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(I) INTRODUCTION

Transonic channel flows have applications in most modern high
performance jet engines. Because the blades in a rotor rotate past
fixed vanes, and because of various disturbances caused by combustion
instabilities, flow asymmetries, etc., these flows are inherently un-
steady. Since the flow is transonic, small changes in pressure down-
stream of a shock wave, can cause large variations in the position of
the shock wave and thus large variations in forces on the blades.

Previous work on unsteady two dimensional channel flows with

1), (2)

shock waves indicates that a great many physical problems of

interest fall in the so called slowly varying time regime. If Tch is
the characteristic time associated with an impressed pressure oscil-
lation, say, (overbars denote dimensional quantities) and L and 5* are
the channel throat half width and critical sound speed respectively,

then this region is characterized by the relation

= L
Tch/( ==
a
That is, the period associated with the impressed oscillation is large

compared to the time taken by an acoustic wave to cross the channel.

As pointed out in reference 1, for typical conditions in a jet engine,

“)Richey, G. K. and Adamson Jr., T. C., '"'Analysis of Unsteady
Transonic Channel Flow with Shock Waves, ' AIAA Journal, 14, 1976,
pp- 1054-1061.

(Z)Messiter, A. F. and Adamson Jr., T. C., "Asymptotic Solutions
for Nonsteady Transonic Channel Flows, " Symposium Transsonicum II,

Eds., Oswatitsch, K. and Rues, D., Springer Verlag, 1976, pp. 41-48.
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this "slowly varying' time regime encompasses a range of frequencies

f - "I-';}ll = cycles/sec) of 100 < f < 1000. This frequency range

is evidently of considerable interest.

Within the general condition Tch/(i/é*) > 1 there are two
specific cases of physical interest in flows with shock waves. They
have to do with the comparison of the characteristic time associated

with the impressed pressure oscillations, T with the characteristic

ch’

time for a signal to travel from the point where the oscillation is intro-

duced downstream of the shock wave to the shock wave itself, say

T_,- Thus, if
T i
(1) _Ti—h = Ofl) pressure signals from downstream
; reach the shock wave in a time com-
parable with the time characterizing
the pressure variation e.g., the
period of the pressure oscillations).
Oscillations in velocity, pressure,
etc., in the channel flow downstream
of a shock wave lag behind the im-
pressed pressure oscillations.
T,
(2) TL: > ] pressure signals from downstream
S

reach the shock wave 'instantancous -
ly " compared to the time character-
izing the pressure variation. Oscil-

lations in velocity, pressure, etc.,

il 3
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in the channel flow downstream of a
shock wave are in phase with the
pressure oscillations.

The remaining order, Tch/'f h <1, appears to be a more complica-

s
ted and probably less important version of case (1), and is not con-
sidered here. Case (1) is considered in reference (1) for a symme -
tric channel. In reference (2), solutions are presented for case (1)
written in terms of unsteady boundary conditions rather than initial
conditions; in addition, the concepts inherent in case (2) are dis-
cussed briefly and the differential equation describing the instantane-
ous shock wave position in a channel with parabolic walls is derived
for a particular case in which the impressed disturbances have a
sinusoidal time dependence. In both references, solutions are given
in terms of asymptotic expansions; thus, the type of solution first
postulated by Szaniawski(3) for steady transonic flows are derived
in a systematic manner and extended to cover unsteady flows.

In this report, solutions for case (1) are reviewed and numeri-
cal solutions for a typical case are given. Next, detailed solutions
for case (2) are presented, again with nume rical results for a typical

case. Finally, a general solution, (case (3)), which holds for either

case, is presented, with an error estimate which allows one to make

(3)

Szaniawski, A., 'Transonic Approximations to the Flow Through
a Nozzle, " Archiwum Mechaniki Stosowanej, 17, 1965, pp. 79-85.




simplifications in the numerical calculations on a systematic basis,
i.e., on the basis of a desired accuracy. A detailed description of
the various possible shock wave motions for periodic impressed pres -
sure oscillations is also presented. All results are given for symme -
tric channels.

Finally, a discussion of the use of steady flow predictions of
shock induced separation to predict separation in unsteady flows is

given.

(II) UNSTEADY TRANSONIC CHANNEL FLOWS
WITH SHOCK WAVES

The problem considered is that of a two dimensional channel
with an arbitrary wall shape, in which there is a transonic flow with
a shock wave. A sketch of the channel flow illustrating the notation
used, is shown in figure 1. The flow upstreain of the wave is steady;
pressure oscillations are impressed upon the flow downstream of the
shock, at x = X, say, causing the shock wave position to oscillate.
The gas is assumed to follow the perfect gas law and to have constant
specific heats. The flow upstream of the shock wave is isentropic,
and because the flow is transonic, the shock is weak enough that a
velocity potential may be used to the order desired. The coordinates,

x and y, are made dimensionless with respect to L, the time, T, with

respect to L/QT, and velocities with respect to a ; hence, the di-
mensionless velocity potential is referred to the product La . The

pressure, P, density, p, and temperature, T, are made dimension-

less with respect to their critical values, and the enthalpy is referred

— _______—_.—M | . - d |



The wall shapes considered are written as follows, for symme-
tric channels:

§. = & {1+ e ) (1)
=k

where f(x) is the arbitrary wall shape function, such that f(0) = f'(0)
= 0. Thus, x is measured from the channel throat. The radius of
curvature of the channel, at the throat, is O(c-z) from eqn. (1), and
as will be seen later, u-1 = O(e). Hence, for transonic flow, € < 1.
Unsteady flows may be characterized by prescribing the rela-
tive order of the characteristic time associated with the impressed
disturbances, :Tch’ and the characteristic time associated with the
acoustic waves traveling through the channel, L/g.*. As mentioned
previously, the so called slowly varying time regime is considered
here, where Tch >> L/i*. Therefore, a parameter, T, is intro-

duced and the time is stretched, as follows:

T MLAT) T = a4 (2a, b)
so that T > 1 and t = O(1). The relationship between T and ¢ depends
on which of the cases mentioned previously is considered. Again,
Tsh is the order of the time it takes a signal to travel upstream from
the origin of the flow disturbance to the shock wave, a distance of
order L, say. A disturbance pulse travels upstream at sonic veloc-
ity relative to the flow and thus at an absolute dimensionless velocity,

= l-u = O(e). Hence, T, - O(L/;‘:up) - O(L./a ¢), and

Up sh
T h/T i O(v/¢). Therefore, it is seen that case (1) mentioned
{ 4 S




previously and considered in reference (1) is that for which 7= O((-l),

and case (2) is that for which ™ > c_l, and here we choose T - O((-Z).
In summary, then, we consider the following two cases.
Case (1) 'rl z (kl (‘)-l (3a)
c 2) B il ez)'l (3b
ase 2 2 )

where kl and k, are arbitrary constants of order unity.
In the following, solutions are presented in the form of asymptotic
expansions, uniformly valid to order CZ. Although the method is valid
for more general impressed disturbances, attention here is focused on
oscillatory second order pressure fluctuations impressed on the flow

downstream of the shock wave. Upstream of the shock wave, the flow

is steady.

