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ABS TRACT

Global equi l ibrium surfaces  in three d imens ions  are

described by elementary functions in closed form f r  models

of load ed ar ches , st ruts and shells. They are computed and

displayed graphically , in a for m which shows th e i r  rel at ion

with the local equil ibrium surface generated by the cusp

catas tro ph e potential. Global bifurcation sets and equilib-

ri um path s are also displayed . Some pro s and cons of

finit e-dimensional modelling are discussed. A parabolic

pure catastrophe machine is described.
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SOME GLOBAL EQUILIBR IU M SURFACES

M. J. Sewell

The concept of the ‘ eq ui l ib r ium surface ’ was Introduced by Sewell

[2 1 in a paper wr i t ten ten yea rs ago. The context was the stabili ty of

engineeri ng structure s, and papers were a ppearing at that time which had

the effect of emphasiz ing only part icular equilibrium paths on the surface ,

or their  projecti ons onto certain p lanes. My object was therefore to pro-

vide a more complete perspective in which to embed these paths and pro-

j ections , and so to make fully explicit the geometrization of stability

analysis  in terms of a ‘ stabili ty boundary ’ defined on the smooth equilibrium

surface.

Specifically , if the description of a system contains a scalar funct ion

V(x .; (1)

of n ‘behaviour ’ variables x~ and k mathematically ~ssignable ‘ control

parameters X , the n equations
a

( l = l , . . . , n ) (2)

relat i ng these variables and parameters describe an ‘ equilibri um surface ’

i n the (n + k)-dimens lona l  space spanned by all the n x~ and the k X a
The set of points on the surface for which the n X n Hessian determinant

0 (3)
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was called the ‘ stability boundary ’ . A local min imum of V with r espect

to the x 1 at fi xed X is taken to imply stabil i ty.  The terminology is

load ed toward s the mechanic s context , in which behaviour var iables ire

ge neralized configuration coordinate s, and control variables are such

thing s as load s, moduli , dim ens ions , position of loads , and imp€~rf ect ion

measures. In the purely mathemat ica l  l i terature , such as Morse theory ,

~ol nts satisfying (2) are called ‘critical point s ’ of V, and ‘dege nerate

critical points ’ whe n (3) hold s as well. The relevance of the ‘ s tabi l i ty ’

co nnotation really depend s on the properties of t ime -di f ferent ia l  equations

de scribing the motion of the system off the equilibrium surface — these are

given in [2) in the case of a damped conservative system , and also in two

type s of rotating system.

The advent of elementary catastrophe theory (Thom [1], [2]) has very

much widened the interest in equations (1) - (3), serving in particular to

re -emphasize the numerous contexts in which they appear besides the

mechanics  one. A principal result of catastrophe theory specif ies the

local shape of the so-called ‘bi furcation set’ in the Xa _ spac e. This bi-

furcation set is the proj ection of the stabil i ty boundary onto the control

space , and is obtainable in pr inciple by el iminat ing all the x . f rom (2)

and (3) . An associated requirement is that (I)  be ‘ generic ’ , i. e. that i ts

local form would not be significantly altered by the introduction of more

control variables. Associated dynamical equations can vary with the con-

text , and can even describe ‘ slow flow s’ on the equilibri um surface in

addition to ‘fast flows ’ off it , as in Zeeman ’ s [11 model of the heartbeat.
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It seems desir ible tha t  the b( q inne r , b efor e ;‘ i n - ; ~o ;ri ~~:

th ese more sophist icated ideas of ‘loc~t l ’ , g ei ’ ri c md ‘ s i g n i f i  ~n ’iy

altered’ should see some very concrete examples  of ~ 1 b ~~l ‘? q u i l i b r i u n

surface s.

I present he re three computed global e qu i l ib r ium su r faces , ~- i ~ h ~n

three di mens ions , for models of typical engineer ing  s t r u c t u r ’-~~. The ~;1obaI

ecuations are obtained in simple closed form in terms of t r i qo nc ni~~t ric

functions , and plotted by computer.  This allows one t :  s e  eas i ly  h r ) w

the local results  are embedded within the global , and there for ~ i’h i~ the

mathemat ical  l imitation of a local result  might be. The pi t u re s ~l so  f”~

an im mediate unders tanding of how various cross-sect ional  c~~u i l i b r i u r r

paths , diff erent because not all mathemat ica l  controls  are ea s i ly  v~~ri~H

phy sically, are all contained in the un i fy ing  concept of th n  e qu i l i b r i u n

surface.  They also show global bifurcat ion sets as pr oj ect ions .

On the other hand , these models have the physical l imi ta t ion  tha t

they only give a qualitative and local indication of the buckl in g behaviour

of real st ru ct u res , because in the lat ter  other e f fec ts  such as higher n~odr s

would intervene to complicate the global pic tures  shown here . Theref or e

there are dangers in allowing such models to acquire a l i f ~ of their  own ,

befo re addressing oneself rather  soon to the d i f f e r e n t i a l  equa t ions  describ-

ing the real structures.  Bud lansky  [1], 1-lutch inson [2] and ~-Th wc ll ( 3 ]  h~~ve

given recent reviews of the formulat ion and solution of r oa l  buckl in g prob-

lems. But spring models have often found an in i t i a l  role in e n q i n e e r i n ~

— 3 —



research in c it tempting to elucidate exact ly  that  qual i ta t ive local response

which we can now see is also offered by catastrophe theory. A notable

recent fus ion  of these two approaches is found in the Zeeman catastrophe

machine , a l though i ts  global solution (Poston and Woodcock [1]) is analyt-

ically complicated by comparison with the global solut ions given here .

