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INTRODUCT I ON

The work summarized in Ref . l~ has shown that a functiona l poly-

nomial input-output model has considerable practica l promise as a

unifying concept for the interpretation of ship added resistance and

possibly related problems . In particu lar , i n this and prev i ous work it

has been demonstrated that; a) both a linea r and a quadratic frequency

response function can be derived from experiments in irregular waves, as
well as from experiments in regular waves ; b) synthesis of the mean added

res i stance and of res i stance spectra can be carr i ed out by use of these

frequency response functions , and ; c) time histories of added resistance

can be synthesized for an irregular wave input through use of the time

domai n repres entation of the linear and quadratic level non-linear fre-

quency response functions .

A l l of the just cited work was empirica l . The particular input-

output mod e l was hypothesized at the outset and the implications of the

model were checked as far as possible with exper i ment . The idea that

there exist linear and quadratic frequency response functions followed

from the (non—physical) model assumed . The input—output model provides

no detailed phys i cal basis . In the context of added resistance, a linea r

frequency response function may be thought of as the rela ti on between

oscilla tory surge exciting force and wave elevation . There are a number

of hydromechanica l approaches to the estimation of this function so that

the concept could be accepted as hav i ng an i dent ifiable phys i cal base.
On the other hand, methods of hydromechanica l computation for the ent i re

‘ 
quadratic response function were lacking . Onl y a very special portion

of the quad ratic frequency response function could be estimated from

hydromechanical considerations . This problem was addressed in the work

*1. Dalzell , J.F., ~‘App1ication of the Funct i onal Polynomi al Model to
the Shi p Added Resistance Problem,” Eleventh Sympos i um on Naval
Hydrodynamics , London, March 1976.
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of Ref. 2*, and in this latter work the relationshi p between the hydro-

mechanics of added resistance and the “quad ratic frequency response

function” of the input—output model was clarified . Reasonabl y good

qualitative , and fair quant i tative agreement was achieved between results

of analysis and experiment. Thus the work of Ref. 2, by providing a

phys i cal model , l ends Increased confidence to the use of the two-term

functiona l pol ynomial model in ana l ysis and interpretation of experiment.

I nsofar as shi p model dynam i cs in waves is concerned , the general

experimental problem is to identify the pert i nent parameters or functions

g iven a wave i nput and the observed response. An input—output model of

some sort is ord i naril y required if an end l ess series of experiments is

to be avoided .

Historicall y, the advent of the linear input-output model for some

shi p dynamics prob l ems had the effect of expand i ng the p o s s i b i l i t i e s  in
experimental ship dynam i cs work. Once it was shown that the linea r model

was a reasonable engineering approach for the prediction of ship response

under realistic (random) conditions , three experimental techni ques were

admissible . Regular wave experiments took on a slightly different mean-

ing, the option became available for the interpretation of experiments

in irregular waves by spectral ana l ysis , and the developmen t of trans i ent

test technlques 3* followed shortly thereafter . Of the three techniques
t I~ ’ first two are the most widely used, althoug h the trans i ent technique

has undergone additional development in recent yearsj, Takezawa, et al 4’~~.

~2. Oa lzel l , J.F. and Kim , C.H ., “Analyt ical Investigat ion of the Quadratic
Frequency Response for Added Resistance,” SIT-DL—76— l 878, Davidson
Laboratory, Stevens Institute of Technology, August 1976.

3. Davis , M.C. and Zarnick , E.E., “Testing Shi p Models in Trans i ent
Waves,” Fifth Sympos i um on Naval Hyd rodynamics , Bergen, 1 964.

4. Takezawa, S. and Takekawa, M., “Advanced Experimenta l Techniques for
Testing Ship Models in Trans i ent Water Waves: Part I , The Trans i ent
Test Technique on Shi p Motions in Waves,” Eleventh Sympos i um on
Naval Hydrodynamics, London, 1976.

5. Takezawa, S. and Hirayama, T., “Advanced Experimental Techn i ques for
Testing Shi p Models i n Trans i ent Water Waves: Part II , The Controlled
Trans i ent Water Waves for Using in Ship Motion Tests,” El eventh
SymposIum on Naval Hyd rodynamics , London, 1976.

2
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Given this history and the evidence thus far advanced that the

two term functional pol ynom ial is a realistic i nput—output model for

added res istance, it is natural to inquire into the extent to wh i ch tech-

ni ques paralleling the three available for the linear case are available

for routine experimental determination of the quadratic frequency response

funct i on.

A regular wave technique has been used for some time in the determ-

i nati on of mean added res i stance operators . In this technique the total

mean res istance of a model in regular waves is measured and the added

resistance operator is derived from the difference between this observation

and the model resistance in calm water . Multi p le runs are requi red to

cover a range of wave frequency and it has been found by some that frequent

re—runn i ng of calm water tests is advisable . Many of the basic problems

with the techni que appear to be related to experimental accuracy. The mean

added resistance is usually small in comparison with calm water resistance ,

and both are often very small in comparison w i th  the time dependen t com-
ponent.

Because the mean added resistance operator corres ponds only to a

spec i al portion of the quadrat ic frequency res ponse function, the ex is t ing
regular wave technique is not sufficient if experimental estimates of the

ent ire function are required . The princi p le of the required regular wave
technique has been indicated in Reference 1. However, this techni que has

not so far been used in pract i ce. In br ief , to produce results defining

the entire quadratic response funct i on for added resistance ,an experimenta l

techn i que i nvolving dual harmon i c excit at ion i s requi red ; that is , two

superim posed regu lar waves . This technique corresponds to the basic

interpre tation of the quadratic frequency response funct i on g iven in Ref. 1.

I t would i nvolve selection of pa i rs of regular wave frequencies such that

their superposition in the encounter domain is periodic , as we l l as the

subsequent harmonic analysis of the added resistance response. The genera l

nature of the quadratic frequency response function and the principle of

the regular wave technique imp ly that if N experimental runs in regu lar

waves are adequate to describe the important part of the added resistance

operator, then about N
2/2 runs might be required for a reasonable def inition 3
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of the ent ire function . Thus a 10 run per model speed mean added resist-

ance test program mi ght turn into a 50 run per speed program for the

genera l quadratic response.

With respect to the possibilities of identif y ing the linear and

the quad ratic frequency response functions from data obtained in irreg-

ular waves, the techniques are more or less available. Ordinary spectral

and cross— spectral analyses suffice for the linea r function , and a tech-

nique called cross-bi-spectral analysis has been developed for the

quadratic function (Ref.l). I n princi ple the cross-bi—spectra l analysis

technique is quite attractive in the sense of increasing efficiency over

that for regular wave experiments. The techni que is based on a correla-

tion with the wave fluctuations of the fluctuations in resistance . Thus

this technique is not sensitive to the value of calm water resistance , and

in fact calm water resistance need not be known at all . Again in principle ,

either the mean added resistance or the ent i re quad ratic frequency response

may be derived from the same samp le of i rregular wave input and response,

the difference being the amount of computer time broug ht to bear.

In practice however, the techn i que has a quite serious deficiency . It is

that for reasonable precision of estimates an order of magnitude larger

samp le is presently required than is customary in the spectral identifica-

t ion of the linear response, In many cases it is not possible to accumulate

sufficient sample for the linear identificat i on process in one pass up a

towing tank. Thus it appears that the cross—bi—spectra l analysis technique

will always require as many or more test runs as the existin g regular wave

technique if onl y the mean added resistance operator is required -- although

fewer for a determ i nation of the entire function . The mean added resistance

operator i s presently the on l y part of the quadratic frequency response

functio n wh i ch finds routine use, and it is to be expected that the Situa-

tion will not soon materiall y change. According ly, it does not now appear

that the technique i nvolving cross—bi-spectra l analysis of irregular wave

test data will offer savings in facility time over that now required for

rout ine added resistance experiments.

In parallel with the possibilities for the linear case, the third

experimental technique i nvolves the analysis of trans i ent wave pulses .

1+
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Conceptually, the transie nt wave pulse wou ld in volve all wave frequen ci es

of in teres t, and the wave elevation would be zero or nearl y so at begin-

ning and end of experiment . Thus the observed resistance transien t ,

while containing response at all frequencies , shou ld equal cal m water

res i stance at beg inning and end of the experiment. The ideal advantages

are thus similar to those for the cross—bi—spectra l analysis technique in

that all the required information is embedded somehow in a sing l e observa-

tion . The difficulty with the idea is essentially that the existin g

theory for the quadratic i nput—output model does not contain a clea r

ind i cation of how to proceed with the analysis .

It was accordingly the objective of the present work to investi-

gate the feasibility of a wave pulse techni que for added resistance . For

the practical reasons cited previously the emphasis was to be upon ident-

ification of the mean added resistance operator rather than the entire

quadratic frequency response function , and the methods to be emp loyed were
to i nvolve d i g ita l computer rather than phys i ca l experiments .

5
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THE TRANSIENT EXPERIME NT

In order to fix some term i nology, various stages of the hypotheti-

cal transient experiment for head seas are outlined in Fi gure 1 . In the

fi gure the condition of tank and model are ind i cated for five significant

stages of one experimental run . Time (t) will be considered to be pos i-

t ive after the wav e generator is started . Thus there is shown at the top

of the f i gure for t < 0 a hypothet i cal towing tank wh i ch has a wave gen-

erator at one end, an absorber at the opposite end, and a model sitting

st ill in preparation for the run . At this stage the water is assumed to

be quiet everywhere. Position in the tank is denoted by X, which is zero

at the wavemaker and positive in the direction of wave propagation .

At time equal to zero the wave generator beg ins to generate a long-

cres ted trans i ent wave, and typically at some subsequent time the model

accelera ti on beg ins so that at the second stage (t=t 5) the model is

proceeding with constant veloc i ty, U, at tank position X X ~ . The model

is assumed to be in s t i l l  water at this stage while the wave trans i ent

at the other end of the tank is propagating toward it. In the third

stage (t=t
~~
) the model enters the wave pulse at tank position X X 5~ .

At the fourth stage (t=t
~~
) the model l eaves the pulse at position X

~~
,

and cont i nues at constant speed in calm water until time te (position X
e)

when deceleration begins . The useful part of the experimen t is between

times t
5 and t

e) 
during which an observer on the model sees calm , then

rough, and then finally calm water at the end . Because of the assumpt i on

of constant speed, the position of the model in the tank is known during

th i s tim e from a knowledge of X
5, t5 

and U.

Severa l of the tacit assumptions in the abovt.i deserve comment .

One is that of a long—cres ted wave pulse or transient . The input-output

model has not been extended to the short—crested case. For the purposes

of the present study this is not a serious restriction since none of the

other techniques described in the introduct i on have been adapted for this

case, and i n fact there have as of the present been very few exper i ments

of any type in short-cres ted seas.

6
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FIGURE 1 EVENTS IN THE HEA D SEA TRANSIENT EXPERIMENT
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Another comment wh i ch can be made is about the subject of heading .

