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PREFAC E

Rand has been investigating fluid mechanical bases for the design

of low—drag submersible vehicles, under the sponsorship of the Tacti-

cal Technology Office of the Defense Advanced Research Projects Agency .

The impact of fluid mechanics on hydrodynainic design is most critical

in the characterization of the location and properties of the transi-

tion region between laminar and turbulent flow. A semiempirical

method, generally known as the “e9~’ method of transition prediction ,

is widely used as a guide to the effect of body shape, pressure dis-

tribution, surface mass transfer , and heating. This report reviews

the method and the advances in both linear and nonlinear hydrodynamic

stability theory that have occurred in the 20—year interval since

first publication of the Il
e
9
~

I method . Ultimately , it is hoped that

these advances could further refine the ability both to predict and

to control boundary—layer transition . The report should be useful to

hydrodynamicists , designers of submersibles, and others engaged in the

application of fluid mechanics to the improvement of underwater vehicle

performance. Related Rand reports include:

R—1752—ARPA /ONR -— Low-Speed Boundary-Layer Transition Workshop ,
W. S. King, June 1975.

R—1789--ARPA -— Controlling the Separation of Laminar Boundary
Layers in Water: Heating and Suct ion ,
J. Aroesty and S. A. Berger , September 1975.

R—1863—AR.PA —— The Effect of Wai l  Temperature m d  S:4cti~ ’~ n
L~ninar Boundary-Layer Stability , W . S. King ,
April 1976.

R— 1866—ARPA —— Hydrodynamic Considerations in the Desi ;
~: c~JSmall Submersible Vehicles (U) , C. Gazley , J r . ,

J. Aroesty, W . S. King, E. R. Van Driest ,
April 1976 (ConfIdential).

R—1907—ARPA —— Buoyancy Cr088-Flow Effects on th€ Boundary ~~~~i~~~v

of a Heated H cr~2ontal, Cy l inde r , L . S. Yao
and Ivan Catton , April 1976.



- iv-

R-1966-ARPA -- The Buoyancy and Variable Viscosity Effects on a
Water Laminar Boundary Layer Along a Heate d
Longitudinal Hori~.onta l Cy linder , L. S. Yao
and I. Catton (in process).
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SUMMARY

Successful low—drag design employs methods of boundary—layer con-

trol to delay the transition of unstable laminar boundary layers. How-

ever , there is not yet a suitable comprehensive theory to guide predic-

tion and control of boundary-layer transition for low—drag hydrodynamics.

Our survey suggests that such a comprehensive theory must be
substantially different from the current nonlinear stability theories.

This is because nonlinear theory can represent the late stage of the

transition process only if disturbance levels are large enough to

trigger transition near the first onset of laminar instability. This

requirement is completely at odds with the customary low—drag design,

where boundary—layer control is used to delay the transition of an

unstable boundary layer, where there are great distances between the

firs t laminar instabilities and transition , and where considerable

e f f o r t  Is made to reduce disturbance e f f ec t s .

New and less formal nonlinear theories which combine the growth

rates and frequency dependence of the two—dimensional Tolimien—

Schl ichti ng waves (which are the basis of the “e9” method) and the
th ree—dimensional  nonlinear processes of curren t s tabi l i ty  theory
could ultimately lead to improvements in the understanding and manip-

ulation of the transition process in low—drag hydrodynamics, and to

the inclusion of disturbance effects . Until such methods are devel-

oped , the “e9” or similar empirically based methods must be relied on

for design and analysis.

Unfortunately, the “e9” method cannot elucidate the sensitivity

of boundary—layer transition to small disturbances such as surface

roughness , vibration , or frv€~~t ream tti rhul en ct . This must h d~’;i It

with using even more intuitive ad hoc procedures than the origina l

method itself , until a more comprehensive theory is developed .
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I. INTRODUCTION

Low—drag submers ib le  design is a c rea t ive  eng ineering a r t  form

which is becoming ~ sc ience . The p r inc i pal area of c r e a t i v i t y  is the

se lec t ion  of appropriate cri teria for locating the t ransi t ion from

laminar to t u rbu len t  boundary—layer  f low . Ideally ,  these c r E t e r i a

reflect the impact of body shape, pressure gradient , wall heating,

suction , propuls ion , freestream dis turbances , v ib ra t ion , su r f ace

f i n i s h , acce le ra t ion, suspended pa r ticu la t e s , and noise on boundary—

layer transition .

Laminar flow over the forward region of a low—drag body is w e l l

understood , and i ts  cha rac te r i s t i c s  can be predic ted  almos t r o u t i n e l y

us ing  computer ized versions of the equations of mot ion. These are

based on classic , sys temat ic  approximat ions  to the Navier—Stokes

equa t ions which  govern the  dynamic behavior of rea l viscous f l uids
such as water or a i r .  Turbulent  f low cha rac te r i s t i c s  over the  a f t  end

of sucli vehicles can also be predic ted , us ing  computer  programs whic i :

are more emp i r i c a l ly based but  which are s t i l l  cons is tent  w i t h  simi-

l a r i t y  laws and considerat ions of mass , momentum , and energy balance.

The t rans i t ion  region is more prob lemat ic :  no complete  theory

analogous to laminar  f low is available and the exper imenta l  measure-

ments are not so complete as in the turbulent case. For this reason,

then , a combination of theory and emp i r ic i sm is  the basis fo r  the best

t r a n s i t i o n  p red ic t ion .  (1)

The “e9” method currentl y appears to be the best combination of

theory and emp i r i c i sm for  correlat ing and p red ic t ing  the e f f e c t s  of

body shape , pressure d i s t r i b u t i o n, wall  h e a t i n g ,  and suc t ion  for

hydrodynamic flows . Extensions of th is  metho d and the l inear theory

on which It is based include the e f f e c t s  of f r ees t ream tu rbu lence ,

wal l  roughness , and noise on boundary—layer  t r a n s i t i o n .

Because the “e
9” method is based on stability theory , because its

predictions of instability growth rates and “critical” frequencies

have been verified experimentally , and because of the importance of

the Tollmien—Schlichting instability wave growth in low—drag



app lications , the me thod i s taken more seri ously  by fluid mechanic ians

than when it was orig inally suggested by Smith and Van Ingen. While

f undamen tal questions are still open about the process of transition ,

the “e
9” method and its relationships to both linear and nonlinear

stability theory deserve study. This report explores some of these

relationshi ps by surveying the relevant assumptions and features of

class ic h ydrodynamic stability theory and the newer work on nonlinear

~.tability . The intention is to review the current status of the non-

linear theory, in order to assess its capacity for improving , eluc i-

dating , or supplanting the “e
9
” me thod as the touchs tone of curren t

low-drag hydrodynamics.



I I .  HYDRO DYNAMI C STABILITY THEORY

A. LINEA R THEORY

In this section , the math ematical development of the classical

l i n e a r  theory  Is outlined .