The examples which follow were prepared as part of a dynamic course

for seco nd year undergraduate mathemat ic ians .  Perhaps it will not be many

years bef ore material  of this type can be used in sixth forms as examples

of modelli ng. Equations (1) - (3) provide an easy entry into other applied

subj ect areas , for example whenever one can interpret the x~ as mode

ampli tudes.  Of course this is to ride upon the backs of those who have

t aken the trouble to solve the underlying dif ferent ia l  equations , and It is

a n approach which may be more suited to an expositor than to a researcher

committed to a single area.

Equation and figure numbering begins anew in each of the following

Sectio ns.



Shallow Arch or Sp herical  Cap Model

Fig ure 1. Model of shallow arch or spherical cap

The lid of a biscui t - t in  (or beer-can) can be regarded as being ap-

proximately a very shallow spherical cap supported on a circular hinge

round its edge. When pressed transversely in the centre from the convex

side it will suddenly ‘ snap -through ’ the plane of the hinge , to a second

equilibrium position under zero load but with the opposite concavity. It

can then be made to snap back by pressing from the opposite (i. e. new

conve x) side. If the unloaded lid is shallow enough , the eff ect ca n be

de scribed entirely in terms of axisymmetric  configurations , without re-

q uir ing an asymmetric mode. Certain older type s of oil-can rely on such

snap -buckling to eject the oil , and then to t ake in air. The effect  was

long known as oi l-canning .

A mathemat ical  model can be based on the plane structure shown in

Figure 1. Two equal rod s are supposed to remain straight but have constant
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longi tudinal  elastic modulus k . They are smoothly hinged to two r~iv o t s

fixed at a d i s t ance  2c apart , and they are joined at a third pivot which

can move on the perpendicular  bisector of the first two , in the plane of the

paper only. A t ransverse dead load P acts symmetr ical ly  at the th i r d

pivot , so that  it m ay be balanced by the compression (or tension) in the

two rods.

The configuration is described by the angular deflect i on q of the

rod s from their collinear pos ition , w ith

-~~~~
. < q < ~-

Symmetry suggests that under zero load , one unstable and two stable

equilibrium configurations will be found , namely

q = O , ±a at P = 0

respectively. The angle a > 0 is intrinsically assigned in advance for

each given shell, and serves to specify upper and lower ‘natural states ’

q ± a . The ‘depth’ of the shell is then adequately defined by

a = 1 - cos a

0 < a < l

The total potential energy of the system in a general position under dead

load is

2 . 
~
k(co: a - cos

c
q ) - P(c tan a - c tan q)

with respect to the upper natural state as datum . Removing the additive

-6-



constant  P c tan a , dividing by the fi xed positive c ( ) n s t a n t  2kc 2 , and

wri t ing p = p/Zkc leaves the normal iz ed  potent ia l  ene rgy

1 1 2
V( q , p, a)  = ~ (— ) p t an  q . (1)

1-a 
- 

cos q

— This depends on one behaviour variabl e q, and twQ contr o l  var iables  p

and a . They are control variables in the mathem at ica l  sense of b r i r g

indepe ndent ly  assignable parameters , even tho ugh for i given shell

(fi xed a) only p is accessible to physical variat ion in a s ingle ‘test’ , in

the range

The fol lowing analysis thu s refers to a family of shells specified by a-values

in the stated range. Given the mathematical model based on Figure 1, the

global analysis can first be carried through without ins is t ing on a shallow

shell (small  a) or small deflectiori s (smal l  q)

Eventually, to obt ain a qualitative idea of the axisymmetric re sponse

of real shallow shells before asymmetric deflection modes intervene , it

will be necessary to introduce the approximation of small a and therefore

~~ 2small a~~~~~ a

Differentiation of the normalized potential energy shows that

1 1 
_ _p - sin q ( -2 COSQ’ cosq

cos q

av 1 
___________ 
cos q— = 2 tan q ~ — + 

~ 
[1 - 

a&q2 cos q

-7 -



Since cos q ~
- 0 the  t ’ou at ion  ol th  e qu i l i b r i u m  s u r f i  e ~iV/~ic 0 in

q , ~ , a- S p~ ci is

p = sin q(— - - —)  . (2 )1- i  cosq

The s t ab i l i t y  bou ndary is those po ints on the e q u i l i b r i u m  s u r f a c e  wh er e

u~~V !2q~ 0 also , i. e . where cos cos 3 als . Thus the s tabi l i ty

bou nd ary is the smooth curved l ine

3 3p = tan q , 1 - a = cos q . (3 )

The bifu rcation set in the control p lane is obtained by e l imina t ing  q

fro m these two equations , givi ng the project ion of the stabili ty boundary

onto the control space. In the specified a-  and q- domains  it is only

necessary to consider one real cos q = (1 - a) l/3 
> 0 and two real roots

sin q = [1 - (1 - a) 2/ 3 ] 2 of opposite sign , leading to the global eq uat ion

[1~~(1~~a)
2/ 3 ]3/2

of the bi furcat ion set. It is also possible to regard equations (3) as a

regular p arametric version of the bifurcation set , which ca n therefore be

generated numerically by treating q as this parameter. In fact to plot the

bif urcation set with elementary tools such as tables and/or slid e rule ,

fewer operations are required if the par ametric version (3)  is used lnst~ ad

of the expl icit  version (4) ( four operations Instead of six). The bifurcation

set (4)  is shown in Figure 2. Exactly the same global bifurcation set , but

In d i f f e r e n t  eont rol var iables , arises late r in a model of imperfection-

sensitive shell buckling.



a

Fi g. 2 Bifurcation set for the arch model

The complete equ i l ibr ium surface (2 )  is a smooth folded surface ,

drawn in Figure 3 in the most significant domain of q, p, a -space by

computing the cubic-like cross-sections at successive fixed values of a

The stability boundary (3) is the fold-line on the surface , separating un-

stable (b roken cross-section) from stable (unbroken) equil ibrium point s,

and i ts  projection onto the p, a -control plane is the cusped bifurcat ion

set sh own again in Figure 3. In other word s, the fold-line is

the locus of p oints on the surface where the tan gent -p lane  is parallel  to

the q -axis. The envelope of such tangent  p lanes where they intersect

the control p lane Is the bi furca t ion  set. Figure 3 also shows intercepts

of the pla ne p = 0 with the surface ( paths of unloaded equi l ibr ium - cf.

