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ABSTRACT

New variational bounds are derived on the generalized polarizabilities
of a quantum-mechanical system, for arbitrary complex frequencies ¢ = v+ iw
and two different perturbations u and v. HNo power of the Hamiltonian h
higher than h? is involved in the bounding functionals. For a certain
range of v-values, upper and lower bounding functionals are obtained which
contain merely a single trial vector but also introduce an inverse operator like
h'l. This impractical feature can be avoided with a subsidiary variational
principle, leading to bivariational upper and lower bounds. Explicit
bivariational bounds are also derived which are valid for all values of ¢ .

Both theoretical and practical aspects of the bounds are discussed.
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NEW VARIATIONAL BOUNDS ON GENERALIZED POLARIZABILITIES™
Peter D. Robinson*

1. INTRODUCTION

Let a quantum-mechanical system be described by a self-adjoint
Hamiltonian operator h in a complex Hilbert space H , and suppose that h
possesses a complete set of orthonormal eigenvectors {ek} with
corresponding energy eigenvalues {Ek} . If the system is in a state en,
its dynamic polarizability a(z) at complex frequency ¢ = v+ iw

associated with a perturbation u can be defined as
=1
a(z) = 2 Real kgn (Ek-En+c) <ub ,6,><6, ,ub > , (1.1}

the summation being over all states different from en . The notation
<,> denotes the complex inner product, so that for all ¢ and ¥ in H

and complex numbers s we have
<@,¥> = <¥,8>,  <sd,¥> = 5<b,¥>,  <b,s¥> = s<P,¥>, (1.2)

a bar denoting complex conjugate. Previous authors [see for example references
1-8 and 25-27] have presented bounding variational functionals on a(v)
or a(iw) , the dynamic polarizabilities when ¢ is wholly real or wholly
imaginary. Often there has been a restriction to real u and real 6 . "ith w?0,
shortcomings of many of these bounding functionals have been the high powers
of h involved, and a multiplicative factor of w ! which is unfortunate for
small w.

Expressions similar to that in (1.1), but with inner products

<v8n.9k»<6k,uen> involving different perturbations u and v, define quantities
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arising for example in theories of optical rotatary power [9], and nuclear-
magnetic shielding and chemical shifts [10,11]. Such more general
expressions can also arise in double perturbation theory [12]. With
generalizations such as this in mind, as well as the desirability of
admitting arbitrary complex frequencies, perturbations and unperturbed
states, we show how to derive upper and lower bounding variational

functionals on the quantity

2(f,g;2) = 2 Real kz (Ek-l-:n+;)" <g,0,><6, . f> . (1.3)
] #n

No separate consideration is necessary for quantities defined as imaginary

parts of summations like that in (1.3), for g can merely be replaced by

-ig if necessary. Without significant loss of generality, the arbitrary

complex vectors f and g are taken as members of the reduced Hilbert

space an:f{, containing all vectors in H whichare orthogonal to

;T - R

n

f.g e H = (o|¢eH, <9,6. > = 0} . (1.4)
Apart from their intrinsic theoretical interest, bounding variational
functionals can inprinciple lead (with suitably artificial choice of trial
vector) to bounds on unknown quantities in terms of certain known quantities,
like sum rules or moments [4,6]. However, if they are to be a viable
practical tool, bounding functionals must not present exceptionally severe

problems of evaluation when reasonable trial vectors are employed. It is

e




for this reason that we do not much concern ourselves with functionals

which involve powers of the operator h higher than the second.

2. A BIVARIATIONAL APPROXIMATION TO Z

Variational approaches to the task of bounding Z stem from its
alternative but equivalent specification in terms of the solution-vector
¢ of the equation in Hn
(h-E +2)¢ = f, o, f e H . (2.1)
This is simply

Z(f,93z) = 2 Real <g,¢> = <g,¢> + <¢,9> . (2.2)

Setting ¢ = v+iw (with v and w real), and defining for convenience

H = h-En+v . {2:3)
equation (2.1) is
ARG = f, 9,f € ”n (2.4)
with
A = H+iw. (2.5)



This decomposition of the linear operator A as the sum of a self-adjoint
part H and a skew-self-adjoint part iw is important for the establishment
of the bounds in §3.