Solutions for Case (1), T

=
1= (kl €)

The solutions for Case (1), derived in reference (1), may be write

ten as follows:

2
= +
u 1+cul € u2+... (4a)
2
v rcv2+... (4b)
2
Sl B LR R (4c)
% -1 2
= - € - € + L_ + 4
p l =€, =€ (u2 ( > ) ul) (4d)
2
T =1 1 P ity + u—l-—)+ (de)
= - e(y- )ul-( Y-)u2 >

where y = CP/CV is the ratio of specific heats, and where

2
= 4 3 + (5a)
ul /( H)f(x) C, a

6
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W L ‘.:,':
ua fll2 e hx o U % (5b)
X
= f! +(’* 5¢)
VZ = y v e
1/2 o
4f" [ (y*+1)C | n
‘* . e 2
§ - L 3 2 Vb (—13-— exp{ -nmx /[(Y+1)Cu]1/ ¥
Vs n=)} n
- cos(n my) (5d)
* =
X = (x-x )€ 142 (5e)
o
1 T R
- — [} — —
h b s (Zy-S)ul] + 5, ¥ . G(t-t,) (5f)
X
t =t (x) = J (2k /(y*1)u, (£))dE (5g)
[ [ X 1 1

Finally, the shock wave location is

= +

X xg t € xsl(t) s (6)
where X9 is the steady state location, and X 1 is found from the equa-
tion,

4k, dxs £

1 1 2
e + = 7
(y+1) dt hxd hxu 3 Cu (7a)
oS T/Tl (_I'b)

3/2 (1)
A

The y dependence of x, occurs first in a term of order In

eqgn. (5a), Cw is an arbitrary constant set by the value of the velocity
at the throat; i.e., if the flow is supersonic or subsonic there,
Cw > 0, while if the flow is one which accelerates from subsonic to

supersonic flow, Cw = 0. Also, in egns. (5), f' - df/dx, etc., and f'o

is the derivative of f evaluated at Xq» Cu is the value of a, at X0

T SRSTR—




evaluated upstream of the shock (upper sign in egn. (5a)), C, is an

arbitrary constant of intcgration set by boundary conditions, and G(t)

is the oscillation in pressure impressed downstream of the shock wave
at x = X, say. Hence, upstream of the shock wave, the equation for hx
would be found from eqn. (5f) by setting G = 0. In eqns. (5f) and (5g),

‘l = p(x) is the lag time, representing the time taken by a signal to
travel upstream from x - X, to any position x. The subscripts uand d
in eqn. (7a) indicate functions evaluated immediately upstream and down-
stream of the shock wave, respectively; thus, for example, Cu =u .

and from the shock jump conditions

Uig S A (8)

The function ¢ (x , y) in eqns.(5) is the additional velocity poten=

. . s : 2 .
tial needed to make the solutions uniformly valid to order € . That is,
the solutions with ¢ - 0 are the outer solutions, which do not satisfy
the shock wave jump conditions to second order. Hence, an inner re-
gion enclosing the shock wave must be considered. In this inner region,

: 1/2 : ; : :
which has an extent of order ¢ so that the inner x-direction coordi=-
nate, xm, is written as in eqn. (5e), it is found that the outer solutions
do hold upstream of the shock wave, but that a new solution 1is neces-
sary downstream of the shock wave. This new inner solution satisfies
the shock jump conditions at x = 0 and matches with the downstream
outer solution as « - . The inner and outer solutions are then joined

i g . - 2

to form a composite solution uniformly valid to order € . Thus, up-
stream of the shock wave g"\’,‘, = (’;, - 0 in egns. (5b) and (5¢), while ¢ %

% X X
and ¢ " are found from eqn. (5d) downstream of the shock.
y




Numerical solutions are carried out for given functional forms

for the wall shape, f(x), and impressed pressure distribution, Gft), and
for given values of y, ¢, T, and the steady state pressure at x - X,
Again, x = X is the point at which a given pressure is impressed upon

the flow; setting a given steady state pressure there sets x_, the steady

OD
state shock location, and prescribing G(t) there allows calculation of the
corresponding nonstationary shock wave location. It should be noted
SIig 2 ; o
that variations of pressure of order ¢ at x - X, are sufficient to cause
variations in shock location and thus pressure variations of order ¢ in
the region in which the shock wave travels. This point is illustrated in
figure 2, where a typical pressure distribution for an accelerating flow
has been sketched.

Example calculations are shown in figures 3 and 4 for the follow-

ing conditions:

D
fic) = ISk 13 x =<1
4 05 e P )
27(x~2) /13 + 48(x-2)"/13 + 3 1l <x<2
s X > 2 (9)
G(t) = 3 sin (2t) t>0
-0 t <
= - . -'{ )
€ 0.1 Y 1.4 CZd ‘.\,(,u/»
T 20 c_ =20 X =3 C 0
w 2u

The flow is taken to be an accelerating flow which goes through sonic

velocity at the throat. Hence Cw = 0 and C’u = 0. For CZu 0, satis-

3
faction of the shock jump conditions demands thaf CZd - Zy(‘,u/i:




giving a numerical value for C, ,, then, is equivalent to setting the

2d
pressure at x = X and sets xo, the shock location. That is, if
3
&yCu g 2 3/2
- —— = | i —_— f( = - a (
3 3 ) xo) 4.8323 10)

then, using the equations given for f(x) in equations (9), one can show

that X - 1. 5. Finally, for the given values for T and ¢, it is seen

from eqn. (3a) that kl = 2. With these parameters known, eqns. (4) -

(7) may be used to calculate velocity, pressure, temperature, and

density distributions, and shock wave location and velocity, where

e (11)

It should be noted that the wall shape shown in eqn. (9), was chosen so
that f(x), f'(x), and f'(x) are continuous throughout the channel.

Isotachs and pressure distributions at the centerline and at the
wall, at given times, are shown in figures 3a - 3f for the case where
the flow is steady until, at time t = 0, the pressure oscillation indicated
in eqn. (9) is started at x = X. It is seen that as the disturbance propa-
gates upstream, the velocity profiles downstream of the shock change,
and at time t = 0.39456 the disturbance reaches the shock and the shock
position begins to change. The farthest forward position of the shock
wave occurs at t = 1.96536, figure 3f.

Centerline pressure distributions corresponding to three dif-
ferent shock locations and thus to several different times are shown
in figure 4. The shock is located at its farthest downstream location,

X = Xq - 1.5, until t = 0. 39456; thus only the pressure distribution

10




downstream of x = 1.5 varies with time as illustrated by the two dis-
tributions at t = 0 and t - 0.39456. As the shock begins to move up-
stream, the fluid velocity relative to the wave, uu - u_, increases
because the increase 1in -, the shock wave velocity in the direction

of the throat, is greater than the decrease in u, the steady state
velocity upstream of the shock wave, caused by the decrease in the
cross-sectional arca of the channel. Hence the pressure jump across
the shock increases, as indicated by the distribution marked t = 1. 17996,
where X = ]1.38. At the farthest upstream shock location, indicated
by the distribution market t = 1. 96536, the shock velocity is zero.
Finally, as the shock moves downstream and again reaches

xs = 1.38, att = 2.75075, the fluid velocity relative to the shock wave
is less than the steady state velocity at that point. Hence, the pres-
sure jump across the shock and indeed the pressure at any point down-
stream of the wave, is less than the pressure at the corresponding
point for the t = 1.17997 distribution when the wave was advancing.

In figure 4, it should be noted that the fact that several of the pressure
distributions have common points at x = 3, is fortuitous.

In figure 5, the shock wave position and velocity are shown as

functions of time, for this sample case.

il

2
Solutions for Case (2), T, " (kZ € )
The fundamental ideas underlying the method of solution for this

case were discussed briefly in reference (2). Here, detailed solutions

are given for the same general problem considered for the case (1)

11
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calculations. That is, unsteady flow with shock waves, in a two dimen=-~
sional channel, is considered. The unsteadiness arises as the result
of oscillations impressed on the flow at some point downstream of the
shock; upstream of the shock, the flow is steady. The impressed os-
2

c¢illations again have an amplitude of order ¢, i.e. they occur in the
second order pressure. Now, however, the period of the oscillation
is large compared to the time taken for a signal to travel upstream

1 hock wave.

