
AD—4036 96’s WISCONSIN UNIV MADISO N MATHEMATICS NESEANCH CENTER F~I 9’2A FORTRAN—TR IPLEX— PRE—COMPILEN BASED ON THE AUGMENT PRE—COMPILEeaETC(u)MAR 77 K SCCHMER. R T JACKSON DAAS29 75 CeOO2IsUNCLASSIFIED ~~C— TSR—1732 NL

~~~~~~~~ ur i!~~_r



‘4
MRC Technical Summary Report #1732

A FORTRAN-TRIPLEX-PRE-COMPILER
BASED ON THE AUGMENT PRE-COMPILER

K. Boehmer and R. T. Jackson

I
~~~~

I4

Mathematics Research Center
University of Wisconsin—M adison
610 Walnut Street D D ~
Madison , Wisconsin 53106

/ 3 1911

March 1977
~1

I c\~~ C
(Received February 22 , 1977)

1 / >
F ~
F
’

/
& Approved for public release

Dist ribution unlimited
D
. Sponsored by

• ... Ju. S. Army Research Office
) P. 0. Box 12211

Research Triangle Park

~~~~ 4orth Carolina 27709



UNIVERSITY OF ‘WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

A FORTRAN-TRIPLEX-PRE-COMPILER BASED ON THE

AUGMENT PRE-COMPILER

K. Boehmer and R. T. Jackson

Technical Summary Report # 1732
March 1977

ABSTRACT

Triplex arithmetic is a variation of interval arithmetic

in which a “main” or rounded value is computed in addition to the

endpoints of the containing interval . The “main ” value may be

considered , depending on the applicatioh , to be the “most probable ”

result of the computation , with the interval bounds indicating the

possible error.

This paper describes an implementation of Triplex arithmetic

in single and multiple precision. The implementation is based

on the Augment precompiler to obtain an easily used package.

AMS CMOS) Subject Classification: 68AlO

Key Words: interval analysis, interval arithmetic

Work Unit Number 8 CComputer Science)
ACCLSSIQM t~r
Ins

~~t, s..,
UNAN. ~OU~CIQ
iusruic*mm  

— —

s.f 
I~ 11VBUTION,’AVAtU ~ILiiv r~. :~

Di st. AV*IL. m d  ~

fi~
Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.



TABLE OF CONTENTS

Introduction 1

Round Off and Intervals 1

Definition of Triplex Type 2
A Second Reason for Triplex Type 2

Rounding 3

Different Forms of Triplex Numbers 4

Triplex , an Application of the Augment Precompiler 5

Reserved Words 6

The Precompiler Descriptions 7

Declarations 7

Arithmetic Operators for Triplex Variables 8

Arithmetic Operations for Variables of Other Types 8

Relational Operators 9

Conversions Between Data Types 10

INPUT/OUTPUT Subroutines 13

Additional “Standard” Functions 16

Absolute value (ABS) 16

Sign (TSIGN) 16

Square (TSQR) 16

Square root (SQRT) 16

Storage Considerations 17

Error Conditions and Handling 17

Changing the Precision of the Multiple Precision Version 22

Sample Runstreams 23

Description of the Package Elements 25

Listings 26

Modifying the Triplex Package 26

Disclaimer 28

References 29

Table 1. Fault Conditions 20

Table 2. Bounds Faults 21

Table 3. Fault Handling Actions 21

Table 4. MONTOR Values and Associated Faults 21



A FORTRAN-TRIPLEX-PRE-COMPILER BASED ON THE AUGMENT PRE-CO1~1PI LE R

K.  Boehmer and R. T. Jackson

Introduction

A package has been written to implement a triplex data type and triplex

arithmetic for use in FORTRAN programs . The package is available in two

versions; one in standard single precision , the other in multiple precision ,

compatible with the multiple precision package available from MRC (see (21

and 1 3]). This document describes the capabilities and use of the triplex

package as it is to be used with the AUGMENT precompiler (see (4] and 15]),

and the maintenance of the package.

Round Off and Intervals

Computation with real numbers nearly always means inexact computations

generated by round off and truncation procedures. So if a ,b c IR,

* e { + , -. , x ,/} we find

c := a ® b instead of c := a * b

where a ®  b means the “computational resul t” . Usually c * C . Interval

Analys is is one way to dea l with th is problem:

In Interval Analysis the real numbers a ,b are replaced by intervals

(a ,~~) ,  (b ,~~J , with a ~ ~~, b ~ ~ properly chosen , and then

(1) (c ,~~] [a ,~~) * (b,~~) := {c ~ k = a * b, a ta ,~~], b c (b ,b) )

For * = / there is the addi tional restr iction tha t 0 ~ Ib ,b). It is clear

that c = a * b € (a ,a) * (b,b]. All computations with real numbers are

replaced by computations with intervals with properly chosen boundaries. So

one ends up with a final interval which is known to contain the des ired

result.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.



Definition of Triplex Type

If one performs many computational steps to get the final interval

If , f J ,  overly conservative , and thereby sometimes useless , results may arise .

At the other hand if many single evaluations with reals have to be done,

including the unavoidable errors then it often happens that these errors

cancel away, so that the approximate value f and the exact value f very

often satisfy a relation

— fl << (f — f )

There , even if f — f might be the only guaranteed error bound for I~ 
—

one loses a lot of information in totally ignoring f. A way out of this

situation is a combination of interval analys is and “classical computation ” ,

called Triplex. Instead of a e P one treats triples

(2) T := [a ,a,~~) wi th a (a ,a], a < a < a

Here

inf (T) := a , main (T) := a , sup(T)  : a

are called infimum , main value and supremum of T respectively. Now

(3) La ,a,~~) * Ib ,b,b] := [c ,a * b,c)

with c,~ from (1) and by (1) and (2) a * b € Ic ,cJ .

A Second Reason for  Tr ip lex Type

There is another essential reason for introducing triplex numbers.

There are some iterat ive numer ical methods defined for sequences of triplex

numbers, having even better  convergence properties than the corresponding

classical methods. For example the Triplex-Newton version of the classical

Newton method converges (8] if

x~ (~~~,x 0 ,~~~] wi th  f ( x * ) = 0

and 0 ~ F ’ ( ( x 0 1 x 0 ) ) ,  where F’ is an interval  extens ion  of f ’  and we get

the usua l quadrat ic  convergence , if

—2—



span F’(X) ~ C span X where span X = span1x ,~~J = — x

The corresponding condition for the classical method

x € ~~~~~~ with f(x ) = 0

0 f’(x) for x 1x 0,x0]

does not guarantee the convergence of the classical Newton method .

Rounding

Here we are mainly interested in the case in which we deal with numbers

representable on a fixed computer . Let M be the set of these numbers.

Then we call mappings

(R ‘÷ M
rd : rounding down

a rd (a)

I R -*
r : rounding upU I a ’ ÷ r ( a )u

(R -‘ M
r : ( rounding

La ‘-~ a (r
d (a), r (a)) C~ M

In some cases one def ines

rd (a) := max{x c M IX < a)

r C a) := min (x M IX ~ a)

rCa ) = x c {r
~~
(a) , r (a)}

- a l < jy — al for x * y € (r
d
(a),r U

(a )}

and r
~ 

are called controlled, r uncontrolled rounding . Implementa-

tion of Interva l Analysis on a computer, including the goal of guaranteed

error bounds , mea ns that the reøult of every operation has to be rounded in

such a way , that

1a ,~~] * ~~~~ 
= 

~~ 
(
~ d
(S),rU

(
~
))

—3—



Then for a • (a ,a)  and b fb ,bJ one has a * b (c ,c]. Now r ,rd,r

have to be defined in such a way as to guarantee r(a * b) 
~ 

[rd (c) ,r (c)].

Thus the results of computation in Triplex Consist of a reasonable estimate

to the actual result as well as accurate error bounds - the best of both

worlds.

Different Forms of Triplex Numbers