Consider an incompress ib le , s t eady ,  t w o — d i m e n s i o n a l lamina r

boundary layer on a planar body which is not so strong ly curved tha t

centrifugal forces are  unimportant. We wish to investigate the response

of the boundary layer to an infinitesima l disturbance. To this end

we f i r st  w r i t e  down the N a v i e r — S t o k e s  e q u a t i o n s  f o r  u n s t e a d y two —
*d i m e n s i o n a l  tn c om p r e s si b le  f l o w

V • q = () (continuity)

(1)

:-~ 
+ = — -

~ V p + ~ (momentum )

where  q = ( L I , v )  , u and v b e i n g  the  x and y components of velocit y

p i s  t h e  p r e s s u r e , i.~ t he dens i t v  , V ~ S t h e  k i n e m a t i c  v i s c o s i t y

u / c ) .  The x — a x i s  i s  chosen  to l i p  in  t h e  d i r e c t i o n  of t h e  f r e e —

~ t r t am v e l o c i t y  and t he  v — a x i s  norma l to t hu  h o l y

To anal yze t h e  response to an infinitesima l di sttirhance , we no w

w r i t e  each  f l o w  q i l a nt  i t  v as t h e  sum of a mean s t e a dy  f l o w  quat i  t I t y

and a s m a l l  i i  uc tw it  ion t e r m

*T h e r e  i s  no :i p r i o r i  reason to assume that the d is turb: i  n~ t s :1 ro
t w o — d i m e n s i o n a l , and i n  f a c t  t h e y  w o u l d  no t  g e ne r a l l y b e so u nder
exp er 1mt ~n t a  I cond I t i o n s .  One can readily carry out tIit’ ana l y s i s  for
t l i r e c — d  I nens I ona I d i s t u r b a n c e s . However , t here  e x i s t s  a t r a t i s  f o r m a t  ion
wh i c l i  r e d u c e s  t h e  t h t  rt e—d i m e n s i o na l equa t ions fo r  a s i n t i so i d a  I d i s —
t u r h a n c i  t o  t wo—d i m& ris tonal e q u a t i o n s  . One can  then  show t h e  f I ow i s
more st ab  I t t h  r ve —d imen s b o a  I d i  s t u r h a nc os  t h a n  t o  t w o — d  iffien s I ona 1
( S q u i r e ’ s T h e o r em ) ,  so t h e  st a h l  i i  t v  ana l  vs i s  can  c o n c e n t r a t e  on the
t w o— d linens iona I case .  (However , see the  f o o t n o t e  on p.  7 wh ore  it is
p o i n t e d  out  tha t t h i s  t heo rem is v a t  id on lv  f o r  waves tha t gr ow i n
t i me .  ) Tb I s a r g u m e n t  s h o u l d  no t  he t a ken to  sugges t  t h a t  t Ii r ep —
d i m e n s i o n a l  e f fe r  t s  ir e  no im p o r t a n t  f o r  t r an s  I t  Ion to  t u r b u l e n c e  of
t w o — d i m e n s i o n a l  bou n d a ry  l ay e rs . In  f a c t , i s we s h a l l  d i s cu s s  l a t e r ,
In t h e  t;i tt e r s t a g e . o l  t h e  t r ;un s  i t  i on  p r o c i o~ , t h r e c— d i m e n s  i o n a l
ci feet a p l ay  a t r i t e  i a  I r o l e .
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= ~~(t ~) +

(2)

p ( i~, t )  = P ( r ~) + p ’( i ~, t )

~h cr c  J q ’ I J i~J . p ’ c< J P J  and 15 = (Ii , V)  and P are so lu t ions  of

the  steady , two—dimens iona l  bounda ry - l aye r  equa t ions . I f  we substi-

t u t e  these expressions i n t o  the Navier -Stokes  equa t ions  above and drop

a l l  quad ra t i c  terms in the  d i s tu rbance  q u a n t i t i e s , the resu l t ing  equa-

t i ons  can be decomposed in to  one set cons is t ing  of zero—order  terms

only  and one set c o n s i s t i n g  of f i r s t — o r d e r  terms

‘I i  + = ol x ly

- + V — = — ~ + V (3)
~ ~y

2

o = —
p l y

+ _~~.!
‘ 

=
ax ay

+ u ’ -
~
-

~~ + U + v ’ + V ~~~~~~
= 

-

~~~ fP~ + + 
~~2 )  (4)

+ ~~~
‘ -

~~~~ + u ~~~~ + ~~ ‘ + v ~x ’ = ~~ -
~~~~~

‘ 

+ J-a--~.~’ +ax ay a y p ay a 2 a 2

Al ternatively, these equations could have been obtained by def in ing  an

approp r i a t e  mean , denoted by an overbar , and assuming = ~~~ , u ’ = 0 ,
p = P , p ’ = 0. S u b s t i t u t i o n  of expressions (2)  in to  the Navier—Stokes

equat ions  and then taking the mean yields Eqs. (3 ) ;  subt rac t ion  of

Eqs.  (3 )  f rom the  ori g i n a l  e q u a tio n s , a f t e r  neg l e c t  of t he  q u a d r a t i c a l l y

small terms , then y ie lds  Eqs. ( 4 ) .

The balance among iner t ia l, pressure , and viscous forces  is required

fo r  the  f l u c t u a t i o n  q u a n t it i e 8 . The dominant convective terms in the
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momentinn equations are estimated on the basis  of the usual boundary—

layer ordering of the mean flow terms, V ~~< U, .~h/ay >~~ a/ax; the

fluctuation velocities , u’ and v’, are assumed to be equal to each

other in magnitude , and their derivatives are also comparable. The

length scale for v a r i a t i o n  in f l u c t u a t i o n  ve loci t ies  is a wavelength ,

wh ich I s roughly of the order of ~~ , the thickness of the layer.

