AD=AO41 632

UNCLASSIFIED
o]

41632

CALIFORNIA UNIV SANTA CRUZ F/6 9/2

BOOTSTRAPPING A SMALL TRANSLATOR WRITING SYSTEM, (U)

MAR 77 M FAY NO0O14=76=C=0682
TR=77=3=002 NL

END

DATE
FILMED

3 77

BOOTSTRAPPING A SMALL
TRANSLATOR WRITING SYSTEM

by
Michael Fay

Sponsored by: Professor W. M. McKeeman

Technical Report No. 77-3-002

- X~

4

:
il
L4

4
i ¥
N

INFORMATION" SOTENGESH =
. UNIVERSITY OF CALIFORNIA
SANTA CRUZ, 'GALIFORNIA 95064

STATEMENT A

pub"lc releasel
Unlimited

DISTRIBUTION

Approved fot
Distribution

SR P T

BOOTSTRAPPING A SMALL TRANSLATOR WRITING SYSTEM

by |
Michael Fay ;

Information Sciences
University of California
at
Santa Cruz

March 28, 1977 :]

This research was supported partially by Otfice of Naval
Research Contract No. NOOQ14=76-C-0682
s Waita Sectiv.

8 Bufi Section
UMAKYCIRCDD

AR IR YA
,'J;“4 -C.-..g!(.............................

DISTRIBUTION STATEMENT R

Approved for : .
: publi sase
Distribution Unucn::d

cosensenemansnessnbne sebitets

~

ﬁ/‘ // § e
. / O DTl R RARBIRITY 800
G b NGt ot
/ // o l [_J /7 o kW 1. 2nt/or SPEL.!
s

Wl o : _‘f;/ ;
o '/ A N : i o
& T

FERSIRICST-S M I

g

B —

ABSTRACT

A rudimentary translator vwriting systea is developed
for easy implementation in about 2 pages of asseably
language code. Although the system is based on backtrack
parsing and lacks a scanner, it still perforas useful
translations in a few minutes of CPU time, with storage
requirements of about 10K bytes, for a typical translation.

The system is based on an ALGOL-like program by Michels
which translates source language strings into target
language strings, according to a translation gyrammar wvhich
is specified using prefix Polish operators. Fortunately,
the user does not need to specify translation grammars in
Polish notation, because Michels gave a metayrammar which
translates grammars in BNP-like notation (includiny the
metagrammar itself) into Polish strings.

This report shows how HNichels' progranm can be
implemented without the aid of an ALGOL conpiler.q‘is\

present a translation grazmar for converting MichelsV .

prograna (slightly rewritten) into code for a simple,
special-purpose interpreter. Once this simple interpreter
is 1implemented, and Michels' prograam (in interpreter code)
and the first input grammar are prepared, a small translator
writing system is coesplete. In this primitive system, a
translator "program" consists of the BNF-like description of
a translation grammar.

Michels!' program wvwas written with the goal of
conceptual simplicity, However, in actual performance it
vas found to be too slowv to be practical. Accordingly, vwve
present a newvw program which is shorter, more efticient, and
vhich requires only a slightly more complex interpreter.

Key words and phrases:
metalanguage, translator, syntax-~directed translation,

translator writing systen, self-describing grammar,
interpreter, bootstrappiny, backtrack parsing

CR categories: 4.12, 4.13, 4.20

o

i il ek Bt

MGt i i sy e

s

1. Introduction

Programming languages should not interfere with the
initial steps in designing prograas. Wirth (11] has
proposed that prograas be vritten using "stepuise
refinement”, in which several versions of a program are
written in notations convenient to the programmser, but
approach some existing target language as the final step.
When writing w®many prograas in a single domain (e.g.
graphics), the programmer may find a particular intermediate
language useful for his needs. If the process of writing
translators and interpreters could be simplified, then
special-purpose intermediate languages could be impleaented,
obviating the need for the final refinement steps.
Extensions to existing extensible languages could accoaplish
a similar effect, but would not allow the freedom of
language design available to a translator-wvriter, and would
result in a larger, more cumbersome language with unneeded
features. Also, extensible languages are generally hard to
implement and require large operating systeas [1,7,9,10].
In view of the rapid proliferation of smaller coaputing
systemas, it would be useful to have simple mechanisas for
isplementing newv special-purpose languages.

In this report, ve present a simple implementation of
Michels®' translator writing system [S], which is based on an
earlier paper by Schorre [8]. The system allows simple
kinds of tramnslation, directed by a user~produced grammar
wvhich is augmented with output symbols. Michels devised
metagrammars in notation similar to BNF [6) which define the
translation of grammacs (including the metagrammars
themselves) into strings of prefix Polish operators,
suitable for execution on an interpreter. Using ALGOL-like
autually recursive procedures, Michels then presented
descriptions of interpreters which would execute a prefix
Polish operator string and carry out translations according
to the grammar represented by the operator string. The
folloving diagram shows the relationship bpetween a BNF
metagrammar, a Polish representation of the same gramsar,
and an interpreter.

e

il

T S A B OS50 St

3
| G1 | | m— m— e i G1-0 |
| A tramslation) (I | G1-0 [| | An exact !
{ grasmar in BNP | | A grammar, in | | | copy of |
| for tramslatiang|=-=--->| | Polish code, { j====>| the G1-0 1
| BNF gramaars toj| | for translating| | "code" 1
i

Polish |

| BNF grammars toj

| Polish |

Program to scan
input and generate
output according
to the operators
given in a Polish |
translation grammar|

|

|

| |
| i
1 |
| |
| |
| SEEDO i
| {
| {
| {
| |
|

|

If an arbitrary BNF translation grammar G is used as
input, the resulting output will be the Polish fora of the
grasmar (call it G-0), If SEEDO is then executed with G-0
as its program, any input will be recognized and translated
according to the rules of G. In this system, G is a simple
translator "program". The following diagram illustrates the
tvo-step process involved.

o Sl ottt o el g

I | j esasedens | | 1

(] (BNP) (] 11 G6G1-0 | | | (Polish) |
| £ | I 1(Polish)| | | |
ceomserocaswes . l ' ' cToeconneowe wea
[oemeneanme | |
| | |
| SEEDO | |
{ | |
oocoseaceoameoew '
|
I
|
v
| | |ttt Al | | |
{ Is | | (I | o |
| Text in | {t I G=-0 (| { Text in |}
{ the input|======>| | { |===-===>|the output}|
| language | | w=ecmmcce= | | language |
| of G | | | | of G |

ceoococcoeowsnoa ' SBBDO ' ceeocecvcececccee

(* indicates typical user-generated input)

This report extends Michels' vork by actually
ispleaenting the SEEDO interpreter. We do this by
translating SEEDO into code for a lowv-level interpreter.
The low-level intecrpreter is siaple enough to be impleamented
in about 2 pages of PDP-11 asseably language code. Soae
atility routines and wmachine-readable texts must also be
prepared before the systea is coaplete.

HcKeemen [4] calls the systea a SEED because even
though it is small (and not very powertul and efficient by
itself) it can be used as a tool to implement languages for
vriting scanners, parsers, and other coaponents of more
sophisticated translator writing systeams. Unfortunately, it
turns out that Hichels' SEED0 program fails even as a SEED,
because it is considerably slowver than hand-translation in
most cases, Accordingly, ve present an ismplementation of
SEEDO only to show the essential ideas needed for a siaple
translator, We then present a wmore efficient progranm,
SEED1, consisting of a smaller set of recursive procedures
written in a slightly more poverful 1language. The new
language requires new operation codes in the 1low-level
interpreter. However, fever lov-level interpreter

instructions are needed to implement SEED1. In addition,

computation time is reduced by a factor of 30 for a typical
translation.

2. Pormal Definition of Translation

The material in this section, as well as in Section 3,
is adapted from Michels [5]

A context-free grammar G is a quadruple (Vt, Vn, S, P)
vhere:

Vt is a finite set of symbols called TERMINALS.

VYn is a finite set of symbols called NON-TERMINALS.

(Vt and Vn are disjoint, and their union is the set V)

S is a distinguished member of Vn called the START or GOAL

SYMBOL.

P is a finite set of productions such that each production
is a pair (a,b) (alternmate notation: a->b). The LEPT
PART, a, is a symbol in vn and the RIGHT PART, b,
is a (possibly null) sequence of symbols from V.

The postfix operator ¥ will denote the
set closure or the set of all sequences
of symbols in a set. For example, V¥
represents the set of all strings that
can be constructed from the symbols in
the alphabet, including the empty
string. The operator ¢ denotes the set
closure with the exclusion of the empty
string.

The set of productions define all possible derivations
in T. Por all (x,y) in P and u, v in V*, u is derivable
from v (written v =>¢ 4) if u can be created by
substituting y for any occurrence of x either in v, or in
any string derivable from v,

Any string derivable from S is a SENTENTIAL FORM. A
sentential form not containing any elements of Vn is a FINAL
SENTENTIAL FORM, or SENTENCE,

A TRANSLATION GRAMMAR T is a quintuple (Vi, Vo, Vn, S,
P) where Vi and Vo are disjoint sets partitioning Vt. VWe
call Vi the INPUT VOCABULARY and Vo the OUTPUT VOCABULARY,
¥n, S, and P are defined as before. T is said to TRANSLATE
an element u of Vi®* into an element v of Vo* if and only if
S =>¢ g, and deleting the symbols of Vi (respectively, Vo)
fros 2 leaves v (respectively, u). Observe that T amay
translate u into several strings.

Let Pi be P with the symbols from Vo deleted, and Po be
P with the symbols from Vi deleted. The INPUT LANGUAGE Li
of T is described by the context-free grammar Gi = (Vi, Vn,
s, Pi). The OUTPUT LANGUAGE Lo of T is described by the
context-free grammar Go = (Vo, Vn, S, Po).

We note in passing that every translation grammar has a
®dual® tramnslation gramsmar in vhich the roles of Vi and Vo
are reversed. Also, we could generalize translation
grammars to allow more than two partitions of Vt,.

2.1 A Tramslation Exaaple

¥e present a grammar that will translate infix
expressions to prefix expressions as an example of this
class of translations. Consider the translation grammar T =
(vi, Vo, ¥n, S, P') where:

Vi = {(+,#,a,b}) This is the alphabet of the input language,

Vo = (#,%,a,b)] This is the object language alphabet; in
this case it corresponds one-for-one with
Vi. The symbols are underlined to differen-
tiate the twvo sets.

(S,T,F,I} These are the non-terminal syabols.,

{S=>T, T=->#P+T, T->F, F=->%I*P, F->I, I-D>aa, I->bb}
This is the set of productions defining the
translation.

vn
-

T specifies, among other things, the mapping of ‘a¢b¥*a’
to ‘+a*ba’, The full derivation is as followvs:

Seatential Fora Transitional Rule

S Start symbol

T S=>T

4F T T=D>¢F+T

4P oP s T=>F

&P ¢%I oF F=>&1*p

¢I +3] o] P->I (used tvice)

$3a+%bb*aa I->aa (twice),I->bb (Einal
sentential fora)

a+ be¢ a Input Sentence (syambols from Vo

deleted)

¢a *b a Output Sentence (syabols from Vi
deleted)

3. Translator Isplementation

To implement a translator based on a tranmnslation
grassar, ve aust create a parser for the input lanjuage.

Our assumption here is that the easiest parsing scheme to
implenment is the top-down backtracking approach.
Conceivably, RBarley's algorithm [2] or some other method
could also be implemented concisely, but this matter is
beyond the scope of this paper. The restrictions given in
this section apply to our method of backtrack parsing.

To specify the restrictions, we will group together all
productions having the same left part. To this end, we use
Pi, the set of input productions, to construct the set PLi,
Each element of PLi is a list (a,b1,b2,...,bn); a is some
left part, and all bi are corresponding right parts. That
is, all bi are included in an element of PLi if and only if
a->bi is an element of Pi. An input grammar will be
represented by a description of PLi, such that the first
element is the list in which a is S, the start syabol. A
translation grammar is represented by PL, which is PLi w#ith
the output syambols restored.

An ordering on the alternative right parts in each
element PLi is defined to guarantee that if two right parts
can generate input sentences such that one input sentence is
a prefix of the other, then the right part generating the
longer input sentence is listed first. Formally, for all p
in PLi, if b and b' are right parts in p and b precedes b',
then for all u, u' elements of Vi¢+ such that b =>% u and
b' =>% yg!', there exists no u' = ur, wvhere r is in Vis*,

No productions may be empty. That is, tor all a=>b
in Pi, b is in Vie,

Grammars may not allow left recursion. That is, there
may be no v in Vn and u in V* such that v =>%* vu .,

Deterministic left-to-right parsing is simplified if,
vhenever a prefix of the remaining input is to be derived
from a nonterminal m, the prefix yielding a correct parse is
the 1longest prefix derivable from m. That is, there should
not exist any sequence uncv derivable from S, and both x and
xc derivable from m, where S is the start symbol, u ard v
are in (vi U Vn)*, a is in Vn, and x and c are in Vie,

The translators to be described in this paper do not
detect violations of the restrictions given here; they will
merely produce incorrect parses, or fail to terminate at
all.

3.1 A Simple Translation Language
A lofalanquaqe can be defined for the syntax and

translation of a translation graammar. The notation is
similar to BNP [6]. For each non-termainal which is a left

Rel "a™ A "j" R
/"END"
}

A=(/)
/¢

}
Cele)
/1
’
!.QQN
VA 4]
/7m¢”
/083
’

Ssl#)
3

0")] (nnn ["3/T, "y
708>) ¢""" ("¥I/TY 0O
’

Le®pr
/"1
/"o"
VA A
3

TsL
VA L
/%>n
VA 3
/"1
/%g"

’
END

C "/ A

SR

(ﬂ"ﬂ "””’t‘"l/S)
€")I" t>) [1)/0)

[Tl i
L

€R1" £1)/1) "¢
/C8#3 ("1™ L)I/TY S

tAl/"B"
try/nJ”
tQl/"R"
(& & Vg

t(sd/"3"
[>3/"sm
t¢]/"."
tgl1/sn2"
tel/no"

£al/"c" (CY/"n™ tDI/"E" CEI/"F™ C[FJ/%"G" [G)/"H" [H)]
EJ3/77K" EK)ZOLY [L3/"N® EMI/oN® [N]/P0" [D)/"PP (P)
CRIZ™S™ £SI/ZT™T™ e TI/"U™ CUY/Z™V"™ CVI/Z"W" CWI/"™X" [X]
tz2) :

E33/%C™ CeY/"5" €))7/ /) /"e” 1)
CIY/%8")/ " ¢ Y/"(" (L)/"a® [»)
Ce1/%"2" [21/%8" [8)/"," (»)/"8" ([($)/"%" (%)
£21/"3" £3)/"4"™ p41/%S" (S1/%6" (el/"7"
t9l/"0" t0)

G1,» THE GRAMMAR GRAMMAR

FIGURE 1

i G i v T —
! i e e o

part of a production, all right parts for that non-terminal
are listed, serarated by a slash (/). The left part will be
separated from the alternative right parts by an equal sign
(=) . Juxtaposition will denote the concatenation of
elements of . a right part. Double gquotes (") will deliait
elements in Vie¢, Brackets ([,]) will be used to deliait
elements of Voe, Single letters denote elements of Vn.
Normal parentheses can be used to alter the implied operator
precedence and to reduce the number of productions required
by allowving the factoring of rules.