Figure 5), with the control pla ne , and with the plane a = . Notice

that  d i f fere nt scales have had to be used on the three orthogonal cartesi an

axes of [‘Igure 3, but equal scales are retained in the plane d iagrams of

Figure s 2 , 4 a nd 5.

-9-



equ i l ib r ium
surface / ,(

p //
1•

a ~~~~~~~~ ~~~~~~~

• •~:~‘//
a 

•

Fig . 3. Equilibrium surface and bifurcation set for the arch model.
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The s t ab i l i ty  boundary  i t sel f  i t  u illy consi~ t s of e q u i l i b r i u m  p o i n t s

which are unstable ‘alm ost everywhere ’ (except it  the  er ig i r l , in f iet), h’-

cause on this fold-line ~
3v/aq~ has  the va lue s

3 sin q
~ 0 unless  q - 0

cos q

Since a
2
V/aq

2 
< 0 in the broken-lined reverse-sloped p~ rt of the equi-

l ibr ium surface , the totality of unstable equilibrium points are within m d

on this fold-line (except the origin itself). Elsewhere ~
2
V/aq

2 
> 0, and

so the two full-lined open regions of the surface outside the fold (connP e~

only at the origin) make up the totality of stable equilibrium points.

In a single test of a given shell , the depth a is fixed and the dead

load p is varied quasi-statically. Those equilibrium paths on the sur-

face which are of most physical interest are therefore those formed by i t s

cross-sections with planes a = constant, as drawn in Figure 3. A typical

such path is shown in Figure 4, the full line being stable equilibria and

the dashed line being unstable equilibria. In particular this confirms the

above-mentioned expected solutions under load p = 0 . Quasi-static

loading from either natural state in the direction of the single arrows will

bring the system to the stability bou ndary where also the equ i l ibr ia t ing

load is a local maximum or minimum. Since the stability boundary is itself

unstable , dy namical snap-buckling must take place from there to the

‘energy basin of attraction ’ as sociated with another f ini te ly dis tant  s table

.11 —



Fig. 4 Equilibrium path for a given shell (a = > a =

equilibriu m-i , as indicated by the double arrows in Figure 4. The oi l -canning

mechanism is represented by the i l lustrated hysteresis  cycle .

Such snap-buckling can therefore be represented in Figure 3 by a

dynamic jump in q, across from any given p and a on the fold-line.

In the control plane the bifurcation set is the ‘ fail ure locus ’ , at which such

buckling can be induced by moving the control point (at fixed a) across

fro m the inside toward s the outside of the cusp-shaped region.

Perpe ndiculars erected in Figure 3 from the control plane will in-

ters ect the equi l ibr ium surface in either one point (if from outside the cusp)

or three p o ints  (if from Ins ide  the cusp ) . The outside of the bifurcation set

therefore  also deli mits  the range of control parameters  for which un iqueness

of t he equ i l ib r ium solut ion is assured.

- 1 1 -



The cross-section of the equilibrium surface at zero load p 0 ~s

shown in Figure 5. As a increases  from zero in (2) ,  three branches  of

equilibri um path emerge from the origin , with two stable a nd one unstable

as indicated. Such branching will not be observable in a test on a single

shell , however.

1!
2

a

IC -A °

I

w
5’ 2

Fig. S Branched equilibrium paths in the plane p = 0

For the case of a shallow shell, it is easy to note the approximate

form taken by the foregoing global equilibrium analysis for small a > 0

The bifurcation set (4) becomes

— 13-



(
2a

)
3/2 

[1 + a + 0(a2)]

Locally this  is the two -third s power law cusp

2 327p = 8a

It is evident from (3) that p and q are also small on the stability boun ~mry ,

since the local form of this fold-line is

23 3qp = q  , a = — ~—

This is the same stability boundary as would have emerged if the quartic

potential

2
V =~~ q -aq + zpq

had been used as the local approximation to (1). This connection of the

shallow shell problem with the quartic potential of Thoi ’ s cusp catastrophe

was described by Sewell [1].

-14-



St rut or Compressed Pl ate Model

— 
.

~NJV
N

Fig. I Model of eccentricall y loaded strut

Axially loaded s t ruts , and f la t  r ec tangu la r  pla tes  cornpress eH in t h e i r

plane, belong to a class of structure s which re ta in  SOm I  s t a t i c  O r ~~n~ t h even

after their classical compressive buckling load s, such as the Euler load ,

have been exceeded. This is because the straight configuration can branch

stably and quas i-s ta t ica l ly  into a buckled conf igura t ion  ~s the b i d  in-

creases , in a manner  which is not sensitive to the size or ‘h a ract e r  of sma l l

imperfections in geometry or loading . The elastica Is the most famous ex-

ample , and Its  large def lect ion equil ibri um solutions have been s tud ied  in-

tensively.