Along with equation (2.4) we consider the auxiliary equation

A*y

"
«

A v,g e H (2.6)

where

A* H- i (2.7)

is the Hilbert-sbace adjoint of A. We note that
<$,g> = <¢,A*> = <Ad,p> = <f,P> , (2.8)
so that we can express Z in the form
2(f,9:5) = <g,¢> + <f,¥> (2.9)

in terms of the solution-vectors ¢ and y of equations (2.4) and (2.6).

Associated with this pair of equations is the bivariational

approximation to <g,¢> given by
R(Y,0) = -<v,Ad> + <¥,f> + <g,® , YoeH (2.10)

with the trial vector ¥ playing the role of a kind of Lagrange

multiplier. In terms of the difference vectors

e




6y = Y-y e H , 66 = ¢-0 e H {2.11)

we have the relation

R(Y,0) = <g,¢> - <6y,A6¢> . (2.12)

The complex conjugate of R(Y¥,®) is

R(v,9) -<®,A*Y> + <d,g> + <f,¥> (2.13)

<Fou> = <60,A%SY> (2.14)

which is a bivariational approximation to <f,y> (or <¢,9> ). Thus, by

addition, the real functional

J(Y,®) = R(Y,9) + R(v,9)

= <Y, AP> - <QA*Y> 4+ <Y, f> + <f,¥> ¢ <q,0> + <d,g> (2.15)

is a bivariational approximation to

J(v,9) = <g,¢> + <fy> = 2(f,9;%) (2.16)

with the property

J(¥,0) = Z(f,9:7) - <6y,A8¢> - <8¢,A%Sy> . (2.17)




3. MIXED VARIATIONAL BOUNDS ON Z

In the event that H (the self-adjoint part of A) is a positive
operator, with an inverse H", it is possible to construct two special
cases of the bivariational functional J(¥,®) which provide complementary
(upper and lower) variational bounds on Z(f,g:c) . To do this, we think

in terms of the 'mixed' vectors

Ao + wy , (3.1)

x
"

A¢ & Uw ’ (3-2)

<
"

where the scalar multipliers A and u are real and satisfy
22 = 1. (3.3)

Combining equations (2.4) and (2.6), we see that x and y are the

solution-vectors of the simultaneous equations

n

HX + iwy AMf + ug = p (say) , (3.4)

and

Hy + iwx Af - ug = q (say) . (3.5)

If we now choose trial vectors
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X = Ad + pv¥

Y = Ad - ¥
and let
&x = X - x = )¢
by = Y-y = Abh
we find that, using (3.3),
J(¥,0) = I(X,Y) = =<X,HX> + <Y,HY>
+ <X,p>
and
IEK,Y) =

Accordingly, if the trial vectors X

satisfy the equation

HX + fwY = p
in line with (3.4), so that

H&X + jwéy =

it follows that the resulting functional 1+(X,Y) has the property

I*(X’Y) = Z(f’g!C) ¥ <6yt

and is thus a variational upper bound on

"

+ péy ,

uéy ,

- <X, iwY> + <Y, iwX>

+ <p,X> - <Y,q> - <q,Y>

2(f,9;7) - <6x,(H6x+ iwdy)> + <8y, (HSy + iwdx)> .

and Y are constrained to

0,

(H+w?H 1) 8y>

Z . Similarly, if

&

(3.

L)

.8)

.10)

A1)

12)

.13)

14)




HY + iwX = q,
in line with (3.5), so that
H8y + iwéx = 0,
it follows that the resulting function I_(X,Y) has the property

I (X,Y) = Z(f,g:z) - <6x,(H+w2H ')éx> ,

and is thus a variational lower bound on Z .

In terms of an arbitrary trial vector Y , we have

L(GY) = I(H'(p-iwf),Y) = K,(Y) say,
with
K,(Y) = <Y,HY> + <(p-iwY),H '(p-iwY)> - <Y,q> - <g,Y> .
Similarly,
I_(X,Y) = I(X,H !(g-iwX)) = K (X) say,
with
K_(X) = =<X,HX> - <(q-iwx).H'l(q-iwx)> + <X,p> + <p,X> .

Thus we obtain the complementary upper and lower variational bounds

K(X) < K (x) = Z(f,0;5) = K.(y) < K/(Y),

-8~
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with the bounding functionals each depending on a single 'mixed' complex
vector. Hence we call them 'mixed' variational bounds. It is a
straightforward matter to optimize the functionals with respect to
parameters multiplying the trial vectors, and if H 1is real there is
separation of contributions from the real and imaginary parts of the trial
vectors. The ratio A:u is also a disposable parameter.