Final ly, we assume that the mean flow quantities do not change sign i-

ficantl y over a wavelength of the disturbance. We can then consider

U ( x ,y) to be a function of y alone ; i.e., U = U(y). Under this set of

assumptions , the equations for the fluctuation quantities simplify to

+ ~.!
‘ 

= 0ax ay

+ u ~~~~
‘ 

+ v ’ -
~
-

~~ 
= — -

~~ ~~~ + ~ u ’ (5)at ax a y p ax

-
~~~~ +u~~.! 

_ ‘ip ~’ + v V 2
v’at ax p ay

The implication of the assumption U = U(y) is that st ab i l i ty  at

a par ticul ar x is determined by local conditions at that station
independent of all others . This assumption is obviously exact for

any truly parallel flow , such as in a channel , bu t onl y an approxima-
tion for other flows , such as boundary layers which generally grow
with streamwise distance . There has been a great deal of recent

interest centered on this point. Solutions for nonparallel effects

have been ob tained through straight—forward per turbations , iteration ,

and the method of multi ple scales by , mos t prominently, Ling and
Reynolds,~~

2
~ Bouthier ,~~

3’4~ Nayfeb and Saric ,~~
5’6~ and Caster .~~

7
~

For boundary layers with pressure grad ient , the most extensive calcula-

tions of nonparallel effects are those of Wazzan et al.~~
8
~ for Falkner—

Skan flows . They found these effects to be negligible when f~, the
Falkner—Skan pressure gradient parameter , was greater than 0.4. Non-
parall el terms were most important for negative l~, cases for  whi ch
the minimum critical Reynolds number is small and the parallel flow

assumption breaks down . In gene ra l . n o n p a r a l l e l  e f f e c t s  can he



expected to be r e l a t i v e l y  unimportant  at large Reynolds  numbers . At

lower Reynolds  numbers such e f f e c t s  may have to be taken i n to  account .

(For examp le , see the recent  work  of S t r a z i s a r  et a l .~~
9
~ fo r  a heated

f l a t  p la te  in water , where i t  was necessary to include these non-

parallel effects in comparing exper imenta l  r e s u l t s  w i t h  theory , because

of the  p r o x i m i t y  to the min imum c r i t i c a l  Reynolds  number . )  The remain-

der of t h i s  d i s cus s ion  w i l l  be l imi ted  to h i g h Reynolds number f lows

making  the para l le l  f l o w  assumpt ion .

For boundary- layer  f low the appropr ia te  boundary condi t ions  are

u ’ = v ’ O a t y O

(6)

u ’ , v ’ ~~0 a s y

Since the c o e f f i c i e n t s  in Eqs. (5) are independent  of x and t

and the equations are linear , the solut ion can be obtained most

readily by taking a Fourier transform in x and Laplace transform in

t .  This procedure then says that the behavior of the solution is

characterized by the normal mode representation

u ’ ~ü ( y )~

~e(y)~ e
ut
~~

t — ut )  (7)

p ’ fry )~

where z is the wave number in the x direction (~ 2n /A , wher e A is the
wavelength) and w is the frequency. Either or both a and w can be

complex , and corresponding ly so are the amplitud e functions ü(y), Q(y),

and ~(y). The classical approach has been to assume a is real and ui

complex , in which case the imaginary part of w determines whether

disturbances grow or decay in t ime ; hence this is referred to as the

temporal approach. In the spatial approach w is assumed real and

a complex , so the imaginary part of a determines whether disturbances

grow or decay with increasing x. Under appropriate conditions , the

temporal and spatial amplification rates are related by the group
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velocity of a packet of waves of the form (7) (see Gaster UO)). Since

the spatial theory corresponds more closely to the usual physical situ-

ation and seems , at least at present , to lead to the best correlations

with transition Reynolds number, the remainder of this discussion will
*be limited to spatial theory .

Wr it ing ~ = a + in
1 
where the subscripts r and I denote the real

and imag inary  par ts, respectively, and assum ing w is real , a typ ica l
disturbance quantity, say u ’, can be written

- —c*.x i ( a x — w t )
1 r

u = u(y) e e (8)

where w is assumed real. Thus for

0 , d is turbances  are damped

- 

= 0 , d i s tu rbances  ne i the r  grow nor (9
decay (“neutral” disturbances)

0 , disturbances are ampl i f i ed

Th e set of dis turbance equa t ions (5) can be reduced to a s ing le
equa tion for v ’ by cross—differentiating the x and y momen tum equa-

tio ns to elimina te p ’ and then using the continuity equation to

el imina te u ’. This then leads to the following linear fourth—order

equa tion for ~ (y ) (  v ’/ n)

(U — c ) (q~’ — a
2 q )  — U”~ 

= —j~
-
~

— ( — 2} ~
“ -I- ) ( 10 )

where c = ~i/u  and Re = g ,
~ / , wh ere  U is  t h e  ye lot I tv  i t t  t h e  edge

p e

*
Unfortunately, Squire ’s theorem that three—dimensiona 1 disturb-

ances are more stable than two—dimensiona l ones only holds for tempo-
rally growing disturbances. At presen t , the question whether three—
dimensional spatially growing disturbances are more stable or not
than two—dimensiona l ones canno t generally he answered an~I must he
considered separately for each case. (11)
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of the boundary layer and iS is the boundary-layer thickness. (Prior

to carrying out this derivation , all variables have been nond imension—

alized in terms of U and :~.)

Equation (10) is the Orr—Sommerfeld equation . The boundary

conditions are

c~ (0) = q ’ ( O )  = 0
(11)

4~( y ) ,  4 ’ ( y )  -
~ 0 as y -

~~

The Orr—Sommerfeld equation plus boundary conditions describe the

self—excited or free oscillations within a linear dispersive , dissipa-
tive system . It is an eigenvalue problem and will only have solutions

if a secular equation of the form

F(cu , Re
~~ 

c) = 0 (12)

is satisfied . Since c = u/a = u/ (a + iczi ) ,  Eq. (12) can be written

F(a, Re6, w) = 0 (13)

- 
Since Re6 and w are real and a complex, taking the real and imaginary

parts of this equation yields two equations which can be combined to

yield

F1(cz , Re5, w ) = 0 (l4 a)

F
2

(a i, Re 5, w) = 0 (l4b )

For a given Re5 and w , Eq. (l4a) yields the wave number of the dis-

turbance, ar
. Setting ai 0 in Eq. (l4b) yields the expression

F
2

(O , Re5, w) — 0 , which defines the neutral stability curve in the

Re5 
— w plane. Setting a

1 constant yields curves of constant

amplification in this plane. Because Eq. (14a) uniquely defines
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in terms of Re and w, these curves can equall y well be plotted in a
~~~Re - a plane .S

Thus far the ana lysis has been presented for an isothermal ,

constant—density fluid flow , and modification of the above formulation

is required to consider the stability of water boundary layers with

heat transfer. Taking temperature to be the only state variable , and
assuming viscosity is a function of temperature alone , wi th a l l  other

fl uid properties constant (a good assumption for water boundary layers

with heat transfer at moderate pressures), Wazzan et al .U2) have shown

that the stability of water boundary layers with heat transfer can be

adequa tely  trea ted b y the Orr—Sommerfeld equation , Eq. (10), modif ied
to inc l ude terms that arise from the variation of viscosity with

temperature.

According to Eq. (8), the amplification of a typical disturbance

u ’ be tween the poin ts x
0 

and x
1 

= x0 + Ax is given by

—a
1

Ax
4 e (15)
U
0

If the flow were truly parallel then a
1 

= const. and the amount of

amplifica t ion between two points x
0 

and x
1 a finite distance apart

would be simply

e~~~~~ 

— x0)

Since our Interest is in boundary layers where the f low is near l y
parallel , we write instead

xl
— [ rz , (x) dx

uj 
1

-j - e (16)
U
0

*The eigenfunctlons associated with these eigenvalues correspond
to the Tollmien— Schlichtlng Instability waves.
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since  n • I n  such cases w i l l  depend nfl  x .  This is not exact and Is

only an ansatz. Confirmation , for the case of the flat p la te , is
presented by Ross , Barn es, Burn s, and Ross.U3) Accord ing to Eqs.(7),

the amplification is the same for each disturbance quantity, and if

denoted by A can he written as

x
1 *— 1  (a S/ R e ) U / v dx

j  I S e

A(x
2
, x1) = e (17)

in nond imens iona l  terms.  (We note in passing t ha t  A 1 dA/dx  = — a
1

.)

The trad itional approach in laminar stability theory via the

Orr—Sommerfeld equation has been to emphasize the calculation of the

ne utral  stabi l i ty curve , and from this the minimum critical Reynolds

number , i.e., the lowest Reynolds number at which ~~~ dis turbance
begins to be amplified . Implicit in this approach is tha t  present in

any laminar flow is a continuous spectrum of small disturbances cover-

ing the whole frequency or wave—number range , so the Reynolds number

for which the first of these disturbances becomes unstable determines

the stability characteristics of the flow . Only recently has it become

apparent that this minimum critical Reynolds number is not very impor-

tant in determining the onset of turbulence , par ticularly when it is

desired to delay transition. Since transition occurs , exper imen ta l l y ,

only after disturbances have reached a finite magnitude , the total

amp lif ication of Infinitesimal disturbances and how they vary with

disturbance frequency is more important. For truly parallel flows

this ma tt er is less del ica te , since all of the parameters of the flow

are independen t of streamwise distance and therefore the curves repre-

senting the solution of Eq. (l4b), F
2

(a
1
, Re6, u) 0, for various

values of a
1 

= const. Immediately give the constant growth rate of a

dis tance of frequency w . For nearly parallel flows , however , Re~
changes with x and so does the U(y) which appears in the Orr—Sommerfeld

equation . in such cases , the spa t ial growth of a disturbance of a
fixed frequency u requires that a series of stability plots of Eq. (14b)
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(
be made corresponding to Increasing x and tha t the quantity Eq. (16)

