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On Dynami c Plastic Mode Form Solutions

by .) S. Symonds1 and C. T. Chon2

Abstract

The paper discusses the significance and calculation of dynamic plastic
mode form solutions for small deflections of structures of rigid-nerfectly
plastic materials subjected to load systems of fixed distribution and magnitude.
These solutions have separated form, with velocity the product of a scalar
function of time by a vector-valued function of space variables. The relation
is shown on the one hand to mode form solutions for a structure of viscoplastic
material, and on the other hand to limit load solutions for those of perfectly
plastic behavior. Numerical examples are given for circular plates of material
obeying Tresca arid Mises’laws.

1. Introduction. “Mode form” solutions of the equations governing the

niastic response of a structure to dynamic loads are “particular integrals” in

separated form : the velocity , for example , is the product of a function of

space variable s by a function of time. In this paper we are concerned with

solutions of this type which hold throughout the motion, which we call “permanent”

mode form solutions. They satisfy at all times the stated field equations of

dynamics, kinematics , and material behavior, together with loading and boundary

fixing conditions [~ ]•
3 As will be seen , such solutions exist for certain ideal-

izations of material behavior and loading, and when geometry changes are neg-

lected in the governing equat ions. They are to be distinguished from “instantan-

eous ’ mode form solutions which satisfy the field equation s only in a special sense

[2 - 6]: regarding the displacement field as instantaneously fixed , and a scalar

magnitude of the velocity field also as fixed , an instantaneous mode form solu-

t ion has acceleration and velocity fields over the structure that are identical
—U, ’,

apart from a scalar factor. The common shape function satisfies the field -.
1$
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2

equations appropriate to the stated instantaneous displacement function and

velocity magnitude .

Both types of mode form solutions have been used to obtain relatively

simple approximate solutions of problems of structures loaded impulsively,

i.e., by very short high-intensity pressure pulses whose effect  can be spec-

ified by a field of initial velocities, with initial displacements taken as

zero . St ructures both of conventional plastic (time independent) and of rate

dependent plastic (viscoplastic) material behavior have been treated. Perm-

anent mode form solutions, when they exist , provide extremely simple solutions

of initial motion problems that are appropriate for conditions in which geo-

metry changes are negligible. However, in certain technically important

cases the finite deflections have a large influence on the response and must

be included. Approximate solutions for such cases have been constructed

from a sequence of instantaneous mode form solutions, appropriate to successive

stages in the response [5, 6]. In both types of application the specified

initial velocity conditions are not satisfied exactly, but only in a “least

squares” sense . This starting point also provides a measure of error, useful

at least for comparing two such solutions.

Fundamental properties of dynamic-plastic structural motion underlie

these methods [l_14]. The response of a structure to dynamic loading, how-

ever started, tends toward a mode form solution. Both types of mode solu-

tions render a certain functional an extremurn . Linear equations of dynamics

and kinemat ics are presumed for these properties , which hold for a wide class

of plastic/viscoplastic behavior.

Some of these properties are illustrated by a very ~imp le structural

model, with two degrees of freedom [5, 7). As shown in Fig. 1(a), the model

simulates a simply supported beam by two mass particles connected by rigid
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massless rods , w~Lth -j oints at the two masses. The loads are forces

applied to the masses. Deformation can occur only at the ~oints , and the

material behavior is specified in terms of moment--rotation rate ,’-.tc. character-

istics . ror rigid-perfectly plastic behavior, the characteristic curve is

shown in Fig. 1(c); fully plastic moments ± M are associated with  rotation

rates of corresponding sign and arbitrary magnitude. The rotation rates

~~~~~
‘ 

(Fig . 1(b)) are related to the transverse velocities ~~ 
~
‘2 

by

= ~~~~
- (3~~ — U~~) ~ ‘~2 ~i 

(_ 1.~~ + 3u~) (la,b)

The equations of motion of the two masses can be written

P1 
- = Cu

1 
P2 

- = Gu~ (2a ,b)

where C is the mass of each particle and Y
1, Y2 are the structural re-

action forces ; for small deflections, with notation as indicated in Fig. 1(d) ,

Y1 = 
~~~~~ 

( 3 M
1 

— M2
) = 

~~

-

~~
‘ ( —M 1 s’ 3M2 ) (3a ,b)

