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NEW VARIATIO NAL BOUNDS ON GENERALIZED POLARIZABILITIES t

Peter 0. RobiflSOfl*

1. INTRODUCTION

Let a quantum-mec hanical system be described by a sel f-adjoint

Hami l tonian operator h in a complex Hu bert space H , and suppose that h

possesses a complete set of orthonorma l eigenvec tors {Ok
) with

corresponding energy eigenvalues {Ek} . If the system is in a state e~.
its dynamic polarizabi lity ci(1 ) at complex frequency ~ = v+ iw

associated with a perturbation u can be defined as

= 2 Real 
~ 

(Ek
_E +tY <uO > , (1.1)

k~n

the sunination being over all states different from . The notation

< ,> denotes the complex inner product, so that for all 4 and ‘I’ in II

and complex numbers s we have

<0,1’> = <i;-i>, <SO ,?> * s<0,’V> , <4,s~’> = s<g ,l’>, (1.2)

a bar denoting complex conjugate. Previous authors [see for exampl e references

1-8 and 25-27] have presented bounding variational functionals on cz(v)

or cz(Iw) , the dynamic polarizab lilties when ~ is wholly real or wholly

imagina ry. Often there has been a restriction to real u and real e~. !~!ith ~~~
shortcomings of many of these bounding functionals have been the high powers

of h involved , and a multiplicative factor of Li1 which is unfortuna te for

small w.

Expressions similar to that In (1.1), but with i nner products

V
~
3n,~k ek,UOn i nvolving different perturbations u and v , define quantities
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arising for example in theories of optica l rotatary power [i], and nuc l ear-

magnetic shielding and chemical shifts [10,11]. Such more general

expressions can also arise in double perturbation theory [12]. With

generalizations such as this in mind , as well as the desirability of

admitting arbitrary compl ex frequencies, perturbations and unperturbed

states , we show how to derive upper and lower bounding variationa l

functionals on the quantity

Z(f,g c) = 2 Real 
~ 

(Ek
_E

n+?)~~ 
<
~‘°k

><°k’~
> . (1.3)

k~n

No separate consideration is necessary for quantities defi ned as imaginary

parts of sunhilations like that in (1.3), for g can merely be replaced by

-ig if necessary. Withou t signifi cant loss of generality , the arbitra ry

complex vectors f and g are taken as members of the reduced HUbert

space H~C II , containing all vectors in K whichare orthogonal to

i.e.

f,g 
~ 

H~ = ($~~ c H , <O,O~> O} . (1.4)

Apart from their intrinsic theoretical interest , bounding variationa l

functionalscan inprincip le l ead (with suitably artificial choice of trial

vector) to bounds on unknown quantities In terms of certain known quantities,

l ike sum rules or moments [4,6]. However, If they are to be a v iable

practical tool , bounding functionals must not present exceptionally severe

problems of evaluation when reasonable trial vectors are employed . It is
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for this reason that we do not much concern ourselves with functionals

which invol ve powers of the operator h higher tha n the second .

2. A BIVARIAT IONAL APP~~XIMATION TO Z

Variational approaches to the task of boundinq Z stem from its

alternative but equivalent specification in terms of the solution-vector

• of the equation in ti,~

(h-E~+c)~ = f , ~,f c H~ . (2.1)

This is simply

Z(f,g;~) = 2 Real <g,
~
> = <q,4> + <

~
,g> . (2.2)

Setting ç = v+iw (with v and w real), and definin~i for convenience

H h-E~+v , (2.3)

equation (2.1) is

A$ = f $,f t I1~, (2 .4 )

with

A = H + j~ (2.5)
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This decomposition of the linear operator A as the sum of a self-adjoint

part H and a skew—sel f-adjoint part 1w is important for the establishment

of the bounds in §3.

Along with equation (2.4) we consider the auxiliary equation

A*~ = g , gi,g c ti~ (2.6)

where

= H -lw (2.7)

is the Hu bert-space adjoint of A. We note that

= <$,A*~,> = <A$~ ,> = <f ,i~> , (2.8)

so that we can express Z in the form

Z(f,g;c) = <g,$> + <f ,*> (2.9)

in terms of the solution-vectors $ and ~, of equations (2.4) and (2.6).