These mixed variational bounds hold good whenever

Eg -E. ¥ v >0, n#o0, {3.23)

E, being the lowest energy eigenvalue of h . In the case n = 0, they

hold whenever
Ei =Eg*vv .5 0, (3.24)
E, being the closest eigenvalue to E, , since H, does not contain 8-
If E, is degenerate, then E, = E; . Given that (3.23) or (3.24) holds,
we have
<o,(h—En+v)¢> = <d,He> > b<o,0> , - R (3.25)

for all ¢ ¢ Hn s, With

b=Eg-E +v,n#0; b=E -Eg+v,n=0. (3.26)




It follows from (3.25) that H 1is positive, and since it is bounded
below away from zero the inverse operator H™! exists with domain
the whole of Hn 3

The idea of introducing a mixture of equations Tike (2.4) and (2.6)
in order to obtain bounds has been exploited for dissipative systems in
real spaces by Collins [13]; see also Herrera [14,15]. The bivariational
functional I(X,Y) shows the saddle-type dependence on X and Y which is

necessary for complementary bounds [16,17].

4. AVOIDANCE OF H™'; IMPLICIT BIVARIATIONAL BOUNDS

A practical disadvantage of the bounding functionals K+(Y) and
K_(X) 1is that they involve the inverse W , which only in elementary
cases is likely to have a representation simple enough to permit the
evaluation of the relevant inner products. One way of avoiding H! in

K,(Y) is towrite K, as a functional of X via (3.12) giving

K(Y(K) = T(GI(Hp)) = 7 <(HX-p) H(HK-p)> + <X,HX>
: (4.1)
- ;iu- <(HX-p),q> + % <q, (HX-p)> .

Similarly,

K_(x(Y)) = x((‘;(uv-q).v) = -y <(HY-q) H(HY-q)> - <Y,HY>
(4.2)

+ ;‘; <(HY-q),p> - % <p,(HY=q)> .
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However, these forms involve H3 (as well as factors of w'l), and we rule
them out as impractical.

A better way of avoiding the H™! terms in (3.19) and (3.21) is to
bound them separately, using individual variational bounds of the type

<LHTTE> < cox Hy> + <, 85 + <L,x> + l])—|||-|)<-sz||2 » LxeH,b>0, (4.3)

which follow from the positivity hypothesis (3.25). Taking & = p-iwY

and x = X in (4.3), we find that (3.19) gives, after simplification,
K(Y) < I(XY) + %winwv-pu? . (4.4)

Similarly, putting £ = q-iwX and x = Y in (4.3), we obtain from (3.21)

the result
K(X) > 1Y) - BHV*Hux-ql2 . (4.5)

Dropping the tildes in (4.4) and (4.5), we see from (3.22) that for

arbitrary vectors X and Y in Hn 3
I(x,Y) - ‘5||Hv+iwx-qn2 < If,g58) < I(X,Y¥) ¢ -:;HHXHmY-pH? , (4.6)

These are bivariational bounds on Z(f,g;z), which with prescience we might

have derived directly from (3.11) and (3.25). They hold whenever H is
positive and bounded below away from zero, so that a suitable positive

b can be found according to (3.26).
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The mixed wectors (x,y) and (X,Y) were introduced with the object of
deriving variational bounds depending on a single trial vector, and so
their usefulness has evaporated in (4.6). Referring back to the original

vectors (v,$) and (¥,¢) , the bivariational bounds (4.6) become

J(v¥,9) - % {02 [po-f[[2+u? [A*¥-g |2 - Re<Ad-f,A*v-g>} < Z(f,g;%)

(4.7)
< J(Y,0) + % (A2 |pe-fl2+p2|A*y-g|]2 + Re<Ad-f,A*¥-g>} .
With the optimal.choice for the ratio A:p of
ARe-F]l = u|A*y-q] , (2aw=1), (4.8)

we obtain the result

J(¥,0) + £ 5(¥,0) - § C(¥,0) < Z(F,g58) < I(¥,0) + | S(¥%,0) + L C(¥,0) | ,

(4.9)
wheré, in terms of H ,
J(¥,0) = -<¥,Hd> - <O, HY> + jw(<e,¥> - <¥,d>})
(4.10)
+ <Y, >+ <f¥> + <, + <0,0> ,
S(¥,0) = Real <(H+iw)o-f,(H-iw)¥-g> = Real <A8¢,A*Sy> , (4.11)
and .
C(y,0) = [I(H+iw)e-f] [|(H-iw)¥-g]l = [Asd][A*sy]| . (4.12)

«]2e-




We call the bivariationai bounds (4.9) implicit, because they are
contained in the mixed bounds (3.22).

