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ABSTRACT

In this article the dual of the multi-facility location problem with

arbitrary norms is developed. The formulation allows any number of linear

constraints in the primal. It is shown that the multipliers associated with
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ON THE DUAL OF THE LINEARLY CONSTRAINED MULTI-FACILITY
LOCATION PROBLEM WITH ARBITRARY NORMS1

Henrik Juel and Robert Love*

We consider the problem

n-1

m n n
mininize J,_, ZJ=1"111K113("1 =a) k) ZJ=1+1 Yo15¥215 0% - %g)

n
subject to ):J=1 ijj <b,

m and n are the number of existing and new facilities, respectively, and d is
the dimension of the facility space. wlij is the non-negative weight and
Klij(-) is the norm on Rd, to be used between existing facility i and new
facility j for 1 <i <m, 1 < j < n. Y2ij4 is the non-negative weight and
I(uj(') is the norm on Rd, to be used between new facilities i and j for
l<ic<j<n. a; € Y is the location of existing facility 1 for 1 < i < m,
and xj € Rd is the unknown location of new facility j for 1 < j < n. £ linear
constraints on the locations of the new facilities are expressed using n £ x d
matrices Aj for 1 < j < n and the 2-vector b.

This article generalizes and synthesizes some results obtained by Love [1]

and Planchart and Hurter [4]. Using elements from conjugate function theory

as exposited by Witzgall [5]), we shall find the dual of the location problem.
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Let superscript ¢ denote the conjugate function corresponding to a convex

function, and superscript o denote the polar corresponding to a norm. It is

T T T T
convenient to let x = (xl, Xgs sees xn) and A = (Al. Az. s sis's An)' Then

1 3 n
Ax =I5 Aye For1<i<m andl<y<n, let By = (0,0,...0,1,0,0,...,0)
be a d x nd matrix consisting of n d x d submatrices, each of which is a null-

matrix, except the jth, which is an identity matrix. Then xj = Blijx' For
1 i

1 <4<j<nlet BZij = (0,0,...,0,1,0,0....,0.-1,0,0...,8) be a d x nd matrix
consisting of n d x d submatrices, each of which is a null-matrix, except the
ith, which is an identity matrix and the jth, which is a negative identity
matrix. With this notation, we can write down a number of functions occurring
in the location problem and find the conjugate functi;ns.

For 1 <{i <m,and 1 <j <n, let f

lij(x) = "111K113(B113x'31)- so we have

T o
& ak R R TR TT A TR PY
1451157145

G otherwise

For 1 < i < j <n let fZij(x) = "21jK21j(821jx)‘ so we have

(o]
of {o 1 Ky 30a49) vy

Cc
£215®2157213) =

Ld otherwise
0 if Ax < b
Let f3(x) =

. Then fc(z ) = aup(z.rx:A < b} = inf{bry 3 ATy =z.,y,>0)
33 3" "x - 3 Sheg =g
» otherwvise

by the theory of linear programming.

-t n n-1 cn
Finally, let f(x) q=1 Zj=1 flij(x) + Zi-l Ij-1+1 f21j(x) + fa(x), so
the location problem is: minimize f(x).

For the dual we get:

«2e




I ) 4
T T T
£€(0) = 1n£(z?_1 I;-l 8,Y)45 + inf(b y,:A'y, = zy0 ¥4 2 0):

T
Liealyey Bueg Yaag * Limp Lymgsr Bogg Youg * 23 " 05 115"115 Y114,

l<i<m 1<j<n; K°

219 U2q9) £ ¥

219* 124 <420}

1of (]} zj=-1 1 Y199 % b Yq'

+ATy3 =0, 1<j<n;

m n
I1--1 Y113 ~ z1=1 ”213 Z1:=_1+1"21, ) Kllj(ylll Yy’

l<i<m 1<J<n;

o
< KZij(y21J) Svyypl2i<ycnm, yy< 0}.

The dual of the location problem may be written as

T : T

m i £
mexintee 5 bt b ¥ By = B,
< m j-1 n T "
s s B Taip Ay Yoy Loyt Ay < O for Ly 5w,
o
? Klij(ylij) 2V for 1 <41 <mand 1< j <n,

o

K2ij(y21j) 2 Vg4 for 1 <1 <j <n,
¥3 2 0.

This dual may be transformed back into the location problem, using differentiable

duality theory as exposited by Luenberger [3]). Consider the problem (P):

maximize p(y) subject to g(y) < 0, h(y) =0 (chN)

where p(-) is a differentiable concave real-valued function, g(-) is a differ-
entiable vector-valued function with convex component functions and h(*) is an

affine function. A duval of problem (P) is this problem (D):

minimize d(x) = max{p(y) + xrh(y)ig(Y) < 0}.

In a similar manner to the development by Luenberger [3), we may arrive at the

following facts:
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1. p(y) < d(x) for all y with g(y) < 0, h(y) = 0 and all x.

2. Let a constraint qualification hold for problem (P). If ¥, solves
problem (P) with multiplier vector x, corresponding to the equality
constraints, then X, solves pro“lem (D) and p(yo) - d(xo).

These facts cannot be applied directly to éhe dual of the location problem,
since the functions in the nonlinear constraints are norms and thus not dif-
ferentiable. For many norms, however, a simple transformation will yield a
differentiable function. Consider, for instance, the norm K on Rd given by

K(x) = L «3 ) where C is a non-singular d x d matrix and tp(zl.zz....,zd) =
(Ii-l |z 'p)llp_ The inequality K(x) < w is equivalent to (K(x))? < wP, in
which inequality the left-hand side is a differentiablg function for p > 1.
For simplicity, we do not exhibit such transformations explicitly in the fol-
lowing.

Taking the dual of the location problem as (P), we obtain for problem (D):

40a) = max(-Iy_, 25-1 1 Y143 - by, +

+ AT

n m e n
):5-1 X5 (Zi-l Y113 ~ ):1=1 Y3 * Zi=j+l Y234 3¢

o
ﬁuﬁuﬁgvuy liiim'iiji“;ﬁuwuﬁi“uy1£1<Jimyﬁm

m n T )
= Liuy Ljoy max( (g = ap) yyg5 ¢ KygyOggy) Svpgyt +

n-1 cn T %
L ):j-1+1 max{(xy = %) ¥y54 * Zij(’zij) vyl
-ax((zg_l Agxy = b)fy3 tyy 20k

Using the properties of polars of norms [5]), problem (D) is thus identical to

the original location problem.



The location problem can be solved by solving its dual by some standard
nonlinear programming algorithm, the optimal locations being the optimal mul-
tiplier vectors corresponding to the equality constraints. Our computational
experience, however, seems to indicate that, from the viewpoint of computation
time, it i8s somewhat more efficient to solvé the location problem directly,
using differentiable approximations to the norms involved [2). (Some may find
the dual form easier to program, however, due to the simple nature of the de-
rivatives of the objective function and constraints.) The special siructure
of the dual can be exploited to solve it using decomposition as suggested by
Love [1] and Planchart and Hurter [4]. Even this technique for solving the
location problem seems less efficient than either solving the primal form or

solving the dual directly with a nonlinear programming routine.
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