or (17) he calculated for Increasing x. The significance of the

minimum crit ical Reynolds number becomes more subtle; It could become

a surrogate for the amp lification characteristics of the boundary

layer at the part icular station x. (An Illustration is given by

Van Ingen.~~
4
~) The calculation of Eq. (16) or Eq. ( 17)  mu st be

carried out for all frequencies euslng the same set of stability plots

and beginning at some appropriate initial point x
0
. Thi!: is done for

Increasingl y l arger values of x. At any such x there will generall y

be one frequency of disturbance that has been most amplifi ed in its

passage from x
0 

to x; in some sense this frequency may be looked upon

as being the most dangerous one. When this procedure was carried out

for a number of two—dimensional and axisymmetric boundary—layer flows ,

it was found (by A. 14. 0. Smith~~
5
~ and Va n Ingen 06~~ that the

experimentally determined position of transition was located near the

poin t  where  the ri ght—hand side of Eq. (16) or Eq. (17), th e total

amplification , first attained the value e9 for 
~~~ 

f r e q u e n c y .  This

correlation led t(, the f o r m u l a t i o n  of the so—called “e
9” rule for

the prediction of transition. According to this rule , transition

occurs at that point of the body where any disturbance of arbitrary

cons tan t  f r e q u e n c y  first attains a t o t a l  amplification factor of e
9
.

The idea is genera  I i zed t o  t t ie  “e
s’’ me t hod

~ r I t I ca I Eva I eta t i on  C )  th e ‘ c’
9

” Rule

What explanation is there for the  widel y acknow l edged su ccess

of the “ i’
9

” r u l e ?  In particular , wh y should a rule based on the total

amplification of two—d imensiona l disturbanc es work so well i i i  p r edic t -

ing t r a n s i t i o n  when the latter stages of transition are known to he

so p r o f o u n d l y  a f f e c t e d  by t h r e e — d i m e n s i o n a l  e f f ec t s  (e.g.. the forma—

t ion of “spi  kes ” and t u r b u l e n t  “ spots ” and t he i r  g r o w t h  and co ;u I e s c e n c e ) .

Further , what just fflca ti on Is there  f o r  u s i n g  l i ne a r  s t a h i  I it v theory

up to an amp l i f i c a t i o n  f a c t o r  of 8100 (~~ e
9
) , when any pr:ict teal free—

stream disturbance (of the order of 0.1 percent or larger ) mutt i p i it~d

by t h i s  fa c t o r  would , a t  leas t  f o r m a l l y ,  v i o l a t e  the a s s u m p t i o n  of

s m a l l  d i  s t u r h a n t u s  , has Ic to the I i n ear  t h e o ry
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Logica l  justification for the use of a maxinium amp lification

c r it eri on may be found in the sugges t ion  o f Li epmann ( 17)  
that transi—

tion occurs at the point where the Reynolds stress first reaches the

magnitude of the laminar shear. If one calculates the Reynolds stress

from the solutions of the Orr—Sommerfeld equation , then the ratio of

these two stresses contains the amplifica tion factor. Unfortunately,

it also contains a quantity representing the init ial disturbance level .

And this deficiency seems to undermine any attempt to develop a

rational basis for the “e9” rule at this time , namely, transition

appears  to r equ i r e  the  a t t a i n m e n t  of some abso lu te  leve l of dis turb-

ance , and this can be calculated from an amp l i f i c a t i o n  f a c t o r  only  i f

the initial disturbance l evel and its spectral distribution are known.

As regards the leve l of ultimate disturbance due to an amplifica-

t ion factor of e
9
, we note that although the freestream disturbance

level in a modern wind tunne l  may be of the order of 0.1 percent ,

this figure represents the spectrally integrated level. Since much

of thi s di stu rbance energy is damped out or be comes irrelevan t in the
fil tering Tollmien—Schlichting mechanism , the in ternalized narrow—

band fundamental Tollmien—Schlichting mode may have an initial dis-

tu rban ce maxim um at leas t a hundred times small er , of the order of
0.001 percent or less at the x corresponding to the location of the

minimum critical Reynolds number , R
c 

(Obremski et al.~~~
8
~). This may

be even further diminished by the weak coup l ing tha t seems to exis t

between the freestream and the boundary layer as regards the recep-

tiv ity of the latter to freestream disturbances (Mack, private communi-

cation , quotes factor s of ~~~ or so between frees tream and in terna l
disturbances). According to Kiehanoff et al.,U9) the l inear theory
ceases to be valid (for a flat plate) when the disturbance reaches a

level of 1 to 1.5 percent of U .  Thus , a total amplification factor

of the order of 1000, or even more , between the beginning of amplifi—
cation and the onset of nonlinearity would not be surprising. Since

the first appearance of turbulent spots , the beginning of the true

transition region, occurs for a flat plate at disturbance levels of

the order of 12 to 20 percent , only an add itional amplification of
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the order of 10 to 15 percent beyond the onset of nonlinearity must

he incurred by the thr~~~—d imensiona 1 , nonl inear , and other mechanisms
(Obremski et al.

U8)). Ti t cis flat—p late data is typ ical , the stream—

wise extent of linear um c 1 il ica tio n covers about 75 to 85 percent of

the distance to the beginning of transition , and a total amp l i f i c ation

factor of e9(~ 8100) wou ld appear to be of the r ight order of ampli-
fication. Moreover , because of the discrepancy in lengths occupied

by these two domains , errors in estimates of the extent of the non-

linear and/or three—dimensiona l prebreakdown regimes might be expected

to cause only small errors in estimates of total length to the begin-

ning of transition . On the other hand , these errors plus the differ-

ences due to different levels of initial disturbances in each wind

tunnei or in each free fl ight test should manifest themselves in

deviations from the factor e9. And in fact , as the da ta of J a f f e
( 15)

et al. demonstrate , the exponent 9 represents an average value ,

whereas for exact correspondence to experimental transition locations

the exponent may be as low as 8 and as high ~s 12.

Wi th the above objections to the use of linear stability to pre-

dict transition , It Is worthwhile investigating the extent to which

the work of the past nearl y two decades on nonlinear effects , both

two— and three—dimensional , cam shed l igh t on the l inear , two—
dimensional “e

9” criterion , or perhaps lead to different and more

comprehensive predictions of transition. Before doing so, however ,
let us briefly consider a somewha t different approach to the stability

problem , based on g lobal considerations.

B. ENERGY BALANCE

The previous treatment of stability emphasized the behavior of

a single spectral component of the disturbance. We can instead look

at the growth or decay of the total energy of the disturbance. For

incompressible flow , the energy is primaril y kine tic. An equa t ion

for thi s quan t ity can be ob tained f r om th e dis turbance equa tions by
multIplying each momentum equa t ion by the corresponding velocity

dis tu rbance , summing the resulting equations and then integrating
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across the layer. Doing so , considering oniy parallel flow with two -

dime nsional disturbances periodi c in x , and integrating over a wave-

l eng th  in x, we obtain (in nond imensiona l terms)

( 18)

where

E = ,,,fJ’~ 
p (u’2 + v ’2 ) dxdy = total energy of disturbance

M = — p fJ~~ ~~ dxdy = energy transfer between mean flow
and dis tu rbanc e throu gh ac tion of ( 19)
Reyn olds stress

N JJ’(~
’ ~~~~~~ 

dxdy = jJt~’~ dxdy = dissipa tion in tegral ,x y ra te of diss ipa t ion of k in et ic
ene rgy in to hea t

Neutral stability occurs when aE/at = 0, in whi ch case

M - - - 1
~- - - N = O o r Re ~ (20)Re c M
c

The minimum critical Reynolds number then is given by the minimum of

the ratio N/M with respect to all possible disturbances u’, v ’. If one

attempts t o  make use of this expression , a s some earl y investiga tors
did , by eva l uating N and M using simple expressions for u ’ and v ’,

one finds minimum critical Reynolds numbers that are gencrally too

low when compared to cal t-ulat ions based on the small perturbat ion

equations. Presumably , thIs is a consequence of using disturbance

velocities that are not solutions of the equa t ions of motion. This

procedur e, however , w ill yield sufficient conditions for stability .

Using this approach , Serrin~
20
~ found that Re = 5.71 is a universal

minimum critical Reynolds ntm~ber for arbitrary fluid motion in a

bounded region .



