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ABSTRACT

Global equilibrium surfaces in three dimensions are
described by elementary functions in closed form for models
of loaded arches, struts and shells. They are computed and
displayed graphically, in a form which shows their relation
with the local equilibrium surface generated by the cusp
catastrophe potential. Global bifurcation sets and equilib-
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SOME GLOBAL EQUILIBRIUM SURFACES
M. J. Sewell
The concept of the 'equilibrium surface' was introduced by Sewell
[2] in a paper written ten years ago. The context was the stability of
engineering structures, and papers were appeariﬁg at that time which had
the effect of emphasizing only particular equilibrium paths on the surface,
or their projections onto certain planes. My object was therefore to pro-
vide a more complete perspective in which to embed these paths and pro-
jections, and so to make fully explicit the geometrization of stability
analysis in terms of a 'stability boundary' defined on the smooth equilibrium
surface.

Specifically, if the description of a system contains a scalar function

Vi N ) ()

of n 'behaviour' variables xi and k mathematically 3ssignable 'control

parameters )\a, the n equations

— = 0 =l ., n) (2)

relating these variables and parameters describe an 'equilibrium surface®
in the (n +k)-dimensional space spanned by all the n X, and the k )\O ‘
The set of points on the surface for which the n Xn Hessian determinant

BZV
Bxiaxj

= 0 (3)
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was called the 'stability boundary'. A local minimum of V with respect
to the x1 at fixed xa is taken to imply stability. The terminology is
loaded towards the mechanics context, in which behaviour variables are
generalized configuration coordinates, and control variables are such
things as loads, moduli, dimensions, position of loads, and imperfection
measures. In the purely mathematical literature, such as Morse theory,
points satisfying (2) are called 'critical points' of V, and 'degenerate
critical points' when (3) holds as well. The relevance of the 'stability"
connotation really depends on the properties of time-differential equations
describing the motion of the system off the equilibrium surface - these are
given in [2] in the case of a damped conservative system, and also in two
types of rotating system.

The advent of elementary catastrophe theory (Thom [1], [2]) has very
much widened the interest in equations (1) - (3), serving in particular to
re-emphasize the numerous contexts in which they appear besides the
mechanics one. A principal result of catastrophe theory specifies the
local shape of the so-called 'bifurcation set' in the Ka-space. This bi-
furcation set is the projection of the stability boundary onto the control
space, and is obtainable in principle by eliminating all the xi from (2)
and (3) . An associated requirement is that (1) be '‘generic', i.e. that its
local form would not be significantly altered by the introduction of more
control variables. Associated dynamical equations can vary with the con-
text, and can even describe 'slow flows' on the equilibrium surface in
addition to 'fast flows' off it, as in Zeeman's [1] model of the heartbeat.
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It seems desirable that the beginner, before getting to grips with
these more sophisticated ideas of 'local', 'gerneric' and 'significantly
altered' should see some very concrete examples of global equilibrium
surfaces.

I present here three computed global equilibrium surfaces, each in
three dimensions, for models of typical engineering structures. The global
equations are obtained in simple closed form in terms of trigonometric
functions, and plotted by computer. This allows one to see easily how
the local results are embedded within the global, and therefore what the
mathematical limitation of a local result might be. The pictures also offer
an immediate understanding of how various cross-sectional equilibrium
paths, different because not all mathematical controls are easily varied
physically, are all contained in the unifying concept of the equilibrium
surface. They also show global bifurcation sets as projections.

On the other hand, these models have the physical limitation that
they only give a qualitative and local indication of the buckling behaviour
of real structures, because in the latter other effects such as higher modes
would intervene to complicate the global pictures shown here. Therefore
there are dangers in allowing such models to acquire a lifc: of their own,
before addressing oneself rather soon to the differential equations describ-
ing the real structures. Budiansky [l], Hutchinson [2] and Sewell [3] have
given recent reviews of the formulation and solution of real buckling prob-

lems. But spring models have often found an initial role in engineering
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research in attempting to elucidate exactly that qualitative local response
which we can now see is also offered by catastrophe theory. A notable
recent fusion of these two approaches is found in the Zeeman catastrophe
machine, although its global solution (Poston and Woodcock [1]) is analyt-
ically complicated by comparison with the global solutions given here.

The examples which follow were prepared as part of a dynamic course
for second year undergraduate mathematicians. Perhaps it will not be many
years before material of this type can be used in sixth forms as examples
of modelling. Equations (1) - (3) provide an easy entry into other applied
subject areas, for example whenever one can interpret the xi as mode
amplitudes. Of course this is to ride upon the backs of those who have
taken the trouble to solve the underlying differential equations, and it is
an approach which may be more suited to an expositor than to a researcher
committed to a single area.

