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ABSTRACT

The purpose of this paper is to present a direct and simpler
combinatorial proof of a theorem of Yu. M. Volosin [4] on the
enumeration of function compositions and to exhibit some of the
consequences of this theorem. Many consequences are stated in
the paper of Volo'éin, however, his methods are relatively intractable.
Here, we obtain a generating function which facilitates enumeration.
The methods and arguments employed here should be compared with
Volosin. The combinatorial structure encountered here is a fairly
general one with many applications, only a few of which are pro-

vided in the present paper. A
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ON A THEOREM OF VOLOSIN CONCERNING ENUMERATION
OF FUNCTION COMPOSITIONS

Bernard Harris

l. Introduction and Summary. The purpose of this paper is to present a

direct and simpler combinatorial proof of a theorem of Yu. M. Volosin [4]
on the enumeration of function compositions and to exhibit some of the
consequences of this theorem. Many consequences are stated in the paper
of Volosin, however, his methods are relatively intractable. Here, we
obtain a generating function which facilitates enumeration. The methods
and arguments employed here should be compared with Volosin. The com-
binatorial structure encountered here is a fairly general one with many
applications, only a few of which are provided in the present paper.

Let o be the number of symbols denoting variables and let c). be
the number of symbols denoting functions of j variables, j=1,2,...,n.
Let ko be the number of entries of variable symbols and for each j, j =
Yo 25 v a het kj be the number of entries of symbols denoting functions
of j variables. Then Volosin established the following theorem,

Theorem 1. For given cjzo, kj >0, j=0,1,2,...,n, the number of valid

compositions that can be made with arbitrary insertions of commas and

parentheses is

1)
: g (k0+kl+...+knl). kOkl kn
(1) L R L TR % R T N g Yy ey
0 1 n
provided that
{‘,
(2) 2 =Dk = k-l

j=1
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L o adl

The relation (2) is both necessary and sufficient for ko’kl’ o ,kn to
permit a valid composition. Also note that cj = 0 implies kj = 0, since
af kj > 0, then (l) yields zero, which is appropriate.

The following example should aid the reader oy clarifying the defi-
nitions and notation. Let x and y denote variables, let f be a symbol
for a function of one variable and let g denote a function of two variables.
Then we have Cq = 2, 8 Loe =il et ko =2y k1 =1, k, =1. Then the

12 solutions given by (i) are

fgxx fagxy fig 'y x fagyy
gfxx gfxy gfyx gfyy
gx f x gxfy gy fx (o [T E

For example g x fy is a composition, since we can write g(x,f(y)).
However x g fy is not a valid composition. It is easily seen that there
is no way of inserting commas and parentheses so that this is a valid com-
position,

In (4], Volosin actually stated Theorem one in an equivalent, but
substantially more complicated form, The differences are that he defined
k,i=1,2,...,n as the number of entries of functions of m, variables.
The number of symbols ci was correspondingly defined and he required
c >0, i=0,1l,...,n. As will be seen in the sequel, letting m, = i and
permitting ci = 0 substantially simplifies all computations.

In section two, Theorem one is established. In section three,
generating functions are derived, which are then used to exhibit other re-
sults of Volosin. In particular, the treatment given here provides simple
explicit expressions for many special cases.
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2. Proof of Volosin's Theorem, We first calculate the totality of possible

arrangements and selections of the N = k0 + kl : AU kn symbols without

regard to whether they constitute a valid composition. Then we subse-
quently determine the fraction of these which are valid compositions.

There are clearly N!/( kO!kl! ol kn 1) ways to select the k). posi -

tions to be occupied by the symbols selected from the cj symbols, j =

1,2,...,n. After this allocation of positions, there are cj possible selec-

k.
tions for each position and hence ch selections for each j . Thus the

totality of arrangements and selections without regard to their validity as a

function composition is

(k0+kl+...+kn)! ko kl kn
»C ) = BRI G G :

pres  aR IS ptade sn ke ST e n

Now consider a sequence of N symbols selected from the M pos-

(3) M(ko,k K
sibilities available, say a = (al,az, ‘o ,aN). We characterize those
sequences, which, by insertion of commas and parentheses, are valid
compositions, Define g(ar) = ~(j-1) if arr is a symbol denoting a func-
tion of j variables; j = 0 means that aj is a symbol denoting a variable.
Accordingly we establish the following lemma.

Lemma l. a is a valid function composition if and oniy if

N

(4) h(m) = ) g(e)>0, m=12,...,N
r=m

and

(5) h(1) = 1.