This formulation of the energy method , as embodied in Eq. (18),

is based on the t empora l growth of disturbances - In accordance with

the earlier discussion of the linear theory it would seem more appro-

priate to formulate the energy method so as to be able to study the

~p z t aI growth of the total energy of the disturbance. An analysis

of this kind seems not yet to have been carried out .

Stuart~
2
~~ has successfully employed the energy method for finite

d i s t u r b a n c e s  at  Reynolds numbers sligh tly above the minimum critial
Reynold s number. Assuming that the modes calculated from the linear

theory represent a reasonable approximation to the modes for small

but finite amp litudes , he wr i tes

u ’ ~ aA(t) c~’(y) ~~~~~ 
— Ct )

(2 1)

v ’ ~ 
- 2icz A(t) ~ (y) ~~~~~ 

- ct)

where 4(y) is the fundamental harmonic of the linear disturbance , and

c is real since the growth of the amplitude is accounted for expli—

ci t ly by the amplitude function A(t). Since the disturbance is finite ,

the distortion of the basic mean flow must be taken into account; this

can be represented as

u = u
0

(y)  + A2 Re u1 (y, 
t )  (22)

Substitution into the integrated energy equation , Eq. (18), y ields
the following nonlinear ord inary differential equation for A(t):

C
1 

A + c
2 1A 1

2 A (23)

where c
1 

and c
2 are onstants that will be defined later . This has

been genera l ized by Stewar tson , Hocking , Stuart , and Davey in a number

of recent papers . All of this work falls properl y under the head ing
of nonlinear stability and is discussed further in what follows.
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Bel ow , the various nonlinear theories are classified according tn

their principal assumptions or lint tat ions. The ma j o r  f e a t  u r i s and

predictions of each are very briefly outlined and summarized .

C. NONLINEAR THEORIES

1. Two-Dimensional Disturbances

a. Lamdau~~
2) _Stuart (2 1

~
23) _Watson (24 )  

y In 1944 , l .and au ~
22

~
heuristically der ived an equation governing the evolution of the

amplitude of a disturbance starting in the linear regime and extend i ng

into the earl y nonlinea r regime when the disturbanc es a r e ’  s m a l l  ( i n
(21 23)  ( ‘ 4some sense) hut not infinitesimal. Stuart ‘ and then Watson -

later presented a formal theory. They assumed that for v uhues of the

Reynolds number just slig htly greater than the minimum critical va l ue

Re the perturhat ion solution was of t h e  form

A ~~
y) ~~ 

e(x  - c t )  ( 2 4~

where ~ (y)  ~~ the eigenfunction corresponding to the (real) wave n u m b e r

and (comp l ex) wave speed c calculated from the cI;issh il Orr—

Sounn er fe ld  equat ion a t  Re = Re . ((h i s  i s  an i m p o r t . u n  I po h u t  t o  wi t  I c l i

we shall ret urn l a t e r  . ) That t h e r e  i s  a s i r ig ]  e mode ot  I lie orm (~‘4

Is a good app rox I mat ion In the ne ighbo rhood  of Re , s ( f l e e  i t  t h I  s va I t ic

of Re on lv L i i  i s  one mode amp lif t  es. in t he c lass ((al Ii n i t  r st  tb  i i  i t  v

theory, A i s an in fin it vs ima I con s t a n t  . For 0 Ri - Re I , it is

assumed that A can he replaced by A ( 1 ) and i s suna I I bu t  not i 01 i i i

I ma 1 . From t lie Nay Icr—Stok es eq ua t ions one t i l l  show fo m n  I lv that ‘c

sat isl I ts (hea r =

dA 2
= ci c

1
A + K A A ( 2 )

where  the  s u b s c r i p t  c d en o t e s  v a t  ti c s it  Re , k I s a complex const run

(k
r 

+ 1k
1
), and c

1 
is  the imaginary part of c and is proportional to
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( R e  - Re ’ ) . Front l q. (2)) We ’ 110Ev t li ii w i  t l i  Re — k e  ( I , rind hence

O~ if  kr 0, then ( A j  does not i n c rea s e  i n d e f i n i t e l y ,  hut ,  r i p —

proaches a m a x i m u m  v a l u e , n ropor  t lona I to c
~ 

2 ( T h i s  b e h a v i o r  of

A ( t )  l eads to the’ hifurcat ion theory of Tay lor—C ouette’ I iCI W and Bénard

convec t  ton.) I f , on the other hand , k
r 

> 0 , th en I A !  -
~ 

‘ at a finite ’

v a lu e  of t .

Although the theory is strictl y not valid for Pe -- Re~ I) (c
1 0)

Eq. (25) shows in such cases tha t if IA !
2 

is initially s u f f i c i e n t l y
2 2

sinaI I then A ; 0 as t ‘ , wher eas If A l is suffici entl y large

( ‘  — .zc ./k ) then A as t -
~ ~~~. This latter feature led S t u a r t  to

formulate the princi p le of a threshold of instability, according t~o

w h i c h  a f l o w  may be s t a b l e  to In f i n i t e s ima l d i s t u r b a n c e s, hu t u n s t a b le

to disturbances which are finite .

b~~~~~~~ t_le~~~and W i t t i n g . (2 S)  
Mean f l o w  s t r e a m l i ne s  will he dis-

tort e’d by the d i s t u r b a n c e s  and become at  some p l a c e s  convex and r u t

others concave . Concave streamlines should lead to the formation of

longitudina l vortices in a manner similar to tha t for a concave surface’

(c.~ rtler vortices). It was found experimentall y, however , that eddi es

were formed in regions where the streamlines were convex , not concave .09~
c. Benn ey and Ber~geron.

(2 6)  
The inviscid solution of the Orr—

Sommerfeld equation , or ig ina l ly  due to Rayle igh , breaks down in the

neighborhood of the critical point , the location at which the disturb-

ance phase velocity Is equal to the loca l flow velocity. The tradi-

tiona l approach to hand ling this singular behavior Is to carry out a

local analysis using the full Orr—Sommerfeld equation with the viscous

terms included . A possible alternative procedure is to eliminate the

singularity by taking into account the nonlinear terms that were not

included in the Orr—Sommerfeld equation. More precisely, if one

alterna t ively balances the Inviscid terms in the Orr—Sommerfeld equa-

tion with the viscous terms in the equation or with the nonlinear terms

that were dropped , it is found that there are two possible boundary
1/3 1/2scales: y — y = 0 (v  ) and y — ye 

0 (c ) ,  where v is the

kinematic viscosity, and c is a measure of the magnitude of the non-

linear terms. If [1/2 
<< ~

l/ 3  the cri t ical layer  I s domina ted by
viscous e f f e c ts, whereas if ~

l /2  
>> ~l/ 3  nonlinear effects are
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dom i nant. In the cr i t  i t - a l  l aye r , the ’ sE r e -a m l  i nes are’ f o u n d  t o  have ’

the so— cr i  11 ed cat ‘ s eye c o n f i g u r a t i o n  . tint or t u na tel y , it is ri ot t . l ent r

from the ’ a n a l y s i s  whether the off—neu trri I solut ions are st ab It ’ or

u n s t a b l e .  t in I Ik i ’  t h e  v i s c o u s  er It ica I I aye’r sot u t  ion , no p hase e liangu ’

ne’ curs n c  ross t h e  nonlinear cr1 t i t a 1 layer - Al so t t i e - r e  i s no c r  i t  i i  ‘nil

R ey n o  ids number assoc irited with the in i t  ( r u t  ion  of wave ’s ; i t  i s  o n l y

n e c e s sar y  tha t t h e  Reyno Ids number he large’ rind t h e’ d 1st  u i r b n i n c e  r ump I I —

tude s u f f i c i e n t  l y large. A new c lass of Irirge ’ wave’ number d is tei rhni n ct~s

is found tha t do not occur in the class i c - r i  1 O r r — S o m n i t ’m f e l d  V i s c o u s

theory . For this new family of d i s t u r b a n c e s  t lie ’ c r 1  t i c - r i  1 1 a y er  i s

I ova  ted fr i  r f r o m  the  b o u n d a r y ,  w I t h  wave spe ’eds c lose to fri-c -st re-rim

v e l o c i t y .  i’he possibility is raised that this i s a  pos~~ihl e m echnini sin

for free-st rerlm d isturhrinces to enter the hotirid riry layer. S t e ’w a r t s on  ,

in  a m a s t e r f u l  r e v i e w  of  s t a b i l i t y  t h e o r y , s u g g e s t s  t u n E  t h e  t h e o r y  i s

p hys  I c a  I I v  unrea  I iz ab  I c

d. 
- 

1~rmn da Iil . 
(28)  The n o n l  i n ea r  wave mecl ir u nics of Wti i t t am ,

w i ( i i  e x t e n s i o n s  and clnu horr u t ions by Have ’s , i s  e x t e n d e d  I hit ’ u l e

di ss i rca t i on f o r  I r u m i oar  shear f l o w s ,  t inder  ce’r t n t  i i i  c ’ oui d  it loris , d i t  c r —

m i n e d  by t h e  t h e o r y  , the  s o l u t i o n s  e x h i b i t  hr c ’ni kd own l o t  cc 11 i gh f reqeui’ nc Y

o s c i l  ( n u t  i o n s .  i t  i s  c l a i m e d  that t h i s  t h e o r y  e ’ x p l n i i n s  t he ’ n a i n  f e a t u r e s

of the ’  K I ehano  f f e t n i l  . 
( 19) 

exper inents , suc h ni s r a p i d  lo c nu I I ze ’d e) fl Sc ’

f o r m a t ion of h a l  rp  in  vort ices  and their down st  re - r im t ’vc ) h i t  i tin . E n t ii is

theo ry, thre e’ dim ensional i t y  p l a y s  a s e c o n d a ry  u-n h e , ’; i t s  p r i n c ipa l r o l e ’

i s  to  c ’ s t n i b l  i s l i  c r i t i t n i l i t v  c o n d i t i o n s  f o r  t i u c ’  t w o — d i m e n s i o n a l f l o w .