Equation and figure numbering begins anew in each of the following

Sections.
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Shallow Arch or Spherical Cap Model

Figure 1. Model of shallow arch or spherical cap

The lid of a biscuit-tin (or beer-can) can be regarded as being ap-
proximately a very shallow spherical cap supported on a circular hinge
round its edge. When pressed transversely in the centre from the convex
side it will suddenly 'snap-through' the plane of the hinge, to a second
equilibrium position under zero load but with the opposite concavity. It
can then be made to snap back by pressing from the opposite (i.e. new
convex) side. If the unloaded lid is shallow enough, the effect can be
described entirely in terms of axisymmetric configurations, without re-
quiring an asymmetric mode. Certain older types of oil-can rely on such
snap-buckling to eject the oil, and then to take in air. The effect was
long known as oil-canning.

A mathematical model can be based on the plane structure shown in

Figure 1. Two equal rods are supposed to remain straight but have constant
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longitudinal elastic modulus k . They are smoothly hinged to two pivots
fixed at a distance 2c apart, and they are joined at a third pivot which
can move on the perpendicular bisector of the first two, in the plane of the
paper only. A transverse dead load P acts symmetrically at the third
pivot, so that it may be balanced by the compression (or tension) in the
two rods.

The configuration is described by the angular deflection g of the

rods from their collinear position, with

Symmetry suggests that under zero load, one unstable and two stable
equilibrium configuraticns will be found, namely

g =0, i at Pr=i

respectively. The angle «o > 0 is intrinsically assigned in advance for
each given shell, and serves to specify upper and lower 'natural states'
q = + o . The 'depth' of the shell is then adequately defined by
a=1-cose,
0<a<x<l.
The total potential energy of the system in a general position under dead

load is

c c
cos @  cosq

2 - 1k( ) - P(c tan a - c tan q)

with respect to the upper natural state as datum. Removing the additive
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constant P c tan e, dividing by the fixed positive constant 2kc , and

writing p = P/2kc leaves the normalized potential energy

1 1 2
v(q, p, a) = '(T—_? o Y pitaniq - (1)

This depends on one behaviour variable g, and twq control variables p
ari i : iCé snse of bein
and a . They are control variables in the mathematic al sen ) ’ g
independently assignable parameters, even though for a given shell
(fixed a) only p is accessible to physical variation in a single 'test', in

the range

-0 < p <o

The following analysis thus refers to a family of shells specified by a-values
in the stated range. Given the mathematical model based on Figure 1y the
global analysis can first be carried through without insisting on a shallow
shell (small a) or small deflections (small q) .

Eventually, to obtain a qualitative idea of the axisymmetric response
of real shallow shells before asymmetric deflection modes intervene, it
will be necessary to introduce the approximation of small « and therefore

&
small a ~ 1a

Differentiation of the normalized potential energy shows that

0 1 1 1
9q 2 [p-Sinq(COSa-COSQH ’
cos g
2 3
5] a
_X = 2 tan q _V_. + 1 [l o cos ¢ ]
2 aq 1 cos a
9q cos q

T




Since cosqg > 0 the equation of the equilibrium surface aV/8g = 0 in

q, p, a-space is

1
p = sin Q(—l,— -
-a cOos g

(2)

The stability boundary is those points on the equilibrium surface where

. A 3
9 V/2q =0 also, i.e. where cos o = cos g also. Thus the stability

boundary is the smooth curved line

3 5
p=tanq, 1l -a=cos q . (3)

The bifurcation set in the control plane is obtained by eliminating g

from these two equations, giving the projection of the stability bcundary

onto the control space. In the specified a- and g-domains it is only

/3

1
necessary to consider one real cos g = (1 -a) > 0 and two real roots

; 2/3.%
sing =11 - (1-a) /3] ¢ of opposite sign, leading to the global equation

; [ _(1_6)2/3]3/2

l1-a (%)

of the bifurcation set. It is also possible to regard equations (3) as a
regular parametric version of the bifurcation set, which can therefore be
generated numerically by treating q as this parameter. In fact to plot the
bifurcation set with elementary tools such as tables and /or slide rule,
fewer operations are required if the parametric version (3) is used instead
of the explicit version (4) (four operations ;instead of six). The bifurcation
set (4) is shown in Figure 2. Exactly the same global bifurcation set, but
in different control variables, arises later in a model of imperfection-

sensitive shell buckling.
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Fig. 2 Bifurcation set for the arch model

