 1is a scalar factor. We consider forces Pl ~ P2 in fixed ratio

-~

to each other. Then the vector P can be written as

(8)

170 >
1]
>
1o

where )\ is a scalar load factor and P 1is a constant nominal load vector.

In the example, E = (1, - 0.5). Figure 2(b) shows a number of cases cor-

responding to positive values of X . At the plastic collapse or limit load

with A :AL’ the acceleration is zero but the velocity is nonzero; this is case
s ol % MR £ ) - o "

3, with Y =P . The other extreme is that of P = O, shown as case 1 with

;(l) e —G(l)

. Here it is implied that some previous impulsive (or other) load-

ing history has resulted in the mode pattern Fig. 2(b) with u, = 3&2 , so that

ik

the velocity vector has the direction of the normal to side AB and is par-

allel to —; . Note that the initial conditions and prior loading history are
relevant only in the sense of causing a particular mode form to occur rather
than another possible one. Evidently for X < AL the mode solution is not
unique; for A = 0 there are eight modes, with stress vector either perpendi-
cular to one of the four sides or at one of the four corner points A, B, C, D.

fa—
2 The case marked as case 2 has A(2) <

-~
.

AL . Here the mode is indicated by the
velocity vector 3(3). In this case there are two possible mode solutions,
the alternative mode shape having velocities proportional to ( -1, -3), with

acceleration vector perpendicular to side BC of the yield curve, as indicated

by dashed vectors in Fig. 2(b).

A e e e T e ee—— e——
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n
The case marked as case 4 has A( ) > XL , So that the load state point

lies outside the yield curve. For the example shown there is only one mode

u)

solution, the acceleration ﬁ( having the same direction as the velocity

é(u)

-~

. However, note that for A = AB the stress state point is at corner B.

X(S) > A_ . The velocity vector can have any direction between

Case 5 has B

the normals to the adjacent elements at B, so that the common direction of
the acceleration and velocity vectors changes as A increases. For A + =

both approach the direction of the load vector P .

2. Modes ig_g_Circular Plate. To illustrate the requirements for mode form

solutions of a continuous structure whose material exhibits either rigid-
perfectly plastic behavior, or rigid-viscoplastic (strain rate dependent) be-
havior, we consider a circular plate of radius R , with a radially symmetric
pressure p(r,t) applied transversely. As above, we consider only the plate
in its initial configuration, i.e., we are not considering questions of finite

deflections. The equation of motion is

= [—g? (M) - ”e] = - pr + prw (9)
Fixing conditions are, for example

w(R,t) = w'(R,t) = O (10)
Initial conditions may also be stated as

w(r,0) =0 ; w(r,0) = w(r) (11)
In these equations, r and 6 are polar coordinates in the middle surface
and t is time; w(r,t) is the transverse displacement, w' = 3w/9r the
slope, w = 3w/3t  the velocity, and ;(r,t) = 32w/3t2 the acceleration;
M_, M. are radial and circumferential bending moment per unit length, res-

r G)

pectively; and o is the mass per unit area of middle surface.




The strain rate quantities relevant to the plate in bending are curva-
ture rates ér’ ie defined so that the work-dissipation rate equation is

R R
[o(p - pw) W rdr = Jo(err + Mexe) rdr (12)

Equations (9) and (12) are consistent with the following forms of the curvature

rates in terms of the plate velocity

. . .
K= -w'; kK, = -

"
= 0 W (13a,b)

o Al

We will write constitutive equations suitable either for rigid-perfectly
plastic material or for one with strain rate sensitivity. Both behaviors can
be treated by writing constitutive equations that are generalizations of the

following form for simple tension:

Mo

pufials
Sl sgn o (14)
0

This homogeneous viscous form can represent adequately, over a range of

strain rate, the more realistic inhomogeneous form
n

€ =g 'gJ -1 | sgn ¢ for |o| > o, (15a)
0

£e=20 for |o| < o, (15b)