Associated wi th this pair of equations is the bivarlational

approximation to <g,~
. given by

* -c ? , AO> + <1’ f> + <g,@ , ‘i’ ,. c tin (2.10)

with the tria l vec to r ‘V playing the role of a kind of Lagrange

multiplier. In terms of the difference vectors

-4-



= ‘f’-iJ c tin , = ‘~-• 
c H~ , (2.11)

we have the relation

= <g,
~
> - <&p,Ao~> . (2.12)

The complex conjugate of R(’V,~t) is

= _<~,A*w> + <~,g> + <f ,’P> (2.13)

= <f,~,> - <S~,A~ Si,> , (2.14)

which is a bivariationa l approximation to <f,~p> (or <q,g> ). Thus, by

addition , the real functional

J ( ’V ,s) R( ’Y ,$) + ~(‘r ,o) .

* ... c’V ,A$, - <O,A*y> ~ <‘v,f> + <f ,?> + <g,4> + <4’,g> (2.15)

is a bivarlational approximation to

J( ij~,~~) = <g,
~
> + < fq> = Z(f ,g;~ ) (2.16 )

with the property

J( ’v ,~ ) = Z(f,g;r) - <~ p, A6~> - <6~,A*~q,> . (2.17)
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3. MIXED VA RIATIO NAL BOUNDS ON Z

In the event that H (the seif-adjoint part of A) is a positive

operator , with an inverse W’, it is possibl e to construct two special

cases of the bivar iationa l functiona l J (’l’,4’) which provide complementary

(upper and lower) variational bounds on Z(f,q;c) . To do this , we think

in terms of the ‘mixed ’ vectors

x = 4 +  , (3.1)

y = X~~-~ i* ,  (3.2)

where the scalar multip liers A and u are real and satisfy

2Au = 1 . (3.3)

Combining equations (2.4) and (2.6), we see tha t x and y are the

solution-vectors of the simu ltaneous equations

lix + iwy = Af + ug = p (say) (3.4)

and

Hy + lw* Af - ug * q (say) . (3.5)

If we now choose trial vec tors
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x = ~~ + ~‘i’ , (3.6)

y = - 11q’ , ( 3 . 7 )

and let

6x = X — x = + u&p , (3.8)

6y = Y - y  = A P&i) , (3.9)

we find that, using (3.3),

= I (X ,Y) = —<X ,HX> + <Y ,HY> - <X ,iwY> + <Y ,iwX>

(3.10)

+ <X ,p> + <p,X> - <Y ,q> -

and

I(X ,Y) = Z(f,g;~) — <óx,(H’Sx+ lwóy)> + <~5y,(H5y+ iwSx)> . (3.11)

Accordingly, if the trial vectors X and V are constrained to

satisfy the equation

HX + iwY p (3.12)

in line with (3.4), so that

H6X + iw6y = 0 , (3.13)

it follows that the resulting functional I~(X ,Y) has the property

I~ (X ,Y ) Z( f ,g;~ ) + <6y,(H+w2H~~)~y> , (3.14)

and is thus a variationa l upper bound on Z . Similarly, if
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—1

HY + iwX = q , (3 .15)

in line with (3.5), so that

HiSy + iw~Sx 0 , (3.16)

it follows that the resulting function I_ (X ,Y) has the property

I (X ,Y) = Z(f,g;~) - <~5x,(H+w2W ’)âx> , (3.17)

and is thus a variational l ower bound on Z

In terms of an arbitrary trial vector Y , we have

I~ (X,V) = I(H~~(p-iwY),V ) = K~(Y) say, (3.18)

with

K~(Y) = <Y,HY> + < (p-iwY),H ’1(p-iwY)> - <V ,q> - <q,Y> . (3.19)

Similarly,

I_ (x,Y) = I (X,W’(q— iwx)) = K_ (X) say, (3.20)

with

K_ (X) = -<X ,HX> - c (q—iwX),H ’(q— iwX)> + <X ,p> + p,X> . (3.21)

Thus we obtain the complementary upper and lower variationa l bounds

K (X) K (x) Z(f,g;~ ) = K~(y) < K~(Y) , (3 .22)

-8-



with the bounding functionals each depending on a singl e ‘mixed ’ complex

vector. Hence we call them ‘mixed ’ variational bounds. It is a

straightforward matter to optimize the functionals with respect to

parameters multiplying the trial vectors, and if H is real there is

separation of contributions from the real and imaginary parts of the trial

vectors. The ratio A :p is also a disposable parameter.

