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Abstract

We show that the single operation of raising a number to a [ixed
power modulo a composite modulus 1s sufficient to implement "digital
signatures”: a way of creating for a (digitized) document a recognizable,
unforgeable, document-dependent digitized signature whose authenticity the
signer can not later deny. An “"electronic funds transfer® system or
®"glectronic mail® system clearly could use such a scheme, since the
messages must be digitized in order to be transmitted.

Key words and Phrases: digital signatures, public-key cryptosystems,
privacy, authentication, security, factorization, electronic mail, message-
passing, electronic funds transfer, cryptography.
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On Digital Signatures and Public-Key Cryptosystems
by R. L. Rivest, A. Shamir, and L. Adleman

MIT Laboratory For Computer Science
Cambridge, Mass. 02139
April 4, 1977 (Revised April 21, 1977)

The operation of raising a number to a fixed power modulo a
composite modulus 1s shown to be sufficient to implement “digital
signatures®: a way of creating for a (digitized) document a recognizable,
unforgeable, document-dependent, digitized signature whose authenticity the
signer can not later deny. This scheme has obvious applications in the
design of “electronic funds transfer” systems or "slectronic mail” systems,
since here the messages must be digitized in order to be transmitted.

I. Introduction

Our approach is to provide an implementation of a "public-key
cryptosystem”, an elegant concept invented by Diffie and Hellman [2]. Such
a system provides digital signatures, as well as enabling enciphered
communicat ion between arbitrary pairs of people, without the necessity of
agreeing on an enciphering key beforehand.

In a public-key cryptosystem each user A places in a public file an
enciphering algorithm (or key) E‘ . User A keeps to himself the details of

the corresponding deciphering algorithm D‘ which satisfies the equation
D‘(E‘(H)) = M , for any message M. (1)

Both E‘ and o‘ must be efficiently computable. It 1s assumed that A
does not compromise D‘ when revealing E‘. That 1s, it should not be

computationally feasible for an "enemy” to find an efficient way of
comput 1ing D‘, given only a specification of the enciphering algorithm E‘.

(Clearly a very inefficient way exists: to compute DA(C) Just enumerate
all possible messages M until one such that Es(M) = C 1is found. Then
D‘(C)tﬂ.) Only A will be able to compute D‘ efficiently.

Whenever another user (say B) wishes to send a message M to A, he
looks up E. in the public f1le and then sends A the enciphered message
E‘(H). User A deciphers the message by computing n‘u‘m))cn. By our
assumptions only user A can decipher the message E‘(H) sent to him. If A
wants to send a response to B he of course enciphers it using E,, also
available in the public file. Therefore no transactions between A and B
are required to initiate private communicatifon. The only “setup” required
1is that each user A who wishes to receive private coomunications must place
his enciphering algorithm E‘ in the public File.

Ir electronic message-passing systems(7] are to fully replace the
existing paperwork systems for ordinary business transactions, there is an
attribute of a paper message that will have to be duplicated for electronic
messages: they can be "signed”. More precisely, the recipient of a
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"signed” message has "proof” that the message originated from the sender.
This quality 1s stronger than mere authentication (verifying that the
message when received actually came From the sender) in that the recipient
of a signed document 1s able to convince a disinterested third party (a
Judge) that the signer actually sent the message. To do so, the judge must
be convinced that the signed message was not forged by the recipient
himselr! In an ordinary authentication problem the recipient does not
worry about this possibility.

We would 1ike to remark that an electronic, or digital, signature
must be message-dependent, as well as signer-dependent. Otherwise the
recipient could modify the received message by changing a few characters
before showing the message-signature pair to a judge. Even worse, the
recipient would be able to attach the received signature to any message
whatsoever, 1nasmuch as electronic "cutting and pasting® of sequences of
characters are entirely undetectable in the final product.

In order to implement signatures i1t is necessary that E‘ and D,
effect permutations of the same message space S, so that in addition to (1)
we have:

e,(o‘(n))nn. for any message M. (2)

(If the "cipher space” - the image of the message space S under E, - is
different from S then (1) need not imply (2), since Dy may not even be
defined for those elements of the message space which are not in the cipher
space. )

Suppose now that user A wants to send user B a "signed” document M.
User A then sends EB(DA(H)) to B, who then deciphers it with Dg to obtain
H'rDA(H). Now using Eg4 (available on the public file), B can read the
*signed” document Eg(M') = Eg(Dg(M)) = M.  Here M' will act as A's
“signature” for the message M.

User A can not deny having sent B this message, since no one but A
covld have created n'co,(n), under our assumption that D, 1s not computable

from E,. User B can obviously convince a "judge® that E‘{M' )=M, so that B
has "proof” that A has signed the document.