Fig., 1 shows G1, the translation grammar describing
the “grammar 1language”, expressed in its ovwn language., It
is a modification of the grammar given in Section 4,1 of
Michels (5]. (Productions I, S, and O were modified so as
to minimize backtracking in most cases, and L was split into
L and T, vith many new symbols added). Multiple blanks and
ends of lines have no meaning in the 1language. They have
been used here to improve readability and should be ignored.

Literal strings may be of arbitrary length. This
creates a problem if a string must contain a double quote
(", which is the literal deliaiter. To solve this the
production for ®"I"™ (see Fig, 1) is ordered to test for a
double quote as the first character of a literal string; if
one 1is found it is assumed to be the entire string and must
be followved by the terminating double guote. A double quote
in any other position of a literal string is assumed to be
the terminating delimiter of that string. A similar
convention is used to denote right bracket (]) as an output
syabol.

The self-translation of G1, giving the "object grammar"
G1-0, is shown in Pig. 2. Paragraphing has been added to
improve readability. The actual wmachine language, as
defined by the translator and accepted by the machine, would
be a coantinuous string of characters. The only significant
blank is one which follows an odd number of sharps (#). The
next section explains the meaning of #,

3.2 The Object Language

The output of the metatranslator described in Section
3.1 1is a description of a translation grammar. This output
can be interpreted by the program to be described in the
next section, and can be thought of as an “object language
for graamars"., This language contains five prefix
operators., The '6' is a binary concatenation operator; it
has the value TRUE if and only if both of the operands which
follow it are TRUE. The '/' is the binary alternation
operator, vhich has the value TRUE if either of the operands
following it are TRUE. If the first is TRUE the second is

i ']
PR RO Anster . e i ORI/ A ’ :

R/781LL#=8 1AL IR
L2ERENSD
A/8>/R81C8%/18A

ic
Cs8>R2118¢ 1C
'
1/8g»
/88"
LENL>BO>"
(K]
/88¢
/788818)
8£>>>)
t0
/88¢R1AL)
1L
S/8>¢
L/821>)
(R4
'ﬂ
te>e>s
g/82)>)
17
1S
0/8>>
L/88m>"
1T
83
te>e>>
8/88">"
(R}

10

L/L#A>A/L8B>B/8#C>C/ 88050/ 8#E>E/8#F>F/28G>G/aaH>H/82]>1/800>)
ZRg>K/8L>L/8 gMOM/ 8 aNSN/8 20>0/8 #P>P /& #Q>Q/8 ¢R>R/8 25>5/782T>T
/8BUDU/RBVOV/RaNIN/8aX>X/8Yd>Y 82>
T/Z0L/788=>8/88353/880>C/88)>)/88/>//88858/88>>>/881> 1
/888>8/88 > /R2(>(/88e>* -
78845¢/8825=/88252/880>58/8855,/888>8/88%>%
/881>1/7882>2/883>3/884>4/45>8/886>6/847>7

/888>8/889>9820>0

G1=0» THE OBRJECT VFRSION OF G1

FIGURE 2

:
‘E

3 b ™ adas
A T S S O R NN, {537 Ay g st

11

not tested, If the first is FALSE, both input and output
strings are restored to their pre-test value before testing
the second. The ':' is a unary non-terminal operator; it
has the value TRUE if the rule labeled by its operand is
TRUE. The '#!' is a unary terminal operator; it has the
value TRUE if the current character of input is the same as
the operand, in which case the input is advanced one
character. The '>' is a unary operator and always has the
value TRUB, The character following it is appended to the
end of the current output string.

3.3 The Translator Interpreter

We nov define an interpreter to execute the object code
emitted by the translator of Section 3.1. The interpreter
is presented as a set of mutually recursive functions in the
ALGOL~like language SEEDGOL-0, to be described here and in
Section 4,

SEEDGOL-0 has three types of data: strings, single
characters, and boolean values. All strings are substrings
(in fact, "tails") of either the object grammar G, or the
source input I, both of which are inputs to aay SEEDGOL-0
program, We refer to the sets of tails of G and I as
STRINGS (G) and STRINGS(I), respectively.

The built-in functions of SEEDGOL-0 are as follovs:

Picrst: STRINGS =-> CHARACTERS
FPirst (S) is the first character of the string S.

Rest: STRINGS =-> STRINGS
Rest(S) is all but the first character of S.

Output: CHARACTERS =->
Output(C) has no value, but causes the side effect
of sending C to an output device or buffer.

Equal: CHARACTERS x CHARACTERS => BOOLEANS
BEqual (C1,C2) is TRUR if and only if C1 and C2
are identical characters.

Isnulli: STRINGS (I) ~> BOOLEANS
Isnulli(S) is TROUE if and only if S is null.

The built-in operation of pairing any two expressions
is also allowed, by using parentheses. The constants TRUE
and PALSE are included in the language.

We nov give the functionality and meaning of the
interpreter definition functions, implemented in the

SEEDGOL-0 program SEED0 (shown in Fig, 3).

i

T TerT—

12

IF TESTC(REST(GP)»1P) THEN
IF ISNULLICREMAININGCREST(GP)aIP)) THEN
CTRUE» EMITCREST(GP)» IP))
ELSE CFALSE» NULL)
fLSE (FALSE, NULL)

DEFINE TESTC(RP, IP) =
* IF EQUALCFIRST(RP), "1") THEN TEST(FIND(GP, RESTC(RP))» 1IP)
ELSE IF 'EQUALCFIRSTC(RP), ™8&%) THEN
IF TESTCREST(RP)» IP) THEN
TESTC(SKIPCRESTCRP), IP)» REMAININGCREST(RP)» IP))
ELSE FALSE
ELSE IF EQUALCFIRSTCRP), "™/v) THEN
IF TESTCRESTC(RP)» IP) THEN TRUE
ELSE TEST(SKIP(RESTCRP)» IP)» IP)
ELSE IF EQUALCFIRSTCRP)» ">%) THEN TRUE
ELSE EQUALCFIRSTC(REST(RP))» FIRST(IP))}

DEFINE REMAININGC(RP, IP) =
IF EQUALCFIRSTCRP), "i1%) THEN REMAININGCFINOD(GP» REST(RP))» IP)
ELSE IF EQUALCFIRSTC(RP), "&%) THEN
REMAINING(SKIPCRESTC(RP)» IP)» REMAININGCRESTC(RP), IP))
ELSE IFP EQUALCFIRSTCRP)» "/m) THEN
1F TESTCRESYC(RP)» IP) THEN REMAININGCREST(RP), 1P)
ELSE REMAININGCSKIPCRESTCRP)» IP)» IP)
ELSE IF EQUALCFIRSTCRP)s» ">") THEN IP
ELSE REST(IP)YS

DEFINE EMITC(RP, IP) =

IF EQUALCFIRSTCRP), "1") THEN EMITC(FINDC(GP, REST(RP))» IP)
ELSE IF EQUALCFIRST(RP)» “&») THEN

CEMITCREST(RP), 1IP),

EMITCSKIPCREST(RP), IP)s» REMAININGC(RESTC(RP)» IP)))

ELSE IF EQUALCFIRSTCRP)» "/™) THEN

IF TESTC(RESTC(RP)Y» IP) THEN EMITCREST(RP)» IP)

ELSE EMITC(SKIPC(REST(RP)» IP)» IP)
ELSE IF EQUALCFIRSTC(RP), ">») THEN OUTPUT(FIRSTC(REST(RP)))
ELSE NULLS

DEFINE SKIPC(RP, IP) =
IF EQUALCFIRST(RP), "&"™) THEN SKIP(SKIPCREST(RP)» IPJ)» IP)
ELSE IF EQUALCFIRSTC(RP), "/w) THEN SKIPC(SKIP(RESTCRP)» IP), 1IP)

ELSE REST(REST(RP))S
DEFINE FIND(RP, IP) =
IF EQUALCFIRSTCRP)» FIRSTC(IP)) THEN REST(RP)
ELSE FINDCSKIPCREST(RP)Y» 1Py, 1IP)J
END
SEEDO

FIGURE 3

13

SEEDO: STRINGS (G) x STRINGS (I) => BOOLEANS
SEBDO (G,I) is TRUE if and only if the input
I is recognized by the string of prefix operators
G. As a side effect, SEEDO causes the proper
characters to be output.

Test: STRINGS(G) x STRINGS(I) => BOOLEANS
Test (RULB,INPUT) is TRUE if any left-most substring
of INPUT matched by RULE.

Remaining: STRINGS(G) x STRINGS (I) => STRINGS (I)

Remaining (RULE,INPUT) is the substring of IN2UT
remaining after the substring recognized by
RULE is removed.

Emit: STRINGS (G) x STRINGS (I) =->
Eait (RULE,INPUT) has no value, but causes output
characters to be sent to an output device or
buffer wvhile INPUT is recognized by RULE.

Skip:s STRINGS (G) x STRINGS(I) => STRINGS(G)
Skip(RULE,INPUT) is the substring of RULE
remaining after the leftmost operator and
its operands have been removed. INPUT has no
bearing on the computation, but is required
by syntax.

Find: STRINGS(G) x STRINGS(G) => STRINGS (G)
Pind (GRAMMAR,STRING) is the substring of GRAMMAR
labeled by the first character of STRING.

4. Implementing SEEDGOL-0

To implement the SEEDGOL-0 language, vwe will produce a
translation gramsar for converting SEEDGOL-0 proygrams into
intermediate code, and we will produce an interpreter for
executing the code, We will refer to this low-level
interpreter, M0, as a "machine", to avoid confusing it with
the SEEDO program, an intarpreter for object grammars.

The SEEDGOL-0 1language will be very specialized,
containing merely the constructs needed to implement the
SEEDO interpreter in Fig. 3. The following restrictions
apply to the SEEDGOL~-0 language:

- e ————— -~ -
AR P - o St PR AN BT R

14

1. All blanks are ignored. In general, a
reserved word should not be a prefix of an
identifier or another reserved word.

2. There are no declarations other than
procedure declaratioms. The only variables are
the paraseters RP and IP, vhich are strings. At
the outermost level, IP is predefined to be all of
the input st ing, and RP is predefined to be sanme
as GP, GP is a constant: the object grammar
string, a sequence of prefix operators.

3. All procedures have exactly 2 parameters.
Pairs and procedure arguments are evaluated
left-to~-right.

4, Procedures and the mainline each consist
of one expression.

S. The language has no I/0 facility other
than the built-in “oQutput™ function, vwhich is
isplementation dependent. Initialization of the
input and grasmar string storage areas is also
isplementation dependent, and is assumed to be
completed before the SBEDGOL-0 machine begins
execution.

4.1 Translating SEFDGOL-0 into Object Code

strings of SGLOG are either 1instructions, characters,

means that the following base-10 number wvwill represent

Fig., U4-A shows SGLOG (SEEDGOL-Q Grammar), a grammsar
for describing SEEDGOL-0 and for translating it into a
anesonic form of machine langquage of MO, the SEEDGOL-0
machine (to be described in the next section). The output

nuseric constants. Fig. U-B shows the same SGLOG grammar,
vith outputs represented in a form which can be more easily
interpreted by a computer program. The occurrence of "I™

instruction, while a double guote (") means that the next
character is a character constant. A "D" precedes a base-1C
numerical constant. Pig., 5-B shows SEED0-0, which is the
result of translating SBEDC (Fig. 3) via the tranmslation
grammar SGLOG (FPig. U-B), SBED(-0 is a form of the “object
code" for SEEDO on MO. A mnemonic version of SEED0O-0 is

given in Pig. 5-A.

15

PsE wj3» C(RETURNI 0}

Es"IF™ £ CIF) "THEN™ E CTHEN) “ELSE™ £ (ELSE)
Z"EQUALC"™ E "»™ E ")" [EQUAL)
ZPISNULLIC®™ E ")" [ISNULLI)

/"REST(" E ")" (REST)

/"0UTPUT(™ E ")" CLOUTPYT)

/"FIRST("™ E ™)™ C(FIRST)

/"TRUE®™ C(TRUEJ/"FALSE"™ CFALSE)Y/"NULL®
/"GP® CGPY/"RP®™ [RPY/"IP" (IP)
/CPROCN)Y 1 “(" E ", E ")" [CALL)
/¢ E "o E ")"

/QQQ s NN

]

Ds"DEFINE” I "(RP,IP)s™ E "3" PrRETURN) D
:'END'

fsl ? |
/At i

’
Se™gw £gd/"8™ CRY/%/™ /3/">" >1/"" (8]}
Le™A™ CA)/"B™ CRI/"C™ [C)/"D" (DI/"E™ CEI/"F" (FI/"G" (6]
/"H® W)
JP1% C13/%J" CJY/™K®™ CKI/Z™L"™ pL)/"M™ [M)/"N" (N)/%0" (O)
/"P® [P)
/"Q" LQI/"R™ CRI/™S™ CSI/"T™ ¢TI/"U™ (UI/"V" [VI/"W" (W)
7%%" x)
7%Y" tyYd/z™2" 2}
]
END

T P T T Y T

E SGLOG, THE SEEDGNL=0 TRANSLATION GRAMMAR
' (MNEMONIC VERSION)

FIGURE 4a=A

Pef *3" (113
E="1r" £ (18

/"TRUE® [D1)/"FALSE"™ (DO)/"NULL"

10
 »

16

¥

THEN® E (19) “ELSE™ E (110)°
/PEQUALL™ € "™ E ")" 117
ZISNULLIC™ E ")" (16)
JRESTCL™ E ") (14)
/"0UTPUTC(™ E ")" [19)
/PIRST(™ E ™))" (13)

/"QP"® CI103/"RP™ [Y13/"IP" (12)
/81111 1 ™™ g "™ E ")" [112)
,"Q t n.n t .,I

’..'

