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ABSTRACT

We deal with the rounding error analysis of successive app roximation

iterations f or the solution of large linear systems Ax — b. We prove that

Jacobi, Richardson, Gauss-Seidel and SOR iterations are numerically stable

whenever A A* > 0 and A has Property A. This means that the c~~~uted

result Xk approximates the exact solution a with relative error of order

CI~ II . I~
_ 111 where 

~ is the relative computer precision. H~~ever with the

exception of Gauss-Seidel iteration the residual vector I~xk
_ b II is of order

CI~I~I$I~ II ~fl and hence the remaining three iterations are not well-behaved.
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1. DITRODUCTION

This paper deals with the rounding error analysis In floating point

arithmetic of successive approximat ion iterat ions for the solution of l*rge

sparse linear systems Ax — b.

We sumearize the results of this paper. Basic concepts of numerical

stability and good-behavior are recalled in Section 2. We give necessary

and sufficient conditions for numerical stability and good-behavior in

Sections 3 and 5. In Section 4 we deal with several examples of successive

approximation iterations. We prove that Jacobi, Richard:on, Gauss-Seidel

and SOR iterations are numerically stable whenever A A > 0 and A has

Property A. In Section 6 we show that with the exception of G*uss-Seidel

iteration they are not well-behaved. In the last section we indicate that

good-behavior of any numerically s table method can be achieved by the use

of iterative refinement even if all computations are performed in single

precision.

I.
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2. PRELThtINARIES

In this section we briefly recall what we mean by numerical stability

and good-behavior of an iteration for solving a linear system Ax — b where

A is a n X n nonsingular complex matrix and b is a n x 1 vector. We shall

assume throughout this paper that 
~~ 

denotes the spectral norm.

Let [x,~3 be a computed sequence of successive approximations of the solu-

tion a — A~~b by an iteration ~ in t digit floating point arithmetic f 1, see

Wilkinson (63).

An iteration cp is called numerically stable if

(2 .1) lImit - o fj � Cc1 cond(A) (j all +

where C — is the relative computer precision , c1 is a constant which

depends on ly on the size n of the problem, and cond(A) II All 11A ’Il ~
the condition number of A.

An iteration ç is called well-behaved (or equivalently ~ has good-behavior)

if

(2.2) Ti 
~~ 

Ax,~ - b l i  � Cc2 II A ll II cw ll +

where c2 c2(n).

It is easy to verify that good-behavior implies numerical stability but

not, in general, vice versa. Furthermore, ~ is well-behaved if f there exist

matrices such that for large k

(2.3) (A + — b and II Ek il � Cc3 fi A fi + 0(C2)

• for C
3 

— c3(n). 

—- -~~ ---~~-~~~- _ _ _ _
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Thus good-behavior means that x.
~ 
is the exact solution of a slightly

perturbed system or equivalently that the residual vector rk — Ax.
~ 
- b is

• small in the sense of (2.2).

Recall that ccuinonly used direct methods such as Gaussian elimination

with pivoting, Householder method, modified Gram-Schmidt, or Gram-Schmidt

with reorthogonalization are well-behaved. Let us also mention that Chebyshev

I . iteration is numerically stable but , in general , is not well-behaved; see

Woz’niakovski (75) where a detailed discussion of these concepts may be found.

I .

— — ~~~~~~~~~~~~~~~~~~~~
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3. NUMER ICAL STABILITY OF SUCCESSIVE APPROXD~ TION ITERATIONS

We consider the numerical solution of a large linear system

(3.1) Ax — b

where A is a nonsingular complex n X n matrix and b is a n x 1 complex vector .

We assume that A is a sparse matrix of high order and a — A 1b is the solution

of (3.1).

A successive approx imation iteration is defined as fol lows:

(i) Transform Ax — b to an equivalent system

(3.2) x H x + h , ( a — H o + h ) .

Sometimes 11 11(A) is chosen to minimize the spectral radius a(H) of H ,

cT(H) < 1, in a certain class of (H (A)3 .