The complete equilibrium surface (2) is a smooth folded surface,

drawn in Figure 3 in the most significant domain of g, p, a-space by

computing the cubic-like cross-sections at successive fixed values of a .
The stability boundary (3) is the fold-line on the surface, separating un-
stable (broken cross-section) from stable (unbroken) equilibrium points,
and its projection onto the p, a-control plane is the cusped bifurcation
set shown again in Figure 3. In other words, the fold-line is

the locus of points on the surface where the tangent-plane is parallel to
the g-axis. The envelope of such tangent planes where they intersect

the control plane is the bilurcation set. Figure 3 also shows intercepts
of the plane p = 0 with the surface (paths of unloaded equilibrium - cf.
Figure 5), with the control plane, and with the plane a = % . Notice
that different scales have had to be used on the three orthogonal cartesian

axes of Figure 3, but equal scales are retained in the plane diagrams of

Figures 2, 4 and 5.




equilibrium

surface //

stability boundary

bifurcation set

Fig. 3. Equilibrium surface and bifurcation set for the arch model.
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The stability boundary itself actually consists of equilibrium points
which are unstable 'almost everywhere' (except at the origin, in fact), be-

3 s
cause on this fold-line 0 V/qu has the values

351_nq¢0 unless g =0 .

cos q

Since 'r)‘ZV/aq2 < 0 in the broken-lined reverse-sloped part of the equi-
librium surface, the totality of unstable equilibrium points are within and
on this fold-line (except the origin itself). Elsewhere 'dzv/aqZ >0, and
so the two full-lined open regions of the surface outside the fold (connected

only at the origin) make up the totality of stable equilibrium points.

In a single test of a given shell, the depth a is fixed and the dead
load p is varied quasi-statically. Those equilibrium paths on the sur-
face which are of most physical interest are therefore those formed by its \
cross-sections with planes a = constant, as drawn in Figure 3. A typical
such path is shown in Figure 4, the full line being stable equilibria and

the dashed line being unstable equilibria. In particular this confirms the

above-mentioned expected solutions under load p = 0 . Quasi-static
loading from either natural state in the direction of the single arrows will
bring the system to the stability boundary where also the equilibriating
load is a local maximum or minimum. Since the stability boundary is itself
unstable, dynamical snap-buckling must take place from there to the

‘energy basin of attraction' associated with another finitely distant stable

=11~




Fig. 4 Equilibrium path for a given shell (a = § => q = %1

equilibrium, as indicated by the double arrows in Figure 4. The oil-canning
mechanism is represented by the illustrated hysteresis cycle.
Such snap-buckling can therefore be represented in Figure 3 by a
dynamic jump in q, across from any given p and a on the fold-line.
In the control plane the bifurcation set is the 'failure locus', at which such
buckling can be induced by moving the control point (at fixed a) across
from the inside towards the outside of the cusp-shaped region.
Perpendiculars erected in Figure 3 from the control plane will in-
tersect the equilibrium surface in either one point (if from outside the cusp)
or three points (if from inside the cusp). The outside of the bifurcation set
therefore also delimits the range of control parameters for which uniqueness
of the equilibrium solution is assured.

]2 =




The cross-section of the equilibrium surface at zero load p = 0 }'s
shown in Figure 5. As a increases from zero in (2), three branches of
equilibrium path emerge from the origin, with two stable and one unstable
as indicated. Such branching will not be observable in a test on a single

shell, however.

NP

v gl G

S

Fig. 5 Branched equilibrium paths in the plane p =0

For the case of a shallow shell, it is easy to note the approximate
form taken by the foregoing global equilibrium analysis for small a >0.

The bifurcation set (4) becomes

alSe
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z_g)s/z

: [1+;a+0(a2)].

P = (

Locally this is the two-thirds power law cusp

2
27 pe = 8a3

It is evident from (3) that p and q are also small on the stability boundary,

since the local form of this fold-line is

This is the same stability boundary as would have emerged if the quartic
potential

4

2
V=2%a -aq +2pq

had been used as the local approximation to (l1). This connection of the
shallow shell problem with the guartic potential of Thom's cusp catastrophe

was described by Sewell [1].
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Strut or Compressed Plate Model

Fig. 1 Model of eccentrically loaded strut

Axially loaded struts, and flat rectangular plates compressed in their
plane, belong to a class of structures which retain some static strength even
after their classical compressive buckling loads, such as the Euler load,
have been exceeded. This is because the straight configuration can branch
stably and quasi-statically into a buckled configuration as the load in-
creases, in a manner which is not sensitive to the size or character of small
imperfections in geometry or loading. The elastica is the most famous ex-
ample, and its large deflection equilibrium solutions have been studied in-
tensively.

