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ABSTRACT
We consider the class of regression functions 7 (F, G) =
{m(x) = E[Y|X = x], (X,Y) « (F,G)} where T(F,G) denotes the set
of random vectors with marginal distributions F and G. A characteriza-
tion of 7 (F,G) is given together with a representation for the
projection operator it induces in an appropriate Hilbert space. Applications

are indicated.
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REGRESSION WITH GIVEN MARGINALS

Richard A. Vitale

1. Introduction

Let II(F,G) denote the class of random vectors (X,Y) with
marginal distributions F and G (X~ F, Y~ G). We will consider
the associated class of regression functions

m(F,G) = {m(x) = E[Y|X = x], (X,Y) « II(F,G)} .

The motivation for looking at this class is similar in spirit to that of
isotonic regression (from which we will in fact borrow a result): the
extent to which auxiliary information be incorporated into the regression
process. Knowledge of marginal distributions, in particular, is natural in
certain types of problems. We may consider a census in which bivariate
observations are collected, the marginal distributions are assumed given
(as from a previous survey), and regression is desired. Alternatively,
there is the problem of optimal, non-linear prediction .1n a time
series {Xi}. If F is the equilibrium distribution of the Xi, then the
optimal one-step predictor (squared error loss) is E[ xi+l lxi = x] € m(F, F)
(see [ 3], [5], [6] for related discussions of this problem).

In section 2, we present a characterization of M(F, G) for a

large class of F and G. The proof follows directly
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from methods in [10]. Characterizations of the type indicated have

been investigated from a variety of points of view and we refer the reader
to [ 7], [9] for other discussions and ceferences. It can be fairly stated
that the common ancestor of all such approaches is the fertile theorem

of Hardy, Littlewood and Pélya [4, p. 49] on the averaging properties

of doubly stochastic matrices. In section 3, we investigate further the
structure of 7(F,G) by considering it as a convex subset of an
appropriate Hilbert space and examining the induced projection operator.

The discussion is motivated by a statistical estimation problem.




2. Characterization of 7(F,G)

In what follows we shall regard F and G as fixed and satisfying
(A1) F and G are each supported on all of R1 and are invertible.
; + o0 2
(A2) EY° = [ y“Gldy) <w.
-0
The first assumption can be weakened considerably, but we present it
to avoid side-issues. The second insures that 7(F,G) is a subset
of LZ[(-OG, +w0);F], the Hilbert space of real-valued functions on R1
square integrable with respect to the measure determined by F (this
: 1 2 YZ 2
can be seen directly by noting EY = EXE[ |X] = EX(E[Y’X]) b
Turning to the characterization of 7(F,G), we note that if
m(x) = E[YIX = x] ¢ 7(F,G), then with the application of marginal
probability transformations U = F(X), V = G(Y), we have

l(V)fU= F(x)], where U and V are each uniformly

m(x) = E[G~
distributed on [0,1]. This is essentially the object of study of [10]
and with only minor modifications, the methods employed there yield
the following result.
Theorem 1. The following statements are equivalent.

(i) m e m(F,G).

(ii) m lies in the closed convex hull (LZ[(-oo,+oo);F]) of

functions of the form G-l o To F,

x -1 x.
(1) f m(F "(T(u)))du > f G 1(u)du
0 0

forall x e [0,1] (with equalityat x = 1) and all Te3J.




Here J = {T:[0,1] -[0,1] one-one, Borel-measurable, measure-preserving}.
We note that if m e F_l is non-decreasing, then the strongest inequality
in (iii) occurs upon taking T(u) = u, i.e.,

X X

[ mEu)du> [ 6 Hu)du .
0 0
400 + 00
The equality condition in (iii) amounts to [ m(x)F(dx) = [  yG(dy)
-00 =00

or Em(X) = EY. Finally, for the projection problem it will be useful to note
that the mapping h ¢ LZ[(-oo, +0);F] - h e P LZ[[O, 1]; u = Lebesgue
measure ] induces an isomorphism between the two spaces. The image 7/{0
of M(F,G) under the mapping can be described as follows.

Corollary. The following are equivalent.

(i) m_ € 7).0.

0

(ii) m, lies in the closed convex hull (LZ[[O, I);u}) of

functions of the form G-l o T.
x X
" =
(iii) [ m(T(u))du > [ G "(u)du
0 0
forall xe€ [0,1] (with equalityat x =1) and all T € J.
Proof. Change of variables.

Remark. From (ii), it is evident that for each T € J, L mo <=> mg ° Te%o.




