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ON L L G I : N D R E  T RANSFORMA TIONS AND ELEMENTARY CATASTROPHES

M. J . Sewell

1. Introduction

The pu rpose of t hese remarks is to u se elementary mathemat ics to describe

some simple connections between multi-valued Legendre transformations and

certain elementary catastrophes. Multi-valued Legendre transforms

appear in subjects such as nonlinear elasticity and non-convex optimization.

2. Some simple Legendre transforms

Consider the genera l polynomial equat ion in x of the ~th 
degree. This

can be written , after normalising the leading coefficient, ar

u • + tx~~
1 

+ ... + bx2 + ax

where the coefficients are then a, b, ... , t, u. Now express this in

the alternat ive gradient form

dXu
~~~r. 

(1)

where the generating potential funct ion X(x) is def ined by

I ii+1 t n  b 3 8 2X—— ---—— x + — x  + ... •— x  ~~~~~~~~n~~~l n 3 2

Recall that such a polynomial equation has either 0 or 2 or

or n real roots if n is even, and either I or 3 or ... or n

real roots if n is odd.

Those points of the potential function X (x) which satisfy

d2X (2)

can be divided into two sets, according to whether the lowest value of

r ) 2 which makes

Sponsored in part by the United States Army under Contract No. DAAG29-
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0 (3)

is (a) odd or (b) even.

(a) These points are inflexion points of X (x), because the slope of

X (x) attains a stationary local minimum or maximum as it passes

through such a point, by tt~a Taylor expansion.

(b) These points are not inflexion points because the slope of X(x)

only becomes stationary at such a point , and then resumes its

previous monotonically increasing or decreasing character. The

simplest example is the increasing slope of X (x )  x” on both

sides of x = 0, where the lowest value of r is 4.

If the normalized constant u in the original polynomial is now

regarded as a controllable parameter , equation (I) can be viewed as a

mapping

u u (x)

of a real x-axis onto a real u-axis. As x passes through a point

where (2) holds , the corresponding point on the u-axis will reverse

direction for a point of type (a) (i.e. for an inflexion point of X(x)h

but for a point of type (b) it will maintain the same direction which

it has on either side of the considered point.

The direction of movement of the u-point will also be maintained, a

fort iori , as x passes through any point where

—2—



d2 x
dx2 0.

In the neighbourhood of such a point a unique Legendre dual transforrna-

tion x ~~~~~ u can be constructed, which expresses the unique local

inverse of the mapping (I) as

dU (4 )

in terms of a dual generating function

U(u) = ux (u) — X[x (u)l . (5)

The transformation also has the property
‘
I

d2X d2U 1 (6)

and so the procedure is reversible.

Such a Legendre transformation is valid , in the first instance, within

any. x—domain bounded by points satisfying (2), and there will be a

corresponding u—domain. Beyond this x—domain boundary (or boundaries ,

at either end) there will be other x-dornains, leading to different

u-domains and corresponding different branches of the dual function

U(u). However, as x passes through any boundary point which is of

type (b), i.e. one which does not specify an inflexion point of X (x)

and for which the corresponding u—point maintains its direction , the

two adjacent branches of U(u) can be matched in value and slope from

opposite sides of their conr~on u-domain boundary. The second derivat ives

become infinite by (2) and (6), but the slopes match because of (4)

and the contiguity of the two x-domains.

For this reason the convention is now introduced that any pair of

—3—



x—domains which are adjacent at a point of type (b) are counted as two

parts of t he same en larged domain, and the matched pair of branches of

U(u) are counted as a single branch over the single u-domain formed by

glueing together the previous abutting pair. By this convention a

non-inflexion point which satisfies (2) is in future counted as an

interior point of an associated Legendre domain.

This leaves the following situation. Equation (2) is a polynomial

equation having at most n — I real roots. Those roots which specify

inflexion points of X(x) divide the real x—axis into at most n

cont iguous domains D 1, 
~~2’ 

“
~~~~
‘ °xn (say). As the x—axis is