The theoretical model shown in Figure | consists of a rigid T-piece
havin§ a small flange of length nf welded perpendicularly to the main stem
of length ¢ . The flange is to represent imperfections, and a vertical dead
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load P is applied at the end of it. Rotation about a fixed smooth pivot

at the root of the T is restrained by two linear elastic springs of modulus
k, which exert vertical forces at constant horizontal separation Zey via

a suitable arrangement of pivoted sliders on the arms of the T . The moment
of P is thus balanced by a couple due to spring forces having lines of

action fixed in space.

The configuration is described by the single angle g measuring de-

flection of the model from the vertical, and it is adequate to suppose

The entire behaviour is in the plane of the paper only. In the absence of
imperfections (n = 0) it is obvious that the vertical position q = 0, in-
volving zero extension of the springs, could be in equilibrium (not neces-
sarily stable) under arbitrary load P.

The total potential energy of the system in a general position under

dead load is
2 - 1k(c tan q)Z - Pt - cos g+ nt sinq)

with respect to the vertical position. Dividing by the fixed positive con-

stant 2kc'2 and writing p = Pl/chZ leaves the normalized potential energy
1 Z
Vg, p,m) = ; tan" g - p(l - cos q + v sinq) . (1)

This depends on one behaviour variable g, and two control variables p
and n . As in the arch problem p is effectively the dead load, assignable

in the range
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-0 < p<®»

The other control n is again ostensibly an assignable geometry variable,

and it will be enough to suppose that

-1<< 5 << 1

The real role of the n-term in (1), however, is to try to represent an
arbitrary 'perturbation’ of the form of the potential from that for the 'per-
fect' system (having n = 0 in (1)); and so to éonvert from the supposedly
non-generic perfect system to a hoped-for generic description of the system,
now containing imperfections. It can be seen that n only appears in (1)
in combination with p as pn, the couple induced by imperfections in the
vertical 'straight' configuration as soon as load is applied. For the second
assignable control parameter it may therefore be more appropriate to use
pn rather than n .

Differentiation of the potential (1) gives

d
51: : [sinq(l-pcos3 q)-pqcos4 al
9 cos’q
2 2

9 4 -
B_\Z/_htanqé_v__coiq[p_usu],
aq q cos (q

Since cos g > 0 the equation of the equilibrium surface 9V/3q = 0 in

a, p, pPn-space is

Pn cos4 qg=sinqg(l -p cos3 ay .« (2)

)




4 nl 2
The stability boundary on this surface, where @ V/9q” = 0 as well, is

the smooth curved line

Z 3
4 - 3cos g -3sin q
p = ———-T—-__., pn - ——-——T.—__ - (—‘B)
cos q cos q

The bifurcation set in the p-pr control plane is generated by these

same equations (3), with g regarded as a regular parameter instead of a
third coordinate. In principle q could be eliminated from this parametric
form to obtain an explicit expression for the curve in terms of the control
variables alone. But this procedure seems even less worthwhile, either
analytically or numerically, then was the case with equation (4) of the
arch model.

In seeking to p'~t the global equilibrium surface (2) explicitly, itis
natural in this example to look first at its intersection with the plane of

zero imperfection pn = 0. This gives the two equilibrium paths

1

q=0 and p=
cos q

intersecting at the 'Euler load' bifurcation point p=1, gq=rn=0 as shown

in Figure 2. Again the full lines represent stable equilibrium (where

82V/8q2 >0), and the dashed line unstable equilibrium (where E)'Zv/aq2 -<uf 0 )
Thus as the dead load p is increased from zero (or below) in the absence

of imperfections, the undeflected equilibrium of the strut is stable for

p< 1, and unstable for p>1. It happens that the bifurcation point itself

P
is also stable (because azv/aq = 83V/8q3 = 0, 34V/8q4 > 0 there), and

<18«




so as p increases through p =1 the system can evolve stably and quasi-
statically onto the deflected equilibrium path.