Clearl y, if there is some component of wave group veloc i ty in the direc-

tion of model travel there may be an amb i guity which would require very

spec ial hand ling , or the model may never pass out of the trans i ent at

all —- at least not within the confines of a towing tank . For example,
in follow in g seas the model mi ght be started near the wave maker before

the pulse is generated . If all wave components travel at group velocity

greater than model velocity, the wave pulse will overtake and pass the
model , Alternately if the model speed is hi gh enough it mi ght be poss i ble

for the model to overtake and pass the pulse . In between these extremes

it is extremely difficult to envision a reasonable follow i ng seas

trans i ent experiment when the model speed and the mean group velocity of

the wave components are about the same. For purpos es of the present stud y

the problems about all model head i ngs except i ng head sea s were i gnored on

the grounds that the feasibility of even the head sea test was not clea r,

and that the head sea case is usually considered the most important for

add . r istance .

The assumption of constant model velocity implies that the model

is restrained in surge and that resistance is measured throug h some sort

of force bala nce. This is a system not always used in practice . I t was

retained in the present case because; a) it is feasible to do6’; b) t has

been found~’~~ that the mean added resistance for constant speed is not

si gnificantl y influenced by surge restraint; and c) it seemed p robabl e

that a techni que developed for this case mi ght be adaptable to other con-

d itions of surge restraint .

“6. Dalzell , J.F., “Application of Cross-Bi-Spectra l Analysis to Shi p
Resistance in Waves,” SIT—DL-72-1606, AD 7/49102, Davidso n Laboratory,
Stevens I nstitute of Technology, May 1972.

7. Sib ul , O.J., “Constant Thrust vs . Constant Velocity Method for
Resistance Measurement in Waves,” University of California , Berkeley,
Repor t NA— 7l— l , June 1971 .

8. Journee, J.M .J., “Mot i ons, Res i stance and Propu ls i on of a Sh i p in
Long itu d in al Regul ar Waves,” Repor t 1+28, Laboratorium voor
Sheepshydromechani ca, Technische Hogeschool D’~lft , May 1976

.8
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WAV E PULSES

Theory

I t was the basic objective of the work to examine feasibilit y of

techniq ues which mi ght be employed in towing tanks, and to check any
promis in g scheme wi th a comput er “experiment. ” Accord i ng l y it was neces-

sary to begin with a consideration of the type of wave trans i ent which is

phys i cally possible , and to generate a few exampl es for later use.
References 3 and 5 ind i cate clearl y that because of the dispersive proper-

ti es of waves, it is not possible to produce anything closel y resembl in g
the idea l impulse , or the isolated step funct i on, etc., wh i ch are bas ic

to much of the theory of trans i ent response as shown in the textbooks of

control and electron i cs.

The l inear theory of the type of wave pulse wh i ch is possible is

well develo ped, is treated in References 3 and 5, and w i ll be used here i n .
it is apparent from these references that the linear theory and experi-

ment correla te well so long as average loca l wave steepnesses ar e not

such as to produce extensive breaking.

Follow ing the developments in References 3 and 5, the transient

wave elevation at position X in the tank wil l  be denoted h (t). It is

assumed that h
~
(t) is absolutely integrable , that is:

S Ih( t ) I~1t< ~
where the convention is followed that omission of limits si gnifies limits

of p lus and minus infinity. (This convention will be followed throug hout

the present report.) On the basis of this assum~ t i~~ , the transient has

a Fourier transform or complex spectrum, H
~
(w), and the transform pair

relat i ng the trans i ent and its spectrum may be def i ned as:

9
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h (t) .

~~~~~ $H (w)Exp[iwt]du (1)

H (w) j’h~(t)Exp [_i~ t]dt (2)

where w denotes ci rcular wave frequency .

I n the practica l production of a wave trans i ent, the wavemaker is

g iven a specified sequence of control signals so as to produce a des i red

transient wave elevat ion. For pres ent purposes the dynam i cs of the

wavemaker may be neg l ected and it wi l l  be assumed that the trans i ent wave

at the wavemaker is specified . Thus the wave at X 0  (Fi gure 1) wil l be

taken to be:

h
0(t) ~~ JH (w)Exp[i wt]dw (3)

where

H0
(w) is the comp lex spect rum of the wave pulse.

There are two main constraints on h (t). The first is that it be zero

for t < 0; that is , h (t) must be phys i cally realizable accord i ng to

the time conventions shown in Fi gure 1. The second is that the loca l

wave steepnesses be “small. ”

Follow i ng the l in ear theory of wave propagat io n 3’5, the frequency
response function connecting the wave elevation at X=0 (Eq.3) and wave

eleva tion elsewhere in the tank is given by:

Exp[- i ~w~~wX/g]

which simpl y means that each wave component is assumed to propagate with-

out change in amp litude. F rom this , the spectrum of the flave transient

at position X becomes :

Hx(
U)) = H

0
(w)Exp~- i Iw ~~~X/g] (4)

and the t rans i ent wave itself at position X is:

h
~
(t) -

~~~~ j’H0(w) Exp~ iwt - 
i U) WX/g]dw (5)

10
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Also follow ing from the linear assumption is that the integra l square of

the trans i ent is i nvariant with tank position:

Ex 
= $h

2
(t) dt — 

~ 
H (w) r dw = constant (6)

in which the last relation is obtained by app lication of the Parseva l

Theorem.

The invariance of the integral square suggests a useful change in

notation for the comp l ex spectrum of the trans i ent at the wavemaker:

H (w) = A(w)Exp[ i w(w)i (7)

in wh i ch A(w) and q (w) are real

and :

A(-w) = A(w )
(p(-~ ) = -

~
‘(.&

Then the wave transient at position X becomes :

h ( t) = 
~~ ~

A(w)Exp~ iwt+icç (w)_i w~~wX/g]dw (8)

In the trans ient techniques described in References 3,4,5 the amplitude

part of the spectrum of the wave at the wavemaker, A(w), is specified

so as to produce wave excitation in all the frequencies of interest .

The phase par t, cp(w), is used to control the wave pulse in the run area .

It is shown in Reference S that the wave pulse of shortes t dura-

tion has a constant phase spectrum . Accord i ngly , for the sho rtes t
duration of pulse, it is necessary to spec i fy a part of W(w) so that

the W IWX /g term in Eq. (8) is cancelled out at the position of interest.

Thus the phase function for the trans i ent at the wavemaker may be sped-

f ied as fol lows :

cp(w) = Cit sgn(w)+ I w WXm/g 
— wt (9)

In Eq. (9) C is an arbitrary constant . The second term is a phase lead
wh i ch wi l l  cancel the similar phase lag in Eq. (8) at position X

m • The

las t te rm is a phase la g wh ic h cc~rresponds to a constant time delay in

the time domain , it must be inc’uded in the phase prescri ption as a way

11
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to insure that the trans i ent at the wavemaker will be physically rea l iz—

able. What is accompl i shed by the above assumption is to organize the

trans ient wave at the wavemaker in such a way that about an equa l time is

necessary for all component waves to reach position Xm in the tank .

At positions closer to the wavernaker the transient pulse is converg ing ,

and at positions further away than Xm the transient is diverging .

In practical testing in the usual towing tank a des i rable mid-

po i nt of the data taking portion of the run is usually known from the

acceleration and deceleration characteristics of the carriage drive , and

from the positions of the inevitable obstructions at either end of ~he
tank. Thus the tank position , Xm l in Eq. (9) mi ght reasonab ly be spec i-
fied as the mid—point of the data run , and would ord i naril y be determ i ned

by other than wave making considerations . I n the term i nology of Figure I:

x = (x + x )/2 (10)m 5 e

Thus substituting Eq. (9) into Eq. (8) there results a further

express i on for the wave pulse at any tank position X:

h
~
(t) 4~ $A(w)Exp [iw (t_t~)+iCrrsgn(~ )_i I~~

) X m)
~’

g]
~~

= 
~~~ 

SA (
~
)cOS[

~
(t_t

m)+C~ 
- ~

2 (X_X ~)/g]d~

= I J’ A( w) cos[CTT_wt - W2(X-X )/g]coswt thu

- 
~~~ SA(.&si n[ChT_.~

tm 
— 
~
2(X_X ~)/gJsin~t thu (11)

In the present case the encountered wave trans i ent, h (t), is

des i red. it may be assumed that timing of model accelerat i on relative to

wavemaker start can be made such that the model will arrive at position X

at time (tm~
6)• For constant model velocity , U, the posi t ion of the model

in the tank may then be written as:

X = X - U(t_t
m+8) (12)

In the practica l case Eq. (12) is valid onl y within the range of time

12



I
(t 5 � t � t~ )~ Now subs t i tu t ing  Eq. (12) into Eq. (11) there results an
expression for the encountered trans i ent:

he
(•t+t

m) 
= -

~~~~ j~B(w) Exp[i’ r(w + u., f w U/g) ]dw (13)

where: m
B (w) = BR ~ 

+ i B (~)

with:

BR(w) 
= A(w)cos[Cnsgn(w) + w wUô/g]

B 1 (w) = A(w)s in[ CTT sgn(w) + I w wUo/g] (1/4)

With respect to the pract i ca l experiment , Eq. (13) is valid onl y in the

range (ts
_t

m) � 
~ 

(t~~’t~)~ The time variable change corresponds to the

normal pract i ce in experiments of counting time with reference to some

arbitrary point in the constant speed portion of the run . The function

B (w) contains only pa rameters wh i ch c e  prescribed by programming of the

wave machine , and the timing of model start. The function of w i n  t h e

exponential of Eq. (13) may be recognized as the encounter frequency for

head seas, w. The expression , Eq. (13), may thus be transformed into an

integration over w. As such it is in the form of a Fourier Transform .

So long as matters are arra nged so that h
e(t) is zero outside the range of

pract i ca l validity of Eq. (13), the inverse transform of the encountered

trans i ent will be valid in the sense that there will  be no difference

between the practical experimen t and the hypothet i ca l situation in which

the model proceeds at constant velocity for an infinite range of T ,

Applying the head sea transformation :

= w + w

and defining:

K(w) 
~~ 

(-1 + /l+I+wtJ/g)

J(w) = l/Ji~ kwU/g (15)

13
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h (t+t ) = 

~~ 
SB R(K(w))J(w)cos(W~

)dw

_
~~~SB i

(K(w))J(w)sin(W
~

)dw ( 16)

The effective Fourier spectrum of the encountered trans i ent is B(K(w))J(w).

From Eq. (11+):

I B(K(W))J(w) I — A (K(w))J(w) (17)

so that, as would be expected, the amplitude part of the Fourier spectrum

is d istorted by the transformation .

Example Evaluations

As noted, some examples of phys i call y possible wave pulses were

des i red . The eas i est way to insure realism was to eva l uate Eq. (11) with

parameters appropriate to a given tank and model size. The Davidson

Laboratory Tank No. 3 (300 ’x12’x6’) was selected as the hypothet i ca l tank,

and the hypothet i ca l experiment was assumed to i nvolve a five foot shi p

model at a speed correspond i ng to Froude Number 0.15.