There are differen t ways to characterize triplex numbers. We

have mentioned already Ia ,a,a). An equivalent way would be the

triple

(4) (a ,~~,e) with ~~ := — a , e := a — a

for example a trip lex number of this type for ~i could have the form

(3.1415926 ,1 _7~ 0)10

compared with the original type

(3.1415926 , 3.1415926 , 3.1415927)

That means the second type needs less storage space than the first one. Two

other important arguments are the computational and programming expense : It

is not hard to see that , using Wilkinson ’s estimations 111)

~ b — a * bJ ~ n a  ® bI, b * 0 for a/b, * {+ ,_ ,x ,/}

c > 0, sma ll for example c =

for a computer using numbers with t binary digits and an accumulator of

length 2 t.

Computations with (4) need hardly more computationa l effort than with

(2) . If one uses a computer wi th diffe rent prec is ions , (4) certainly needs

less time than (2). Then a ,a,~ in (2) have to be in the same precision

whereas a (resp. 
~ , e) in (4) may be represented in high (resp . low)

precision .

—4—



If one has to rea lize tr iplex on a computer today, it has to be done b y

software. The computer routines using (4) grow more and more complicated

compared with (2) . So it is wise to use (2) instead of (4) as long ~t . there

is no special hardware to use for triplex computations.

There are many cases in which the intervals blow up very quickl y. So

when it is very important to have available additional guard di g its avail ah ic ,

we need multiple-precision-triplex .

Triplex , an Application of the Augment Precompiler

We have used the AUGMENT precompiler [3 ,4] to define the nonstandard

data type TRIPLEX and to provide the user with the corresponding arithmetic.

To do this , we have used the interval arithmetic package 19], alread y av~’il-

able with the AUGMENT precompiler , and have added the main value .

In the multiple precision version , each value of a tri plex variable is

stored as a multiple precision variable using the multiple precision arith-

metic package available for use with the AUGMENT precompiler. This package

stores real numbers in a floating point representation using 33 * n - 2

bits for the mantissa , where n is an integer (~-1) that may be changed

by reassembling the package , and 33 bits (in all cases) for the character-

istic. Thus the precision may be changed over a wide range , althoug h i t

remains fixed in any single run. The package usually used at MRC has n 3 ,

yielding 97 bits or approximately 29 digits of accuracy . A description o~

the basic multiple precision package is contained in (2], and a descri ption

of the revised interface for use of this package in FORTRAN programs is

contained in [3]. The single precision triplex package stores each value

of a triplex in the standard floating point representation , but uses many

of the basic routines from MRC ’s interva l arithmetic and interval I/O pack-

ages , especially the “best possible arithmetic ” routines , for its operations.

—5—



These are described and listed in 11 1 and [9]. The AUGMENT precompiler is

described in [4) and (5]. It  is highly recommended that the user be familiar

with the user documentation for AUGMENT [4], and with the revised j.,, arface

for the multiple precision package [3]. The latter is especially recommended

as the user may find useful some of the capabilities of the “multiple ” package

not described here.

In the language of AUGMENT , the triplex package is a “safe subroutine

package” . That is, computations are carried out via calls to subroutines

with the results returned as parameters in the subroutine call, and state-

ments of the form

A A op A

where A is a variable and “op” is a binary operator , will always yield the

desired results. However the programmer need not be concerned with this fact

(except of course for realizing that statements of the type indicated work

correctly) - programs may be written as though triplex were a standard data

type in FORTRAN , and AUGMENT will parse all expressions and generate the

appropriate subroutine calls.

Reserved Words

As in standard FORTRAN , there are a number of reserved words. In the

multiple precision version the programmer should treat all identifiers

beginning with the letters “MPI” or the letters “TPL” as reserved words.

The former arc identifiers for the multiple precision package , the latter

are identifiers for the triplex package itself. In the single precision

version all identifiers beginning with “TPS” should be considered reserved

words. Two subroutine names, CVT IN and CVTOUT , common to both versions , are

also reserved. In addition , there are a number of new “standard ” functions

recognized by AUGMENT when processing programs for the triplex package .

—6—



Those functions which are properly part of the triplex package arc described

below. A ll the “standard” functions of the “multiple ” package are also

available. (For documentation see [33.) The programmer may, if he wishes ,

use the names of these functions as variable or array names — however he

is then unable to reference them as ‘ standard ” functions.

The Precompiler Descriptions

The AUGMENT precompiler requires a description of each nonstandard da~~

type that it is to process (see the documentation for AUGMENT) . The descr i~-

tions for multip le precision and multiple precision triplex may be supplied

by ADD ’ing library elements (DESCRIPTION/MULTIPLE and DESCRIPTION/TPL)

supplied wi th the package . Note that the description of the multiple preci-

sion package must precede that of the TRIPLEX package, since the latter i~ses

the former for many of its computations. The description deck for single

precision is available as library element DESCRIPTION/TPS.

Declarations

Triplex variables and arrays are declared to the precompiler in the

same manner as MULTIPLE , COMPLEX , REAL , or other variables and arrays. A

type declaration has the form:

TRIPLEX < list >

where (list) is a list of identifiers to be typed triplex. The type nan~e

“TRIPLEX” may also appear in FUNCTION or IMPLICIT typ~ declarations. Note

that in the program itself, one need ~iot indicate which triplex package

(sing’e or multiple precision) is to be used. The description deck supp lied

to AUGMENT indicates the precision and AUGMENT will translate the program

according ly.

—7—



Arithmetic Operators for Triplex Variables

The usual arithmetic operators for addition (+) , subtraction (-),

multi plication ( * ) ,  and division (I), as defined in (2) and (3) above ,

are available for operations between two triplex variables . For each opera-

tion the upper and lower values of the triplex (known as the “sup” and the

“m t’ of the tri plex) are handled exactly as in interval arithmetic; i.e.

the sup is rounded up and the inf is rounded down . Normal rounding, i.e.

rounding to the nearest representable number , is always used for the middle

value (known as the “main ”) of the triplex . Unary plus ( -4- ) and minus (-)

are also available. The package also provides exponentiation to integer

powers (only) using the usual operator (**), where , if T = (al ,a2 ,a3),

then T ** m = (cl ,a2 ** m,c3), with cl and c3 chosen so that the

interval (cl ,c31 contains all values x ** m with x in [al ,a3).