(ii) Solve (3.2) by the iteration

(3.3) xk.fl Hx.~ + h , k 0 , 1,...

where x0 is a given initial approximation.

Using different transformations we get different iterations ; see Section

4 where Jacobi, Richardson, Gauss-Seidel and successive overrelaxation (SOR)

iterations are considered .

Let ek Xk 
- a. From (3.3) we get the theoretical error formula

(3.4) ek 
—

-- •~~~~~~ .,,~~ - — .- ,.
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Thus the theoretical iteration is convergent for any x0 if £ the spec tra l

radius 0 (H) is less than 1 • Further more the character of convergence mainly

• depends on a(R) since

II e~fl
u r n
k (c(H) + .)

for any s >  0.

Due to the sparseness of A in many cases we can compute the product lIx.
~

and xk~~ 
in time and storage proportional to n rather than n2 . However in

floating point arithmetic fi we cannot compute Hx.
~ 
or from (3.3) exactly.

Assume that

(3.5) fl (HZK + h) (H + 8H,~) x.K + (I + 61k~ 
h Hx,~ + h +

where 
~ 

8H~II � Cc 1(j H~j, f i 81k 11 
~~~

. ~~2’ C
1 

and c2 depend only on n and

(3.6) ¼ — 

~~ 
‘
~~ 

+ 81.K (I - H) a.

Note that (3.5) holds for moat algorithms used in numerical practice with

and c2 of order unity.

Thus, instead of the theoretical relation (3.3) we get

(3.7) x.,~+l Hxk + h + ~~k.

It follows that the error formula for the computed sequence ek x.,~ - a is

I - equal to

(3.8) Ck+1 — Hk+l e0 + ak-i 
~
j ,

t 0

compare with (3.4) .

- •-•. -~~~~~~~~~ ~~~~~~—-~~~~~~ —~~~~~~ ~~~~~~~~~~~~~~~ 
-
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From (3.5) and (3.6) the vectors have a bound

(3.9) ll~k ll~ 
Cc3 (ll Hhl + I I I  — Hf I ) lI aIl + Ccl l l x k — alt

for c3 max(c1, c2) .

Let be a sequence such that ~ ~ 1. Def ine

k
(3.10) k(H) — ( I I H I I + Ill - H~ ) sup ri; IL 11k-i 

~~~lI TIi l l � 1  k

From (3.8), (3.9) and (3.10) it easily follows that

(3.11) u r n  II X~( 
- c41 � C k(H) C3 11 all + 0(C

2).

We want to determine when (3.11) is sharp. In order to do this we must

assume something more about Recall that the vector is the rounding

error vector at the kth iterative step~ see (3.6) and (3.9). In general, ¼
can have an arbitrary direction and 

~~ ~~~ jj can be of order Ck(H)c3 fl all.
i O

To make this point cleat we shall assume throughout this paper that can

be ~~~ sequence satisfying (3.9). Thus to prove the sharpness of (3.11) it

is enough to define such that — ( II 1111 + fi I - Hit ) c3 11 all fl~ where

the supremum in (3.10) is attainable for Tl~~.

Note that

(3.12) k(H) � ( JJ HJJ + ~J I - Hit ) : ~ 
H~I I

i—0

and the inequality in (3.12) holds for a hermitian H, H 11*.