Proof. Necessity. Assume that (al,a . ,aN) is a valid function com-

29

position., If N =1, @, must be a variable symbol., Hence g(al) = | = N(1).

1
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Now assume that the conclusion holds for N = L il ik > G on -
sider therefore any valid function composition with N = k symbols., Then
al must be a symbol for a function of j variables for some } s E €T <kl

Hence, we must be able to decompose (a byl

> ) into j sequences of

k

consecutive elements, namely, (a

i Jats

%o+

+...4p, =k h
apl+p2+...+pj_1+l’ ’apl+p2+...+pj)’Where R, P, 4w

PIEREE P le,.
(
that each of these j sequences is a valid composition., Each sequence is
to be separated from the sequence which follows it by a comma and we place
a parenthesis before a, and after o, . As a consequence of the induction

k

hypothesis , we have

i
( hl(m) P E g(ar)>0’ m:2y39“-’p1:
r=m
o
(6) hym) = ), gle)>0,m=12,...,p,
< r=p,+m
1
pl+;..+pj
L Bim) = gle)s0, m =L2,...,p
r=p +.. .+pj_1+m
and
(7) hl(l) = hz(l) e :hj(l) =l
Consequently
k
h(m) = L g(ar)>0, W 2y g R
r=m
and
4
h(l) = -(j-1) + ), hi“) = «(J-l)+ =1,

{=]
verifying (4) and (5) .




Sufficiency. Assume that the sequence (al,az, S v ,aN) satisfies (4) and
(5). Then h(N) =1 and QN must be a variable symbol. Each symbol for

a function of j variables may be regarded as replacing j variables occur-

ring to the right of the symbol by one variable, thus reducing the number of

variables to the right by (j-1) = -g(ar) . Hence, for each m, m=1,2,...,

N, h(m) is the number of variables available at m . Hence, if (4) holds,
then for each m , 1 <m <N, there are variables available at m . If (5)
holds as well, then the sequence & may be regarded as a single variable
and is therefore a valid composition.

A simple rule for insertion of commas and parentheses can easily
be given.

We now obtain Volosin's condition (2).
Lemma 2. h(l) =1 implies Volosin's condition holds. Further for any
sequence a satisfying Volosin's condition, there is exactly one cyclic

permutation which is a valid function composition.

N n
B L TV 4 X
Proof. h(l) = r‘fl g(ar) = e j‘;:l (]-l)kj + k0 i

which is Volosin's condition.

For the converse, we can apply a well-known theorem of L. Takacs
N
(3]s if rl,rz, g ,rN are non-negative integers with Z ri =r <N, then
1)
among the N cyclic permutations, there are exactly N-r such that the
m
partial sums 'Ll r1 , are lessthan m, m=1,2,...,N.
i=

To apply Takacs' theorem, let r, = l-g(oi), then since -(n-l) <

z

gla) <1, we have 0 <r <n. Also L gle,) = 1 implies
|

- B




equivalent to )

i=m
cisely Takacs' conditions with r = N-1,

N N J v
ps ri = N = ps g(ai) = N -1. Finally, L g(ai) = (N-m+l) & ri >0 1is
i=t i=1 i=m i=m

N

r, <N -mtl, m=1,2,...,N. Thus (4) and (5) are pre-

Combining Lemmas one and two, we have established the theorem,

since among the M(ko’kl’ e ,kn;co,c ; ’Cn) arrangements and selections,

|

1

exactly R(ko,kl,...,kn;co,cl,...,cnhN- Mk, k K 10 C

. l)--. n 0 l"" n

(Y kj)-lM(ko,kl,. -« sk iC0sCy. .. yc ) of them constitute a valid compo-
j:o

sition.

Remarks. In [4], Volosin established the theorem by first obtaining a
complicated recursion for R, the number of compositions. This recursion

was employed to deduce a functional equation for the generating function

= - k0 kl kn

LI : :

(8) Hp(t,t,...,t) ‘kU_l"'kZ_OR(ko’kl""’kn'co’cl""’Cn)to e
0 o

Lagrange's formula was employed to expand HR obtaining the desired result,
In the opinion of the present author, the proof given here provides more in-
sight into the relevant combinatorial mechanism and clarifies the combina -
torial significance of the Volosin condition (2).