The theoretical model shown in Figure 1 cons i s t s  of a r igid T-p i ecc

having a small flange of length ‘i welded perpendicul arly to the m a i n  stem

of length I . The f lange is to represent imperfec t ions , and a v e r t i c a l dead

-15-



1 ad P is i~ ~d~~’d it t h e  end of it . Rotat ion about a fixed smooth pivot

at t h i  ~ t I ~he T is r e s t r a i n e d  by two l inear  e las t ic  sp r ings  of modulus

k . h -h c . e r t  ~er t i l h r  us at c o n s t a n t  h o r i z o n t a l  sep ar a t i o n  2c , via

a su i t  ihie  I r r n~~e mi nt of nivoted s l iders  on the a rms  of the T . The moment

1 P is t h u s  b a l a n c e d  by a couple due to spring forces having lines of

act ion f i x e  in  spac e.

The conf igura t ion  is described by the single a ngle q measur ing de-

f lect ion of the model from the vertical , and it is adequate to suppose

11
- —

2 2

The en t i re  behaviour is In the plane of the paper only. In the absence of

imperfections (~ 0) it is obviou s that the vertical  position q = 0, in-

vo lv ing  zero ex tens ion  of the spr ings , could be in equi l ib r ium (not neces-

s i r i l y  s table)  under arb i t rary  load P .

The total  potential  energy of the system in a general position under

dead load is

2 . k(c t an  q) - P(I - I cos q + ~ I si n q)

with respect to the vertical position. Dividing by the fixed positive con-

sta n t Zkc 2 and writing p = PI /2kc 2 leave s the normalized potential energy

V(~~, p, ~
) = ~ tr ifl q - p(l - cos q ~ sin q) . (1)

This depend s on one behaviour variabl e q, a nd two cont rol variables p

and 
~ 

. As in the a r r h  problem p is effect ively the dead load , assignable

in the range

-16 
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r
_~~~< p < f 1

The other cont rol ~ is again os tens ib ly  an assignable geometry variable ,

and It will be enough to suppose tha t

-l  <<  << 1

The real role of the n -te rm in ( 1) , however , is to try to represent an

arbit rary ‘ perturbatio n ’ of the form of the potential fro m that for the ‘ per-

fect’  syste m (having 
~~ 

= 0 in (1));  and so to convert from the supposedly

non -generic perfect system to a hop ed-fo r generic description of the system ,

now containi ng imperfections.  It can be seen th at ,
~ 

only appears in (1)

i n combination with p as p~ , the couple ind uced by imperfections in the

vertical ‘ s t ra ight ’  conf igura t ion  as soon as load is applied . For the second

assignable control parameter It may therefore be more appropriate to use

pr ~ rathe r than  ,
~

Differentiation of the potential (1) gives

av 1 3 4
- p cos q) - p1cos q]

q cos q

a 2v 1 - 4 - 3 c o s 2 q
= - tan q - - 3aq cos q

Since cos q > 0 the equation of the equilibrium surface aV/aq = 0 in

q , p, p,~-space is

p1 cos
1 q = sin q(l - p cos

3 
q) . (2)

