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CONDITIONS FOR THE CONVERGENCE IN DISTRIBUT ION

OF MAXIMA OF STATIONARY NORMAL PROCESSES

by

M.R. Leadbetter , C. Lindgren , and U. Rootzén

I

1. INTRODUCTION

Let be a stationary normal sequence with zero means , uni t

variances and covariances rT ~~~~~~~~~~ 
and put M = max

1<t<n
r~ 0, T 

~
‘ 0, i.e. if the variables are independent then 

—

(1.1) P(a (M —b ) < x) -, e e 
, ~~ 

+

where a = /2 log n and b a~ — -
~~ a~{1og log n + log 4ii}. This result

goes back to Fisher & Tippet (1928). The same conclusion was obtained under

successively weaker dependence restrictions by Watson (1954), Loynes (1965),

and Berman (1964) . Berman ’s result is that if either (i) Vn 
log n + 0 as

n -, ~~~, or (ii) E~~0r
2 < then (1.1) holds. Mitt al  & Ylvisaker (1975) con-

sidered a somewhat weaker version of (j) (in the vein of (2.2’) below) and

from their paper it can be seen that U) is rather close to what is possible :

if e.g. r~ log n -‘ ~y > 0 then a different limit law holds. Nevertheless

neither of (I) and (ii) implies the other in general, and the precise relation

between the conditions is not obvious.

For a standardized stationary normal process (~
(t) ,  —oo<t<o } in

continuous time with covariance function r(T) E(~ (t) ~,(t+t)) the asymptotic

behaviour of M(T) max ~(t) depends not only on the rate of decay of
0<t<T

r(T) as t -$ 
~~~, but also on the local behaviour of r(r). If

(1.2) r(T) 1 — Ck~~ 
+ o(f~r(

a), t + 0,

where C is a constant (or, more generally , a function of slow growth)

and 0 < a < 2 then there is a version of ~(t) which has continuous

sample paths, and if r( t) decreases quickly enough , then for this version

(1.3) P(aT(M(T)-bT) $ x) + e~~~~, T -
~~



r~~~~~~~~

where aT /2 log T and bT aT 
+ a~~{(~ 

— 
~)1og log T +

+ log[(211) 1”2C 2}I
a
2(2~~~~

2a]). This has been proved under various

conditions by Itozanov & Voikonski (1959), Cramer (1965), and Berman (l97la)

for a = 2 and by Pickands (1969) and Berman (l971b) for 0 < a < 2.

Pickands and Berman assumed in addition to (1.2) either of the two conditions

(i’) r(t) log t + 0 as t -~ - 
~~~, or (ii’) .tr ( t) 2 dt < (or fr(t)1’ dt <

some p > 0). Again, neither one of (P) and (ii’) implies the other.

• 
In the present note we consider conditions which are weaker than (1)

and (ii) (or (1’) and (ii’)) but which still imply that (1.1) or (1.3)

holds. These conditions seem to contain u~ re of what is es8ential for (1.1)

and (1.3) and viii also clarify the relation between (i) and (ii) and between

(i’) and (ii’). We treat the discrete time case in Section 2 and the con-

tinuous time case in Section 3.

2. DISCRETE TIME

In this section we shall show that the condition

(2.1) n~~ E I r k i log k ~YIr~ log k 0, as n ~~~ ,

k=l

for some y > 2, together with r0 ÷ 0 is sufficient for (1.1) to hold.

Essentially Condition (2.1) prevents r~ log n from being too large

too- often.

