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ABSTRACT

We consider the class of regression functions ~f l ( F , G) =

{m(x) = E[Y~X x J ,  (X , Y) IT(F , G)) where TT(F , G) denotes the set

of random vectors with marginal distributions F and G. A characteriza-

tion of ~? ( F , G) is given together with a representation for the

projection operator it induces in an appropriate Hu bert space . Applications

are indicated .
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REGRESSION WITH GIVE N MARGINALS

Richard A. Vitale

1. Introduction

Let 1T(F , G) denote the class of random vectors (X , Y) wi th

marginal  distributions F and G (X F , Y — G). We will consider

the associated class of regression functions

= {m(x) = E [ Y I X  x J ,  (X , Y) fl(F , G) }

The motivation for looking at this class is similar in spirit to that of

isotonic regression (from which we will in fact borrow a resu l t ) :  the

extent to which auxiliary information be incorporated into the regression

process. Knowled~* of marginal distributions , in particular , is natural  in

certain types of problems. We may consider a census in which bivarlate

observations are collected , the marginal distributions are assumed given

(as from a previous survey) , and regression Is desired. Alternatively,

there is the problem of optimal , non-linear prediction In a time

series {X~}. If F is the equilibrium distribution of the X ., then the

optimal one-step predictor (squared erro r loss) is E E X ~+1 lx . = x J  E ~~(F , F)

(see [ 3 ) ,  [5 ] ,  [ 6 j  for related discussions of this problem).

In section 2 , we present a characterization of ?1~(F , G) for a

large class of F and G. The proof follows directly
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from methods in [101 . CharacterIzations of the type indicated have

bee n investigated from a variety of points of view and we refer the reader

to [‘] ,  [9 1 for other discussions and ~efe rences. It can be fai r ly  stated

that the common ancestor of all such approaches is the fertile theorem

of Hardy, Littlewood and Polya [4 , p. 49] on the averaging properties

of doubly stochastic matrices. In section 3, we investigate further the

structure of ~7(F , G) by considering it as a convex subset of an

appropriate Hu bert space and examining the Induced projection operator.

The discussion is motivated by a statistical estimation problem .

—2—



2. Characterization of ? ? ( F~ G)

In what follows we shall regard F and G as fixed and s a t i s fyt ng

(Al ) F and G are each supported on all of R 1 and are invert ible .

(A2 ) E~~ = f y 2 G(dy) <~~~~~.

The fi rst assumption can be weakened considerably , but we prese nt it

to avoid side-issues. The second insures that  ‘?r ( F, G) i s a subset

of L2
[ ( - c ~ , +~~) ; F J ,  the HUbert space of rea l-valued funct ion s  on R ’

square ir itegrable with respect to the measure determined by F ( this

can be seen directly by noting EY2 
= EX EE y2 lx ) � Ex(E[ y lx ] ) 2 ) .

Turning to the characterization of “~(F, G) . we note that  if

;il ( x) = t~ Y 1X = x) E ~~(F , G) , then with the application of mar gin a l

probabili ty t ransformations U F(X), V = G( Y) , we have

m(x) = E[ G 1 (V) I U = F ( x ) J ,  where U and V are each uni forml y

distributed on [0 , 1 1. This is essentially the object of study of [10  1

and with only minor modifications , the methods employed there yield

the following result .

Theoremi. The following statements are equivalent .

(i)  m E ~7 ( F , G).

( I i )  m lies in the closed convex hull (L 2 [( - o ~, +~~) ; F ] )  of

functions of the form G ° T F .

m(F ~~ (T(u)))du > f G~~ (u)du

for all x [0 , 11 (with equality at x = z) 0 ’d all T ~ ~T.
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Here ~ {T : [0 , i i  -
~~ [o, 1] one-one , Borel—measurable , measure—preserving ).

We note that if m F ’ is non-decreasing, then the strongest inequality

in (i i i )  occurs upon taking T(u) u, i.e. ,

m(F~~(u))du G~~(u)du

+00 +00

The equality condition in (iii) amounts to f m(x) F(dx) = f yG(dy)

or Em(x) = EY. Finally , for the projection problem it will be useful to note

that the mapping h L2[(- 
00, +oo );FJ -. h a F 1 

€ L2[ [0 , 1]; 
~~
. Lebesgue

measure ] induces an isomorphism between the two spaces . The Image

of ?~‘~(F , G) under the mapping can be described as follows.

Corollary . The following are equivalent.

(I) m~

(ii) m0 lies in the closed convex hull (L2[[0, i J ;~~]) of

functions of the form G 1 
a T.

( i i i )  m 0(T(u))du G 1(u)du

[or all x [0 , 1 J (with equality at x = i )  and all T E 3.

Proof. Change of variables.

Remark. From (ii ) ,  It is evident that for each T € 3, m 0 € ?fl0 <= >m 0 
o T € ~ ?0 .
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3. Projectign

Unde r the assumption (X , Y) ~ t I ( F , G), a natural criterion for

judg ing an estimate m(x)  of the unknown regression function m(x)

is the squared error loss

E[ m(x) - ~ (x ) 1 2 
= f

00

m(x) - ~ (x) J
2 F(dx) .