These mixed variati onal bounds hold good whenever

E0 - E~ + v > 0 , n ~ 0 , (3.23)

E0 being the l owest energy eigenvalue of h . In the case n = 0 , they

hold whenever

E1 — E0 + v > 0 , (3.24)

E 1 being the closest eigenvalue to E0 , since H 0 does not contain e 0.
If E0 is degenerate, then E 1 = E0 . Given that (3.23) or (3.24) holds,

we have

<O~(h-E~+v)~> = <O,H~> > b<~,~> , b > 0 , (3.25)

for all 0 c tin with

b = E0 - E~ + v, n $ 0; b = E 1 - E0 + v, n = 0 . (3.26 )

-9-



It follows from (3.25) tha t H is positive , and since it is boundeci

below away from zero the inverse operator W’ exists with domain

the whole of U

The idea of introducing a mixture of equations like (2.4) and (2.6)

in order to obtain bounds has been exploited for dissipative system s ~n

real spaces by Collins [13]; see also Herrera [14,15]. The bivariational

functional I(X,Y) shows the saddle-type dependence on X and V which is

necessary for complementa ry bounds [j~ ,17].

4. AVOIDANCE OF H~
’; IMPL ICIT BIVARIATIO NAL BOUNDS

A practical disadvantage of the bounding functionals K~(Y) and

K (X) is that they invo lve the inverse El’ , which only in elementary

cases is likely to have a representation simple enough to permit the

evaluation of the relevant inner products. One way of avoiding El ’ in

K~(Y) is to write K,. as a functional of X via (3.12) givin g

K4(V(X)) = I (X ,1(HX- p)) = -
~~~
. < (HX-p),H(HX-p)> + <X ,HX>

(4.1)
- I < (HX-p),q> + ~ <q,(HX-p)>

Similarl y,

K~(X(Y)) * I(~-(HY-.q),Y) = - 
~~~~~

. < (HY-q),H(HY-q)> - <Y ,HY>
(4.2)

+ I < (HY-q),p> - 
~~~ <p, (HY- .q) >

-10-



However, these forms involve H3 (as wel l as factors of Li1 ), and we rule

them out as impractical.

A better way of avoiding the El’ terms in (3.19) and (3.21) is to

bound them separately, using individua l variational bounds of the type

<X,HX> + <x’~> + <
~ ‘X> + ~~IHX_Q.JI2 ~~X 

c Hri~ 
b > O  , (4.3)

which follow from the positivity hypothesis (3.25). Takin g £ = p- iwV

and x = X in (4.3), we find that (3.19) gives , after simplification ,

K~(Y) < I(X ,Y) + ~~1X+iwV_p II2 . (4.4)

Similarly , putting 9~. = q-iwX and x = V in (4.3), we obtain from (3.21 )

the result

K (X) > I (X ,~) - ~~~~~~~~~ . (4.5)

Dropping the tildes in (4.4) and (4.5), we see from (3.22) that for

arbitra ry vectors X and V in tin

I(X ,V ) - ~JJHY+iwX_q~2 < Z(f,gç ) < I(X,Y) + ~jIHX+iwY_ pjj2 . (4.6)

These are bivariational bounds on Z(f,g;~), which with prescience we might

have derived directly from (3.11) and (3.25). They hold whenever H is

positive and bounded below away from zero, so that a suitable positive

b can be found according to (3.26).
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Th~ mi xed vectors (x ,y) and (X,Y) were introduced with the object of

deriving variational bounds depending on a single trial vector , and so

their usefulness has evaporated in (4.6). Referring back to the original

vectors (p,~) and (i’,~) , the bivariational bounds (4.6) become

- j~
- { A 2 I~~_ f l I 2 +~j

2
~~*~1’_g Il2 - Re<A0_f,A*%Y_g>} < Z(f,g;C)

(4.7)
< J( ’v ,~ ) + ~~- ~~~~~~~~~~~~~~~~~~ + Re<AO_f,A*~V_g> }

With the optimal .choice for the ratio A:u of

AIIA~-fII = MIIA*V_g II , (2X~ = 1) , (4.8)

we obtain the result

+ ~~~ S(V,0) - ~ C(~,s) < Z(f,g~~) ~~ 
J( ’V ,O) + ~ s (’v ,s ) + ~ C(~v,~)

(4.9)

where , in terms of H

= -<‘V ,HO> - <I,H’Y> + iw{<0,’V> - <‘V ,O>}

(4.10)
+ <v , f> + <f,V> + <g,0> + <0 ,9> ,

SC ’r ,,) - Real c(Hs-1~4•- f ,(H-1w )’V-g> = Real <A6~,A*&p> , (4.11)

and

C(’r,•) ~~~~~~~~~~~~~~~~~~~ * 11A641111A*&’IJ . (4.12)
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We call the bivariationa l bounds (4.9) implicit , because they are

contained in the mixed bounds (3.22).