St e ’w n i r t s c i r l , 
( 2 7 1 

ni gni  I n  r n  ~se’s s e r i o us  q u e st  I o i i u  n ibmi t t i le ’  r i s su m p t  ions

o f  t h e ’  t h e o r y .

t ’ . Ko , K u h ot r i , and Lees.  ~ An i n t e g r a l  n i n n i l v s i c n  f o r  a f l a t

p i t h ’ w ak e ’ is e ’ ,i rr I i’d out  , wit ( c l i  i n c  I i id e ’s non  I I rn ’ .i r  grow t Ii o t  t i l e ’  c l i  s —

urh nuriet’s , t lii ’ c i t  ‘ i t  of t hu  R e y n o l d s  s t r e ss due ’ tel (he-se ’ d i s turb niuie ’e’s

c c i i  L i i i ’  rne ’r l n I low , and s t reamwis c- vari at i on  ol  m e - a l l  f l o w  pr o p e ’r t  i t S.

l i e  i i i , i l y s i s  c s st ’n t  m u  I v  e x t e n d s  t h e  St iu.i rt —Wri t so i t  ( t : . I . , i )  t i i e ’ ~~ i ’v t e e

t i k e ’  , u e e e e i i f l t  of St  r t ’r i mw i s t ’  v r u r i a t  ion.

f .  R t ’nn t ’y  and M n a s i o w e - . 
(3 2 )  

me i~enne ” — ile’ r g t ’ r ecc l e e ! )  i j O e - t i  r i t  i c r i  I

i . n i  yt  -r t l ie-n my ( s e t ’  ( . I . e ’ abo ve’ ) Is e x t  e’nded via t he’ inn i t  ( p Ie ’  se -ni l i ri b’.
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e’chn ique , to -il low , b r  n o n neu t  ra I modes , t h e  amp l i t u d e  of the  wave

te l evo l v e  s l owl y in space and time. The amp litude A is shown to obey

the  f o l l o w i n g  equa t i on

+ c c ’ (k)  — ~ it i~~w ” (k )  
~

-—
~ 

= it
2 

iA
2
A* (26)

where  w ( k )  is the  d i spe r s ion  r e l a t ion ,

c = amplitude parameter ,

y = “Landa u” constant ,
= distance and time over which the wave is modulated ,

X = t ,i x , T = i t , “slow” space and time variables ,

* denotes c omplex con ugate.

Note that if ~i ’ (k)  (= c~~ group velocity) Is rea l , then new variables

= X — u’T and T’ = pT can be introduced , in terms of which the above

equation becomes

L” ~
2A 2

aT’ 
= ~ h 2  ~~~~ + y A A (27)

(33)s i m i l a r  to the equa t ion  obta ined by Stewartson and S t u a r t  using

another approach (see Eq. ( 2 9 )  below) . So lu t ions  to Eq.  (26 )  can be

obtained by the inverse s c a t t e r i n g  method .

2. Three—Dimensional  E f f e c t s

A l t h o u g h  th ree—dimens iona l e f f e c t s  were observed experimen ta l l y

much ea r l i e r  by many inv esti ga tors , it was the measurements of Kiebanoff ,

Tids t rom , and Sargent~~~
9
~ which  f i r m l y  set theore t ic ians  on the path

towards developing theories encompassing them , and very decidedly

de term ined the course of non l inea r  s t a b i l i t y  research of the past

decade. By demonstrating that beyond the primary stage , governed by

linearized stability theory , transi t ion is domina ted by non l i n e a r
three—dimensional effects , they firmly established that existing two—

d imensional non l inear theories were incapable of fully explaining the
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observed phenomena.  Among such two—d imensional thue’o ri c’s vouisl dere ’d

were t h e  g e n e r a t i o n  of h ighe r  harmonics , the  Int e r ne t ion  of t h e  mean

flow and the Reynolds stress ( C . i . a .  and C . l . e - ) ,  and conc ave streaml ine-

c u r v a t u r e ’  ,us sc c ’ l at e d  w i t h  the wave mo t ion  ( C . l . h ) .  The- non l inear  range ’

of b o u n d a r y — l a y e r  i n s t a b i l i t y  is asses’ia ted  f i r s t  w i t h  t he’ deve’lnpmt-n t

of l o n g i t u d i n a l  or s tr eam wise  v o r t i c e s , fe d  lowed by t h i -  forma t ion u t

h i gh — f r e q u e n c y  o s c i l l a t I o n s  or “spikes ,” In te’rprete-d as “ha irpin ”

eddies , l e a d i n g  u l t i m a te l y tel the ’ b i r t h  of t u r b u l e n t b u r s t s  or spots .

(Jets  and wakes do not exhibit t h e  sudden onset of h i g h — f r e q u e -n c y

f l u c t u a t i o n s  nor the’ i n t e r m i t ten t  t u r b u l e n t  b u r s t s , and may in  g t ’n &- r nu I

h less s u bl e c t  to th ree—dimens ional  e f f c - c-i s  Theis the Ku , Kubota ,

and Lees~
3
~~ an a l y s i s  ( C . 3 . e )  may have a greater range of v a l i d i t y  i n

such flows than It has for boundary—layer flows.)

We now very briefl y discuss the theories developed in re’sponse’ to

the Kiebanoff experime’nts , classified according to the’ basic approach

taken.

a. 
- 
Modal Analyses. These analyse’s are nil I based nfl Fourier

decomposition of t h e -  disturb ane’e and anal ysis of individu nu l modes.
(34)  (3~~, 36) . (37 )( 1)  Benney nd Lin , Ber~~~y, A n t a r  and Collins ,

and C r a l k .  
( 3 8 )  

The f i r s t  pape r t -o n s id e- r e’d the non ! i ne’ar

int ernuc tion between a single- two—d i mensional and a single’

three—dimensIona l disturbance’ superlmpose’d on a l a m i n a r

flow . They found that a mean secondary flow was gene-r-

ated in the form of l o n g i t u d i n ri l v o r t i c e s . Benn ey

followed up on this work with L i n  by obtain ing analytic ’

solutions for shea r flow and a l i n e a r  v e l o c i t y  p r o f i l e ’

boundary layer. A major weakness of the theory is t h a t

the wave number in t h e  spanw i se d i  reeL Ion is arbitrary ,

undetermined by t h e  theory. In add iti on , the wave

speeds of both disturbances are- assume d t ce he th~- same- .

This latter assumpt ion was challenged by Stuart ,~~~
3
~

who pointed e)ut that for a Bla s ius boundary layer these

pha se- speeds could differ by as much as 15 percent.

Relaxation of the assumption was carri ed out by Antar

- - ( 37 )
and (nfl ins , who found as u result a slow
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m o d u l a t i o n  of the secondary f l o w  f o r  B l a s lu s  and

F a lk n e r — S k an  p r o f i l e s . At the same time , cer ta i n

p h y s i c a l l y u n r e a l i s t i c  f ea tu r e s  are encountered in

their solution . Whereas the vortices in all of this

work appear in the right places (i.e., corresponding

to where they were found by Klebanoff ,~~
9
~ in the

Antar and Collins work their sense of rotation

per iodical l y reverses ! Craik~
38
~ extended the Benmey—

Lin~
34
~ analysis in a major way by considering triads

of Tollmien—Schlichting waves , consisting of a two—

dimens ional wave and two oblique waves propagating at

equal and opposite angles to the flow direction and

such that all three waves have the same phase velocity

in the downstream direction. The analysis shows that

there can be remarkably powerful resonance interactions ,

leading to a rapid transfer of energy from the primary

shear flow to the disturbance , preferentially to the

oblique wave. For a given two—dimensiona l wave , reso-

nance occurs only for certain oblique waves, suggesting

a possible natural selection process for the oblique

wave of the Benney—Lin theory.

(2) Greenspan and Benney.~
39
~ The linear stability of time—

dependent shear flows, of the type Klebanoff~~
9
~ found

to exist before the final stages of breakdown , is

analyzed . (Although this is a linear theory, it is

includ ed in this discussion because it begins with the

highl y d i s t o r t e d  unsteady mean f low p r o f i l e s  found

beyond the primary (linear) range and thereby attempts

to explain the later (and supposedly nonlinear) stages

of t ransition.) Violent secondary instabi l i ties are
found to occur (e.g., in one—half per iod of the primary

oscillation , the energy increases by a factor of 100).

The wavelength corresponding to a maximum amplification

is one—fifth that of the primary wave——a trend in accord



— 2 2 —

with the experimental evidence that the scale’s of

mot ion  become sma l l e r  in the  l a t e r  stages . Can these

secondary i n s t a b i l i t i e s  he considered the  “sp ike’s ”

observed?

b. Localized Point_ (Three—Dimensional) or Line (Two—t)l mensional )

D i s t u r b a n c e s  and Their  Evo l u t i o n  in Sp~ç~~ and Time . It is intrinsic

to a modal ana lysis , based as it is on decomposition Into Fourier

modes , that the disturbance grows everywhere ut the same rate. This

un I form growth runs c o u n t e r  t e i  t l ie ’ obse- rve’d I i s a  I i zed lot i-ui s. rig i ecns

of disturbance in the transition region. The theories in t h i s  section

do not follow this approach.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Stuart nonlinear stability analysis (C.I.a) is

extended to the space and time modulation of the dis-

turbance amplitude. First , the’ l ong— t ime’ hehav ior  of

an infinitesima l disturbance- nu cc -o rding t i c t il e’ I n e ’n u r - -

ized Navier—Stokes equations is found  (by using F o u r i er

transforms in space and a l ap  lace transform in t ime)

~ A~~ (z) exp t i i i  (x - c t )  I (for a i-I) disturban ce’) (28)

/ J 2
where  A .  I 