3. Projection
Under the assumption (X, Y) ¢ U(F, G), a natural criterion for
judging an estimate m(x) of the unknown regression function m(x)

is the squared error loss
-~ 2 A 2
E[m(x) - m(x)]° = [ [m(x) - m(x)]“F(dx) .

It is evident that this loss can be reduced (or at least made no larger)

by constructing a new estimate m(x) which is the projection of m
onto the convex 7 (F,G). For this reason, it is of interest to investigate
the projection operator associated with 7(F, G) in LZ[ (=0,4o);F]:
that is, for h e LZ[(-—GO, +o);F], we seek the (unique) element
h ¢ 7(F, G) which yields
+ o0 e 2 + o0 2
[ [h(x) - h(x)] "F(dx) = inf f [ h(x) - m(x)] “F(dx)
-0 meMn(F,G) -

(~ throughout will denote projection in the appropriate space). A

feature of this projection is that if a constant is added to h, then
h remains the same: this can be seen by expanding
400 2 + >
[ [h(x) +c-mx)]°Fdx) = [ [h(x) - m(x)] “F(dx)
- 00 - 00
2 Xy
*e +2¢ [ h(x)F(dx)
- 00
+ 00
- 2c ( m(x)F(dx)
- 00
...5_




and noting that the first term alone depends on m since, as we have

+ 00 + o0

noted, f m(x)F(dx) = f yG(dy) for m ¢ m(F,G). This being the

- 00 - Q0

case, we shall have sccasion to invoke the normalization

(A3) [ h(x)F(dx) = [  yG(dy)

1]
=
°
-

and, equivalently, for /

1 1
(A3)' [ £(u)du = f G_l(u)du.
0 0

We now investigate the projection operator, isolating the
main aspects of the argument in two lemmas. Some notation will prove to be

X
convenient: let I(x) = r G-l(u)du and let capitalization generally
0 X
indicate integration, e.g. L(x) = f L(u)du. If A(x) €C[O0,1], then
: 0
%
denote by A (x) the convex minorant of A (i.e. the greatest convex

function less than or equal to A).
Lemma. Let £ ¢ Lz{ [0,1];n] be non-decreasing (a.e.) and satisfy (A3)'.

The projection ; of £ onto 7/,‘0 satisfies
X
~ ~ %
Lx) = [ f(u)du = L(x) = (L~ 1) (x) .
0

Proof. The proof will be given first for step functions and then extended.
(I) For a fixed integer N > 1, suppose that £ is of the form

N-1
L(u) =

](U), Ky =
j=0

I'I[x X

PN




We argue first that it is enough to restrict attention to candidates for
projection which are similarly non-decreasing step functions: given
n ¢ %0‘ we apply the Cauchy-Schwarz inequality to get

1 N

[ [t - n(UHZdu -
0 j

x
j+1 N-1

f [l,«n(u)lzdui§ L(! —n,)Z
- j ,

)
Xj+l
where nj = N f n(u)du. The lower bound is attained for n(u)
X,

J

identically constant on sub-intervals. Moreover, it can further be
reduced by rearranging the nj to be non-decreasing (| 4, theorem 378]).

T
1If nﬁ, ) are the rearranged values, then we have

1 1
f [ 2(u) - n(u)]zdu > f [#(u) - n(T)(U)]ZdU
0 0
N-l
where n(T)(u) = ) n(.T)I (u). We now show that n(T)(u) €M,
B O, [ - R X 0
j=0 e ) |
Since n(T)(u) is non-decreasing (a.e.), by the remark after theorem i

X
it is enough to show that N(T)(x) = f n<T)(u)du > I(x) with equality
0

at x = l. The latter condition follows from the normalization (A3)'.

(T)

Since I(x) is convex and N' '(x) is piece-wise linear, it is enough to

verify the inequality constraints at the nodes {xj}. We have

X
k o TS
N(T)(xk) = f n(‘T)(u)du = .IA\I- L n(,U, which is the integral of n(u)
0 j=0 !
"
over k of the sub-intervals. Equivalently, itis equal to f n(T(u))du
0




for some T which appropriately permutes the sub-intervals. By (ii)

of the corollary, this is bounded from below by I(x i

k
We now have a discrete problem to solve:
N-1 5
minimize L (&, =n )
ey AL SRR
subject to (a) the nj are non-decreasing,
k-1
and (b) ), n, >1(x,_), k=1...,N-1 withequalityat k = N.
j=0

Imposing only constraint (b), the problem is treated in [1, pp. 46-51]

as a generalized isotonic regression. Letting L and L denote the

~

partial sum vectors of f and the solution vector f respectively and

setting I = (I(xl), I{xz), e I(xN)), we have

sk
x

RN TR e

where * here denotes the convex minorant of a vector. A straightforward
2 " 2 2 J
argument shows that Ak(L -1) < Ak(L - 1) (Ak denoting a second
difference). Hence
22 2 * 2 2 BTy
e & & = - -1 > [ >0,
AL Ak[ L-(L-1) ] =4L-Aa/(L ) 2a12

~

It follows that i is convex and that f is non-decreasing. Thus (a)
is satisfied automatically. o

Translating the solution of the discrete problem into step function

terms, we get f,(x) = L(x) - (L - I)*(x).