)
O="DEFINE™ I "(RP,IP)="
/"END"

]
Isl

/L t")

]
Sa"g»
Le"pA"

/K"

/"0"

7%y"

tw'),w‘n
t"a)/"e”
("HI/ 1"
t"01/"p"
tUVI/s N

' VAT A
t"s3/"c"
(e & FAN A
t"PI/"C"
(Sl D VAS

€ "3" 1131 0

t'/)/n,u
tﬂc,,"nﬂ
t.J,/'nﬂ
("Q’/"R“
tnx),ﬂya

tﬂ,,/n‘ﬂ
t"oi/"e"
tﬂ“,/ﬂLﬂ
("R’/'S”
t v/

IS DY
["E]/”F”
t"L]/""”
[”S]/"T'
t"2)

SGLOG» THE SEEDGOL=0 TRANSLATION GRAMMAR
(MACHINE VFRSION)

FIGURE 4=B

("F1/%"G" ("G)
("MI/"N" ["N)
t"TI/MU "V

17
001 10 010! PROCN 7 € S T . (14 RgsTY 1P CALL
011 vp 0209 IF PROCN R € " A 1 N Tl N
021 70 030! 6 6P . REST 1P CALL ISNULL 1F 1 PROCN
03! Y0 040¢ € “ 1 ¢ 6P REST 1P CALL THEN
> O0al Y0 0508 - 0 - ELSE THEN 0 . ELSE RETURN { € (]
3 05! Tg 0603 ! RP FIRSTY t EQUAL IF PROCN 1 1 € S
4 061 TN 070t 7 PROCN F 1 N 0 6P RP
071 YO 0808 REST caLtL 1P calL THEN RP FIRSTY ¢ EQUAL 1F
081 10 090t PROCN R] € s T RP RESY 1P CALL
091 10 1003 ir PROCN { 3 S PROCN S K
‘ 101 7o 1109 1 P RP REST 1P CALL PROCN (] €
1 111 70 120¢ u A | N 1 N [RP REST
: 121 1o 130 i CALL CALL THEN 0 ELSE THEN RP FIRST /
131 10 1801 EQUAL IF PROCN € S RP REST
141 Y0 150¢ P caLL 1f STy THEN PROCN 2 € S b {
§151 vo 160, PROCN S K 1 P RP REST 1P
161 10 1708 CALL (. catl ELSE THEN RP FIRSY > EQUaL 1F
171 7o 1808 1 THEN RP REST FIRSY IP FIRST EQuAL ELSE ELSE
181 10 190¢ ELSE ELSE RETURN R € (] A 1 N 1
191 10 200% N (] RP FIRSY t EQUAL If PROCA]
201 Y0 210t € M A 1 N | N 6 PROCN
211 1o 220! F 1 N 0 (14 Rp REST CALL 1P
221 10 230% CALL THEN RP FIRSTY ¢ EQuAL 1F PROCN R €
231 Y0 240% M A 1 N 1 N G PROCN]
; 281 10 250 K 1 P RP REST {4 CALL PROCAN R
3 2591 YO 260t £ M A 1 N 1 N 6 RP
‘ 263 vp 2701 RESY 1P CALL CALL THEN RP FIRST / EQUAL 1F
271 10 280! PROCN T € s Y RP REST 1P CALL
281 10 290t 1F PROCN R € M A 1 N. | N
291 10 300t (1 RP REST] CALL THEN PROCN R £ 1
301 vo 310% M A 1 N 1 N 6 PROCA 3
311 v0 320¢ K i P RP REST 1P caLL 1® CALL
321 0 330¢ ELSE THEN RP FIRST > EQUAL iF {4 THEN 1P
331 Y0 3408 REST ELSE ELSE ELSE ELSE RETURN €) 1 b {
381 10 350¢ RP FIRST ' EoVAL {3 PROCA € v 1
351 TN 360¢ b { PROCN F 1 N) 6P RP
361 Y0 3708 REST CALL 1P CALL THEN RP FIRSY ¢ EsUAL IF
371 710 3801 PROCN € M 1 et R® REST 1P CALL I
381 TN 3903 PROCN € M 1 b { PROCN (] X 1 i3
301 70 4008 P RP REST 1P CALL PROCN R 3 u
801 T0 410t A 1 N 1 N 6 RP REST 1P
411 Y0 4201 CALL CALL THEN RP FIRSY /7 ECUAL IF PROCA v
423 10 430¢ € s T RE REST 1P CALL IF PROCN |
431 70 640 € L] 1 | RP RESTY 4 CALL THEN
483 Y0 4501 PROCN £ L) 1 PROCN (] 3 1 |
4%1 10 460! P RP RESTY 1P CALL {4 CALL ELSE THEN |
461 TN 4708 RP FIRST > EOUAL 1F RP RESY FIRST OULTHYT THEN | ;
471 10 480t ELSE ELSE ELSE ELSE RETURN (] X 1 (] \
481 10 4901 RP FIRST ¢ EQuAL IF PROCN S K ! P 13
491 TN 8001 PROCN S K 1 4 RP RESY 1P
$01 70 S101 CALL] CALL THEN RP FIRSY / EaouAL {F PROCN
$11 Y0 s20¢ o X 1 P PROCN] K 1 []
$21 10 530! , RP RESY 1P CALL 1P CALL THEN RP REST
$31 10 %401 REST ELSE ELSE RETURN F 1 N 0 RP
Sal 1o 550t FIRSY 1P FIRST EGUAL ir Ro RESY THEN PROCA F §ﬁ
$81 10 9601 1 N 0 PROCN (] X ! ’ |
861 10 8701 RP REST 1P CALL 1] CALL ELSE RETURN i
v 4 !
SEED0=0» THE MO OBJECT cODE VERSION OF SEEDO
1
(MNEMONIC VERSION) !
FIGURE S5-=aA

Y e

18

111 Y E"S T 101412112 0!11"”!'""'#'“"!”"'6" JOI412112161801 111 E"M"]"
T" 10141211219001107900110F43" Y E"S"T" I113 87 B8 11 T ENSHT™ [1{"F I"N"
0" 10111411212112191113 Q171811 T E"S"T™ 1114121121811 T E"S T [11"S"
KPI"pP® I1IQJ2112141 "R"ETM ATION®I"N"G" 1114121121121900110191113%/171811
(T E"S T™ I114121127801191 Y E"S®T™ 11 S"K"I"P" 1114121121211211019]
113%>17180119111473121317110110140110113"R7E"M"AI"N"I"N"G" 1113"1]17181}
{1 RREnNRAR I N oN"gn pqqnpegoNep® JOI114112121121914 1371718111 R ENMPA"
JONRION®G® JL1 S K"I"P" I§J4I2712111"RENMTATI"NT"I"N"G" I1164121121121911
I3%/7171811 1T E"S T (11412112181 1"ROETMNARI N I*N"G" [11412]11219111"R"
ERMR AR IONRIPN"G® T11"S"K"I"P™ 711141211212112110191113">17181219121411011}
OI10T10T13%E M I"T" QI3 e 71811 E"MTI"T" T11"F"I"N"D" 1011141121211219
T4 IPIGI1I%ENM I T 11141211211 E M INT" TL1"S K I"P" [114121121I11"R
CETMTATINTIYNTG" 111012112112191113%/1718111"T E"S T 111412]1218111"E"
Mooy T118]211219F11%EPMTI®T™ T11"S"K"I"P" 111412112127112110]191113">17]
81110131519110710140730713%S K 1"P® J113"QI718111"S K I"P" JyinS K "P"

1114127121211 2191113"/1718 111 S K "I"P® [1{"S"K"I"P" [11412112]12112191114
14710110113 F I "N"D" 1173121317181 I41I911 1 F I"N"D" I11"S"K"I"P" 11]412]
1212112110113

SEEDO=0» THE MO 0BJECT CODE VERSION OF SEEDO
(MACHINE VERSION)

FIGURE 5-8

19

0: EReRERE | 1500 bytes (8 bits/byte)

(output string) (buffer) cotional
LENO [] 1word (16 bits/word)

(no. of characters in O)

Hm e R _1 900 bytes
(object grammar string) (fixed)

TR e RS LI [] 1500 bytes
(source input string) (fixed)
- LEN I (:: Iword
(no. of characters in {)

P: [e[refonfiofne] forfiefre] | 2500 words
(parameter stack) {stack)

e R REEE B 40 words
(evaluation stack) (stack)

1Ll 1 LIT 1l 1 700 bytes
(machine code) (fixed)

rc [rRect (]
(program counter) (word) (word) | scratch
isters
reg2 [] i

M@, The SEEDGOL-@ Machine
(with typical buffer sizes shown)

Fig. 6

20
orcCone MNEMONIC DESCRIPTION

CANY DATA ITEM) CITFM) PUSH THE ITEM,

0 Gr (STRING) PUSH POINTER TO FIRSY CHARACTER IN G,
1 RP (STRING) PUSH RP PARAMETER (STORED AT THE
TOP OF THE P STaACK),
2 1P " (STRING) PuSH 1P PARAMETER (STORED NEXTY TO
THE TOP OF THE P STACK),
3 FIRSY (STRING => CHAR) REPLACE TOP OF E WITH THE
CHARACTER T0O WHICH IT POINTS,
a RESY CSTRING => STRING) INCREMENT PTR AT TOP OF E,
S OUTPUY (CHAR =>) POP TOP OF E TO OUTPUT,
& ISNULL! CSTRINGCI) => BOOLEAN) REPLACE YOP OF E WITH
TRUE IF IT POINTS TO END OF 1» ELSE FALSE.
? EQUAL CITEM x ITEM > BOOLEAN) REPLACE THE TOP 2
ITEMS OF E WITH TRUE IF EQUAL» ELSE FALSE.
8 ir (ITegM «>) POP E, IF FALSE» SET P¢c YO LOC OF
NEXT MATCHING "THEN" + {,
) THEN €) SKIP 7O NEXT MATCHING "ELSE"™ ¢ 1,
10 ELSE C) NO OPERATION3 SERVES AS MARKER ONLY,.
11 PROCN CADDR) COMPARE THE CHARACTERS IN M AT PC |

WITH ALL STRINGS FOLLOWING RETURN INSTR"S
ANYWHERE IN M, (BLANK IS ALWAYS THE FINAL
CHARACTER,) PUSH THE LOCATION IMMEDIATELY |
AFTER THE MATCHING STRING (THIS |
1S THE CALLED ADDRESS),

12 CALL CADDR x STRING X STRING =>) PUSH PC (RETURN
ADDRESS) ONTO P, THEN PUSH POP(E) ONTO P
TWICE» THEREBY PASSING THE IP AND RP
PARAMETERSs THEN SET PC = POPCE), THE CALLED
ADORESS ¢(COMPUTED AND STACKED BY AN EARLIER
PROCN INSTRUCTION),

13 RETURN ‘¢) POP P TWICE. IF EMPTY» SET HWALT
CONDITION» ELSE SET PC = POP(P)» RETURNING.

ALL PUSHES AND POPS REFER TN THE E STACK, EXCEPT AS NOTED.

CONSTANT DATA ITEMS ARE DISTINGUISHABLE FROM INSTRUCTIONS.
THE SET "ITEM"™ IS THE UNION OF CHAR, STRING» AND BOOLEAN.

MO MACHINE INSTRUCTIONS

FIGURE 7

EE—— o

iy

T

21

4.2 The SEEDGOL-0 Machine

A diagram of the SEEDGOL-? machine, M0, is given in
Fig. 6. MO0 contains two string storage areas--one for the
object gramsar input (G), and one for the input string to be
recognized and translated (I). Output is presented serially
to a device or to a storage buffer. There is an evaluation
stack, E, vhich holds all operands. The wmachine code
contains operators which affect the contents of E. Since
SEEDGOL-0 allows recursion, there is a parameter stack, P,
which contains, for each call of a procedure, two parameters
(called RP and IP), and a return address. The lowest level
of P corresponds to the mainline, for which there is no
return address., The w®machine code 1is stored in an area
called M, with PC pointing to the next instruction to be
executed. M contains both instructions and constant data,
The contents of the areas G, I, and M do not change during
execution; the contents of the stacks E, P, and 0, as well
as the temporary registers REGY and REG2 and the program
counter PC, do ordinarily change during execution.

The only strings vhich can be referred to by variables
in a SEEDGOL-0 program are tails of two fixed strings: the
grammar (G) and the inpu* (I). As a result, string
variables can be represented by pointers to locatioms in G
or I. The string represented by a pointer consists of all
characters in G or I beginning with the character pointed
to.

In the machine code storage area ¥, constants may have
any representation which is easily distinguished from the
instructions. As a matter of convenience, the
implementation in this report uses 8-bit representations of
instructions and constants, with the high-order bit set to 0
for constants and 1 for instructions. The seven remaining
bits are sufficient to represent the 14 instruction codes
and 34 constants which can be produced by SGL0OG. 1Included
among the constants are the booleans FPALSE (represented here
by 0), TRUE (1), and alphabetic and other characters
(represented by ASCII or some other 7-bit code). The
representation of constants is specified by the graammar
SGLOG (Fig. 4-B)., A description of the wmachine code
operators is given in Fig. 7. ALl unary and binacy
operators expect their operands on E. Most instructions are
quite sismple. Howevet, 1IF, THEN, ELSE, PROCN, CALL, and
RETURN are interesting enough to warrant examples.

We first describe an example ot an 1F-THEN-ELSE
expression, Referring to the grammar SGLOG in Fig. 4-B,
one can see that the IF expression

IF (exp1) THEN (exp2) ELSE (exp3)
will be translated into
(exp1*) IP (exp2¥%) THEN (exp3*) ELSE,

vhere the starred expressions are the machine code versions
of the source expressions, and capitalized wvords in the
second line denote machine instructions, Normally, (expi1®)
causes a single boolean value to be pushed onto the
evaluation stack, E. (A pathological SEEDGOL-0 program
could have NULL or an ordered pair as (expl), thereby
causing zero or tvwo parameters to be pushed on E. This
vould cause the machine to fail.) The IF operator pops this
value off E, and transfers program control to the next
matching THEN ¢+ 1 if the value is FALSE. Otherwise,
execution continues at the next instruction (i.e., exp2* is
executed). The "then" part of the if expression is exp2s,
delimited by the IF and THEN instructions. The "else" part
of the if expression is exp3*, delimited by THEN and ELSE.
When a THEN is executed, the program counter is
unconditionally advanced to the next matching ELSE + 1, and
an ELSE, vhen executed, is a no-op. ELSE is merely a amarker
used by the THEN instruction.