Arithmetic Operations for Variables of Other Types

It is important to be able to operate with different types of variables.

But what should be the result of , say, T op D with a triplex number T

and a real D? The main goal in applying Triplex is to get guaranteed error

bounds. Integers are exact numbers, triplex numbers are approximations

including guaranteed error bounds , reals are approximations without quaran t~~-~

error bounds. Thus A op B must be defined as integer , triplex or real

according to A op B being exact, having guaranteed error bounds or having

neither property. So we have the following table for A op B where op

represents any of the four basic arithmetic operators, and “Real” represents

real, double precision , or multiple precision.

A\B Integer Triplex Real

Integer Integer Triplex Real
Triplex Triplex Triplex Rea l

Real Real Real Real

—8—



For operations between triplex and real , double precision , or m u lti~

precision operands (or between real , double precision , or multiple preci-

sion and triplex — the order is irrelevant) , the operation is carried out

in the precision of the nontriplex operand , between that operand and the

main of the tri plex. Thus the result is always in the type of the nontr i; lix

operand. For example , if D is a double precision variable and P a

triplex , then the operation T * D is carried out by converting the m ain

of T to double precision and performing the multiplication in double pr ~~~ i-

sion, with the result in double precision . Equivalentl y, T * D is the

same as CTD (MAIN (T)) * D. (See below and [3], respectively, for definit ions

of MAIN arid CTD.)

For operations between integers and triplex quantities the integer is

replaced by a triplex having that integer for each of its values , and the

operation is carried out in triplex arithmetic. Thus , if I is integer ,

I * T represents CIT(I) * T or COMPOs(I,I,I) * P. (See below for defini-

tions of CIT and COMPOS.) Note that if si~~;le precision triplex is bein~

used then not all integers are expressible exactly as real numbers. In this

case the integer is rounded to the appropriate real number for each value

of the triplex before the computation is performed .

To obtain the triplex quotient of integers A and B, we may u~;e the

function RAT(A ,B) which is described below .

Relational Operators

The usual relational operators are available for use with triplex

quantities. They are defined as follows:

Let A be the triplex (al ,a2 ,a3), B the triplex (bl,b2 ,b3). Then:

—9-



A .LT . B ‘= “ (a3 .LT. bl)

A .LE . B < = >  (al .LE. bl) .AND. (a3 .LE . b3)

A .GE . B <~~~> (al .GE. bi) .AND . (a3 .GE . b3)

A .GT . B <=‘ (al .GT . b3)

A .EQ. B <=> (a]. .EQ . b l )  .AND . (a3 .EQ. b3)

A .M E.  B =~~ ( a] . .M E.  b i)  .OR . (a3  .NE . b3)

(The operators  .LT . ,  .LE., etc. on the right are the usual Fortran operators

for Less Than , Less Equal , etc.)

Perhaps it should be noted here that if the programme r des i res , he may

def ine  a d d i ti o n a l  r e la t iona l  or other operators, or he may redefine those

above. Other definitions are certainly possible and perhaps useful in

certain contexts; for example , we might define

A .LT. B <=> (al .LT. bl) .AND . (a3 .LT. b3)

This may be done easily by writing the appropriate subroutines to effect

the operations and changing the description deck for AUGMENT. For a discus-

sion, see “Mod i f yi ng the Tr iplex Package” , below.

No relational operations between different types of data have been

defined . It is very simple, and adequate, to compare an integer I and a

triplex T by CIT(I) .LT. T, but it should be difficult , because it is

not adequate , to compare a real R and a triplex T. If one wants to do

that , one must write COMPOS (R,R,R) .LT. T, for example.

Conversions Between Data Types

In dealing with conversion between data types one must consider the

amount of information available in the different data types. Exact integers

contain more information than triplex numbers , wh ich in turn con tain more

information than real , double precision, or multiple precision quantities.

Conversions are only defined from data types to types containing less

information .

—10—



Conversion functions are available for converting from triplex to real ,

double precis ion , and ( i n  the mul t ip le  precision vers ion)  m u l t i p l e  p rec i s ion .

They are ca lled by

CTR (T)

CTD (T)

CTM(T)

respectively, where T is a triplex variable. In each case the main value

of the triplex is converted to the appropriate type.

There is only one conversion to triplex available , that for the conver-

sion from integer to triplex alluded to above. It is called explicitly by

— CIT(K)

where K is an integer , and its result is a triplex all three of whose

values are set equal to the value of K. In the single precision version

not all integers can be represented exactly, but proper rounding is always

used to produce a correct triplex .

Three functions are supplied for extracting any of the three values

of a triplex . These are :

INF (T)

MAIN (T)

SUP (T)

which extract , respectively, the inf , main , or sup of the triplex T. The

result in each case is of the same type as the precision of the trip lex

package .

The three values of a triplex may be spec ified , or the tr iplex

“composed” , by use of the tr ip lex function COMPOS. The call is via

COMPOS(A ,B,C)

where A , B, and C become , respectively, the inf , main , and sup of the

resulting tri plex quantity. The only restrictions on A , B, and C are

—11—



that they must all three be of the same type (real, integer , double preci-

sion , or multiple precision), and that they must be ordered :

A < B < C

If this ordering does not hold , the triplex is still formed as specif ied ,

but in addition an error condition is detected and the action taken is as

described below under “Error Conditions and Handling ” .

A triplex quantity may be formed from a rational number by use of the

triplex function RAT. The call is via

RAT (A,  B)

where A and B are integers. The result of the function is a triplex

with the ratio A/B, appropriately rounded , for each of its values.

A triplex may also be specified by a Hollerith string using the trip lex

func tion ASSIGN , which may be called explicitly via

ASSIGN (’string ’)

or implicitl y via a statement of the form

T = ‘string’

where P is a trip lex var iable and ‘string ’ is a Hollerith string . The

following comments are relevant to the operation of this routine:

1. Strings should be expressed in either of the usual forms for

Holler ith cons tants or arrays , i.e.

nHccc . . . c or ‘ccc . . . c ’

where the c ’s are charac ters, n is an integer, and exactly n

characters are specified in the first case. (The subroutine doing

the conversion also expec ts the string to be followed by a word

containing all 1-bits , but so long as the string is expressed in

one of the above formats the Fortran V compiler will generate such

a word when the string appears in the subroutine call.)

2. The Holleri th string should contain either one or three numbers in

any Fortran—acceptable format for real numbers, separated by

commas if three numbers are specified .