-17 -



The s tabi l i ty  boundary on th i s  sur face , where ~)
2 V 3 u L 

= 0 as we l l , is

the smooth curved line

- 31 — 3 cos c — 3  sin q
~~~~~~~, ~n = -l ( 3 )

cos q cos u

The bi furcat ion  set in the p-p 1 control pl ane is gPn r~m ted  h ’. t h -se

sa me equations (3) ,  with q rega rded as a regular  parame ter i n s t e a d  of

third coordinate. In principle q could be e limina ted  from t h i s  p a r a m e t r i c

form to obt ain an explicit expression for the curve in terms of the control

va riables alone. But this procedure seems even less worthwhile , either

analytically or numerical ly ,  then was the case with equa’-ion (4) of the

arc h model .

In seeking to p’mt the global equilibrium surface (2) explicItly, it is

natu ral in this example to look f i rs t  at its intersect ion with the plane of

zero imperfection P~ = 0 . This gives the two equilibrium paths

q = 0  a nd p =
cos q

intersecting at the ‘Euler load ’ bifurcation point p = 1, q = 0 as shown

in Figure 2. Again the full lines represent stable equilibrium (where

a2 v/a q 2 
>0), and the dashed line unstable equilibr ium (where a 2 v/8q 2 

< 0)

Thus as the dead load p is increased from zero (or below) in the absence

of i mperfect Ions , the undef le u ted  equ i l ibr ium of the stru t is stable for

p 1, and u nstable for p ~ 1 . It happens that  the bifurcation point i t se l f

is also stable (because = a 3v/ag 3 
= 0, a ’v/aq 4 

> 0 there) ,  and

- 18 -



so as p increases through p 1 the system can evolve st ably  in ’] q u a s i -

statically onto the deflected equilibrium path.

In this way Euler struts and certain compressed p la t e s  e x p l o i t  the

fact that  th is  b ifurcat ion point is also the only point on the s t a b i l i t y

bounda ry  where the equil ibrium is actually found to be s table  when h i g h e r

q

iT /2

p * — 

~IIIIIIIIIIIIIIIIIIIIIIi11
— — — — — — 
1 0

-n /2_ _ _ 
_ -—

Fig. 2 Branched equilibrium paths for zero imperfection

terms in the potential energy are examined . In fact , j ust as for the arch

model , the points of the stability boundary represent unstable  equi l ibr ium

‘almost everywhere’ (because a2v/aq 2 
= 0, ~~V/~q

3 
~ 0 on it unless

p 1). Thus such Euler buckl ing of perfect struts and plates is a quas i-

static phenomenon in contrast  to the dynamic snap-buckl ing exhibited by

arches, sph~rica1 caps and other kind s of shell structures.

-19-



On the other hand , Figure 2 is qualitatively the same as Figure 5

of the arch m odel. The only essent ia l  d i f fe rence  is the in te rpre ta t ion  of

the s inq i e  control var iable  in the two d iagrams .  This s imi la r i ty  helps  one

to see tha t  the complete equi l ibr ium surface (2 )  for this strut model , in

q , p, p 1-space , is a smooth folded surface of exactly the same qual i ta t ive

shape as tha t  a l ready obtained for the arch , but with d if fe ren t  var iables

along the axes , as shown in the computed Figure s 3 and 4. Another in-

dicator of this  global shape is the observation that on the stability boundary

( 3 ) ,  the values  of p - 1 and I ~ I increase monotonically fro m zero as

I q I  increases from 0 to i~/2 . This suggests that the global shape will

be similar  to the local shape near q = 0

The fold- l ine  on the equilibrium surface in Figure s 3 and 4 is there-

fore the stabil i ty b oundary (3) ,  and again It closes (except at p = 1,

q = 1 0) the broken-lined region of unstable equilibrium points. The

remai ning region of the surface consists of stable equilibrium points. It

can be seen that cross-sections of the surface with plane s p constant

for p > 1 would have the same quali tat ive shape as Figure 4 of the arch

proble m , except that  P1 would now be the control variable in that  plane.

However , the re might not be a convenient physical facil i ty for varying the

mathemat ical  control 
~, 

re presenting imperfection , independently of the

load p

This type of distinction between mathematical and physical controls ,

in problems which have subs tant ia l ly  the same mathemati cal  equi l ibr ium

-20 -
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Fig. 3. Equilibrium surface and stability boundary for the strut model ,

with equilibrium paths for perfect (ri = 0) and Imperfect
E n  = 0.1) struts.
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Fig. 4. Equilibrium s u r f r l r  and b i f u rca t ion  set for  t hn stru t modu~~,
with equilibrium paths for an imperfect strut ri = 0.1 .
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su r f ace , impl ies  a d i s t i n c t i on  between the type of equ i l i b r ium path s which

can be physically rea l ized on that  equi l ibr ium surface.

The b i f u r c a t i o n  set is shown in Figures 1 and Sb cIS the project ion

of the fo ld - l ine  onto the control space. Again the outside of it de l imi t s

the range of control  parameters  for which un iquenes s  of the equ i l i b r ium

sol ution is assured.  Evid ent ly  the lowest load at which un i queness  can

fai l  is the Euler  load p = 1 . Also shown on Figure s -1 and Sb is the l i n e a r

project ion P1 = 0. lp onto the control space of equilibrium path s for which

1 = 0. 1

Physically real izable  equil ibrium path s for the im perfect model would

be obtained by intercept s of the equilibrium surface with planes

= small  constant  in Figure s 3 and 4.  Each intercept has  two dis joint

part s, only the arrowed one can begin from zero load , and it is only the

other one which can intercept the stability boundary (which it does in a load

minimum. The locus of these different minim a is the bifurcation set, as

illustrated in the projections of Figures 4 and Sb). A small imperfection

is therefore not physically seriou s because of the rapid rise in the bifurca-

t ion ~ et curve from p = 1, and snap buckl in g can never occur in the con-

t inuou s equ i l i b r ium path beg inn ing  from zero load . For 1 = 0. 1, th e load

minimum in Figure 5a is at the level of the in te r sec t ion  with the cusped

curve in Figure Sb.

The stability boundary (3)  for small deflections q is approximately

-2 ~~-



cici.
N
C.

0
4-

C

‘U
0.

c

ci ‘U
N 0
C.

0. UI
-4 -c

5 0
C

-I-’ -4-’

U)
4-)

o
0.r4
4-, C

4-’
C.)
i:.. I..

0
~+- c4_

0)
C)

—‘ (5
.0 ‘4-

i-a
UI

C
.,-l

.0

‘-4
0~0,
a,

0~ C
4-,

‘4-
ci
UI
C
0ci
4i

I ’ C)
a’
0
i-a
0~

‘-4

C
-4I..
.0
‘-4r f r ~ :1

-24-



9 2  3p - 1 = q , P1 = -3q

so that by eli mination of q the local shape of the bifurcation set is

again the two -third s power law cusp

8l(pi1)
2 

= 8(p - l)~

This is the same stability boundary and bifurcation set which would have

emerged if the quartic potential

3 4 1  2
V =~~ q -~~-(p-l )q - p1q

had been used as the local approximation to (1). This quartic was given

by Sewell [1], where it was remarked that t1-” 3 stru t model offers an exact

illustration of Thom ’s cusp catastrophe.

-2 5-



Shell Model

Fig. I Mode l for shell behaviour

Certain shell structures , such as axially loaded circular cylinders ,

or sufficiently curved cylindrical panel s compressed parallel to their

generators, have a classical bifurcation load in the absence of imperfection

which can be a seriou s overestimate of their real resistance to buckling.

This is because the straight configuration has only unstable equilibrium

paths emanating from the classical bifurcation load, and the effect of these

when generic imperfections are considered is to induce load maxima at

only a fraction (perhaps ~~
- or ~-) of the non-generic classical value.

The theoretical model in Figure 1 was analyzed by Sewell [2]. It is

the same as the model for struts and plates , except in one key feature.