Clearly B can not modify M to a different version M", since then 8
would have to create tha corresponding signature DA{H') as wel). Therefore
8 has received a document "signed” by A, which he can "prove” that A sent,
but which 8 can not modify in any detail. (Nor can B forge A's signature
on any other document).

We observe that the act of sending a "signed” message does not
increase the length of the transmitted version of the message (compared to
1ts "unsigned” form) at all, since the "signature” is effected by
performing a length-preserving transformation on the message before
transmission. A very long message should be broken into blocks, each
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block labelled with a "this is block 1 of n" notation, and transmitted
after "signing” each block separately.

The concept of a public-key cryptosystem as described above, and
its potential use as a means of implementing digital *"signatures®, are due
to Dirfie and Hellman[2]. The reader 1s encouraged to read this excellent
article for further background and elaboration of this concept, as well as
for a discussion of other problems in the area of cryptography. Their
article was the motivation for the present work, in that while they
presented the concept of a public-key cryptosystem, they did not present
any practical way of implementing such a system. In this paper we present a
candidate implementation scheme.

If the security of the system proposed here turns out to be
satisfactory, then we will as a corollary have demonstrated the existence
of "trap-door one-way functions®, as defined in [2]. A “trap-door one-way
function® 1s a function which 1s easy to compute and easy to invert, but
for which the inverse function 1s difficult to compute from a description
of the function itself.

II. Implementation

The scheme presented here enciphers a message M by raising it to a
fixed power s modulo a certain composite number r . The deciphering
operation is performed by raising the received message to another power t,
again modulo r . User A makes public r and s, and keeps t private.
(These values should more properly be denoted r,, s,, and t,, since each
user will have . separate set of values, but in what follows we will only
concern outselves with user A's system, and will omit the subscripts.) We
assume that the message can be viewed as a number less than r, or that it
can be broken into a series of blocks, each of which can be viewed as a
number less than r which will be separately enciphered.

We observe that raising a number x to the s-th power modulo r
requires only Oflogy(r)T(r)) operations to perform, if s 1s less than
r, where T(r) denotes the time required to multiply two numbers modulo r
. This bound 1s easily derived by considering the binary representation of
s, reading from left to right, as a rule for obtaining x5 from 1 by
treating each 1 as an instruction to "square the preceding value and
multiply the result by x", and each 0 as an instruction to “"square the
preceding value®. Thus we may consider enciphering and deciphering to be
"gfricient” operations. The fact that the enciphering and deciphering
operations are similar leads to a simple implementation (conceivadbly the
whole operation could be implemented on a single integrated circuit chip).

As a small running example, consider the case

r = 4789 = 2773, s = 17.
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With an r of this size we can encode two english letters in a block, by
mapping each letter into a two-digit number (blank=00, A=01, B=02, ...,
2=26). Thus the message

ITS ALL GREEK TO ME
(Jultus Caesar, I,11,288) would be encoded into ten blocks:
0920 1900 0112 1200 0718 0505 1100 2015 0013 0500 .

Since s=10001 1n binary, the encoding of the first block goes as:

Hn s 1,
Ml « (1)2.920 « 920, (for the leftmost 1)
M2 (920)2 = 035,
w = (635)2 = 1140,
M« (1140)2 u 1836,
7 u (1836)2.920 = 048.

(Here all arithmetic 1s done modulo 2773.) In a similar fashion, the whole
message 1s enciphered as:

0948 2342 1084 1444 20663 2390 0778 0774 0219 1655 .

In order to create a realistically-sized public-key cryptosystem,
we use the Fact that to determine whether a given integer n 1s prime or
not can also be performed efficiently, even if n 1is over 100 digits
long. As an 1llustration of the kind of test used by these procedures,
the algorithms described in [4,8] are based on the following Facts. For
every prime number p and every number a not congruent to zero, mod p, we
have

a1 o 1 (mod p) (3)

On the other hand, for most composite numbers n at least one-half of the
numbers a, 0¢aln, fail to satisfy the analagous relation

a"1 o 1 (mod n). (4)

Once an a which violates (4) 1s found we have "proof” that n 1s in fact
composite. For example, since 2772 o 1088(mod 2773), we know that 2773
1s composite. We refer the reader to the original papers discussing these
results [4,6,8,0] for a detailed discussion of these procedures, including
the appropriate tests to use for those numbers n which satisfy (4) for
all a (the Carmichael numbers).

