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PREFACE

Rand has been investigating fluid mechanical bases for the design
of low-drag submersible vehicles, under the sponsorship of the Tacti-
cal Technology Office of the Defense Advanced Research Projects Agency.
The impact of fluid mechanics on hydrodynamic design is most critical
in the characterization of the location and properties of the transi-
tion region between laminar and turbulent flow. A semiempirical
method, generally known as the "e9" method of transition prediction,
is widely used as a guide to the effect of body shape, pressure dis-
tribution, surface mass transfer, and heating. This report reviews
the method and the advances in both linear and nonlinear hydrodynamic
stability theory that have occurred in the 20-year interval since

9"

first publication of the "e " method. Ultimately, it is hoped that

these advances could further refine the ability both to predict and

to control boundary-layer transition. The report should be useful to
hydrodynamicists, designers of submersibles, and others engaged in the
application of fluid mechanics to the improvement of underwater vehicle

performance. Related Rand reports include:

R-1752-ARPA/ONR -- Low-Speed Boundary-Layer Transition Workshop,
W. S. King, June 1975.

R-1789-ARPA -- Controlling the Separation of Laminar Boundary
Layers in Water: Heating and Suction,
J. Aroesty and S. A. Berger, September 1975.

R-1863-ARPA -- The Effect of Wall Temperature and Suction on
Laminar Boundary-Layer Stability, W. S. King,
April 1976.

R-1866-ARPA -- Hydrodynamic Considerations in the Desiin of
Small Submergible Vehicles (U), C. Gazley, Jr.,
J. Aroesty, W. S. King, E. R. Van Driest,
April 1976 (Confidential).

R-1907-ARPA -- Buoyancy Cross-Flow Effecte on the Boundary Layer
of a Heated Horizontal Cylinder, L. S. Yao
and Ivan Catton, April 1976.




e

R-1966-ARPA -- The Buoyancy and Variable Viscosity Effects on a
Water Laminar Boundary Layer Along a Heated
Longitudinal Horizontal Cylinder, L. S. Yao
and I. Catton (in process).




SUMMARY

Successful low-drag design employs methods of boundary-layer con-
trol to delay the transition of unstable laminar boundary layers. How-
ever, there is not yet a suitable comprehensive theory to guide predic-
tion and control of boundary-layer transition for low-drag hydrodynamics.

Our survey suggests that such a comprehensive theory must be
substantially different from the current nonlinear stability theories.
This is because nonlinear theory can represent the late stage of the
transition process only if disturbance levels are large enough to
trigger transition near the first onset of laminar instability. This
requirement is completely at odds with the customary low-drag design,
where boundary-layer control is used to delay the transition of an
unstable boundary layer, where there are great distances between the
first laminar instabilities and transition, and where considerable
effort is made to reduce disturbance effects.

New and less formal nonlinear theories which combine the growth
rates and frequency dependence of the two-dimensional Tollmien-
Schlichting waves (which are the basis of the nedn method) and the
three-dimensional nonlinear processes of current stability theory
could ultimately lead to improvements in the understanding and manip-
ulation of the transition process in low-drag hydrodynamics, and to
the inclusion of disturbance effects. Until such methods are devel-

" 99"

oped, the or similar empirically based methods must be relied on

for design and analysis.

Unfortunately, the "eg"

method cannot elucidate the sensitivity
of boundary-~layer transition to small disturbances such as surface
roughness, vibration, or freestream turbulence. This must be dealt
with using even more intuitive ad hoc procedures than the original

"e9" method itself, until a more comprehensive theory is developed.
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I. INTRODUCTION

Low-drag submersible design is a creative engineering art form
which is becoming a science. The principal area of creativity is the
selection of appropriate criteria for locating the transition from
laminar to turbulent boundary-layer flow. Ideally, these criteria
reflect the impact of body shape, pressure gradient, wall heating,
suction, propulsion, freestream disturbances, vibration, surface
finish, acceleration, suspended particulates, and noise on boundary-
layer transition.

Laminar flow over the forward region of a low-drag body is well
understood, and its characteristics can be predicted almost routinely
using computerized versions of the equations of motion. These are
based on classic, systematic approximations to the Navier-Stokes
equations which govern the dynamic behavior of real viscous fluids
such as water or air. Turbulent flow characteristics over the aft end
of such vehicles can also be predicted, using computer programs whici
are more empirically based but which are still consistent with simi-
larity laws and considerations of mass, momentum, and energy balance.

The transition region is more problematic: no complete theory
analogous to laminar flow is available and the experimental measure-
ments are not so complete as in the turbulent case. For this reason,
then, a combination of theory and empiricism is the basis for the best
transition prediction.(l)

The "e9" method currently appears to be the best combination of
theory and empiricism for correlating and predicting the effects of
body shape, pressure distribution, wall heating, and suction for
hydrodynamic flows. Extensions of this method and the linear theory
on which it is based include the effects of freestream turbulence,
wall roughness, and noise on boundary-layer transition.

9"

Because the "e ' method is based on stability theory, because its

predictions of instability growth rates and 'critical" frequencies
have been verified experimentally, and because of the importance of

the Tollmien-Schlichting instability wave growth in low-drag
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applications, the method is taken more seriously by fluid mechanicians
than when it was originally suggested by Smith and Van Ingen. While
fundamental questions are still open about the process of transition,
the "eg” method and its relationships to both linear and nonlinear
stability theory deserve study. This report explores some of these
relationships by surveying the relevant assumptions and features of
classic hydrodynamic stability theory and the newer work on nonlinear
stability. The intention is to review the current status of the non-
linear theory, in order to assess its capacity for improving, eluci-
dating, or supplanting the "eg" method as the touchstone of current

low-drag hydrodynamics.