—12—



3. Any or all of the fields may be empty, in which case zero is assumed ,

except that the string must contain at least one character (a blank

is sufficient). Thus, for example, the statement

T = ‘— l .O ,,l.O ’

builds the triplex (—1 ,0,1).

4. Except when an entire field is blank , as descrm~~ed above, ALL

BLANKS ARE IGNORED , not treated as zeroes as in Fortran i n p u t

routines.

5. If three numbers are specified , then the first is rounded down

obtain the inf of the triplex, the second is rounded to the n~ -a~

representable number for the main , and the third is rounded up for

the sup. If only one number is specified , the action is as t h o u

that number had been specified in all three positions.

6. Since the ASSIGN function is described to AUGMENT as a conversion

function , it will also be called to convert a Hollerith string tc

TRIPLEX if that string appears as an operand to a binary operator

defined for triplex operands and if the other operator is alreajy

of TRIPLEX type. See [4], pp. 50—51 , for details of the algorith--

used by AUGMENT to determine when such conversions are to be in v ~~k~~~ .

7. Errors are possible, e.g. bounds errors, illegal characters, etc .

See below (Error Conditions and Handling) for a discussion.

INPUT/OUTPUT Subroutines

Two subroutines are provided to facilita te input and output of trip ]c..

variables. Subroutine CVTIN converts an input string of Hollerith (FIELDATA )

characters representing the value of the triplex into a machine representa-

tion of the triplex. The calling sequence is

CALL CVTIN (STRING, NC , T)

where the arguments are as follows :

—1 3—



STRING — an array which contains the Hollerith string in Al format ,

i.e. one character per word .

NC - an integer indicating the number of characters in the string

T — a triplex variable into which the result is to be placed

All of the remarks above for the ASSIGN function apply as well to CVTIN

except the first - here STRING must be a Fortran array (and no word of

1—bits is necessary after the string). In fact , the function of ASSIGN

is to “unpack” the Hollerith string it receives as its input into a Fortran

array and to call subroutine CVTIN for the conversion .

Subroutine CVTOUT has the opposite effect - i.e. it converts a triplex

from its binary (machine) representation into a Hollerith string (or rather

three Hollerith strings) for output. The call is via :

CALL CVTOUT (T , El , Ll , E2, L2, E3 , L3)

where the arguments are as follows :

T — the triplex variable to be converted

E1,E2,E3 — three arrays which are to receive the decimal representa-

tions for the inf , main, and sup, respectively , in Al format.

(See below .)

Ll,L2 ,L3 - three integers which specify the lengths of the three strings

It is permissable for El , E2, and E3 to be ac tually parts of the same

array. Suppose, for example , that a triplex T is to be converted with

10,15, and 20 characters desired for the jnf , main , and sup , respectively,

and the output string is to be the array E, which has length at least 45.

Then the call

CALL CVTOUT (T ,E,l0,E (ll),l5,E(26),20)

will put the inf in positions 1—10 , the main in positions 11—25 , and the

sup in positions 26-45 of the array E, which can then be output in the

desired format using nAl Hollerith specifications. Also note that proper

—14—



rounding is used for each value of the triplex: i.e., the irif is rounded

down ; the main , to the nearest; and the sup, up during the conversion .

The only error possible is not providing enough space for the output

string. The sing le precision conversion routine requires for each number

five places plus the number of dig its to appear in the fraction . The

multiple precision routine uses only as much space for the exponent as is

necessary (from zero to twelve columns) plus two for sign and decima l point

in addition to the fraction . The multiple precision routine also detects

an error condition if too many digits are requested (only about twice the

number of s ignificant digits are available), but still returns its maximum .

If more flexibility is required for input/output , the basic conversion

routines are available for conversion of single numbers. In multiple preci-

sion , use the routines MPICTB , MPITDF, and MPITDV directly from the multip le

package — see (33 for details. In single precision, routines almost

identical to BPACVI and BPACVO of the interval I/O package are provided.

These are not considered part of the triplex package, but are supplied for

the user ’s convenience. The only differences from the descriptions of

these routines in 11] are that the names have been changed to TPSCVI and

TPSCVO so as not to introduce any new rese rved words not beginning with

“TPS’ , and that the calling sequences have been expanded to include both

OPTION and FAULT as parameters , so that reference to common block SPAIND

is not necessary. Note that this implies that TPSCVI treats all blanks

as zeroes , unlike CVTIN and ASSIGN which ignore them. The new call is via:

CALL TPSCVx (E, 1W, X , OPTION , FAULT)

(Here x = I or 0.) Definitions for all five parameters are exactly as

described in [1] for the original routines.

— 15—



Additional “Standard” Functions

In addition to the functions listed above , four “library ” funct ions

are available. (More are available for multiple precision quantities -

see (3] for details.)

Absolute value (ABS). The absolute value of a triplex T has as its

main the absolute value of the main of T, and for its containing interval

the interval of absolute values of the containing interval of P. It is

obtained via the triplex function ABS(T).

Sign (TSIGN). We define the sign of a triplex to be positive or

negative if all three values of the triplex are respectively positive or

negative , and zero otherwise. Then the integer function TSIGN assumes

the values —l ,0,+l if its triplex argument has, respectively, negative ,

zero, or positive sign.

Square (TSQR). The square of a triplex P is not necessaril y the

same as the product T * T, as is also the case in interval arithmetic.

The square of an interval consists of the squares of all real values contained

in that interva l , (and is thus always nonnegative), while the product of

an interval with itself consists of products of all possible pairs of real

values chosen from the interval. The square of a triplex T may be obtained

from the triplex function TSQR by writing TSQR (T).

Square root (SORT) . The square root of a triplex T may be obtained

via the triplex function SORT by writing SQRT(T). If the triplex contains

any negative values the result is set to the largest possible interval ,

with main equal to zero, and an error condition is detected - see below for

handling. The algorithm used yields the exact square root when it is

machine representable , or the upper round for the sup and the lower round

for both the inf and main values when it is not . See [12] for details and

proof of the algorithm. -

—16—



Storage Considerations

In the single precision triplex package , each tri plex variable is

stored in a real array of length 3. Declarations of triplex variables a~. e

translated by AUGMENT into the appropriate real array declarations. For