~~~~~ 
—

T k4a21 eh
2

r

and e = d (Re — Re ) I (d a t a c o s  t . , i c ~~ I p. l e t  0 cil r  c - Ir

where’ (z) is the e igeulso I ut ion of t h e Orr—Sommer t l d

c-qua t i (In at the mInimum crit i c-n i I Re-yno I ds number Re

c or r e ’ sp on d i n g  to wave number  a and phase speed c .

(The’ ii he’ r quan t I tie’s arc’ def i ned he low . ) Equa t ion ( 2 8)

r e pr e - s e -n i s a m o d u l a t e d  wave j~ Ie ke’t , and suggests se-al e ’s

f o r  a mu It i p i e — s e a  I t -  anal ysis. The amp Ii t ude A i s  f o u n d

by t h i s  app roach  to s a t  I s f y
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- a
2 

- h 2 = 
d 

A + k~ A l
2 A + q AB (29)

ci Ir

where’ a2, b2, d 1, d l ,  k, and q are’ a ll constants , B

is related to the pressure and

= c ’
~(x — c~~~ t )  (c

g 
group velocity)

“slow ” ½n = c y (spanvise var iable)var iab le s

=

(B Is governed by another differential equation ,

involving A and therefore coupled to Eq. (29).) This

equation ge verns the slow modulation in space and time

of the disturbance wave packet , Eq. (28). The solu-

t ions of Eq. (29) are found to have singularities
(bursts?, “turbulent spots”?) both for Re — Re - 0 and

Re — Re~ 
< 0. The most recen t work by this group is by

Hocking~
45
~ on the asymptotic suction profile; thus

far this approach has not been extended to flows with

slowly varying mean properties . Gaster ’s experiments

(to be published ; see also Ref. 46) on centered dis-

turbances in laminar flow confirm the general features

of this approach .

D. FREESTREAM DISTURBANCES AND INI TIAL DI STURBANCE AMPLITUDE
To the extent tha t one accepts as plausible the concept that

hydrodynamic instability and the beginning of transition are asso-

ciated with the attainment of some absolute minimum level of disturb-

ance amplitude , it seems to follow that one must assign a key role to

the ini tial amplitude and spectrum of the disturbance. For most

practical cases of interest the most likely source of this initial

disturbance field is the freestream .
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Early at tempts to incorporate freestream disturbance levels into

ad hoc transition criteria were made by L iepman n~~
7
~ and Van Dr iest

and Blumer . 
(47) 

As noted above, Benney and Bergeron sugges t  i’d t u n i t

the additiona l neutral modes found in their non l inear c riti c al laye r

analysis, for which the phase speed is close’ to tiit ’ fri-c-str eam vt-l u—

city and the critical layer is near the outer edge , may he a possIbli-

mechanism for freestream disturbances to e’nte’r the’ boundary laye’r.