In the special case of zero w , when A becomes self-adjoint, the
implicit bounds (4.9) are actually tighter than others previously derived

for self-adjoint operators in real spaces [18, see also 19].

5. EXPLICIT BIVARIATIONAL BOUNDS

The bounds in (4.9) only hold when the operator H is positive and
bounded below away from zero by a positive b , given by (3.26). However,
irrespectively of whether this condition is met, it is possible to derive
explicitly alternative bivariational bounds which merely require the

condition

Aol > alell, a>0, for all ¢ eH . (5.1)

Since

Rel2 = <A®,A®> = <d,A*Ad> = <0,HZ20> + w?<d,d>
(5.2)

> (Eu-E )2 [BIR + o? (IR,

where En' is the energy eigenvalue of h which minimizes (En.-Enh»)2 .

we see that condition (5.1) is satisfied by taking

a? = (En.-En+v)2 + w?, a> 0. (5.3)

al%s




We bear in mind that En. 4 En (unless En is degenerate), since Hn does
not contain 8, - Thus, disregarding the exceptional case of zero ¢ and
degenerate E_, we can always find a constant a to satisfy (5.1).

Applying (5.1) to (4.12), and then using Schwarz's inequality, we have

C(y,®) > alooll [Aswll > a|<se,A*sy>| . (5.4)
The magnitude of the complex number on the right of (5.4) is greater than
or equal to the magnitude of its real part, and so from (2.17) it follows
that

C(Y,0) > Yoa|<80,A*sy> + <&y,A8¢>| = Ypa|z-d(v,9)]| . {5.5)

Rearranging (5.5) we obtain at once the explicit bivariational bounds

J(¥,9) -%C(‘M) < Z(7,950) < J(Y,9) +§Ckv,®) 4 (5.6)

Existence theorems for bounds of this type have recently been presented,

together with some applications [20,21].

6. THE CASE f = g

When f = g, as is the case for the dynamic polarizability a(z)

in (1.1), the equations (2.4) and (2.6) become

(H+iw)ep = f = (H-iw)y . (6.1)

-14-



If a similar relationship is imposed on the trial vectors Y and ¢ by

taking

¢ = (H-iw)o, ¥y = (H+iw)o , (6.2)

for some trial vector © which is supposed to approximate (H2+w2)71f

the functionals in (4.9) and (5.6) become

J = -2<0,H(H2+w2)0> + 2<f,HO> + 2<HO,f> , (6.3)
and

C = § = [(H2+w2)e-f]2 . (6.4)

The bivariational bounds (4.9) and (5.6) become variational bounds,
involving high powers of H , of a type previously obtained [3,5]. The
H3 and H* rule them out for practical purposes. Thus there seems little
point in trying to impose a constraint like (6.2). However, when choosing
trial vectors, it would be sensible to have in mind the relationship
between the respective w-dependence of ¢ and ¥ which is implied by
(6.2).

There are some simplifications to be made if f 1is a real vector,
and the Hamiltonian h (and hence H ) is a real operator. Then it

follows from (6.1) that ¢ = ¢ . Accordingly, let us set

® = ¢, + i0,, Yy = ¢, - i0, = &, (6.5)

-15-




in the functionals J, C and S , where ¢, and ¢, are real vectors.

We obtain the functionals

J(8,0) = -2<0),HO1> + 2<0p,H0,> + Buw<d,, 0,5 + 4<by,f> | (6.6)

C(3,0) = |[H®)-wdy-f|R + |[HO +wo, || , (6.7)
and

S(8,0) = |[H®)-wd,-f|P - ||HO,+wd |2 . (6.8)

The implicit bivariational bounds (4.9) become
23,0) - ElHoytud | < Z(F,50) < 3(3,0) + ZlHor-ue,fl2 . (6.9)
and the explicit bounds (5.6) take the form
J@&)-%ﬂ&ﬂ < IUf.NHhe) < M&w+§c@m) (6.10)
which at v = 0 {s essentially that given by Burrows [8]. The mixed
bounds K+(Y) and K_(X) simplify in this situation, too, particularly

if we take A =y = 22 » SO that X =/Z2, Y=i0,/2, p=¢/2

and q = 0, yielding

K, (Y) 2<0,,Ho,> + 2 <(f+wd,) H ' (Fruwd,)> (6.11)

and

K_(X) - -2<°1,H01> - 2w2<Ql,H_l°l> + 4<01.f> . (6]2)
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Goscinski [4] has given the amplitude-optimized version of the bound in

(6.12) for v =10 .