II. HYDRODYNAMIC STABILITY THEORY

A.__ LINEAR THEORY

In this section, the mathematical development of the classical
linear theory is outlined.

Consider an incompressible, steady, two-dimensional laminar
boundary layer on a planar body which is not so strongly curved that
centrifugal forces are unimportant. We wish to investigate the response
of the boundary layer to an infinitesimal disturbance. To this end
we first write down the Navier-Stokes equations for unsteady two-

*
dimensional incompressible flow

v é = 0 (continuity)

(1)
iq 1 2
p > > >
i% +(q-V)q-=- % Vp + v V7q (momentum)
where q = (u, v), u and v being the x and y components of velocity,
p is the pressure, ¢ is the density, v is the kinematic viscosity
(v = y/p). The x-axis is chosen to lie in the direction of the free-

stream velocity and the y-axis normal to the body.
To analyze the response to an infinitesimal disturbance, we now
write each flow quantity as the sum of a mean steady flow quantity

and a small fluctuation term

There is no a priori reason to assume that the disturbances are
two-dimensional, and in fact they would not generally be so under
experimental conditions. One can readily carry out the analysis for
three-dimensional disturbances. However, there exists a transformation
which reduces the three-dimensional equations for a sinusoidal dis-
turbance to two-dimensional equations. One can then show the flow is
more stable to three-dimensional disturbances than to two-dimensional
(Squire's Theorem), so the stability analysis can concentrate on the
two-dimensional case. (However, see the footnote on p. 7 where it is
pointed out that this theorem is valid only for waves that grow in
time.) This argument should not be taken to suggest that three-
dimensional effects are unimportant for transition to turbulence of
two-dimensional boundary lavers. 1In fact, as we shall discuss later,
in the latter stages of the transition process, three-dimensional
effects play a crucial role.
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a(r,0) = () + q'(7,0)
(2)
> > >
plr,t) = F(r) & p"(x,t)
where |q'| << lﬁ], |p'] << |P] and U = (U, V) and P are solutions of

the steady, two-dimensional boundary-layer equations. If we substi-
tute these expressions into the Navier-Stokes equations above and drop
all quadratic terms in the disturbance quantities, the resulting equa-
tions can be decomposed into one set consisting of zero-order terms

only and one set consisting of first-order terms

oy Y
yU aU 1 OP 32U
oy S SRSl Ll
4 IX dy p 9x Y 3 2 )
ay
14)P
0==-=—-—=
p dy
du' v' _
ax " 3y g
du' ELY) Ju' ou du' -1 3p' 32u' '2u'
el T | e A L Y (4)
at 3x ax y Ay p 93X ax2 ayZ

2 %
Ayt ' ' s ’ i '
AR R R G S T e B R L g W
at Ix Ix Ay dy 1o}

Alternatively, these equations could have been obtained by defining an
appropriate mean, denoted by an overbar, and assuming 5 = ﬁ, u' = 0,
p =P, p' = 0. Substitution of expressions (2) into the Navier-Stokes
equations and then taking the mean yields Eqs. (3); subtraction of
Eqs. (3) from the original equations, after neglect of the quadratically
small terms, then yields Eqs. (4).

The balance among inertial, pressure, and viscous forces is required

for the fluctuation quantities. The dominant convective terms in the
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momentum equations are estimated on the basis of the usual boundary-
layer ordering of the mean flow terms, V << U, 3/3y >> 3/3x; the
fluctuation velocities, u' and v', are assumed to be equal to each
other in magnitude, and their derivatives are also comparable. The
length scale for variation in fluctuation velocities is a wavelength,
which is roughly of the order of §, the thickness of the layer.
Finally, we assume that the mean flow quantities do not change signi-
ficantly over a wavelength of the disturbance. We can then consider
U(x,y) to be a function of y alone; i.e., U = U(y). Under this set of

assumptions, the equations for the fluctuation quantities simplify to

+ 2
9x ay 9
du' ou' L 2 15
S + U = + v 5T G 0 + v V" u (5)
kP T R, s
ot + U g o By + v Vv

The implication of the assumption U = U(y) is that stability at
a particular x is determined by local conditions at that station
independent of all others. This assumption is obviously exact for
any truly parallel flow, such as in a channel, but only an approxima-
tion for other flows, such as boundary layers wﬁich generally grow
with streamwise distance. There has been a great deal of recent
interest centered on this point. Solutions for nonparallel effects
have been obtained through straight-forward perturbations, iteration,
and the method of multiple scales by, most prominently, Ling and

(2) (3,4) (5,6) (7)

Reynolds, Bouthier, Nayfeh and Saric, and Gaster.

For boundary layers with pressure gradient, the most extensive calcula-

(8)

tions of nonparallel effects are those of Wazzan et al. for Falkner-
Skan flows. They found these effects to be negligible when £, the
Falkner-Skan pressure gradient parameter, was greater than 0.4. Non-
parallel terms were most important for negative R, cases for which

the minimum critical Reynolds number is small and the parallel flow

assumption breaks down. In general, nonparallel effects can be
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expected to be relatively unimportant at large Reynolds numbers. At
lower Reynolds numbers such effects may have to be taken into account.
(For example, see the recent work of Strazisar et al.(q) for a heated
flat plate in water, where it was necessary to include these non-
parallel effects in comparing experimental results with theory, because
of the proximity to the minimum critical Reynolds number.) The remain-
der of this discussion will be limited to high Reynolds number flows
making the parallel flow assumption.

