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The design and initial development of the stabilized
laser gravimeter system have been previously described in
AFCRL-TR-74-03S5. In the design a mirror forming one end
of a Fabry-Perot optical cavity is mounted on a mzchanical
suspension system. The suspeision consists of a beam, end
loaded to obtain the required sensitivity to changes in
gravitation. A He-Ne illuminating laser is locked to a
fringe of the Fabry-Perot cavity. A He-Ne laser stabil-
ized by locking to a vibration-rotation absorption line of
a methane cell is used as a reference. The output of the
system is a beat frequency between the two lasers propor-
tional to the gravity change.

The proposed parametric excitation system applies a
periodic end load in addition to the static load on the
beam suspension system. It has been shown theoretically
and experimentally that significant (order of magnitude)
gains in sensitivity can be realized by parametric
excitation.
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INTRODUCTION

The '-;sic inrstrument used in the tests discussed in this report
has previously been described by Merchant [1,2].

fhe instrument is a static gravimeter as opposed to a pendulum or
free-fall apparatus. The gravimeter consists of a mass elastically
su:,,enaed so that changes in gravitation (or acceleration' will result
in. i detectable relative motion of the seismic mass. The mass consists
of P mirror and holder, and the detection system uses two lasers. The
,airror is the retro-reflector of a high-finesse Fabry-Perot cavity, an
opt~cal resonator with very narrow transmiszion fringes. The wavelength
of aji external He-Ne illuminating laser is locked to changes in the
cavity length by following a single fringe. The reference frequency is
provided by a second He-Ne laser which is stabilized by inserting a
methane cell in the cavity, and locking the laser frequency to the
molecular absorption line of methane. The output is the beat frequency
between the stabilized reference laser and the cavity-locked laser. The
optical system is an adaptation of the techniques used by Levine and
Hall [3] for a strainmeter.

The microgal resolution needed for a useful gravimeter requires
a very high resolution laser and a very low natural frequency (soft)
mechanical suspension system. To obtain the necessary mechanical
sensitivity, a suspension system consisting of an endloaded beam was
used. Theoretically, the natural frequency and spring stiffness of
the system approach zero as the end load approaches the buckling load
for the beam system [4,5].

A vacuum syster was constructed to enclose the Fabry-Perot sens-
ing cavity and the s; tem was installed at a University of Washington
Geophysics test site at Tumwater, Washington.

1. II.C. Merchant, "Stabilized Laser Gravimeter," AFCRL-TR-74-0355,
Air Force Cambridge Research Laboratories, Hanscom Air Force Base,
Massachusetts, July 1974.

2. H.C. Merchant, E.M. Hernandez and N.D. McMullen, "Stabilized Laser
Gravimeter," Proceedings of the 20th International Instrumentations
Symposium, Albuquerque, New Mexico, May 1974.

3. J. Levine and J.L. Hall, "Design and Operation of a Methane Absorp-
tion Stabilized Laser Strainmeter," Journal of Geophysical Research,
Vol. 77, No. 14 (May 1972) pp. 2595-2609.

4. L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New
York (1967).

S. H. Lurie, "Lateral Vibrations as Related to Structural Stability,"
Journal of Applied Physics, June 1952, pp. 195-204.



The use of parametric excitation to increase the sensitivity of
the system has been demonstrated theoretically and on a laboratory
model. The parametric excitation is introduced as a periodic compo-
nent superimposed on the static end load of the beam support system.
The sensing mass and mirror iii the Fabry-Perot cavity arc carried on

the parametrically excited support beam, resulting in an amplified mirror
deflection.

EXPERIMENTAL SETUP, FIELD TESTS

The components of the gravimeter are shown schematically in Fig-
ure 1, and their function is identified. Figure 2 shows the beam sup-
port system and the center mass containing a mirror, which is identi-
fied in Figure 1 as the accelerometer. Figure 3 shows the complete
Fabry-Perot cavity without the vacuum chamber. The beam and detector
mass are visible at the bottom in the endloading housing and the He-Ne
illuminating laser for the c, vity is visible at the right. Figure 4
shows the vacuum housing for the cavity. The laser beam enters through
a quartz window. Figure 5 shows the Fabry-Perot cavity enclosed in
its vacuum housing, as installed at the test site at Tumwater, Washing-
ton. The He-Ne illuminating laser is visible at the center and the
methane-stabilized reference laser is in the foreground. The beat
frequency detector is visible at the left. The details of the con-
struction and operation of the system have been reported previously.

The field tests were intended to obtain earth tides for compari-
son with predicted values over a time period long enough to check the
stability and sensitivity of the system. However, due primarily to
equipment reliability, the maximum periods during which data could be
obtained were hours rather than days [6].

Problems encountered in the field tests were: degradation in
laser outputs as a function of time; multiple resonances in the Fabry-
Perot cavity, and multiple-cavity interaction between the Fabry-Perot
cavity and the He-Ne illuminating laser cavity; degradation of the
optical isolation system with time (apparently due to moisture sensi-
tivity); and electronic failures in the servo tystem and the long-path
(Fabry-Perot) detector system.

The laser degradation was alleviated by periodic laser realignment.
The multiple resonance and cavity interaction were eliminated by changes
in the cavity configuration and replacement of the optical isolation
system with one with a higher transmission coefficient. This higher
quality system also eliminated the initial problem with the optical
isolation system, The servo system was repaired before the end of the
contract period, but components to rebuild the long-path detector could
not be obtained in the contract period.

6. Laser Stabilized Cravimeter Quarterly Report, Nos. 3 through 7,
Contract F19628-7S-C-0042 (1975-76).

2



Therefore, as stated before, operation of the system was confined
to a few hours. However, this did allow the evaluation of the operating
parameters [1] and error sources as discussed in the following section.