R. L. Graham has pointed out tn the author that he had previously
seen results of the type of Lemma one. The author has investigated this
comment and notes that a result very similar to Lemma one may be found in

P. C. Rosenbloom [2], pp. 152-157.

-6 -




3. Generating functions for function compositions and related quantities.

In his paper, Volosin [4] discussed properties of the generating function (8),
but never gave an explicit form, In this section, we show that by niuaking

a different choice of generating function, a useful explicit representation

can be obtained. This facilitates computation and enables us to obtain

other results from Volosin's paper as well as many additional results, There-

fore, we define

n :
t % G X u]
j:6 1«9
(9) FE(XO’XI""’Xn:U;t) = e y
where ¢ =(c.,c,,...,c_ ). Then we obtain Theorem 2.
) Sl | n
1 s N-1 kO kl kn
Theorem 2. N times the coefficient of —ﬁ-,—u 5 x0 xl At xn is the

number of valid function compositions that can be made with

(c i3 k kn) specified.

O’CI"' n:ko, TEEEE

Proof. By direct computation, we have

(10) Fs(xo,xl,...,xn:u:t) % ]
Y‘j K
0 k I i
o QI_ B N. c 0ckl cknxkoxkl xkn =0
1 1 ! 1
N—;O N! ko’kl"'—j’k Ko.kl....kn. 0 1 0 o0 n
e n
Setting kl + Zkz + nkn = N-l = E k -1, we have Volosin's condition (2) and
=0

the theorem is verified. .
With no loss of generality, we can remove the restriction imposed

by the symbol n and consider

(11) Fa(xo,xl,...,u;t) = e ’




where ¢ = (co,cl,.. .). This reduces to (9) on setting cj =0 forall j>n.
Volosin has introduced a number of attributes of a function composi-

tion. They are: (ko,k), the characteristic of a composition, where kO is

the number of entries of variable symbols and k = kl + kZ den g ok kn is the

number of entries of function symbols; ko the valency of a composition;
k, the complexity of a composition. N = k0 + k is called the length of a
composition,
We denote the number of compositions with specified characteristic,
valency, complexity and length by A (E), B (E), @ (<~:) and N(c)
ko, k ko k
respectively.

All of these can be readily enumerated using the generating functions

(9) or (11), Specifically,

| (E) is (k +k)_l times the coefficient of
ko, k 0

kodk K dtat
3 X 0k

(ko +K)' . X, ¥ in Fa(X,%,x,...5ust),
0 %)
2. Bk0(€> =k;’0 Ako’k(E), G (%) = k%ﬂ Ako,k(E) ;
N o
3, Nie} = k;o Ako’k(c)..

However, in many special cases, we can obtain simple expressions
for quantities of interest,
The following observations are immediate.

Bk 15) will be infinite whenever c1 >0 and finite whenever cl =0,
0

Ck(E) will be infinite unless there exists an n > 0 such that cm =0 for

all m >n.
=B

-




To observe the first, note that if f denotes a function of one variable,

then for any a = (al" o .a,\‘,) which is a valid function composition,

(f,al,. 54 ,aN) is also a valid function composition. Clearly, this can be

continued indefinitely. However, if c1 = 0, there the maximal length of any
possible valid composition is bounded. This follows immediately from (2).
For the second, let fm denote a symbol for a function of m variables. Then
choose any subsequence {mi}, with B =2 0 for all m, and m, o,
i
Then for every k , and every k-tuple (mi ,mi Bl ,mi P =0 iin the
ko A
subsequence and any variable symbol x ,

f Uit (Ot e Sl S E R ) i)
. ; S——

is a valid function composition with k function symbcls, k =L,
We now show how the generating function (1l) may be employed to
obtain various combinatorial results and to obtain explicit representations

for various quantities which arise in the study of functional compositions.

Let B T BT e TEL T, ci=0,1§i_<_m-l, nal <1,
l<m<n, and X =X, 2.0, =X Then
J
t(cox0 + cxj_umu)
FE(xo,x,x,.. Uty = e g
o] n .
Z t—1\i(c X + cx b uJ)N
N." 00 i )
N:O ]=m |
Hence, we have
© N
= N
spuiy o5 U 8 m ., otl=me, N
Fa(xo,x,x,....u.t) A (\cox0 + cxu (l-u )/(1 uj)
N=0
o tN YNN\ N-r N-r r r rm -r{-« r\ j (n+l-m)j
= Z N Lyr/ S % © XU (I-u) __Jj(-l)u %
N=0 " r=0 j=0




Thus, we get

Fafxo,x,x,.,_;u;t) =
o Wy B T Y ! ¢ (nél
BT e \ - - rm ¢ ,r+k- ) +1-
L 8 ey ¢ L/ N\’c;) er P L (r " l\u :./T\(-I)Jum m)jy
N=0 =1t k=0 / j=0)-

t
To apply Theorem 2, we need to calculate the coefficient of N u

Direct calculation shows that this is given by

N=20, 0

i B i e %o

o \w/N> N - rNrcrrv( l)J/N 24r-rm-nj- ]+m1\/t‘\
o'l 2 20 = e

Thus, we have established the following.