traversed from -
~~~ to +~~, the sign of the curvature of X(x) will

alternate with each succeeding domain, changing only at the inflexion

points. Within each domain the curvature will not change sign, being

either convex or concave.

If n. is odd there will be I or 3 or ... or n such x—domains,

whereas if n is even there will be 2 or 4 or ... or n of them.

The sketches in Figs. I - 4 illustrate those domains for the cases

n • 1, 2, 3, 4.

As the x—~xig is traversed, the succession of domains D
~is 0x2’

will give a succession of distinct branches (.1
1
(u), 1J2

(u), ... of the

composite Legendre dual function

(U
1
(u), 112

(u), ...} W (u) (say),

each branch being defined over an associated u-domain 0ul’ 0u2’ ~~~~ to

—4—



n = I

Fig. 1. One curvature domain 0xl for X .~.x
2.

n = 2

Fig. 2. Two curvature domains for X ~.ax
2
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____  ____

xl ‘C~— 0 
~ 0 0

x3 
~ ~~~~

0x1 
~~f 0x2 ~~~ 

0x3 ~~

Fig. 3. One or three curvature domains for

X - ~~~~ + +

~~~ 
0
xl ~j ’ 0 ~~~ ~~~

_ 0 
~j ’_ 0x2~~l0’C3~~ 0 + 4— 0 0x2 x x4 xl x2 x3 x4

Fig. 4. Two or four curvature dom~tns for

x + ~cx ” • ~bx~ +

—6—



be determined. A good qualitative picture of the way these branches

fit together can be built up on the basis 0f three simple observations:

I. Each u-domain must be traversed in the opposite sense to the preceding

one, and therefore every pair of contiguous u-domains must overlap on

the whole of at least one ot them. This follows from equation (1)

and property (a) above .

2. The slope of succeeding distinct branches of W(u) is continuous

at their join. This follows from equation (4) and the contiguity of

successive x-domains. (It is also true for points of type (b), a

fact already utilised in the above convention).

3. The curvature of succeeding distinct branches of W(u) alternate in

sign, because this property holds for X (x) (see Figs. I - 4 ) ..

and convexity (or concavity) is transmitted from one generating

function to its dual in a Legendre transformation.

These observations are employed in Figs. S - 8 to sketch the qualitative

form of the composite Legendre transforms W (u) of the functions X (x)

shown in Figs. I - 4. In these diagrams no attempt is made to give the

quantitative effects of all the different possible combinations Of the

parameters a, b, c (for example, to change the sign of a in Fig. 2

will tilt the cusp of Fig. 6 downwards instead of upwards.) The purpose

here is to convey the qualitat ive features which can be deduced about th e

juxtaposition of the domains and branches o-F the composite Legendre

transform W (u), on the basis of the foregoing three observations.

Succeeding branches of W(u) always join at cusps.

— 7 —



Fig. 5. One domain of U ~~~ dual to Fig. I

k 0 U2~~~~~~~~
:

Fig. 6. Two overl apping domains of dual W(u) = (U
1
, u2} to Fig. 2
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ul
0u2 ~I