ERROR ANALYSIS AND TESTS

The following sources of error were examined:

a) The variation in vacuum in the Fabry-Perot cavity.

b) The variation in temperature in the Fabry-Perot cavity.

c) Creep in the structural materials.

d) Gravity noise due to tilt.

e) Background noise due to personnel movements and
local vehicular traffic.

The vacuum chamber surrounding the Fabry-Perot cavity was not construc-
ted to obtain a high vacuum but rather to ensure a stable condition.
The effect of a change in pressure is a change in the speed of light
and hence the cavity resonance frequency. This frequency change is
reflected in an apparent gravity error (Ag) as follows:

Ag = (AL)w 2
n

where

AfAL a -T-L

Af a f- fA

V
fa

VAfA 2L

and

Ag a gravity error

wn = natural frequency of the sensing mass (and mirror)

AL = apparent cavity length change (deflection of sensing mass)

L = original cavity length

f = original cavity frequency

Af = frequency change in cavity

3



fA = perturbed cavity frequency

V = velocity of light at the original condition

VA = velocity of light at the perturbed condition.

Variation of temperature can affect the syster in two ways. The
first is through a change in the speed of light and the second through
thermal deformation of the structure. The first effect is handled
theoretically in the same manner as the pressure effect and hence they
will be discussed together.

There have been several investigations, both theoretical and empiri-
cal, to determine the relationship between the index of refraction (and
hence the speed of light) and the parameters that affect it [7, 8, 9,
10]. The most recent is by Owens [10]. His results were used to predict
the sensitivity of the gravimeter to pressure changes and the aspect of
temperature change that affects the index of refraction.

The velocity of light in a medium is related to the index of
refraction by

C

n

where

C the velocity in a vacuum
n = the index of refraction.

Owens' results are:

7. 11. Barrell and J.E. Sears, "The Refraction and Dispersion of Air
for the Visible Spectrum," Philosophical Transactions of the Roia!
Society of London, Series 4, Vol. 238 (1940) pp. 1-64.

8. Flden Bengt, "The Dispersion of Standard Air," Journal of the Optical
Society of America, Vol. 43, No. 5 (May 1, 1953), pp. 339-344.

9. Elden Bengt, "The Refractive Index of Air," Metrologia, Vol. 2, No. 2
(April 1966) pp. 71-80.

10. James C. Owens, "Optical Refractive Index of Air: Dependence on
Pressure, Temperature and Composition," Applied Optics, Vol. 6,
No. I (January 1967) pp. 51-59.
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s2 s 4

(n-1) = I1 + _2 + 2D s
S3  S - s

[ +  
2  +W 3 4 + 4o6ID. (2)

where

D Ps 1 + Ps S6 + S7+'Ss T s T T 2

D 1 + + + 6 + +  )1

1

Aa wavelength (angstroms)
P a partial pressure of air (millibars)

Pw a partial pressure of water vapor (millibars)

T a temperature (degrees Kelvin)

and

S. Wi

1 2371.34 x 10- 8  6487.31 x 10&8

2 683939.7 x 10- 8  58.058 x 10o8

3 130 -0.7115 x 108

4 4S47.3 x 0' 8  0.0885 x 10-8

S 38.9 3.7 x 10 4

6 57.9 x 10 .8 -2.37321x 10&3

7 -9.32S x 10. 4  2.23366

8 0.25844 -710.792

9 - 7.75141 x 10 4

The formula assumed atmospheric air to be made up of dry carbon dioxide
free air, water vapor, and carbon dioxide. The partial pressures of
air aid water vapor required can be determined by assuming ideal gas
beha ior at low pressure.

The assumed reference t.ohditions to determine the effects of pressure
and temperature changes were
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T = 3000K

P = 1 mii Hg

Relative Humidity = 50%

..S9 33,900 A0

The results of applying the foregoing equation are:

Pressure

Ag = 14.126 milligals/mm Hg

Temperature

Ag - 16.7 microgals/degree K.

The experiment'l method used to check the pressure effects on the sys-
tem was to evacuate the system, shut off the vacuum system, and introduce
a controlled leak while monitoring the frequency of the Fabry-Perot
cavity as a function of vacuum. The test times were short compared
to the-mal delay times and earth tide periods. The pressure changes
selected were several orders of magnitude (2 mm Hg or more) beyond the
system's operational fluctuations, to obtain a large error output. The
predicted values for Ag/mm Hg ranged from 30% 1.o 40% below the values
obtained during three pressure tests. Therefore, the foregoing calcula-
tions for pressure error provide a conservative estimate of the pressure
effect.

To investigate the thermal effects on the index of refraction,
the system was operated with the vacuum system on and the aluminum
vacuum housing heated at a series of locations. The gravimeter output
was monitored during the heating period and for 45 minutes afterward.
Temperatures were measured with thermocouples attached to the vertical
quartz support rods (Figure 3, longest rods), to the quartz rods sup-
porting the mechanical sensing system (Figure 3, short rods), and to
the steel spacers (Figure 3, on top of short quartz rods), and with two
thermocouples suspended in the cavity next to the laser beam path.

The other aspept of the thermal effect on the gravimeter is the
change in cavity length due to thermal expansion. The support for the
Fabry-Perot cavity is designed so that the sensor is on re-entry rods
of quortz and spacers of steel (Figure 3). The support members are
dimensioned so that the thermal expansion of the re-entry supports cancels
the expansio- of the lateral supports [1, 11]. This, of course, is the
case when chere are no thermal gradients between the support elements.