This latter form is capable of close representation of curves for stress as
function of strain rate at constant strain [8]; it is assumed that strain rate
history effects are absent. The viscous form of Eq. (1%) involves no yield
condition. We need to write stress-strain rate relations which generalize

Eq. (14) to appropriate forms for a thin plate in bending, in terms of bending

.

moments Hr He and curvature rates ér » Kg oo We write for brevity




TREE ' s
mu = HG/HO . EG

Then *we can write

[} 1
om 3ma
/ 12 2
where F = m; m'mé + mé
e 41
¥ n'+1l
1
and i 2@_= 5
L
a
. e o .2
where G =/3_ B on Ef wi
3
n' 1+1/n!
LS |

- . 2 . 23 .
xolro where a = r or 6, M; = oéH /4, k ® ucolﬂ.

(16¢)

(17a)

(17p)

(17¢)

These forms are derived by assuming a sandwich plate model of thickness

h = H/2, H being the thickness of the uniform plate. Each sheet of the

sandwich plate is in plane stress, and has principal strain rate components

cP » €g given in terms of stresses or s °9 by
n' 1/n'
: wd R of =0 |8 g (18a,b)
w s [31'] % ° % = [- . s
o a € de
o a
»
2 2 i 2 . . .

where £ = //>°r - °r°e + a0 g -fg //:r + €x€p + €
and a = r, 8 . The forms of Eqs. (16, 17) are capable of close representation
of strain rate behavior over appropriate strain rate ranges. If n' is made

perfectly plastic behavior.

very large while oé is taken as the static yield stress o, » we obtain rigid




We look for a mode form solution of Eq. (9) satisfying the edge conditions
(10), kinematic relations (13), and constitutive equations (15), (17). We
write the velocity as

w = w, (t)é(r) 19)
and take ¢(0) = 1, so that ﬁ*(t) denotes the midpoint velocity. The cur-

vature rates are then

ér = G*kr = G*(-¢"); Ky = Wak

(20)

(- 28"

The bending moments can also be written in separated variable form, because of
the homogeneity of w(éu), as

. « 1/n' 3
L P = '
o Tl 3%
r 8

. . ' 3E
M =« M'w*l/n o
oo

’ (21a,b)

where w(r) = w[ka(r)]. The equation of motion then can be written as

« .1 @ 3 ] EIn « ~1/n'|{=~ - 5
Vo s Jes Pueel® - = ”
%oMor 1 [ér (r akr) 3K, Wi [E‘“* *(t)P(r%} (22)
Here we have further assumed that the load pressure has a constant distribution

pattern over the plate, and have written

p(r,t) = A(t)p(r) (23)

For a rate sensitive material Eq.(22) can be "separated" only if the
pressure distribution p(r) is the same as the mode shape function ¢(r)
to within a constant factor. We conclude that apart from this highly special
case, mode form solutions cannot exist when the plate is subjected to a pres-
sure loading, even for the homogeneous viscous behavior. If p(r) = 0, separation

of variables is possible since one can write
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; iy ra e dw 1 Wi
e o e Oy o S R T —— = = - A (24)
N ar Skr 8Ee KoMé w}:/n

where A 1is a constant. It is seen that in this case the midpoint velocity

. SR o : :
decreases from its initial value w, according to the expression

1

P gl LA
. {20 n' i eanE n'-1
W*(t) = 1 (w*) - (1 - ﬁ-,) KOMO At] (25)

The shape function &(r) must be obtained so as to satisfy the ordinary dif-
ferential equation obtained by setting the left-hand side of Eq. (21) equal to
-A. It may be solved by iterative methods [6, 8] without difficulty. When
¢(r) has been obtained, the magnitude A can be calculated from the energy-

dissipation rate Eq.(12), which takes the form

1
ad R e : ‘w* 1+;' R~ 1+l
W W p¢ rdr = KOM; — [X(4)1 0" rdr (26)
0 o o
: 2

where x(8) = x(k) =5 / (67 + Zerem 4 (2o’

because the dissipation rate can be expressed in terms of the homogeneous form
w , using Euler's formula.
n' - oo