The f i r s t  funct ion to specify is A(w). It was assumed on the basis

of prior experi mental results6 that wave l engths between 2.5 and 15 feet

(1/2 to 3 times model l ength) would include the important parts of the

resis tance response. I t was further assumed that for the ident i f icat ion

purposes envisioned it would be of advantage to make the encountered spec-

trum have a roughl y constant modulus (Eq.l7) in the encounter frequency

range wh i ch corresponds to the wave length range just cited . The first

step in construct i ng A(W) was thus to make A(w) = A(K(w)) = P/J(w) where P

is a constant which controls the magnitude of the generated transient .

The model speed assumed In computing encounter frequencies corresponded to

a Froude Number of 0.15 for a five foot model . The resulting form for A (~)
s shown in Fi gure 2. The wave frequency range of interes t was roughl y

3.5 to 9 radians/second . In this range the funct i on is as noted above.

At each end of this range a smooth tran sition is made to zero over a
one rad i an/second frequency range.

11+
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2
WAVE FREQUENCY ,~~

F I G U R E  2 FORM OF S P E C I F I E D  MO DULUS
OF SPECTRUM OF WAV EMAKER
TRANSIENT FOR FROUDE NUMBER 0.15
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The next parameters required by Eq. (11) are Xm and t .  In D.L.

Tank 3 the mid—point of the data taking area is usuall y 150 feet from the

wavemaker, and th i s dis tance was chosen for X
m l the des i gned concentra-

tion point. The time delay was chosen to be a bit more than the time

requir ed for the wave component of h i ghest freq uency to travel 150 feet

at its group velocity . The number used was t
m 

= 105 seconds .

The constant, C, in Eq. (11) controls the symmetry of the wav e

trans i ent at the point of maximum concentration . If the constant is made

zero, the concentrated trans i ent will tend to have a hi gher max i mum cres t

than maximum t rough . If the constant is ~ 0.5 the maximum crests and

troughs are the same, For present purposes a va l ue of -0.5 was taken .

All that remains to choose in the evaluation of Eq. (11) is the

arbi trary scaling constant, P, in the specified wavemaker spectrum modulus.

This constant is essentiall y the wavemaker gain , and may be assigned any

number from zero to a value at wh i ch the waves produced wi l l  be too steep

and start to break.

Equation (11) was eva l uated with an arbitrary cho i ce of P, and the

parameters selec ted prev i ousl y, for four tank positions (at the wavemaker,

and at 125; 150 and 175 feet). The magnitude of the resultin g wave ampli-

tudes was compared with the wave length correspond i ng to the local apparent

per iods to establish a reasonable maximum va l ue of P.

Fi gure 3 shows the resulting computed transients scaled to corres-

pond to the estimated max i mum amplitude. As required , the wave pulse at

the wavemaker is zero for time less than zero. The time duration of the

pulse decreases with position in the tank until the 150 foot position ,

whereafter the durati on i ncreases . The trans i ent at the point of concen-

tration (150’) appears small in the fi gure because the vert ica l scale is

less than half of that for the other positions . The maximum peak to peak

amplitude shown for the 150 foot position is about 0.5 feet, which i s
probably equ ivalent to a wave heig ht to wave l ength ratio of 1/10. At the

125 and 175 foot positions maximum apparent loca l steepness appears to be

about 1/18, and at the wavernaker maximum apparent local steepness is less

than 1/20. For these reasons the wave pulses shown in Fi gure 3 were taken

as representing a practica l possibili ty for a rela tively severe wave pulse.

16
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Hav ing established that the computed results were reasonable for

specific points in the tank, some examples of encountered trans i ents could

be computed from Eq. (13) . A ll parameters except the model arriva l time

delay, 6, had been establ i shed, and Eq. (13) was evaluated for a model

speed corresponding to a Froude Number of 0.15. Three cases were cons i dered

accord ing to whether the model arrives at the 150 foot position exactl y at

time tm when the wave pulse i s most concentrated (ô o), 10 seconds earl ie r,
or 10 seconds la ter.

The resul ts of the eva l uation are shown in Figure 1+ for the three

cases. As in the prev i ous fi gure the vertical scale chosen for the case

of model arrival during max i mum concentration is smaller than tha t for the

other cases. The duration of the encountered trans i ents is about 10 seconds

in all cases. This duration correspond s to roughly /4 model lengths travel

up the tank. For the speed i nvolved , timing of model arriva l at a specific

point in the tank within plus or minus a few seconds is quite feasible.

The complex spectrum was computed for each of the wave pulses shown

in Fi gure 1+. The modulus of the spectrum of the three trans i ents was the

same, and as expected, was constant within the antici pated encounter fre-

quency range.

18 
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I
INPUT-OUTPUT THEORY FOR RES I STANCE

As noted in the introduct i on, the basic assumption in the present

work is that ship model resistance follows the functiona l pol ynom ia l
input—output model treated in Refs. 1 ,2,6,9”, and elsewhere . Th i s app roach
i nvolves the assumption that the model proceeds at constant speed in a wave

system, h(t), which is def i ned at a point stationary with respect to the

mea n position of the model ; that is , the input—output model applies to the

encounter domain .

The general time domain representation for the resistance , r( t ) ,  i s

wr i t ten as fo l lows :

r(t) = g0 + J’g~ (t~)h(t—t~)dt1

+ ~~
g2 (t 1, t2 ) h( t—t ~ ) h( t—t 2 )dt~ dt2 (18)

where:

r(t) is instantaneous resistance

h(t) represents a zero mean wave elevation

t is time

and g0, g~ (t,
), and g2 (t~,t2) are zeroth, first and second degree ke-nels .

I t is presumed that the hyd rodynam ic properties of the ship model are

contained wholly in the kernels , and (without loss in generality) that

the second degree kernel is symmetric in its arguments ; that is ,

g2 (t2,t~) 
= g2 (t~,t2)

The zeroth degree kernel , ge,, is the value of r(t), Eq. (18), when
the wave elevation is zero for all time. Since it may reasonabl y be sup-

posed on phys ica l grounds that the wave elevation will be zero mean, the

ker nel, g0, i s i denti fied for prese nt purposes as the calm wa ter res i s tance.

*9 Dalzel l , J.F., “The Applica bility of the Functiona l Pol ynomial input—
Output Model to Shi p Res istance in Waves,” SIT—DL—75— l 79/+, Davidso n
Laboratory, Stevens Insti tute of Technology, January 1975.

20
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The second term in Eq. (18) is a linea r convolution integra l and

is in terpreted as the oscUlatory surge excitin g force so that the first

degree kernel is the impulse response function for surge force ,

The third term in Eq. (18) is a double convolution inte gral wh i ch

gives rise to the essentially non—linea r resistance added by waves . The

second degree kernel may be cal led a quadratic impulse response.

Both f i r s t  and second degree kernels are assumed to be absolutel y
integrable and thus may be transformed in the Fourier sense. The trans-

form pa i rs relating the linear and quadratic impu lse responses to corres-

pond in g linear and quadratic frequency response functions may be def i ned

as follows :

1 +iwrg~ (‘r) = ~~ $e G~ (w)dw

— i U~tG~ (w) = ,fe g~ (r) dT (19)

~2~~~~’~~2
) = 

(~ 7)
2 $SEXP [

+iw~T~ + i ;-r 1G (w
~.
,w)dw,.dw2

G~ (u~ ,u~) = SJ’Exp [_iw ~w~ - iw2
.r2]g2(.r~,~t2)d’r~d.r

2 (20)

i n  which w represents circular encounter frequency.

The linear frequency res pons e func ti on, G~ (w) , defined by Eq. (19)

is  absolutely conventional .

The quadratic frequency response function , G2 (w1,w2) is defined in

a bi-freguency plane . Because the kernel g~ (r~,t2) is assumed to be

symetrica l in its arguments , and is real:

G2
(w1,~~) = G2 (u~ ,w~) (21)

=

= G2 (—w2,—w~) (22)

(The aster isk  denotes the comp lex conj ugate .) Thes e re lat ionshi ps simp li-

fy the quadratic frequency response funct ion to the extent that cer ta in

21
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sy mmetr ies resu lt and that as a consequence the funct i on needs onl y to

be considered in a quad rant of the bi-frequency 
~~~~~~ 

p lane . Equa-
tion (21) resu l ts  in a l ine of symmetry along the line w,~~w, .  Equation

(22) resu l ts  in a l ine of s ymmetry of the rea l part , and anti— symmetry

of the imag inary part of G2
(w1,w2) def i ned by w

2 —w~. (It may be noted

that along this line the imag inary part of the function is zero.) These

two lines and the w~,w axes divide the bi—frequency plane into octants,

of wh i ch the two on either side of the posi tive w~ axis may be arbitraril y

chose n fo r refere nce. The assumptions of symmetry of the second degree

kernel results , with Eq. (20), in a complete definition of G2 (ui1, w2) if

the functions are defined in any pair of octants includ i ng a semi—axis

of either frequency. Thus without loss in generality, interpretation of

the quadratic frequency response needs only to involve the octants on

either side of the positive w~ ax i s . In these octants w1 is positive and

Because est imates of the quadrat ic  frequency res ponse function are
the objective of the present work, a summary (after Ref .l) of the interp-

retation of the funct i on is in order . The approach to the meaning of the

funct i on is grossl y the same as for the linear case. If in the linea r

case the system is considered to be exc i ted by

h(t) = a coswt

the output may then be written :

Re{aG~ (w)Exp(iw t)~

and G~ (w) is interpreted in terms of normalized amp litude and phase of

response.

To interpret the quadratic frequency response, dua l harmonic

excitation is necessary. Accord i ng l y, it may be assumed that :

h(t) = a~cosw1 t + a cosw~t (23)

In accordance with the prev i ous discussion of symmetry, both frequenc i es
(u~ ,w2) are considered positive and . The bas i c model , Eq. (18)
is good for any zero-mean excitation . Accord ing l y, Eq. (23) may be

22



—

R-l928

substituted directl y in Eq. (18) . After some algebra the fina l result

for the response to dua l harmonic exc i ta t ion  may be w r i t t e n  as fo l lows :

r2 = g0

+ Re~a~G1 (ul1 )Exp (iw1 t)+a G,(w)E xp (iw t)}

+ ~ Re{a~G2 (w1 ,w~)Exp(i2w1 t)}

+ ~ Re {aG( w 2,w )Ex p(i2w t)~

+ Re{a~a2G (w~ ,w )  Exp[ i (W~+w2)t]~

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2/4)

This result shows that the response of the quadra tic system,

Eq. (18), to dual excitation contains , in genera l , a shift in the mean

and components of six different frequencies [wi , w2, 2w~, 2w2, (w~~w2),
and (w~-w)]. The second and third terms of the result are the super-

posi t ion of the linear responses at the excitat i on frequencies . The

fourth and fifth terms of Eq. (21+) represent a shift in the mean . These

terms allow the identification of the mean added resistance operator as

the val ue of G2 (w1 1w,) along the line w2=—w~ (or G2 (w~,—w1 )). The s ixth

and seventh terms are the second harmonic components (2w,,2w2). Similarly,

these terms allow the identification of second harmonic response with the

val ues of G2(w~,w2) along the line w
2=w1 (or G2 (w1 ,w1)).

The eighth and ninth terms of Eq. (2/4) pertain to the bi-frequency

p lane in general . The eighth term is the response at frequency (w1 -s-w )

that is , G2(w,,u&~) expresses the normalized response in the sum frequency

due to non—li near interactions . Similarl y, the ninth term i nvolves

res ponse at frequency (u~ -w2); that is , G(w,,-w2) is the normalized

response in the difference frequency.

A final part of the genera l the3ry which is useful in both analy sis

and interpretation is the effect of cascad ed linea r system s. If it is

supposed that the input to the system , h(t) of Eq. (18) is the result of

23
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a linea r operation upon a variable s(t), and the frequency response

function of the linear operation is denoted by L~ (w), then the linear

and quad ratic frequency response functions (K, (w) and K2 (u~ ,
w
2)) connect-

ing s(t) and r(t) may be written :

G~ (w)L~ (w) (25)

K2 (w~,W2) G2 (w~,w2)L~ (w1)L~ (w2) (26)

If it is additionally supposed that the output r(t) of the system of

Eq. (18) acts upon a linea r system with frequency response function L2 (W)

to produce an output v(t), then the linea r and quad ratic frequency response

functions (K.~
’(w) and K

sv (W~,W )) connect i ng s(t) and v (t) may be written :

~~ V ( )  = G~ (w)L~ (w)L2(w) (27)

~~ V ( )  = G2(w~,w2)L~ (w1 )L1 (w2)L2(~~+w2) (28)

The relation for the linear part , Eq. (27), is just the same as

for completely linear systems .

Equation (28) shows that filtering of input and output have differ-

ent effects on the apparent frequency response function . For examp le,

if L~ (w) is an idea l low—pass filter with cutoff frequency o~, the effective

quadratic frequency response function , K~~(u~ ,w2), w i ll be zero out s i de the
reg ion where I w~ I and ( w2 I are less than 0 . Considering a practical

examp le of output filtering , if the output is observed through a low—pass

f i lter , L2 (w) , with a very low frequer~cy cutoff , the effective quadratic

frequency response wil l  tend to be zero everywhere except near the li ne

w2 —w1 wh i ch is the location of the mean added resistance operator in the

H-frequency plane.
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SIMULATION OF RES I STANCE TRANS I ENTS

Genera l

Following the conditions i nvolved in the simulation of encountered

wave pulses , Fi gure /4, it was assumed that the simulated experiment

i nvolved a five foot shi p model proceed i ng at a Froude Number of 0.15 into

a head wave pulse . In order to take advantage of quantitative resistance

response data developed in Refs, 2, 6 and 9, the model was ass umed to be
the Series 60 0.60 block parent , restrained in surge . Because it is

customary in a narrow towing tank to l ocate a wave probe ahead of the model

to minimize distortion of results by model generated waves, the encountered

wave pu lses , Fi gure /4, were assumed to be the indication of a wave probe

one model length forward of model LCG.

The simulated wave pulses are di gita l time series ; tha t is ,

rep resent a samp ling of the wave pulse at a uniform time interva l (At).

Accord ing ly the analytica l time domain model , Eq. (18), has to be re—cast

into a summation form for pract i ca l computation purposes . This was done

in the same way as had been done in Ref . 9. The di gital model of Eq. (18)

becomes :

r(n) =

m2
+ L. h(n-j)

j - ml ~

p2 p2
+ E E 