11. N.D. McMullen, "Methane Absorption Stabilized Laser Gravimeter:
Design of an Ultra-Scisitivity Fabry-Perot Interferometer Ac-elerom-

eter," M.S. Thesis, Mechanical Engineering, University of Washington,
1974.
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In the tests performed, thermal gradients were developed in the
supports that resulted in cavity length changes that produced errors
several orders of magnitude greater than those that would be predicted
from the temperature change (1K) obtained in the partial vacuum. There-
fore only qualitative statements can be made about the relative magnitude
of the three sources of error--thermal expansion, pressure changes, and

direct temperature changes in the cavity. The results indicate that
the direct temperature changes will cause errors that are orders of magni-
tude smaller than the pressure fluctuations. Therefore the most important
thermal concern is maintaining a uniform temperature in the gravimeter
structure.

Creep is defined as slow deformation of solid materials over extended
periods of time. Temperature and stress in the material are parameters
in the creep process. The element in the system most sensitive to creep
is the support beam since the material is steel and it is the most highly
stressed. For the creep to be important, temperatures on the order of
one-half the melting temperature and stresses that are a significant per-
centage of the yield stress must occur [12]. The maximum end load re-
quired to obtain the desired natural frequency of the sensing beam sup-
port system (2.5 Hz) is 14.2 x 106 dynes with a resulting stress of
2.8 x 108 dynes/cm2 [13]. The yield strength for the beam material is
1.38 x 1010 dynes/cm . The operating temperature will be less than 35C
while one-half the melting temperature is approximately 7500C. Therefore,
no experimental creep tests were performed.

The effect of tilt at the measuring site on the gravimeter output
was examined by introducing a large tilt at the base of the instrument
and scaling the effect to geophysical levels. The entire gravimeter sys-
tem was mounted on a granite slab, the edge of which is visible in the
foregound of Figure 5. A tilt was introduced by raising the edge of
the slab with a hydraulic jack while monitoring the slab motion with
dial indicators supported on a frame over the slab. When the results
were scaled to actual geophysical tilt levels of 10-9 radian, the tilt
error was on the order of 1 pgal and therefore within the accuracy of
the gravimeter.

A discussion of the linear vibration analysis of the sensing system
is given by McMullen [11] and Bonder [13]. A discussion of the nonlinear
aspects by Eisinger [14] is summarized in the following section. The

12. L. Finnie and W.R. Heller, Creep of Engineering Materials, McGraw-
Hill, New York, New York 1959.

13. G. Bondor, "Calibration and Error Analysis of a Stabilized Laser
Gravimeter," M.S. Thesis, Mechanical Engineering, University of Wash-
ington (in preparation), 1977.

14. K. Eisinger, "Parametric Excitation of a Clamped Beam," Ph.D. Thesis,
Mechanical Engineering, Univeristy of Washington (in preparation), 1977.
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purpose of the tests was to identify operational problems empirically.
Three types of inputs were used: vehicular traffic immediately adjacent
to the test site structure on the access road; personnel movement in the
test site; and impacts adjacent to the test slab. The impact testswere drop tests with metal-to-metal impact to provide a higher frequency
input spectrum than obtained by foot falls. An impact of 1.9 joules
(newton meters) was produced on the building floor just adjacent to the
isolation gap between the pier and the building floor, at 2 meters from
the gap, and about 3 meters from the gravimeter on the rock outcropping
to which the pier is attached. The results indicate that the disturbances
caused a gravimeter output up to 85 milligals, which is far above the
microgal sensitivity required. However, the purpose of the gravimeter
is to measure phenomena with periods of hours, so such disturbances
only create spikes of noise in the data which can be filtered at the time
of recording or during da.a analysis. The important consideration is
the ability of the system to maintain laser lock and provide continuous
data. This was accomplished in all the tests.

PARAMETRIC EXCITATION

The gravimeter mechanical sensor and suspension system in Figure 2
is shown schematically in Figure 6. In the present configuration the
end load [P(t)] is a constant, selected to obtain the desired frequency
and hence sensitivity. By allowing the end load to be a time-varying
parameter with a specific frequency and mean load, it is possible to obtain
increased displacement of the sensing mass to a given change in gravity
and hence an increased gravimeter sensitivity. This phenomenon is called
parametric excitation or parametric amplification and has been known for
many years. The phenomenon was observed by Faraday (1831), Melde (1859)
and Rayleigh (1883). Supporting theory was developed initially by Mathieu
(1868) and Hill (1886). It was later applied in electrical circuits. The
particular configuration of an endloaded beam without parametric excita-
tion has been considered in a great many papers up to the present day.
A detailed bibliography on parametric excitation and related phenomena
is given in Appendix A. A series of papers by Rodgers [15, 16, 17, 18]
presents the development of an electromechanical parametric amplifier
for use in a seismometer.

15. P.W. Rodgers, "Parametric Phenomena as Applied to Vibration Isolation
and Mechanical Amplifiers," Journ. Sound and Vib., Vol. 5, No. 3
(1967) p. 486.

16. P.W. Rodgers, "Sub-Resonant Response of _ Mechanical System, Para-
metrically Excited at the Resonant Frequency," Nature, August 21,
1965, p. 853.

17. P.W. Rodgers, "A Spring with Time-Variable Stiffness," Journ. of
Acoust. Soc. of Am., Vol. 39, No. 4 (1966) p. 749.

18. P.W. Rodgers, "A Phase Sensitive Parametric Seismometer," Bull. of
Seismological Soc. of Am., Vol. 56, No. 4 (1966) p. 949.