It is evident that this loss can be reduced (or at least made no larger)

by constructing a new estimate m(x)  which is the projection of m

onto the convex ?1~(F, G). For this reason, it is of interest to investigate

the projection operator associated with ~?(F,G) in L2[(-x ,+oo );FJ :

th at is , for h ~ L 2
[ ( — o o , + Q O ) ; F } ,  we seek the (unique ) element

h ~ ~ (F , G) which yields

f [h(x) - h(x) ] 2F(dx) = inf f [h(x) - m(x)]
2F(dx)

-00  m c 7 T ( F, G) - 0 0

( — throughout will denote projection in the appropriate space). A

feature of this projection Is that if a constant is added to h , the n

h remains the same: this can be seen by expanding

f [h(x)  + c - m(x) ] 2 F(dx) = r [h(x)  - m(x) J
2 F(dx)

2 +00

+ c + Zc . r h(x)F(dx)

+00

- Zc f m(x)F(dx)
-0 0

L -

~~~
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and noti ng that the first  term alone depends on m since , as we have

+0 0

noted , f m(x) F (dx)  f yG(dy) for m ?17(F, G). This being the

case , we shall  h ave occasion t . ’ invoke the normalizat ion

+00 +0 0

(A3) 
- 0 0  

h(x)F(dx) = yG(dy)

and , eq uivalently, for I = h o

1 1 1(A 3) ’  f 1(u)du = f G (u)du
0 0

We now investigate the projection operator, isolating the

main aspects of the argument in two lemmas. Some notation will prove to be

1convenient: let 1(x) = f G (u)du and let capitalization generally
0 x

indicate integration, e.g. L(x) = f I(u)du. If A(x) EC [0,lJ , then

* 
0

denote by A (x) the convex minorant of A ( i . e .  the greatest convex

function less than or equal to A).

Lemma. Let I e L2[ [ 0 , lj ; ~~] be non-decreas ing(a.e . )  and sa t i s fy (A3) ’ .

The projection I of I onto satisfies

— x _ 
*L(x) = f I(u)du = L(x) - (L - I) (x)

0

Proof. The proof will be given first for step functions and then extended.

(I) For a fixed Integer N > 1, suppose that I Is of the form

1 ( u)  = ~ II
[ ~~, ~~~~~~~ 

x~ = ~~~~ 
~~~ 

I
j +1 .
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We arg ue f i r s t  that  it is enough to restrict  attention to candidate s for

projectio n which  are s imi la r ly  non-decreasing step func t ions :  given

we apply the Cau chy -Schwarz in ~ qua 1ity to ge t

1 N-I  ~j+ i  N — i
( [ 1 ( u )  - n ( u ) J 2

du = ~ 
f [F , - n ( u ) J 2 d u � (1 . - n ) ~

0 j = O  x . j = 0

x j+ l
where n N I n(u )du .  The lower bound is a t ta ined for f l u )

x .

identically constant on sub-intervals .  Moreover , it can fu r the r  be

reduced by rearranging the n . to be non-decreasing ( ( 4 , theorem 17 8 ] ) .

If ~(T)  are the re a rranged values , the n we have

1 1
1 [1(u) - n (u ) ] 2d u >  f [ 1(u)  - n (T) (u ) I

2
du

0 0

where n (T) (u)  = ~~ n~
T) I i x x  ]

(U) .  We now show that fl (T) (U)  (

J = 0  J )+l

Since n(T) ( u) is non—decreas ing ( a . e . ) ,  by the rema rk af ter  theor em I .

It is enough to show that N (x) = f n (u )du  > 1(x) wi th  equa l i ty
0

at x = 1. The latter condition follows from the normalizat ion (A 3) ’ .

Since 1(x) is convex and N (T) (x ) is piece-wise linear , i t  is enough to

verify the inequality constraints at the nodes {x . }. We have

N (T) (x k ) .1~ n~~~(u du = 
~ ~~ 

n~~~, which is the integral  of n ( u )
0 j = 0 X

k

over k of the sub-intervals.  Equivalent ly ,  i t is equal to ( n i T ( u ) ) d u
0
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for some T which appr opriately permutes the sub- in tervals .  By ( i i )

of the corollary, this is bo unded from below by I(x k ).

We now have a discrete problem to solve:

N —I 2
mi nimize ~~~~ ( 1 . - n ,)

j = 0  ~

subjec t to (a) the n , are non-decreasing ,

k—I
and (b) ~~, n . ~ 1(x

k l
), k = 1, .. . , N - 1 with equali ty at k = N

j = 0

Imposing only constraint (b ) ,  the problem is treated in [1 , pp. 4 6-5 1]

as a generalized isotonic regression . Letting L and L denote the

partial sum vectors of I and the solution vector I respectively and

setting I = (1( x 1) , 1(x 2 ), . . . , I(x N ) ) ,  we have

*L = L - ( L  - I )