~~~ 
h(n-j)h(n—k) (29)

j- p l k=-pl ~

where r(n) = computed resistance time series

h(n) = simulated wave pulse time series

and L. and are wei ghting coefficients in wh i ch the differentials are

absorbed .
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Equation (29) requires discrete approx i mations to the linea r and

quadratic impulse responses of the form:

~ (r) = L~ 6(r—jAt) (30)

= 

~Jk 
&(r~—jAt)6(t2—kAt) (31)

(where 6(t) is the Dirac delta funct i on)

The Fourier transforms of Eqs. (30) and (31) in accordance with Eqs. (19)

and (20) y ield continuous (aliased) frequency response funct i ons as

follows :

m2
G~ (w) = E L.[cos(ju~ t)—i sin(jut~t)] (32)

j=-ml -~

p2 p2
G2 ,w2) = 

- 
E 

~ 
Q
Jk
N05(i

~~
At+kw

2
At)_i sin(j w~At+kw2At)] (33)j - p) k —p l

For pract i ca l computing purposes the process of transformin g given

observed o~r anal ytica l frequency response functions amounts to achiev i ng

(with a finite number of coefficients ) a reasonable fit of the re—trans-

formed impulse responses (Eqs. 32,33) to the observed response funct i ons .

The genera l approach followed is to integrate the first of Eqs. (19) and

(20) trapezoidally with observed estimates of the appropriate frequency

response funct i on. This is carried out for a sufficient range of time

variable(s) so that decisions regarding the truncation limits (ml ,m2,
and p l,p2 in Eqs. 29 throug h 33) can be made. Eval uat i on of the computed

impulse response function is made at integer values of time step At and

these values are multi p l i ed by At or At
2 

as appropriate to result in esti-

mates of the coefficients L. and 
~
•k
~ 

The next s tep is to adj us t the
coeff i c ient s so that the d i scre te ker nel refle cts the correc t behav i or
of the frequency response functions at zero frequency . In the present

case it i s ass umed that there is no resis tance added by an infinitel y

long wave . Thus the coefficients L. and 
~Jk 

should sum to zero. The

final computat i onal step is to insert the coefficients i nto Eqs. (32) or

(33), compute the re—transformed impulse response function and compare

the resul ts w i th the ori g inal frequency res ponse es ti ma tes. I teration

of the process is sometimes necessary.
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Selection of Data for Use in Eq. (29)

To take advantage of the results of Refs. 2, 6 and 9, it was

conven i ent to retain the non— dim en siona lizat iori s of those references .

The first convention is that all lengths are divided by model length .

For present purposes this meant only that the simulated wave pulse eleva-

tions were to be divided by five feet . The second convention was that

model resistance was to be divided by model d isp lacement. Final l y ,

a non—dimensional encounter frequency was defined as:

where w = encounter frequency, rad/sec

WIL = frequency of a wave of model length , L

Because this non-dimensiona lization can be considered as merel y a

change in the time scale , the o notation of Refs. 2, 6 and 9 may be used
interchangeabl y with the present w notation . For present purposes the

time scale wi l l  be multiplied by w
11 

and corresponding frequencies com-

puted in the conventiona l way. In particular , the rea l time sampling

interval (~�~t) of the wave pu lses of F i gure 4 was selected to be

0.066 seconds . The equivalent At in the “non-dimens i onal” time scale is

0.4197, and this va l ue was used through the developments of the wei ghtin g

coefficients in Eqs. (29) throug h (33) to be described ,

The first term in Eq. (29) is the calm water resistance , g .  The

experimental value of raw calm water resistance cited in Ref . 6 for the

f ive foot series 60 model at a Froude Number of 0,15 was 0.092 lb .

Dividing this by model displacement yields :

g = 0.0028
0

The second term in Eq. (29) i nvolves the linea r wei ghting coef-

ficients L~ . Several sets of estimates from experiment had been made in

Ref. 6 for the modulus of the surge exciting force frequency response

function , G,(w) or G~
(c
~
). These were averaged to form a starting point

for the deriva ti on. The phase da ta was not p res ented i n Ref . 6, but
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had been developed . These phase estimates had been derived wi th respect

to wave elevation forward of LCG. Th i s wave refere nce had been sh i f ted
in time to improve the cross-spectral estimation procedure, and it was
a stra i ghtforwa rd operation to correct the estimates to a wave phase

reference one model length ahead of model LCG.

The operations described in conjunction with Eqs . (30) throug h

(33) were carried Out upon the experimental surge excitin g force da ta
and the results are summarized in Fi gures 5 and 6. Fi gur e 5 ind i cates

the experimental estimates of the surge exciting force frequency response

function as p lus s i gns , and the results of re—transforming the final

wei ght i ng coefficients , Lk, as dashed line s . As may be roted, the

experimental data wh i ch was thoug ht valid in Ref. 6 does not cover the

ent i re frequency range . (Extrapolations had been made to zero and hi gh

freq uency before starting the transformation procedure.) However the

encounter frequency range of the example wave pulses does not s i gnificantly

exceed the f requency range where data i s s hown, and it would thus not be

expected that the results of the simulation would be seriously influenced

by errors i n the extrapolations . Overall , the corres pondence between the
transformed discrete linear kerna l and the experimental data appears ade-

quate to insure rea l i sm i n the simula t ion.

The wei ghting coefficients , Lk, in Fi gure 6 are of mos t importance
for pos i tive k; that is , for the “past” of the i nput wave elevation .

Accord ingl y the kernel relating surge exciting force to wave eleva ti on
a model length ahead of LCG is nearl y phys ically realizable.

For a start i ng point for the simulat i on of the third term in

Eq. (29) there were four choices available . Reference 9 contains three

sets of experimental estimates of the quad ratic frequency response function

for the experi mental case of interes t, and Ref. 2 contains one set of

analyt i ca l estimates , It appears from the analys es of Ref . 2 that in the

regio ns of the bi—frequency plane not resolved in Ref. 9 there exist

si gnificant values of the quadratic frequency response function . Add i-

t ionally, some of the experimen tal estimates which were questioned in

Ref. 9 appear to have been discredi ted by the ana lyses of Ref . 2.
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However , in the reg i on of the bi—frequ ency p lane of most practica l

interest (that is , nea r the mean added resistance operator) the experi-

mental and anal ytica l estimates are not impossibl y d ifferent. Accord-

ing l y, the best cho i ce for present purposes appea red to be the anal ytica l

resul t of Ref . 2.

The analytica l quadratic frequency response function of Ref. 2

relates the quadratic part of added resistance to wave elevation at LCG .

Thus the first necessary operation for the simulation was to develop the

analytica l quadratic frequency response function relating resistance to

wave eleva tions one model l ength ahead of LCG. This was accomp lished in

accordance with the i nput fHtering relationshi p, Eq. (26). Essentiall y,

wave elevation ahead of model and at LCG are related in the wave frequency

domai n by the t ransfer function following Eq. (3). This transfer function

becomes La (w) after transformation i nto the encounter frequency domain .

Hav i ng thus made an initial estimate of the quad ratic frequency

response function , the process outlined in the discussion of Eq. (33) was

pu rsued . The final results for the 
~j k  weighting coefficients correspond-

ing to the quadratic impulse response are shown i n  an isomc~ ric view in

Fi gure 7. The we i ghting coefficient matrix is 71 x 71 , and the value of

the larges t coefficien t is 0.69. In the figure straight lines are drawn

through the points along sections parallel to j and k axes so that each

intersection corresponds to a value of 
~Jk’ 

Where the function is si g-

nificant it is characterized by undulations in both j and k directions .
Mos t of the negative values of the function are masked or indistinct ,

but are of roughl y the same magnitude as the positive peaks shown .
As may be noted at the edges of the p lot , the truncation could have been

at sli ghtly hi gher val ues of j and k, but , as wil l  be shown, the repre-

sentation seems adequate. In this plot as in Fi gure 6 positive values

of j and k co r res pond to the “past ” of the wave elevat i on . The most

si gn ificant part of the kernel lies in the reg i on where both j and k
are positive. There are weak interactions between positive k and nega—

tive j (and positive j and negative k by symmetry), but very little

interaction response when both j and k are negative.
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Agreement was quite good between the quadratic frequency response

f unc ti on correc ted to wav e forward of LCG and the re—transformation of
the truncated , discrete function shown in Figure 7. The re-transformed

funct i on was then corrected to a wave phase reference at model LCG and is

shown in comparison with the ori g ina l analytica l result of Ref . 2 in

Fi gures 8 and 9. Figure 8 indicates the rea l part and Fi gure 9 the imag-
inary part of the function . These two figures are essentiall y p lotted

tables . The magnitude of the function involved is plotted in the non—

dimensional bi-frequency p lane (w1,u~ ). A second axis system is shown as

well. This axis system is the “sum” and “difference” system defined by

the transformations :

=

= W1+W2

The and ~~ axes lie on the lines of symmetry.