Because 7, > T and the partial derivative with respect to

1’
time is ordered by T-l (i.e., 3/3T = % d/at), it is clear that insofar
as the general form of the outer solutions for u, v, P, efc., are con-
cerned, the solutions for case (2) should be derivable from those for
case (1), by simplification. Thus, eqns. (4}, (5a), and eqns. (5b) and
(5¢) with (L:; 0, hold for this case also. The questions which remain,
then, are those concerning the calculations in the inner region, for C*,
the calculations for hx, and the calculations ior the shock wave position.
In case (1), because unsteady oscillations in pressure (and thus u)
are impressed only in second order, the first order solution downstream
of the shock has to be the steady subsonic solution associated with sonic

flow at the throat, i.e., u, - - s fix) (C = 0), since it would
1 (ytl) w

/¢ hold for the case where no shock exists, as indicated in figure

)
2. Between the throat and the shock, on the other hand, Hl {—‘—l—f %)
Y

Henee vy | - u] . As a result of these considerations, the shock
C u

)
) o . ; . 2L
velocity must be of order ¢ . That is, the shock wave jump condition

relative to the wave 1s, to first order,




u -u =0 (g -u, ) (12)

1d ls 1u Is
where u. 1s the lirst ordershock velocity. Since u, =-u, , itis
Is g 1d lu
seen that Vi = 0, i.e. the shock velocity is of second order. Since
-1
Ty O(e ), then, the shock velocity, ugs is
dX dXx
T k. e=—= = k, ¢ o (x, + €x > ) (13)
s dT 1~ dt 1 dt 0 1 ot
so that x must be constant, and x =x .(t). In the present case,
o} sl sl

for the reasons mentioned above, the shock wave velocity is, again,

of order (2. However, Ty O(G_Z), SO
dXS 2 dXs
Rt B WEL)

: : : th :
and we see that now X varies with t in zero order. That is, the
variation in shock position may be of order unity; the shock can move
completely through the channel, as opposed to case (1) where the shock

motion is a perturbation about a steady state location, x Here, for

0
convenience, we again write the steady state shock wave loc-ation as Xy
and write for the general shock location,
e e e i N G e L (15)
s so sl 0 SO sl

Again, the y dependence of the shock shape is of higher order than that
retained in egn. (15).
Because the outer solutions do not satisfy the shock jump condi-
tions to second order, it is necessary to consider an inner region en-
: L : (1) y ;
closing the shock wave, just as in case (1). However, the situation

in this case is complicated by the fact that the shock wave moves over

distances of order unity. That is, in case 1), because the shock motion




is a perturbation about x ., with the order of the distance moved small

0’
compared to the thickness of the inner region, it is possible to con-
sider a stationary inner region, inside which there is a higher order
shock wave motion. Here, on the other hand, one must consider an
inncr region on a coordinate system which moves at the shock wave
velocity; in view of the expansion for X »otgn (15), it is sufficient to
consider a coordinate system moving at the velocity ;(sn (lxso/d'l'.

If quantities relative to the moving coordinate system are de -

noted by a caret, then,

A A N ”

X = X y y [ 1 =t (16a, b, c,d)

50
* Lon R A ' A :
q ) = A % A v = ¥ (l6e, £, g)
S0 SO
A Z& ;;Z)
Al SO
h )i — R o TR O T S (L€N)
t 2 { SO <

aip . 3 : .
where  is the vector velocity and ht the stagnation enthalpy in the mov-
: : 2 i :
ing coordinate system; h‘ h + q /2, and q are the stagnation enthalpy
and velocity in the absolute systems respectively, and h is the static
enthalpy.

Since the moving system is a lincarly accelerating system, the

conservation equations may be derived from those valid in an inertial

system by using the simple transformations,

J J . 8] J J J J o
- s g2 — - e === = e 1 fe, B;e)
ol 9T S50 Jx Ix 9% Iy v

Thus, the mass, momentum, and energy conscrvation equations become

ap A
')(I‘ e. P q 0 |18«l)




A A -
Vh +ax = aﬁp (18¢c)
T

Also, the following dimensionless property relations hold for a perfect

gas with constant specific heats:

~

h = —T— (19a)
Y—
118
ST SAg
g = Y R (19b)
P = p % (19c¢)

where s is the specific entropy made dimensionless with respect to R,

the gas constant. If we now write the velocity as

+ 8, (20)

Q>

A
= "V

..D)*

Then, using eqns. (18c) and (19), one can show that the energy equation

can be written as

o8
x> A 4 & A e P 0As A a
“ V(h + (D{\‘ + x x ) oy e - D ‘21)
3 S e s Yo 8T 8%
A .. x> — > AURE .
where ux =¢q - 1 % = q - Vxx__. Now, the Reynolds number is
SO so so

taken to be large enough that viscous effects arc negligible, and the
flow is transonic so that shock waves are weak (i.e., As = O((j)). If
one writes the equation expressing the change in vorticity along a
streamline in the moving coordinate system, onc can thus show that
A (7/2) -2

9. ° O . Moreover, since TZ = O(e 7), it is easy to show that the

terms on the right hand side of eqn. (21) are negligible; that is to the

—




order desired, eqn. (Z21) becomes,

A A A AN
h + &8 t x x = B (22)
{ Al SO

This is the form of the Bernoulli equation to be used in the moving

coordinate system. The corresponding equation in the inertial frame
. (4)
is
+&® = F(T 3
h, T (T) (23)
AN
The relationship between F(T) and F(T) is easily found by writing

equation (22) in terms of absolute quantities, using equations (16), (17),

N
and the relation between ®and @, i.e.

A

d = d+% % (24)
SO

and by replacing ht + & by F(T) according to eqn. (23). The result is,

T
2
A A
F(T) % ;0 = F(T) (25)

: 2 4 2 4 A A
Actually, since xfo = kzc (d xqo/dt) = O(e ), F(T) - F(T) to the order

/ N
desired. The values of F(T) and F(T) upstream of the shock wave can

be found easily by noting that there the flow is steady, so (DT - 0, and

F = constant evaluated in the undisturbed flow. Thus

N
X
R AR so _ (ytl)
Fu(T) 2 Fu(T)- > = Fiy<d) (26)

A
The values of F' and F downstrcam of the wave may be determined by

noting that the stagnation enthalpy relative to the shock wave, written

‘4)Gudcrley, K. G., The Theory of Transonic Flow, Pergamon Press,
Addison-Wesley, 1962, p. 7.

16




either in inner or outer variables, is conserved across the wave, i.e.

- &
htd = htu’ where the subscripts u and d refer to positions immediately

upstream and immediately downstream of the wave, respectively.

Then, using eqns. (16), one can show that, therefore,

‘EZ \.:2

. " so : ~ 80
- 3 + 3 = + — (27
htd ud\{so 2 htu be ct 2 £

and if, again, we let Cu = ulu(xso) and note that from the first order

solutions, across the shock, uld: -~ ulu’ then eqn. (27) becomes,
— __ﬂL_ =; 7 +
htd E Ty ZEXSOCu (28)
(y+1) ]
where h = and u - 1 +eu, +... have been used. Now, since
tu  2(y-1) 1

the unsteady terms in the outer, inertial frame, solutions are of sec-

ZRU
ond order, and T, = O(¢ ), it is seen that downstream of the wave,

2

- 7s
& = 0(64). Hence, to order (5 (since x = k,c d x /dt), one finds
X SO 2 SO

from eqns. (23) and (25) that

e
A *so v+l .
T = - — - +_'_ Q
Fd( ) Fd(T) > Z(y-1) Zexso Cu (29)

Hence, the Bernoulli equations in the moving coordinate system, eqgn.
(22), and in the stationary coordinate system, eqn. (23), arc known,
both upstream and downstream of the shock wave, by virtue of egns.
(26) and (29). It should be noted that the same results are found if
detailed inner region calculations are carried out.

An inner region, enclosing the shock wave, must be considered
because, as mentioned previously, the outer solutions do not satisfy

the shock jump conditions in second order. In this thin inner region,




gus e i o ' . e it i e

then, the solutions must (i) match with the outer solutions term by
term as the outer region is approached in an appropriate limit, (ii)
satisfy the wall boundary conditions, and (iii) satisfy the shock jump
condition at the shock wave. The analysis differs from that followed
in reference (1) only in a few minor instances, so a very brief review
is given here, with emphasis on the those differences.