For boundary-layer flow the appropriate boundary conditions are

(6)

u', v'! > 0asy > =

Since the coefficients in Eqs. (5) are independent of x and t
and the equations are linear, the solution can be obtained most
readily by taking a Fourier transform in x and Laplace transform in
t. This procedure then says that the behavior of the solution is

characterized by the normal mode representation

u' d(y)
V' = 0(y) ei((lx = (L)t) (7)
p' p(y)

where a is the wave number in the x direction (= 2n/)\, where A is the
wavelength) and w is the frequency. Either or both a and w can be
complex, and correspondingly so are the amplitude functions d(y), 9(y),
and f(y). The classical approach has been to assume a is real and w
complex, in which case the imaginary part of w determines whether
disturbances grow or decay in time; hence this is referred to as the
temporal approach. In the spatial approach w is assumed real and

a complex, so the imaginary part of a determines whether disturbances
grow or decay with increasing x. Under appropriate conditions, the

temporal and spatial amplification rates are related by the group




velocity of a packet of waves of the form (7) (see Gaster(lo)

). Since
the spatial theory corresponds more closely to the usual physical situ-
ation and seems, at least at present, to lead to the best correlations
with transition Reynolds number, the remainder of this discussion will
be limited to spatial theory.*

Writing a = a + i“i where the subscripts r and i denote the real
and imaginary parts, respectively, and assuming w is real, a typical

disturbance quantity, say u', can be written

: -agx i(arx - wt)
u' = u(y) e e (8)

where w is assumed real. Thus for

a, > 0, disturbances are damped

=
I

g 0, disturbances neither grow nor
decay ('"'meutral" disturbances)

(9)

@
5

0, disturbances are amplified

The set of disturbance equations (5) can be reduced to a single
equation for v' by cross-differentiating the x and y momentum equa-
tions to eliminate p' and then using the continuity equation to
eliminate u'. This then leads to the following linear fourth-order

equation for ¢(y)(= v'/a)

(U - ¢c) (9" - n2®) - U"¢ = Eié‘ (™" - Zuzt" + rbt) (10)
A

where ¢ = w/a and R(”s = U 6/v, where U( is the velocity at the edge
@ ]

*Unfortunately. Squire's theorem that three-dimensional! disturb-
ances are more stable than two-dimensional ones only holds for tempo-
rally growing disturbances. At present, the question whether three-
dimensional spatially growing disturbances are more stable or not
than two-dimensional ones cannot generally be answered and must be
considered separately for each case. (11)



of the boundary layer and & is the boundary-layer thickness. (Prior
to carrying out this derivation, all variables have been nondimension-
alized in terms of Ue and §.)

Equation (10) is the Orr-Sommerfeld equation. The boundary

conditions are

$(0) = 4'(0) =0
(11)
¢(y), ¢'(y) >0 as y > o

The Orr-Sommerfeld equation plus boundary conditions describe the
self-excited or free oscillations within a linear dispersive, dissipa-
tive system. It is an eigenvalue problem and will only have solutions

if a secular equation of the form
F(a, Re, c) =0 (12)
is satisfied. Since ¢ = w/a = m/(ar + iai), Eq. (12) can be written
F(a, Re, w) =0 (13)

Since Re6 and w are real and a complex, taking the real and imaginary
parts of this equation yields two equations which can be combined to
yield

Fl(ur, Res, w) =0 (14a)

FZ(ai' Rey, w) =0 (14b)

For a given Reé and w, Eq. (l4a) yields the wave number of the dis-
turbance, a.. Setting a, = 0 in Eq. (14b) yields the expression
F2(0, Reé, w) = 0, which defines the neutral stability curve in the
Re5 - w plane. Setting @, = constant yields curves of constant

amplification in this plane. Because Eq. (14a) uniquely defines a




in terms of Re, and w, these curves can equally well be plotted in a

S

Re6 = plane.
Thus far the analysis has been presented for an isothermal,
constant-density fluid flow, and modification of the above formulation

is required to consider the stability of water boundary layers with
heat transfer. Taking temperature to be the only state variable, and
assuming viscosity is a function of temperature alone, with all other
fluid properties constant (a good assumption for water boundary layers

(12) have shown

with heat transfer at moderate pressures), Wazzan et al.
that the stability of water boundary layers with heat transfer can be
adequately treated by the Orr-Sommerfeld equation, Eq. (10), modified
to include terms that arise from the variation of viscosity with
temperature.

According to Eq. (8), the amplification of a typical disturbance

u' between the points X and X] = X + Ax is given by

u! -a,Ax

;% = e & (15)

0

If the flow were truly parallel then ai = const. and the amount of
amplification between two points X and x, a finite distance apart
would be simply

-ai(xl - xo)

e

Since our interest is in boundary layers where the flow is nearly

parallel, we write instead

X1
-/ ui(x)dx
u! X
il =e O (16)

*
The eigenfunctions associated with these eigenvalues correspond
to the Tollmien-Schlichting instability waves.
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since a in such cases will depend on x. This is not exact and is
only an ansatz. Confirmation, for the case of the flat plate, is
presented by Ross, Barnes, Burns, and Ross.(13) According to Egs.(7),
the amplification is the same for each disturbance quantity, and if

denoted by A can be written as

X1 o«
-4 (a; §/Rey) U /v dx
i ) e
A(x,, x,) = e 9 (17)
2ol
in nondimensional terms. (We note in passing that A-] dA/dx = -a,.)