• Comparing (3.11) with the definition of numerical stability (2.1) we

see that to get numerical stability of the successive approximation iteration 0

j

~~~~~~~~~~~~~~~~~has t~~~~~ f order cond(A) Thus we have proven 

A
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Theorem 3.1

If (3.5) holds then the successive approximation iteration given by

• (3.12) and (3.3) is numerically stable iff

(3.13) k(H) ~ c5 cond(A)

where c5 
— c

5
(n) and k(H) is given by (3.10) .

In the next section we determine for which transformations k(H) is

comparable with cond(A). We want to end this section by showing that for

fi not too close to unity we get numerical stability. More precisely let

q E ( 0 ,1) be a number not too close to unity (q � .9 , say) . If ~( ~ q
then due to (3.12) k(H) � (2q+l)/(l- q) and (3.13) holds with

c5 
— (2q-i.l)/((l-q) cond(A) ) � (2q+l)/(l-q). This means that the successive

approximation iteration is always numerically stable for a class of problems

for which JJ H it � q. However, usually for ill-conditioned problems (for

• large cond (A)), some eigenvalues of H have moduli close to 1 and k(R) is

large. Furthermore we shall see that even for well-conditioned problems it

can happen that k(H) is large which indicates an unstable case of the succes-

sive approximation iteration.
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4. EXA~IPLES OF NUMERICAL STABILITY

In this section we consider some examples of transformations from

Ax — b to x Hx + g and we find conditions assuring numerical stability.

For the sake of simplicity we assume throughout this section that A is

a hermitian, positive definite matrix and A has a form

(4.1) A I — B

where B is hermitian and has zero diagonal elements. Furthermore we assume

that II A ll < 2. Let and be the smallest and the largest etgenvalue

of A. Thus 0 < � I and 1 � A � 2. Note that cond(A) ~~~~~~~~

Example 4.1 Jacobi Iteration

In this case H B and h b. Thus assumption (2.5) holds for any

reasonable algorithm for computing HX
~K 
+ h. Since H a - A is hermitian

then

1I H II — o(H) — max(l ~~~~ “max 
— 1) < 1.

Note that a(H) is close to 1 if is close to zero (which means that the

problem is ill-conditioned) or A is close to two which can happen even

• j for well-conditioned problems.

• From (3.12) we get

0(H) + A
(4.2) k(H) — 1 - ~(H)

In general k(H) can considerably exceed the condition number cond(A) even

for very small n. For instance let n — 3 and

.
~~~~

____ - —~~~~~~-~ i k~~~~ -~~~- --~~~~~~ -~~~~~~~~



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - —-

~~~~~

1 a a
(4.3) A _ ( a  1 a~~~, 0 < a < l / 2 ,

a 1/

whose eigenvalues are 1 - a, 1 - a and 1 + 2a , see Young [71, p. 111). We

have a(H) — 2a and

k(H) — + ,
~~~ 

cond(A) — 
1 + 2a

Thus

limit k(H) +~~ and lim cond (A) — 4
a-.l/2 a..l/2

which means that (3.13) does not hold for values of a close to 1/2. We per-

formed some numerical tests on the PDP-lO computer where

C ‘ 3x10 9 with a [1 1 1)T for a — - ~~~~ i — 2,3,4 and 5.

The best computed results had relative error of order lO~~~ which confirms

theoretical considerations. Thus Jacobi iteration for very well-conditioned

system (4.3) with the value of a close to 1/2 is numerically unstable.

To assure that k(H) is of order cond(A) we have to assume something
more concerning the eigenvalues of A.

Theorem 4.1

*• Jacobi iteration is numerically stable for A A > 0 and A is of the

form 4.1 iff

Amm(4 4) 2 - A• max
— c6(n). U

p — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -•~~~~~~~~~~ ••__ . --.•-•— • . - ~~~~~~~~~~~~~~~~~~~~~~~~ 
-‘— 

~~
—- —•—- —

~~~~~~~ 
• —— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—— — — •-

~~~
— —
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Proof

Assume tha t (4.4) holds. Consider two cases.

Case I. Let 1 - - 1. Then k(H) — (1 - + 
~max~’

1
~min~ 

2 cond(A)

and (3.13) holds with c5 
a 2.

Case II. Let 1 - < Xmax - 1 • Then k (H) —(2 
~max 

- l)/ (2 - Xmax)• But

from (4.4) we have 1/(2 - Ama ) � c6/ A~~ 
and k (H) � 2 c6 cond (A) and once

more (3.13) holds with c5 
— 2 c6.