(1I) If £(u) 1is not a step function, then for each N > 1,

approximate f(u) with

X
N\-l ‘)+l
! =
N(u) L [N | f(u)du] I[x,.x ](u) .
j=0 xJ IS
By (I), we have
(1) LN»LX> = LN(X) - (‘I‘N - 1) (x) .

Now as N -e, £ ¢ and i; -7 in 1,2[[0, 1];u]. Since
x 2 X X,

[f L _(u)du] < f ¢ (u)du -~ f £ (u)du, the dominated convergence
o M o M 0

~ ~

theorem yields LN(x) - L(x). Similarly, LN(x) -+ L(x). Further, since

LN - L uniformly and * operates continuously in the uniform norm,

(L

N I)’P - (L -1I) . Taking limits (N - o) in (1) yields the lemma.

If ¢ is not monotone, then some additional preparation is required

to obtain its projection on 7. For 1 ¢ LZ[[O, 1];n], define

lf € LZHO’ 1];u] as the increasing rearrangement of £. There exists

a measure~preserving transformation Sl :[0,1] -[0,1], notnecessarily
one-one, such that £ =1t o Sl ([81).
Lemma. Let ? ¢ LZ[[O,I];p] and satisfy (A3)'. Then if £ and T; are
the projections of £ and I1 respectively onto 7ﬂ0,

£ = I? °Sl .

Remark. The construction for l’ has been given in the previous lemma.

Proof. If 1 ¢ LZHO,l];ul, then ¢ « LZ([O,ll;g]. Using a change of




variables, we have
1

E 1
[ e, - g@)?du = [ [£) - (g » §,)(w)}%au
0 0

and taking infima over g e %0
1 1

[ 14w - £ @)%du = inf [ (4 - (g + 8,y
0 g(?ﬁo 0

The lemma will follow if we can show

1 1
(- int f [£(u) - (g o S!)(u)]zdu = inf f [2(u) - g(u)]zdu

0
genm, gem, O
and
(ii) l? ° Sl emo .
Each is a consequence of the identity 7/“.0 ° Sl = 7720, that is,
g e Sl € 'mo <=>g ¢ mo. The pqint of interest is that Sl may not be one-one.

However, Brown [ 2, theorem 3] has shown that there exists a sequence
{Tn} C J suchthat g o ’1‘n ~g - 8,. Accordingly, if g7, then

g o Tn ¢ 7  (see the remark after the corollary of section 1) and since

0

7 . is closed lim goTn:gosl(m . Conversely, if goSle'/ﬂ

0 0 0’

n -+

then using an approximating sequence {Tn}

=1
° S - o T ” = ° S ° T e “ *0 .
LA U TR R L e LML R

-10-




Since g °§, o T“l for each n and 7 is closed, we have g €7

; n 0 0

We can now state our main result.

! ~1
Theorem 2. Let h ¢ LZ[(-«*,MO);F] and satisfy (A3). Let (h oI 7) be the

1 1

SN TS )

! : -1 ; .
increasing rearrangement of h o F with h o [ 4

Then the projection E of h onto 7(F,G) is given by
Lt T e
h:(hoF)foSoF

¥
where (h o F 1)? satisfies
X/'\T/ -
J (e BT (wdu = T (x) - Ty(x)
0
ket X -1
and ] (x) = f (heF ), (udu, J (x) = J(x) - [ G (u)du.
1 0 t 2 1 0

/

Proof. Together with the indicated isomorphism between L2[ [0, 1];u]

and LZ[ (= ,+%);F], the statement combines the two lemmas.

_ll_




4. Concluding Remarks

We have investigated the structure of 7 (F,G) through a characteriza-
tion result and an examination of the induced projection operator. Despite
the rather formidable description of the latter, computational versions
have proved to be accessible. In particular, the operatiéns * and ¢t
together with the extraction of the measure-preserving transformation S
are reasonably straightforward (a discussion of some relevant algorithms
can be found in [1]).

As in isotonic regression, the fact that analytical resources are
available to attack the problem investigated here suggests that other

nonlinear regression problems may be amenable to similar treatment.

-12-
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