u3

Fig. 7. One or three overlapping domains of dual

W ( u) = (U
1
, U2, u3} to Fig. 3

U4 
U4

U
2 U

2 U

I I I U I3

~~~~~ 

I 1 2

I i I I

I UI
0u4 

~ I 0u4
k o ’

~ 0 3 ~~u3
,1 

_ _ _  

u

u2 u2 u2
0uI 0 _ _ _ _ _ _ _  _ _ _ _ _ _ _ul 0u1

Fig. 8. Two or four overlapping domains of dual

W (u) - (U
1
, U2, U3, 1)4

) to Fig. 4
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4 Finally it may be noticed that if X (x) is any sufficiently smooth

function , not necessarily a polynomial , then as x passes through any

point satisfy ing (2), the two Legendre transforms U
1
(u), Ui i

(u)

defined on either side by (5) have continuous value and slope at the

considered point. Locally therefore, if the considered x-point is

an inflexion of X (x) (i.e. of type (a)), the two branches of the com-

posite transform are defined over overlapping domains and meet in ~

cusp, whereas if it is not an inflexion (i.e. type (b)) the two branches

are defined over abutting domains and can be glued together to look

like one branch. The cusp can never point straight upwards , nor can

the composite transform have a vertical tangent, by (4) for finite x.

3. Some elementary catastrophes

It can be imediately recognized that the composite Legendre dual functions

W (u) portrayed in Figs. 6, 7 and 8 are qualitatively the same as at

least certain cross-sections of the bifurcation sets of the cusp,

swallowtail and butterfly elementary catastrophes respectively - see,

e.g. §5.3 of Thom ’s book (1975) for pictures of the latter.

A complete statem ent of the Legendre transformation beginning from the

above polynomial

X(x, a, b, ..., t)

takes account of the fact that the coefficients a, b. ..., t play the

role of passive variables. They therefore enter each branch

Ui(uJ a, b, ..., t)

of the composite dual function

— 1 0 —



W • W (u, a, b, ..., t) (7)

and have the properties

~~~~~~~~~~~~aa 3a ~b ~b ~~ ~t ~t

for each U~. In future a/ax is also used in place of the d/dx of

Section 2, and ~/3u in place of d/du.

A signif icant feature of the du al funct ion (7) is that it depends only

on the coefficients or ‘controls ’ present in an associated potential

function

V(x1 a, b, ..., t, u) = X — ux

I n+I t n  b 3- x + —
~~~~ 

+ + —
~~~~n~~~I n 3

a 2 - u x , (8)

in terms of which the starting point (I) of the Legendre transformation

can be written

(9)

In mechanical contexts where V is poten tial en ergy depending on

displacement x, with various possible interpretations for the control

parameters, (9) defines, in the space of x and the parameters, an

‘equilibrium surface ’ as introduced by Sewell (1966 , 1976). Therefore

(I) also defines this surface.

Two simple examples of the dual function W(u) are now displayed

explicitly.

L 
-11-



Example I : fold -‘~ Cusp.

If V in (8) is the universal unfolding for the fold catastrophe, then

the corresponding

(10)

Then (1) generates u • x2, and (2) and (3) hold at x 0 with

r • 3, corresponding to the (horizontal) inflexion in the cubic. The

origin divides the x-axis into two domains : x < 0 and

o : x > 0. The inverses of u = dX/dx in these domains arex2

x -u~ and x u~ respectively, both branches being defined over the

same domain °ul 0u2 : u > 0 of the u-axis. The associated composite

Legendre transform is thus

W {U~ (u), U2(u)}, ~I 
= - 

~ u2, U2 = 
~~ U

2 
. (II)

The- two dual generating functions X and W in this Legendre transform

are sketched in Fig. 9. This is a special case of Figs. 2 and 6.

-E 0 1 -*- 0X W u2

~~ x

_____ ______ _______ 

UI
°x2 0uI

Fig. 9. Fold potential +-‘ cusp dual

— 1 2 —



Evidently either branch of the dual function (II) satisfies

( w~
2

4u3 - 271—I = 0
~/~

)

This is the bifurcation set of another potential which is the cusp

catastrophe unfolding

P(~ , u, W) = •
~~

-
~~~
‘ - !x2

~~
2 + 3A 3W~ . (12)

Here A is an arbitrary scale factor and F~ is some other behav iour

variable identifiable as Ax. This can be verified directly, or

inferred from (34) and (35) below. One of the controls in (12) is the

original one u, and the second control W is the Legendre transform

generated by the original fold potential.

Example 2 : cusp + swallowtail.

This time suppose that V in (B) is the universal unfolding for the cusp

catastrophe. The term of penultimate highest power is therefore absent

again. (Potentials with this property are associated with singularities

called cuspoids.) For X this implies the partial unfolding

X = .~.x
k +.i ax2 (13)

as the starting point X (x; a) of the Legendre transformation. There-

fore (I) becomes

u • x3 + ax (14)

which defines the familiar smooth folded equilibrium surface in x, a, U

space (e.g. Fig. tI of Sewell, 1976, or the numerous illustrat ions by

Zeeman , e.g. Isnard and Zeeman , 1974). Then the limits of single-valued

inverse branches of (14) are defined by (2). namely

3x2 • -a • (15)

because (3) holds with r - 3 (except at the single point x - 0).

— 1 3—



If a > 0 there is no such real limit to x , i.e. the quartic (13)

has no inf l exion , and over t’ i~~ whole x-axis there is a unique real

solution x x(u, a) to the cubic. This inverse has the gradient

x - aX/au of the unique Legendre transform

U(u; a) - .
~~ ux (u, a) — -

~~ afx (u , afl2 (16)

defined over the whole u-axis. The first diagrams in each of Figs. 3

and 7 give the qualitative picture.

If a < 0, however, two real turning points of the cubic (14) separate

three contiguous x—domains

Dxl :

~x2 I 
~

(- ~~ a)~ < x < (_ -
~~~ e)~