The necessity of (4.4) easily follows from the above example (4.3) with

a -, i/f. Since — I - a ~‘ 1/2 and Amax — 1 + 2a ~ 2 , the lefthand side

of (4.4) tends to infinity as a tends to 1/f which causes instability of

Jacobi iteration. U

Note that if A has Property A or equivalently B has the form

F
(4.5) B — 

1

02

where 01 and 02 are square mull matrices (see Young (71
, p. 42)) then

A — 2 - A and (4 .4) holds with c 1. Thus we get
mm max 6

Corollary 4.1

If A ~ A* > 0 and A has the form 4.1 and Property A then Jacobi iteration

is numerically stable.

Example 4.2 Richardson Iteration

In this case

(4.6) H — I - c A a n d h -C b

- -••-—— - --- - -- ~~~~~~~~~~~~~~~~~ •~~~•- • - --~~~-• ,  -—--•- - ~ •- -•--~~~~~~~~~~~~~~~ - - - - -
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A - A
where c — 2/ (X~~~ + A ) .  Then H H H — a (H) — ~~~~ and

3 A  - A  ~~~
k(H) — 

S am 
~~ cond(A) which due to (3.13) proves

mm

Theorem 4.2
If A — A

* 
> 0 then Richardson iteration is numerically stable. U

H Example 4.3 Gauss-Seidel Iteration

Assume that A — I - B has Property A. Thus

F \  L
B L + U ( I

02 
-

~~~~

where L and U are strictly lower and strictly upper triangular matrices. Gauss-

Seidel Iteration is defined by

/01 F
H (I — L ’) U ( 

* 1’
-~~~ \O F F/

h (I — L 1) b.

It is easy to verify that

/ * k-l 
______10 F ( F F )  k ~
‘ 2(4.6) H ( * k , 1 1 1 1  II — a(B) - 

./1 + a (B), Wk � I
(F F)

From (3.12 ) we get

k(H) � (1 + 2 a(B)~~ + a2 (B)) ( 1 + + ~~~~ : ~ (B)2
~~

1) �

k l
� (1 + 2 ~i~~) ( 1 + ~~~ / 2 * ( 1 —  a(B) ) 3) .
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Since a(B) — 1 - we have (1 - a(B) Y 1 
— cond(A) / Amex ~ cond(A) . This

proves that

k(H) � C
5 
cond(A) with C

5 ~ (1 + 25 ) (1 + .5 / 2) ~ 6.5.

Hence we have proven

Theorem 4.3
*If A — A > 0 and A has the form 4.1 and Property A then Gauss-Seidel

iteration is numer ically stable. U

• Example 4.4 Successive Overrelaxation Iteration (SOR)

Assume that A — I - B has Property A. SOR iteration i. defined by

H — (I — w L) 1(w U + ( l—w) I) ,
(4 .9) -ih w ( I - w L )  b

where the optimal w is given by

2

1+A - a2(B)

It is easy to verify that

a(1I) w -  1_ (~~ond(A) -

\kond(A)+l)

Furthermore from Young (71, p. 248) it follows that

l l H I l  ak(H)Ck(a(u)l/2 + a(H) 1’2) + t2 (a(H) 1~
I2 + a(H)~~~

’2 ) 2 + 1)

� 2.3 k ak (H) (a(H) hh’2 + a(H)~~~’2 )

which yields

k(H) ‘( 1 + 2 II N i l  ) ( l  + 2 .3(a (H) h/2 
+ a(H) 1

~’2 ) k 0(Ø)k ] ~
k 1

- - . 
10.2(1 + 4.6(1 — a(H) ) 2).
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Since

(1 - c(H) ) 2 cond(A)(1 + cond(A) 1/’2)4 / 16

we have k(Ii) � c5 cond(A) with c5 � 10.2 * 5.6 & 57. However if cond (A) is

large then c
5 
is less than 4. Hence we have proven

Theorem 4.4
*If A — A > 0 and A has the form 4.1 and Property A then SOR iteration

is numerically stable. U

~

•-

~ 

• - -  •~~~~ —~~~ ~~~~~~~~-—-• -~~~~~~-~~~~~~~~ ~~~~.•~~~ - • •~~~•- --—~~~~ •~~~~~~~~~ -~~~~~~~~~~~
•. - • ~~~~~~~--- —•-—-~~~ ________________________
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5 • GOOD-BEHA VIOR OF SUCCESSIVE APPROXIMATION ITERATIONS

Recall that we transform the linear system Ax + g — 0 to an squivalent

system (I - H) x — h which is solved by constructing (x
’
) such that

(5.1) x ÷l H x k +h.

We define two different sequences of residuals vectors , A(xk - a) for the

original system and (I - H)(x.K - a) for the transformed one. Let

(5.2) rk — M(x.~ - ci)

where H — A or H — I - H. We want to verify good-behavior of the successive

approximation iteration with respect to A or I - H. Due to (2.2) we need to

prove that

(5.3) ‘1 ~k ’1 ‘C  c2 II M II II all + 0(C2)

for a constant c2 — c2 (n) . From (3.8) we get =

k

4 

(5 4)

where is given by (3.6) and (3 .10) .

F ~ Let be a sequence such that II ~~II � 1. Def ine

(5.5) k(M ,H) — ( II  H l l +  II I - H il ) sup 11 II _ 
H H~

’1 
~~lIl If l~t I �I k

Note that k(I H) — k(H).

From 5.4 it easily follows

(5.6) T~~ II rk ll � ~ k(M ,H) c3 lI aIl + 0(e).

- . - —— - —--— - ~~~•• -~~~~~ . -. - . . 
— 
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Since (5.6) is sharp, (5.3) yields

Theorem 5.1

If (3.5) holds then the successive approximation iteration is well-behaved

with respect to H if f

• (5.7) k(M,H) ~~
C

6 II MIt

where c6 — c6(n) .

Remark 5.1

We showed in Section 3 that f l Hil � q where q is not too close to unity

implies numerical stability of the successive approximation iteration . It

is also obvious that IIH ~ 
� q yields good-behavior since

k(M H) ~ 
~~~~~ 