The gas dynamic equation in the moving coordinate system may
be derived from eqns. (18), (19), and (20), with Z{a =0 and As - 0
(to the order desired here). However, it is simpler to transform the
cquation written in terms of absolute quantities, o using eqns. (17) and

(24). The result is,

2 n2 A 2 N2 A A A A A
(a - <I>)A()<I> . +lar = @9)%,\ 28,9, ., - D~

vy X y Xy T
x A A A X (50)
- 2PaDra - 28, Pt - x Py -X x+x%x x =
% kT y yT “so & *so© " ¥so'so

1)

Just as in case (1) ', it can be shown that the inner region is of

1/2 . : ’ : ;
order ¢ in thickness. Hence, inner variables are written as follows:

x:; - (x-x )(-l/& y*

- ::: = ‘: st lt:: e
- y T T=x,b=r (3la, b, c)

and an inner velocity potential may be defined as

sk % 3 sk =] f2 A % % . =2
®(x ,y ,T )=c /q>(>’£,y,T):x(1-xso)+e /xso
(32)

%k K ¥ ¥
FrBL (e Ly it

where (b:'( is the perturbation potential. From eqns. (31) and (32), it

is scen that

A " £3 sk N 5
a - ‘(\ - (I;*:u =1 + *-xqo (335a)
X X
A & * B )
n g <,”Zq> i (_I/ZV ) rl/')‘cb (33b)
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The matching conditions for u and v , i.e. the solutions to
which they should match as x - + 0o, are found by transforming the
outer solutions for u and v (eqns. (4), (5a), (5b), and (5¢) with ¢ =0)

: ; A
into velocities in the moving coordinate system, u and v ‘eqns. (16f)
and (16g)), then expanding these solutions about X0 and writing the
resulting expressions in inner variables. If iso is subtracted from
eqn. (3la) in reference (1), then eqgns. (31) in that reference are pre-
cisely the desired relations. Now in case (1), because Xg = constant
th 5 :
was the zero order shock wave position, no further matching was
required. Here, because xso = xso(t), there is a function of time in
the potential which must be found, in order to evaluate ¢>q1 . properly
in the inner region counterpart of eqn. (22), the Bernoulli equation.
This term is found by matching the potential; i.e. using eqns. (24)
Z A
and(32), with ® = x + €¢1 +€ ¢2 + ..., and expanding P about x o one
S

*
can show that the inner perturbation potential, ¢ , must approach

* e e 1 / 7
(=

¢ (too, y ,t) = Pyl Ve (34)

SO
where ¢ (x ) has its value downstream of the shock for the upper sign
1% PP g

in rbm, and its value upstream of the shock for the low~r sign. Finally,

3
the resulting expansion for ¢ is,
x  1/2 . 9j3 % 2 *
b ix 0)+e¢l+e/ + €%, + ... (35)

¢y ®3/2 2

s
where, since x =x (t), then ¢, (x ) is a function of time alone,
S0 so 1 so

and,




with ¢lx(xso) = Cu upstream of the shock and ¢1x(xso) = Cu down -

stream of the shock. It should be noted that in case (2), C = Cu(t)
since x =3 (t).
so SO

With the expansion for ¢ known, the governing equation in the

inner region may be derived. Thus, eqn. (22), with

: Y. 2 a2 a2
h = e = +
, = h 5 -1 2 (36)

is used for aZ in eqn. (30), and the resulting equation, using eqns. 3b)
(31), (32), and (35), is written in terms of inner variables; finally,
governing equations for eath 4)? may be written. These equations

are precisely the same as those derived for case (1), because even
though ulu(xso) = Cu is not a constant, and in fact is a function of time,
there are no time derivatives involved in the governing equations to

the order desired, as a result of the order of TZ. Also, the boundary
conditions at the wall and the shock jump conditions are unchanged.
Hence, the inner region solutions are the same as those given in ref-
erence (1); that is, one can define an added second order potential
function, C*, in the same way and obtain for it the same solution.
Therefore, eqns. (4), and (5a) - (5f) give a composite general solution
for u and v, uniformly valid to second order, for case (2) as well as
case (1). There remains only the question of the proper forms for hx
and the shock position, corresponding to eqns. (5f) and (7a) respect-
ively, in case (2).

The equation for h , which occurs in the second order outer
X

solution for u, is found by deriving the third order velocity solutions

20




and applying the boundary conditions. The procedure follows exactly

those steps given in reference (1) and so will not be repeated here.

The equation found for hx is, then, for case (2),

A(t)
oy

h = —'(l)'(f"+(2y-3)ui)+ (37)

X

where A(t) is a function of integration. This is the same equation found
- (1) - e
for hx in case (1) except that in case (1), an additional term, ht' ap-

pears in the equation. Because T, > T , and 0h/9T (dh/at), it is

2 1

4

clear that in case (2) the term 9h/dt appears in a higher order calcula-
tion rather than in the same equation as hx; hence in case (2), the cal-
culation for hx is easier than in case (1). The boundary condition to be
applied, in order to evaluate A(t), is that a given, unsteady, pressure
is impressed downstream of the flow, say at x = X, these pressure os-
cillations being in second order, as stated earlier. Now, since one

(1)

can write the pressure as

2
P:l-fyul-( yuz*‘... (38)

and since the unsteady part of u‘Z is hx(x, t), it is clear that a condition
on h\_ is equivalent to a condition on the second order pressure; hence
boundary conditions on hx are given downstream of the wave.
For steady flow, A(t) is a constant, say C,s 8O
(&
1 2z 2
= == Py it e 39)
h 6( (2y 3)u1) % (39

" 1
Thus, eqn. (39) holds upstream where the flow is steady, and where

Cz = C& , say. Downstream of the shock, where the flow may be
u

&l

i




Wi

unsteady, it is convenient to write h_ as the sum of a steady term,
X

(h ) £ given by eqn. (39), and an unsteady contribution, h‘(, where,
then
o, A(t)-C2
I R = e (40)
X uy

If the boundary condition is written as

h . GAE)
h (X, t) - ay () (1)

Then it is seen that A(t) - CZ -~ G(t) and so in general,

s 2 2
= ) — 2 b +
h. @ (2 5)ul)

Q

(t)

+

|

42)

—
(o1
—

When this solution is compared with the corresponding solution for case

(1), given by eqn. (5f), it is seen that the only difference is the absence

of the time lag in G, in eqn. (42). This, of course, arises as a result

of the fact that in the present case T h =T B oo that in the limit as
(& s

¢ =+ 0, there is no time lag; the impressed pressure oscillations and
the corresponding oscillations in u, P, p, etc., are in phase. ﬂ
The equation for the shock wave location is found by applying

the mass conservation principle to a control volume containing the shock
wave, and hence attached to the moving coordinate system. If this con-
trol volume is considered to have an extent, in the flow direction, of

1/2 3 )
order ¢ (the control volume extends from a constant negative valuc '
of x  to a constant positive value of x ), then the variation with time of

: i SRS

the mass within the control volume is at least of order ¢ . Since the

: ; 3 ’ il
interest here is only in terms to and including O(¢”), the time variation

22

- —— —




term need not be considered, and so conservation of mass demands

that
Tw A A ~y“, A A
‘ pudy = J pudy (43)

where, from eqns. (4), (5), (16), (19), (22), (29), (32), and (36),

A 2f yt+1 Z . As . (yr1)(3-2y) 3
= = — —_t . s -
pu b - € (( > )u1 +k£xso) e{€3 kz Cu\so 7 4,

(44)

2 .
[ S e e * oy ; +
3 (y+l)ul(f > hx ('x* kzxso) (y l)ulk&x so) ]

Upstream of the wave, up = Cu and C:':* =8 () yyhile downstream of the

X X
wave, u, = - Cu and ¢ . is calculated using eqn. (5d) and evaluated at
* *
some x = constant. In both locations, f'' = f"(xgo) + . . f"o, say.
& S

Finally As = s - S, " 0 upstream of the wave and is equal to the As
(5)

across a weak shock downstream of the wave, i.e.