We now consider the mechanics of procedure calls in MO.
Suppose that the SEEDGOL-0 source specifies the iavocation
of the procedure JUNK, as followus:

JUNK (exp1, exp2) .
This will be translated into
PROCN J U N K (exp1*) (exp2%) CALL .

When the PROCN instruction is executed, the entire machine
code program is searched for an occurrence of a RETURN
instruction, followed by the characters J U N K . (Since
all procedures must follow other procedures or the mainline,
and all procedures have the characters of their name first,
ve see that the only place to look for procedure names as
destinations is immediately following any RETURN
instruction.) PROCN thus determines the called address, and
pushes it on E, Next, two expressions, the actual
parameters, cause tvwo values to be pushed on E. CALL then
pushes three items onto P: the contents of PC (i.e. the
return address), and the actual values of the two parameters
(these values are popped from F; their . order on P is
reversed)., Finally, CALL transfers control to the called
procedure by popping E once more and storing this value (the
called address) in PC, At the end of a procedure, a RETURN
instruction is executed, It pops the top two parameters and

L L et b i Tl L g s S o sk S s e

23

the return address from P, transferring control to the
return address.

B5700 Extended ALGOL and PDP-11 assembly language
descriptions. of M0 are given in Appendices A and B.

4.3 1Initial Bootstrapping

To create a simple translator-writing system, the user
aust:

1. Transcribe G1-0 (Pig. 2), the "object™
grammar grammar into machine readable
form.

2. Transcribe SEEDO-O0 (Fig. 5-B), the
object code for SEED0 on NO, into
machine readable form.

3. Implement MO itself (Appendices A and B
are exanmples) .,

4, Implement a wmeans for getting prefix
Polish "object" grammars, No
instructions, and input strings into the
storage areas for M0, and a means to
retrieve the output string after
translation.

Once these four steps are complete, a grammar submitted
as input will be translated into its object form, and this
object grammar can replace G1-0 to give a new translator.
This process is represented by the second diagram in Section
1. (One can also describe such a series of translations in
a functional notation similar to GENESIS [3], a languayge
used to describe sequences of program runs.)

5. An Improved Interpreter

It wvas originally hoped that the SEEDO progranm,
although clearly inefficient, would still be able to
translate grammars in a reasonable amount of time, It was
to be used only for a few simple translations before being
replaced by a more efficient translator. However, we
estimate that SEEDO running on the PDP-11 asseably language
version of MO will take 6 1/2 hours to translate G1 to G1=0.
Hand translaticn would be faster. The reason that SEEDO and
M0 have been presented at all is that they provide a
conceptually simple description of a basic translator
vriting system. We shall see that a practical THS can be
obtained by extending this simple one.

; 24

5.1 An Analysis of SEEDO Execution Time

A casual study of the SEED0 program (Fig. 3) shows
great ipnefficiencies. The primary observation is that once
Test (RP,IP) is computed, not only is a prefix of IP accepted
or rejected, but the length of the prefix is known, and the
out put syasbols encountered in RP during the recognition of
IP are also known, If wve could wmake this information
available to the mainline program on the outermost call of
TEST, We could reduce computation time by a factor of 3,
since Remaining and Emit, both as time-consuming as Test,
vould not need to be invoked. (Note that Emit would then
become totally unnecessary.)

More significantly, we could eliminate the call of
Remaining from within Test., This occurs in the following
context within Test:

Test(RP,IP) = ...
ese IF Equal (First (RP) ,"E&") THEN
Test (Skip (Rest (RP) ,IP), Remaining (Rest (RP), IP))
ELSE FALSE

Suppose the G and I strings are as follows:
ees & (A) (B) ose e+ sdaaaaaabbbbbbbb...
G I

(A) and (B) are strings which comprise the two operands of
6. Suppose RP begins with the &. Then Rest (RP) begins at
the head of the substring (A), while Skip(Rest(RP), 1IP)
begins at the head of the substring (B). #e first use
Rest (RP) to recognize a prefix of IP (the a's above, say),
and if successful, we use Skip(Rest(RP), IP) to recognize
part of the remainder of IP (represented by the b's above).
Remaining (Rest (RP) ,IP) calculates this remainder; we do not
retain the information about the length of the prefix of 1IP
(the a's above) recognized during the call of
Test (Rest (RP) ,IP).

Let n be the level of recursive calls of Test with
First(RP) = "g" (i.e. n equals the depth of recursion in
Test, minus those calls which do not have First (RP) = "gw),
Since Remaining can call Test (if Picst (RP) = "/") with
about the same likelihood that Test can call Remaining, let
us assume that all Remaining and Test calls made at the same
n~level require the same amount of time, T (n-1). Then we
estimate that:

T(n) = 3T (n=-1), i.e. T(n) = 3*¢n, if T(D) = 1.

|
4
1

T U L R LIy R T S PR vT W G Py (e apare

25

But if Test's call to Remaining were removed, then:
T(n) = 2T(n=1), i.e. T(n) = 2%%*pn, if T(0) = 1.

Even though. the majority of calls of Test and Remaining
would not take advantage of this savings, it 1is still
significant, because it grows exponentially with the depth
of recursion, which can get quite large (e.g. about 200 for
G1, with n approaching 30 or so), suggesting that a
substantial speedup is possible. A new program could carry
out a large part of the computation done by SEEDO in roughly
(2/3)**n the time.

5.2 SEED1!, A New Interpreter

We nov present a new Polish grammar interpreter, SEED1,
which is more efficient than SEEDO. First, there are
several new primitive functions needed:

Save : BOOLEANS x STRINGS(I) x STRINGS(O) =>
BOOLEANS x STRINGS(I) x STRINGS (0)
Save is the identity function, but it causes a
triple to be stored in a special teamporary
location local to the procedure beiny executed.
Btemp : BOOLEANS
ITtemp STRINGS (I)
Otemp : STRINGS (0)
These three constants recover the teamporary values
stored by Save.

® oo 6o

Boolean : BOOLFANS x STRINGS(I) x STRINGS(O) => BOOLEANS
This function merely extracts the boolean component of
a triple,

The following built-in function has been wmodified:

Output : STRINGS(0O) x CHARACTERS ~-> STRINGS (O)
Output (S,C) appends C to S and returns the new S.

The SEED1 program (Fig. 8) is written in the STEDGOL-1
language, which 1is an extension of SEEDGOL-Q and contains
the new primitive functions described ia this section, as
vell as CASE expressions and non-empty tuples of arbitrary
length., 1In the new interpreter, SEED1, we no longer find
the procedutes Resaining or Emit., Skip and Find are just as
in SEEDO, except that a third parameter, which is not used
by either function, is required by the syntdax of the
language.

e e O L N e v Wy o el b S b 5,

26

IF BNOLEANCSAVECTESTCRESTCGP)» IP, OP))) THEN
Ir ISNULLICITEMP) THeN (TRUps OTEMP)
ELSE CFALSE, NuLL)

ELSE ¢PALSE,» NULL)

3
DEFINE TEST(RP, IP, QOP) =
CASE FIRST(RP) OF
wy® ¢ TESTCFINDC(GP, REST(RP)Y» OP)» IP» OP)
wg® 3 IF BOOLEANCSAVECTESTC(REST(RP), IP, OP))) THEN
IF BONLEANCSAVECTESTC(SKIPC(REST(RP)»IP»0P)» ITEMP» OTEMP)))
THEN CBTFMP, ITFMP, OTEMP)
ELSE C(FALSE, 1P, OP)
ELSE C(FALSE» IP» OP)
wyn 3 IF BOOLEANCSAVECTESTC(REST(RP)Y» IP, 0OP)))
THEN (BTEMP, ITEMP, OTEMP)
ELSE TEST(SKIPC(REST(RP)» IP» OP)» IP, QP)
ws® ¢ (TRUE» IP, QUTPUT(OP» FIRST(REST(RP))))
ng® 1 IF EQUALCFIRST(REST(RP))» FIRST(IP))
THEN (TRUE» RESTCIP)» OP)
ELSE C(FALSE» P, 0OP)
ENDCASE}

DEFINE SKIP(RP, IP, CP) =
IF EQUALCFIRST(RP), "8&") THFN SKIP(SKIP(REST(RP), 1P, OP)» IP, OP)

ELSE IF EQUALCFIRSTCRP), "/v) THEN SKIP(SKIP(REST(RP)»IP»0OP)Y»IP,0P)
ELSE REST(REST(RP))}

NDEFINE FINDCRP, IP, 0OP) =
IF EQUALCFIRST(RP), FIRST(IP)) ThHEN REST(RP)

ELSE FIND(SKIPC(RESTC(RP), IP, OP)» 1P, OP);
END

SEED1» THE NEW GRAMMAR INTERPRETER» IN SEEDGOL=1

FIGHRE 8

A G AN R o s iev—s 0.t e - " ——

27

The functionality of SFED1 and its procedure Test are
as follows:

SEED1 H STRINGS (G) x STRINGS (I) => BOOLEANS x
STRINGS (0)
SEED1(G,I) equals (TRUE, 0) if and only if the }
input I is recognized by the object grammar G, in i
vhich case 0 is the output string. Otherwise, 5
SEED1(G, I) equals (FALSE, NULL).

BOOLEANS x STRINGS(I) x STRINGS (0)
Test(R, I, O0) returns (B, I', 0'), where B is TRUE
if and only if a prefix of I is recognized by R,
in which case I' is the tail of I remaining after
recognition by R, and 0' is the concatenation of)
with the output characters encountered during
recognition of I by R.

1

|

Test : STRINGS(G) x STRINGS(I) x STRINGS (0) -> 11
E

i

|

6. Implementing SEEDGOL-1

SEEDGOL-1 has restrictions similar to those of
SEEDGOL-0:

1. As in SEEDGOL-0, all blanks are ignored,
and no reserved word should be a prefix
of an identifier or another reserved
word.

2., There are no declarations other than f
procedure declarations, The only
variables are the parameters RP, IP, and
OP (strings), and the local temporary
variables Btemp (boolean), Itemp, and
Otesp (strings).

3. Procedures have exactly 3 parameters.
Tuple elements and procedure arguments
are evaluated left-to-right,

4, Procedures and mainline consist of a
single expression.

S. The language has no 1I/0 facility
vhatsoever. The user is expected to
initialize the input and grammar
strings, and retrieve the output string
from its buffer,

6.1 Translating SEEDGOL~1 to Object Code

The translation of a SEEDGOL-1 program into object code
for the SEEDGOL-1 machine, N1, can be effected by the

i b ey TR e ———— e —

28

translation gramsar SGL1G, shown in Figs, 9-A and 9-B.
Pig. 10-B shows SEED1-0, the result of translating SEED1
(Pige 8) via SGL1G, SBEED1-0, vhen converted to binary
form, implements SEED1 on M1. Fig. 10-A gives a mnemonic
representatiaon of SEED1-0.

6.2 M1, the SEEDGOL-1 Machine

The SEEDGOL-1 machine, M1, requires exactly the same
storage areas and registers as the SEEDGOL-9D machine, MO
(PFig. 6), with the exception that the output buffer is no
longer optional, but required, because the ability to reset
the output pointer is needed. The main differences batween
the two wmachines are in the instruction set, Three
instructions, OUTPUT, CALL, and RETURN, have been changed
slightly in meaning, while PARM replaces IP and RP and
handles the parameter OP and the local variables Btenmp,
Itemp, and Otemp as well. The four operators CASE, TEST,
ENDTST, and ENDCAS implement both case and if-then-else
expressions. POP is a new opcode, used twice by the
"BOOLEBAN" function (see Fig. 9-A) The new opcodes are
sumparized in Pig. 11, ALGOL and PDP-11 assembly language
programs to implement N1 are shown in Appendices C and D.

The case expression operators are worthy of special
coament. Suppose a SEEDGOL-1 program contains

CASE (exp) OF

(exp1) : (expA)

(exp2) : (expB)

(exp3) : (expC)
ENDCASE .

Then the object program would read:

CASE (exp(*) (expl*) CASTST (expA*) ENDTSI
: (exp2%#) CASTST (expB¥) ENDTST
(exp3®) CASTST (expC*) ENDTST

ENDCAS .

The CASE instruction is a no-op used merely as a
bracket ing symbol. After exp0* and expl1* are ex:acuted, two
values have been pushed on E. CASTST compares them, popping
both if they are equal, and only the top (the value of
exp1®) if they are not. Then, if they were equal, execution
continues at CASTST ¢ 1; otherwise execution continues at
the next matching ENDTST ¢ 1., (Here, matching is deterained
by counting TEST's and ENDTST's.) When an ENDIST is
executed, the program counter is set to the next wmatching
ENDCAS (vwith matching determined by counting CASE's and
PNDCAS's).

<
Y . i

e e S

—]
bt o ul

R o ol Adeatho g s b b

R AT VNI © e gy e i ea T g T apvow e

29

PsE "3" CRETURN] 03}
E=s"CASE™ (CASE) E "OF" f

/UIF" CCASE) E "THEN"™ [TRUE TEST) E) "ELSE" [FALSE TEST) E

CENDTST ENDCAS)

JREQUALC™ E "s"™ € ")" TEQUAL]

ZTISNULLIC® E ")" [ISNpLLI)

/"RESTC(™ € ")" (REST)

/"OUTPUT(™ € "," E ")" COUTPUT]

/PFPIRST(™ E ")" [FIRST)

/WSAVE(™ E ")" [SAVE)

/"BOOLEAN(C®™ E ")" (POP POP)

/PBYEMP® CPARM $)

/"1TEMP" [PARM 4)

/"OTEMP™ (PARM 3)

/®TRUE™ C(TRUEJ/"FALSE"™ LFALSE)/"NULL"

/%GP"™ LGPI/"RP®™ [PARM 0)/"IP%" [PARM {)/"0P" (PARM 2]
/"C" E A

/QQN s [X X]

/LPROCN] 1 "(™ E "," E "»" E)" [CALL]

As®)n
/"™ E A
3
Fe"ENDCASE™ CENDCAS)
JE "1® CTEST) E CENDTSY) F

)
Os™DEFINE™ I "CRP,1P,0P)=" E "j3" [RETURN) D
/%END"
)
el ¢
/At)

)
Sa®™gm cg)/%8" CRI/"/" L7177 (>1/"8" (2]}
Le"A® CAJ/"B"™ [RI/"C" [C)Y/"N"™ (OI/"E™ (EY/"F" (FI/"G" (G)
/"H" H)
%1% L13/7%J" CJI/"K™ [KI/Z®™L" CLI/Z"M"™ ([MI/"N" [N)/"0" (01
/%"P® P)
/0% CQY/"R™ [RI/™S™ (SI/"T™ pTI/ZTUT CUY/ZTVT CVI/ZTW" (W)
/7"%X» ex)
2%Y® tyl/n2” t2)
3 v
END

SGL1G» THE SEEDGNL=1 TRANSLATION GRAMMAR
CMNEMONIC VERSION)

FIGURE 9=A .