8



The analytical and experimental models were selected to be compatible
with the existing gravimeter configuration. A schematic view of the ex-
perimental setup is shown in Figure 7, and a photograph in Figure 8. A
beam of the same dimensions as the gravimeter sensing element with a center
mass (including the mass of the accelerometer) equal to that of the gravim-
eter mirror holder mass is visible in the fixture. The static end load
is provided by the lever system visible at either end. The dynamic end
load is provided by piezoelectric elements, shown in Figure 9 as a cylinder
at the center of the figure (the final configuration was a cylindrical
stack of ceramic disks for greater output). The flexure support to main-
tain the beam boundary conditions while allowing the end load to be applied
is shown at the left. The complete experimental setup is shown in Figure
10. The parametric system is supported on shock cords and driven by an
electromagnetic exciter through a direct current amplifier.

The first experiments repeated Rodgers' tests to check out the
effect in the primary parametric amplification mode for the present
configuration. The results are shown in Figure 11. Trace A is the beam
response to an endload signal at twice the beam's fundamental frequency.
The low level response is due to imperfections in the beam and its align-
ment in a gravity fie.d. Trace B is the beam response to a low level
base input (perpendicular to the plane of the beam) with no variation
in the end load. Trace C is the result of the same base input and periodic
end loads together, and demonstrates parametric excitation. In the present
application, the system must exhibit parametric.amplification for an input
signal with a frequency much less than the natural frequency of the sensing
element which will be identified here as secondary parametric excitation.
The variables that can be controlled are the magnitude of the static end
load and the frequency and magnitude of the dynamic end load. Sinusoidal
end loads were used in the experimental and theoretical studies. The
following matrix distinguishes between primary and secondary parametric
excitation.

Dynamic endload Base motion v(g) Phase

Frequency Amplitude Frequency Amplitude

Primary
parametric O
amplification 2 fn any *fit any 0O

(Melde's effect)

Secondary
parametric < f F(u2) << f any any
amplification -

fn = system natural frequency; w = endload frequency



If the following assumptions are made about the system shown in
Figure 6,

a) Constant density, area, modulus, and moment of inertia

along the beam

b) Small deflections

c) Linear viscous damping for transverse motion (8)

d) The same input motion (acceleration) at both support
points (vtig))

e) End load P(t) =P 0 +P 1 CosWt,

the resulting equations of motion are [14]:

+ t + !AG ( v xx) I (Uv) _ I ( 3) (g) (3)

with boundary conditions: v(i,t) - v(-Z,t) = 0

El + kAG(4
'tt T xx -r (€ "vx) = 0

with boundary conditions: 0(1,t) a 0(-X,t) = 0

and

utt EA -Ux EA (-v 2)a x

v 2(,t)
with boundary conditions: u x(,t) + 2

p p

A- EA- cs wt

u(o,t) - 0,

where u,v, and * are the coordinates shown in Figure 6, and

= beam mass per unit of length
8 = damping coefficient
A = area
E = Young's modulus
G = shear modulus
I = area moment of inertia
J = polar moment of inertia
k = cross. section shape factor
k = beam length/2
w = end load frequency

10



A Galerkin analysis follows in which a solution in the form of a series
of comparison functions satisfying the boundary conditions is assumed.
For this analysis it is convenient to combine the three equations. For
this to be accomplished, equation (5) must be solved and the value sub-
stituted in (3). Closed form solution of equation (5) is possible if
the nonlinear coupling term (vx/2)2 is small when compared to ux. This
depends upon the magnitude of the input, vtt(g), and/or Po and Pl. For
the conditions shown below that are required for parametric excitation
in the gravimeter, the nonlinear term may be neglected [143. The re-
sult is:

E xxI x EG P XX4 sin Xx cos wt v.

+ 3 E P1 
X  c3 Cos x cos Wt vxx

EI_ EI

+ 3 El- PX i xCsw Ipv
AG P1 XX

2 sin Xx coswt kAG o xxxx

El
" G PI XX cos Xx cos wt Vxxxx

E 21 3 E2 1 3 E21 2+ 3 d vxx + 9"MVxVxxVxxx +"0 vx Vxxxx

B 8 EI v - I(xW EI -p P X2 sin Xx cos wtv

3 2
+ P v + P1 XX Cos Xx Cos Wt Vxx - EA v 2

0 x2 x xx
J 2

+8v + v(x) v - JV + - PW X 2 sin Xx coswt v

+ 2 j P WXX2 sin Xx sin wt - i P XX2 sinXx cos wt V
kAG 1 xt kAG 1 xtt

4 " 1 XX cos Xx cosWt vxx - 2kG P wXX cosXx sinwt Vxxt

J + J VL P XX cos Xx Cos Wt J 3 E v 2V
kAG o Vxxtt kAG o1 - JE xt xx

- JE JE 3 JE 2 J
V -v- x-tVxVxxtt B-G vttt

+ -x (x)g) - x)J (g) (6)
kAG vtttt 1 vtt " AG tttt (

11



subj oct to t he boLda ry cotid i t ions (homogenvotls equat i on)

v(2,,t) = v(-Z,t) = 0

Vx(Q.t) = (0.t) + Y(k,t) = 0

vx (-2,t) = Z(-,t) + Y(-2.,t) 0

where the variables are as defined previously and

( l 2 1/2

and

1X "/21/2

The system's response of interest is the fundamental (first symmet-
ric) mode. Therefore, we use only one term in the approximate solution,
with a comparison function approximating the first mode of the linearized
system (01). The assumed solution is:

v(x,t) - 4i(x)q(t)

where q(t) describes the motion of the beam center. This assumption
results in a fourth-order equation in the variable q. For a slender
beam of the gravimeter configuration and for a low excitation (base
motion) frequency, the equation can be approximated by a damped, foiced,
nonlinear Mathieu equation,

a 2q + a114 + (FO I +a 0 2 cos wt) q+o q 3 +B1 q 2 + 2BIqq

- I vtt "  (7)