i
The traditional approach in laminar stability theory via the

Orr-Sommerfeld equation has been to emphasize the calculation of the
neutral stability curve, and from this the minimum critical Reynolds
number, i.e., the lowest Reynolds number at which any disturbance
begins to be amplified. Implicit in this approach is that present in
any laminar flow is a continuous spectrum of small disturbances cover-
ing the whole frequency or wave-number range, so the Reynolds number
for which the first of these disturbances becomes unstable determines
the stability characteristics of the flow. Only recently has it become
apparent that this minimum critical Reynolds number is not very impor-
tant in determining the onset of turbulence, particularly when it is
desired to delay transition. Since transition occurs, experimentally,
only after disturbances have reached a finite magnitude, the total
amplification of infinitesimal disturbances and how they vary with
disturbance frequency is more important. For truly parallel flows
this matter is less delicate, since all of the parameters of the flow
are independent of streamwise distance and therefore the curves repre-
senting the solution of Eq. (14b), Fz(ai. Reé, w) = 0, for various
values of a, = const. immediately give the constant growth rate of a

i
distance of frequency w. For nearly parallel flows, however, R96
changes with x and so does the U(y) which appears in the Orr-Sommerfeld
equation. In such cases, the spatial growth of a disturbance of a

fixed frequency w requires that a series of stability plots of Eq. (14b)




i
be made corresponding to increasing x and that the quantity Eq. (16)

or (17) be calculated for increasing x. The significance of the
minimum critical Reynolds number becomes more subtle; it could become
a surrogate for the amplification characteristics of the boundary
layer at the particular station x. (An illustration is given by

(]A)) The calculation of Eq. (16) or Eq. (17) must be

Van Ingen.
carried out for all frequencies using the same set of stability plots
and beginning at some appropriate initial point Xg* This is done for
increasingly larger values of x. At any such x there will generally
be one frequency of disturbance that has been most amplified in its
passage from X0 to x; in some sense this frequency may be looked upon
as being the most dangerous one. When this procedure was carried out
for a number of two-dimensional and axisymmetric boundary-layer flows,

it was found (by A. M. O. Smith(]s) (16)

and Van Ingen ) that the
experimentally determined position of transition was located near the
point where the right-hand side of Eq. (16) or Eq. (17), the total
amplification, first attained the value 99 for any frequency. This
correlation led tc the formulation of the so-called "eg" rule for

the prediction of transition. According to this rule, transition
occurs at that point of the body where any disturbance of arbitrary
constant frequency first attains a total amplification factor of 09.

n Ny

The idea is generalized to the "e method.

What explanation is there for the widely acknowledged success
of the "09" rule? In particular, why should a rule based on the total
amplification of two-dimensional disturbances work so well in predict-
ing transition when the latter stages of transition are known to be

so profoundly affected by three-dimensional effects (e.g., the forma-

tion of "spikes" and turbulent "spots" and their growth and coalescence).

Further, what justification is there for using linear stability theory
up to an amplification factor of 8100 (=~ eg). when any practical free-
stream disturbance (of the order of 0.1 percent or larger) multiplied

by this factor would, at least formally, violate the assumption of

small disturbances, basic to the linear theory.
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Logical justification for the use of a maximum amplification

(17)

criterion may be found in the suggestion of Liepmann that transi-
tion occurs at the point where the Reynolds stress first reaches the
magnitude of the laminar shear. If one calculates the Reynolds stress
from the solutions of the Orr-Sommerfeld equation, then the ratio of
these two stresses contains the amplification factor. Unfortunately,
it also contains a quantity representing the initial disturbance level.
And this deficiency seems to undermine any attempt to develop a
rational basis for the "eg" rule at this time, namely, transition
appears to require the attainment of some absolute level of disturb-
ance, and this can be calculated from an amplification factor only if
the initial disturbance level and its spectral distribution are known.
As regards the level of ultimate disturbance due to an amplifica-
tion factor of 99, we note that although the freestream disturbance
level in a modern wind tunnel may be of the order of 0.1 percent,
this figure represents the spectrally integrated level. Since much
of this disturbance energy is damped out or becomes irrelevant in the
filtering Tollmien-Schlichting mechanism, the internalized narrow-
band fundamental Tollmien-Schlichting mode may have an initial dis-
turbance maximum at least a hundred times smaller, of the order of
0.001 percent or less at the x corresponding to the location of the
(18)). This may
be even further diminished by the weak coupling that seems to exist

minimum critical Reynolds number, RC (Obremski et al.

between the freestream and the boundary layer as regards the recep-
tivity of the latter to freestream disturbances (Mack, private communi-
cation, quotes factors of 103 or so between freestream and internal

disturbances). According to Klebanoff et al.,(lg)

the linear theory
ceases to be valid (for a flat plate) when the disturbance reaches a
level of 1 to 1.5 percent of Ue. Thus, a total amplification factor
of the order of 1000, or even more, between the beginning of amplifi-
cation and the onset of nonlinearity would not be surprising. Since
the first appearance of turbulent spots, the beginning of the true
transition region, occurs for a flat plate at disturbance levels of

the order of 12 to 20 percent, only an additional amplification of
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the order of 10 to 15 percent beyond the onset of nonlinearity must
be incurred by the three-dimensional, nonlinear, and other mechanisms
(Obremski et al.(la)). If this flat-plate data is typical, the stream-
wise extent of linear amplification covers about 75 to 85 percent of
the distance to the beginning of transition, and a total amplification
factor of eg(w 8100) would appear to be of the right order of ampli-
fication. Moreover, because of the discrepancy in lengths occupied

by these two domains, errors in estimates of the extent of the non-
linear and/or three-dimensional prebreakdown regimes might be expected
to cause only small errors in estimates of total length to the begin-
ning of transition. On the other hand, these errors plus the differ-
ences due to different levels of initial disturbances in each wind
tunnel or in each free flight test should manifest themselves in
deviations from the factor 99. And in fact, as the data of Jaffe

et al.(ls)

demonstrate, the exponent 9 represents an average value,
whereas for exact correspondence to experimental transition locations
the exponent may be as low as 8 and as high as 12.

With the above objections to the use of linear stability to pre-
dict transition, it is worthwhile investigating the extent to which
the work of the past nearly two decades on nonlinear effects, both
two- and three-dimensional, can shed light on the linear, two-

dimensional "99"

criterion, or perhaps lead to different and more
comprehensive predictions of transition. Before doing so, however,
let us briefly consider a somewhat different approach to the stability

problem, based on global considerations.