5

30

Pel *3" [114) D)
Es™CASE" (18) E “Or" F
/%"1F" C18) E "THEN"™ (D119) € r110) "ELSE" (DOIQ] € CI1101111
JPEQUALC®™ E "o E "™)" [1I7)
/ZRISNULLIC® E ")" (16)
/RESTC(" E ") [1})
/P0UTPUTC™ E ", E "™)" (14)
/PFIRST(™ E ")» [12)
/"SAVEC(" E ")" (119])
/"BOOLEANC™ E ")" (1518)
/¥BTEMP™ (11099
/UITEMP™ (1104}
/"OTYEMP™ (1103}
/"TRUE" CD11/%"FALSE"™ [DOJ/"NULL"
/"GP" CIO0Y/"RP®™ [11003/"IP" [11011/%"0P" (11D2)
/"C" E A
,”'W s L A X}

ZEI12Y T Y e Y BN E Mt

As®)»
/%™ E A

)

Fs"ENDCASE"™ (111)

JE "1* (19) E t110) F
)

De"DEFINE™ I “(RP,IP,0P)s™ E "™ [134) D
-/"END"
’

IsL
/v t*)

)

Sa™i® e I)/"8" MRYI/N/™ LN/Y/"" ("O1/"s™ ("))

Le®A™ C"AY/"R™ ("RI/"C"™ ("CY/"D" ("DI/™E™ (" E)/"F" (“F1/"G" ["G)
VA LI L5 Vaed N a8 & AL LN VB VAL AN 4l 8 VAL S 4[5 VAL LN &LD AL LN &L b
,'000 tnﬂ,,ﬂpw t"P]/"G" t«o,,nnn ("R]/”S" ["S]/"T" (“T]/"U" [wu,
7V" LUVI/ZTHT LW/ X XD /Y LYY/ 2T (2)

)
END
SGL1G» THE SEEDGOL™1 TRANSLATION GRAMMAR
CMACHINE VERSION)

FIGURE 9°B

31

1

4
avno3
N
0

1v2

I

4s31
1S10N3
wivd

iSy14
SVYION3
0
vnd3
)

WYV d

|

i
WYvd
wivd
38V)
0

0
1831
Ty
1
3svd
wWivd
3Sv?
e

4 .
1Syld
SVION3I
0

3sv?
WYvd

wivd

d
NJ0¥d
iSyld
1
nivd

[

A

I

1vd
1S3y

d

0
1S10ON3
1SLON3
1Syld
1S10ON3
1

nivd

d
NJOYHd
1831
1S3y
1831
1831
1831
ﬂ .
[

%
1831
183¥
1831
nivd
NI0U¥d
0
1S40N3
4S10N3
1834
183¥

v
1831
4

1831
NYvd

wnoe3

wYvd
SVION3

1Ndin0
1831
1Iv)

4831

O ON O

v=01 34N914

(NDISH3A JINOW3NW)
1033 ¥04 3000 423r60 TW 3mud “U=1033S

NYNL3Y SVIAN3 L1S1ON3 1v) rd
[nNyvd 1 nyvd 1S3y 0
| S NJONd a N
0 dS1ON3 1S3 0 wWYvd 1831
WYVd iSyld 0 WYVd 3svI
NdNLl3y¥ SVION3 J1S1ON3 SVYION3 LSION3 1S3d
0 1S1ON3 V) ' wWYvd 4
S nyvd 1S3y 0 NYVd
NJ0¥d o I] S
/ 1Syl 4 0 nivd 3Svd 1831
nYvd 1 nivd TIv) e ngvd
navd d 1 A S
bl S NJOYNd 1831 1 Ivno3
3svd d 1 b S
LlSION3 2 nYvd S wHvd o
NHVd 183y 1 NYVd 1 1831
nyvd syl 1S3y 0 wWHvd 3sv)
1syl4 1S3y 0 nYvd 4 nYvd
< LAS1ON3 SVION3 1SIGN3 V) 2
4 nyvd 1 WYvVd 1S3y 0
x S NIONd i S
0 1S10ON3 ¢ nYvd v nyvd
d0d d0d 3AvS 1v) e nYyvd
WYVYd d S 3 i
LS1ON3 SVION3 L1SJION3 2 nYvd S
1SLAON3 SVIAN3 1S1a0N3 2 WHVd 1
1S10ON3 € nNivd] nYvd S
d0d 3AvS v £ wivd L]
S nyvd 1S3y 0 nyvd
N0 ¥d i} S 3 i
d0d d0d 3AYS M) 4 WYvd
nivd 4 S 3 d
1SL1AN3 TIVI e nYvd 1 nyvd
0 wyvd d9 Q N
i S 3 4 NI0¥d 1S34
3SvI 4 S 3 i
4831 0 1S1ON3 SVIAN3 ASION3I O
wWYvd i 1834 1 TINNST @
d0d d0d 3AVYS Mv) 4 nYvd
4 S 3 d NJQ¥a

nyvd
nYvd
1

1

a
idS3y
nYyvd
d
NJQud
(6]

1
NJO¥d
3
nNENL3Y
1531
4

4S31
3

nyvd
nyvd
3

S

1
NJO¥d
nyvd
nYyvd
nYyvd
nivd
d
uuocn
NJOUYd
1My
) {

]
NYN43Y
4831
nyvd
1§
asvd

1000
106€
109¢
104€
109¢
$0GE
100€
10€¢E
s$02¢
101¢
100¢€
$06¢2
$108¢
1042
1092
1062
1002
10€e
1022
t01¢
1002
1061
1081
1041
1091
1061
100l
t10¢!l
1021
101¢
1001
1060
1080
1020
1090
1060
$000
3100
1020
1010

0l
01
04
od
0l
ud
Gl
04
04
0l
04
04
vl
vl
01
04
04
04
04
0l
ol
04
ol
ol
ol
04
0l
0l
ud
ol
0l
0l
04
0l
0l
0l
0l
0l
04
0l

16¢€
11413
14¢
19¢
16€
1343
TEE
12¢
11E
10¢€
162
14 1
142
192
1s2
|4 14
1ee
12e
1114
102
1ol
18l
1l
198
Ist
13 2
1€l
12t
123
‘tot
160
180
140
190
1s0
iv0
160
120
110
100

s ke TR AR . 1

b

t 0112 T E"S"T" 101311011102 !13!15151501191811 41601190111031100019p01101
! 10001900110111114" z's T® 1811001271101 12 TRERSwYN gionpFnIwNmne [O]]
001311021131101!lozlt3110'l1013112”7'€'S“T' 1100131101240211311515150119
JO1127T ENS"T" p127SmK y"p® 11n0131101711021131104811p31131151515011911051
104110321000190011D3110211011111000190011011102110111210"/1918132 T E"S"
T 140013110111021131151515011011051100110311000I9112"T"E"S"T" [12"S"K"]
"p® 1400131101 110211311011102713110111110*>19p1110811021100131214140"#19
102100131211011217011001110113110211000190011011102110111 11011113478 K"}
"p® 1811001278 170110112S K I"p" [127"S K ["p» [100I31101010211311011102]
13510005918 110012"/17D119112"S K"I"P" 112"S"K"I"P" 1100713110111D21131101
1102113110p019110013 13110111110 111114»F"I"Nwp» 1811001211011217011911001
31100019112 "F I"N"D™ 112"S"K"I"P" I11001311D1110211311011302113110111118

SEED1=0» THE M1 OBJECT CODE FOR SEEDY
(MACHINE VERSION)

FIGURE 10-8

i1 ADI

Fr,,u\ »g ,‘ " 2 & e
£ :) f‘ . ‘A.i}f
33 ¥ Saer i | By JF il Sead “‘)A—E COPY
OPCODE MNEMONIC DESCRIPTION

CANY CHARACTER) (CHaAR) PUSH THE OPCGDE» 4o CHARACTER.

0 GP. (STRING) PUSH POINTER TO FIRST CHARACTER IN G,
1 PARM CITEM) PUSH THE N=TH PARAMETER, WHERE N
1S IN THE NEXT INSTRUCTICN LOC CADVANCE PC),
2 FIRST (STRING => CHAR) REPLACE TOP OF £ wlTH THE
CHARACTER TO WHICH IT POINTS,
k | REST ¢(STRING *> STRING) INCREMENT PTR AT TOP OF E,
4 QuUTPUT (STRING X CHAR «> STRING) PCP E» STORING THIS

CHAR IN THE O LOCATION GIVEN BY TOPCE)» WHICH
1S THEN INCREMENTED,

S POP (ITEM =>) POP E,
6 ISNULL! (STRINGCI) => BOOL) REPLACE YOP OF E WITH
TRUE IF IT PCINTS TO END OF I» ELSE FALSE.
7 EQUAL (CHAR x CHaR => BOOL) REPLACE THE TOP 2 CHARS
ON E WITH TRUE IF THEY ARE EQUAL, ELSE FALSE.
8 CASE () NN-ODPERATION, MARKER ONLY,
9 TEST (I1tem x ITev «> [TEM OR NOTWING) IF THE TOP 2

ITEMS Onv E ARE EQUAL» POP THEM RQTH,
ATHERWISF» POP ONLY THE TCP, AND
ADVANCE YO THE NEXT MATCHING ENNTST ¢+ 1,

10 ENDTST () SKIP TQ THE NEXT WMATCHING ENDCAS ¢ 1.
11 ENDCAS ¢) NO=OPERATION, MARKER ONLY,
12 PROCN (ABCR) COwPARE THE CHARACTERS IN ¥ AT PC WITH

AlLL STRINGS FOLLOWING RETURN INSTRUCTIONS
ANYAHERF IN Mo PUSH THFE LOCATION IMMEDIATELY
AFTER TME MATCHING STRING C(THE CALLED
ADDRESS), ADVANCE PC BEYOND THE PROCECURE

MAME,

13 CALL CANPDR x ITEM x ITEM x IYEM =>) PUSH PC (RETURN
ADDRESS) ONTO P, FOLLOWEC BY THREE ZERO™S
CTEMP STORAGE) AND THE THREE ITEMS POPPED
FROM E, POP THE ADDR NFF E» AND BRANCH TO IT

10 RETURN C) IF P HAS & OR LESS TTEVMS, SET THE HALT
FLAG, NTHERWISE» POP THE & TOP ITFEMS OFF P
¢3 TEMP VARIABLES» AND 3 PARAMETERS)S SET
PC TO THE ADOR POPPED OFF P NEXT,

19 SAVE CITFEM x ITPM x ITEM *> [TEM X ITEM x [TEM)

COPY THfF TOP 3 ITEMS ON E INTO THE 3 CURRENT
TEMP STORAGE LOCATIONS IN P,

ALL PUSHES ANO POPS REFFR Tn THE € STACK, EXCEPT AS NOTED,

INSTRUCTIONS “UST PE MANE OTSTINGUISHABLE FRCM CONSTANTS.

THE SET “ITEM™ IS THF UNION OF CHARs STRING» AND BOOLEAN.
M1 MACHINE INSTRUCTIONS

FIGURE 11

34

b If the value of exp0* does not equal the value of any
expression before a CASTST, then control eventually drops
dovn to the ENDCAS instruction, which is a no-op. Since
none of the CASTST instructions popped the value of exp0O*,
the default value of the CASE expression is the value of the
selector expression exp0#,

An IP-THEN-ELSE expression is translated into the code
for a case expression in a straightforward manner:

IF (exp0) THEN (exp1) ELSE (exp2)
becoases

CASE (exp0O%*) 1 CASTST (expl1®) ENDTST
0 CASTST (exp2*) ENDTST
ENDCAS .

According to the conventions of the grammar SGL2G and
the boolean-valued primitives of M1 (ISNULL-and BQUAL), 1 is
the value of TRUE, and 0 is equivalent to FALSE., It should
be clear that the case operators above implement the
IF-THEN-ELSE construct,

6.3 1Initial Bootstrapping with M1
To get the SEED1 program running on M1, the user aust:
1. Transcribe G1-0 (FPig. 2), the object
grammar grammar into machine readable

form.

2. Transcribe SEED1-0 (Fig. 10-B), the
object code for SEED1 on M1,

3. Implement M1, the SEEDGOL-1 machine
(Appendices C and D are examples).

4., Implement a wmeans for getting prefix
Polish "object” grammars, M1
instructions, and input strings into the
storage areas for M1, and a nmeans to
retrieve the output string af ter
translation.

7. Timing Results for Different Tramnslators

The follovlnq table shows the timing results for the
translation of G1 (FPig. 1) to G1-0 (Piy. .2) using G1-0 as
the translation grammsar,

4

BN vinge

35
Iranslator ‘ lipe
SEEDO, written in B5700 extended ALGOL 4 hours (**)
SEBDO, on MO in B5700 extended ALGOL 154 hours (**)
SEEDO, on M0 in PDP-11 asseably language 6 1/2 hours
(¢*) !
SEED1, written in B5700 extended ALGOL 9 1/2 min. (25)
SEED1, on M1 in BS700 extended ALGOL 2 hours, 15 min.
(68) (**)

1 hour, 20 min.

SBED1, on M1 in PDP-11 assembly language 14 174 ain. (27)

8 1/2 min. (%)

(*) ~-- estimate, when sped up using the PROCN2 modification
below.
(*¢) -- estimate, based on partial rumns and comparisons.,

Mumbers in parentheses indicate speedup factor over
corresponding SEEDO ispleamentation.