The vertical lines of action of the restoring springs are no longer fixed in

space , but are attached to fixed points on the arms of the T-piece , at a

-2 6-



given dis tance c along the arms from the pivot .  The hor izontal  separ-

tio n of the spring forces can now decrease with r ot at i n , ins tead of r~ -

m a i n i n g  fixed as before . This makes  the s t ruc tu re  suscept ib le  to side-

ways dynamic  col lapse  ear ly  in a c o n t i n u o u s  e q u i l i b r i u m  path  b e g i n n i n g

from zero load , in c o n t r a s t  to the model  of the  s t ru t .

The extension of a spr ing  is now c s in  q instead of the previou s

c tan  q , and this soli - and ap p a r e n t l y  i nnocen t  an a ly t i ca l  change has a

rad ical e f fec t , even on the small  def lec t ion  analys is .  (The interpretat ion

of the constant c is di f ferent  in the two model s) .  The normal ized potential

energy becomes

V(q, p, i) = ~ sin
2 q - p(l - cog q + sin q) ( 1)

in the same domains as before. With cog q > 0, differentiati on give s

av -= sin q cos q - p sin q - P1 cos q

a 2 v av 1 3—
~

- = - tan q~~ - cosq [p - cos q]

The equilibrium surface is therefore

p1 (cos q - p)tan q (2)

and the stability boundary on it is the smooth curve

n tan 3 q, p cos 3 q . (3 )

This is exactly the same global curv e, but in different control variables ,

as was obtained for the stability boundary (3) in the arch problem.
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There r , e l i m i n a t i o n  f q can he a r r i e l  n u t  expl ic i t ly  as be for e , in

the range -~~~ q ~ ~~~. and l i -ad s to the global equation

‘ ‘3 3 ‘21 - p’’ 
~p

t o r  the  b i f u r ’ t ion ~et in the P-~ pl ane.  A l t e r n a t i v e l y  th i s  b i fu rca t ion  set

could be n i e t t e  i in p - p1 space -as the  symmet r i c  curve

P1 - 
z/3 ] 3/2 

(1)

or via its parametric form P~ sin 3 q, p cos3 q . This curve is shown

in Figure 2 , and is the upper hal f  of

2/3 2/3
(P1) +~~~ = 1

The side cusps are the same as the cusp at P1 = 0, p = 1, but are not

ac tua l l y  a t t a ined  because of the restriction to < 1T/2
— -  p

I

0

FIg. 2 8ifurc at ior i  zet for ;h4l l mode l
-2 8-



rhe ross -sec t ion  of the equi l ib r iu m sur face  (2 ) at zero imperfec t ion

0 give s the two equi l ib r ium path s

q = 0  and p = cos q

in tersec t ing  at the b i furca t io n load p ~~ 1 , q = = 0 as shown in Figure  3.

q

11

/

/
/

/
/

/
I
I

p~~ I-
0

% ir
q - ~~

.

Fig. 3 Branched equilibrium pat s in the plane n = 0
As the dead load is increased from zero or below in this example ,

the undeflected equi l ibr ium of the model is stable for p < 1 and unstable

for p > 1 . By cont rast with the str u t mode l, the facility that the spring s

can now approach each other means that all  the deflected equilibrium

-29-



c~~n f i gu r a t i o n s  are unstable in the ‘ p e r f e ct ’  sys tem , and so is the b i fu rc-

tion p— tnt  i t se l f  (because V~~
) q 2 

= = 0, a V/3q 4 0 t he re ) .

This la t te r  observation is the t e l l - t i l e  sign , obse rved by Koiter [1) ,

tb - it tPe iyr ia m ic  snap-buck l ing  loud ~S sens i tive to imperfec t ions .

This  sens i t iv i ty  is mani fes ted  graph ica lly  by computing the whole

~- oj i lj b r iu r n  surface  (2 )  in q , p, Pi space , via its sections p = cons t an t

in Figure 4 , and examining  its regions of s tabi l i ty  (unbroken) and ins tabi l i ty

( broken).  The stability boundary consists of a fold-line which Is unstable

everywhere in this  example ( ins tead  of a lmost  everywhere as before).

Figure  2 has already shown th is  boundary to have a projection on the p - P1

space (shown in Figure 5) which is such tha t  small imperfect ions  P1 induce

a u rge decrease in the snap -buckl ing  load from the b i furcat ion value p 1

It is seen tha t  the global e q u i l i b r i u m  surface  for th is  shell  model is

q ua l i t a t i v e l y  the same shape as those for the arch and strut  models , in

having the single  smooth fold !ine charac ter iz ing  the s tabi l i ty  boundary.

The var iables  along the corre sponding control axes are differ ent  in the three

cases , and so are the d i s t r ibu t ions  of s tabi l i ty  and ins tab i l i ty .  These com-

par isons  between the global equil ibr ium surfaces were described by Sewell

[1].

Physically realizable equ il ibrium path s for the imperfect shell mod el

ca n be obtained , as fo r th e st ru t model , by intercepts of the equil ibri i ni

surface with planes .Efl~ = small constant In Figure 5. Each intercept aga in

has two disjoint part s, but this ti me it is the branch (arrowed) beginning

-30-
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Fig. 4. Equilibrium surface and stability boundary for the shell moiel.

with equilibrium paths for perfect (n = C) and imperfect
(vi 0.1) shells.
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Fig. 5. EquilIbrium surface and bifurcation set for the shell model,

with equilibrium paths for an imperfect shell r~ = 0.1 .
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from zero load which  intercept s the s t ab i l i t y  boundary,  and It doe s so at a

load maximum. The locus of these different maxima is the b i furca t ion  set ,

as i l l u s t r a t ed  in Figure 6b. A sma l l  imperfec t ion  is deleteriou s to the

buck l ing  s t rength  because of the r apid drop in the b i furca t ion  set curv e

associated with its vertical tangent  at p = 1, and because this curve can

be reached i n a continuou s equi l ibr ium path beginning from zero load .

From the point of view of uniqueness , assig ned values of the controls

p and p1 outside the cusped curv e imply unique but unstable  equi l ibr ium

configurat ions.  Inside the cusp  curve , even for zero load and imperfection ,

there i s no uniqueness  but two unstable  and one stable equil ibria.  Thus

the shell model has no equil ibrium configurat ion which is both unique and

stable , in contrast  to the strut model.

The stability boundary (3) for small deflections q is approximately

3 2  3
p - 1 = ~ q , P1 = q

so that the local shape of the bifurcation set Is the ‘two -third s power law

cusp

27(pi)
2 -8(p -

This is the same stability boundary and bifurcation set wh ich would have

emerged if the quart i c potential (Sewell [1])

1 4 1  2
V = - ~~~q -~~~(p - l)q - p1q

had bee n used as the local approximation to ( 1). The leading minu s sign

I n this quartic accounts for the changeover in the stabili ty distribution ,

as compared with the plus for strut model , and means that the model and

its  local bi furcat ion set exemplify the so-called ‘dual’ cusp catastro phe.
— 1 3 -
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A Pure Catas t roph e Machine

Any sixth - former can ac tua l ly  cons t ruc t  and operate the to l lowing

mechanical  model of the cusp  catastrophe.  A p lane l a m i n a  in the shape

of his  old f r iend the parabola y2 4x is made from a pie -e of s t i f f  l i g h t

card . It is enough to t r u n c a t e  the parabola at the ordinate x = 8 - The

card is to stand in a vertical plane with its parabolic edge r e s t i n g  on a

ho rizontal  table.  The lateral  stabil i ty required for th i s  car  be achiev ed

~y attaching it with three cardboard spacers of length 2 to ano ther  equa l

parabolic card , or preferably to a parabolic a nnulus  since weight r educ t ion

is Important .  The annu lus  there fore acts l ike the secondary hul l  or out-

rigger of a ca tamaran .  A movable weight G is then at tached to the f i r s t

card , fo r example by a pair of small magnets  gripping thr ough the card with

a force which must provide enough static friction to prevent their  weight