example, declaration (a) below will be transformed into declaration (b)

(a) TRIPLEX S,T(3,4)

(b) REAL S (3),T(3,3,4)

In the multiple precision version each tri plex variable is stort-d in

an integer array of length ~ ~ n , where n is the number of words

required to store a multiple precision variable in the version of the

multip le package to be used . (See [3] for a discussion of multip le precision

storage requirements.) Thus declarations of triplex variables are translat~~d

by AUGMENT into the necessary integer array declarations. For examp le if

n = 4 (i.e. each multiple precision variable requires four words of stir. )

and the declaration (a) below is input to the precomp iler , then dec1arati~c : .

(b) is the translated statement which will appear in the output from AUG~~~. :

(a) TRIPLEX S,T(3,4)

(b) INTEGER S(12),T(12 ,3,4)

It should be noted that AUGMENT does not process DATA or E Q U I V A L F ~ C1;

statcmLnts , but rather they are copied into the output file exactl y as they

are read . Hence the use of such statements should take into account the

manner in which declarations are translated .

Error Conditions and Handling

A number of error conditions are possible during the processing of

triplex operations. These conditions are monitored whenever they may occur ,

and if one arises a flag is set and the error—handling subroutine (TPSERR

or TPLEP.R in the single and multiple precision versions, respectively),

is called for proper handling. The action to be taken in each case is

— 17—



determined by the value in a table in common (MONTOR) corresponding to the

fault which has occurred . The values in this table may be accessed or

changed by the user. In addition , the fault indicator , the name of the

routine in which the error occurred , and three parameters (usually the

parameters in the call to that routine) are made available internally.

Table 1 below contains the list of possible values for TFAULT , the

fault indicator , ançl the error conditions they represent. Values between

1 and 63 represent bounds faults and are to be interpreted as follows : Put

Fl = TFAULT / 16

F2 = TFAULT / 4 (MOD 4)

F3 = TFAULT (MOD 4)

(Equivalently, TFAULT = 4 * (4 * Fl + F2) + F3.) Then Fl , F2 , and F3

represent the fault for the inf , main , and sup , respectively, of the trip lex ,

according to the faults shown in Table 2. (An infinity fault occurs when

the size of the result of a single computation exceeds the capacity of the

machine representation for the number and the largest representable number

is not a valid approximation or bound , e.g. in the calculation of the sup

of a triplex. An overflow fault occurs when the size of a result exceeds

the capacity of the representation but the largest representable number is

an acceptable approximation or bound , e.g. with the inf of an all-positive

tri plex.)

Access internally to the fault flag and other information about the

fault , and to the MONTOR table , which dictates the action to be taken on

encountering a fault , is through common block TFAULT , which is declared as:

COMMON/TFAULT/TFAULT , NAME,MONTOR (16) , PARAMS (3)

Variable TFAULT is the fault flag, NAME contains (in A6 format) the name of

the routine where the fault was detected , MONTOR is the aforementioned

tab le , and PARAM S usually contains the parameters to routine “NAME ” (details

below). PARA MS is declared as type TR IPLEX , the other variables all as

INTEGERS.

—18—



The action to be taken in the error-handling routine is dictated by

the appropriate value of the MONTOR table. The possible actions are given

in Table 3. The “walk-back” anu the “error-counter ” mentioned here are

part of the error processing utility routines on the Univac 1110 at the

University of Wisconsin. Details are given in [61 and [10], but briefly,

they operate as follows: A walk-back is a sequence of one-line messages

which traces the sequence of calls made back to the main program , and can

be a hand y debugging aid. The utility routines maintain a count of errors

encountered in Fortran library functions - this is the error counter. When

the error counter reaches the error limit , processing is terminated . The

value of the error counter may be obtained and the error limit may be reset

during execution of a program. (The error limit is initialized at 1.)

The correspondence between MONTOR values and error conditions, along

with the initial values of MONTOR , are given in Table 4. Note that except

for bounds errors these conditions correspond exactly to the error conditions

given in Table 1. For bounds errors , the action taken is that indicated

by the value

MAX (MONTOR ( Fl) , MONTOR C F2) , MONTOR (F3)

where Fl , F2 , and F3 are as before, the faults for the inf , main , and

sup , respectivel y, of the triplex. Thus if the main of a triplex computation

has an underflow fault , the sup an infinity fault , with no fault for the

inf , and the values of MONTOR(I), for I = 2,3, are 3 and 2, respec-

tively (the default values), then by Table 3 the error-handler will print

an error message and a walk-back and will increment the error counter , the

action given by the value 3.

The values ordinarily put into the array PARAMS are the three arguments

to the routine where the error was detected. For example , if a fault occurs

in the division routine , the values are the dividend , the d ivisor , and the

quotient , in that order. The exceptions are the COMPOS functions , the square

— 19—



and square root routines , and the input and output routines. The COMPOS

functions have the triplex formed by the routine in all three param ’-ter

locations. The square and square root routines have onl y one input para-

meter , so it appears in both the first two placei , with , as usual, the

result in the third place . Input errors leave the first parameter u n d e f in e d ,

have the tripl vx that was formed in the third position , and l eave  t h e  total

length of the  input expression as an integer in the first word of the

second parameter. Note that this may not be consistent with the t y pe

declaration for the PARAMS array. ~ number is desired interna lly, ~t

is recommended that an EQUIVALENCE expression be used to access this word

directly as an integer. Output errors leave the triplex to be converted

in the third parameter , the number of the output string (1, 2 , or 3) w h i c h

caused the error in the first word of the first parameter , and the s p e ci f ie d

length of tha t field in the first word of the second parameter. Once again

note the nonstandard usage.

Table 1. Fault Conditions

Fault Flag Fault Condition

0 No Faults
1—63 Bounds Faults
64 Division by a triplex containing zero
65 Badly ordered triplex specified
66 Square root of a triplex containing negativt .

values
67 Insufficient space in outpu t string
68* Too many digits requested (maximum supplied)
69 Wrong number of fields in input string
70 Illegal character in input string
71 Input string too long to ASSIGN or CVTIN

(limits: 80 for sing . prec., 240 for mu lt. prec- .-
mult. prec. limit applies only to ASSIGN)

72* Format error in input string
73* Input substring too long — trur~~ated string used