—- I I
0x3 : ~

_
~~~aj < x < + ~~,

where (14) gives solutions x1
(u, a), x2

(u , a), x3
(u, a) respectively.

We do not need their explicit form here. Substituting each in turn into

the same formula (16) already derived for t he case a > 0 leads to

three distinct branches

a) in 0u1 : 
—

~~~ 
c u c - 

~~
[— .~ a)

1J2(u: 
a) in 0 2 

: ~~ 
!~[_ .

~~
- a)~ < u < — 

~~
[— .

~~
. a)~

U3
(uj a) in D 3 : + 

~
{- .~- a)~ c u c +~~

of the composite Legendre transform

W(u, a) — (1J
1
(u, a), U2(ug a), U3(u, a)) . (17)

The appropriate qualitative pictures this t ime are the last diagrams in

-14-



each of Figs. 3 and 7, but symetrized with respect to both horizontal

and vertical axes because of the absence of the cubic ‘bias’ term in (13).

Consider now what happens when the passive variable a is allowed to

vary. The most significant part of the surface (13) is displayed in

Fig. 10 by computing its cross -sections a = constant and x = constant.

The latter are straight lines with slope &x2. The former are guartics

with inflexions whose locus, for successive a-values , is also shown on

Fig. 10. This locus has the parabolic projection (15) on the x, a

plane, separat ing 0
x2 

(for each a) from 0xl and

The induced domain boundaries in the u, a plane calculated above lie on

the familiar cusped curve

4a 3 + 27u2 0 (16)

(b ecause the calculat ion def ining them is equivalent to eliminating x

from aV/ax = ~
2V/3x2 - 0 for V - ~~ + 4ax 2 - ux , i.e. it is equivalent

to calculating the bifurcat ion set for the cusp catastrophe.)

The composite Legendre transform

W — W(u, a) • (19)

is a surface in three dimensions when both the active variable u and

the passive variable a are allowed to vary . This is computed from (16)

for a > 0. and from (17) for a < 0, and its most signif icant part is

displayed in Fig. 11 via its successive cross-sections a constant.

Hidden portions are indicated by broken lines. To obtain the best display

in the Figs. 10 and 11 it was necessary to use rather different viewpoints

—15—
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20

Pig. 10. Surface X • x~ +~~~ax2 and locus of inflexions.



and a-ranges. The key point is that cross-sections of Figs. 10 arid 11

with each given plane a = constant are Legendre transForms of each other ,

and the pictures show how these transforms vary with the passive variable a.

It is evident that Fig. 11 is of the same qualitative type a~ the b!furca-

tion set for the swallowtail catastrophe . As a decreases through the

origin, the surface retains its single-valued character only outside the

cusped curve (18), while within it (i.e. over the domain

27u 2 < -4a~ , a < 0) the surface (19) becomes triple-valued . The middle

concave branches in Figs. 10 and II map into each other . So do the

outer left and right convex branches respectively, but with overlap over

the central cusp-shaped domain.

The local shape of (19) near the cusp point u = a = = 0 itself is

hidden in Fig. 11. This is displayed in Fig. 12 by removing the right-

hand halves u > 0 of the upper two branches of the surface, and using a

slightly different viewpoint. Not only is the cusp-shaped boundary of

the middle branch (having projection (18)) more clearly seen ; but the

cusped nature of the vertical section

W = W ( 0 ,  a)

is also revealed . The latter is where the intersection of the two upper

branches meets the a-axis u = W = 0, which lies in the lower branch.