We take the bending moments M
1 , 

M2 as satisfying

—M < M  < M  (t i )
o -  a -  o

where a 1, 2. Considering these inequalities , the locus of forces

such that either M or M is equal to ± M is shown as curve ABCD of1 2 o—~ Fig . 2 (a) .  By definition this is the “yield surface ” of the structure. For

= ~L .~L 
, unlimited slow deformation can occur, while load states P

inside the curve can be supported without deformation; none occurs unless due

to previous loading history . Kinematic relations obey the standard normality

rule of yield surfaces; here the “strain rate ” vectors of the structure are the

- — ~~~~~~~~~ ~~~~~~~~
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velocity vectors = 
~~l ’ u2). For example, side AB of the structure yield

curve corresponds to M ~‘ , -M < M < . For any load noint not at either1 o o -  2 - o

of the corner points A , B the velocity diagram has the shape shown in Fig .

2 (b )  w ith u1 = 3u 2 , since 0 for ~M 2~ < M . The velocity vector ,

as ind icated in F ig .  2 ( a ) , is pernendicular to the line AB , whose equation is

+ Y2 4M /~ .

The discussion above assume s static behavior. Now we consider dyn amic

problems , the structure having non-zero accelerat ions u as well as veloci-

ties u . The dynamical equat ions (2)  may be writ ten in vector form with

the dimensionless variables as

where P ~- ( P
1,P2

) ; Y ~- ( Y 1,Y2) ; U = ~~
-
~~

- (u~~,u2 ) (6)

A typical dynamic case is shown in Fig. 2 (a )  for a load vector P ’ wh ich can-

not be supported statically. The instantaneous stress vector Y and velocity

vector u must be related through the normality rule . Suppose the velocity

vector has the direction of vector U ’ . The stress state vector must cor-

respond to the corner point B for this direction, which lies between the nor-

mals to the adjacent sides at point B. The acceleration vector u is required

by Eq. (5) to have direction and magnitude as shown. Evidently this is not a

mode form motion , since the vectors u and u are not parallel. However, it

can be seen that if the load F’ remains constant the velocity vector must

change with time until its direction and that of the acceleration vector become

normal to side AB of the yield diagram . This “mode form ” motion is indicated

by the dashed vectors . This example illustrates the convorgence property on

-thich the node approximation technique is based Cli .
t

--
______________ ________________________ _______________ - . -  — -



5

Several different types of mode form solution are illustrated in Fig.

2 (b ) .  They have the common feature that

U = A ( t ) t  (7 )
a a

where A is a scalar factor . We consider forces P1 , P 2 in fixed ratio

to each other. Then the vector P can be written as

( 8 )

where A is a scalar load factor and P is a const an t nom inal load vector .

In the example , P = (1 , - 0 . 5) .  Figure 2 (b ) show s a ntunber of cases cor-

responding to posit ive values of A . At the plastic collapse or limit load

w ith A AL,  the acceleration is zero but the velocity is nonzero; this is case

3 , with = The other extreme is that of P = 0 , shown as case 1 with

~(l)  
= _~ (l )~ Here it is implied that some previous impulsive (or other ) load-

ing history has resulted in the mode pattern Fig . 2 (b )  with U
1 

= 3u~ , so that

the velocity vector has the direction of the normal to side AB and is par-

allel tp -u . Note that the initial condit ions and prior loading history are

relevant only in the sense of causing a particular mode form to occur rather

than another possible one . Evidently for A < A L the mode solution is not

uni que ; for A = 0 there are eight modes , with stress vector either perpendi-

cular to one of the four sides or at one of the four corner points A , B , C , D.

The case marked as case 2 has < A~ . Here the mode is indicated by the

velocity vector ~~~~~~~~~~~ In this case there are two possible mode solutions ,

the alternative mode shape having velocities proportional to ( -1, -3) , with

accelerat ion vector perpendicular to side BC of the yield curve , as indicated

by dashed vectors in Fig. 2 (b ) .

-~~~ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The case marked as case L4 has ~~~~ > A L , so that the load state rioint

lies outside the yield curve. For the example shown there is only one mode

solution , the acceleration having the same direction as the ve locity

However , note that for A = A B 
the stress state point is at corner B.