For rigid-perfectly plastic behavior we put aé =0 . Then sol-

"
utions in separated-variable form exist not only for the impulsive loading case
with ﬁ(r) = 0 , but for arbitrary ﬁ(r) , provided A(t) = constant. For this
material the stress vector depends only on the direction of the strain rate
vector, not on its magnitude, so that in a mode form solution the stresses are

constant. Thus if the load factor A(t) = X = constant, the acceleration is

constant and given by




&

® 4 ]
| ordr - | (M k_ + Mk )rdr | (27)
i

| |
2 ‘0

The acceleration evidently can be negative (as in the impulsive loading case
where X = 0), or positive; zero acceleration is the case of '"plastic collapse" ;
in conventional plastic limit analysis theory. This range of possibilities

has already been illustrated by the two-mass model.

3. Numerical Results for a Circular Plate. We consider henceforth a plate of

rigid-perfectly plastic material subjected to a uniform pressure p of various
magnitudes. The plate has uniform mass density p per unit area, and constant
thickness H. Integrating and assuming the mode form Ea. (13), the equation

of motion Eq. (9) can be written in nondimensional form, with m_ = Hr/Mo 5

: ¢

my = Me/Ho , and putting »/R+r, Og¢r €1, as
2 g
2y 2 (= o2y | |
d o PR | r  [ow,R ] !
E;-(rmp) “ s (ﬁ— | =+ i érdr (28)
o) LBy
1
The work-energy rate Eq. (24) becomes
1 i 2
2 = p2
P i S B PSR " ¢
¥ J ¢rdr 5 ¢“rdr J (mr¢ tmy o )rdr (29)
o ‘o o 0 0

At a "hinge circle' the slope may be discontinuous, and the right hand side

must then include a term

'rlmr(rl) c¢'(rl) z - rlmr(rl)[dﬂ(rl + 0) = ¢'(rl - 0)] (30)

for a hinge circle at r = r We have boundary conditions at the edge r = 1

1 °

S AT LT S R et —
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£

it

Simply supported edge e(1) = 0, mr(l) =0 (31a)

"

"
o

Clamped edge G- =0 0 () (31b)

At the center of the plate r = O, mP(O) = m,(0) by symmetry. We adopt the

normalizing condition ¢(0) = 1, which merely defines w, as the midpoint
velocity of the plate.

(A) If we adopt Tresca's yield condition and the associated flow rule
(Fig. 3), simple closed form solutions can easily be derived. The analysis is
an obvious extension of that for the limit analysis problem, which corresponds
here to putting ﬁ* = 0. For the simply supported edge case, the stress states
lie on segment AR of the yield curve, and all equations can be satisfied with

velocity profile either conical in shape as in Fig. 4a, or with shape of a

truncated cone as in Fig. 4b. The conical profile holds for

DR2
A Ly ]
o
and the relation between load and acceleration is
Lt 2 2
pWwuR™ _ PR _
M " 6N : (33)

Wwhen p is larger than the upper limit set by Eq. (32), a violation of the
yield condition occurs at r = 0 ; thus the truncated cone field of Fig. 4b is

required. This holds with

PWeR™ _ pR” _ 2 i vsa)
i
M~ &M (1-n9)(1-n) - i

Equation (33) furnishes the special cases of '"free" decelerating motion?
- D
pw R % PR
M* = -12) and of the limit load pressure Py, (w, = 0, : 2 6),
o o
while Eq. (34) gives the parameter n defining the (constant) shape of the

(p =0,

response field for large pressur=s (more than twice the limit load magnitude).
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For a clamped plate the stress states lie on segment AB of the yield

curve for O < r < § , but lieon BC for § < r < 1, in order to satisfy the

edge conditions Eqgs. (21b). The strain rate vector (;r’ ;A) &* ( -9", -é¢')

must be parallel to the -m axis at r = 1, since ¢'(l) = 5 , hence, the
flow rule requires the stress state point at r = 1 to be point C of the
Tresca diagram. Thus, if the pressure is not too large, the response field
has a conical shape for r < £ and a logarithmic one for £ < r < 1, as