Analytically this vertical section through the plane of syriwnetry is the

parabol ic cusp

10 -~~~< a < ~~

W - 
~-e[x(0, 

a)]2 (20)

-~~~< a � O ,

— 1 7 —



:~
W

I

Fig. 11. Legendre transform W - W( u, a) of Fig. 10.
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0

just by putting u = 0 in (14) and (16). This is exactly the type of

cusp which appears in the bifurcation set for the swallowtail (see

Thom, 1975, p.65).

In fact these findings can be sumed up by the remark that if one b€gins

with (13) (Fig. 10) and computes its composite Legendre transform (19)

with passive a, this surface displayed in Fig. 11 is exactly the same

as the bifurcat ion set of another pot ent ial which is the swallowtail

catastrophe unfolding

a, U, W ) = ~~~~~~~ + ~~~~~ - A 3u~
2 + 4A~W~ (21 )

for anot her behav iour variabl e ~ Ax, where A ~ 0 is any scale

factor. The reason is that the two calculations are equivalent as can

be seen directly or from (34) and (35) below . Two of the controls in

(21 )- are the original u and a in (8) (for n = 3 with b = 0 so

that (9) => (14)), while the third control W is the Legendre transform

W generated by the partial unfolding (13) of the cusp catastrophe.

We investigate the shape of Fig. II a little more closely. Every branch

IJi(u; a) of (19) has gradients aU~/3u = x and = - 
~x
2. Every

branch of the solut ion x(u , a) of the cubic (14) has the properties

ax/au • I/(3x2 + a) and ax/aa = -x/(3x2 + a). Therefore each branch of

(19) has second derivatIves

a2u a2u a2u 2I I i x i x
3xZ + a ‘ auaa 

- 

3xZ + a ‘ 3x1 + ~ 
(2J

and so the 2 x 2 determinant

a2U
= 0  (23)a(u, a)

—1 9—



w

~0

0

~~~~~~ 4
0

U 

0
a

Fig. 12. Half u > Qof upper branches removed from Fig. 11.
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on every branch. Formulae (22) are directly expressed in terms of the

inside or outside of the locus of inflexions on Fig. 10. It follows

that the upper two branches of Fig. 11 are strictly convex in u and

a separately, but only weakly jointly convex in them (this applies in

particular where the upper branches merge in a 0). The lower middle

branch U
2
(u; a > 0) is strictly concave in both variables separately,

but only weakly jointly concave in them.

It also follows from (23) that through every potnt of the surface of

Fig. II , there is a curve in the surface along which the Gaussian curva-

ture is zero. The local direction of the projection of this curve onto

the u, a base plane is given by the eigenvector associated with the

zero eigenvalue of (23), namely du/da = x = aU1
/aa. In other words

it is given (from (14)) by the solution of

(dul ~ du

~ J + e~~~- u = O

appropriate to the considered branch. In fact each plane section

x = constant of Fig. 10 maps Into a plane section u = ax + x3 of Fig. 11.

This satIsfies the differential equation and so the desired projection is

a straight line. As x is altered parametric~illy these lines envelop

the cusped domain bo :ndary (18). and their points of tangency with that

envelope correspond to where the straight sections x = constant in rig. 10

cross the locus of inflexions there. The curves along which the Gaussian

curvature of Fig. 11 is zero are therefore actually straight lines in

three dimensions:

a 3 i  a
U X  W~~~~~ X 2/x2 

(24)

— 2 1 —



for each fixed x. The surface (19) in Fig. 11 could therefore have

been displayed alternatively entirely as a ruled surface in terms of

these straight lines, which transfer from an upper to the lower branch of

the surface at their tangency points with the ‘edge of regression ’

W - - 
~~~~ u -2x3, a — -3x2. (25)

The latter is displayed in Fig. 11 as the boundary between the lower and

upper branches of the Legendre transform. It is the mapping of the locus

of inflexions of Fig. 10.