Some timing tests were run using a wmodified PROCN
instruction, which would perform a 1linear search of the
machine code storage area M only once to determine a called
address. It would then store the called address in a table,
along with the continuvation address (the address at vhich
execution continues, after the procedure name following the
PROCN imstruction). PROCN would store an index to the new
table entries in the location following the PROCN
instruction (vhich was formerly the first letter in the
called procedure's nanme). Finally, it would change the
PROCK instruction to a PROCN2 instruction, s0 that
subsegquent execution of the instruction would amerely
retrieve the called address and the continuation address
from the table, This improvement yields a 40% speedup in
execution, but requires care in isplementation: any
modifications to M aust not create entries wvhich may be
construed as CASE, CASTST, ENDTST, or ENDCAS instructions.
Because of this "trickiness" involved, the PROCN2 feature is
not included in the H81 machines described in Pig. 11, or
Appendices C and D. Isplementation of this feature is left
to the reader.

One unexpected anomaly vhich appears in Table 1 is the
fact that the advantage of SEED1 over SEEDO is far greater
on the B5700 in extended ALGOL then on the PDP=-11 in
assemably language. Apparently SEEDO requires extensive use
of those sections of code which are pacrticularly inefficient
in ALGOL.

36
8. Conclusions

We have seen that a simple tramslator writing systenm
with reasonable storage and CPU time requirements can be
easily implemented without the aid of a coampiler. The
alloved translations are those which can be expressed via a
context-free. grammar, augmented with output symbols. Such
translations can include renaming, and conversions between
infix, prefix, and postfix notations. Address calculations,
and other effects vhich cannot be expressed in a
context-free grammar, cannot be performed by this simple
syntax-driven method.

We observed by example that the simple translations
described above can still be quite useful, since address
calculations and other problems can be postponed until run
time, and handled by an interpreter. we also observed that
an interpreter for a very restricted (but still useful!)
language can be quite simple, in spite of the need to
calculate addresses. Important simplifying aspects of a
language include such restrictions as a fixed number of
parameters for any user-defined procedure, no user-declared
variables, and a limited set of built-in functioas,

The simple TWS given in this paper is a step in the
evolution of a more sophisticated TWS. Hopefully, this
simple TWS will facilitate the development of ianguagyes ot
describing scanners, parsers, and code ge-erators, the
constituents of typical TWS's.

It is a straightforward process to iamplement this
simple system on other machines, including microprocessors.

Acknowledgements

Many of the ideas ot this paper emerged during my
conversations with Dan Ross, Doug Michels, and Tom Pennello.
Bill McKeeman provided most of the impetus for this entire
pro ject. These and others (Frank Frazier, Bill Tyler, and
Greg Johns) added many helpful comaments during the
preparation of this document. Doris Heinsohn prepared the
tidy draving of Fig. 6. Finally, my special thanks to Dan
Foss for teaching me how to use the PDP-11,

1.

3.

4.

7.

9.

10.

11,

Abrahaas,

language and system. Proc. AFIPS 1966 FJCC, 29, AFIPS
Press, Montvale, N. J., 661-676.

Earley,
algoritham.

Pay, M.,

bootstrapping process. Unpublished report, U. C.

Santa Cruz

McKeeaan,

Michels, D., A concise extensible metalanguage for

translator
Santa Cruz

Naur, P.
language
299-314,

PL/I Language Reference Manual. Form C28-8201-2. isn
Syst. Ref,

Schorre,
language.

van Wijngaarden, A. et al., Revised report on the
algorithmic
(1975) , 1-236,

Wegbreit, Ben, The treatment of data types in EL1.
Comm, ACHM 17, 5 (May 1974), 251-264,

Wirth, N., Program development by stepwise refinement. q

Cosm, ACH

Je o An efficient context-free parsing

W. M., Private communication (1976).

(ed.) et al., Report on the algorithmic
ALGOL 60. Coma. ACM 3, 5 (mMay 1960),

D. Voo A syntax oriented compiler writing

REFERENCES

P. S. et al., The LISP2 prograsming

Comm, ACM 13, 2 (February 1970), 94-102.
GENESIS: A language for describing the i

(1976) .

implementation. Unpublished report, U. C.
(1976) .

Lib. (1969).

1964 ACM National Conference.

language ALGOL 68. Acta Informatica 5

14, & (April 1971), 221-227,

A-1 ¢
APPENDIX A

BURROUGHS BS5700 EXTENDED ALGOL IMPLEMENTATION OF Mg

BEGIN X MO IN XALGOL
XDECLARATIONS, PRELIMINARIES

DEFINE TIL=STEP 1 UNTIL#3 X A TEXT SUBSTITUTION MACRO

ARRAY MCODEC011022)3

ARRAY GI1[0:1022)3 % CHARACTER STORAGE

INTEGER ENNI}

INTEGER PCJ) REAL INSTRUCTIONS

INTEGER IPTR,; GPTR} % FIXED POINTERS TO G AND 1 IN CHAR STORAGE

X A STACK IS AN ARRAY WHOSE O=TH ELEMENT POINTS TO THE TOP

DEFINE STACK = ARRAY#, TOP(S) = S{S[(O))#, STACKSIZE(S) = S[0)#,
NEXT(S, 1) = S[S[0) = (1))¢#;

REAL PROCEDURE PUSH(X» S); VALUE X3 STACK S{+*)3 REAL X3

PUSH 8= SCSIO0) 1= Sto) + 1) 1= X3 X WARNING? NESTED ASSIGNMENT
REAL PROCEDURE POP(S)S STACK SC*)/
POP 1= SC(STO0)t=S[0Y=1) + 1)} 2 WARNING! NESTED ASSIGNMENT

STACk P (011022 X PARAMETER STACK
STACK E [(0:30); X EVALUATINN STACK
ARRAY 0 (011022} X QuTPUT BUFFER

X XRSFTINBIT SETS THE INSTRUCTION BIT OF X :
X IS?INST(X) 1S TRUE IF M IS AN INSTRUCTICN, FALSE OTHERWISE
X X,0PFIELD 1S THE CPCONE OF M, WITH TKE INSTRUCTION BRIT REMOVED
DEFIME SETINBIT = 1[730:1)#, INRIT = [731)#, INRITFIELD = [7308)1)2;
DEFINE RET?INSTY = {38SFTINRITSH,

IF?INST = RRSETTINBIT#, THENZINST = QRSETINRITH,

ELSE?INST = 1CRSETINRITE;

X YHE FOLLOWING MUST CORRESPAND WITH
X CONSTANTS GENERATED BY THE GRAMMAR,
DEFINE FALSEVAL = 0#s TRUEVAL = 1#» BLANK = " =g;

DEFINE IS?2INST(M) = ((M)JINRIT = 1)8» OPFIELD = (627)2;
BOOLEAN HALTS
INTEGER CYCLES» TRACECNTS

PROCEDURE INITIALIZE:
BEGIN
0roy t= PLOY $= ECLC) t= CYCLES t= TRACECNTY 1= 0}
END INITIALIZES

PROCENURE GETINPUTS
J % USER=PRNVIDEC ROUTINE v0 LOAD Gl (G & 1) AND MCQDE
¥ THE MAIN RAUTINFS EXPECT | CHARACTER OR UPCCDE PER wORD

PROCENURE SUMMARIZF; i .
3} % IF EC31) CONTAINS "TRUEVAL"™ THEN THE OUTPUT

¥ STRING 1S CONTAINEN !N (1) THROUGHK TACK
% ONE CHARACTER PERCmomp, Ot bl L

% COMPLICATED INSTRUCTIOQONS
INTEGER REGl» REG2)

PROCEDURE SKIPPAST(INST)}

VALUE INST} REAL INSTS
BEGIN
REGY 1= 0
WHILE REGY GEQ 0 DO

BEGIN

IF MCODECPC) = INST THEN REG! 'z REGY = |
ELSE IF MCODELPC) = IF?INST THEN REGY 3= REGI ¢ 1}
PC 's PC + 13
END3
END SKIP PASTI

PROCFDURE CALLS
BRFGIN
PUSH(PC, P)3
PUSHC(POP(E)s P)3
PYSH(POP(E), P}
Pc 33 POP(E)}
END CALL?

¥ PUSH RETURN ADDRESS ON PARAMETER STACK,
X "IP", OR 2ND PARM
X “RP", OR §ST PARM

PROCEDURE RETURNJ
IF STACKSIZF(P) LEC » THEN HALT 85 TRUE

ELSE
BEGIN POQOP(P)Y3 PQP(P)J
PC 1= POP(P);
ENDJ

PROCEDURE PROCNAME}

BEGIN REG2 1= ;
]y
BEGIN REG!1 t= PC
WHILE MCODECREG2)
REG2 1= RFG2 +
REG2 t= REG?2 + 1}
WHILE MCODECREG!)
BEGIN REG?2 =
REGY 1= REG!1 +
END
END ¢k
UNTIL MCODECREG!) =
PUSH(REGZ2 + {» E)J
PC t= REGY + 13
END PROCNAME;

X 1 = START (OF CODE

3 % START OF PROCEDURE NAME
NEQ RET?INST 0O

1}

NEQ BLANK AND MCODELREG1) = MCODELREG2) DO
REG2 + {3

1}
MCODELRFG2)} X BOTH ARE " "

% PROCNAME INSTR FIGURED OuT EXACT MACHINE ADDRESS

b

A-3
% MAIN EXECUTION LOOP OF INTERPRETER

PROCEDURE EXECUTES
IF NOT IS?INSTCINSTRUCTION) THEN

ELSE
CASE INSTRUCTION.OPFIELD OF
BEGIN
X ZERD=ARY FUNCTIONS
PUSHCGPTR, E)3 X
PUSHC(TOP(P)» E)} 3

PUSHCNEXT(P»1),” €)3
% UNARY FUNCTIONS
PUSH(GILPOP(E))» E)}
PUSH(POP(E) + 1» E)J
PUSH!POP(E)s» 0)3

PUSHCIF POP(E) NEO ENNI THE

W Z W2

3 X BINARY FUNCTION

X
X CONTROL INSTRUCTIONS

%
| SKIPPAST(ELSE?INST)} :
:)

: PROCNANME S X

| CALL) 3
RETURN X
ENDJ

£ MAITNLINE « « & o & o & & ¢

INITIALIZES
GETINPUT)

* & ¢

DEFINE FETCH = INSTRUCTION 8= ucooet(PCtquot)-iltt

PUSHC(MCODEIPC=13,» E) ¥ CURRENT INSTRUCTION IS REALLY A
X CHARACTER} PUSH IT (CHAR)

0» “GP" PTR TO 1ST OF 6 (PTR)
1» "RP" REFERS 70O P=STACK

LOCATION POINTING TO G (PTR)
L 2, "IP", P=STACK PTR TO I (PTR)

3» "FIRST" (CHAR)
4» "REST" (PTR => PTR)
Ss "OUTPUT" (CHAR =>),
LEAVES NO VALUE ON STACK, OUTPUT
CHAR CANNOT BE RETRIEVED
FALSEVAL ELSE TRUEVAL», E);
6» "ISNULLI" (PTR(I) => BOOLFAN)

IF POP(E)=POP(E) THEN PUSH(TRUEVAL, E) ELSE PUSH(FALSEVAL, E)}

7+ "EQUAL" (CHAR x CHAR => BOOL)

If POPCE)=FALSEVAL THEN SKIPPAST(THEN?INST)S

8> "IF"

9» "THEN"

10» “ELSE"

11» "PROCNAME"
12» "CALL"

13» "RETURN"

* ¥ & & @

PUSHCIPTR, P)Y3 X POINTER TO IST ELEMENT OF I ("IP"™ PARAMETER)
PUSH(GPTR, P)} X POINTFR TO 1ST ELEMENT OF G (“RP" PARAMETER)

PC 1= ()
HALTY 8= FALSES

00
BFEGIN
CYCLES 8= CYCLES + 13
FETCH}
EXECUTE
END
UNTIL WHALTS
SUMMARIZE)
END,

—

R A I Ao S 508045 3 e e i 0
-

B-1
APPENDIX - B

POP=11 ASSEMBLY LANGUAGE IMPLEMENTATION OF MO

oTITLE MO
3 MO, IN POP=11 ASSEMBLY LANGUAGE
FILLIN = 0 JVALUE TO BE FILLED IN AT RUN TIME
EPC = X0 JEMULATOR PRNGRAM COUNTER
REGY = X1 JTEVMPORARY RFG & INSTRUCTION BUFFER
REG2 = %2 JTEMPORARY
E = x3 JEVALUATION STACK POINTER
P = xsa JPARAMETER STACK POINTER
PTRD = %5 JPTR, TO 1ST POSITION AFTER END OF QUYPUT
SP = %6 JPDP=11 STACK POINTER
PC = %7 JPDP=11 PROGRAM CCUNTER
Ra = %4
RS = %5
FALSE = O
TRUE = |
IFX = 200+8, 3SOME EMULATOR OPCODES
THENX = 200+9, 3BIT 7 1S SET SO OPCODES AND CHARACTERS
ELSEY = 200¢10s JCANNOT BE CONFUSED.

RETX = 200413,

BLANK =

ESTACK?S
ESTAK, ¢
PSTACK?
PSTAK,!
STOPs

CYCLES?
18

E0L

G

Ot

Mt
LENI
LEND
PARSED?