Define O~ (x) = {k; 1 < k < n, Itk I log k > x} and let v~(x) be

the number of elements in 0 (x). The content of Condition (2.1) can be

further elucidated by considering the following slightly stronger condition

(2.2) n~~ E Ir~j log k + 0, as n + 
~~~, and

k l

v (X) O(n~) for some K > 0, r~ < 1,

and the equivalent condition

-

~

-•

~ 
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(2.2’) v (g) o(n), V C > 0, and

v~(K) ~ 0(n~) for some K > 0, fl < 1.

Obviously (i) implies ( 2 . 2 ’) .  Further , if Zk,l I r k~ 
< for  some p > 0

then, since £
lIrkI’~ ? ~~ (X Irki~ 

> V (x)(x/l og ~)P, j~ follows that

O((log n)~5. In particular, taking p = 2 we see that also (ii)

implies (2.2’), so that both (i) and (ii) are stronger than (2.2) and (2.2’).

The following leimna states that (2.2) or (2.2’) imply (2.1) and consequently -

that both (i) and (ii) imply (2.1).

LEMMA 2.1 If r + 0 as n -
~ ~~~, then (2.2), and (2.2’) both imply (2.1).

PROOF It is easily seen that (2.2) and (2.2k) are equivalent so we need

only show that (2.2) implies (2.1). We have

— l fl Y ( r ~ t 1og k Y l r ~llo~ k
(2.3) n E Irkf log k e n E IrkI log k e +

k=l l~kSn
kq0~ (K)

—1 yIrk~
1og k

+ n Z IrkI log k e

and proceed to estimate the sums in the right member separately, assuming

that (2.2) holds. Now

n Ylrkl log k K i  ‘~‘
Z I r ~j  l o g k e  < C I I; 1r~ 1 log k + 0 ,

k=l k=1
kqo (K)

by the first part of (2.2) . Since we assume that r~ -‘ 0, there is an integer

N such that YItkl < (1—~)/2 for k > N. Hence

—1 ylrkilog k —l (1 ‘‘2a 
~ 

lt k I log k e < n v~(K) log n nkE0~(K)

k>N

which tends to zero as n + ~~~, by the second part of (2.2). As N is fixed,

n~~~~ ,1Ir~ t 1og k exp(yIr k)log Ic) + 0, and it follows that also the second

term of the right hand side of (2.3) tends to zero, and thus that (2.1) is

satisfied. 

- _ _ _ _ _ _



Even if (2.1) is weaker than (2.2) this is only by a slight margin.

In fact, ~~~~~~~~~~~~~ k < n’’1~~_1 Ir~ 1 log Ic exp (ylrkIlog Ic), so if

(2.1) holds then n ’E
~,lIrkI log Ic + 0 which in turn implies that

~~
(c) = a (n), Ve > 0.

THEOREM 2.2 (f r1~ 
+ 0 as n + ~ and (2.1) is satisfied then (1.1) holds,

i.e. the distribution of the (normalized) maximum converges to the double
exponential distribution.

As is shown in Berman (1964) we only have to prove the following lenmia

to obtain the theorem. We use the notation of Leadbetter (1974).

LEMMA 2.3 Suppose that rn 
satisfies the hypothesis of Theorem 2.2, and

• let u = x/a +b .T h e n

n
• (2.4) n E irkie ~ -

~~ 0 as n
kzl

PROOF We only indicate the changes which have to be made in (51 p. 22

(or in [1] p. SlO). As is shown there

—u/2
(2.5) e Ku~/n, (~ 

9 co)

u~ (2 log ~)l/2, (n + cc)

(a ~ - b means a b(l+o(1))) where K is a constant , whose value bel ow

may change from line to line. Further 6 = sup~r < 1. Put 8 2/y and
n>l 1 6

let a be a constant such that 0 < a < min(8, -j~~).

Split the sum in (2.4) into three parts, the f i rs t  for 1 < j <

the second for [na] < j < En8) and the third for En8) < j $ n. In 15]

it is shown that the first sum tends to zero.

Next, define &~ sup~r and note that ÷ 0 as n ~‘ ~~~~. Now
m>n m

writing p = (na] and q = En I we have for the second part of (2.4)

n 
~ Irkie < ~~~~ ~~~~ 

< K n81 u~ e~~~
1
~

kp + 1
• K nB~~u~ n

2ô
p,



which tends to zero by (2.5). 2—u /2
Finally, for the last part of (2.4) we have, using e us/n

1/2(2 log n) In ,

2 2/(l+Ir I)n —u / ( 1+Ir k ) n k
n E Irkie ~ $ Kn E Irkl (u /n) <

r k q+l k q+l

—l n 2
~
rkIlog ~

• < X i i  log n E I r k ie
k.’q+l

For k > q we have log k > 8 log ii , and hence this is not larger than -

Ku 1 
E (rId log I e2 /B I r k I log k 

< Kn ’ E Irki log k e
YI r k t log k

k”q+l k1

where we have used 2/8 = y. By (2.1) this tends to zero as a -“ co~ which