Fig. 13 displays (part of) Fig. 11 as a ruled surface , generated from

successive straight lines (24) by altering the parameter x. In order

that the picture should not be self-obscuring, we have selected only a

limited set of x-values between 0 and 2.5k = 1.58, and plotted the

l:~nes from the  same viewpoint and in the same ‘box ’ as in Fig. 12. The

l ines envelop the edge of regression (25) and touch it at a-values

0, -0.15. -0.5 , -1, -1.5 . —3 , -4.5 , -7.5. FIg. 13 therefore shows how

the Legendre transform maps certain straight-line sections x = constant

of Fig. 10, in the range U � x S 1.58, into straight line sections of

Fig. 11.

—2 2—
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U

10

x = 2.5 k

N~==1.5~1
~~~~~— \ I /“\o.333~ .

1 J / ~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0

0

-

~~ 0
•

~.

Fig. 13 Ruled surface segment of Legendre transform Fig. 11
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4. A ladder ~or the cuspoids

The results from the two examples of §3 can be presented as the chain of

connections illustrated in Fig. 14. This expresses the hierarchy of

Swallowtail catastrophe potential

Bifurcation 
~~

t
~~

0f ~wa1 lowtai 1

Legendre transform of partial cusp

Partial cusp potential

Cusp catastrophe potential

- 

Bifurcation set of cusp cata~tro~h

Legendre transform of partial fold

Partial fold potential

Fold catastrophe potential

Fig. 14 A ladder for the cuspoids

elementary catastrophes in a way different from any that I have seen befor~:.

On the right in Fig. 14 are surfaces entirely in control spaces, while on

the left one behaviour variable also appears in each potential. For

-24—



example, from a cusp catastrophe potential (12) we can pass down the

ladder to the fold potential V = ~x
3 - ux, or (after  alter ing the nota ti~~

to identify the first two terms of (12) with (13)) up the ladder to a

swallowtail potential. Each of the bifurcation sets may also be associ-

ated with many behaviour variables in the sense of the general qualitative

equivalence theorem of catastrophe theory .

To give a general proof that the ladder of Fig. 14 can be extended up

any nurr~er steps, it is convenient to rewrite the potential (8) as

V (~ ; a , a~) = 
I ~n+1 

~~r~i 
-~- a~~~. (26)

The subscript n is attached to V for emphasis, and when a = 0 we

may call Vn the nth cuspoid potential (cf. Woodcock and Poston 1974).

The fol d V
2 

= .~~3 + a
1E is the second cuspoid after the trivial SF 2.

The bifurcation set of (26) is the surface in the ar
_Parameter space

obtained by eliminating ~ from av~/a~ 0 and a2Vn
/
~~

2 = 0. i.e.

from

+ a ~r-1 =

r=1 
r

ai~d

~~~~~~~ + ) (r - 1)a
r~
”2 - 0.

r= 2

Eliminating a2 
from the first of these, and rewriting the resulting

equations in reverse order, gives

—2 5—



-a
2 

— + 

r-3 
- 1)a

rF;
r_2

, (27)

a1 = (n - j)~~~ + 
~~ (r - 2)a~~~~

1
. (28)

r= 3

Thus the bifurcation set is found in principle by eliminating ~ between

these two equations.