B. ENERGY BALANCE
The previous treatment of stability emphasized the behavior of

a single spectral component of the disturbance. We can instead look
at the growth or decay of the total energy of the disturbance. For
incompressible flow, the energy is primarily kinetic. An equation
for this quantity can be obtained from the disturbance equations by
multiplying each momentum equation by the corresponding velocity

disturbance, summing the resulting equations and then integrating




e

across the layer. Doing so, considering only parallel flow with two-
dimensional disturbances periodic in x, and integrating over a wave-

length in x, we obtain (in nondimensional terms)

= M- = N (18)

where

o]
|

—jj/'% r)(u'2 + v'2) dxdy = total energy of disturbance

; g du
Dﬂ'uv dydxdy

=
I

]

energy transfer between mean flow
and disturbance through action of (19)
Reynolds stress

2 G
! y ¥ £ ;
N =/](%‘l = %‘l) dxdy jjc" dxdy = dissipation integral,
; ¥ rate of dissipation of kinetic

energy into heat

Neutral stability occurs when 3E/3t = 0, in which case

N
M= N ¥Gorie =2 (20)

The minimum critical Reynolds number then is given by the minimum of
the ratio N/M with respect to all possible disturbances u', v'. If one
attempts to make use of this expression, as some early investigators
did, by evaluating N and M using simple expressions for u' and v',

one finds minimum critical Reynolds numbers that are gensrally too

low when compared to calculations based on the small perturbation
equations. Presumably, this is a consequence of using disturbance
velocities that are not solutions of the equations of motion. This
procedure, however, will yield sufficient conditions for stability.

Using this approach, Serrin(zo)

found that Re = 5.71 is a universal
minimum critical Reynolds number for arbitrary fluid motion in a

bounded region.




This formulation of the energy method, as embodied in Eq. (18),
is based on the temporal growth of disturbances. In accordance with
the earlier discussion of the linear theory it would seem more appro-
priate to formulate the energy method so as to be able to study the
spatial growth of the total energy of the disturbance. An analysis
of this kind seems not yet to have been carried out.

(21)

Stuart has successfully employed the energy method for finite
disturbances at Reynolds numbers slightly above the minimum critial
Reynolds number. Assuming that the modes calculated from the linear
theory represent a reasonable approximation to the modes for small

but finite amplitudes, he writes

ia(x - ct)

:<
I

aA(t) ¢'(y) e
(21)

v' == - 2ia A(t) ¢(y) eiOt(x L

where ¢(y) is the fundamental harmonic of the linear disturbance, and

¢ is real since the growth of the amplitude is accounted for expli-
citly by the amplitude function A(t). Since the disturbance is finite,
the distortion of the basic mean flow must be taken into account; this

can be represented as
— o 2 o
u = uo(y) + A" Re uy (y, t) (22)

Substitution into the integrated energy equation, Eq. (18), yields
the following nonlinear ordinary differential equation for A(t):

dA 2
- hte, |Al€ A (23)

where €, and ¢, are constants that will be defined later. This has
been generalized by Stewartson, Hocking, Stuart, and Davey in a number
of recent papers. All of this work falls properly under the heading

of nonlinear stability and is discussed further in what follows.
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Below, the various nonlinear theories are classified according to
their principal assumptions or limitations. The major features and

predictions of each are very briefly outlined and summarized.

C. NONLINEAR THEORIES

1. Two-Dimensional Disturbances

a. Landau(gg)-Stuart(21’23)

(24)

-Watson Theory. 1In 1944, Lnndau(2

heuristically derived an equation governing the evolution of the
amplitude of a disturbance starting in the linear regime and extending
into the early nonlinear regime when the disturbances are small (in

2
(21,23) and then Wntsnn(hh)

some sense) but not infinitesimal. Stuart
later presented a formal theory. They assumed that for values of the
Reynolds number just slightly greater than the minimum critical value
Re the perturbation solution was of the form

ia(x - ct)

A d(y) e (24)
where ¢(y) is the eigenfunction corresponding to the (real) wave number
a and (complex) wave speed c¢ calculated from the classical Orr-
Sommerfeld equation at Re = Rec. (This is an important point to which
we shall return later.) That there is a single mode of the torm (24)
is a good approximation in the neighborhood of va, since at this value
of Re only this one mode amplifies. In the classical linear stability
theory, A is an infinitesimal constant. For 0O Re - va $ Le 4t da
assumed that A can be replaced by A(t) and is small but not infinites-
imal. From the Navier-Stokes equations one can show formally that A(t)
satisfies (near « = )

¢

dA

2 P
= A+ klA]® A (25)

= q C
(o

where the subscript ¢ denotes values at va. k is a complex constant

(kr + lki)' and <y is the imaginary part of ¢ and is proportional to

2)
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(Re - R(uv). From Eq. (25) we note that with Re - Re 0, and hence
Eq 2 0, if kr < 0, then lAl does not incrcasr indefinitely, but ap-
proaches a maximum value, proportional to viﬁ. (This behavior of
A(t) leads to the bifurcation theory of Taylor-Couette flow and Bénard
convection.) If, on the other hand, kr > 0, then lA] » ©» at a finite
value of t.

Although the theory is strictly not valid for Re - va 0 (ri 0),
Eq. (25) shows in such cases that if IAIZ is initially sufficiently
small then [A;Z > 0 as t > », whereas if IAIZ is sufficiently large
(- - acci/kr) then A » © as t » ©. This latter feature led Stuart to
formulate the principle of a threshold of instability, according to
which a flow may be stable to infinitesimal disturbances, but unstable
to disturbances which are finite.