IFACF?Y

SAVERG S
SAVERS?®

o JPROCECURE NAME TERMINATOR

oBLKW 40, 3 EXECUTION STACK

oBLKW 1500, 3 PARAMETER STACK, INCL RETURN ADDRS
«WORD FALSE JFOR TERMINATING EXECUTINN LOOP

¢CSECT cOMy 3 FORTRAN NAMED COMMON AREA
¢WORD 0s0 JDRL PREC COUNT DOF EMULATOR CYCLES
oBLKB {000, JINPUT STRING

oBLKB 1000« 3GRAMMAR (OBJECT VERSICON) STRING

+BLKB 2000, 3NUTPUT STRING

«BLKB 1000, 3EMULATOR CODE

oWORD FILLIN} NO, OF CHARS ACTUALLY IN I

+WORD FILLIN} NO, OF CHARS IN O

oWORD FILLIN} BOOLEAN VALUE, TRUE IF SUCCESSFUL PARSE

eCSECT IFACE INTERFACE TO FORTRAN COCE (SAVE R4, RS)
MOV R4s» SAVERG ;CALLING SEQUENCE: caALL IFACE

MOV RSs» SAVERS

JSR PC» MO JFEXECUTE THE EMULATOR

MOV SAVERS» RS

MOV SAVER4» R4 i

RYS RS JRETURN Y0 00S FORTRAN .
oWORD FILLIN

oWORD FILLIN 7

e T

B-2
«CSECT 3THE EMULATOR FOR SEEDGOL=-1
J INITIALIZATION OF EMULATOR
MO? MOV #M, EPC JSET PROG COUNTER TO START OF CODE

MOV #ESTAK,» E JBE=STACK POINTER
MOV #PSTAK,» P 3P=STACK POINTER
MOV 20,PTRO SNEXY QUTPUT SPACE IS THE FIRSY
MOV 21, =(P) JPUSH(PTR(I)» P) ("IP” PARAMETER)
MOV #G» =(P) JPUSH(PTR(G)» P) ("RP"™ PARAMETER)
3 FETCH=EXECUTE LOOP
LOOP) INC CYCLES
CMP CYCLES,#10000,

BLT L1
INC CYCLESe2
CLR CYCLES
Lt MOVB (EPC)+, REG1 JFETCH INSTRUCTION» ADVANCE EPC
BIC #177400, REGH JINSTRUCTION IS ONLY ONE BYTE
BIT #200» REG1 3O0PCCOE IF BRIT 7 IS ON
BNE CASE
MOV REG1s»=(E) SOTHERWISE, A LITERAL CALL
BR LooOP 3CPUSH 1 WORD WITH O"S IN HIGH BYTE)
cASE: BlC #200» REG! 3JMASK OFF INSTRUCTION BITY
ASL REGH 3FOR WORD ADDRESSING
JSR PC, ONPSCREGI) JRRANCH TO AN INSTRUCTION ROUTINE
ST STOoP 3CHECK HWALTING FLAG
BEQ LOOP

MOV CE)» PARSED 3Top OF E INDICATES SUCCESS IF TRUE
MOV PTRO» LENO

SUB #0, LENO
RTS PC

3 ADDRESSES OF THF EMULATION PROCEDURES FOR THE OPCODES
orPS: oWORD GPs RPs, 1Ps FIRST
oWNRD REST» OUTPUT» ISNULL? EQUAL» IF» THEN
eWORD ELSE, PROCN» CALL» RETURN

J THE EMULATION PROCEDURES FOR THE OPCODES

GP! MOV #2G» =(CE) 3PUSH(PTR(G)» E)
RTS PC
Rp? MOV (P), =(E) JPUSHCTOPCP)» E) ("RP™ PARAMETER)
RTS PC
i) MOV 2(P)» =(E) JPUSHCINEXT(P»1))» F) ("IP" PARAMETER)
RTS PC
FIRST: MOVB @(E)» (E) 3PUSHCCONTENTSC(POPCE))» E)
BIC #177400, (E) 3T0P BYTE IS ALL O%"S, NOW
RTS PC
REST: INC CE) JTOPCE) = TOPCE) ¢ 1
RTS PC
OUTPUTt MOV (E)+» REGH JPUSH(POPCE)» 0)
MOVB RFGi» (PTRD)e JWORD TO BYTE CONVERSION
RTS PC
ISNULL! SUB LENI» (E) JPUSHC(POPCE) = ENDOFC(I)» E)
sus #1, (E)
BEO ISNUL2
CLR (E) INEQ => FALSE
RTS PC

1SNUL2t MOV #TRUE» (E)

RTS PC :
EQUALY CMP (E)+» (E) JPUSH(POP(E)Y=POP(CE), E)
BEO EQUAL2 3J2=BYTE COMPARISON 3 SINGLE BYTE ITEMS
CLR (E) JMUST BE EXPANDED TO WORDS CONSISTENTLY
RYS PC
EQUAL2t MOV #TRUE, (E)
RTS PC
irt TST (E)e 3SKIP TO MATCHING "THEN" IFf
BNE IF2 JPOPCE) IS FALSEs» ELSE DO NOTHING
MOV STHENX, REG2.
JSR PC» SKIPTO
1F2s RTS PC
THENT MOV SELSEX» REG2 3SKIP TO MATCHING “ELSE"
: JSR PC» SKIPTO
ELSE: RTS PC
PROCNt MOV #M» REG?2 JREG2 WILL PDINT TO CHARS AFTER RETX
PROCNIt CMPB (REG2)+, PRETX
BNE PROCNt
MOV EPC, REGI JREGY1 WILL POINT TO CHARS AFTER PROCN
PROCN2?! CMPB (REG1)+, (REG2)*
BNE PROCN{ BFIND NEXYT "RETURN®™ IF MISMATCH
CMPB #RLANK,={1(REG2)
BNE PROCN?2 JCONTINUE UNLESS BOTH ARE BLANK
MOV REG2» =(E) 3PUSH(CALLING ADDR, E)
MOV REGY1s EPC JEPC 1= LOC AFTER NAME
RYS PC
CALLS MOV EPC, =(P) 3PUSHCEPC, P) (RETURN ADDR)
MOV (Ede» =(P) SPUSH(POPCE), P) (R=PARAMETER)
MOV (Ed+» =(P) JPUSH(POP(E), P) CI~PARAMETER)
MOV (E)+» EPC JEPC 1= POPCE) (CALLING ADDR)
RYS PcC :
RETURNI CMP (P)es» (P)+ JPOP > WORDS OFF PSTACK
CMP P» #PSTAK, JHALT IF P=STACK EMPTY
BNE RET?2
MOV #TRUE, STCP
RYS PC
RET2s MOV (PY+» EPC JEPC 3= RETURN ADDRESS (=POP(P))
RYS PC
SKIPTOS CLR REGY JTHIS ROUTINE USED RY "IF™ AND "THEN"
. SKIP21 CMPB (EPC)Y, REG? 3ADVANCE EPC, INCREMENTING REG1 ON “IF™,
BEQ SKIP1 JOECREMENTING REGY ON SOUGHWT INSTRUCTION
CMPB (EPC)Y+» #IFX JSCCONTAINED IN REG2).
BNE SK1IP2 JOUIT WHEN REG] IS LESS THAN O
INC REGH
BR SKIP2
SkIP1s INC EPC
DEC REGH :
] BGE SKIP2 ;5
E RYS PC
{ , +END
$

Iy B AT P T

c-1
APPENDIX €

BURROUGHS B5700 EXTENDED ALGOL IMPLEMENTATION OF Mg

BEGIN X M1 IN XALGOL
SDECLARATIONS, PRELIMINARIES

OEFINE TIL®STEP § UNTIL#? & A TEXT SUBSTITUTION MACRO

ARRAY MCODEL031022)3 % MACHINE CODE

ARRAY G1[011022)} % CHARACTER STORAGE

INTEGER ENDIJ

INTEGER PC3 REAL INSTRUCTINNS

INTEGER IPTR, GPTR} S FIXED POINTERS TO 6 AND I IN CHAR STORAGE

X A STACK IS AN ARRAY WHOSE O=TH ELEMENT POINTS TO THE TOP

DEFINE STACK = ARRAY#, TOP(S) = S(S[0))#, STACKSIZE(S) = S{0)s,
NEXT(S» 1) = SCS[O0) = (1))#3

REAL PROCEDURE PUSH(X» S35 VALUE X; STACK Ste*)} REAL X3

PUSH 8= SISCO0) 3= Stp) + 1) 38 X} X WARNINGS NESTED ASSIGNMENT
REAL PROCEDURE POP(S)} STACK SC+)3
POP 8= SC(S(oli1=SC0)=1) + 113} X WARNINGS NESTED ASSIGNMENT

STACK P (0110223} X PARAMETER STACK
STACk E (013013 X EVALUATINN STACK
ARRAY 0 [011022)} X QUTPUT BUFFER

X XESETINBIT SETS THE INSTRUCTION BIT OF X
X ISPINSTI(X) 1S TRUE IF M IS AN INSTRUCTION, FALSE OTHERWISE
% X,0PFIELD IS THE QPCONE OF M, WITH THE INSTRUCTION BIT REMOVED
DEFINE SETINBIT = 1C780:1)8, INBIT = (783112, INBITFIELD = (780t1)2}
DFEFINE RET?INST & 148SETINRIT#, CASE?INST = 88SETINBITS,
YEST?INST = Q8SFTINBIT®, ENDTST?INST = {108SETINBITS»
ENDCAS?INST = {18SETINBITE}

% THE FOLLOWING MUST CORRESPNAND WITH
% CONSTANTS GENERATEN BY THE GRAMMAR,
DEFINE FALSEVAL = 0#, TRUEVAL = 18, BLANK = » wg;}

DEFINE IS?INSTC(M) = ((M)(INRIT = 1)#s OPFIELD = (617)2)
BOOLEAN HALTS Ais
INTEGER CYCLES» TRACECNTS

PROCEOURE INITIALIZE}
BEGIN
0c0) $= PLO) 8= E(C) 3= CYCLES t= TRACECNT t= 0}
END INTTIALIZES

PROCFNURE GETINPUT]
} % USER=PROVINER ROUTINE Y0 LOAD GI (G & I) AND MCODE
% THE MAIN ROUTINES EXPECT § CHARACTIR OR OPCQDE PER WORD

PROCEDURE SUMMARIZES
) % IF EC1) CONTAINS "TRUEVAL®™ THEN THE OUTPUY

g STRING 1S CONTAINED IN OC1) THROUGH OCEC21),
S ONE CHARACTER PER WORD,

TR g S WU (LT e

P————

-

B . - T T e r— - i
RNz - L TR » SOSI Lo

~ c-2
% COMPLICATED INSTRUCTIONS

INTEGER REG1» REG2}

PROCEDURE SKIPPASTCINSTi{» INST2))

VALUE INSTi, INST2) REAL INST1, INST2}

BEGIN

REGL = O)

WHILE REGY! GEO 0 O
BEGIN :
IF MCODELPC) = INST) THEN REGY ts REG1 + |
ELSE IF MCODECLPC) = INST2 THEN REGY t= REG1 = 13
PC ta PC + 1)
ENDJ -

ENDJ

PROCEDURE CALLS
BEGIN
PUSH(PC, P)} % PUSH RETURN ADDRESS ON PARAMETER STACK,
THRU 3 NO PUSH(O, P)}
THRU 3 DO PUSH(POP(EY» P)3 X OP» 1P, AND RP PARAMETERS
PC ts POP(E); X PROCNAME INSTR FIGURED OUT EXACT MACHINE ADDRESS
END CALLS :

PROCEDURE RETURNS
IF STACKSIZECP) LEQ & THEN WALTY t= TRUE
ELSE
BEGIN THRU & CQ POP(P)S
PC s POP(P)}
ENDJ

PROCEDURE PROCNAME}
BEGIN REG2 1= {3 £ { = START COF CODE
Do
BEGIN RFGY 1= PC; % START OF PROCEDURE NAME
WHILE MCODECREG2) NEH RET?INST DO
REG2 t= REG2 ¢ 13
REG2 t= REG2 ¢ 1}
WRILE MCNDELREGE) NEQ BLANK AND MCODECREG1) = MCODECLREG2) DC
BEGIN REG2 t= REG2 ¢ 1)
REGY1 1= REGL ¢ 13
END 2l
END
UNTIL MCODECREG1) = MCODEILREG2)S ¥ BOTH ARE BLANK
PUSH(REG2 + 1» E)S
PC t= REGY + 1
END PROCNAME;

e —

c-3

£ MAIN EXECUTION LOOP OF INTERPRETER * ¢ o
DEFINE FETCH = INSTRUCTION t= MCODECC(PCI=PCe1)=118}

PROCFNURE EXECUTE}
BEGIN INTEGER 13
IF NOT IS?INSTCINSTRUCTION) THEN
PUSHCINSTRUCTION, E) X CURRENT INSTRUCTION IS REALLY A
3 % CHARACTER; PUSK IT (CHAR)
ELSE : T
CASE INSYRUCTIOR OPFIELD OF
BEGIN
X ZERO=ARY FUNCTIONS
PUSHCGPTR, E)} % 0s "GP", PTR TO 1ST CHAR OF 6
3 AND TO i PAST END OF I (PTR)
PUSH(NEXT(P, MCODECCPCISPC+1)=1])), E)}
% 1» "PARM®” GET N=TH PARM, WHERE
X N IS IN NEXT INSTY LOC
X UNARY FUNCTIONS
PUSHCGILPOPCE))» E)3 % 25 "FIRST™ (CHAR)
PUSMH(POP(E) + 1» F)} % 3, "REST™ (PTR => PYTR)
OCNEXTCE,1)1aNEXT(E»1)+1) 3= POP(E)}
S 4, "OUTPUT"™ (PTR x CHAR => PTR),
POPCE)) 2 S» "PCP" (ITEM =>)
PUSHCIF PNP(E)SENDY THEN TRUEVAL ELSE FALSEVAL, E)3
X 6, "ISNULLI"
% BINARY FUMCTION
IF POPCE)=PCP(F) THEN PUSH(TRUEVAL, E) ELSE PUSH(FALSEVAL, E)}
L 7, "EQUAL"™ (CHAR x CHAR => BOOL)
X CONTROL INSTRUCTIONS
% Bs» "CASE"™
!r POPCE) NEC TOPCE) THEN SKIPPASTCTFST?INST, ENDYST?INST)
ELSE POP(E)}
£ 9, "TEST"
SKIPPASTC(CASE?INST, ENDCASZINST);
% 10, “ENDTIST®

) % 11» "ENCCAS"™
PROCNAME} % 12» "PROCNAME"™
CALLS £ 13, "CALL"™
RETURN} X 14» "RETURN®™

FOR I 1= 0 TIL 2 DO NEXT(P» 3¢]) t= NEXTCE» 1)3
% 15, "Save"
ENDJ
END EXECUTE?

k S MAINLINE ¢ & ¢ % & o ¢ % ¢ & & 4 4 ¢
E | INITIALIZES
E GETINPUTS
» THRU 3 DO PUSH(O» P)J % TEMPORARY STORAGE LOCATIONS
PUSH(c0, P} % POINTFR TO 1ST ELEMENT OF O ("OP" PARAMETER)

PUSHCIPTR, P)} X POINTER TO 1ST ELEMENT OF I ("™IP"™ PARAMETER)

:USNGGPTRn P33 X POINTFR TO 1ST ELEMENT OF G ("RPY™ PARAMETER)
C t1s |}

HALY 3= FALSES

oo
BEGIN
CYCLES = CYCLES ¢ 13
FETCH}
EXECUTES
END

UNTIL HALT)
SUMMAR]ZE)
END,

i

D-1.
APPENDIX D

POP=11 ASSEMBLY LANGUAGE IMPLEMENTATION OF Mg

oTITLE My .
3 My, IN POP=11 ASSEMBLY LANGUAGE
FILLIN = O JVALUE T0 BRE FILLED IN AT RUN TIME
EPC = %0 JEVULATOR PRNGRAM COUNTER
REG) = %1 STEMPORARY RFG & INSTRUCTION BUFFER
RFG2 s %2 JTEMPQORARY
€= %) JEVALUATION STACK POINTER
P = xa JPARAMETER STACK POINTER
PTRQ = %5 JPTR, TO 1ST POSITION AFTER END OF OUTPUY
SP = %6 JPDP=11 STACK POINTER
PC = %7 JPDP=11 PROGRAM COUNTER
R4 = %48
RS = %5
FALSF = 0
TRUE = §
TESTX = 20049, JSOME FMULATOR OPCODFES
ENDTSX = 200+10, 3JBIT 7 IS SET SO OPCODES AND CHARACTERS
CASEX = 200+8, JCANNOT BE CONFUSED

ENDCAX = 200411,
RETX = 200414,
BLANK = " * 3PROCEDURE NAME TERMINATOR

ESTACKE +BLKW 40s J EXECUTION STACK

ESTAK,!