On the other hand , if we begin with the potential V~~1 of degree one

less than (26). and write it in the form

Vn_ i (XJ b~_1. .... b1) - ~-x’~ + .1 b X r, (29)
r= I

its ‘equilibrium equation ’ avn .l/ax = U can be expressed as the starting

point

ax
b1 ax (30

of a Legendre transformat ion generated by

n-I
X(x; b~_1~ .. . ,  b2

) - .ix~ + ~ .
~~~ b x

Z’. (31)
r=2

Then (30 ) is

-b1 - x~~
1 

+ 

n-I 
brx”

~~ 
(32)

r-2

The Legendre transform W(-b
1
j b 1, . . . ,  b

2
) itself is obtained by

Inserting the successive branches of the solutions x of (32) into

W - -b1x - X. By (31) and (32) this has the values of

- ~ + 

n-I 

~ 
lIbrxr. (33)

r-2

-2 6—



The Legendre transform is t hus obta inab le in principle by el iminat ing x

between (32) and (33).

The pair of equations (27) and (28) can be identified precisely with

the pair of equations (32) and (33) if we introduce an arbitrary non-zero

scale factor A such that

~~= A x  (34)

and then match the coefficients according to the formulae

a = flAnW, a - flAn r b , I S r S n - 1. (35)I r+1 r r

This establishes the desired g~~era1 theorem: that the bifurcation set

obtained in the n-dimensional a
r
_space from (26) is the same as the

Legendre transform

W - W(-b
1
j b~_1.. . . .,  b~) (36)

generated with active x from (31) in the n-dimensional space spanned by

W and the b
ra provided only that the trivial scaling (35) is applied

to the n axes.

In particular the result holds for the cuspoid potentials in which

• 0 in (26) and bn_ j • 0 In (29). Woodcock and Poston (1974) have

computed the bifurcation sets for all the first seven cuspoids (I.e. up

to n - 7 in (26) with a = 0). in terms of var ious ruled surface

projections parametrized by ~ • constant . The same pictures are therefore

imediately available as explicit illustrations of the multi-valued

Legendre transform (36) generated from (31).

—2 7—



5. A mechanical interpretation

The general theorem, or the ladder of Fig. 14, can be interpreted as

setting up a certain sequence of correspondences between different

conservative systems .

For example, the two-bar frame analysed by Koiter (1966), or the spring

model examined by Budiansky (1974), have a total potential energy of

the type

1 3 ~ 2V2 =~~.x ~~~b2x 
+ b1x

where x is buckling deflection , b
2 is applied load and b1 is

imperfection. The bifurcation set of this model is the relation between

imperfection and buckling load

b1 ~~2 
(37)

This is a parabola in b1, b2-space displaying imperfection-sensitivity

of the type first analysed by Koiter (1945) - i.e. a small (second-order)

change in imperfection permits a large (f irst order) decrease in buckl ing

load.

Stepping first to the bottom step of the ladder (not shown in Fig. 14. but

see Sewell 1976, p. 169) (37) is also the relation between a weight

suspended in equilibrium from a Hookean spring, and the comp lementary

energy b1 of the spring. For when the extension 0f the spring is x ,

the total normalized potential energy of the system is

v - ~x 2 - .1b x ,
I

—28—



Its internal energy is .~.x
2, and the Legendre transform of this is the

complementary energy having the value 
~
‘
~2 

in equilibrium.

Now stepping up the ladder from the fold-type potential V2. we can

regard its ‘partial form ’ + ~b2x
2 as th e potent ial energy of the

perfect version of the stated structure. The Legendre transform of this.

is the complementary energy W of the perfect version. The values of

this when the imperfect structure is in equilibrium have the same

dependence

W = •
~
[- 

~~2 
± 
[~~2 

- b
1)~] 

+ 

~~2[ ~~2 
± 
(~

‘2 
- b

1)~]

(38)

as does the bifurc ation set of t he new quart ic struct ure

— 
V4 ~~~ + .

~p x
3 + .~ô1x

2 • 3Wx .

This fact can be read off from (26) and (35) with n = 3 and A = I.

Geometrical nonlinearities frequently induce quartic potentials in engin-

eering structure s, and if we change the origin of the behaviour variable

here by writing x = y - b
2 we convert this potential into

V4 - 
- }J2[~~2

2 - b
1] 

+ y~~b2~ 
- 
~b1b2 

+ 3W] + constant.

By comparison with similar expressions given by Sewell (1976) for compressed

struts and shallow arches, we can identify the coefficients here with

geomet ry variab les , loads and imperfections whose buckling values are

related by (38).

—2 9 —



By constructing the Legendre transform of the internal energy (or of

the ‘perfect’ energy) of such quart ic structures with linear terms

omitted, we can arrive at the bifurcat ion set of another structure with

swallowtail potential, and so on.
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