* These errors occur only in the multiple precision
version .

—20—



Table 2. Bounds Faults

Value Fault Condition

0 No Faults
1 Overflow
2 Infinity
3 Underflow

Table 3. Fault Handling Actions

Value Action

0 No action
1 Print error message
2 Pr int error message and walkback
3 Print error message and walkback , increment error

counter
4 Print error message and wa lkback , stop

Table 4. MONTOR Values and Associated Faults

I Fault Condition affected by MONTOR(I) Default value
of MONTOR (l)

1 Overflow 3
2 Infinity 3
3 Underfiow 2
4 Division by a triplex containing zero 3
5 Badly ordered tr iplex spec ified 3
6 Square root of a triplex containing negative values 3
7 Insufficient space in output string 1
8* Too many digits requested for output string 1
9 Wrong number of fields in input string 3
10 Illegal character in input string 3
11 Input string too long to ASSIGN or CVTIN 3
12* Format error in input string 3
13* Input substring too long 1
l4** Overflow 3
l5** Infinity 3
l6** Underflow 1

* These errors occur only in the multiple precision version.

** These errors apply to conversions from input strings.

—21—



Chanciing the !‘recision of the Multiple Precision Version

All the remarks on precision and changing the precision in [31 app ly

without change to the multi ple precision tri plex package , since the multi ple

precision package is used by triplex. When changing the precision , howeve r ,

one additional step is necessary. After generating the new multiple preci-

sion “machine ” via

@‘mfile.NEW-MACHINE ,option n

as described in [3), the entire triplex package must be recompiled in order

to accommodate the change in storage requirements of multiple precision

quantities. This can be accomplished via the following control card:

@tfile. TPLGENERATE ,option

where “tfile ” is the name of a program file containing the entire triplex

package. If no option is present on the TPLGENERATE card , all translated

source and individual relocatable elements are lost, with only the element

TPLPACKAGE , the collection of all relocatable elements, being saved in

“tfile ” . The option “5” causes all translated source and relocatable

elements to be saved in “tfile ’ . Note that TPLGENERATE requires that a copy

of the description deck for the multiple package , consistent with the ver-

sion to be used , be contained in the same file as the triplex package .

A call on TPLGENERATE causes the following actions:

1. Call AUGMENT to translate all the subroutines.

2. Compile all the subroutines , depositing all source and

relocatable elements in “tfile ” , if the option “S” is used ,

or in ~ temporary file , (which will be automatically assigned

to the run) .

3. Collect the compiled subroutines together to form the

relocatable element TPLPACKAGE , which is stored in “tfile ” .

— 2 2 —



Sample Runstreama

The following is a sample runstream for using the single precision

triple x package :

(‘RUN .

~xQT afile.AUGMENT

~ADD tf i le.DESCRIPTION/TPS
*BEGIN
:FOR ,IS elementl

:FOR ,IS element2

etc.
* END
@ADD 20.
(~MAP , IS , abs-element

IN TPF$.
IN tfile.TPSPACKAGE

@XQT abs-element
data (if any)

(‘~F IN

The following is a sample runstream for using the multiple precision

triplex package :

~ RUN .

@XQT a f i le . A U G M E N T
@ADD mfile. DESCRIPTION/MU LTIPLE
@AD D t f i l e . D ESC RI P T I O N / TP L
*BEG IN
:FOR ,IS elementl

:FOR ,IS element2

etc.
* END
~?ADD 20.
~MAP , IS , abs-e lement

IN TPF$ .
IN tfile.TPLPACKAGE
LIB mfile.

~~XQT abs-element
data (if any )

~ FIN

—2 3—



The filenames “afile ” , “m file ” , and “tfile ” are names of files wh2ch

contain the AUGMENT precompiler , the multipl e precision package , and the

triplex package , respectively, and need not be distinct.

These runstreams assume that “elementi ” , “element2” , etc. are p l aced

in TPF$ and that no other routines from other files are needed. If thi n

is not the case the control statements following the ~‘MA P card should be

altered according ly.

Note the colon in Column 1 of the Fortran control cards. This is

necessary in order for these cards to be read by AUGMENT without interference

from the Exec 8 operating system . The colon will be changed to a 7-8

punch (“@“) before output to FiLe 20.

The following runstream will generate a new multiple precision package

and a new triplex package with a new precision :

(
~RUN .

ca)mfile.NEW_MACHINE ,option n
t~COPY ,S mfile.DESCRIPTION/NULTIPLE,;

tfile .DESCRIPTION/MULTI.PLE
(‘tfile .TPLGENERATE ,optio~€PREP mfile.

~FIN

Here again “mfile” is a file containing the multiple precision package

(including the symbolic elements which may have to be loaded from tape)

and “tfile ” is a file containing the triplex package (also containing

symbolic elements) . If tI~ese are the same file, the ~‘PREP card must follow

the TPLGENERATE card . (The (‘PREP card causes an entry point table to be

generated for the file , which will be destroyed whenever any relocatable

element is added , as will happen with the TPLGENERATE call.) In any case

it must precede any collection (i.e. a @MAP card) requiring the multi ple

package. The third card listed , which copies the description deck for the

multiple package to tfile , is of course unnecessary if tfile and mfile

coincide.

— 2 4 —



Description of the Package Elements

The heart of the triplex package is the collection of Fortran and

assembler subroutines which do all the computations involving triplex vari-

ables. The source code for these routines is contained in the symbolic

elements SOURCE/TPS and SOURCE/TPL for the single and multip le precision

versions , respectively, and the resulting relocatable elements are include :

individually. The single precision package uses fou r additional routines

whose assembler source and relocatable elements are included . These are

BESTPACKAGE , borrowed intact from the interval arithmetic package at NRC

to do the directed-rounding arithmetic , and INTCRI , BPACVO , and BPAHDP ,

all borrowed intact from the interval I/O package for the binary-decimal

conversions. Since the multiple precision version routines all use m ulti ple

prec ision var iables , they mus t all be translated by AUGMENT before they are

to be compiled . The translated and compiled routines have been collected

together to form the relocatable elements TPSPACKAGE and TPLPACKAGE , for

the single and multiple precision versions, respectively. The MAP c o n t r o l

cards for these collections are contained in the symbolic elements of the

same name .

The absolute element TPLGENERATE is responsible for generation of a

new triplex package as described above , and is the result of the collection

of the two relocatable elements SDFIO and GENERATE , whose UNIVAC 1100

Assembler source elements are included under the same names. SDFIO is

borrowed intac t from the multiple package , while GENERATE is an adaptation

of multip le ’s NEW-MACHINE . The symbolic element SKELETON/TRIPLEX is a

skeleton runstream which is referenced by TPLGENERATE and passed to the

EXEC for processing .

The symbolic elements DESCRIPTION/MULTIPLE, DESCRIPT ION/TPS , and

DESCRIPTION/TPL are the description decks for the multiple and triplex

—25—