Theorem 3. AN 3 r(E), the number of valid compositions of length N
=iy

with characteristic (N-r,r) when c_ =c i e e e o o

m m+l n j §

l<j<m-l, j>n+l and 1l <m <n is given by:
o s when N =1, r=0,
For 1<r<N-l, N >1

fl(N\ N r r V( l)j/N-2+r -rm-nj-j+mj /r\

r\T\I‘/ ] r=l j/’

N -
when r< — ,
= n#l

M

~ l/ N\ N-r r N-24r-rm-nj-j+mj\/ r
1 =( = \ &8
8) B ito) <N(r>c0 C.-J‘“( r-1 ) 3/
=0
N-1 N-1
when A gt >
n+l -
0 otherwise,
)=
whete M of otaim |
n+l-m

-10-




This theorem has many interesting consequences. For purpose of illustra-
tion, we cite some of these,

Corollary 1. The number of valid compositions of length N with charac-

teristic (N-r,r) when m =1, cl = c2 R cn = ¢ and n >N-l is
given by
~ I/N\/ N=2 o " Ni=r p
= = \ Sl <r < N-l.
(13) AN-r,r(C) T e N-r-l/co cly NizlGe L < v <N-1

Proof. Observe that n > N-1 implies (N-1)/(n+l) < (N-1)/N <1 and
(N-1)/m = N-1. Hence the upper limit of the summation in (12) is M .

But in this case M = [(N-l-rm)/(n+l-m)] = [(N-l-r)/(N-l)] =0 Thus

AN-r,r (C) is given by (13).
Corollary 2. When Co RO SR l, n > N-l, the number of valid

compositions of length N is given by the Catalan numbers; that is

_Lran-ny

(14) N(€) = N\ N-L

Ne=il 2,
Proof. For N =1 the conclusion is trivial. Hence assume N > 1. Then,

from Corollary 1, we have

NiS) = 1 N)/N—z\zl NGZ(N-Z‘\( Ny _ l(.zr\'-z\
N Al TN 2l s Asel! TN NG

the Catalan numbers. The last step employs a well-known combinatorial
identity (H. W. Gould [l], formula 3. 20).

An alternative method of obtaining this result is to exhibit a one-to-one
correspondence between function compositions and a certain class of rooted
trees with N vertices, These trees are referred to by Volosin [4] as func-
tional trees, The endpoints of such trees correspond to symbols for vari-

ables and vertices of degree j refer to symbols for functions of j variables.

«]l=




To provide an additional illustration of the applications of the
generating function (ll), we now establish the following theorem.
Theorem 4. When cO = cl B e, b cn = 1, the number of valid function

compositions of length N is given by

P i .
Pl J7 N/ 2N-2-(n+D)j\
(s} ° Bey =7 (ol N-l /2 Fen<id ,

j=0
where P = [(N-1)/(n+l)].

Proof. From (1l), we have that the number of compositions of length n is

i i N
given by N times the coefficient of N u in
n n+l -1
_l_et(1+u+...+u)__}_et(l-u )(1-u)
N "N
tN

Hence the coefficient of N is

-+ n+l N -N

(i =~ u Ty fleu)

N

Expanding this, we obtain

y - 0
X8 J(NY\ (n+l)j © /N+m-l\ m
N L,(‘l)< j u £ 'u
j=0 : el
o .. N -

N 0% R, uT(o1yJ( N\ Ntr=(n#l)j-1y

NiZo 2o B e M
“ N-1 .

Thus, the coefficient of u is

N g
i \“(_I)J/N\( 2N -2-(n+l)jy\
N j?o vy 4 N-1 y

and the conclusion follows readily.
Remark. For n = N-l, this is again juist the Catalan numbers, as it should be.
For n =1, this provides a proof of another well-known combinatorial

identity (H, W. Gould [l], formula 3.16). Then the only valid function

«]2a




composition of length N 1is of the form f(f) ... f(x) , where f is a func-

N=1
tion of a single variable, Obviously there is one such composition, Thus

(1)) /Ny 2N-2-2)
V17K W= g

4. Concluding Remarks., The combinatorial structures given by functional

composition are a very broad class of combinatorial structures and con-
sequently there are many interesting specializations which can be obtained
from these results. Some of these have been given in Theorem 3 and its
corollaries and Theorem 4. In addition, these structures have many rela-
tions to other combinatorial problems. Some of these have already been
alluded to by Volosin [4].
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