Case 5 has A~
5
~ > A B . The velocity vector can have any direction between

the normals to the adjacent elements at B, so that the common direction of

the acceleration and velocity vectors changes as A increases. For A -
~

both anproach the direction of the load vector P

2. Modes in a Circular Plate. To illustrate the recuirements for mode form

solutions of a continuous structure whose material exhibits either rigid-

perfectly plastic behavior, or rigid-viscoplastic (strain rate dependent) be-

havior, we consider a circular plate of radius R , with a radially symmetric

pressure p(r,t) applied transversely. As above , we consider only the plate

in its initial configuration , i.e., we are not considering cuestions of finite

deflections. The ecuation of motion is

~~

— 

L~~

_- (rM
r
) - M

0] 
= - nr + prw (9)

Fixing conditions are , for example

w ( R ,t )  w ’(R ,t) = 0 (10)

Initial conditions may also be stated as

w(r ,0) = 0 ; r (r ,O) = i°( r) (11)

In these equation s, r and 0 are polar coordinates in the middle surface

and t is time ; w(r,t) is the transverse displacement , w ’ sw/ar the

slope , w = ~w/~t the velocity, and w(r ,t) ~
2w/~ t 2 the acceleration ;

K , K 0 are radial and circumferential bending moment per unit len gt h , res-

pectively; and p is the mass per unit area of middle surface .

1; -

.
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The strain rate quantities relevant to the plate in bending are curva-

ture rates K , 
~~ 

defined so that the work-dissipation rate equation is

R R

f ( p  - ~~ ~ rdr = f M ~~ + M 0~ 0
) rdr (12 )

Equations (9) and (12) are consistent with the following forms of the curvature

rates in terms of the plate velocity

= — 
~~~
“ 

~ 
— 

~~
-
~~~“ (l 3a ,b)

We will write constitutive equat ions suitable either for rigid-perfectly

plastic material or for one with strain rat e sensitivity . Both behaviors can

be treated by writing constitutive equations that are generalizations of the

following form for simple tension :

c = c ~, 
{~~~} 

sgn a (14)

This homogeneous viscous form can represent adequately , over a range of

strain rat e , the more realistic inhomogeneous form

~o [~i _.i~~~s~n a for 
~~ ~ a0 

(15a)

0 for 0 < 0
0 

(1 Sb)

p This latter form is capab le of close representation of curves for stress as

funct ion of strain rat e at constant strain [8] ; it is assumed that strain rate

history effect s are absent . The viscous form of Eq. (14) involves no yield

condition . We need to write stre ss-strain rat e relations which generalize

Eq. (14) to appropriate forms for a thin plate in bend ing, in terms of bending

moments M K
0 

and curvatu re rates K r . We wri’e for brevity 

- -~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ . 
- 

--
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= K /74’ , = ~ /sc where a r or 8, 74’ = o ’H2 /’4 , K = t~E /H.

~ a o a a 0 0 0 0 0

Then ~we can write
a!’ 

~l6a )
am’ ~~~~~a ci

where F = /,2_ m ’rn ’ + m~~ (l6b )

1 
~

n ”
~~ 

(16c)

and m ’ = ~~~~~- 
- (h a)- -V

a
a

where C 2 /~ 2 
+ 
~r~e 

+ ~l7b~

~~~
‘ 1+1/n (l7c)= 

n ’+]. 
G

These forms are derived by assuming a sandwich plate model of thickness

h H/2 . H being the thickness of the uniform plate . Each sheet of the

san dwich plate is in plane stress , and has princi pal strain rate components

C 
~~ 

given in terms of stresses 0r ‘ 
a~ byr

1/n ’If af 
= ~

&_
~ 

.
1 !~ ._ ( l8a ,b)£ = C~ ~ I~~ I ~~

— ; a
~~o J  a 

U o J •  J ~~

.

a

—‘- p

where f / ~
2 

- ~ a + a~ ; 2 l’2 • •g _  Ic + c c  + cr r O r O  0

and a r , 0 . The forms of Eqs . (16 , 17) are capable of close representation

of strain rate behavior over appropriate stra in rat e ran ges . If n ’ is made

very large while a ’ is taken as the static yield stress a , we obtain rigid
0 0

perfe ct ly plastic behavior .

I

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- — —a—--—-- —
_________ .- - -~~~---.—- -.-—— - 
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We look for a mode form solution of Eq. (9)  satisfying the edge conditions

( 10), kinematic relat ions (13), and constitutive equations (,1.5 ) , (17) .  We

write the velocity as 
-

= ~~ (t ) + ( r ) (19 )

and take + ( O )  = 1, so that ~~
(t )  denotes the midpoin t velocity. The cur-

vature rates are then

= = 
~~~~~~~~~~~~~~~~~~ 