) : . Y 3
(&d-su) = (s 3 (y+l)Cu e (45)

: : : 3
Since we are interested only in terms up to O(c ), and ')‘r = 4e O((Z),
; W
it is seen from eqns. (43) and (44) that in the integral in eqn. (43),
the limit ';'w may be replaced by 1. Now, if eqn. (44) is substituted

into eqn. (43), using the above mentioned substitutions upstream and

: 3 .
downstream of the wave, then from the first nonzero term (Ofe 2) bt
I
is found that since [ (":,:dy = 0,

0 x ‘
(5

’ )Li(‘.pmann, H. W. and Roshko, A., Elements of Gasdynamics,
John Wiley and Sons, 1957, p. 60.
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"
4k2 dxSO f

(y+l) dt ] X X g " Cu 6)

Thus, the form is exactly that found for case (1), eqn. (7a). However,
in eqn. (46), Cu and f;’o, for example, are functions of time rather
than being constants as in eqn. (7a); as will be seen, this leads to dif-
ferences in shock wave velocity between the two cases.

It should be noted at this point that the general form of the solu-
tion is the same for the two cases. The differences, which are funda-
mental, are in the details of the solution, i.e., in case (1) a time lag,

t is involved and in case (2) it is not, and in case (1) functions evalu-~

X
ated at the shock are constant, while in case (2) they are functions of
time.

Before showing example numerical calculations for case (2), it
is of interest to write equation (46) in a more convenient form and com-
pare it with its counterpart from case (1). The problem considered
is, again, that of a flow which accelerates through sonic velocity at a
throat. There is a shock wave in the flow, which is steady until, at
time t = 0, second order pressure oscillations are impressed upon the

flow downstream of the shock wave. If eqn. (42) is used to calculate

h and h_ , then, since C, =0, eqn. (46) becomes,
x X 2u
d u
4k2 dxso
(yt1) dt

s C P £X C{+G(H 47)
(% & 3 u

u d

Equations (5f) and (7a) may be used to derive the corresponding equa-

tion for case (1), Thus,

24




4k dx
1 sl 1 2y 3
= (& s F G-t 48
(y+1l) dt Cuo l:ld 3 Cuo { fo)] &)
where tfo = tl (xo) (see eqn. (5g)), and where Cuo = Cu(xo)' At steady
dx - dx 1
state, when G = 0 and E;i- = 0 = dt' both eqns. (47) and (48)
give,
= &Y e? A
CZd 3 Cu(xo) 3 Cuo 49)

so that finally, one can write, for eqns. (47) and (48), where, again,

Cu = ul(xS )5

o
4k dx :
2 so _ _1(f2y .3 3
_(Y+l) ey = —Cu( 3 (Cuo-cu) G(t)) (50a)
4k dx
1 sl 1
Sl s o 5
1) at C G(t 1[0) (50b)
uo

The differences between the two shock motions are apparent, when
written in this form. A more detailed discussion of the shock motion
for case (2), eqn. (47) or eqn. (50a), is given later.

Numerical solutions for a typical case (2) flow are shown in fig-
ures 3a (t=0, steady state), 6a to 6¢c, and 7. The wall shape, functional
form of G(t),and in fact all parameters except for T are the same as
those used in the numerical examples shown for case (1), figures 3 to
5 (Egns. 9). Thus, in Case (2), Ty = 100 while in case (1),

Ty T 20. The most significant difference noted between the two cases

is the overall shock wave motion.
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Unified Solutions - Case (3)

The differences between the two cases considered are very clear
from an asymptotic viewpoint. However, if one wishes to make flow
field computations for a given set of physical constants, the choice of
which set of solutions to use is not so clear. Thus, if ¢ ~ 0.1 and
T = 40, then should one use case ‘1) solutions with a k .25 or case

1
(2) solutions with k& = 2.5?7 A relatively simple answer to this ques-
tion consists of using the results of the previous analysis to write a
unified solution for numerical computations.
From the preceding analysis, it is clear that the general form of
the solution for case (1) is the same as that for case (2). In what fol-

lows, the aim is to write a solution which reduces properly to either

case. We first rewrite the time lag, eqn. (5g), as follows:

t = = T (51)
X
=]
Then as T — e (kl() , eqn. (51) reduces to eqn. (5g), and as
A | e = ;
T = TZ 4k&1 ) G !f O(e), and becomes negligibly small. The uni-
fied solution thus is written with (‘:(t-tg) in h‘, with tp given by eqn.
(51).
The only remaining difference is that in the equations for the

shock wave velocity, i.e., eqns. (47) and (48). For the unified solu-

tion, we write

X X Fox (t) (52a)




1 4 S 1 ' 2y ~3 ’
e + + G(t- :
(Z (1) at Cu CZd Scu Gt tro) (52b)

X
d¢
ey l,f o __2 (52¢)

and for the specific problem considered here, where oscillations are

impressed on a flow with a steady state shock location,

3
CZd = -2y Cu0/3 and so eqn. (52b) becomes:
d ¥ =
1 e TR e 3 ,
T € (ytl) dt CULS(Cuo-Cu)-G't-tlo)] {55
-1 ] .
Thus, for T— Tl = (kl €) , the solution of eqn. (53) or (52b) is for
+ +
x f[e, i.e., x =€x .. Then C =C + O(€), and eqn. (53) reduces to
X s g1 u uo
2
eqn. (50b). On the other hand, if T— o - kzc b tlo = O(€e) and egn. (53)
¥
reduces to eqn. (50a), with X 0= O(l1). Therefore, the unified solution

suggested here is given by eqns. (4), (5a) - (5f), (51), and (52), with
eqn. (53) replacing eqn. (52b) for the specific problem considered here.
An indication of the relationship between calculations carried out
using case (1), case (2), and case (3) solutions, is given in figures 8
and 9. In figure 8, case (1) (eqns. (6) and (50b)land case (3) (eqns. 52)
computations for shock position are compared for v - 20, ¢ = 0.0°
(i.e., kl l in case (1)). In figure 9, case (2) and case (3) computa-
tions for shock position and shock velocity are compared for v - 400,
€ =0.05 (1.¢:; kd = 1 in case (2)). In figure 9, the difference in shock

velocities is entirely due to the difference between Git) and Gt ~.t‘0)

and thus gives an indication of the effect of carrying lp in G in case (3),

&7




Yo Cety "f > ‘g . In ecach comparison, case (3) is considered to be the
o —

more accurate calculation, which reduces to the case with which it is
being compared, as ¢ = 0. It should be noted that as T increases in
value to the point that the difference in u, say, between values found using
ol g . : 3
t, in G and not using tl in G, becomes of order €, then tp should be
: ) : 3
neglected; i.e. inthe solutions, terms of order ¢ have been neglec-
ted, so a term of this order should not be carried as a correction to
Gl(t).

In summary, then, it is possible to construct a unified computa-
tional scheme from which numerical results may be obtained for a
large range of ¢ and T values. These solutions are valid in the so
called slowly varying time regime, which covers a range of character-
istic times, for impressed pressure oscillations, of considerable

technical interest.

Large Amplitude Shock Wave Motion

As indicated previously, when 1 - O(f&) (case (2)), the shock
motion resulting from pressure oscillations impressed downstream of
the shock wave, has an amplitude of order unity. As a rcsult, there
are conditions under which the shock will move upstream through the
nozzle, disappear upstream, and then reappear as the downstream
plenum pressure drops to the point where a shock wave in the channel
is necessary to satisfy this instantaneous pressure requivement.  The
conditions for this occurrence and the subsequent shock wave motion

depend in a complex manner upon the amplitude of the forcing tunction,




G, the steady state condition about which the oscillations occur, repre-
sented by CZd’ the wall shape, f(x), and the numerical value of the
time constant, represented by kl.

The equation which governs the shock motion, repeated here for
convenience, is eqn. (47), or in the form suited to the problem under

consideration, eqn. (50a).