7. DISCUSSION

Interest in the mixed variational bounds K+(Y) and K_(X) is
primarily theoretical. Not only do they contain the implicit bivariational
bounds, but also they can lead to bounds in terms of other known gquantities.
To take a simple example, when w is small the solution to equation (2.4)

is approximately: H™'f - iwH 2 f . Thus if we take
-1 . -2
o1 . ClH f. 02 = "l(.l)CzH f (7.])

in the simplified functionals (6.11) and (6.12), and optimize with respect
to ¢, and ¢,, we should obtain bounds on Z(f,f;g) which are accurate for

small w . The bounds are

2] w? )-1 T o 1.2
TaRe. (3:: e ¥ i bl BT G e v L il

in terms of the 'sum rules'

f> . (7.3)

For ground-state hydrogen, the bounds (7.2) give the result (in atomic units)

4.2490 < a(iw) < 4.2503 (7.4)
for the dipole polarizability at v =0, w = 0.1.

17




i

When H 1is positive the quantity Z(f,f;z) 1is a series-of-Stieltjes-
representable function of w? , and with suitable choices of trial vector
different families of Padé approximant bounds can be derived from K,
and K [6,22]. More generally, whenever <f,(H2+w?) 'g> s real,

it can be shown that
1/ ™1 ]7' 1/2 S ARl l/2
2(f,g;z) = <(H'2p),(H2+w2; "(H'2p)> - <(H'2q),(H?+w?) "(H'“q)> , (7.5)

whence Z(f,g;7) is the difference of two series-of-Stieltjes-representable
functions. The K, and K_ functionals are again the appropriate ones to
yield the Padé approximant bounds for this kind of situation [23], rather
than bivariational functionals which lead to Padé approximants plus
correction terms [21,24].

From a practical standpoint, it is un]ikefy that a convenient
representation of H'1 will be available, in which case the mixed bounds
K,(Y) and K_(X) are not of direct interest even though they only involve
a single trial vector. Likewise bounding functionals containing H3 and
higher powers can be ignored, because of the consequent difficulties in
evaluating the inner products when sensible trial vectors are employed.
Thus for a practical tool we are left with the bivariational bounds, in
either the implicit form (4.9) (only valid when H is bounded below away
from zero by a positive number b) or the explicit form (5.6) (always
valid). Although an extra trial vector is involved, only H and H2 appear
in the inner products and this advantage is crucial. The bivariational
bounds should still be used even when f = g. the simpler versions (6.9)

or (6.10) are relevant when f = g is a real vector and H is real.
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Even when the implicit bounds (4.9) are available, they will not
necessarily yield better results than the explicit bounds (5.6). For
example, when w 1is large, the number a (given by (5.3)) is of order
w , whereas tre number b (given by (3.26)) is not. With the correct

asymptotic choices

® = _-_.i_f_ 2 b4 = .1_3 (7.6)
w w
the explicit bounds give
g 1 EEad
J £2C = H<f,g> - <q,f>) + J7(<f,He> + <a,Hf>): O(75) ,  (7.7)

whereas the bounds (4.9) leave some uncertainty in the w2 term. However,
in cases like (6.4) when (S-C) is zero, or very small, it is clear that the
lower bound in (4.9) is better than the lower bound in (5.6). We notice
also that the explicit bounds can never have quite the correct w-dependence
because of the square-root defining the number a . Thus, when both are
available, the implicit and the explicit bivariational bounds should each
be investigated in any given situation to see which gives the better
results.

Extensive calculations of bounds on dynamic polarizabilities (f=g) for
two-electron atoms at zero w or zero v have recently been carried out by
Glover and Weinhold [25-27]. The functionals of Braun and Rebane [2] which

they employed led to inaccuracies for small values of w. Applications of the

Glover-Weinhold techniques to the bivariational bounds developed here are being

explored. A pleasing feature of the present approach is that the same

bivariational functionals provide bounds whether or not w=0, v=0, or f=gq.
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