The equation was numerically integrated and a linearized version of the
equation was analyzed for conditions consistent with the gravimeter.
The results were within a percent of each other. The linearized equa-
tion, which was used to prepare the stability and amplification plots
shown in Figures 13-15, is:

2I

d + 2 a d + (a2 Ylos wt) q -Y2 Asinwt, (8)

dt2dt 2

where
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2
a

Y= 0 2 /a 2 1 , A = acc. amplitude in m/sec2

a2l 2O

m 3 El i2 I Hj: +2 4 +  +o  2 in
21 0 2 rn

~~7 J 4jf 2
a1~~~, (2 - ' z z + k 'o x 'z

12 2 Fr RT ~ AG p'WX 17

&o ,- 4 Eo ( .j7r

El X3 p (71)2 + 7AG:4 fx~01 PI ~~ 7E6 21 El 41
IkA~~IA..1AnVL 474

El x(1')4 + _LXA - X 1

7JG 2 4 G/

T v F K W X+

This equation can be transformed to a standard form,

-2 + (a- 2T cos 2z) y * F(z) (9)
dz

where

F(z) B sin nz

q(z)- e y(z) ,wt =2z

2 (1 C) 2

a= -4 -
K
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£be solution for the homogeneous equation is given in terms of
Mathieu functions (integral and fractional order). A stability plot for
the equation as a function of the parameters a and Z is shown in Figure 12.
The solutions of thn forced equation show that the desired response at
the frequency of the input is modulated by other, multiple (higher) fre-
quency components. An analysis of the solution in the stable regions
of Figure 12 shows that both parametric amplification and parametric
attenuation can occur. Figures 13 and 14 show the amplification (or
attenuation) curves for the first three regions. Figure 15 shows the
effect of damping in regions 2 and 3. Figure 16 gives the computer cal-
culated response for parameters in region 3 (amplification) showing the
modulated signal. Figure 17 shows the low-pass filtered signal.

The above data can be used to select the coefficients of the Mathieu
equation that will result in amplified responses tha. correspond to the
stable region in Figure 12. A more useful presentation for design purposes,
however, is given in Figures 18 and 19.

If a constant value for the parameter q in Figure 12 is considered,
it is possible to plot the points of intersection with the characteristic
curves (ai and bi) in Figure 12 in terms of the static end load (Po),
the total dynamic endload magnitude (Po t PI), the endload frequency
(), and the transverse frequency of the beam (a). One example of such
a plot is shown for q - 1 in Figure 18, which gives the static end load
(normalized by the critical buckling load, Pcr) as a function of the end-
load frequency (normalized by the transverse undamped natural frequency of
the nonendloaded beam, a.) Figure 19 is another example for q = 1 that
plots the magnitude of tue dynamic end load as a function of the trans-
verse beam frequency. A set of curves (with a range of 4 values) would
allow the selection of the static end load, dynamic end load, and endload
frequency to attain a desired point in the stability and amplification
regions shown in Figures 12 through 14.

The results of one of the experiments conducted to verify the fore-
going theory of secondary parametric amplification are shown in Figure 20.
The system parameters are shown on the figure; the experimental setup
was the same as shown in Figures 7-10. The high frequency modulation is
also apparent in the case of secondary amplification.
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CONCLUSIONS AND RECOMMENDATIONS

The approach taken to develop a gravimeter using a mechanical
sensor in the form of an endloaded beam and a stabilized laser sensing
system still holds promise. No experimental or theoretical reasons have
been identified that would prevent the operation of such a gravimeter.
However, it has not been possible within the contract period to operate
the instrument at its theoretical sensitivity for a period of time long
enough to obtain earth tides. The potential of using parametric excita-
tion to further increase the sensitivity of this gravimeter or for a simi-
lar application has also been demonstrated theoretically and experimentally.

It is recommended that a system using visible red light (6328 A)
and an iodine rather than a methane absorption line be constructed. This
would produce the following benefits:

a) A decrease in cavity size, with a corresponding decrease in
potential sources of errors

b) A direct current rather than RF-excited system, which would
alleviate noise problems associated with the detection system
in the present configuration

c) The direct alignment of the system with the operating red
light beam rather than with an auxiliary laser system,
which would aliow more accurate initial alignment and
routine monitoring of the system.

It is not recommended that parametric excitation of a gravimeter
system be carried beyond its present state of development until either
the present methane-stabilized system or an iodine-stabilized system has
successfully demonstrated its ability to detect earth tides.
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Figure 1. System schematic.

Figure 2. Mechanical sensor support system.
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Figure 3. Fabry-Perot sensing cavity.
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Figure 4. Cavity vacuum chamber
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Figure S. Field system.
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Figure 8. Parametric excitation sensor model.
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Figure 9. Excitation system components.
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Figure 10. Parametric excitation system.
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Figure 11. Primary parametric amplification phenomenon,
clamped-clamped.
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APPENiDIX A

BACKGROUND AND LITERATURE SURVEY, PARAMETRIC EXCITATION

The phenomenon of parametric excitation of oscillatory systems has
been known for many years. The literature descrihing and evaluating
this phenomenon goes back to the nineteenth centiry. In 1831 M. Faraday
[1] observed parametrically induced oscillations on vibrating surfaces.
Later, similar discoveries were made and reported by F. Melde in 1859
[2] and by Lord Rayleigh in 1883 [3]. The mathematics to allow analyti-
cal treatment of the classical problems was developed simultaneously by
Matt;ieu in 1868 [4] and Hill in 1886 [5]. Thus the phenomenon of para-
metric excitation was first discovered on mechanical systems. Years
later, however, these effects were studied and applied effectively to
electrical circuits by Brillouin in 1897 [6] and by Poincare in 1907 [7].
In the years to follow, the phenomenon of parametric excitation of os-
cillatory systems has found an ever increasing number of applications,
many of which are in the field of electronic circuit theory.