II M It

and (5.7) holds with c6 (2q + 1) / (1 -  q) .  U

In general, it is rather hard to evaluate k(M,H). However for many

cases it is enough to know some bounds on k(M,ft).

Leimna 5.1

Let A ~ 0 be an eigenvalue of H, H~ — xg with ~J — 1. Then

(5.8) k(M,N) � I — I ~( f l M~ JJ

• Proof

Define TI — ~ g. Then
~ l x i t



- •— •— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— .— .

~~~~
• ----,,

~ •— ~~~~~~~~~~~ 
— —

~
‘1

H H~ ~ — (A” 
i ~~~~ 

) — 
,~k 

~ :Lao i—0 I I
which proves (5.8). U

Le~~~ 5.2

Let H — I - H. If an iteration is well-behaved then

(3.9) max : ~L � 
~6 lI ’— ~ll

AEspect(B) I

Proof

From Lezuna 5.1 and 5.7 we get

• 

. 

1 - JA J 
ll M~ ll ‘ 

~~~~~~ �k( M,H) �c 6 lI~~~II

for any eigenvalue of H which proves (5.9). U

Lenuna 5.2 states a necessary condition for good-behavior with H — I - H

which means that l x i  1 implies A ~ 1 for any eigenvalue of H.

Leema 5.3

*Let H I - H and H — 11 • Then an iteration is well-behaved iff

(5.10) max 1 — A 
~ c6 H I — Hit

XEspect(H) 1 — lx i

• Proof

* *Let H — U D U where U U — I and D — dLag(A11...1 A ) .  Let

— ~~~~~~~~~~~~~~ — U~ \. Then

N H~~ ~~ 
— U(I - D) Dk~~ 

:

* lii - U ((l - A1) 
~~~ 

~~~~

k—i (i) T 

~~~~~~~~~~~~~~ • • • I1~~1 t~ • • • ~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~ •~~~~~~~~•~~ 

j
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and
1 — A  1 — A

(5.11) k(I — H,H) � 3 max 
~ 

— ~ Ti JJ z~,JJ — 3 max
j ‘ J ’ k j

Since (5.11) is sharp, (5.10) is proven.

Note that (5.10) means that H does not have eigenvalues close to -1.

We end this section by showing that for H — H it is often possible to

redefine the transformed system such that (5.10) holds and yields good-behavior.

Multiply (I - H)x h by I + H. Then x R2x + (I + H) h and we can iterate

(5 .12) X
K4l 

a H2x~ + (I + H) h.

We shall call the iteration (5.12) as the modified successive approximation
9 9 *iteration . Note that H — { H )  � 0 and the lefthand side of (5 .10) is equal

to unity. Thus, if 
~( I — H2 11 is not too small, 

~ 
I — ~~Ii � c7 for C

7 
� .1,

say, then we get good-behavior. Hence we have proven

Lemma 5.4
* 2If H H and ~j I - H II � C7 

> 0 then the modifed successive approximation

I iteration (5.12) is well-behaved for N — I - H2 and c6 — . U

~~~~ I 

- —-~~ -•- - • -—----~~~~~~~~~~~ •-~~-• . •—•- -- •• - -~~~~~~~~~~~ — ~~~~~ ——
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6. EXAMPLES OF GOOD-BEHAVIOR

As in Sect ion 4 we assume that A — A
* > 0. Except Example 6.2 we addi-

tionally assume that A has Property A, see (4.1) and (4.5).

Example 6.1 Jacobi Iteration

In this case H — I - A is hermitian and — 2 - Amax~ Apply L~~~a 5.1

with A 1 -  Amex forM Aand next M I-H. In both cases we get

k(M,H) 
~ 2 -~T — cond(A)

max

which shows that Jacobi iteration is not well-behaved.

For the modified Jacobi iteration (5.12) let A (1 - Then

2 2 - X ~~~~~~~~2l - ( l - X  )max

which contradicts good-behavior. Finally notice that

II i  - H2
~~ . max A(2 - A) — c7 .XEspect (A)

If one of eigenvalues of A is close to unity then c7 ~ 1 which yields good-

behavior of the modified Jacobi iteration for H — I. Thus we get

Theorem 6.1

Jacobi iteration is not well-behaved for H A or N — I - H. The modified

Jacobi iteration is not well-behaved for H — A and it is well behaved for

H — I - H whenever A has an eigenvalue close to unity . I

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ •••- —~~~~~—- — -~~~~~~~~~~~~~~~ --—.- ~~~~~~~~ ~~• •‘~~~~~~~~~~-~~ ~-- - •- ~~~~~~~~~--~ —-— ~~~~~~~~
• • -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



• ~~~~~~~

-- - --

— 19—

Example 6.2 Richardson Iteration

The matrix H — I - CA with c 2/(A + A ) is also hermitian. Applym m  max

Lemma 5.1 with A — (1 - c A ) tm and H — A for i — 1,2. Then

A A t~~
2_ i

k(A,H
m) a ( 

max mm 
___ ~ con (A)

mm

which proves that Richardson and the modified Richardson iterations are not

well-behaved for M A.

Next note that H has eigenvalues close to -l for ill-conditioned problems.

Lenina 5.3 shows that Richardson iteration canno t have good-behavior for 14 — I - H.

Finally

- II~ U — c2 max A (A + A - A) — c
AEspect (A) mm max 7

If one of eigenvalues of A is close to 1/c then c7 ~ 1 which implies good-behavior

of the modified Richardson iteration for H — I - H. Thus we have proven

Theorem 6.3

Richardson iteration is not well-behaved for 14 — A or H — I - H. The

modified Richardson iteration is not well-behaved for H A and it is well-behaved

for H — I - H whenever A has an eigenvalue close to (A ma + Amex) / 2. U

Example 6.3 Gauss- Seidel Iteration

The matrix H is now defined by

/01 F
H a (  

*F F

From (4.6) we have

______  ____
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* * k-l/0~ F ( I - F  F) (F F)
1.

(I_ H )Hk _ (  
* * k ‘

(I-F F)(F F)

I * * k-lf 0 ~ F( I - P F) (F F)
KAN — , ~k � l.