sketched in Fig. 4C. The mode function is given by

r
OSPSE:¢=1+WE_-1_,T (35a)
: in.
Esrsl: o= ooty (35b)
% The pressure and acceleration are expressed in terms of £ as follows:
2 2 ) o) ”
PR _ 148 In £ - 4E°(1n €)° - 8E° + 6
3 T R N e e 3 (36a)
o EA2E In B 56 In F ='48° 4 3)
P S SE0P
* 14€°1n £ - 4£°(In £)° - 106 - 6 1nk
G M . ~ ) :L in 3L (36b)
"o E°(2£°InE + 6 1nf - 36° + 3)
provided 0.6201 < £ < 0.8055 (36c)
The important special cases are
-is 2
ow,R
Free deceleration, p = 0 : £ = 0.6201 ; W = - 23.58 (37a)
o
. p k2
Limit load pressure, w, = 0 : r = 0.7300 ; W = 11.26 (37b)

l A violation of the yield condition at r =1 will occur for ER2 > 22.49,

M

o
corresponding to £ > 0.8055, if the above mode field is retained. The mode
shape for large pressure magnitudes has constant velocity in an interior region

as sketched in Fig. 4d. The mode function is




S ——

1y

Osre€n: ¢ =1 (38a)

Lpe i In &= E
o s

g e € lIn »
Eig sl q ¢'£ln£—£+n (38¢c)

The load pressure and acceleration are related to n and £ by

i
gﬁi Lo PR aak Lk D Bow B 4o q) Fails
A T S
3
(1~ 10 EIN® = BER° 4 (SE> = BE ~ 08" 3 £ - (£* % 3E° 15 E) = O (39b)
-
provided n » 0, £ > 0.8055, ;’— > 22.49 (33¢)
(o]

These results for the static limit pressure and for the frce deceleration
of a circular plate, obeying the Tresca yield condition, are of course well known,
being due to Hopkins and Prager [9, 10] and Wang and Hopkins [11]. They are
here cited as special cases of the general family of mode form solutions of this
structure.

(B) If we instead adopt Mises' vyield condition and asscciated flow rule,
the calculation of mode shapes and accelerations must be carried out by a nu-
merical method. We have done this by several iterative schemes and by a finite
element program. Iterative schemes are easy to devise in an intuitive way, and
usually work well in some range. They have an unfortunate habit of failing to
converge outside of certain ranges of the parameters involved. When they do

converge, they furnish essentially exact solutions at small computer cost. Here




—~

15
we briefly outlin'e the iterative scheme which was found to work well in the
present problem over a wide range of the relevant parameters. Our finite
element solution was much more expensive. It is mentioned here because in
subsequent work extending the mode technique to large deflections it was found
to have a somewhat wider domain of convergence than the iteration scheme.

The iterative solution of the present problem, where only small deflections
are considered, was that used in the determination of mode shapes in a visco-
plastic plate [6]. The use of a homogeneous viscous representagion of visco-
plastic behavior has been outlined above. Equations (16) and (17) respectively

furnish strain rates and bending moments in terms of material parameters €450

oé , n' . The last two are written in terms of the constants of Eq. (15a) as

= ; n' = wn 4
L, o) = uo (40)
where g, » n are obtained with éo from tests over a range of strain rates,
and u , v are factors which enable the homogeneous viscous forms to match
test data in a particular range of strain rates. We have used the following

for a conservative and accurate matching with strain rate test data [5, 6, 8]:

P Bl/n 1% Bl/n

where B8 = ¢ /e €o being the effective strain rate at which the two

(41a,b)

representations are matched. The function g(éa) in Eqs. (18) serves as €4

in a plane stress problem, while G(éu) serves as B in a small deflection
plate problem. As previously mentioned, rigid-perfectly plastic behavior is
obtained by taking u =1 and v very large, corresponding to putting B8 + O
in Eqs. (41). We outline the iterative scheme in the form for a homogeneous
viscous behavior, so that either a rate sensitive plate with p = O (impulsive

motion) or a rigid-perfectly plastic plate with arbitrary p can be treated.
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Y
The equation of motion (28) may be integrated again and put in the form