4k dx
2 so 1 2 3 ‘,
e = e g + 4
(yr1) dt c. [CZd e &7
4k dx =
2 so 1 oy 3
D @ C L 3 e 5 - G(”‘l {50a)

where, since X, =X + O(€), then to the order considered here, X and
Xeo are interchangeable. The interesting point indicated by the exis-
tence of these equations is that in spite of the fact that signals from the
impressed disturbances reach the shock wave 'instantaneously, " that
is there is no lag time in the pressure or velocity solutions for exam-
ple, the shock wave does not respond instantaneously. The shock ve-
locity is finite, and indeed there is a lag between the impressed dis-
turbance, G(t), and the resulting stretched shock velocity dxso/dt, due
to the other terms in the equation. Thus, in equation (50a), for exam-
ple, it is seen that the term (Cio - Cj) always has a sign such that
its effect is to cause the shock to move toward the equilibrium or
steady state position. On the other hand, G(t) is a forcing function

which changes sign periodically. The result is a shock motion which

lags Git).

S erT—
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It is clear from eqn. (47) or (50a) that singularities occur as the

shock wave approaches the throat, and Cu - 0. The behavior of inte-

gral curves which cross the axis, X

= 0, on the x - t plane can
SO SO

be found for a sinusoidal G(t) by writing eqn. (47) for X (and thus Cu)
small compared to unity and for t - to < 1, where A is the value of t at

which the bracket on the right hand side of eqn. (47) goes to zero at the

throat, x i 0. Thus, if, for example,
S
G G sin bt (5%)
o
then
sin bto = _CZd/Go (55)

and eqn. (47 ) becomes, for xso <1 and t - t:0 <1,

e (y+1) e
e e e = 5
yo 3 (b Go cos bto) o (56a)
2 u
o8 bit = 4+ Wl < (C. . /G )Z 56b)
e TR e £
where, again, C u, (x Vis the value of u, at x , upstream of the
u lu "so 1 SO

shock, and where Cj <t - to. In the neighborhood of the throat, a
parabolic wall shape is representative of actual practice. Thus, a
typical wall shape and the corresponding solution to eqn. (56) are, in

the neighborhood of the throat,

flx) = ax (57a)
3/2
s +1 I z :
x R\ a2 ET -t ) (57b)
SO LY Na o o o
i
50




Thus, if cos l)lo > 0,the point 0, to is a center and the integral curves
(ellipses) in the neighborhood of this center cross X 0 with an in-
finite slope. Such curves are shown in figure 10. On the other hand,
if cos bto <0, the integral curves in the neighborhood of 0, t, are

hyperbolae, the point being a saddle point, as illustrated in figure 10,

and the two integral curves pass through the point 0, t, with slopes

dx (vl 3/2 b G 1 /2
800 . JLY ) 9 [cos bt(J (58)
dt — 5/2 1/2

2 k2 a

An understanding of the possible shock motions may be gained by
analyzing the integral curves which pass through the saddle points. The
three possible configurations for these curves are sketched in figure 11.
In these sketches, the arrows indicate the direction the solutions must
follow as time increases. In figure lla, conditions are such that the
integral curves entering the saddle point originate from a particular
R at t=0. Those leaving the saddle begin to rise, then reverse
their directions and cross the time axis with vertical slope at some
point between the center and the next saddle point. Other integral
curves are sketched also, in dotted lines. As indicated in the sketch,

the paths traced by the integral curves are repetitive. In figure llc,

the opposite situation exists; the integral curves entcring the saddle

point begin on the abscissa, between a saddle and a center, with an
infinite slope and then change direction and enter the next saddle point. ;

Those curves leaving the saddle never return to the axis x 0, but
SO

asymptotically approach a single periodic curve (for a given C)d\.
= )




Those curves which originate with an o greater than any Koo on this
periodic curve will approach the periodic curve asymptotically from
above. This periodic curve is nearly symmetric about X the steady
state value of X o In the dividing case, shown in figure 11lb, the
curves entering and leaving the saddle points are the same curve,
The integral curve map obtained in any given case depends upon
the values of the amplitude of G, CZd’ kz, and the value of dcu/dxso
Although general solutions from which a general criterion for the di-
viding condition (figure 11b) could be derived are not available, an

approximate result can be found for G as given in eqn. (54) and f(x)

as in eqn. (57a). Thus, with these substitutions, eqn. (47) becomes,

so 3 :
o = & Cad = r‘xso = Go sin b t (59a)
5
2 /akz\"a 2 2 3
= —._._-_m_ r = —3\1(——:——?— (59b, c)
(y+1) ¥

and the slopes of the integral curves at the saddle point are given by
eqn. (58). It is assumed that the integral curve which passes through
the saddle point at bt = bto and also through the next saddle point at

bt = bt0 t2m(e.3., see figure 11b), is approximately symmetric about

bt = bt0 t 7. At this point, x " is taken to have its maximum value,
s

(x )_, and so dxqo/dt = 0. Hence, from eqn. (59a),

( | 7 zc2d 1/3 i
xso M T g

sOo Im




The integral curve in question is approximated by a polynomial,

e o ~2  ~2
x_ = C t(l-t) +4C,t" (1-t) (6la)

SO
t o= b(t-t)/2m (61b)

which satisfies the conditions that x=0 at bt - bto and bt = bt() + 2w, and

dx Jdt - 0 at bt = bt + 7. Moreover, at bt = bt and at bt - bt +2m,
SO o o o

the correct slopes of the integral curves are obtained if bCl/Zn is

given by the right hand side of eqn. (58) with the upper sign. Finally,

at bt = bt_+ =,
(o]

X = (Cl +C2)/4 = (x )

so som’
Since C1 and (xso)m are known in terms of the desired parameters,

it is necessary now to find CZ’ or what is simpler CZ/CI’ where

C. 4(x
(62)

The desired relation is found by integrating eqn. (59a), over the periad

bt0 to bto + 27 The result is, using eqn. (61b),

1 (@
e B e
0 xsodt SR Lol

If eqn. (6la) is used in evaluating eqn. (63), and CZ,"C1 is replaced,
using eqn. (62), the following cubic equation and solution are found

for (xso)mlcl = B, say,

(48-1)3 lé’-—-——-lB3 + (413.1)2

1
3.7-11-13 ~ 2 by o

4 2
—_—  (4B-1) ————t — 8
3.7.11 (4] l)5.5.7 T

(64a)
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)
_S() m

> = - 64b
B C 0.19811 ( )
1
]
From eqn. (62), after substituting for C.,C., and (x ) , one finds
1 so m
the equation relating GO, Cld' k& and a for the special dividing case
1llustrated in figure llb.
2 F
5 2 Zk2 bZ 3C2d = 1
GO“ = C,4 t0.41652 - (65)
(ytl)a Y
Then for GO greater than the special value given in egn. (65), the inte- 1
gral curves shown in figure 1lla result, while for Go less than the spe-~

ial value, those in figure llc¢ are found.

Example calculations of the integral curves through the saddle
points, with the sinusoidal forcing function given in eqn. (54), with
parabolic walls as in eqn. (57a), and using the approximate form to
calculate the special value of Go, eqn. (65), are shown in figure 2
The calculations were carried out by numerically integrating eqn.

(59a), using eqn. (58) to find an initial condition near xso = 0. In the
/2

¢ alculations, b=2, kztl, a=(ytly/z = 1.2, %= 5, Cu = (.Zf(x)/(yw‘l))1

nE LG e s . 2%
and ('Z.d yCuo/ In figure 12, the letters a, b, and ¢, refer to

the corresponding cases shown in figure 11. In each case, only the

curves through one saddle point are shown; the repetitive nature of
the curves at cach saddle point is not shown, for clarity. It should be
noted that the value of l” in figure 12, referring to the location of a
saddle point, is different for each case. The centers, which also oc-

cur at different values of t for each case, are noted in figure 12. With
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the parametric values given above, it was found from egn. (65) that

the special value of Go' which gives the behavior shown in figure 11b,
is

(G ) = 4,968098 (66)
(o) Sp

The curve labeled b in figure 12 indicates that this value is quite accu-
rate. The integral curve leaves Fon © o, t—to - 0 and returns to

X = 0 very nearly at t_tso = m; the approximations employed in de-
so s

riving eqn. (65) appear to be justified. The curves labeled a and ¢

in figure 12 were calculated using G0 = 5.5 > ((‘,o) and Go 4 < (GO) ”

sp Sp

respectively. In each of these cases, curves entering and leaving the
saddle point at t-to = 0 are shown, the behavior in each case following
that sketched in the corresponding part of figure 11. It should be noted
that the solutions shown in figure 12 are for very simple (parabolic) wall
shapes, and that no simple way of predicting (Go)sp for the case of
general wall shapes exists. However, these simple calculations, the
results of which are shown in figure 12, serve to illustrate the various
cases which may occur, as sketched in figure 11, and thus are extreme-
ly useful in interpreting results found for more complicated geonictries.
For such geometries, it is necessary to integrate numerically along an
integral curve leaving a saddle point to see which case occurs for the
given parameters. Examples of such calculations arc shown later.