It seems that neither they nor other investigators have followed UI )

on this possibility. The forced response of the boundary layer to

d i s t u r b a n c e s  e x t e r n a l l y  imposed at the  ou t e r  e-dge’ has been calculated
(48 ,49) (50)

by Criminale and Mack. In the same spirit , Rogler and

Reshotko~
51 ’52

~ have studied the interaction between a boundary layer

and a low—intensity array of sing le wavenumber vortices c-onvected at

the mean freestream velocity. This latter work has consisted of 1in~-;ir

analyses based on the para llel—flow Orr—Sommerfeld equation made

inhomogeneous by the external disturbances .

ack~
53

~ employs an empirical nonlinear coupling r e l a t i o n  between

the boundary layer and external disturbances in order to account for

experimental results in low—speed f low . Mac k uses an ampli tude r a the r

than amplification rate criteria , and finds that the amplification rate

at transition is less than e
9 when the freestream turbulence levels are

low, and is greater than e9 when they are high . More recently ,

Mack’s~
54
~ calculations predict that the amplification rate at transi-

t ion is e9 for a low—speed flat plate boundary layer when freestream

dis turbance levels are .07 percent .

It should be noted that the incorporation of the initial distur—

bance field into an “er” calculation is plausible only if the initial

ampli tude is sufficiently small.

E. DISCUSSION AND CONCLUSIONS

1. Theoretical Shortcominja

No one has yet been able to patch together a comprehensive theory

covering the entire instability—transition regime . It is significant

that almost none of the nonlinear stability analyses compare results
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with experimental data--they almost exclusively are presented as quali-

tatively representing the pos t—pr imary stages of breakdown . Specifi-

cally, here are some of the weak points of these t heories that keep us

from attaining a comprehensive treatment :

I. The initial amplitude of the disturbance and Its spectral

distribution within the boundary layer are unknown , In par tic ular  as
they are Influenced by the externa l disturbances. This is a prob l em

for the linear as well as the nonlinear theories , and as Mack~
50
~ points

out will remain a problem even when it becomes possible to solve the

full nonlinear , three—dimensional , t ime—dependent Navier—Stokes equa—

tions. Without knowledge of the initial disturbances , transition

prediction is always likely to remain a partiall y ad—hoc or empirical

enterprise.

2. Almos t all the nonlinear theories of hydrodynamic stability

are based on the smallness of an amplitude parameter c w h i c h  is  propor-

t ional to t h e  d i f f e r e n ce  (Re — Re ), where Re Is th e -  minimum critical
C c

Reynolds number. These theories are valid therefore only for Reynolds

numbers near and slightl y greater (or less) than Re
c. This limitation

is inherent in their representation of the growing disturbance as the

mode corresponding to the sing le unstable wave at Re , and the assump-

tion that the amp litud e of this mode , although not infinitesima l , is

small. They would seem to be invalid then for those wave numbers c~

which according to l inear theory are most amplified (and therefore

seemingly most implicated in the transition process). For such u

generally first begin to amplify at Re much greater than Re , and there-

fore whereas this newly growing disturbance node will~~e infinites ima l

when this particular Re , say Re , is reached , all the modes which are

unstable between Re and Re will have had time to grow , so tha t the
C’ 0

disturbances at Re can be assumed to be neither small nor monochromatic,

2. Impact on Prediction Methodology

Our inquiry into the state of current nonlinear stability theory

has been disappointing . The theory involves difficult mathematics ,

and often obscure physics. It can represent interesting features of

late stages of the tr’insitioru process, provided that disturbance levels

are large enough to trigger transition near the minimum critical
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Reynolds number . Moreover , the theory Is not  Intended for thus-c

important situations in which transition is delayed by shap ing , he-at

transfer , or other means , and where heroic attempts are made to reden--
*the effects of disturbances .

Unfortunatel y, those who require estimates of transition locat ion ,

for purposes of design and performance optimizat ion , must s till make’

do wi th more or less ad hoc eng ineering criteria , or , at best , ca ir uln i—

t ions of the “e
9” type . If disturbance levels are s imi l n i r to those’ in-

volved in the original “e9” data base , then such c-ali-ula ti ons still nip—

pear to be the best and most reliable method for locating t r a n s i t i o n .

In particular , if (1) the initial amplitude of the disturbance is very

low, whether ingested f rom the main stream or Internally generated in

the boundary lay er , and only excites Tol lnlen—Sch lichting waves; and
(2)  the dis tu rbances are slowly amp lifying, as in a boundary laye~r w i t h

a f avorab le  or m i l d l y  adverse pressure  g r ad i en t , so t h a t  t h e  d i s t u r b a n c e

growth over most of the distance t o  t r a n s i t i o n  is e x p o n e n t i a l , then  t h e ’

method nay reasonably be expected to he app ili-abl e’ to predict ing

transition . However , any real—world departures from the idea li ty im—
9 , -p licit in the e met hod must be dealt w ith on an e m p i r i c - ni l basis.

l’hus, to the extent that roughness or v ibr ni t ion a r e  re~npons Ihle ’ for in --

fluencing the flow iii ways other than by p roducing small di stci rha n - i’s

that excite or feed Tollm ien—Sc hl icht ing waves , I t is un r e a s o n a b l e  to

expec t the ~e
9” met hod to aic -oun t f o r  t lie i r - f  I c -ct  up on t rati s i t  ion .

The-re- appears to he’ ii t t 1 e in  cii r rc’n t non I I nra r the -u ry  wh i rh beni rs

on these’ problems of des i gn and predict i on , or i’ve-n prov Ide-s r i t ion;1 I —

i z a t  ion  of t lce
.

seI ( ces s of t he  “ c- ~~“ ;cpp r e ) ac ’ Ii - ‘ru e’ Sane’ St  n i t  e’ of a 1 f t  I rs

holds n i t  pre’sen t (st -i ’  Fast- i ~ ) b r  n u m e r i c a l  s o i c i t .  ions of t in’ N a v i e ’ r —

St cike’s c-qua t i ons , n ind  the’ si t uni t ion wit h mode I c ’q c ta t  ions is c~Ve’n no r~

prob I rina t I i’

Ther e  is ci ~‘ar iv a need I or a ne-w , p e r h a p s  le s s  I o r m n i l , non I in c -a r

t lc e~o r y  , wh ( c l i  t -omh in c - s  the ’ growt Ii r i  t c’s and I re’quc’n (-v de’pe-ndcne v i t t

*Th e-sc ’ e-uflnt ’nt s , and Ind eed must of th s r e-port , cr c ntende ’d to
r u f e -r  spec i f  ( c a l  ly  to n i t t ~u -he d she-ar l a y e r s , sii , -h as b ou n d a r y  l a ye r s ,
and nu t  t o  f r ee  shear layers , such ;i s wake s .  For t h e  Inc t t er  c-I ass ut

f l ow s , w h i t - i c  are- I n v i s c i d l y  i i n st a h h ’ , d i s t u r b a n c es grow more rap idl y
m d  nun I I n i- a r m i ’c ’h ;mn I sms rum.’ In to p 1 nIv m en-ic t’a r I I e’r in  t rail s I t I c c c i
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th e-  two—dimensiona l Tollm ien—S chlicht lng waves (wh i t-h is centra l to

t h e ’  “ e’
9” m e t h o d ) and the- three—dimensiona l nonlinear effects described

earlier. Unt i l a nonlinear theory can describe transition far down-

stream of the minimum critical Reynolds number , there is little hope

for its relevant- c- to problems of undet~ ater low—drag hydrodynamics.

Until tha t t ime , the remarkable  “e9” criteria for boundary—layer

transition will not he supplanted.
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