‘~~ = = ~~~~ ~-+ ‘) 
(20)

The bending moments can also be written in separated variable form , because of

the homogeneity of ~~~~~~ as

= K
oM,w*

uhh1
~ 

~~r 
~ 

M0 
= ~~74,~~1/n’ (21a ,b)

where ~(r) = w[k (r)]. The equation of motion then can be written as

~~~~~~~~ [}-. (r 
~~~~ 

- 

~~~~~~] 

._1/n~
[
~.~ - A ( t )~ (r~

] 
(22)

Here we have further assumed that the load pressure has a constant distribution

pat t ern over the plate , and have written

p(r ’,t )  = A ( t )~~(r ) (23 )

For a rate sensitive material E q .(22 )  can be “separated” only if the

pressure distribut ion ~(r ) is the same as the mode shape function •(r )

to within a constan t factor. We conclude that apart from this highly special

case , mode form solutions cannot exist when the plate is subj ected to a pres-.

sure load ing , even for the homogeneous viscous beha vior. If ~(r ) = 0, separation

of variables is possible since one can write 

—- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ .- — ~ - - ‘~~~~~~aa.~~~~~~— —-- - _______________________
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i a T ~ 1 - ~ 
W 

- (
~~ 

(r 
~~~~ 

- 

~~~~~~ -~ ~~~~~~ ~P~’ - - A 2~ )

w~ er~’ A is a constant . It is seen that in this case the m ~oir ~t ve loc i ty

~ecr~dses from its initial value accordinci to the exDress!on

1 1

~~~( t)  = (~~?. ) ‘
~ - ( 1  -

~~~~
-,) ~~M t A t j ’  ( 2 5 )

“be shane function ~(r )  must be obtained so as to satis fy the ord inary dif-

fe rential equat ion obtained by sett ing the left-hand side of Lo .  (21 )  equal to

A. It ~OV be solved by iterative methods [6, 8] without difficult~’. When

~(r )  bas been obtained , the magnitude A can be calculated from the energy-

l is s ip at io n  rate E q . ( l 2 ) , wh ich takes the form

R - .  l~,2 Rr w~ n ’fl. 1
~~~~~~~~~~~ 

j  
P~~ r~r 

~o
Mc .
(
~~— j[x(.)]~~ii” rdr (26 )

2 1 2where x ($) X(k ) =
~~ / 

(+ “ )  + ~4 ’~ ” + (~4I)2

because the dissipation rate can be expressed in terms of the homogeneous form

using Euler ’s formula .

For rigid-perfectly plastic behavior we put a~ = 0
0~ 

n ’ -
~ . Then sol-

ut ions in separated-variable form exist not only for the impulsive loading case

with ~ ( r ) = 0 , but for arbitrary ~(r) , provid ed A ( t )  = constant . For this

material the stress vector depends only on the direction of the strain rate

vector, not on its magnitude , so that in a mode form solution the stresses are

j constant. Thus if the load factor A(t) = A constant, the acceleration is

constant and given by

I

_______  - -
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~ ~ôrdr - ( M ~~ + ~~kq )rdr (27)

J 2 d , ~o ‘a
0

The ~cceleratj on ev~~ ent~ ’j car) be ‘~e ti-i c’ (as in t he  i~~~~~~ iv~ oa~~~’-~’ case

where ~ 0) ,  or pos itive ; zero acc~ iera t ion the case -~ f ‘~~J a ~~ ic co1.~aose

in con ventional plast ic I~ m it analv~ is t~~eorv . “~~is ~~n~-e of n~ s~~~ i 1 i t-~’~
has ~ir ”adv been i ~~t~ -itee by the two-~ a~~ r~~cb~1.