The results from the re—transformation of the discrete kernel ,

J Fi gure 7, are shown in the quadrant bounded by the and axes . In

order to show the analytical results from Ref . 2 in the same fi gures , the

octant bounded by the and #C~2 axes has been dis p laced in the negative

c2~ direction . The analyt i ca l results are shown in this octant accord i ng

to the basic symmetry properties of the quadratic frequency response

function . If analyt ica l results and the simulation were in exact agree-

ment , the simulated results would be an exact reflection about the axi s

of the anal ytica l results in the w
2
—Q2 octant . A similar procedure was

adopt ed to show the anal ytica l results corres pondin g to the simulated

results in the wa~
i
~ 

octant. In this case exact agreemen t would require

that the simulated results would be an exact reflection about the axis

of the anal ytica l results in the Q,—(—w2) octant .

In order to emphasize the important parts of the function , esti-

mates havin g absolute values less than 2.5 are omitted (blank) . The

contours shown are for the zero level .
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On the whole the corres pondence between simulation and anal ytica l

result is considered quite adequate for pres ent purposes . The re—trans-

format i on was carried out at half the frequency interva ls shown in the

fi gures . The intermediate values ind i cated that the function was smooth.

Computation of Sample Trans i ent Responses

Hav ing selected coefficients of Eq. (29) wh i ch were thoug ht to

fairl y realistically represent the resistance cha racteristics of the

assumed ship model , it rema i ned only to do the convolution arithmetic

for the example encountered wave pul ses of Fi gure l~

There is a numerical start—up and stopp ing trans i ent in both

convolutions in Eq. (29). However in the present case the i nput wave

pulse is zero at beg inning and end so that the resulting outputs do not

have to be specially treated for this effect.

The basic programming used was that developed in Ref. 9. Before

computing the response to the wave pulses the programm i ng was run with

sinusoidal wave elevation input , and analysis of results in accordance

with Eq. (21+) confirmed that the computing system was correct .

As a possible aid in interpretation , the componen ts of Eq. (29)

were se para tel y eva luated for the wave pu lses of max imum amp l itude (Fig .k)

and these results were stored separately for later use, so that the

results of the computation were essentiall y three 1 021+ point time series :

1 . The non-d i mensional input wave pulse of maximum

amp litude

2. The resulting linear component of Eq. (29)

3. The resul ting quadratic component of Eq. (29)

To produce a simulated resistance trans i ent wh i ch could be considered as

the response to a wave pulse of amp litude (F) times the maximum shown in

Fi gu re L1, the linea r component time series is multi p l ied by F, the quad-
ratic component time series is multi p lied by F2, and the simulated

trans i ent is the sum of these modified series and g
0
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The basic results of the computation are shown in Fi gures 10

through 13. The wave pulses of Fi gure 1+ were numbered ; No. I corres-

ponds to model arrival at mid —ru n 10 seconds earl y, No. 2 to arrival

on time , and No. 3 to model arrival late. Fi gure 10 i nvolves wave pulse

No. 1 , Fi gure 1 1 pulse No. 2 and Fi gure 12 pulse No. 3

In each of the fi gures the non—dimensional ized wave pulse is shown

in the top frame, the linea r and quadratic components of resistance in the

next two frames , and finall y at the bottom the simulated resis tance (sum

of the calm water resistance and the linear and quadratic components) .

The time scale shown in the figures is essentiall y the point number

of the time series . Only 300 points of the 1 021+ available were plotted

for each case. The portions of the time series not shown are constant

and equal to the values at beg innin g and end of the portions p lo t ted .
The vertica l sca l es for each time history frame were chosen to best

resolve the transient bein g plotted and are not the same from frame to

frame.

Fi gure 13 illustrates the simulated results when the wave pulse

is assumed to be les s steep than maximum . In this case the simulated

results for wave pulse No. 1 of maximum (full) amp litude are compared

with the simulations for the cases when the wave pulse is assumed to

involve wave elevations 1/2 and 1/1+ the maximum shown in Figure 14,

I
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I

DISCUSSION OF RESULTS OF RES I STANCE SIMULAT I ON

In rev iew of the simulated results presented in prev i ous sections

it may firs t be repeated that most of the detail was undertaken in an

attempt to provide realistic results for one part i cular cho i ce of model

and experi mental parameters. The exper i mental observations are concept-

uall y confined to the wave pulse as observed by a wave probe one model

length ahead of the model (top frames of Figures 10 throug h 13) and the

result ing resistance t ransient (bottom frame of Figures 10 through 12).

These simulated results are defined as time series in the same way as

actual experimental data would be, after digitization . The components of

resis tance transients shown in Figures 10 through 12 are not observabl e.
The frequency response functions shown in the previous section are also

not available -- these (or parts thereof) are the answers sought in the

ana l ysis of the trans i ents.

Wit h i n the part ic u lar assumpti ons of the hypothet i ca l experiment

(0.1. Tank No. 3, a five foot Series 60 model at Froude Number 0.15) the

wave pulses developed appear to be realis t ic possibili ti es, and the total

l ength of the simulated runs (includ i ng portions not plotted in Fi gures
1 0 through 13) is feasible . I t would also be feasible to produce wave

pulses of longer durati on by al tering the assumpt i ons of a previous

section w ith respect to the position In the tank of max i mum wave concen-

tration .

Give n the feasibility of obtaining relativel y long stretches of

essential l y calm water resistance at beg i nni ng and end of the observed

resistance trans i ent, the feasibility of the firs t and most obv i ous

step in the ans l ys is of the resistance trans i ent is confirmed . Th is is

to remove the effect of calm water resis tance 
~~~ 

by fitting a strai ght

l ine through Initial and final port i ons of the observed trans i ent , and

then subtract this mean line from the observation . The portion of

observat ion left after this correction should be the sum of linear and

quad ratic components due to wave excitation . In practice, since
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I
electronic zero bias and poss i bl y sl i ght trends must be dealt with ,

this type of procedure would p robabl y have to be carried out for the

wave pu lse as well so as to produce “zero” wave elevation at beginnin g

and end of the observations .

The individual components of resistance shown in Fi gu res 10
throug h 12 are about what would be expected from the i nput-output model .

The linear component of resistance resembles a time lagged wave pulse

insofar as symetry about zero and apparent periods are concerned .

The quad ratic component does not much resemble the wave pulse except

in duration . Th is component conta i ns si gnifican t response at about half

the apparent periods in the wave pulse and a visible relativel y long
per i od excursion of resistance so that the quadratic component of resist-

ance is not symmetric about the mean .

The simulated total resistance trans i ents in Figures 10 through 12

are visibly influenced by the quad ratic component. These results are for

a wave pulse of probable maximum intensity . It may be noted from Fi gure 13

that the appearance of the resistance trans i ent is si gnificantl y influ-

enced by the magnitude of the wave pulse. A comparison of the linear

component of Fi gure 10 with the resistance for a wave pulse of 1/1+

maximum amplitude in Figure 13 discloses that if the gain of the hypothet-

ica l wavemaker is reduced so that the wave steepnesses are 1/1+ as great

as the probable maximum obtainable , the obvious influence of the quadratic

non -linearity on the total observed resistance trans i ent all but dis —

appears .

The forego in g is of course imp licit in the input —output model

assumed , and was observable in a sense in the irregular wave experiments

descr ibed in References 6 and 9. In the examples herein the quadratic

component of resistance is of the same magnitude as the linear part onl y

for the wave pulses of an amp Htude near the limit for propagation with-

out substantial change in form . I n practice , with recording equi pment of

more or less fixed dynam i c range, it would be somewhat natural to opt for

a relativel y severe wave pulse when best resolution of the quadratic com-

ponent is des i red . On the other hand , the qualitative ind i cations of

Fi gure 13 sugges t that isolation of the linear component mi ght be ach i eved
to acceptable accuracy if wave pulses of the mild es t amplitude possible

are emp loyed .
1.3
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INITIAL ANALYSIS OF QUADRATIC TRANSIENT RESPONSE

Existing Theoretical Method s

Among the most fundamental and useful eng i neering treatments of

the functiona l input—output model (Barrett
10
~
’, Bedrosian and Rice 11”,

George~~
’) only George ’2 treats the possibility of recovering the quad-

ratic impulse or frequency response from transient experiments . The

approach of the latter author i nvolves successive isolation of the time

domain kernels in a series of experiments. The first “experiment ” is

essentially the same as that imp lied in previous discussion and consists

of observ i ng that the system output for zero input is the zeroth degree

kernel , g~ . The second series of “experiments ” i nvolves excitation of

the sys tem by idea l step functions of varying amp litudes . The resulting

sets of output transients are expanded in a series in the amp litude of

the step function for each of a number of successive values of time .

The coefficients of the first power of the step amp litude form a function

of time and the linea r impulse response is its derivative with respect to

time. The third series of “experiment&’ involves excitation of the sys tem

with two step functions which are separated by a known time delay , ‘r.

This is repeated for a series of step amp litudes as before, and a ser i es
expansion in step amplitude is made. After utilizing some results of the

second experiment , the coefficients of the second power of the step ampli-

tude form a function of time , t, and time delay , ‘r. The whol e procedure

must be repeated for different values of ~r so that finally a two— dimensional

function of time (say ‘r~ and is generated . The quadratic impulse

response i s effecti vel y the partial derivative with respect to and ‘r2.

*10. Barrett , J.F ., “The Use of Funct i onals in the Anal ys is of Non—Linear
Phys i cal Sys tems,” Journal of El ectron i cs and Control , Vol. 15,
No. 6, December 1963.

~11 . Bed ros ian , E. and R i ce, S.0., “The Output Properties of Volterra
Systems (Nonlinea r Systems with Memory) Driven by Ha rmon i c and
Gauss ian Inputs ,” Proceed i ngs of the IEEE , Vol . 59, No. 12,
December 1971 .

*12. George, D.A., “Continuous Non—Linea r Systems,” Doctora l Disserta tion ,
Departmen t of Electrica l Eng i neering , 1.1.1., Jul y 1959.
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The above procedure depends critically upon the properties of

idea l step functions , and , accordingl y, this procedure is unworkable

for the present probl em , it is not possible to generate wave steps ,

idea l or otherwise . In fact, judg ing by the numerica l results shown in

Figure 4, it is doubtful that it would be feasible to so control the

various experimental parameters that wave pulses of exactl y the same

shape but different amplitudes could be encountered by the model . Even

if wave steps were phys ic a l l y  poss ib le, the multi p le run requirement would

make the approach unattractive since the onl y point in develop ing a

transient test technique is to make one test run do the work of many.

Correlation and Fourier Integral Analysis

First intuition suggested that analysis of the non —linear trans-

ient mi ght be approached in grossly the same manner as the prev i ous

analyses of the random process with quad ratic non -linearity 1
. Clearl y,

most of the techniques available for analysis of linear random systems

have their counterpart in the analysis of linea r transien ts . The mos t

important difference is that the operation of taking the statistical

expectation in the random anal ysis is replaced in the trans i ent anal ysis

by integration over all time . The expectation or mean value of the type

of wave induced transients shown herein clearl y tends to zero as the

limits of integration are increased without bound .

In the analyses to follow the n—dimensiona l form of Parseval’ s

Theorem (Barrett 10
) was used extensively, and , for reference, it is

reproduced as follows :

= 

(~~ )
n SS. .~~~~~ , . ’ F 1, ... dW d W . . . d W

where the (
~

) denotes comp lex conjugate and f~ (ta ...) and F. (t 1 
...) are

Fourier Transform pa i rs defined :
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n