T ¢ o

{ j
o & Y . 0y o n

L ) (me-mr)dr' -Fpr ¢ W | dr (r' f: Ordr] + Cl (42a)

o o

o

2 pW R

D = R H o - *

where P P_—Ho ; w -r—o (42b)

and Cl is a constant of integration. Now, from the constitutive equations
(17), with the mode solution form Eq. (19) and the curvature rate expressions

Eqs. (20), the dimensionless moments are

- 1/n'
= L * l/n"l " 1 ]
mr---a—u .—l?- X (. +§—P¢ ) (43a)
“o
4 1/n'
s * 1=t Lo . A
mg = - g u| 7 2) X (50 + ;0') (43b)
x R
o
1/2
where X = 2_ (.n)2 + l-‘n‘n + (_];‘0)2] (43c)
/3 r r
using Eq. (43a) in Eq. (42a), we write
T L}
1 1., 2 x - S
r i (mg-m )dr'- 7Hr" + W, I dr'(‘l;,L ¢r-dr)+ <,
o" + ;_r¢v = 0 - (u4a)
: \1/n'
y Ve 1/n'-1
- 5‘1‘ S X
x R
o
W, 1/n'
PR * 1/n'-1 1 1
'ith mo-mr S - 5 u [ : R2 ] x (_ 5‘" + _2_;‘_"] (“ub)
o
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We may consider a rigid-perfectly plate by putting u = 1 and taking n' =vp
very large so that the velocity ﬁ* disappears from the right hand side. Al-
ternatively, to consider a viscoplastic material we must put p = O ; again

1/n'

J* is eliminated since 5*/5* can be taken constant and obtained from

Eq. (26). In either case,

1 1 4 i
"+ ¢ =/__. % (/z'?o'] = R(r,C,) (45)
r
where the right-hand side is known numerically, apart from the constant Cl 5 if

<l>
a first approximation ¢(r) is inserted in the right-hand sides of Eqgs. (41)

and in Eq. (25). Integrating Eq. (45),
r
<1>
o' = L /F"ﬁ(r',cl)dr' (u6)
= o

(An integration constant has been taken as zero for a plate that is continuous

at r = 0.) The constant C., must be determined from the edge condition at

1
r = 1: for a simply supported plate the left-hand side of Eq. (44a) vanishes,

while for a clamped plate that of Eq. (#6) is zero. In either case we obtain

<1l>
¢'(r) = S(r) (47)
<l>
where S is the right-hand side of Eq. (46) with the constant C, evaluated
<l>
and ¢(r) =-[ S(r')dr' (48)

r
Finally, a second approximation <3> is obtained by multiplying the right-hand

side of Eq. (48) by a factor which renders <%z0) = 1, giving

<25 1< > 1<1>
o) = | Ferar/ | Srrar (49)
r (o]
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<1l>
This is put in place of ¢(r) and the cycle is repeated. Convergence is shown
by - oe ' i~
by the approach of w, for chosen p (or of w/w,,,l/n for p = 0) to a con-

1
stant value, and of the normalizing factor —J S(r')dr' to unity.
o

The midpoint acceleration as function of load pressure is shown nondimens-
ionally in Fig. 5 for both yield conditions and both types of edge constraint.
The shapes of the mode form responses for the plates governed by Mises' yield
condition are illustrated in Figs. 6 and 7. These evidently are close to the

shapes for the Tresca material, for pR2/6M° greater than about 20.

Conclusions

Mode form solutions of structures undergoing dynamic plastic deformation
have utility in approximation techniques; they have basic significance
as ''matural’ response patterns to which structures with arbitrary starting
conditions tend to converge. In this paper we have illustrated sufficient
conditions of loading, material behavior, etc. for such solutions to exist.
We have discussed examples of their calculation and have illustrated the links
between response of dynamically loaded structures and static limit load-plastic
collapse analysis. It is hoped that the discussion will promote understanding

and use of these properties of dynamic plastic response.
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