In the special case of zero w , when A becomes sel f-adjoint, the

implicit bounds (4.9) are actually tighter than others previously derived

for self-adjoint operators in real spaces [18, see also 19].

5. EXPLICIT BIVARIATIONAL BOUNDS

The bounds in (4.9) only hol d when the operator H is positive and

bounded below away from zero by a positive b , given by (3.26). However ,

i rrespectively of whether this condition is met , it is possible to derive

explicitly alternative bivariationa l bounds which merely require the

condition

IIA O II > aflo~ , a > 0 , for all o € H~ . (5.1)

Since

= <A0,AO> = <i,A*AO> = <0,H20’ .,

(5.2)
(En i~

En+v)2 110112 + w2 11011 2 ,

where E~. is the energy elgenvalue of h which minimizes (E~.-E~+v)2

we see that condition (5.1) is satisfied by taking

a 2 = (En u _E n+V)2 + w 2 , a > 0 . (5.3)
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We bear in mind that En t $ En (unless E~ Is degenerate), since does

not conta i n . Thus , disregarding the exceptiona l case of zero ç and

degenerate En , we can always find a constant a to sat isf y (5 . 1 ) .

Applying (5.1) to (4.12), and then using Schwarz ’s inequality, we have

> a 644~A&~fJ > a~<~~,A*&p>j (5.4)

The ma~iitude of the complex number on the right of (5.4) is greater tha n

or equal to the magnitude of its real part, and so from (2.17) it follows

that

C(Y ,0) > J/2aI<&~,A*ó*> + <6*,A6~>I = ‘/2alZ-J (V,0)t . (5.5)

Rearranging (5.5) we obtain at once the explicit bivariationa l bound s

- ~~C(’v,o) < Z(f,g;ç) < J( ’v ,o) + C(i’,o)  . ( 5 . 6 )

Existence theorem s for bounds of this typ e have recently been presented ,

together with some applications [20,2].

6. THE CASE f = ~~

When f = g, as is the case for the dynamic polarizabi1it~ a ( t ~)

in (1.1), the equations (2.4) and (2.6) become

(H+iw)~ = f (H-iw)~p . (6.1)
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If a similar relationship is imposed on the trial vectors I’ and ~ by

takin g

0 = (H-iw)O , = ( H + i w ) O , (6.2)

for some trial vector 0 which is supposed to approximate (H2 +w2Y ’f

the funct ionals in (4.9) and (5.6) become

J = -2<0,H(H2+w2)O> + 2<f,HO> + 2<HO,f> , (6.3)

and

C = S = II(H2+w2)0-f112 . (6.4)

The bivariat iona l bounds (4.9) and (5.6) become variational bounds ,

involving hi gh powers of H , of a type previously obta ined ~~~~ The

H3 and H~ rule them out for practical purposes. Thus there seem s little

point in trying to impose a constraint like (6.2). However , when choos ing

trial vectors, It would be sensible to have in mind the relationship

between the respective w-dependence of 0 and ‘V which is implied by

(6.2).

There are some simp lifications to be made if f is a real vector,

and the Hamilton ian h (and hence H ) Is a real operator. Then it

follows from (6.1) that g~ . Accordingly, let us set

• 0 1 + 102, ‘V •~ - i02 = , (6.5)
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in the functionals 3, C and S , where 0~ and •2 are real vectors.

We obtain the functionals

-2<0~,H0~> + 2<02,H02> + 4w<0~,4~2 > + 4<0,,f> , (6.6)

c(~,o) IIHO 1—w02—f 112 + 11H02+wOi 112 , (6.7)

and

= IIHO 1-w02-f112 - 11H02+wO,112 . (6.8)

The implicit bivariatio nal bounds (4.9) become

J(

~
,o) - ~iP102+w0i II2 < Z(f,f;r) < J(~ ,o) + ~.I~10 ,_w0 2_ f  112 , (6.9)

and the explicit bounds (5.6) take the form

- 
~~ c(3,s) < Z ( f ,f ; r )  < J(~ ,o) + ~ C(~ ,o) (6.10)

which at v * 0 Is essentially that given by Burrows (8]. The mixed

bounds K~(Y) and K_ (X) simplify In this situation , too, particularly

if we take A = p = 2~~
’2 , so that X = •~~‘2~ , V = i0217 P =

and q = 0 , yielding

K~(Y) 2<02,H52> + 2 <(f ~~s2 ) , W’ (f ~~~2)> ( 6 . 1 1 )
and

Jc (X) = -2<s,,Hs,> - 2w2<0,,W~5,> + 4<0,,f> . (6.12)

_  

-16-



Goscinski [
~

] has given the amplitude-optimized version of the bound in

(6.12) *or v = 0

7. DISCUSSION

Interest in the mixed variational bounds K~(Y) and KJX) is

primaril y theoretical. Not only do they contain the implicit bivariat ional

bounds , but also they can lead to bounds in terms of other known quantities.