3. Numerical Result s for a Circular Plate . ~e “cnn ~~er n fcrt  a plate of

r igid -oer~e~ t i v  p~ -as:Y mat erial su~~~ c~ e’ to a ‘in i±or~n pressure t~ of var ious

magnit udes . The plate has uniform mass densi: ’,r ~ )e~’ unit ‘rea , and con stant

th ickness ~
- . Integrating aru ac mir c! the mode for~; ~~~~~ ( 19) ,  the equation

of motion E~i. ( 9 )  can -c written in nondimensiorril ~or’~ , w t h  
~~ 

M
r~~ o

m 0 = , ‘n~ putt ing r / R  -
~~ r , 0 ~ r ~ 1, as

(r~~ ) 
- m

~ 
= - 

r~~~~ w~~ ~rdr (~~ q )

0 )  O - )

The work-energy rate E q .  (2L~)becomes

- 
~W R ~ 

f
~ 2 d - (m~~’~ m e ~‘ )rd r (2 9 )

At a “hinge circle ” th e  slope may be d iscontinuous , and the ri ght hand side

must then include a term

_r
imr (r 1

) ~~ ‘(r1
) - r1m (r 1)[~~’(r 1 + 0) - $‘(r

1 
— 0)] (30)

for a hinge circle at r = r1 . We have boundary condit ions at the edge r

— - 
~~i -: ~~~ ‘

~~~
—

~
- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--



flimct v i r ~ e~’ ech~e ~b(l) 0, “~~ 1) 0 (~~t a )

~ ip c’d o- -h~e ~(l) 0 , ~‘(l) 0 (315)

At the center of ‘b p  olate r 0 , ~r (0 )  = m~ ( 0)  by ~-,“w~(’t1~~. We -id c~~ ~~e

~orna~~i z i n c  :ond~~~~on ~(0 )  = 1, w~ L ch merely defines w~. as the r ’ i idn oLnt

velocity of the plate.

(A) f ~~ adoot Tresca ’s yield condition and the associated flow rule

(Fic ’ . 3) ,  s inr ie  closed form solutions can easily be derived . The analysis is

an obvious extension of that ~or the  limit  analysis o~~htem , unich corresponds

here to putting w~ = 0. For the simrlv supported c~~c~p case, t~e stress states

lie on segment A? of the yield curve, and all equations can be satisfied with

velocity profile either cor~cal in shape as in Fir. 4a. or with shape of a

truncated cone as in Fig. ~-4h . The conical p~~fi1e holds for

I

0 ~ 2 ( 3 2 )

and the relation between load and acceleration is

— “ 2  2pw~ R 
= ~~— — l

12M 6M
0 0

When n is larger than the upper limit set by Eq. (32 ), a violation of the

yield condition occurs at r = 0 ; thus the truncated cone field of Fig. ‘th is

required. This holds with
p 

~~*
R2 

pR 2 2
6M 6M (l—’~

2 )(l—n) 
> 2 (34)

Fquat~ on (33) furnishes the special cases of “free ” decelerating motior~
_____ 

P
LR
’

(p 0, -12) and of the limit load pressure 
~L 

(w~ = 0 = 6 ) ,
0 0

while Eq. (34) gives the parameter ~i defining the (constant) shape of the

4’ response field for large pressures (more than twice the limit load magnitude).

___________ ,-,-—,-- _~~~~~~~ _2~~’::~~~~~
- ‘ ‘ ‘ 

- ‘ff ” ’ T ’ ~”’ ”” -
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For a — tamoed plate the stress states l ic ’ on se ent AB of the yield

curve for 0 < r < ~ , but lie on BC for f < r ~ ~~, in order to satisfy the

edge conditions hci~’.. ~~lh). The strain rate vector ( ,  ~~~ ~~~
.. ( -

~~~
“,

must be narallel to the -m axis at r 1, since t ’( I )  - hence , the
r

flow rule requires the stress state point at r = 1 to be point C of the

Tresca diagram. Thus , if the pressure is not too lasse , th ’-~ resnonse f ield

has a conical shape for r < ~ and a logarithmic one for ¶ < r < 1. as

sketched in Fir. L4C. The mode function is riven by

(?5a)

s ~ 1 : l r  
(35b)

The pressure and acceleration a” exp ressed in terms ~f ¶ as follows :

- I I
‘-‘ I 

— ~~~~~~~~~~~~~ — 4 ’ ( i- 
~ )
‘ — +

- 
2 :‘ - -— — ( ir a )

¶ (2~ i’~ + ‘ In r —

ow~~ 
-) 2

—— - - - ~~~~---— —— ---~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

(~~ b)o r ’ ’ . . -~~~~~~~~~_

provided 0.6201 ~ < 0.8055 (36c)