~~~~~~~~~~~~~~ 
= 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 
Wrt )dt

~
dt
~~~~

dt
r l

f~ (t~ , t2 
. . . t~) = 

n 
. . $~~ 

(w~ , w2
. “‘

~n~ 
Exp ( 

r~ l 
wr

t r~ 
d~~ . dw (36)

The simp lest operation on the resistance trans i ent is integration

over time . Us i ng the basic model , Eq. (18), and transpos i ng the constant ,

g
0
:

,j’(r(t)—g0)dt 
= ~

j’g~ (t~)h(t— t,,)dtdt~

+ ~$g2 (t~ ,t2)J’
h(t_t1)h (t—t 2)dtdt~d t (37)

Noting that the first term on the right hand side is zero for a zero—

mean wave pulse , and apply ing the Parseval Theorem:

~
‘(r(t)—g0

)dt = 
~~ ~

G2 (w ,—w) H(W) I 2dw (38)

where H(w) is the Fourier Transform of the wave pulse . The integral of

the wave induced part of r(t) is non—zero in genera l and in form is the

same as the expression for the expected value of resistance in random

seas 1
, the squared absolute value of the comp lex wave pulse spectrum

being ana l ogous to the scalar spectrum of the random waves . The operation

yields no approach to the identifica tion of the mean added resistance

operator , G2 (w,—w)

The next integral operation which is common in anal ysis of the

linear case is a lagged product . Form i ng the lagged product of resist-

ance transient and wave pulse , and substituting Eq. (18):

m~ (T) = J’r(t)h(t—’r)dt

= g0~
h(t— ’r)dt

+ ~$g~ (t,)h(
t_ t 1)h(

t_ .r)dt,~dt

+ $$~g2 (t~ ,t2 ) h ( t — t 1)h ( t_ t 2 )h ( t — ~ )dt~ dt dt (39)

The f irst observation about Eq. (39) is that the integra l multi p lied by

146



R-l9 28

is zero within the zero mean wave pulse assumption . Uti l i z i n g  the

Parseva l Theorem to modif y the succeed i ng integrals there results:

M~ (w) = 
~~~~ 

j’m,(’r)Exp -iwt]dT

= G1 (w) 1 H(w) 2

+ ~ H” (w) 
~~

C2 (2w , ~~~~~~~~~~~~~~~~~~ (1+0)

where  inside the second integral the frequency parameters w and ~ corres —

pond to the sum and difference frequencies , 
~~
, and which are defined

by Eqs . (31.). If the system had been ent i rel y linear the inte gra l would

be zero and the result would be exactl y as expec ted for linea r systems.

In the case of random wave excitation the analogous integral dropped out

because the excitation was assumed to be zero-mean Gaussian , and the

expected value of triple products of Gaussian variables is zero. Thus

while simp le cross—co rrelation anal ysis is fruitful in identification of

the linea r term from random data , it does not appea r useful in the case of

transient data since onl y the elimination of the constant term is effected .

Proceeding with the analogy with the analysis of random data ,

a double lagged product may be defined :

m 2(’r~ ,T2 ) = j’h(t+-c1 )h(t— ’r,)[r(t—’r )—g Jdt

= ~~ (t~ ) h(t-’r2-t1 )h(t+t1 ) h(t--r~ )dt 1 dt

+ JJ J ~ 2 
(t 1 ,t2)h(t-’2-t~ )h(t-t -t )h (t÷’~ ) h(t-t~)dt~dt dt

(41)

This product is essen ti a l l y the same as the product used in the deriva-

tion of the cross-bi-spectrum . The difference is in the integrat ion with

time instead of the expected value operator.

App lying the Parseval Theorem to tie integrals of Eq. (41) there

res u l t s :
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M2 (’r~,w) =

= H2 (w,ri )IG~ (w)H
*(w)

+ k~ 
~G (~~~,q)H (ç)H

fr
(~~~)d~} (42)

wher e

H2 (w,T) = ~h(t-’r)h(t+~)Exp [—itw]dt (43)

and w and ~ of the second integral are the same as those in Eq. (1.0).

The terms within curly brackets differ from Eq. (40) virtually only by

a factor of H(w). The quad ratic frequency response function is imbedded

in an integral. No separation of linear and quadratic frequency response

functions has been effected for exactly the same reasons as in the prev i-

ous case for the sing le lagged product. The formation of the lagged

product as a function of ‘r~ is seen to be redundant . If is considered
constant and equa l to zero in Eq. (1+1), the function of w2 wh i ch res u lts

corresponds to the lagged product of resistance and the squared wave

pulse. The result of this variation is exactly the same in form as

Eq. (42).

A final integral analysis of interes t is the Fourier Transform of

the resistance transient , R(w). The resistance trans i ent and its Fourier

transform are a transform pair as follows :

R(w) Sr(t)Exp [—iwt]dt (1+1+)

r(t) = ~~~ $R(w)Exp[ iwt]dw (145)

Man i pulating the integrals in the basic input-output model , Eq. (18), by

means of the Parseva l Theorem ,the Fourier transform of the resistance

trans i ent becomes :

R(w) = 2r~g 6(w) + G~ (w)H(w)

+ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
(1+6)

where 6(w) is the Dirac delta function . Th is is the expression analogous
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to the scalar spectrum of resistance in the random exc~ tat ion cuse 1
, and

the form is very similar. Since H(O) must be zero for -i zero mean wave

pulse , R(O) may be seen to be the integra l of the wave induced resistance ,

Eq. (38), p lus a delta function arising f rom the constant calm water

res i stance .

Review i ng the results in Eqs. (1.0), (42) and ~ 6) it is clea r that

the correlation and Fourier Integral approaches do not I1~~edi a tel y sugges t

any general methods for data reduction . No sep aration of linea r and quad-

ratic terms is ev ident . The quadra tic frequency res ponse function appears

i n an in tegral , and th i s integral is practicall y the same regard l ess of

the i n i t i a l  approach. Simple Fourier Transform ation of the resistance

transient and wave pulse results in information of exactl y the same na ’~ure

as that found by correlation techni q~ es .

Some explanation of the res ult is afforded by supposin g t~ at the

quadratic impulse response is known,as well as an input transient h (t).

Under thes e circumstances a function of two times , t and ‘r, may be

developed :

p(t,’r) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (47)

A pp l y ing the Parseval Theorem to Eq. (47):

P(uk ,w2) 
= ~~p(t,’r) Exp [—iw ~ t— i w tTdtd-r

= G2 (w~,w2)H(w~)H(w2) (48)

Given the function p(t,T) and the input transient h (t) Eq. (48) implies

a simp le identification method for G2 (w.1 ,a~ ). However , it may be seen

by compar ing Eq. (47) with the quadratic terni of Eq. (18) that the

quadratic componen t of resistance is the value of t u e  function p(t ,—r)

when ‘r=t. Effectivel y, the time variable ‘r is lost and is not direct l y

recoverable when only the transient quadr atic resis tance component is

known . In none of the correla tion approaches attempted was it possible

to achieve the equivalent of the situation in Eq. (1+7) where the argu-

ments in the two i npu t transients do not have a common term .
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What was soug ht in attempting correlation methods was some means

of develop ing from the observables a function of time or time lags which

is a double Fourier transform of the quadratic frequency response func-

tion . Failure to find such a function in the present work does not prove

that it is i mpossible to do so . However the nature of the quadratic

model is such that it seems possible that insufficient information is

contained in a sing le resistance trans i ent to enable a more or les s direct

identification of the complete quad ratic frequency response function .
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A FILTERING APPROACH TO SEPARATION
OF LINEA R AND QUADRATIC COMPONENTS

.

The unsolved prob l ems of the last section may be considered in

two parts: 1) The quadratic component of the resistance was not isolated

and , 2) the quadratic frequency response function appears in an integral .

Of these two problems , the first is at least as critical as the second

since the linear component of the trans i ent would be expected to be dom i-

nant in most experimental cases . Even if the integral can be i nverted in

some way, the linear component amounts to a “noise ” which is large rela-

t ive to the quadratic signal.

The prospects for something useful resulting from a fi ltering

operation on the resistance trans i ent are bes t discus sed in conjunction

with the Fourier Transform , Eq. (1+6). Fi gure 1’4 shows the computed modu li

of the Fourier Transforms of the various components of the simulated results

for wave pulse No. 1 (Fi gure 10). At the top is the modulus of the wave

pulse transform , I H(w) I . In the middle the modulus of the linea r compo-

nent , G~ (w)H(w) , is shown as a solid line . Superposed in dashes is

the modulus of the transform of the quadratic component (the integral in

Eq.1.6). F inall y the modulus of the transform of the total resistance ,

R(w) I , is shown at the bottom.

It is clea r from the examp le in Figure 14, as well as the form of

the integral in Eq. (1+6) , that the quadratic component of resistance has

some frequency components the same as those produced by the linear part

of the system . If all the linea r components are eliminated by some sort

of filtering a great dea l of whatever information is contained in the

quadratic component wi l l  also be eliminated .

To be more specific , suppose the resistance transient corresp onding

to Fi gure 14 is passed throug h a low—pass filte r with cutoff frequency

adjusted so that all frequency components above a non-dimensional frequency

of 0.5 are attenuated to much less than 1% of their ori g ina l magnitude .

Under these circumstances practically all of the linear contribution to
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the transform , Fi gure 14, disappears , as well as the quadratic contrib u-

t ion to the transform above a frequency of 0.5. What is left of the

resistance transform w i l l  be at frequencies below the lowest wave pulse

frequency, and what wi l l  be left in the time domain w i l l  be only a rela-

tively long period excursion of resistance . In terms of the quadratic

frequency response function what is thrown away by this operation is

def in ed by the filtering equation , Eq. (28). Referring to Fi gures 8 and 9

the l ow—pass filtering operation just described produces an apparen t quad-

ratic frequency response funct i on which is zero or negHg ib l e for Ic~2 I
greater than 0.5, and which is apprec i able onl y nea r the position of the

mean added resistance operator (the :~1 axis , Fi gs.8,9). So l ong as the

l ow—pass filter has unity DC gain , the apparent quad ratic frequency

response function after filterin g contains the mean added resistance opera-

tor undistorted .