(25)

b. Gbrtler and Witting. Mean flow streamlines will be dis-
torted by the disturbances and become at some places convex and at
others concave. Concave streamlines should lead to the formation of
longitudinal vortices in a manner similar to that for a concave surface
(Gortler vortices). It was found experimentally, however, that eddies

(19)

were formed in regions where the streamlines were convex, not concave.

(26)

c. Benney and Bergeron. The inviscid solution of the Orr-
Sommerfeld equation, originally due to Rayleigh, breaks down in the
neighborhood of the critical point, the location at which the disturb-
ance phase velocity is equal to the local flow velocity. The tradi-
tional approach to handling this singular behavior is to carry out a
local analysis using the full Orr-Sommerfeld equation with the viscous
terms included. A possible alternative procedure is to eliminate the
singularity by taking into account the nonlinear terms that were not
included in the Orr-Sommerfeld equation. More precisely, if one
alternatively balances the inviscid terms in the Orr-Sommerfeld equa-
tion with the viscous terms in the equation or with the nonlinear terms
that were dropped, it is found that there are two possible boundary

£/ 1/2

scales: y - - 0 (v ) and y - 0 (e ), where v is the

kinematic viscosity, and ¢ is a measure of the magnitude of the non-

cl/z << vl/3, the critical layer is dominated by

viscous effects, whereas if el/z >> v1/3

linear terms. If

, nonlinear effects are
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dominant. In the critical layer, the streamlines are found to have
the so-called cat's eye configuration. Unfurtunﬁtvly, it is not c¢lear
from the analysis whether the off-neutral solutions are stable or
unstable. Unlike the viscous critical layer solution, no phase change
occurs across the nonlinear critical layer. Also there is no critical
Reynolds number associated with the initiation of waves; it is only
necessary that the Reynolds number be large and the disturbance ampli-
tude sufficiently large. A new class of large wave number disturbances
is found that do not occur in the classical Orr-Sommerfeld viscous
theory. For this new family of disturbances the critical layer is
located far from the boundary, with wave speeds close to freestream

velocity. The possibility is raised that this is a possible mechanism

for freestream disturbances to enter the boundary layer. Stewartson, 2
in a masterful review of stability theory, suggests that the theory is
physically unrealizable.

d. Vjﬂpgah}:(zg) The nonlinear wave mechanics of Whithnm,(zq) ¥
with extensions and elaborations by H:l\'(-s.(m) is extended to include '

dissipation for laminar shear flows. Under certain conditions, deter-
mined by the theory, the solutions exhibit breakdown into high frequency
oscillations. It is claimed that this theory explains the main features

of the Klebanoff et “]-(19)

exper iments, such as rapid localized onset,
formation of hairpin vortices and their downstream evolution. In this
theory, three dimensionality plays a secondary role; its principal role
is to establish criticality conditions for the two-dimensional flow.
Stewartson, : again raises serious questions about the assumptions

of the theory.

(31)

¢. Ko, Kubota, and Lees.

An integral analysis for a flat
plate wake is carried out, which includes nonlinear growth of the dis-
turbances, the effect of the Reynolds stress due to these disturbances
on the mean flow, and streamwise variation of mean flow properties.
The analysis essentially extends the Stuart-Watson (C.l.a) theorv to
take account of streamwise variation.

(32)

f. Benney and Maslowe. The Bennev-Bergeron nonlinear critical

Layer theory (see C.l.c above) is extended via the multiple scaling
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technique, to allow, for nonneutral modes, the amplitude of the wave
to evolve slowly in space and time. The amplitude A is shown to obey

the following equation

BE UL BRI g & L B
“[aT + w' (k) BX] - ipw" (k) = ie” yA"A (26)

where w(k) is the dispersion relation,

€ amplitude parameter,

"Landau" constant,

distance and time over which the wave is modulated,

]

Y
u
X ux, T = ut, '"slow" space and time vnriablcs,

* denotes complex conjugate.

Note that if w' (k) (= ¢ , group velocity) is real, then new variables
£ =X - wTand T' = uT fan be introduced, in terms of which the above

equation becomes

: " 52 2 %
N :‘;— 28+ ya%a : ? (27)
9E
similar to the equation obtained by Stewartson and Stuart(33) using

another approach (see Eq. (29) below). Solutions to Eq. (26) can be

obtained by the inverse scattering method.

2. _Three-Dimensional Effects

Although three-dimensional effects were observed experimentally
much earlier by many investigators, it was the measurements of Klebanoff,

(19)

Tidstrom, and Sargent which firmly set theoreticians on the path
towards developing theories encompassing them, and very decidedly
determined the course of nonlinear stability research of the past
decade. By demonstrating that beyond the primary stage, governed by
linearized stability theory, transition is dominated by nonlinear
three-dimensional effects, they firmly established that existing two-

dimensional nonlinear theories were incapable of fully explaining the
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observed phenomena. Among such two-dimensional theories considered
were the generation of higher harmonics, the interaction of the mean
flow and the Reynolds stress (C.l.a. and C.l.e), and concave streamline
curvature associated with the wave motion (C.l.b). The nonlinear range
of boundary-layer instability is associated first with the development
of longitudinal or streamwise vortices, followed by the formation of

high-frequency oscillations or "spikes,'" interpreted as "hairpin"
eddies, leading ultimately to the birth of turbulent bursts or spots.
(Jets and wakes do not exhibit the sudden onset of high-frequency

f luctuations nor the intermittent turbulent bursts, and may in general
be less subject to three-dimensional effects. Thus the Ko, Kubota,
and Lees(zl) analysis (C.l.e) may have a greater range of validity in
such flows than it has for boundary-layer flows.)

We now very briefly discuss the theories developed in response to
the Klebanoff experiments, classified according to the basic approach
taken.

a. Modal Analyses. These analyses are all based on Fourier
decomposition of the disturbance and analysis of individual modes.