making them slide down the card. These practical  details  are the same as

those suggested by Poston (see Poston and Stewart [1]) for an elliptical

model.

The parabolic model is now that  shown in Figure 1, with all the weight

hopef ully concentrated in the movable point G - To reduce the u n i f o r m l y

distributed card weight , It may be necessary to replace it with a second

rigid pa rabolic annulus  having a sheet of paper glued to It for G to ride

upon. Suppose the contact point with the plane has parametric value t

where x = t 2
, y = Zt describes the parabola. By equilibrium the normal

from t will pass through G . If G is outside the cusp-shaped envelope

of the normals (as in Figure 1) there is a unique normal through G and

-3 5 -



t h e r e f o r e  a u n i o u e  (and s t a b l e )  e q u i l i b r i u m  conf igu ra t ion .  But if G is

x

y 8

B

t

Fi g. I Pure catastrophe machine

inside the envelope there are three normals from it to the parabola, and

t heir feet de f ine one unstable and two stable equilibrium configurations.

The single parameter t is therefore the configuration or behaviour

va riab le of the system , and the coordin ates x , y of the weight in the plane

are the two control variables. There is a folded equilibrium surface In the

three-dimensional  t , x , y space whose stabili ty boundary projects into the

cusped envelope in the x , y pla ne , as shown by Sewell [1, Figure ~1• The

pote nt ial energy when a unit we ight G is at x , y and the contact point is

t , whether In equi l ibrium or not , is just  the height

V(t ; x , y) f ( x - t2)
2 
+ (y - 2t )

2
1 ~ f constant (1)
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above any  d a t u m  level.  V > 0 if this datum is below the table top.

Equi l ibr iu m is achieved at s tat ionary values  of this height as t moves

around the pa rabola , I. e. where av/at 0 or

- - 2) - y = 0 . (2)

This equation of the global equi l ibr ium surface in t , x , y space is precisely

the equation of the normal  in the x , y p lane to the parabola at t . That

the shape of the surface is the same as the local versions of those for arch ,

strut  and shell  models can be seen from the following table of corres pondences ,

in which Zee man ’ s 1 Ijec t ive s are used to describe the two control  variables .

M i ch in i  Arch Strut Shell

Behav iour  t q q q

Sp l i t t i ng  factor x - 2a - 1) -2(p -

Norm a l  fa c t o r  y -Zp j -  ~~ -2pr1

Table: Corresponding b ehaviour  ai~d control variables

The stabil i ty boundary is the fol i  - l ine of points on the surface (2)
2 , 2

where a V/at = 0, i. e.

3t
2 - ( x  - Z ) = 0  .

Eli minat ion of t between (2) and (3)  give s the bifurcation set

•I ( x  - ~)
3 

= 27y
2 

(4)

which is also the cusped envelope of normals shown in Figure 1. Envelope

calculations require exact ly this  type of e l iminat ion.
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Therefore the ma chine  car. be u sed to d e m o n s t rat e  a c u s p  c a t a s t r o p he

as fol lows.  The weight  G Is moved q u a s i - s t a t ic a l l y  (s lowly)  over the

x, y plane from i ts  pos i t ion  in Figure 1 to a point ins ide  the cusp  (F igur e  2 ) .

Two now but d i s t an t  e qu i l i b r ium L o n t i g u r a t i o n s  have now become av a i l a b l e ,

at t 2 ( uns tab le ) and t 3 
( s t ab l e ) ,  in addi t ion to the preferred t1 

( s t ab l e )

which has been reached by the continuou s quas i - s t a t i c  change from Figure 1.

V /
t .

\T~~ 
-% ~~~~~ 

t 1
\ \ \  \ \ \ \ \ \ \

Fig. 2 Three equilibrium positions

Ne xt G is moved outside the cusped region across the opposite side

from that  where it entered the region. As it leaves , the stable t 1 coalesces

with the u n stable t
2 

as the equil ibr ium surface point reaches the s tabi l i ty

bound ary , and the syste m must  suddenly jump  to the energy bas in  of a t t r r~-

tio n surrounding the only remaining and stable conf igurat ion t
3 

- This is

the catastro phe , manifested by the sudden jum p  in config ura t ion  as the

parabola rolls over dyna mically to allow G to come to rest ve r t i c a l ly  above

t
3 

instead of t
1 

-
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This might be as pure a catastrophe machine as can be devised , in

the se nse that  only the most trivial t r ans fo rmat ions  are needed to put the

physically derived expressions of (1) and (2) into the mathematically

standard q uartic and cubic forms respectively. Furthermore they are valid

globally,  and not only as local approximations.

It is worth noticing that  any problem concerned with opt imizing dis-

tance to a concave set of points might be avai lable  for re in te rpre ta t ion  as

a gravitational catast rophe machine , since distance is equivalent to

gravit ational energy in the earth ’ s field and because a convex boundary

ca n rol l on a table .
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Ce n c l r .id i n~ R e m a r k s

l~ -v i i i  be seen that  I have not used any of the r e s u l t s  of c a t a s t rophe

theory per se. Indeed the r eader wi l l  observe th e  a I  hoc w ay  in which the

i”i pe r f ec t ion  is in t roduced in the s t ru t  and sh e l l  models , in the hope that

t h i s  w i l l  lead to a generic  potential  - as it appears  to do when we f inal ly

a r r ive  -at the  quar t i e  local a p p r o x i m a t i o n s .  In the arch we arrive at a local

q u a r t i c  wi thout  i n t roduc ing  any  such imperfect ion , and because the local

expans ion  is about a boundary point (a 0) instead of an interior point in

the control plane , cat as t rophe theory apparent ly  doe s not yet a ssure  us

tha t  th i s  quar tic is gener ic (see Sewell [1~, p. 172). However , cer tain ad

hoc imper fec t ions  introduced into the arch have been found to i nduce  a

chan ge of smaller  order in the maximum load , in contr a s t  t the larger order

associated with the cusp in the s t rut  and shell :nodels .

It is c lear  that  many  areas of cl ass ical and recent  science of fe r  ex-

amples  of equi l ibr ium surfaces  and b i f u r c a t i o n  sets  w a i t i n g  to be reappra lsed

in terms of a full  geometri zat ion  like tha t  presented her e , and to be in-

vestiq~~te from the ca tas t rophe  theory v iewpoint  to discover , for example ,

if their p otent ia ls  can be significantly altered by a small  perturb ing term ,

or i nstead are ‘ structu rally stable ’ . The ‘dy namic ’ as sociated with such

problems might vary in character  from case to case. As far as elementary

o at as t rophe  theory  is concerned , any  problem characterized by a d iscre t izable

variat ional  principle might be examined from the suggested viewpoint.

We close by offeri ng three more normalized p oten t ia l s  generat ing

equi l ibr ium surfaces which the reader might care to plot and relate to

-4 0-



c lass ica l  r e s u l t s .  The f i r s t  c o nc e r n s  a single particle of mass m and

- -na n g u l a r  momen tum p moving und er  a centra l  force h r  (given positive

~.t and n) at a d i s tance  r from the o r ig in .  The effect ive potent ia l  is

1-n
V(r ;  n , c) =4— +

where r is the behaviour variable (0 < r < r ) ,  and the mathematical

control  var iab les  are n (04 n < 
~~) and c p2 /m~ (0 ~ c 

~ ~~) - Equilibria

are c i r cu l a r  orbi ts .

The second example is an a x i s y m m e t r i c  top inc l ined  at an angle 0

to the vertical  (0 <
~ 0 < ir) - This has  e f fec t ive  p oten t i a l

rc - c  cosOl
2

V(0~ c , c ) = cos o + J2 sin O

where 0 is the behaviour variable , and the mathe matical controls are the

normal ized momenta c c (0 < c c < x~ ) associated with the Euler
~~~
‘ 