In this way Euler struts and certain compressed plates exploit the
fact that this bifurcation point is also the 9_2&/_ point on the stability

boundary where the equilibrium is actually found to be stable when higher

Pl o toom e ot

1 0

-n/2

Fig. 2 Branched equilibrium paths for zero imperfection

terms in the potential energy are examined. In fact, just as for the arch

model, the points of the stability boundary represent unstable equilibrium
2 & 5 3

‘almost everywhere' (because 9°V/dg” = 0, 98°V/dq” # 0 on it unless

p = 1). Thus such Euler buckling of perfect struts and plates is a quasi-

static phenomenon in contrast to the dynamic snap-buckling exhibited by

arches, spherical caps and other kinds of shell structures.
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On the other hand, Figure 2 is qualitatively the same as Figure 5
of the arch model. The only essential difference is the interpretation of
the single control variable in the two diagrams. This similarity helps one
to see that the complete equilibrium surface (2) for this strut model, in
4, p, Pn-space, is a smooth folded surface of exactly the same qualitative
shape as that already obtained for the arch, but with different variables

along the axes, as shown in the computed Figures 3 and 4. Another in-

dicator of this global shape is the observation that on the stability boundary

(3), the values of p -1 and ]pnl increase monotonically from zero as
|q| increases from 0 to w/2 . This suggests that the global shape will
be similar to the local shape near g = 0.

The fold-line on the equilibrium surface in Figures 3 and 4 is there-
fore the stability boundary (3), and again it closes (except at p =1,
g = n = 0) the broken-lined region of unstable equilibrium points. The
remaining region of the surface ccnsists of stable equilibrium points. It
can be seen that cross-sections of the surface with planes p = constant
for p >1 would have the same qualitative shape as Figure 4 of the arch
problem, except that pn would now be the control variable in that plane.
However, there might not be a convenient physical facility for varying the
mathematical control n, representing imperfection, independently of the
load p.

This type of distinction between mathematical and physical controls,

in problems which have substantially the same mathematical equilibrium

-20-




equilibrium
surface
Pn
\.d? :
‘Q

equilibrium paths n = 0.1

/

>
.

equilibrium

paths

n=20
é.é\

n=20

Fig. 3. Equilibrium surface and stability boundary for the strut model,
with equilibrium paths for perfect (n = 0) and imperfect
(n = 0.1) struts.
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Pn

N

)
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*8 N equilibrium path
n=0.1

and its
*Q Nprojection
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path

<?

7 n=20.1

-

Fig. 4. Equilibrium surface and bifurcation set for the strut model,

with equilibrium paths for an imperfect strut n = 0.1.

4




surface, implies a distinction between the type of equilibrium paths which
can be physically reaiized on that equilibrium surface.

The bifurcation set is shown in Figures 4 and 5b as the projection
of the fold-line onto the control space. Again the outside of it delimits
the range of control parameters for which uniqueness of the equilibrium
solution is assured. Evidently the lowest load at which uniqueness can
fail is the Euler load p = 1. Also shown on Figures 4 and 5b is the linear
projection prn = 0.lp onto the control space of equilibrium paths for which

n=:0.1.

Physically realizable equilibrium paths for the imperfect model would
be obtained by intercepts of the equilibrium surface with planes
%1- = small constant in Figures 3 and 4. Each intercept has two disjoint
parts, only the arrowed one can begin from zero load, and it is only the
9__tl1_¢_3_l: one which can intercept the stability boundary (which it does in a load
minimum. The locus of these different minima is the bifurcation set, as
illustrated in the projections of Figures 4 and 5b). A small imperfection
is therefore not physically serious because of the rapid rise in the bifurca-
tion set curve from p =1, and snap buckling can never occur in the con-
tinuous equilibrium path beginning from zero load. For n = 0.1, the load
minimum in Figure 5a is at the level of the intersection with the cusped
curve in Figure 5b.

The stability boundary (3) for small deflections q is approximately

«2 3=
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. . il

2

9 3
P -l::z 9, Pn=-39 ,

so that by elimination of g the local shape of the bifurcation set is

again the two-thirds power law cusp

2
81(pn)~ = 8(p - 1)°

This is the same stability boundary and bifurcation set which would have

emerged if the quartic potential

4

3 1 2
e a -z(p-l)q - png

had been used as the local approximation to (1). This quartic was given
by Sewell [1], where it was remarked that this strut model offers an exact

illustration of Thom's cusp catastrophe.
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Shell Model

Fig. 1 Model for shell behaviour

Certain shell structures, such as axially loaded circular cylinders,
or sufficiently curved cylindrical panels compressed parallel to their
generators, have a classical bifurcation load in the absence of imperfection
which can be a serious overestimate of their real resistance to buckling.
This is because the straight configuration has only unstable equilibrium
paths emanating from the classical bifurcation load, and the effect of these
when generic imperfections are considered is to induce load maxima at
only a fraction (perhaps !3— or -i—) of the non-generic classical value.