(1) _Benney 9_n.d..L_i£L(}f',). Benney, °%%) antar and collins, ©7)

The first paper considered the nonlinear

interaction between a single two-dimensional and a single

three-dimensional disturbance superimposed on a laminar
flow. They found that a mean secondary flow was gener-
ated in the form of longitudinal vortices. Benney
followed up on this work with Lin by obtaining analytic
solutions for shear flow and a linear velocity profile
boundary layer. A major weakness of the theory is that
the wave number in the spanwise direction is arbitrary,
undetermined by the theory. In addition, the wave
speeds of both disturbances are assumed to be the same.
This latter assumption was challenged by Stuart,‘ZB)
who pointed out that for a Blasius boundary layer these
phase speeds could differ by as much as 15 percent.
Relaxation of the assumption was carried out by Antar

37)

and Collins, who found as a result a slow




=0 —

modulation of the secondary flow for Blasius and
Falkner-Skan profiles. At the same time, certain
physically unrealistic features are encountered in
their solution. Whereas the vortices in all of this
work appear in the right places (i.e., corresponding

f‘(19)

to where they were found by Klebanof in the

Antar and Collins work their sense of rotation

periodically reverses! Craik(38) extended the Benney-

Lin(34) analysis in a major way by considering triads
of Tollmien-Schlichting waves, consisting of abtwo—
dimensional wave and two oblique waves propagating at
equal and opposite angles to the flow direction and
such that all three waves have the same phase velocity
in the downstream direction. The analvsis shows that
there can be remarkably powerful resonance interactions,
leading to a rapid transfer of energy from the primary
shear flow to the disturbance, preferentially to the
oblique wave. For a given two-dimensional wave, reso-
nance occurs only for certain oblique waves, suggesting
a possible natural selection process for the oblique
wave of the Benney-Lin theory.

(2) _Greenspan and Benney.(39) The linear stability of time-

(19)

dependent shear flows, of the type Klebanoff found
to exist before the final stages of breakdown, is
analyzed. (Although this is a linear theory, it is
included in this discussion because it begins with the
highly distorted unsteady mean flow profiles found
"beyond the primary (linear) range and thereby attempts
to explain the later (and supposedly nonlinear) stages
of transition.) Violent secondary instabilities are
found to occur (e.g., in one-half period of the primary
oscillation, the energy increases by a factor of 100).
The wavelength corresponding to a maximum amplification

is one-fifth that of the primary wave--a trend in accord




with the experimental evidence that the scales of
motion become smaller in the later stages. Can these
secondary instabilities be considered the "spikes"
observed?

b. localized Point (Three-Dimensional) or Line (Two-Dimensional)

D

turbances and Their Evolution in Space and Time. It is intrinsic

to a modal analysis, based as it is on decomposition into Fourier
modes, that the disturbance grows everywhere at the same rate. This
uniform growth runs counter to the observed localized intense regions
of disturbance in the transition region. The theories in this section
do not follow this approach.

Stewartson, Hocking, Stuqzjjvfygijggggﬂ.(27’33‘ao-4))

The Stuart nonlinear stability analysis (C.l.a) is
extended to the space and time modulation of the dis-
turbance amplitude. First, the long-time behavior of
an infinitesimal disturbance according to the |inear-
ized Navier-Stokes equations is found (by using Fourier

transforms in space and a Laplace transform in time):

1
2 A¢l (z) exp (iuc(x - Cvt)} (for a 3-D disturbance) (28)

. ST
o M
where A « expf = Al
T ; [0' 1 ,'b T
2 2
and ¢« = d (Re - Re ) 1 (d a const., real part of d
Ir ¢ Ir

where ¢l(z) is the eigensolution of the Orr-Sommerfeld
equation at the minimum critical Reynolds number Re
corresponding to wave number @, and phase speed €

(The other quantities are defined below.) FEquation (28)
represents a modulated wave packet, and suggests scales
for a multiple-scale analysis. The amplitude A is found

by this approach to satisfy

)
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2. a. 23, h2 . d~l-~ A+ k|!\|2 A+ q AB (29)

A&z an 1r

where ays b2' dl' d]r‘ k, and q are all constants, B

is related to the pressure and
)
£ =¢e%(x - c t) (¢ = group velocity)
8 &
" " 1
slow
e

ek tan y (spanwise variable)

T = et

(B is governed by another differential equation,
involving A and therefore coupled to Eq. (29).) This
equation governs the slow modulation in space and time
of the disturbance wave packet, Eq. (28). The solu-
tions of Eq. (29) are found to have singularities
(bursts?, "turbulent spots'"?) both for Re - Rec > 0 and
Re - Re. < 0. The most recent work by this group is by

Gl on the asymptotic suction profile; thus

Hocking
far this approach has not been extended to flows with
slowly varying mean properties. Gaster's experiments
(to be published; see also Ref. 46) on centered dis-
turbances in laminar flow confirm the general features

of this approach.

D. FREESTREAM DISTURBANCES AND INITIAL DISTURBANCE AMPLITUDE

To the extent that one accepts as plausible the concept that
hydrodynamic instability and the beginning of transition are asso-
ciated with the attainment of some absolute minimum level of disturb-
ance amplitude, it seems to follow that one must assign a key role to
the Znitial amplitude and spectrum of the disturbance. For most
practical cases of interest the most likely source of this initial

disturbance field is the freestream.
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Early attempts to incorporate freestream disturbance levels into

7)

ad hoc transition criteria were made by Liepmnnn(l and Van Driest

47
(473 As noted above, Benney and Bergeron suggested that

and Blumer.
the additional neutral modes found in their nonlinear critical layer
analysis, for which the phase speed is close to the freestream velo-
city and the critical layer is near the outer edge, may be a possible
mechanism for freestream disturbances to enter the boundary layer.