concludes the proof of (2.4).

3. CONTINUOUS TIME

For a process with Continuous time, the constant a. in the local covariance

condition (1.2) influences the normalization needed to obtain the limit -

law (1.3) for the maximum. In fact, the value of a also affects the extent

with which the maximum of ~(t) over an interval can be approximated by

the maximum over a discrete set of points. Let h(t) be any function and

define

OT(h) {t; 0 < t < T, Ir (t)I log t > h(t)}
(3.1)

L
T(h) — A(OT(h)) Lebesguemeasure of eT(h) .

In analogy with the conditions for discrete time we will place restrictions

on the an~ unt of time that I r ( t ) I  log t is large by requiring that there

is some function h with h(t) + 0 as t + cc such that

(3.2’) LT(h) O(T/(log T)1), for  some y > max(O , I — 1/a)

and some constant K > 0 such that

(3.2”) £
T
(K) • O(T’~), for some n < 1.
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Obviously (i’), i.e. r(t) log t + 0 as t ~~- cc, implies that OT(h) is

uniformly bounded in T, for example with h(t) = 2 sup(r(s)( log a, so
s>t

that (i’) implies (3.2). Further, since f~ (r(t)(~
’dt > £T(h)(h(T)/log T)

1
~,

(ii’), i.e. f ~ r(t)
2dt < cc~ implies that £T

(h) = O ((log T/h(T)) 2) f or

all h, so that also (ii’) implies (3.2).

THEOREM 3.1 If r( t) + 
~) as t —i- cc and (3.2) is satisfied , then (1.3)

holds, i.e. the distribution of the (normalized) maxima converges to the -

double exponential distribution.

• Following the routine in Berman (1971) and Leadbetter (1974) we need

only prove the following lemma.

LEMMA 3.2 If r(t) satisfies the hypothesis of Theorem 3.1, if

U U,~ = X/a,,~ + bT, q = g(T)/(log T)1l’~
Z
, where g(T) + 0 as T -~ cc, and

if the convergence of g(T) to zero is slow enough, then

(3•3) I Z (~ (1q) ( ~
_ u I (l +k (k ~) I )  ÷

q C<kq<T

as T + c c.

PROOF Let 6(t) suplr(s)J, let 8 satisfy 0 < 6 < (1 6(c))/(l+6(c)),

and split the sum in (3.3) into two parts at kq ~ T’~, i.e. let Z’ be

the sum over C < kq < T8 and E” the sum over T8 < kq < T. Since

2
e~~ 

/2 o(I)/T

we can estimate E’ simply from the number of terms,

6 ~~~~~~~~~~~~~~~~~~~~~q q

< 
T~T

8 —u
2
/(l-s-6(g)) 

< 
KT 8 2 /  ÷6(c))

— q q  — 

q
2

by the choice of 8 and q.

For the remaining sum E” we need a bound on the number of terms

for which r(kq)(log kq is not bounded by a small function. Define, for

any function h,



n.~(h) 
= #{k; T6 < kq < T, (r(kq)(log kq > h(kq)}

in analogy with £T(h) in (3.1). Since r(t) satisfies a Lipschitz

condition at 0 it does so uniformly for all t. In fact, if cx’ < mun (I, a)

then
• I

(r(t+h) — r(t)( <

see Boas (1967), Theorem 1. We will use this to give a bound for nT
(h)

in terms of Q.
T(h /2 ) . Let I be as in conditIon (3.2) and take a’ such

that ct/(1+ya) < a ’ < tnin(l, a). Note that we can always find such an cx’ -

and that 
~
j. — — < 0. We will show that for all non—increasing functions

(3.4) n~(h) < C’(log T/h(T))~~~ “T~~
’2
~’

if T is large enough. Since, for t > kq, jr(t)(log t > ((r(kq)~ 
—

— C (t_kq j
cx )log kq we see that if

(r(kq)(log kq > h(kq)

and t is such that

kq < t < kq + (2 T )
l
~~

then

(r(t)(log t > h (t) 12.

We have q — g(T)/(log T)lI
’a and thus (h(T)/log T)h/’cx /q =

— g(T) (log T) where a > a ’ . Since we have a free choice

in letting g(T) ~~ - 0 as slowly as necessary, we may thus assume that

- 
• 

(h(T)/log T)h1’Ct q ~ 0 as T + cc~ This implies that for T large enough

the kq which contribute to n.~(h) also contribute disjoint intervals -

of length (h(T)/(2Clog T))1~~
’ to LT

(h/2), and we get (3.4) with C’

— (l/2c)~~t .

We can now proceed by splitting the sum Z” according to if

kqEO~(2K) or not. Recalling the notation 6(t) — sup (r(s)J, we
s>t

have



8

= Z (r(kq)~ e
u h Ir