where * here denote s the convex minorant of a vector. A straightforward

2 * 2 2
argument shows that - I) < 

~ k (L - ~ ~~k denoting a second

difference). Hence

2 2 * 2 2 * 2
L = 

~k
1 L - (L - 1) = A

k
L - 

~~~~ 
- 

~ 
A k I �~ 0

It follows that L is convex and that I is non-decreasing . Thus (a)

Is satisfied automatically.

Translating the solution of the discrete problem into step function

term s, we get L(x) = L(x) - (L - I) (x) .
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( 11) If  f l u )  is not a ste p fun t i t n , t hen  for  each N � 1,

approximate  1(u)  w i th

x
N - i  3 + 1

I
N W .) ~ [ N  I f ( u ) d u  I ‘

~ ~ ~ 1
(u)

j = 0  x . ~~
‘ j +j

By j) ,  we have

( i )  L N
x) = L N ( x )  - ( - *

Now as N -. 00 , 1N I and -. 7 in L
2

(( 0 , 1 J ;  ~J .  Since

[~~ ~~~~~~~ 
< f t~~(u)du  I 2 ( u ) d u , the domi nated convergence

th eorem yields LN
(x)  -. L ix) . S imi lar ly ,  LN ( x) — L(x) .  Further , since

LN 
-. L un i forml y  and * operates continu ously in the uniform norm ,

(L N 
- j )

* -. (L - I ) .  Taking l imi ts  (N -. 0 0)  in ( i )  yields the lemma.

If I is not mono tone , th en some additional preparation is required

to obt ain i ts projection on 
~~~~~~~ 

For I ~ L
2

[ [ 0 , i J ; ~~], def ine

1, t L2 [ 1 0 , 1 ] ;p~] as the increasing rearrangement of I. There exists

a measure-preserving transformation S9 : [0 , 1] —
~~ [0 , 1], not necessarily

one-one, such that I = I~ S1 
( [8 1) .

Lemma. Let 1 ~ L21[0 , i ) ;~i.] and sa t is fy  (A 3) ’ . Then if I and ~~ are

the proj ections of I and I~ respectively onto

7 = SI

Remark. The construction for ~ has bee n given in the previous lemma.

Pro~i. If I L 2 ( [0 , 1 ;~i ~, then P , L 2 ( [0 , 1 ;~ ~~ . Using a change of
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var iables , we have

[ [ I ~~ u) - g(u ) ] 2du = J [1( ) - (g S1)(u) ] 2du

~in . l  t c ik in g  in f i ma over g ~

[I~ (u)  - I
~ ( u ) J 2 du inf  f [ 1( u )  - (g S1)(u) J

2
du

0 g ( 7 ’ 0 0

-~ 2
= f [I(u)-(I~ o S1) ( u) ) d u .

0

The lem ma will follow if we can show

(i) i nf [ 1(u )  - (g o S1)(u) ] 2du inf f
1 

[1 (u) - g ( u ) ] 2du
0 gE ’/fl0 

0

and

(i i )  ° S1 E ?1?o

Each is a consequence of the identity o S1 = 

~~~
, that  is ,

g ° S1 E <~~~~> g ~~~~~ The pQint of interest is that S1 m ay not be one-one .

However , Brown [ 2 , theore m 3] has shown that there exists a sequence

f T )  ~- 3 such that g T -
~~ g o S~~. Accordingly, if g ‘)T 0, the n

g o T 
~~ 

(see the remark after the corollary of section 1) and since

is closed 
f l — . 00 

g o T = g S~ ~~~ 
Conversely, if g 

~I ~

then using an approximating sequence ( T )

JJ g ~~S1 - g o  T I l L [ [0  i )  I = ~ 0 s , 0 T ’ 
~~~L2 [ [ O , l ) ; ~~) — 0 .

-10-



Since g o S
1 

T
1 for each i-i and is closed , we have g

We can now state our main resul t .

Theore.~~~ Let h L2
[ ( _ o o , +00);FJ and satisfy (A3). Let (h o ~~~~~ be the

increasing re arrangement of h o F 1 with h o F ’ = (h  o F ’ )~ o S.

Then the projection h of h onto ~~~( F , G) is given by

h = (h o F
1

) ~ S ~ F

where ( h o F
~~~

)
~ 

satisfies

f  (h o F~~~~)~ (u)du = J 1(x) - J2(x)

and J 1
(x) = o F

1
) ( u )du , J2(x) = J 1(x) - j G ’(u)du .

0 0

Proo f. Together with the indicated I somorphism between L2[ [0, 
1 ) ;~ i j

and L 2
[ ( - 0 0 , + o o ) ; F J ,  the statement combine s the two lemmas .

— i i —



4. Conclud in ~~ Remarks

We have invest igated the struct ure of ‘)t~ (F , G) through a characteriza-

tion resul t  and an examination of the induced project ion operator. Despite

the rather  formidable  descript ion of the la t te r , computa t iona l  versions

have proved to be accessible.  In particul ar , the op erations * and

together with the extraction of the measure-pres erving t ransformat ion S

are reasonably straightfo rward (a discussion of some relevant algorithm s

can be found in [ i i ) .

As in isotonic regression, the fact that analytical resources are

available to attack the problem investigated here suggests that  other

nonlinear regression problems may be amenable to similar treatment.
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