It seems that neither they nor other investigators have followed up
on this possibility. The forced response of the boundary layer to

disturbances externally imposed at the outer edge has been calculated

by Criminale(as‘bg) k.(SO)
(51,52)

and Mac In the same spirit, Rogler and

Reshotko have studied the interaction between a boundary layer
and a low-intensity array of single wavenumber vortices convected at
the mean freestream velocity. This latter work has consisted of linear
analyses based on the parallel-flow Orr-Sommerfeld equation made
inhomogeneous by the external disturbances.

Mack(53)

the boundary layer and external disturbances in order to account for

employs an empirical nonlinear coupling relation between

experimental results in low-speed flow. Mack uses an amplitude rather
than amplification rate criteria, and finds that the amplification rate
at transition is less than e9 when the freestream turbulence levels are
low, and is greater than e9 when they are high. More recently,
Mnck's(sa) calculations predict that the amplification rate at transi-
tion is e9 for a low-speed flat plate boundary layer when freestream
disturbance levels are .07 percent.

It should be noted that the incorporation of the initial distur-
bance field into an "e"" calculation is plausible only if the initial

amplitude is sufficiently small.

E. DISCUSSION AND CONCLUSIONS

1. Theoretical Shortcomings

No one has yet been able to patch together a comprehensive theory
covering the entire instability-transition regime. It is significant

that almost none of the nonlinear stability analyses compare results




with experimental data--they almost exclusively are presented as quali-
tatively representing the post-primary stages of breakdown. Specifi-
cally, here are some of the weak points of these theories that keep us
from attaining a comprehensive treatment:

1. The initial amplitude of the disturbance and its spectral
distribution within the boundary layer are unknown, in particular as
they are influenced by the external disturbances. This is a problem
for the linear as well as the nonlinear theories, and as Mack(so) points
out will remain a problem even when it becomes possible to solve the
full nonlinear, three-dimensional, time-dependent Navier-Stokes equa-
tions. Without knowledge of the initial disturbances, transition
prediction is always likely to remain a partially ad-hoc or empirical
enterprise.

2. Almost all the nonlinear theories of hydrodynamic stability
are based on the smallness of an amplitude parameter ¢ which is propor-
tional to the difference (Re - Rer), where ReC is the minimum critical
Reynolds number. These theories are valid therefore only for Reynolds
numbers near and slightly greater (or less) thén ReC. This limitation
is inherent in their representation of the growing disturbance as the
mode corresponding to the single unstable wave at Rec, and the assump-
tion that the amplitude of this mode, although not infinitesimal, is
small. They would seem to be invalid then for those wave numbers a
which according to linear theory are most amplified (and therefore
seemingly most implicated in the transition process). For such a
generally first begin to amplify at Re much greater than Rec, and there-
fore whereas this newly growing disturbance mode willge infinitesimal
when this particular Re, say Reo. is reached, all the modes which are
unstable between Rec and Reo will have had time to grow, so that the

disturbances at Reo can be assumed to be neither small nor monochromatic.

2, Impact on Prediction Methodology

Our inquiry into the state of current nonlinear stability theory
has been disappointing. The theory involves difficult mathematics,
and often obscure physics. It can represent interesting features of
late stages of the transition process, provided that disturbance levels

are large enough to trigger transition near the minimum critical
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Reynolds number. Moreover, the theory is not intended for those
important situations in which transition is delayed by shaping, heat
transfer, or other means, and where heroic attempts are made to reduce
the effects of disturhances.*

Unfortunately, those who require estimates of transition location,
for purposes of design and performance optimization, must still make
do with more or less ad hoc engineering criteria, or, at best, calcula-
tions of the "eg" type. [f disturbance levels are similar to those in-
volved in the original "e9" data base, then such calculations still ap-
pear to be the best and most reliable method for locating transition.
In particular, if (1) the initial amplitude of the disturbance is very
low, whether ingested from the main stream or internally generated in
the boundary layer, and only excites Tollmien-Schlichting waves; and
(2) the disturbances are slowly amplifying, as in a boundary layer with
a favorable or mildly adverse pressure gradient, so that the disturbance
growth over most of the distance to transition is exponential, then the
"e9" method may reasonably be expected to be applicable to predicting
transition. However, any real-world departures from the ideality im-
plicit in the "09” method must be dealt with on an empirical basis.
Thus, to the extent that roughness or vibrutinﬁ are responsible for in-
fluencing the flow in ways other than by producing small disturbances
that excite or feed Tollmien-Schlichting waves, it is unreasonable to
expect the "eg" method to account for their effect upon transition.

There appears to be little in current nonlinear theory which bears

on these problems of design and prediction, or even provides rational-

. : 9 3 T

ization of lho.suvu'ss of the "e " approach. The same state of affairs
7% s . . - .

holds at present (see Fasel ) tor numerical solutions of the Navier-

Stokes equations, and the situation with model ecquations is even more
problematic.
There is clearly a need for a new, perhaps less tormal, nonlinear

theory, which combines the growth rates and frequency dependency of

*Thes-w comments, and indeed most of this report, are intended to
refer specifically to attached shear layers, such as boundary layers,
and not to free shear layers, such as wakes. For the latter class of
flows, which are inviscidly unstable, disturbances grow more rapidly,
and nonlincar mechanisms come into play much carlier in transition.




the two-dimensional Tollmien-Schlichting waves (which is céntral to

the "eg" method) and the three-dimensional nonlinear effects described

earlier. Until a nonlinear theory can describe transition far down-

stream of the minimum critical Reynolds number, there is little hope

for its relevance to problems of underwater low-drag hydrodynamics.
w9

Until that time, the remarkable "e ™" criteria for boundary-layer

transition will not be supplanted.
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