With the mathematical behavior of the integral curves through
saddle points understood, it is possible to interpret the physical behavior

of the shock wave in each case., Referring to figure lla, for any initial
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condition which does not lie on an integral curve entering a saddle
point (two are illustrated by circles in figure lla), the shock passes
through the throat and disappears upstream. This is seen by following
the integral curve in question as time increasés; X, 8oes to zero, for
any initial condition, between a center and a saddle point. As time
increases, then, a saddle point occurs at xso = 0, and an integral
curve rises from the saddle point in the direction of t increasing.
This means that the back pressure has decreased to the point where

a shock wave must form in the channel in order to satisfy the instan-
taneous pressure requirements. This is seen by writing the pressur e
at x = X, using eqns. (38), (5b), and (39); since f'"'(X) =0,

C,q * GIt)
2 Miay 2 2d
3 2y-3 adi - T
P,o= 1-eyu (X)+ey g )ul(X)- a ) . (67)

where ul(X) < 0. From eqn. (67), it is seen that the conditions for
the back pressure to be that which gives the subsonic solution (no shock
waves) with sonic pressure at the throat (upper dotted curve in figure

2) is

C2d+G(t) = 0 (68)

But this condition, for the case where G(t) (and hence the pressure) is
decreasing, is precisely the condition for the saddle point, as exempli-
fied by eqns. (54) and (55) and the discussion following these equations.
The fact that this back pressure requirement must be satisfied instan-
taneously by a shock forming at the throat is a result of the fact that

there is no time lag in the solutions for the velocity, pressure, etc.
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As a result, then, the proper behavior for the shock, after it disap-
pears, is to reappear at the time associated with the first saddle point
after its disappearance. It then follows the path given by the integral
curve through the saddle point and so disappears again, forms again
at the throat at the following saddle, etc. Thus, no matter what the
initial condition is, the rvesulting shock motion is associated with the
integral curves leaving the saddle points, as shown in figure 13a. For
the periods of time between the shocks disappearing upstream and re-
forming at the throat, the flow is subsonic throughout the channel. If
the initial condition should lie on an integral curve entering the saddle
point, the shock moves to the throat and moves away again on the inte~
gral curve leaving the saddle point. Thereafter, its motion is the
same as that shown in figure 13a.

Referring now to the dividing case shown in figure 11b, it is seen
that there are several different possibilities for the shock motion, de-
pending on the initial condition, again indicated by circles. If the ini-
tial condition lies outside the integral curves through the saddle points,
the shock position merely oscillates with time, never going through the
throat. If the initial condition lies beneath the integral curves through
the saddle points, the shock moves upstream, passes through the throat
and disappears; then for the same reasons mentioned in the previous
case, it forms at the throat at the time corresponding to the first sad-
dle point after its disappearance. It then follows the integral curves
through the saddle points, so that thereafter, it just moves to the throat

and never passes upstream; this motion is illustrated in figure 13b.




If the initial condition should lie on an integral curve through a saddle
i point, the shock position is completely described by integral curves
i through the saddle points; the shock never moves upstream of the throat.
|

Finally, referring to figure llc, there are again several possible

initial conditions. If the initial condition lies above the integral curve
‘ entering the saddle point, the shock motion approaches a periodic
form, never reaching the throat. If it lies on an integral curve below
the curve entering the saddle point, it moves upstream through the
throat and disappears, forms at the throat at the time corresponding
to the first saddle point after its disappearance, and then moves away

from the throat and approaches a periodic motion, never approaching

A4

the throat again. This motion is shown in figure 13c. Finally, if the
initial condition should lie on the integral curve entering the saddle,
the shock wave moves to the throat, moves away immediately on the
integral curve leaving the saddle point, and approaches the same
periodic motion mentioned above.

The numerical examples shown so far (e.g., figure 12) have
been for simple wall geometries for which it is possible to derive an
approximate relationship between the parameters for the special

dividing case shown in figure 11. (Egn. 65). For gencral geometrices,

i

it is necessary to integrate equation (47) numerically along the inte-
gral curves leaving the singularity, using equation (56a) to find starting
values near X0 = 0, to find which case holds. Examples of such cal-
culations, for the same wall shapes used in example calculations for

cases (1) and (2) are shown in figures (14) and (15). Figure (14) shows
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calculations made for Cad 0, that is, for the case where the steady

state solution is that for which the flow goes through sonic velocity

at the throat but is subsonic thereafter, with no shock waves. Clearly,
the unsteady motion is that illustrated in figure l1la. In figure (15),
two examples are shown in which the only parameter varied is the

steady state shock position, x Referring to the integral curves

0
through the first saddle points, it is seen that for X 1.5, the
situation is that illustrated in figure 1lc, while for X 0.75, it is

that illustrated in figure l1la. Also shown in figure 15 are the solution
curves from the initial condition to the point where the shock passes
through the throat. With these two curves and those leaving the first
saddle point, one can find then the resulting shock wave motions cor-
responding to figures 13a (xO = 0.75) and (13c) (xo =215,

In summary, the above examples illustrate the remarkably
varied shock motions governed by the deceptively simple first order
nonlinear equation (47). Only an outline of the possible shock motion
histories has been presented here. In view of possible applications to
inlet buzz and flutter and surge problems in turbomachinery, it appears

that more work is called for in this problem.

(III) SEPARATION IN UNSTEADY FLOW FIELDS

The basic idea behind this proposed work was to attempt to use
work done on steady shock wave boundary layer interactions at incipi-
ent separation in ascertaining under what conditions such calculations

could be used in unsteady flows. That is, by ordering the partial time




derivative terms relative to the important terms retained in the govern-
ing cquations in the interaction region, it was felt that one could derive
the conditions under which these partial time derivative terms may be
neglected. In that event, the solutions found for the steady flow could
be used for the unsteady flow cases at each instant of time; that is,
the boundary conditions are then time dependent, so the unsteady flow
solution is given by a series of steady flow solutions, each with differ-
ent external conditions. After finding these conditions, they were to
be tested modestly, by ascertaining if the parameter range in which
time derivatives are important contained the case illustrated experi-
mentally by Meicr(()). That is, since Meier's experiments with
shock wave induced scparation in a nozzle flow showed that the separa-
tion point motion lagged the shock wave motion, it was believed that
the terms involving partial time derivatives would be impo:tant. It
has been found, however, that except for extremely small character-
istics times associated with the unsteady flow external to the boundary
layer, these time derivatives are not important. This can be illus-
trated by considering the following two dimensionless terms from the
equation of motion

aT " ox
where u %‘\i is a term found everywhere in the interaction region except

in the region ncarest the wall. It is of interest here to concentrate on

€
())Meier, G.E.A., "Shock Induced Flow Oscillations, " AGARD-CP-
168, Flow Separation, 1975, pp. 29-1 to 29-9.
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a particular region, say the velocity defect layer in the turbulent boun-

; (7 a7 v -1/2
dary layer. In this region, it can be shown ) that du/dx = Ofe )

where € is the order of the first time dependent term in the velocity

evaluated in front of the shock wave. (l.e., u =1 +eC (t) +...).
u

Hence, if T = T t, then for the condition du/ 3T << u du/9x,

S
r>»>c’ (69)

Clearly, this condition is met for all but very small values of —I(

-h.
. J . ; ., (6)
Morecover, in evaluating the T value associated with Meier's
cxperiments, since 1, 25 mm, a = 340 m/sec, 1 h =4 msec.,
b

and ¢ = 0.17, it is scen that T 51 = O(kzt_a). Apparently, then the
range of T values covered by his experiments lies in the slowly varying
time regime and, indeed, falls into the regime referred to as case (2)
in this report. Evidently, then, the time derivatives are not important
in this case; the steady solutions should be valid. The variation with
time of the distance between the shock wave and the separation point

e vidently depends on the fact that the shock motion is large and hence
the variation in shock wave strength is large enough to cause this vari-
ation. In any event, it does not appear that the cause is due to unsteady
effects within the interaction region, as originally suspected. This work
will be pursued to the point of indicating whether the rather strong

time dependence of the distance between the shock wave and the separa-

tion point can be predicted using known steady solutions for the

7
( )Adamson, Jr. T.C. and Messiter, A.F., ""Normal Shock Wave-Turbulent

Boundary Layer Interactions in Transonic Flow Near Separation',
Transonic Flow Problems in Turbomachinery (Eds. Adamson,Jr., T.C.,
and Platzer, M. F.) Project SQUID Report MICH-16-PU, 1976, pp. 392-414.




shock boundary layer interaction and the case (2) shock wave motion

described in section II of this report.