Thus a straightforward l ow—pass fil ter i ng operation appeared to

have some promise if estimates of the quadratic frequency response func-

tion in the nei ghborhood of the mean added resistance operator are all

that is desired . Because the mean added resistance operator is the onl y

part of the quadratic response funct i on which has found practica l app lica-

tion , the approach appeared worthwhile pursuing .

To formalize the low pass fil tering approach somewhat, it is f rst

required that a l ow—pass filter frequency response function , 1 (w), be

specified so that

G~ (w)H(w)L (w)

is zero or approacnes zero for all frequencies . The filter should have

unity DC gain . Because the linear component of resistance can have

appreciable frequency components onl y at frequencies at which the wave

pulse has apprec i able frequency components , the specification of the cut-

off frequency of the filter may be made on the basis of the frequency of

the l owest appreciable frequency component of the wave pulse . Knowing

th is frequency, the filter cutoff must be adjusted so as to attenuate

resistance components at this frequency to some very small fraction of

the original.
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Suppos i ng the filter to be selected in this way, an expression

for the filtered resistance , r1
(t) ,  may be written with the aid of

Eqs. (28), (45) and (1+6).

r1 (t) 9o
L
e
(O)

+ ~ G2 ~~~~~~~~~~~~~~~~~~~~~~~ Exp[ iwt]d~dw (49)

where as in previous equations , w corresponds to the sum or output fre-

quency and ~ to the difference frequency.

The elimination of the calm water resistance , g0, 
from Eq. (1+9)

may be made as has been prev i ousl y suggested . This is to fit a strai ght

line throug h beg inning and end of the filt ered trans i ent and subtract the

result from the trans i ent itse lf . Then after filterin g and correction

for the calm water resistance what is left may be cal led r2 (t) and is

written:

r ( t) —~ - ~j’G2(~~~,
.
~~~)L ~~~~~~~~~~~~~~~~~~~~~~~~~ (50)

81T e

I n Eq. (50) L
e
(W) is specified by the filter , H(w) is the Fourier Trans-

form of the encountered wave pu lse, and r2(t) is the result of filtering

the observed resistance transient and correcting this result for calm

water resistance , Only the quad ratic frequency response function ,

G2 (w~,w2) is considered unknown .

Tempora r i ly l eav i ng aside the question of whether anything can be

done with Eq. (50), some practical filter i ng considerations may be dealt

with . The foremos t question is whether the specified filter can be

rea l ized . In the hypothet i ca l experiment the wave pulse is supposed to

be under sufficient control so that the influence of frequency components

below some lowest encounter frequency is n i l . The lowes t encounter fre—

quency is determ i ned by the longes t wave length assumed to be i mportant

and by model speed . In the present example if the longes t wave length of

importance is fixed as shown in Figure 2 and the Froude number is varied ,

the lowest wave encounter frequency of i mportance var ies onl y by ± 10%

from that shown in Fi gure 14 for model speeds rang ing from zero to twice
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that of the examp le. Accord ing l y the filtering situation as defined by

Figure 14 may be taken as typ i cal . In this case in order to substantia ll y

eliminate frequency components above a non-d i mens i onal frequency of 0.5,

something like a six pole filter with nomina l cutoff frequency of 0.25 is

requ i red .

If the basic data is digitized before filtering , two methods are

available with which filters of the above specification may be realized ,

The easies t is perhaps the FFT based fast convolution . In the present

example a recursive di g ital filter is difficult because of the very low

cutoff in relat i on to the foldin g frequency range (in the example the &

chosen results in a folding frequency 30 times the required filter cutoff) .

However it is feas ble to imp l ement a two stage dig i t al filtering procedure

where the first stage removes enoug h hi gh frequency res ponse so that the

data may be decimated , and the s econd s tage, operating on the dec i mated

da ta, achieves the des i red final filter cutoff .

Alternately , there is the possibility of i ncorporating a rea l

analog filter into the experimental instrumentat i on . The non-dimensional

encounter frequencies noted in Fi gure 14 are almos t numer i call y equal to

rea l frequencies (in Herz) for the 5 foot model size described . Six—pole

low-pass filters with fixed cutoff frequency of 0.25 Hz are not now off—

the—shelf items , but solid— state electronic modules with wh i ch such a

cutoff may be realized are readily available . In situations where the

model i s “large”, say 20 feet, the filter cutoff would have to be in the

nei ghborhood of 0.i Hz. These cutoff frequencies are also considered

within reason for modern equipment and the alternative of incorporating

rea l filters into the experiment is also assumed to be feasible . In

such a case the data di g itized for analysis would be the filtered output .

Ideall y there would be no preference between digital and analog

fi l tering —— on ly a matter of whether high frequency content would be

thrown away at the outset or after the experimen t is over . In practice ,

preference mi ght be give n to analog filtering during the experiment .

Judging by the examp les p rev i ously s hown, the filtered resistance excur-

sion is apt to be small relative to the maximum peak to peak range of
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the total resistance transient. Rea l time analog filtering would make

possible the adjustment of gains so that the best use is made of the

resolution available on the recording med i um -- a particular l y i mportant

consideration if the recording med i um is analog magnetic tape .

AN APPROXIMAT E APPROACH TO THE IDENTIFICAT I ON OF
THE MEAN ADDED RES ISTANCE OPERATOR

Presuming that the linear component of the resistance transient

may be removed one way or another by filtering there is left Eq. (50),

wh i ch has the form of a pure quadrat ic system . The function to be

identified is G (~, 
— 

~). Continuing the approach in the last section ,

if the pass band of the filter Le(W) is reduced even further than is

required to eliminate the lin ear component , the effective quad ratic fre-

quency response funct i on is concentrated along the line w~=-w2 (
~~2

=
~~ ’

Figures 8,9).

Considering the var iation of the actual quadratic frequency response

function near the line w~=—w2, according to the genera l syninetry proper-

ties of the function it is expected that

.
~; 

~~~~~~~~~~~~~~ [o +

in wh i ch F
1 (~
) is an even function in ~~ . Acco rding ly, for values of w

not far from zero it would be expec ted that the quad ratic frequency

response function would have the form:

+ iwF
1
(~ )

in wh i ch F
R(~
) is the mean added resistance operator [G2(~ , 

- ~)J, and
is even in ~~~ .

Now if it is assumed that the low pass filter can be made suf-

ficiently narrow, the effective quadratic frequency response function

may be approx i mated by:
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K2(~~~,~~~) ~ 
L (W)[F~(~) + iwF

1
(~)] (51)

In the approx i mation it is assumed that L
a
(O)=l so that F

R(~
) ,  the func-

tion of interes t, is not distorted . It is further assumed tha t La(w) is

nearl y zero for values of w for wh i ch [F
R
(
~
)+iwF

l (~
)] is not a good

representation of the actua l frequency response function .

The filter in the above approx i mation is assumed to be an anal ysis

f ilter which has a l ower cutoff frequency than any rea l filter which mig ht

have been applied before di gi tizing the data. There i s no reaso n why this

fil ter has to be realizable in the rea l time sense, and some conven i ence

i n taking it as non—realizable. Thus L
a(w) will be taken as rea l and

even in w.

In general , the approximation , Eq. (51) must correspond to an effec-

tive quadratic impulse response, k2(t,,t2). Appl y ing Eq. (20):

k2(t~ ,t2) 
= 

(2rT)
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 1 t~~ t t - t
= 
2 (~~~)

2 S$Exp [iw 2 
2 

+ ~~ 
~~~ 

2 ]K2(—~—,--~--)dwd~ (52)

(after making the usua l transformation ; w=w~+u~ , and

t~+t2Lett i ng: 12 = 
2

t —t
T1 = 

2 
(
~~

)

and subst ititin g Eq. (51) into Eq. (52), and not i ng that F
R(~
) and F

1 
(
~

)
are even in ~~, and that La(W) is even in w, there is fina ly obtained :

k2(t1,t3) ~ 
L
a

(T
2) ‘ f~ (T1)

+ .
~ 

L
b

(T2) .  f
2 (T~) (54)
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where:

L ( T ) = ~~ JL (w)cosl2wdw (55)

= .
~~~~ jwL (w) s inT 2 wdw (s6)

f~ (T i) = .

~~~~~ JF R(~
) cosT, ~~~ (57)

f2 (T~) = ~~ ~
1
F

1
(~)cosT~~d~ (58)

The apparen t quadratic impulse response Eq. (51+) has the correct

symmetry. Interchange of t1 and t2 l eaves 12 unchanged , and T~ negative ,

but the function is the same because both Eq. (57) and (58) are even in T~ .

Equations (55) and (~6) are just Fourier sine and cosine transforms of a

filter frequency response wh i ch is specified . Given what is known about

the quadratic frequency response function the left hand sides of Eq. (57)

and (58) are expected to be absolutel y integrab le so that the inverses

may be written :

FR (t3) J’f1 (T~)Ex p[-i~ T~]dT~
= Sf~

(T
~
)cosT

~~
dT
~ (59)

(si nce f1 (T1) is even in L)

similarly:

F
1
(~) = ,~

‘f2 (T,)cosT~~dT~ (60)

Now assuming that the anal ysis filter has been app lied to the

resistance transient and the calm water resistance has been corrected for,

the result (denoted r~ (t)) may be written :

r~ (t) = SJk~
(t1 ,t2)h(t— t ,)h(

t_t
2)dt,~

dt2 (61)

Equation (61) is exactl y analogous to the third term of Eq. (18). Appli-

cation of the Parseval Theorem would result in a form exactly the same

as Eq. (50) with the substitution of Eq. (51) for the effective quadra tic

frequency res ponse function .
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Substituting Eq. (51.) in Eq. (61) and making the variable trans-

formation defined by Eq. (53) there results:

r.,(t) Sft (Ti )Sta
(T2)h (t_T2_Tt )h(t_T2+Ti )dT2dT

~

+ $f2 (Ti) j’Lb (12 ) h(t—T2—T~)h(t—~~+T~)dT2dT~ (62)

Alternatel y, by replacing the quadratic frequency response in the third

term of Eq. (46) by the approx i mation , Eq. (51) there results the Fourier

transform of ra (t)

R~ (w) = 
~~ JL (w)[FR(~

)+iwF I (~ )JH ( )H(~~~)d~ (63)

In either form the result of the approx i mation to the apparent

quadratic frequency response is to separate an unknown function of two

variables into the product of a known funct i on and an unknown function of

one variable. Equat i ons (62) and (63) are equivalent in the sense that

application of the Parseval Theorem, Eq. (35), to Eq. (62) y ields Eq. (63) .

A start at a pract i ca l data reduction method based upon Eq. (62)

or (63) was firs t made by considering Eq. (62), the time domain version .

Because the simulated trans i ents corres pond to response to a wave eleva-

tion forward of the model it is known from the work of Refs . 1 and 6

that the imag inary part of the function nea r the mean added resistance

operator wi l l  vary strong l y, that is , F 1
(~) will  be relativel y lar ge.

However, it was shown in Refs . 1 and 6 that a simp le time shift of input

relative to output tends to minimize the magnitude of the imag inary part

of the function nea r the line w~=—w2 . In the case of the presen t simu la-

tion the actua l best time shift is the same as that in Ref . 6, or

18 points . In order to simplif y a fi rst trial it seemed reasonable to

assume that the shifting operation would make F
1 (~
) very small (that is ,

the imaginary part of the effective quadratic frequency response function

would be nil). Under this further approx i mation f2 (T 1 ), (Eq.58) is also

neg li g ible and the filtered , time shifted resistance response was approx-

imated as:

r4(t) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (614)
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For purposes of an actual di gital computation it was assumed that

the same type of representation which had produced the simulated trans-

ients (Eq.29) would be adequate. Thus to transpose to the d g ital form :

t = l~~t

T~ = jAt

I = kAt
2

~nd Eq. (64) becomes:

r4 ( p) = E 
~ 

f
l~
Lakh(p_k_J)h(p_k.+.j) (65)

j k

wher e h(p—k— ~) -~ r h (p—k+j) represent po i nts on the time history at time

steps (p-k—j) and (~ —k+j). Similarly , r4(p) is the resistance time history

at time step p. In Eq. (6s) discrete approx i mations to f1 (T~) and £ (12)
were made as fol lows :

f~ (T i ) = f
1~ 6(T 1 —jAt) (66)

= L
a • 8(T~-kAt) (61)

Now taking the Fourier transforms of Eq. (66) and (67); there results:

= f10 + 2 E f
1
.cos(j~~~t) (68)

-~ j=l ,2...
= 2ao + 2 

~ ~akc05~~~~t) (69)
k= 1 , 2...

Mani pulating Eq. (65) slightly ,

r4 (p) = E f 1 . C .  (70)

j=0,l ,2...

where

C~~ 
= q

~ 
E L~~h J)h ki.j) (71)

k-m

with q =

= 2 for j ~ 0
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Once the filter impulse response 
~~~~ 