packages as required by the AUGMENT precompiler. The multiple descr iption

deck must be ma inta ined by the programmer in charge to reflect storage

requirements for the multi ple precision package being used unless the

triplex package and the multip le package reside in the same f i le , i n which

case i t  w i l l  be updated as necessary by NEW-MACHINE.

The last element is the symbolic element for this document , ca l l ed

TPLDOC .

Listings

Listings of all programs in the triplex package are available on micro-

fiche from the Mathematics Research Center .

Modifying the Triplex Package

If modifications or additions are to be made to the triplex package

one need only write (or modify) the appropriate subroutines and make any

necessary changes in the description deck for AUGMENT . Details on the forma t

of the description deck and general guidelines for the subroutines can be

found in (4]. The following remarks apply only to the triplex package:

The original routines have all been written to be “safe” . That is,

no parameter in ..he calling sequence is changed before all data is extracted

from the parameters , so tha t expre ssions such as

A = A/A

do produce correct code. If any subroutines or functions are written or

modified so as to be no longer safe, the description deck must reflect this.

Communication with the existing error package is through both the

call ing sequence and a common block . The call is always via:

CALL TPxERR (ICALLD ,Tl ,T2,T3)

where x is S or L in the single and multiple precision versions

—26—



respectively, ICALLD is the name of the calling routine (e.g. 6HTPSADD),

and Tl , T2, T3 are three parameters, usually the three parameters which

are placed in array PARAMS of common block TFAULT. The fault code itself is

passed through common . In the single precision version it is stored in

the integer variable IFAULT , the first word of common block INTFLT . In

the multi ple precision version it is stored in the integer variable MFAULT ,

the third word of common block MPIFLT. (INTFLT and MPIFLT are used for

fault handling in the interval arithmetic and multiple precision packages.)

Note that the error handlers treat each type of error separately, so as to

accept different parameters and to produce different forms of output. This

should make it relatively easy to include handling for newly defined errors.

I f  the error handlers are modified , for example to incorporate additional

error conditions , special care should be taken with regard to the nonstandard

usage as mentioned above i n  Error Conditions and Hand l ing .

The m u l t i p l e  precis ion a r i thmet ic  package has its own error hand l ing

rou t ines  which  will produce error messages if they are not explicitly

suppressed , as is done in the existing triplex subroutines. Most of these

messages are control led  by the value of an interrupt mask , which should be

set to zero to inhibit messages (the multiple fault flag is still set when

errors are encountered) . Subroutines MPIGMK and MPIMSK permit the uaer to

get the old mas k and to set the ma sk to a new va lue , respectively, in each

case through the s i n g l e  parameter in the call. Messages arising in binary-

decimal conversions (in either direction) are controlled by an internal

log ical var iable - messages are pr in ted if and only  if its value is TRUE .

This variable can be rese t and its previous value obtained by a call to

logical function MPIPRT. The value of the function is the previous value ,

and the new value is specified by the single parameter in the call. Details

for both cases are in (3).

—27—



If any routines are to be added to or deleted from either 1 ic:ka ie ,

appropriate changes must be made to the MAP control cards for that pac kap .

Note also that these control cards reference elements by element-name only -

no file names are included . To get a proper collection , insert the follow-

ing card before any collection :

@USE TPF$,.tfile

where “tfile ” is the file containing the triplex package. It will probabl y

be desirable to free the filename TPF$ using the card :

~FREE ,A TPF$

after the collection to avoid any undesired consequences ;f using TPF$ to

refer to “t fi le ” .

Disclaimer

This package has been tested and is believe I to be correct and

adequately documented. However, neither the programmer , the Mathematics

Research Center , nor the University of Wisconsin assume any responsibility

fo r any errors , omissions, malfunctions, or difficulties which may arise

in its use.

—28—



REFE RENCES

1. W. Binstock , J .  Ha wkes ,  and N . —T.  Hsu , An interval input/output 1a~ k : ”

for the UNIVAC 1108, The University of Wisconsin-Madison , Mathemat ics

Research Center , Technical Summary Report *1212 , September 1973.

2. F. D. Cra ry , Multiple Precision Arithmetic Design with an im p l e m e n t a -

tion on the UNIVAC 1108 , The University of Wisconsin-Madison ,

Mathematics Research Center , Technical ummary  Report 01123 ,~~~~~a

3. F. D. Crary, Multiple Precision Arithmetic Packaq -Revised FORTRiV~

Interface. Available from the author at the Mathematics Research

Center , 610 Walnut St. (263—2520)

4. F. D. Crary , The AUGMENT Precompiler , I. User Information , The Univ ersi ’ .’

of Wisconsin—Madison, Mathematics Research Center , Technical Sur r’ary

Report *1469 , December 1974. (Revised April 1976)

5. F. D. Crary , The AUGMENT Precompiler , II. Technica l Documentatirn , The

University of Wisconsin—Madison , Mathematics Research Center , Technic al

Summary Report *1470 , October 1975.

6. Fortran V Library Functions, Reference Manual for the 1108 , F i r s ’

Rev ision , The University of Wisconsin Computinq Center , Aug us t 1 97 1 .

7. W. N. Kahan , A Survey of Error Analys is , “Proc . of IFIP Conqress l (i71 ,

Vol. 11” , Ed. by C. V. Freiman , J. E. Griffith and J. L. R s.’n.’eld ,

North—Holland Publ. Comp., Amsterdam , 1214-1239 (1972).

8. R. Krawczyk , Newton—algorithmen zur Bestiminung von Nul lst elle n nit

Fehlerschranken, Computing 4, 187—201 (1969).

9. T. D. Ladner and 3. M. Yohe , An interval arithmetic package for the

UNIVAC 1108, The University of Wisconsin-Madison, Mathematics Research

Cen ter , Technical Summary Report *1055 , May 1970.

10. Utility Routines, Reference Manual for the 1108, First Revision , The

University of Wisconsin Computing Center , February 1971.

—29—



11. J. H. Wilkinson , Rounding errors in algebraic processes, London 1963.

12. 3. M. Yohe , Rigorous bounds on computed approximations to square roots

and cube roots, The University of Wisconsin-Madison , Mathematics

Research Center , Technical Summary Report #1088, September 1970.

—30—



SEC u R IT y  ( 
~ A S SI F  A~~ 

p
~~OF T HIS PA G E (WI,ai V... Ent.r.~~

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
_____ 2. GOVT ACCEUION NO. ~~~~~~~~~~~~~~~~~~~~~~~~~~ NUMBER

/‘~~~~~~~-/. 4~~~~
.”~~~~~’

4. T I T L E  (aid SubtIU.)  L~~~~~~... *f JTfl’4 p
~~ioo covt~~ø

— 
~umma y~~~p t;- no specific

~ ~
‘ORTRAN-TRIPLEX-j)RE_

~~OMPILER ~ASED ON/ £‘ ep~~rng p~riod
THE AUGMENT P R E — C O M P I L E R  6. PERFORMING ORG. REPORT NUMB E R

7 . . ~ UTHOR(.) ‘~ CONTRACT OR GRANT NUMSER(.)

c c J ~~~
eh m er . R T /Jackson 

T
DAAG29 75

~
C G