Investigations of transverse vibrations of uniform beams have been
conducted since the beginning of this century. Early investigators
were mainly concerned with the general form of the governing differential
equationi of motion for free transverse vibration of uniform beams for
various end conditions. Second-order corrections, such as terms for
transverse shear, rotary inertia, damping, etc., were also proposed.
Most of this early work can be found in papers by Holzer [8], Timoshenko
[9], Muto [10], Sezawa (11], and Suyehiro [12]. The best known result of
these studies is the familiar Timoshenko Beam lquation, which includes
both transverse shear and rotary inertia of the differential beam sec-
tion (see also [31]). The effects of compressive end loads on a slender
column, in particular on its frequency behavior, were initially studied
by Sezawa [13, 141, lowland [15], Cowley [161, and Levy [17].

More recent investigators of transverse vibrations of uniform beams
arc again concerned with second-order nonlinearities in the beam equation.
In general, such nonlinearities arise from:

a) longitudinal constraints which arc cit ...r ovble or

immovable

b) some initial curvature of the beam

c) inclusion of transverse shear

d) rotational inertia terms

e) longitudinal inertia terms.

Some analyses that focus primarily on the nonlinear elasticity terms,
such as a) to c), were published by Eringen [18], Woinowski-Krieger [191,
McDonald and Raleigh [21, Burgreen [21], Wahi [22], Eisley [23], Bennett
and Eisley [24J, Tseng and Dugundji [25, 26], Srinivasan [27] and Lurie
[28]. The resulting equations of motion obtained by the above authors
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are restricted to vibration amplitudes that are less than or equal to
the thickness of the beam as well as to fixed end coordinates (as com-
pared to constant end loads). Solutions to these equations have been
obtained as follows: by Eringen [18] by means of perturbation techniques;
by McDonald and Raleigh [20] using an expansion into Jacobian elliptic
functions of time; by Burgreen [21) by assuming a starting mode shape
and solution of the resulting integral equation of motion using elliptic
integral representation of time; by Bennett and Eisley [24] using the
forced response in a three-mode case; by Tseng and Dugundji [25, 26]
using Galerkin's method and a solution of the resulting Duffing equation
by the harmonic balance method; and by Srinivasan [27] using the Ritz
averaging method in both space and time variables to study the steady
state forced response in two modes. The papers of Tseng and Dugundji
are of particular interest since in addition to simple harmonic motion
they address sub- and superharmonic motion. Other papers that also
address this subject were published by Snowdon [34, 35] and Sridhar,
Nayfeh and Mook [36]. Using the Timoshenko Beam Equation, which con-
siders transverse shear and rotary inertia terms non-negligible, Snowdon
computes displacement amplification curves for various end conditions
of free vibration in his first paper [34] and of forced vibration in his
second paper [35]. The paper by Sridhar, Nayfeh and Mook [36] departs
from a general second order nonlinear equation into which the nonlinear
beam equation always can be cast and presents solutions using perturba-
tion techniques, i.e., the method of multiple scales as developed by
Nayfeh (see [58]) and other authors. Subharmonics, superharmonics and
combination resonances are investigated; the study considers a multiple
degree of freedom system.

In contrast to the papers mentioned previously, in which primarily
"elastic nonlinearities" are considered, Atluri [29] addresses the prob-
lem of modification of the equation of motion by inclusion of longitudi-
nal and rotational inertia terms only. Using Galerkin's method to derive
the equations of motion, he finds solutions to these equations by means
of perturbation techniques.

Another kind of continuous beam problem is the one of constant end
loads as compared to constant end coordinates which was considered above.
Such problems have been discussed extensively by Lord Rayleigh [30] and
Timoshenko (31]. While all previous references are restricted to ampli-
tudes of oscillation that do not exceed the thickness of the beam, a
paper by Woodall [32] addresses large amplitude oscillations of thin
elastic beams. The solutions to his equations of motion--which he derives
by means of the Galerkin method--use the perturbation method and the finite
difference method. The in'luence of a concentrated mass on the free vibra-
tion of a uniform beam is discussed in a paper by Maltbaek [33]. Starting
with a sixth-order frequeicy determinant, his paper lists expressions for
the beam frequencies accorling to end conditions and location of the
concentrated mass.

Another class of literature is the one that describes the application
of the phenomenon of parametric excitation to certain mechanical systems.
As noted previously, parametric amplifiers have (although they were dis-
covered in mechanical systems) found in recent years increasingly more
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applications in electrical engineering. Some of the more recent classi-
cal references in this field arc by Blackwell and Kotzebue [37] and Tucker
1381. Application of the parametric phenomenon to mechanical oscillatory
systems often leads to the classical problem of the dynamic stability
of slender columns that are subjected to periodic longitudinal forces. The
basic concern that led to most studies in this area is the occurrence of
excitation of the fundamental transverse beam frequency at longitudinal
forcing frequencies other than the fundamental frequency. This presents
a serious design problem, in particular, for some aircraft structures. Two
of the early authors on this subject were Utida and Sezawa [39]. In their
report, the authors discuss extensive testing of a brass cantilever beam
with a coi.centrated mass at its end; the periodic end load was applied
through a magnetic field at the free end. The mathematical treatment of
the problem was limited to stability investigations of the well known
Mathieu equation into which the problem was cast. It is interesting to
note that the authors found that instabilities of the system (or conversely
parametric excitation) occur at ratios of the natural transverse beam
frequency of 1/2, 2/2, 3/2, 4/2, 5/2,..., with a decrease of the resonant
amplitude with increase of this ratio. Similar results have been found by
many authors to follow.