It 1s important to note that the efficient primality-testing
algorithms just described do not in general, when given as input a -
composite integer n , determine any of the factors of n . It is somewhat
surprising that while 1t 1s relatively easy to determine whether n 1s
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prime or composite, there are no efficient ways known for computing the
prime factorization of a composite number n . To determine the
factorization of an integer n which is the product of just two 50-digit
prime numbers 1s considerably beyond current capabilities. Knuth[3,
section 4.5.4] gives an excellent presentation of several efficient
factoring algorithms. The most efficient general factoring algorithm
koown to the authors is due to Pollard [6]; it will factor a number n 1n

o(n1/%) steps. A 125-digit number can be tested for primality in about
one minute; we estimate that factoring a number of that size could require
40 quadrillion years using Pollard's algorithm. If we may quote J.
Brillhart, D. H. Lehmer, and J. L. Selfridge on the difficulty of
factoring,

*In genaral nothing but frustration can be expected to come
from an attack on a number of 50 or more digits, even with
the speeds available with modern computers.” [1, page 645]

Let d be an integer such that determining the prime factorization
of a number n which is the product of just two prime numbers of length d
(in digits) is "computationally impossible”. Choosing d=40 seems to be
satisfactory at present. If better factoring algorithms are discovered
then the appropriate value of d would have to be increased, but as long as
testing for primality is significanly easier than factoring the scheme to
be described will have the desired properties.

When user A desires to put on the public file his enciphering key,
consisting of the integers r and s , he does so by determining two d-
digit "random®” prime numbers p and q , and an integer s which is
relatively prime to (p-1):(q-1) . (The reason for this condition will be
explained shortly.) Then A puts on public file the integers r and s ,
where r 1s defined to be p-q . By assumption, only A will have available
the prime factors p and q of i , even though r 1s on the public file.
When A makes r and s publjc, the values of p and q are effectively
hidden from everyone else due to the computational impossibility of
factoring r 1in a reasonable amount of time.

For our example we have p = 47, q = 89, r = p-q = 2773.

The subtask of Finding a d-digit "random® prime number is easily
accomplished by first generating an (odd) d-digit random number and then
incrementing it by 2 until a prime number is found. By the prime number
theorem, we should expect to have to do about O(d) 1incrementations before
rinding a prime. In order to avoid those few cases where the efficient
primality-testing algorithms do yleld a factor, it 1s desirable to ensure
that both (p-1) and (q-1) themselves contain large prime factors and
that gcd(p-1,r-1) and gcd(q-1,r-1) are both small. The latter condition
1s easily checked. To obtain a prime number p such that (p-1) has a
large prime factor one can generate a d-digit prime number u and then
rind the rirst prime in the sequence iu ¢ 1, for 1s2,4,6,... . By the
prime number theorem for arithmetic progressions we can expect to find a

e, M s cal i i




prime after examining O(d) elements of this series. (There 1s some
additional security provided by selecting u 1in the same manner to be of
the form Jv + 1, where v 1s a large prime.)

rhe enciphering algorithm E‘ is thus the operation:
Ep(M) = M5 (mod r)
for any message M.

To obtain the corresponding deciphering algorithm, we will use the
ident ity (due to Euler and Fermat) that for any message M which is
relatively prime to r:

M(") a1 (mod r), (5)

where ¢(r) 1is the Eular totient function giving the number of positive
integers less than r which are relatively prime to r . Equation (5) is
easily proved: the set of residues (mod r) which are relatively prime to r
form a group of order ¢(r) under multiplication, and in any group the
order of an element must divide the order of the group. Since ¢(p)=p-1
for prime numbers p , eguation (3) is a special case of (5). In our case,
we have

o(r) = ¢(p)4(a), (6)
= (p-1)(q-1)
£pq-(p+taq)+1l

by the elementary propertias of the totient function [5]. In our example we
have

#(2773) = 46-58 = 2668.

It 1s easy to see that the factorization of r enables the
computation of ¢(r) by (6), and that conversely the ability to compute
é(r) enables the factorization of r , since (p+q) 1s easily obtained
from r and ¢(r), and (p-q) can be obtained by taking the square root
of (p#q)z - 4pq. By our assumptions about the size of d , therefore, 1t
1s not possible for anyone except A to know ¢(r).

Since s 1s relatively prime with respect to ¢(r) , it has a
multiplicative inverse t 1in the ring of integers modulo ¢(r). Thus we
have that

st a1 (mod §(r)).