The theoretical model in Figure 1 was analyzed by Sewell [2]. It is
the same as the model for struts and plates, except in one key feature.

The vertical lines of action of the restoring springs are no longer fixed in
space, but are attached to fixed points on the arms of the T-piece, at a

-26-




given distance c¢ along the arms from the pivot. The horizontal separa-
tion of the spring forces can now decrease with rotation, instead of re-
maining fixed as before. This makes the structure susceptible to side-
ways dynamic collapse early in a continuous equilibrium path beginning
from zero load, in contrast to the model of the strut.

The extension of a spring is now ¢ sin g instead of the previous
¢ tan q, and this sole and apparently innocent analytical change has a
radical effect, even on the small deflection analysis. (The interpretation
of the constant c¢ is different in the two models). The normalized potential

energy becomes
Reri 3 2 y
V(q, p, n) =3 sin” g - p(l - cos g + n sin q) (1)

in the same domains as before. With cos q >0, differentiation gives

9
%:sinqcosq-psinq-pncosq,
ﬁ— tanqﬂ 1 [ cs3]
8q2" 8  cosq - @ o0 4 .

The equilibrium surface is therefore

pn = (cos g - p)tan g (2)

and the stability boundary on it is the smooth curve

q:tan3q, p:cos3q : (3)

This is exactly the same global curve, but in different control variables,

as was obtained for the stability boundary (3) in the arch problem.

-2l =




Therefore, elimination of q can be carried out explicitly as before, in

the range -w/2 < g < w/2, and leads to the global equation

2/3.3/2
o e e s

p

for the bifurcation set in the p-n plane. Alternatively this bifurcation set

could be plotted in p-pn space as the symmetric curve

pn = [1 - 92/3]3/2 (4)

or via its parametric form Pn = sin3 ., b= cos3 g . This curve is shown
in Figure 2, and is the upper half of

/3+ 2/3=1

2
(pPn) p

The side cusps are the same as the cusp at pn =0, p=1, butare not

actually attained because of the restriction to Iql < w/2.

T P

n

s

Fig. 2 Bifurcation set for shell model
28.




T'he cross-section of the equilibrium surface (2) at zero imperfection

pn = 0 gives the two equilibrium paths

gi=OEand S p = co st i

intersecting at the bifurcation load p =1, q = n =0 as shown in Figure 3.

N
(N E

p(-—-—-—-

E

L)
N[

Fig. 3 Branched equilibrium paths in the plane n = 0

As the dead load is increased from zero or below in this example,

the undeflected equilibrium of the model is stable for p <1 and unstable

for p>1. By contrast with the strut model, the facility that the springs

can now approach each other means that all the deflected equilibrium
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configurations are unstable in the ‘'perfect® system, and so is the bifurca-
tion point itself (because Z)ZV/Z)q‘a = a3v/aq3 =10, 81V/?Jq4 < 0 there).
This latter observation is the tell-tale sign, observed by Koiter [1),
that the dynamic snap-buckling load is sensitive to imperfections.
This sensitivity is manifested graphically by computing the whole
equilibrium surface (2) in q, p, py space, via its sections p = constant
in Figure 4, and examining its regions of stability (unbroken) and instability
(broken). The stability boundary consists of a fold-line which is unstable
everywhere in this example (instead of almost everywhere as before).
Figure 2 has already shown this boundary to have a projection on the p - pn
space (shown in Figure 5) which is such that small imperfections pn induce
a large decrease in the snap-buckling load from the bifurcation value p = 1.
It is seen that the global equilibrium surface for this shell model is
gualitatively the same shape as those for the arch and strut models, in
having the single smooth fold line characterizing the stability boundary.
The variables along the corresponding control axes are different in the three
cases, and so are the distributions of stability and instability. These com-
parisons between the global equilibrium surfaces were described by Sewell
[1].
Physically realizable equilibrium paths for the imperfect shell m(;'dol
can be obtained, as for the strut model, by intercepts of the equilibrium
surface with planes %1- = small constant in Figure 5. Each intercept again

has two disjoint parts, but this time it is the branch (arrowed) beginning
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from zero load which intercepts the stability boundary, and it does so at a
load maximum. The locus of these different maxima is the bifurcation set,
as illustrated in Figure 6b. A small imperfection is deleterious to the
buckling strength because of the rapid drop in the bifurcation set curve
associated with its vertical tangent at p = 1, and because this curve can
be reached in a continuous equilibrium path beginning from zero load.