The important special cases are

ow
~

R
Free deceleration , r’ = 0 : = 0.6201 ; —

~
--—— = - 23.58 (37a)
0

n R 2

!..imit load pressure , w,,, = 0 : r = 0.7300 ; = 11.26 (37b )
0

A violation of the yield condition at r 1 will occur for 
~~~ > 22.49 ,

corresponding to ~ > 0.8055 , if the above mode field is retained . The mode

shape for large pressu re magnitudes has constant velocity in an interior region

as sketched in Fig. 4d. The mode function is

L - ~~~~
‘ 

~~~~~~~ 
-
~~~ -

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~. 
-~~~~ -______ - - _ -__________________
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0 ~ r ri : 1 (38a)

r ~ r < ~ : = ~~
‘ 

(38b )

~ in r
~ r ~ 1 : 4’ 

~ in ~ — + ?‘~ 
(38c )

The load nressure and acceleration are related to n and ~ by

— 
ow

*
R l2~~~(~~~lfl~~~~_~~~ + yi ) ( 39a)H 14 3 3 4

o -o ri — ~~~ + 2~ 11 -

14 3 2 3 4 2(1 — in ~ )n — 2~n + (5~ — 3~ — 2~ in ~)n — (~ + 3~ in ~) = 0 (39b)

2
provided n ~ 0 , ¶ ~ 0.8055 , ~ 22. 4 9 (39c)

These results for the static limit pressure and for the f”~e deceleration

of a circular plate , obeying the Tresca yield condition , are of course well known ,

being due to Hopkins and Prager [9 , 10] and Wang and Hop kins [11]. They are

here cited as special cases of the general family of mode form solutions of this

structure .

(B) If we instead adopt Mises ’ yield condition and asscciated flow rule,

the calculation of mode shapes and accelerations must be carried out by a nu-

— merica l method . We have don e this by several iterative schemes and by a finite

element program. Iterative schemes are easy to devise in an intuitive way, and

usually work well in some range . They have an unfortunate habit of failin g to

converge outside of certain ranges of the parameters involved . When they do

converg e , they furnish essentially exact solut ions at small computer cost . Here

_________ ~—.‘
--
‘- -~~~~ “-~~~~~ -F~~~~~~ -~~~~~ ..-.—.”-~~~- - ~~~~~~~~~~~ —.--—-- .~~~~~~~ — —
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we briefl y c ’u t l in ’e the iterative scheme which was found to work well in the

r’resent rrr~hiem over a wide range of the relevant parameters. Our finite

element so1utIc~n was much more expensive . It is mentioned here because in

sw)seouent work extending the mode technique to large deflections it was foun d

to have a somewhat wider domain of convergence than the iteration scheme .

The iterative solution of the present problem , wh ere only smail deflections

are cons idered , was t hat used in the determination of mode shapes in a visco-

slastic plate [6]. The use of a homogeneous viscous representation of visco-

plastic behavior has been outlined above. Equations (16) and (17) respectively

furnish strain rates and bending moments in terms of material parameters

a’ , n ’ - The last two are written in terms of the constants of Eq. (l5a) as

cc; = ; n ’ = vn (40 )

where a , n are obtained with 
~ 

from tests over a range of strain rates ,

and ~ , v are factors which enable the homogeneous viscous forms to match

test data in a particular range of strain rates. We have used the following

for a conservative and accurate matching with strain rate test data [5, 6, 8]:

1/n i/n
~, l + 8  . u =

1
~~~~

6 — (141a ,b)
8lJn 

‘

where $ = c Ic , c being the effective strain rate at which the two
e 0 e

representations are matched. The function g(~~~
) in Eqs. (18) serve s as

in a plane stress problem , while C(K ) serve s as 8 in a small deflect ion

~lat e prob lem. As previously ment ioned , rigid-perfectly plastic behavior is

obtaine d by taking u 1 and v very large, corresponding to putt ing 8 • 0

in Ens.  (41). We outline the iterative scheme in the form for a homogeneous

viscous behavior , so that eithe r a rat e sensitive plate with p = 0 ( impulsive

motion ) or a rigid-perfectly plastic plate with arbitrary p can be treated .

~~~~~~~ ~~~- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
— 

-,_~ 

-
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The equation of motion (28 )  may be integrated aga in and put in the form