A somewhat different analytical approach to this problem was taken
by Mettler [40, 41, 42]. In his works, Mettler used energy principles,
in particular the principle of virtual displacement (see also Marguerre
[43]) and Hamilton's Principle to derive the equations of motion of a
pinned, uniform, homogeneous beam under periodic axial loading. In his
papers, Mettler reduces the equations of motion to a system of n homogen-
eous, linear, second-order differential equations with periodic coeffi-
cients in the form of a general Mathieu equation'which he solves with
a so-called double series development. One is a trigonometric series
and the other a perturbation series. He obtains plots of instability
regions that are similar to those obtained by Utida and Sezawa [39] but
they are developed by purely analytical methods. These papers are par-
ticularly noteworthy since they depart from the basic principles of
the theory of elasticity to derive the required gnergy relations. Investi-
gations based on these fnndamental papers were published by Mettler and
Weidenhammer [44] and Weidenhammer [45, 46, 47]. An interesting finding
reported in the paper by Mettler and Weidenhammer [44] is, that if a beam
is subjected to harmonic end coordinate displacements the spring behavior
is of the hardening type; if the beam is subjected to harmonic end loads
only, it essentially behaves linearly with theoretically unlimited
growth of amplitude (neglecting second-order nonlinearities in the equa-
tion). If a concentrated mass is located at one end and the beam is
subjected to harmonic end loads, the spring behavior is of the softening
type. Those analyses address a pinned configuration. A paper by Weidenhammer
t,13] studies the problem of a clamped beam configuration with a periodic
axial force. The treatment of this problem is much like that of the
pinned problems by Mettler [40, 41, 42] and in fact is based upon the
same theoretical aspects.

Another analysis approach to problems on flutter and autoparametric
resonances is taken by lerrmann and flauger [48] by presenting solutions
in the form of Fourier series. The special problem of "snap-through"
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(symmetrical) and one-sided (unsymmetrical) vibrations of columns is pre-
sented in a paper by Min and Eisley [49]. Based on a paper by Wahi [22]
that assumes the space and time variables are separable, the authors use
a normal mode solution in the form of an assumed series. Limiting the
discussion to the assumption of two modes, the authors find an approxi-
mate solution to the nonlinear equation of motion using the harmonic
balance method. Analog computer solutions are also used for comparison
with the analytical results.

Finally, a series of papers was written by Rodgers [50, 51, 52, 53] on
the development of a mechanical parametric amplifier and its application
as a phase sensitive parametric seismometer. In contrast to the pre-
vious references, tiese papers discuss the general behavior that is to
be expected of a damped single degree of freedom oscillator with a spring
of time-variable stiffness [52]. The spring used by Rodgers [52] is
of the magneto-mechanical type. A noteworthy aspect of this paper is a
clear demonstration of the phase sensitivity of the ratio of the input
to the parametric response, e.g., the amplification curve. Only primary
effects at endload frequencies of twice the oscillator natural frequency
and of the natural frequency and no nonlinearities are considered.

Besides the above papors, a series of reference texts have appeared
that address chapters to the phenomena of parametric amplification of
oscillatory motion. The references of interest, which are by Minorsky
[54], Bolotin [551, and Kononenko [56], were all originally Russian
publications.

Information on the type of data that is to be measured by a gravim-
eter, which is the proposed application of this device, is given in a
text on earth tides by Melchior [57].

37



Bibliography

1. M. FARADAY, "On a Particular Class of Acoustical Figures, and on
Certain Forms Assumed by a Group of varticles.... ," Phil. Trans.
Roy. Soe., No. 121 (1831), P. 299.

2. F. MELDE, "Uber die Erregung stehender Wellen eines fadenf~rmigen
Kbrpers," Ann. der Physik u. Chemie, Ser. 2-109 (1859), p. 193.

3. LORD RAYLEIGH, "On the Crispation of Fluid Resting Upon a Vibrating
Support," Phil. Mag., No. 16 (1883), p. 50.

4. E. MATHIEU, "Memoire sur le mouvement vibratoire d'une membrane
de forme elliptique," Jour. de Mathe. Pure et Appliguees, No. 13
(1968), p. 137.

5. G.W. HILL, "Mean Motion of the Lunar Perigee," Acta Math., No. 8
(1886).

6. L. BRILLOUIN, Eclairage Electrique, April 1897.

7. H. POINCARE, Eclairage Electrique, March 1907.

8. H. HOLZER, "Biegeschwingungen mit Beriicksichtigung der Stabmasse
und der iusseren und inneren Dimpfung," Zeitschr. f. angew. Math.
und Mech., Bd. 8, Heft 4 (1928), pp. 272-283.