To take a simple example , when w is small the solution to equation (2.4)

is approximately~ W ’f - iwW 2 f . Thus if we take

Oi = c,W ’f~ = — iwc 2W 2f (7 .1)

in the simplified functionals (6.11) and (6.12), and optimize with respect

to c1 and c2, we should obtain bounds on Z(f,f;~) which are accurate for

small w . The bounds are

2 — , W 25 — 1
- w2(~— + f—) .~~ ~22(f,~~~) < s 2 

- ~2(
J..... + 

~~~~ 
(7.2)

In terms of the ‘sum rules ’

Sn = <f,H”1f> . (7.3)

For ground—state hydrogen, the bounds (7.2) gIve the result (In atomic units)

4.2490 < cz( fw ) < 4.2503 (7.4)

for the dipole polar izability at v = 0, w = 0.1.
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When H is positive the quantity Z(f,f;ç) Is a serles-of-Stieltjes-

representable function of w2 , and with suitable choices of trial vector

different families of Pads approxiniant bounds can be derived from K,.

and K_ [6,22]. More generally, whenever cf,(H2+w2Y ’g> Is real ,

it can be shown that

Z(f,g;~) = <(H’1’2p),(H2+w2i1(H~
2p)> - <(I1~2q),(H2+~2y

1 (H ’/’2q)> , (7.5)

whence Z(f,g;cjis the difference of two series-of- Stielties-representable

functions. The K+ and K_ functionals are again the appropriate ones to

yield the Padé approximant bounds for this kind of situation [23], rather

than bivari ationa l functionals which lead to Padé approximants plus

correction terms [21 ,24).

From a practical standpoint , it is unlikely that a convenient

representation of i11 will be available , in which case the mixed bounds

K~(V) and K~(X) are not of direct i nterest even though they onl y involve

a single trial vector. Likewise bounding functionals containing H3 and

higher powers can be ignored, because of the consequent difficulties In

evaluating the inner products when sensibl e trial vectors are employed.

Thus for a practical tool we are left with the bivariational bounds, in

either the implicit form (4.9) (only valid when H is bounded bel ow away

from zero by a positive nunter b) or the explicit form (5.6) (always

valid). Al though an extra trial vector is involved , only H and H2 appear

in the inner products and this advantage is crucial . The bivariationa l

bounds should still be used even when f = 9; the simpler versions (6.9)

or (6.10) are relevant when f g is a real vector and H is real.
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Even when the imp licit bounds (4.9) are available , they will not

necessarily yield better results than the explicit bounds (5.6). For

exampl e, when ~ is large , the number a (given by (5.3)) is of order

w , whereas t~e number b (given by (3.26)) is not. With the correc t

asymptotic choices

= .-~-~!i , ‘V = (7.6)

the explicit bounds give

J C = .!~(<f ,g> - <g,f>) + -12(<f,Hg> + <q , Hf> ) ± O (—1T) , (7.7)

whereas the bounds (4.9) leave some uncertainty in the term . However ,

in cases like (6.4) when (s-C ) is zero, or very small , it is clea r tha t the

l ower bound in (4.9) is better than the l ower bound in (5.6). We notice

also that the explicit bounds can never have quite the correc t w-dependence

because of the square-root defining the number a . Thus , when both are

availabl e, the implicit and the explicit bivariational bounds should each

be investigated in any given situation to see which gives the better

resul ts.

Extensive calculations of bounds on dynami c pola rizabilities (f=g) for

two-electron atoms at zero w or zero v have recently been carried out by

Glover and Weinhold [25-27]. The functionals of Braun and Rebane {2] which

they employed led to i naccuracies for small values of w. Applications of the

Glover-Weinhold techniques to the bivariational bounds developed here are being

explored . A pleasing feature of the present approach is that the same

bivariat iona l functionals provide bounds whether or not t~=0, v=O , or f=g.
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