- ~~~~~ + ~~ f d D ~ 
~~~~~

, i$2~
d2
~} 

+ C1 
(42a)

2
where p = = (4 2b)

and C
1 

is a aonstant of integration . Now , from the constit utive equat ions

( 17) ,  with the mode solution form Eq. (19) and the curvature rate expressions

Eqs . (20) , the dimensionless moments are

• 1/n’w
Tn — ~~ *

2 
- 

( f ”  + 
~~~~~ 

(43a )
K R
0

• 1/ n ’
me 

— ~~..~~~~~( ‘ 4
*

2)  

X ” (
~4” + ~4’)

where x 
_ 2 ~~~~~ + + (~ 4 ,) 21

l’l ( 143c)

using Eq. (43a ) in Eq. ( 142a ) ,  we write

1 
~~~~~~~~~~ 

~~~2 + 
~~ iar

i
~~~,r

’ .~ ;)+ c1

4” + ~~~•‘ (‘4’ea)

- 
w~ 

1/n ’ 
l/n ’-l

• 2 X
K R
0

~~~ 

I 

with m
e
_m
r 

- 

( 

~~~~~
_ 

]

l/fl~ 1/n’-l [_ 
~~ 

+ 

~~‘) (~kb)

_ _ _ _  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-

.---—
~

- —•
~~

----- —
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ii

We may consider a rigid-perfectly plate by putting u = 1 and taking n ’ vn

very large so that the velocity w~ disappears from the right hand side . Al-

tern atively, to consider a viscoplastic material we must put ~ = 0 ; again

‘
~~~~ 

is eliminated since ~~~~~~~~ can be taken constant and obtained from

Eq. (26). In either case,

4’~ + 
~~
.._,‘ 

~ ~~ ~~R(~’,C1
) (14 5)

where the right -hand side is known numerically, apart from the constant C1 , if
<1>

a first approximation •(r ) is inserted in the right -han d sides of Eqs . (t el)

and in Eq. (2f). Integrating Eq. (4 5) ,

~ 1 )dr ’ (46 )

0

(An integ ration constant has been taken as zero for a plate that is continuous

at r = 0.)  The constant C1 must be deter mined from the edge condition at

r = 1. : for a simply supported plat e the left -hand side of Eq. (tete a ) vanishes ,

while for a clamped plate that of Eq. (46 ) is zero . In either case we obtain

ci>
= S(r) (47 )

‘1>
where S is the right-hand side of Eq. (46 ) with the constant C1 evaluated

r1
1<1>

and •(r) S(r ’) dx” (48 )

Finally, a second approximaticn~~~
> is obtained by multiplying the right -hand

side of Eq. (48) by a factor which renders <HO) 1 , giving

rI. id.(2 > / (1>
•(r) = ~(r ’)dr ’/ S(r ’)dr’ (tee )

r ( a

‘~~~~t 1 J~~~ ~~~~~~~~~ :- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I -- ~~~~~~~~~~~~~~~~~~~~ 
- - — - ________
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<1>
This is put in place of 4’(r) and the cycle is repeated . Convergence is shown

by the approach of for chosen ~ (or of ~/w~~”~ for ~ 0) to a con-

stant value, and of the normalizing factor - S(r ’)dr’ to u n i t y .

~0

The midpoint acceleration as function of load pressure is shown nondimens-

ionally in Fig . 5 for both yield conditions and both types of edge constraint.

The shapes of the mode form responses for the plates governed by Mines ’ yield

condition are illustrated in Figs. 6 and 7. These evidently are close to the

shapes for the Tresca material , for pR2 /6M0 greater than about 20.

Conclusion s

Mode form solutions of structures undergoing dynamic plastic deformation

have utility in approximation techniques; they have basic significance

as “nat ural ” re sponse patterns to which structures with arbitrary start ing

conditions tend to converge . In this paper we have illustrated sufficient

conditions of loading, material behavior , etc. for such solutions to exist .

We have discussed examples of their calculation and have illus trated the link s

between response of dynamically loaded structures and static limit load-plastic

collapse analysis. It is hoped that the discussion will promote understanding

and use of these properties of dynamic plast ic response .

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—C-- — -T-’.,~~ 
~~~~~ ~~~~ ~‘ 
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