Ps;ACKl BLKW 3000, 5 PARAMETER STACK, INCL RETURN ADDRS
PSTAK, § A

STOP: «WORD FALSE 3FOR TERMINATING EXECUTICA LOOP

«CSECT €¢OMY 3 FNRTRAN NAMED COMMUN AREA
CYCLESS «WNRD 000 3DRL PREC COUNT OF EMULATCR CYCLES

1t BLKB 1000, JINPUT STRING

€0l :

Gt +BLKB 1000, 3GRAMMAR (OBJECT VERSICN) STRING
0 oBLKB 2000, 30UTPUT STRING

My «BLKB 1000, JEMULATOR ¢ODE

LENTs oWORD FILLINS NO. OF CHARS ACTUALLY IN 1
LENO? eWORD FILLINS NO., OF CHARS IN O
PARSEDt «WORD FILLINS BOOLEAN VALUE, TRUE IF SUCCESSFUL PARSE

«CSECT IFACE JINTERFACE TO FORTRAN COCE C(SAVE R4» RS)
IFACES MOV Ru» SAVERG 3CALLING SEQUENCES CALL IFACE
MOV RS» SAVERS
JSR PCs» MO JZEXFCUTE THE EMULATGR
MOV SAVERS, RS
MOV SAVER4, R4
RTS RS JRETURN T0 D0S FORTRAN
SAVERAS (WARD FILLIN
SAVERSS «WORD FILLIN

A A o B L M S 5 AN . e g . ———————

e |
- .,nu;.‘

D-2
«CSECT JTHE EMULATOR FOR SEEDGOL~1
3 INITIALIZATION OF EMULATOR
MOS MOV #M, EPC 3SET PROG COUNTER TO START OF CODE

MOV #ESYAK,» E JE=STACK POINTER
MOV #PSVAK,*6, P JP=STACK POINTER WITH 3 TEMP LOCATIONS
MOV #0,=¢P) JPUSHC(PTR(O)» P) (%OP" PARAMETER)
MOV 21, «(P) JPUSHC(PTR(I)» P) ("IP" PARAMETER)
MOV #G, ~(P) JPUSHC(PTR(G)s P) ("RP™ PARAMETER)
3 FETCH=EXECUTE LOOP
LOOP: INC CYCLES

CMP CYCLES,#10000,

BLT L1
INC CYCLES+?2
CLR CYCLES
L1 MOVB (EPC)+» REGH JFETCH INSTRUCTIONs ADVANCE EPC
BIC #177400, REG! JINSTRUCTION IS ONLY ONE BYTE
BIT #2200, REG1 3JOPCODE IF RIT 7 IS ON
BNE CASES
MOV REGi»s=(E? JOTYHERNWISE, A LITERAL CALL
BR LoOP 3CPUSH § WORD WITH O"S IN WIGH BYTE)
CASES: BIC #200» REGH JMASK OFF INSTRUCTION BIT
ASL REG}Y JFOR WORD ADDRESSING
JSR PC, POPS(REG1) JBRANCH TO AN INSTRUCTION ROUTINE
TSY SYOP JCHECK HALTING FLAG

BEQ LOOP

MOV 2(E)» PARSED IJNEXT OF E INDICATES SUCCESS IF TRUE
MOV CE)Y, LENO 37T0P OF E POINTS TO NEXT AVAIL SPACE IN O
SUB #0» LENO

RTS PC

} ADDRESSES OF THE EMULATION PROCEDURES FOR THE OPCODES
orS +WORD GP» PARM, FIRST, REST» OUTPUT

«WORD POP, ISNULL» EQUAL» CASE» TESY

+WORD ENDTST, ENDCAS, PROCN» CALL» RETURN

«WORD SAVE
3 THE EMULATION PROCEDURES FOR THE OPCODES
(1] MOV 82G» =(E) JPUSH(PTR(G)» E)
RTS PC
PARMY MOVB (EPC)+,REGY JGET PARM AT N=TH FROM TOP OF P»
ASL REGY 3 (DOUBLE OFFSET FOR WORD ADORESSING)
ADD P,REGY JN IS IN NEXT CODE LOCATION
MOV C(REG1)s=CE) SPUSH RESULT ON E
RTS PC
FIRSY: MOVB @CE)s CE) JPUSHC(CONTENTSC(POP(E))» E)
BIC #477400, (E) JTOP BYTE IS ALL O"S» NOW
RTS PC
REST INC (E) i JTOPCE) t= TOPCE) ¢ 1
RYS PC
OUTPUTSI MOV (EY+»REGY JOINEXTCES1)] ts POPCE)
MOVB REG1,®(E)
INC (E) JTOPCE) t= TOP(E) 1
RTS PC -
POP CMP (EJes(E) JPOPLE)
RTS PC
ISNULLS SUB LENI» (E) JPUSHC(POPCE) = ENDOF(I1)» E)

e o AU A SES ie 3 --*M

D

1SNUL2?
EQUAL

EoUAL 2!
CASEs
TEST

TEST28
ENOTSTS

ExDCASS
PROCN?
PROCNY

PROCN2?

CALL?Y

RETURN!

RET2:

SAVE:s

= STy
D-3
SuUR ag. (E)
BEQ ISNUL?
CLR (E) JNEO => FALSE
RTS PC
MOV #TRUE» (E)
RTS PC
CMP (EY+» (E) JPUSH(POPCE)=POP(E), E)
BEQ EQUAL2 32=BYTE COMPARISON ; SINGLE BYTE ITEMS
CLR (E) 3MUST BE EXPANDED TO WORDS CONSISTENTLY
RTS PC :
MOV #TRUE, (E)
RTS PC JNO=0P :
CMP (E)Y+2(E) 31F POPCE) NEQ TOPCE) THEN SKIP PAST
BEQ TEST2 JNEXT MATCHING ENDTST INSTRUCTION
MOV #TESTX,INSTY JELSE POPCE)
MOV SENDTSX,INST2
JSR PC,»SKIPTO
RTS PC
CMP (E)+»(E)
RTS PC)
MOV #CASEX,INSTY JSKIP PAST MACHING ENDCAS INSTR
MOV 2ENDCAX, INST2
JSR PC»s» SKIPTO
RTS PC JA NO=DP
MOV #M, REG2 JREG2 WILL POINT 7O CHARS AFTER RETX
CMPB (RFG2)+, #RETX
BNE PROCN1Y :
MOV EPC, REGH JREGY wILL POINT 7O CHARS AFTER PROCN
CMPB (RFG1)Y+» (REG2)+
BNE PROCN} JFIND NEXT "RETURN®™ IF MISMATCH
CMPB #BLANK,=1(REG2)
BNE PROCN2 JCONTINUE UNLESS BOTH ARE BLANK
MOV REG2s=(E) 3PUSH(CALLED ADDR, E)
MOV REG1sEPC JEPC 1= LOC AFTER NAME
RTS PC :
MOV EPC,=(P) 3PUSH(EPC» P) (RETURN ADDR)
SUR #6,P JPUSH 3 TEMP LOCATIONS
MOV (EYer=(P) JPUSH(POP(E)» P) (OP=PARAMETER)
MOV (E)¢s=(P) 3PUSHC(POP(E)» P) (R=PARAMETER)
MOV CE)+s=(P) JPUSH(POP(E)s P) (1=PARAMETER)
MOV (E)+sEPC JEPC t= POPCE) (CALLING ADOR)
RTS PC 1Y
ADD #£12,»P JPOP 6 WORDS OFF PSTACK
CMP P, SPSTAK, JHALT IF P=~STACK EMPTY
BNE RET2
MOV 2TRUE, STCP
RTS PC
MOV (P)+s FPC JEPC 1= RETURN ADDRESS (=POP(P))
RYS PC
MOV (E)Y,6(P) JSTORE THE TOP 3 THINGS ON € IN THE
MOV 2(E)»B.(P) JTEMP LOCATIONS IN THE PeSTACK .
MOV QCE)»10,CP) JDOES ~OT AFFECT E
RTS PC
A,

s RO i 4055 eoaiicibng e e

.y

R e

—

INSTH
INST21
sKIPTO!
sklp2t

SKIPy1

D-4

+WORD JPARAMETERS FOR SKIPTO SUBROUTINE

«WORD

CLR REGH JTHIS ROUTINE USED BY "TEST™ AND "ENDTST"
CMPB (EPC)Y» INST2 3JADVANCE EPC» INCREMENTING REGY ON INST1»
BEQ SKIP1 . JOECREMENTING REGY ON SOUGHT INSTRUCTION
CMPB C(EPC)Y+» INST1 JCCONTAINED IN INST2),

BNE SKIP2 JQUIT WHEN REG] IS LESS THAN O

INC REGH

BR SKIP2 -

INC EPC

DEC REG}

BGE SK1P2

RTS PC

+END

SECURITY CLASSIFICATION OF THIS PAGE (When Date Fntered)

REPORT DOCUMENTAT:ON PAGE ErlCAD INSTRUCTIONS -
1. REPORT NUMBER gpee 2. GOVT ACCESSION NQ.| 3. RECIPIENT'S CATALOG NUMBER
Tech. Rep. No. 77-3-;!02)/

4. TITLE (and Subtitle) 5 Mi PORT & PERIOD COVERED
Bootstrapping a Small Translatoi/:‘ C% ‘itmm

Writing Systemo —7 }\J,;Lt ' 9)

A e 6. PER -REPORT NUMBER

g 7 AUT e ‘.D‘- gguj_amm.\
| Michael [Fay)) =) [NApp14-76-C-p682 __

ER’e)

9. PERFORMING ORGAN!ZATION NAME AND ADDRE]SS — 10. ::ggR.A':OERLKEDGS'NTT.”PUR“O.JESJ. TASK
William M. McKeeman Catf Ui
Information Sciences, UCSC, Rm. 239 AS
Santa Cruz, Ca. 95064 - > *
UdE€iee of Naval Researeh AN
0 / >
Arlington, Virginia 22217 28

4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)
Office of Naval Research

University of California

553 Evans Hall

Berkeley, California 94720

1Se. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

[DISTRIBUTION STATEMENT A
Fpproved for public releasey ™
Distribution Unlimited ~ »f

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ different trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and ldentity by block number)
metalanguage, translator, syntax-directed translation,
translator writing system, self-describing grammar,
interpreter, bootstrapping, backtrack parsing

20. ABDSTRACT (Continue on reverse side if necesesary and identify by block number)

A rudimentary translator writing system is developed for easy
implementation in about 2 pages of assembly language code.
Although the system is based on backtrack parsing and lacks a
scanner, it still performs useful translations in a few minutes
of CPU time, with storage requirements of about 10K bytes, for
a typical translation. ;

(continued on reverse side)

DD ‘:2:‘!” 1473 eoition oF t nOV €8 1S OBSOLETE
- S/N 0102.LF 0146601

e i \5;(_? ([)73 527,/:/

PO 2 e i e e s R R e 1 i i

K

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

Eamoan

A R

P ———— =

SECURITY CLASSIFICATION OF THiS PAGE(When Dats Entered)

The system is based on an ALGOL-like program by Michels which
translates source language strings into target language strings,
according to a translation grammar which is specified using
prefix Polish operators. Fortunately, the user does not need to
specify translation grammars in Polish notation, because Michels
gave a metagrammar which translates grammars in BNF-1like notation
(including the metagrammar itself) into Polish strings.

This report shows how Michels' program can be implemented without
the aid of an ALGOL compiler. We present a translation grammar
for converting Michels' program (slightly rewritten) into code

for a simple, special-purpose interpreter. Once this simple
interpreter is implemented, and Michels' program (in interpreter
code) and the first input grammar are prepared, a small translator
writing system is complete. In this primitive system, a trans-
lator "program' consists of the BNF-like description of a trans-
lation grammar. Lt

Michels' program was written with the goal of conceptual simplic-
ity. However, in actual performance it was found to be too slow
to be practical. Accordingly, we present a new program which is
shorter, more efficient, and which requires only a slightly more
complex interpreter.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

et S

e e e e = - -

|
g
j

PN RIS e 7

OFFICIAL DISTRIBUTION LIST

Contract N00014-76-C-0682

Defense Documentation Center
Cameron Station

Alexandria, VA 22314

12 copies

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

2 copies

Office of Naval Research
Code 1021IP

Arlington, VA 22217

6 copies

Office of Naval Research
Code 200

Arlington, VA 22217

1 copy

Office of Naval Research
Code 455

Arlington, VA 22217

1 copy

Office of Naval Research
Code 458

Arlington, VA 22217

1 copy

Office of Naval Research
Branch Office, Boston
495 Summer Street
roston, MA 02210

copy

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

s

. New York Area Office

_Mr. E. H. Gleissner

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

715 Broadway - 5th Floor
New York, NY 10003 s
1 copy

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, DC 20375

6 copies

Dr, A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps (CodeRD-1)
Washington, D. C. 20380
1 copy

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, CA 92152

1 copy

Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, MD 20084

1 copy

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D, C. 20350

1 copy

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-911G)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