From the point of view of uniqueness, assigned values of the controls
p and prn outside the cusped curve imply unique but unstable equilibrium
configurations. Inside the cusp curve, even for zero load and imperfection,
there is no uniqueness but two unstable and one stable equilibria. Thus
the shell model has no equilibrium configuration which is both unique and
stable, in contrast to the strut model.

The stability boundary (3) for small deflections q is approximately

2 3
2 TR o T (R

N|w

p-1=
so that the local shape of the bifurcation set is the two-thirds power law
cusp

27(pn)° = -8(p - 1)’
This is the same stability boundary and bifurcation set which would have

emerged if the quartic potential (Sewell [1])

4

1 1 2
Ve -=4q -Z(D-l)q - pnq

had been used as the local approximation to (1). The leading minus sign
in this quartic accounts for the changeover in the stability distribution,

as compared with the plus for strut model, and means that the model and

its local bifurcation set exemplify the so-called 'dual' cusp catastrophe.
o
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A Pure Catastrophe Machine

Any sixth-former can actually construct and operate the following
mechanical model of the cusp catastrophe. A plane lamina in the shape
of his old friend the parabola y2 = 4x is made from a piece of stiff light
card. It is enough to truncate the parabola at the ordinate x = 8 . The
card is to stand in a vertical plane with its parabolic edge resting on a
horizontal table. The lateral stability required for this can be achieved
by attaching it with three cardboard spacers of length 2 to another equal
parabolic card, or preferably to a parabolic annulus since weight reduction
is important. The annulus therefore acts like the secondary hull or out-
rigger of a catamaran. A movable weight G is then attached to the first
card, for example by a pair of small magnets gripping through the card with
a force which must provide enough static friction to prevent their weight
making them slide down the card. These practical details are the same as
those suggested by Poston (see Poston and Stewart [1]) for an elliptical
model.

The parabolic model is now that shown in Figure 1, with all the weight
hopefully concentrated in the movable point G . To reduce the uniformly
distributed card weight, it may be necessary to replace it with a second
rigid parabolic annulus having a sheet of paper glued to it for G to ride
upon. Suppose the contact point with the plane has parametric value t
where x = tz, y = 2t describes the parabola. By equilibrium the normal
from t will pass through G. If G is outside the cusp-shaped envelope
of the normals (as in Figure 1) there is a unique normal through G and
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therefore a unique (and stable) equilibrium configuration. But if G is

NN

NN T

Fig. 1 Pure catastrophe machine

inside the envelope there are three normals from it to the parabola, and
their feet define one unstable and two stable equilibrium configurations.

The single parameter t is therefore the configuration or behaviour

variable of the system, and the coordinates x,y of the weight in the plane

are the two control variables. There is a folded equilibrium surface in the

three-dimensional t,x,y space whose stability boundary projects into the
cusped envelope in the x,y plane, as shown by Sewell [1, Figure 3]. The
potential energy when a unit weight G is at x,y and the contact point is

t, whether in equilibrium or not, is just the height

1
Vit; x, v) = [(x - tz)z + (y - Zt)Z]" + constant (1
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above any datum level. V > 0 if this datum is below the table top.
Equilibrium is achieved at stationary values of this height as t moves
around the parabola, i.e. where 0V/dt = 0 or

T SEPT RN e (2)

This equation of the global equilibrium surface in t,x,y space is precisely
the equation of the normal in the X,y plane to the parabola at t. That

the shape of the surface is the same as the local versions of those for arch,

strut and shell models can be seen from the following table of correspondences,

in which Zeeman's adjectives are used to describe the two control variables.

Machine Arch Strut Shell
Behaviour t q g a
Splitting factor X - 2 2a %(p -1} 2(p -1
Normal factor y -2p —i—pq -2pn

Table: Corresponding behaviour and control variables

The stability boundary is the folc -line of points on the surface (2)

where Eizv/at2 =0, L. e.

’

3tz-(x-&):0. (3)

Elimination of t between (2) and (3) gives the bifurcation set

4(x - 2)3 = Z'Iy2 (4)

which is also the cusped envelope of normals shown in Figure 1. Envelope
calculations require exactly this type of elimination.

LA




Therefore the machine car be used to demonstrate a cusp catastrophe
as follows. The weight G is moved quasi-statically (slowly) over the
X,y plane from its position in Figure | to a point inside the cusp (Figure 2).
Two new but distant equilibrium configurations have now become available,
at t2 (unstable) and t3 (stable), in addition to the preferred tl (stable)

which has been reached by the continuous quasi-static change from Figure 1.