The value of t 1s easily computed using a simple variant of
Euclid’'s algorithm to compute the greatest common divisor of s and
é(r). (See exercise 4.5.2.15 in [3].) Briefly, the procedure is as
follows. Euclid's algorithm computes gcd(xo,xl) by computing a series

i
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Xgs X720 .00 X Where x,,; = x4 ; mod x, and xk:gcd(xo,xl). It is
simple to compute in addition for each x; coefficients a,; and b; such
| that x,ta,-xoob,rxl. Ir xkd then b. is the inverse of X3 mod Xp. For
our example we have

x,,:zcoa, aotl, b,:o,

x1t17, 0130, 01'1,

x, = 10, a =1, b, s -156, (since 2068s156-17+16),
x3 =1, a3 = -1, by = 157 (since 17s1-16+1).

Therefore the inverse of 17(mod 2668) 1s 1567.
It 1s now easy to see that

(Eq(M))t = (M%)t (mod r)
s M5t (mod r)
= Hu.‘(r)'l (mod r)
« M« M (modr),

for some integer u. Therefore the deciphering function
Da(C) = €t (mod r)

1s the desired inverse operation. (The reader can check in our example
that 948157 & 920(mod 2773).)

It should of course be checked that t is large enough so that a
direct search for 1t is infeasible. The value of s 1s rather arbitrary
but should be chosen larger than Iogz(r), s0 that every message suffers

some “"wrap-around” (reduction mod r) during the encoding process.

The preceding analysis was based on the assumption that the input
message M was relatively prime to r . While not all numbers less than
r are relatively prime to r , only those which are multiples of either p
or q are not. Therefore the chances of fFinding, among a collection of
messages, one which 1s not relatively prime to r 1is very small, say on

the order of 10"' , and 1s therefore negligible. This must be so by our
assumption since i1f it were 1ikely or easy to find a number less than r
which was not relatively prime to r , then r could be factored. (The
gcd of this number and r will be either p or q.)

It is interesting to note that the enciphering operation E‘(H) is

always invertible, even if the message M 1s a multiple of p (or
similarly, q). The deciphering operation is modified as follows. We First
note that 1f M 1s a multiple of p then so 1s E4(M). The decoder can

detect this fact easily. If the decoder receives a multiple of p it
concludes that M 1s a multiple of p, so that in order to determine M
uniquely 1t need only determine the residue of M modulo q, by the Chinese
remainder theorem. The residue of M modulo q can be found by:




M = (Eq(M))t' (mod q),

where t' 1s the inverse of s modulo (q-1). The existence of t' is
guaranteed by the fact that s 1s relatively prime to

(p-1)(q-1), and therefore to q-1. To decoded a received message which
is a multiple of p it therefore suffices to raise it to the t'-th
power, modulo r. In our example the inverse of 17, mod 58, is 41. Thus
the value t'=41 (1instead of 157) would be used to decode those messages
which are a multiple of ps47. Similarly those received messages which are
a multiple of q=589 can be decoded with a value of t'=19.

III. Remarks

We note that a minor awkwardness exists in using our system For
digital signatures in the fashion proposed by Diffie and Hellman. Namely,
it may be necessary to "reblock” the signed message for encryption since
the value of r used for signatures may be larger than that used for
enciphering (every user has his own value of r). If desired, this problem
can be avoided as follows. A certain threshold value h 1s decided upon

(say h = 101”}. Every user then maintains two r,s pairs in the public
file, one for enciphering purposes and one for signature purposes. If
every user's signature r is less than h, and every user's enciphering r
i1s greater than h , then reblocking in order to encipher a signed message
will never be necessary.

We now examine this scheme from the viewpoint of the "enemy
cryptanalyst® who wants to "break the system”, that is, to find an
efficient way of computing Dy given only r and s to work with. By our
previous assumptions he can not do it in the same way that A did, since he
does not have ¢(r) available to him. He has two approaches he may try:
(1) determine t or some equivalent number in some fashion that does not
require the knowledge of ¢(r), or (2] find an altogether different method
of computing Dy

A method for determining t 1s unlikely to exist since it would
more or less enable a calculation of ¢(r), since it is a factor of
st - 1. More precisely, a method for calculating a t corresponding to
an arbitrary s would thus enable the cryptanalyst to determine many
different multiples of ¢(r) , by varying s . The gcd of these
quantities 1s 11kely to be ¢(r) . In any case Gary Miller [4] has in
fact shown that determining any multiple of ¢(r) enables r to be
factored.

As for the the second approach, we have no proof that this is
infeasible, nor is this a "well-known" computationally intractable problem.
However, we feel reasonably confident that this is the case. Just as any
modern cryptographic system must be "certified” by proving itself immune to
a sophisticated cryptanalytic attack, the scheme proposed here must be
similarly certified by having the preceding conjecture of intractability
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@

r withstand a concerted attempt to disprove it. The reader is hereby f
challenged to Find a way to "break” this scheme. %
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