~~~~k
•. PERFORMING ORGAN IZATION NAM E A ND ADDRESS tO. PROGRAM ELEMENT, PROJECT . TAS k

AREA & WORK UNIT NUMBERS
Mathematics Research Center, University of
610 Walnut Street ~~~~~onsin 8 (Computer Science)
Madison , Wisconsin 53706 __________________________
II. CONTROLLIN G OFFICE N AME *510 ADDRESS ‘ —

~~
12._ REPoRT~~~~!J. _ ..

U. S. Army Research Office ~~~~~) ;‘j f ~ M~~rIII1 r i7
P. 0. Box 12211 —

~~ ~— ‘~~ . ~~

Research Triangle Park , North Carolina 27709 30
11. MONITORING AGE NCY NAME I ADDRESSO ’ dlft.runt from Control lIng Offic.) IS. SECURITY CLASS. (of thi . vs porf)

I UNCLASSIFIED
15.. OECL ASSI FICAT ION /OOWNGRAO ING

SCHEDULE

IS. D ISTRIBUTION STATEMENT (at ff1. Rsport)

Approved for public release; distri bution unlimited ,

IT, DISTRIBUTION STATEMENT (of IA. .b.erac t ait. r.d In Block 20, II dlfl.r ~~ t l,om R.porl)

IS S U P P L E MEN T A R Y NOTES

IS. KE Y WORDS (Conllnu. 0., r.v.r.. aId. If n.c.aa y aid id..nflfy by block n,a,b.r)

interva l analysis
interva l arithmetic

20 A RACT (Continu, a, r•~ ar•• aid. It n.c..a y aid Id.atIly by block ni ,b.r)

‘Tri~ 4,ex r ’ thmetic is a variat ion of interval ar i thm etic in
which a aThain or rounded value is compu~,ed i~~ addition to the end-
points of the containing interval . The ‘ Thain value may be çgnsid
ered , depending on the application , to be the ‘~~~st ~robable~~result of the computation , with the interval bounds indicating the
possible error.

This paper describes an implementation of Triplex arithmetic
in single and multiple precision. The implementation is based on
the Augment precompiler to obtain an easily used Dackape.

DO ~~~~~ 1473 IOITION OF I NOV 61 IS OBSOLETE UNCLASSIFIED
~SECURITY CLASSIFICATION OF THIS PAGE (W~~ n D1a L,ia.d)