0 0

T T
We estimate k(M ,I1) from (5.5) . Let Tl~ — (TIW ~~2) ]T Then

k

~ (I - H)H
k m  TI — ~~~~~ ~ (2) T

l
T

Lao
where

Wk — F(I - F* F) 

k_il 

(y* ~)
k_ 1-i ~(2) +

Lao

k
(2) * • * 

* k—i (2)wk (I - F F) ~ (F F)

mao

*Since F F is nonnegative definite then repeating the proof of Lemma 5.3 it is

easy to verify that

Urn ~ ~~~~ II ~~ (2 fi ~I i + 1) 1i II \ii � 3,

l m  I l v~I I � l
which yields

k(I - H , H) � ( II H II + f l u -  N il )  ~I~~1 �- 2JTh ‘6.3.

Th~e to the form of A H~
’ it can be verified that

k(A , H) � 6.

Since fi A ll and fi I - N il are both not less than unity we finally get 

•. •~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~ • ••• • • • •~•
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k(I - H,H) �2 ./i~ I l l - H i t ,  k(A,H) ‘6 H A I l

• which due to (5.7) proves good-behavior. Hence we have shown

Theorem 6.3

• Gauss-Seidel iteration is well-behaved for H = A and M ~ I — H. I

Example 6.4 SOR Iteration

I In this case

I H (I — wL) 1 (wU + (1 — w) t)

where v — 2 / (1 + Ji - ~
2 (B) ) and A I - B.

I Let ~
j , be an eigenva lue of B. Then the eigenvalues of H are equal to

• 
A — ~ (w2 ~2 - 2(w - 1)) ± ~~~4(w - I) - v2 2) v2 ~2

- where i = /~T, see Young [71 , p. 203). From this

I A 1 — w - 1 — o(R) and i i - x l — - 2

We apply Lemma 5.1 with H I - H and next H A. Then

k(I - H,H) ~ : 
~~~~~~ ~~~~~~~ ;(~~~~ 

� ./cond(A) -

It is known that ~ —o is an eigenvalue of B whenever the size of the problem n

is odd which yields

r k(T - H ,H)

Hence SOR is not well-behaved for H — I - H.

_________________________________________________ ——
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Now let H — A , ~ - 0 (B) and let ~ be an eigenvector associated with

A — w — 1•~ ~ — (IT , ~~)T, fi ~~fl — 1. From Young (7 1, p. 237) it follows

A(~~ , ~
-l/2 g

T
3
T - 

~~ 
+ 0(B))[g~, 

~~l/2 ~T3
T~

Thus

k(A ,H) ~ 11
~

fIIJ — (1 - cY(H) ) ’Ii A(~~ , x
1
~
”2 ~T1

T 
-

- AtO
T, (X~~”2 — 1) ~T

1
T 11 ~

~ Jcond(A) [1 + ~ (B) - 2 (a(H)~~~2 - 1))

which tends to infinity as cond(A) does . Hence SOR is also not well—behaved

• for H a A. Hence we have

Theorem 6.4

SOR iteration is not well-behaved for M — I - H or M — A. U 

-- - •-• —•- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—••.--fr•••- —•- -• -- ——— ~~~~~—--~• •-— - - ---~-•---.— -•- •— • - --~----~
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7. F INA L REMARKS • I

• We have shown that certain well-known iterations are numerically stable

and except Gauss-Seidel they are not well-behaved. However it is possible

to get good-behavior for M — A using iterative refinement with single or

double precision for the computation of the residual vectors.

It is shown in Jankowski and Wo z’ntakowski (77) that if C cond2(A) is of
order of unity then any numerically stable method (direct or iterative) with

iterative refinement using only single precision is well-behaved for M — A.

Since C cond
2(A) is such less than unity in most practical cases, Jacobi,

Richardson and SOR iterations with iterative refinement in single precision

are well-behaved.

— 
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