~ 4” ~

angles 4’ and ~ . ‘Equilibria’ are conical motions of the axis. The

above two potentials are derived In standard texts , and also in Sewell [2] .

Our last example is a contr ibut ion to the theory of phase t ransi t ions.

Several authors have observed that  boi l ing or condensation of a gas might

be viewed as catast rophes in the sense of sudden jumps  in the value of

the densi ty  (= x 1, say) at su i t ab l e  temperature t and pressure p

Thus x Is behaviour , and p and t are controls. The latter are normalized

so that 0 < t < ~~‘, 
0 < p < s  and so tha t  the so-called liquid/gas ‘critical’

point is at x 0, t p = 1 . Restrict attention to the domain -l <x < 2

— i l—



c o n t a i n i n g  the liquid /gas point as an interior point.  Then It was shown by

Sewell [4] that the van der Waal’s model emerges from the generating po-

t en t i a l

V( x; t , p) = ~~( x) ‘]e(x; t , p)

wh er e

~~(x) ~~(l + x) 2 (2 -x )  > 0

‘k (x;  t , p) = —4-i- - 3( x + 1) - -~ (t + 1 lo~ [~ + 1 - + x -
~~~~ 

+ constant

in which the datum constant is always chosen to make ‘~e 0 when

ax

This last equation of thermomechanical equil ibrium then implie s OV/8x = 0

and is the cubic

x 3 +~~~
8t

3
+~~ + (8t

~~
2
~~ = 0

This is equivalent to van der Waal’ s eq u ation , but in a form recognized

by Fowler as the folded equilibrium surface of Thom ’ s cusp catastrophe ,

like the local shape s obtained for the above arch , st rut and shell models .
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