The authors wish to acknowledge the many fruitful discussions
held with Professor Messiter during the course of this work. His
help was instrumental in understanding the various shock motions

described in the section on Large Amplitude Shock Motions and in

particular in deriving the approximate analytical condition for the

dividing case, eqn. (65).
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t

Figure 11, Sketches showing the three possible configurations for integral
curves passing through the saddle points (solid lines); other
integral curves are indicated by dotted lines. (a) Integral curves
lecaving the saddle point reach the time axis before the next
saddle point. (b) Integral curves leaving the saddle point reach
the time axis at the next saddle point. (¢) Integral curves
leaving the saddle point never return to the time axis,
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Figure 13,

I A @

a
/_‘3 '
b
-@— —— -@— ¢
t
c
-— % S H— ————% —@————X
t
Sketches of shock wave motion when the amplitude of the

impressed pressure oscillation is large enough to drive the

shock wave upstream of the throat, for each of the three

cases shown in figure 11; cases labeled a, b, and ¢ refer

to the corresponding cases in figure 11, In each case
refers to the initial condition for the shock position.
equation 15,)
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Figure 14, Calculated integral curves through the saddle point illustrating
the case sketched in figure Ila, for C;q ~ 0, G = 4sin2t, Y 1.4,

2 100, €e = 0.1, Cy, = 0, and f(x) as given in equations (9).
W £ {

Solutions found by numerically integrating equation (47).
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Those curves which originate with an X o greater than any X o O this
periodic curve will approach the periodic curve asymptotically from above.

This periodic curve is nearly symmetric about X, the steady state value

of X o In the dividing case, shown in figure 11b, the curves entering and

leaving the saddle points are the same curve,

The integral curve map obtained in any given case depends upon

CZd' kz, G(t), and the wall shape, f(x), Although general solutions from

which a general criterion for the dividing condition (figure 11b) could be
. derived are not available, an approximate result can be found for G as

» given in equation (54) and f(x) as in equation (57a), Then, equation (47)

becomes

x —=-_C -rx3 - G sinbt (59a) |
3 so dt 2d so o .

i 2212y Ja 3/2

| K 2 r- &2 (59b,c)

] & ————— RS A e ’
i' and the slopes of the integral curves at the saddle points are given by

equation (58), with = and Go related as in equation (55). Now, if it is
assumed that the integral curve which passes through the saddle point at

bt = bto and also through the next saddle point at bt = bto + 2nw (e.g., see

figure 11b) is approximately symmetric about bt = bto + wm, then the maxi-

mum value of xso is, from equation (59a),

= 1/3
() = (-2Cp /1) (60)

| Next, if equation (59a) is integrated first over one period (e.g., bt = bto

to bt = bto + 2n) and then over a half period, then since xso =0 at bto and
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bt +2randx_ = (x_ ) atbt=bt + w, one finds the following relations:
o so so'm o

1
. g o
0=C, +T { oA t=b(t-t)/2m (61a,b)
eri Go
> = -2 == cosbto (6lc)

where, in equation (6lc), advantage has been taken of the fact that the
integral of x:o over half a period is half the integral over a full period

because of the symmetry of X o Substituting for cos bto using equation

(55), one finds from equation (6lc) the following relation for Go' for the
special case (figure 11b):

2 )1/2
2d

2 ; 2
G, -cC =bK@x_ ) /4 (62)

where K is given in equation (59b). Although this equation is useful in setting
a first approximation for Go’ a more accurate result may be found by taking
into account the fact that the integral curve in question is not in fact symmet-
ric, but is slightly asymmetric. In this calculation, it is necessary to
employ an approximate form for xso(t); a cubic equation of the following
form suffices:

~ ~ ~ ~2
xso—Clt(l-t)+C2t(l-t ) (63)

Now, atx_ = (x_ ) , where dx /dt = 0, t is defined as 't ,» where
80 so'm 1o) m

t =

o + & (64)

N

Also, it is assumed that § is numerically small enough that terms involving

2
6 may be ignored. Then, from equation (59a) evaluated at B (xso)m'

equation (61a) with equation (63) used in the evaluation of the integral,

33
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equation (59a) integrated over one half period (t = 0 to t = 1/2) with
equation (63) used in integrating the x:o term, (xso)m evaluated using ]
equation (63) and equation (64), one can derive the following relations ]

for (xso)m' 6, and finally, Go:

% 1/3 A 2
(x‘w)m = (- 35 CZd/ler) , 6= 3C2d/8wa(xso)m (65a,b)
2
bK(x )
2 2 1/2 _ so'm 3
(Go - CZd) i ey iy 87 {0,207 T (xso)m - C?_d) (65¢)

where, again, K and I" are defined in equations (59b, c).

Example calculations of the integral curves through the saddle
points, with the sinusoidal forcing function given in equation (54) and with
parabolic walls as in equation (57a), are shown in figure 12; the first
approximation to the special value of G0 for case (b), calculated using
equation (65c), must be modified using trial and error. The calculations
were carried out by numerically integrating equation (59a), using equation
(58) to find an initial condition near s * 0. In the calculations, b = 2,

@ toe)tty + 1))12, and

k=1,a=(Y+1)/2=1.2,x =1.5, C
o u

3 K "
CZd = - ZYCuo/3, where x, is the steady state value of xso' In figure

12, the letters a, b, and ¢ refer to the corresponding cases shown in

figure 11, In each case, only the curves through one saddle point are

shown; the repetitive nature of the curves at each saddle point is not shown,

for clarity, It should be noted that the value of to in figure 12, referring

to the location of a saddle point, is different for each case, The centers,
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which also occur at different values of t for each case, are noted in figure
12, With the parameter values given above, it was found that for the
special case shown in figure 11b the special value for Go was, from equa-
tion (62), (Go)sp = 4,33 and from equation (65c), (Go)sp = 4,77. The

value which gives accurate results (figure 12) is

T ———————

(G ) =4.968 (66)
o'sp

Thus, equation (65c) is helpful in giving a relatively accurate (4% error)
first guess for (Go)sp; in another case, with all other parameters the same,

but with X, = 0.75, it was found that equation (65c) gave an estimate with

an error of 6%. The curves labeled a and ¢ in figure 12 were calculated

using G =5,5>(G ) and G =4 <(G_) , repsectively. In each of these
o o'sp o o sp

cases, curves entering and leaving the saddle point at t - to = 0 are shown,

the behavior in each case following that sketched in the corresponding part

of figure 11,

The solutions shown in figure 12 are for very simple (parabolic)

wall shapes., There appears to be no simple way of predicting (Go)ap for
more complicated wall shapes; in general, it is necessary to integrate
numerically along an integral curve leaving a saddle point to see which
case occurs for the given parameters. Examples are shown later,

With the mathematical behavior of the integral curves through saddle

| i points understood, it is possible to interpret the physical behavior of

k] the shock wave in each case. Referring to figure 11a, for any initial
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