9. S. TIMOSHENKO, Phil. Mag., Ser. 6, Vol. 41, p. 744 and Phil. Mag.,
Ser. 6, Vol. 43, p. 135.

10. K. MUTO, Zeitschr. f. angewand. Math. und Mech., Bd. 10 (1930),
p. 346.

11. K. SEZAWA, Bull. Earthqu. Res. Inst., Tokyo, Vol. 3 (1927), p. 50.

12. K. SUYEHIRO, Proc. Imp. Acad., Vol. 4 (1928), p. 263 and Bull.
Earthqu. Res. Inst., Tokyo, Vol. 6 (1929), p. 63.

13. W.L. COWLEY and H. LEVY, Proc. Roy. Soc., London, Vol. 9b (1919),
p. 440.

14. R.C.J. HOWLAND, Phil. Mag. 7, Vol. 1 (1926), p. 674.

15. K. SEZAWA, Jour. Aeron. Res. Inst., Tokyo, No. 5 (1924), p. 39.

16. K. SEZAWA, Rep. Aeron. Res. Inst., Tokyo, Vol. 4, No. 45 (1928),
p. 107.

17. K. SEZAWA, "Die Wirkung des Enddruckes auf die Biegeschwingung
eines Stabes mit innerer Dimpfung," Zeitschr. f. angewand. Math.
und Mech., Bd. 12, Heft 5 (1932), p. 275.

18. A.C. LR1NGEN, "On the Nonlinear Vibrations of Elastic Beams,"
Quart. of Appl. Math., Vol. 9 (1952), p. 3ol.

38



34. J.C. SNOWDON, "Transverse Vibration of Simply Clamped Beams,"
.JAW Jour. of Acoust. Soc. of Am., Vol. 15, No. 8 (1901), p. 1152.

35. J.C. SNOWDON, "Transverse Vibration of Beams with Internal Damping,
Rotary Inertia and Shear," Jour. of Acoust. Soc. of Am., Vol. 35,
No. 12 (1963), p. 1997.

36. S. SR1DHAR, A.H. NAYFEH and D.T. MOOK, "Nonlinear Resonances in a
Class of Multi-Degree of Freedom Systems," Jour. of Acoust. Soc.
of Amn., Vol. 58, No. 1 (1975), p. 113.

37. L.A. BLACKWVELL and K.L. KOTZEBUE, Semiconductor-Diode Parametric
Amplifier, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1961).

38. D.C. TUCKER, Circuits with Periodically Varying Parameters, McDonald,
London (1964).

39. 1. UTIDA and K. SEZAWA, "Dynamical Stability of a Column under
Periodic Longitudinal Forces," Rep. Aeron. Res. Inst., Tokyo Imp.
University 15 (1940), p. 139.

40. E. METTLER, "U6ber die Stabilit~t erzwungener Schwingungen
elastischer K~irper," Ingenieur Archiv., Bd. 13 (1942), p. 97.

41. E. METTLER, "Eine Theorie der Stabilitit der elastischen Bewegung,"1
Ingenieur Archiv, Bd. 16 (1947), p. 135.

42. E. M4ETTLER, "Allgemeine Theorie der Stabilitit erzwungener
Schwlngungen elastischer KOrper," Ingenieur Archiv, Bd. 17
(1949), p. 418.

43. K. MARGUERRE, "Ober die Behandlung von Stabilita~tproblemen mit
Hilfe der energetischen M.ethode," Zeitschr. angew. Math. Mech.,
Bd. 18, Heft 1 (1938), p. 57.

44. Ei. M~ETTrLER and F. WEiIDENAMME1IR, "Der axial pulsicrend belastete
Stab mit Endmasse," Zeitschr. angew. Math. Mech., Bd. 36, Nr. 718
(1954), 1P. 284.

45. F. WEIDENHAMMER, "Der eingespannte, achsial pulsieren belastete
Stab als Stabilitaisproblem," Ingenieur Archiv, Bd. 19 (1951),
p. 162.

46. F. WLIULiNIIAM9MIER, "Stabquerschwingungen schwach vorgekrimmter St~be
mit pulsierendor Achslast," Zeitschr. angew. Math. Mech., Bd. 36,
Nr. 5/6 (1956), p. 235.

47. F. WEIDENTAMMER, "Nichtlineare Biegeschwingungen des axial pul-
sierend belasteten Stabes," Ingenieur Archiv, Bd. 20 (1952),
p. 315.

48. u. 'ERRMANN and W. HAUGER, "On the Interrelation of Divergence,
Flutt,.- and Auto-Parametric Resonance," Ingenieur Archiv, Bd. 42
(1973), P). 81.

40



49. GWO-BAO MIN and J.G. EISLEY, "Nonlinear Vibrations of Buckled Beams,"
Journal of Engineering for Industry, May 1972, p. 637.

50. P.W. RODGERS, "Parametric Phenomena as Applied to Vibration Isolators
and Mechanical Amplifiers," Jour. Sound and Vib., Vol. 5, No. 3 (1967),
p. 489.

51. P.W. RODGERS, "Sub-Resonant Response of a Mechanical System,
Parametrically Excited at its Resonant Frequency," Nature,
August 21, 1965, p. 853.

52. P.W. RODGERS, "A Spring with Time-Variable Stiffness," Jour. of
Acoust. Soc. of Am., Vol. 39, No. 4 (1966), p. 749.

53. P.W. RODGERS, "A Phase Sensitive Parametric Seismometer," Bull. of

Seismolog. Soc. of Am., Vol. 56, No. 4 (1966), p. 947.

54. N. MINORSKY, Nonlinear Oscillations, D. van Nostrand Co., Inc., 1962.

55. V.V. BOLOTIN, The Dynamic Stability of Elastic Systems, Holden-Day
Inc., London, 1964.

5. V.0. KONONENKO, Vibrating Systems with a Limited Power Supply,
Lon4on ILIFFE Books Ltd., 1969.

57. P. MELCHIOR, The Earth Tides, Pergamon Press, 1966.

58. A. NAYFEH, Perturbation Methods, John Wiley Sons, 1973.

41