~~~~~ <
q ~~T <kq<T

(3.5) < .1 nT(2K)e
_

~ 
t(]. 5(T ~ +

+ jr(kq)(e~~~~~
_21(

~
’l0B T6)

q T8<kcL$T, kq€O~ (2K)*

The first term in ~~~~~~~~~~ 
is bounded by

! C’(log T,2K)1/a 
~~~~ 

O(l) T 2t 6(T)) <

< ~~
“ 

(log T)l~~~
+l
~~ T1~~~

2
~~
1+ó(T

~~~
— g(T)

Since r~ < 1 by (3.2) and 6(T6) -‘- 0 this bound goes to zero as T -~ cc

- • - if g(T) -‘- 0 slowly enough.

The second term in (3.5) is bounded by

(3.6) (T)2 U (1 2K/(8 log T)) 
B log T~~~ 

jr(kq)(log kq =

say, where the sum is extended over all kq such that T8 < kq < T and

kqEO~(2K)* . We will see that F1 
+ cc~ F2 

0 as T + co~ but that F1 F2 ~~ - 0.

We start with F2, introducing the function h that appears in (3.2’) and

split the sum according to wether kqEO~(2h) or not, giving

F2 
= ~ Z(r(kq)(log kq < -~~ +

kqEe~(2h)* kqEO~ (2h)flO~ (2K)*
kq~T

< ~~~~~ 2h(T8) + 
~

•2KnT(2h) < 2h(T8) + 2KC’ ~ (1og T/h (T)) lI
~
ct Y~T(h) 

=

= 2h(T8) + 
g(T) , (log T)I~~ 

1/~Z ••r .0(i) = 2h(T8)-I-g(T)k(T),
(h (T))  a

• 

say, by Condition (3.2’) and the definition of g. Since l/a’—l/a--y < 0,

we can deduce that k(T) + 0 as T + cc~ provided h(t) decreases sufficientl~’

slowly. Also note that if (3.2’) is fulfilled for some function h, then it is

fulfilled for all functions which decrease mure slowly. We can therefore assume

that k(T) + 0 as T + cc• The remaining factor F1 in (3.6) is given by

_ _  ~~~~~~~- —- —-- •~~ • • ~~-- - --- - - -~~~~~- • ~~~~ •—•~
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~~~~ 

F (
1
)
2 U ( l  2K/ (B log T))  1

I q B log T

Using the fact that

= 2 log T + 2(-~ 
— -~) 1og log T + 0(1)

we get

F = 
0(l) —2(l/a—1/2)log log T 

=
H 1 2 e -

q log T

= 
0(1) (log T) 2/~~

1 2( 1
~~ 

1i’2) 
= 

0(1)

g (T) g(T)

Thus

• F1 F2 < O(l)~{2h(T
) 

+

[g(T)

where k(T) does not depend on g(T). Since we may let g(T) + 0

• arbitrarily slowly we obtain that h(T6)/ g (T) 2 -‘. 0 and k(T)/g(T)
2 

+ 0 as

T ~‘ cc~ which completes the proof of the lemma. 0

REMARK 3.3 As in discrete time one would be in~1ined to consider a condition

like

(3.7) -
~~ E j r(kq)(log kq ~~~~~~~~~~~ 

kq 
-, 

~~

T8<kq<T

as T ÷ cc~ for some 8 < I, y > 2. We can presently prove that (3.7) can

replace (3.2) at least if a = 2. However, (3.7) contains the somewhat

arbitrary sparing q. A more natural condition for a continuous time process

would restrict the size of

i j r(~)~log t 
y(r (t)(log ~ d~.

How t~-.is s~ould be done in relation to (3.7) is not clear.4
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