) TR TR N T, T T TR TR TR

Fig. 2 Three equilibrium positions

Next G is moved outside the cusped region across the opposite side
from that where it entered the region. As it leaves, the stable t1 coalesces

with the unstable t2 as the equilibrium surface point reaches the stability

boundary, and the system must suddenly jump to the energy basin of attrac-

tion surrounding the only remaining and stable configuration t3 « Thin is

the catastrophe, manifested by the sudden jump in configuration as the

parabola rolls over dynamically to allow G to come to rest vertically above

t3 instead of tl .
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This might be as pure a catastrophe machine as can be devised, in
the sense that only the most trivial transformations are needed to put the
physically derived expressions of (1) and (2) into the mathematically
standard quartic and cubic forms respectively. Furthermore they are valid
globally, and not only as local approximations.

It is worth noticing that any problem concerned with optimizing dis-
tance to a concave set of points might be available for reinterpretation as
a gravitational catastrophe machine, since distance is equivalent to
gravitational energy in the earth's field and because a convex boundary

can roll on a table.
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Concluding Remarks

It will be seen that I have not used any of the results of catastrophe
theory per se. Indeed the reader will observe the ad hoc way in which the
imperfection is introduced in the strut and shell models, in the hope that
this will lead to a generic potential - as it appears to do when we finally
arrive at the quartic local approximations. In the arch we arrive at a local
quartic without introducing any such imperfection, and because the local
expansion is about a boundary point (a = 0) instead of an interior point in
the control plane, catastrophe theory apparently does not yet assure us
that this quartic is generic (see Sewell 1], p. 172). However, certain ad
hoc imperfections introduced into the arch have been found to induce a
change of smaller order in the maximum load, in contrast to the larger order
associated with the cusp in the strut and shell models.

It is clear that many areas of classical and recent science offer ex-
amples of equilibrium surfaces and bifurcation sets waiting to be reappraised
in terms of a full geometrization like that presented here, and to be in-
vestigated from the catastrophe theory viewpoint to discover, for example,
if their potentials can be significantly altered by a small perturbing term,
or instead are 'structurally stable'. The 'dynamic' associated with such
problems might vary in character from case to case. As far as elementary
catastrophe theory is concerned, any problem characterized by a discretizable
variational principle might be examined from the suggested viewpoint.

We close by offering three more normalized potentials generating
equilibrium surfaces which the reader might care to plot and relate to
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classical results. The first concerns a single particle of mass m and
. -Nn . )
angular momentum p moving under a central force pr (given positive

p and n) at a distance r from the origin. The effective potential is

1-n

F
Vir: n, c) :T:-—r; +——2—'

where r is the behaviour variable (0 <r <®), and the mathematical
; 2 A e
control variables are n (0 €« n<») and ¢ =p /mu (0 <c <») . 'Equilibria’
are circular orbits.
The second example is an axisymmetric top inclined at an angle 6

to the vertical (0 < 8 < w) . This has effective potential

1 c¢-c‘cose]
V(0- I o] (1o LR, R
(®; C¢" qu) i 0+2 sin 6

where 0 is the behaviour variable, and the mathematical controls are the

¢’ ¢1

angles & and . ‘Equilibria' are conical motions of the axis. The

normalized momenta c Clb(o e CLL; < o) associated with the Euler

above two potentials are derived in standard texts, and also in Sewell [2].
Our last example is a contribution to the theory of phase transitions.

Several authors have observed that boiling or condensation of a gas might

be viewed as catastrophes in the sense of sudden jumps in the value of

the density (= x + 1, say) at suitable temperature t and pressure p

Thus x is behaviour, and p and t are controls. The latter are normalized

sothat 0 <t<w®o, 0<p<» and so that the so-called liquid/gas ‘critical'

point is at x = 0, t=p=1. Restrict attention to the domain -1 < x <2

il




containing the liquid /gas point as an interior point. Then it was shown by

Sewell [4] that the van der Waal's model emerges from the generating po-

tential
V(x; t, p) = @ (X) ¥(x;t, p)
where
1 2
d(x) = g(l+x) (2-x)>0
V(x;t, p) = - 3(x+]) - §-(t + 1) log| 3 -1]+ 2. + constant
o x+1 3 x+1 x+1 2

in which the datum constant is always chosen to make ¥ = 0 when

This last equation of thermomechanical equilibrium then implies 9V/9x = 0 ,

and is the cubic

3 3 x(8t3+ p) 3 (8t;2p)

X =0

This is equivalent to van der Waal's equation, but in a form recognized
by Fowler as the folded equilibrium surface of Thom's cusp catastrophe,

‘ like the local shapes obtained for the above arch, strut and shell models.
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