is specif ied , Eq. (71) is calcu l-

able as a function of j for each response time step, p. According l y,

Eq. (70) represents a series of linea r al gebraic equations in the unknown

discrete impulse response, f1~~. It was hoped that this series of equa-

tions could be solved in a least squares sense for the f 1 ., and thus

ultimate ly estimates could be made of FR(~
) via Eq. (68).

The steps done in try ing this approach out were as follows :

a. Compensate the simulated resistance transien t for

calm water resistance.

b . Assume a Hanning Type Filter and compute

£ak = -~[l+cosrrk/m ] (72)

whe re: m
E = E [l+cos’ik/mJ

k=-m

and m is chosen to contro l the cutoff .

Specificall y, the corres pond i ng frequency

response, [a
(W) is unity for w=O and roug hl y

1/2 for u~~T/n~ t.

c. Compute 
~~~~~ 

Eq. (69).

d. Filter the resistance trans i ent with L (W)

utilizing the FF1 fast convolution method .

e. Shift the wave pulse time series relative to

the resistance time series as previousl y noted .

f. Compute ~~ for each point in the wave time series ,

and accumulate the coefficients in a least squares

fit of Eq. (70).

g. Scale the coefficients in the resulting L.S. fit

equations as required .

h. Solv e for the f 1. using a standard Gauss elimina tion

techn i que (Subroutine GELG or DGELG , IBM Scientific

Subrout m e  Package).
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i . Estimate F
R
(
~
) via Eq. (68) using the results of

step h .

The above procedure was app lied to the simulated sets of trans i ent

data with various choices of m, that is , various cho i ces of low pass

filter cutoff . The number of estimates of f . solved for was varied from
l j

10 to 30. In no case were the results of the procedure meaningful.

Double precision accumulation of L.S. fit coefficients and solution for

f 1 . was necessary in order to get any sort of solution for the case that

the scaling (step g) i nvolved onl y division of the entire set of equations

by the larges t absolute va l ue in the coefficient matrix. A scaling pro-

cedure was devised with which all the coefficients on the left hand

coefficient matrix were of the order of unity and by which each row and

column of the coefficient matrix contain a value nea r unity. The solution

after this scaling was no more meanin gful than those mentioned prev i ousl y.

The coefficient matrix obtained in step f of the procedure is

certainl y numerically ill-conditioned . Those answers which were returned

for the f
1~ were typ icall y alternately positive and negative and of about

the same magnitude irrespective of the magnitude of j. To see what answer

should have been obtained , the simulated added resistance operator , Fi g-

ure 8, was transformed numericall y in accordance with Eq. (57) and

eva l uated at a time step corres pond i ng to that used in the anal y s i s .

These results indicated that the absolute values of the f . should have
1 J

decreased as j increased , the magnitude should have been small enoug h to

disregard after 30 time steps , and that semi —oscillations p lus to minus

should have been about 4 time steps . This evidence along with the nature

of the fitted results suggested an over—fit. Thus ill—condition i ng appears

not to be merely numerica l but that there is reall y not enoug h independent

information left after the heavy filtering operation to enable a sol ution

for the 30 or so va l ues of f 1 . which seem to be required for a reasonable

estimate of the mean added resistance operator.

There is of course the possibilit y that the assumption that

i s neg l ig ible is at fault . However , the low pass filtering operation

plus the shifting, was certainly enough to make the imaginary part of
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the apparen t quadratic frequency response function relativel y sma l l ,

if not neg li g ible . Given that the results obtained under the assumption

of neg li g ible F
1
(~) were not even in the ball park it was doubted that a

procedure i nvolving Eq. (62) rather than Eq. (64) would be worth the

substantiall y increased effort, and accord i ngly the above approach ~ias

aba ndoned.

Some effort was made to develop a similar procedure with Eq. (63),
the frequency doma in version of Eq. (62). Referring to Eq. (63), the
product:

L (w) H(~~~)H(~~~)

is calculable from the Fourier transforms of the wave pulse . In addition

to a relative time shift , a re— l ocation of the (arbitrary ) position of

time = 0 was advisable before carry ing out the Fourier transform on both

the wave and resistance trans i ents so that the arguments of each were

slow ly vary ing. The net result of the development was an estimation

equation of the form:

R3 (w) = $FR(~
) C1 (w,~)

+ SF 1 (
~

) C2 (w,~ )

+1 SF~.
(
~
) C~ (w ,~)

+i $F 1 (~) C4
(w,~ ) (73)

in wh i ch the C ( r .u,~) are calculable functions of w and 3. This approach

was carried throug h in a sim i 1 ar manner to that ind i cated in Eq. (65)
throug h (71). The results obtained after app l ying the approach were just

as bad as before -- regardl ess of whether F
1 (~
) was assumed to be neg li g-

ible or not . The basic problem with this approach is that after app l y ing

the Fast Fourier Transform to the resistance transient and carryin g out

the l ow-pass filtering there are a limited number of values of

available . In the present case with 1K arrays defining the trans i ent ,
and a filter narrow enough to eliminate the linear componen t of resist-

ance, there wer e on ly a dozen or so estimates of R.3(w) which were not
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neg li gible due to the effect of the low—pass filter . Thus F
R
(
~
) and F

1
(~)

need ed to be approx i mated by no more than a dozen discrete values along

the ~ ax is from zero the the folding frequency. This frequency resolu-

tion is much too coarse for a pract i cal data reduct i on procedure . On

paper , the solut ion would be to add zeros to the trans i ent arrays ,

doublin g their length so that more estimates could be obtained in the

pass—band of the filter. This approach is thought illusory and was not

attempted because all that is achieved is an interpolation —— no new and
independent information is achieved . Just as in the time domain approach ,

the few results achieved with the frequency domain approach indicated that

there is really not enough independent information left after filterin g to

allow reasonable answers .
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CONCLUDING REMARKS

Because the experimental determination of the characteristics of

mean shi p model resistance added by waves is one of the more difficult

and time consuming problems in seakeep ing towing tank practice , t was of

practical interes t to see if a techni que involving wave pulses could be

developed , and if so, if it promised better efficiency .

Toward this end a fairl y realistic di gita l simulation was made of

the head wave pulse experiment and of the resulting resistance transient .

There appears to be lit t l e  doubt that such an experiment is feasible , and *

that the influence of calm water resistance can be eliminated in a strai ght-

forward way because the “memory” of the nonlinear part of the added

resistance is not exorbitantl y lo ng.

The development of a data reduction procedure was approached from

the point of view that any practicall y attractive data reduction procedure

must i nvolve a very few wave pulse runs , preferabl y only one. This point

of view was re-inforced by the wave pulse simulation because it appeared

that the detailed shape of the wave pulse would be seriousl y affected by

small changes in wavemaker and model control parameters. For examp le ,

wave pulse time histories of exactly the same shape but different amp li-

tudes appea r to require more precise control of experiment than is

ord i narily possib le. Accord i ng ly it appeared that if reasonable estimates

could not be obtained from one experiment , there would be little point in

attempting methods which required multi p le experiments for any purpose

other than confirmation ,or for improving quality of estimates through

simp le averag ing.

Severa l correlat i on and Fourier anal ysis approaches to the ident-

ification from trans i ent data of the quadratic frequency response function

for added resistance were inv esti gated . All the approaches were analogous

to one or another of the known approaches for outputs of linear and quad-

ratic system s in response to random excita tion . None of these investi gations
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resulted in a clean approach to the problem . Evidence was developed tha t

a conceptually clean approach may be i mpossible . With respect to a

recovery of the entire quadratic frequency response function for added

resistance , it appears that insufficien t information is contained in a

sing le transient . It should be remarked that this is in contrast to the

case for random Gaussian excitation , In this latter case a clean approach

arises and is traceable to statisti ca l properties of the expected va l ues

of products of i nput .

By taking advantage of the general properties of the quadratic model

which appears to be valid for added resistance , it was possible to develop

a “dirty ” approach for the identifi cation of the mean added resistance

oper ator from a s in g le trans i ent experiment . However no meaning ful results

could be obtained with this latter approach . Those results wh i ch were

obtained imp l y that there is not enough information in a single transient

experiment to enable the identific ation of even a special portion of the

quadratic frequency response funct i on (the mean added resistance operator) .

It appears that if there is a practical wave pulse techni que for

added resistance experiments , it is not yet in hand .
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PRINCIPAL NOTATION

F
R
(
~

) , F
1 (~) approximating functions

f1 (T i ) ,  f2 (T~) impulse responses

f 1 . weighting coefficients

G~ (w) linear frequency response function

G2 (w,,w2) quadratic frequency response function

g gravitationa l constant

go zeroth deg ree kernel (calm water resistance)

g1 (t) linea r kernel (surge Force impulsive response)

g2 (t 1, t2) quadratic kernel (added resistance impulse response)

H(w) Fourier transform of wave pulse

h(t) encountered wave pulse

h
x (t) wave pulse at tank position x

j,k,p indices

L~ (w), L2 (w) linea r frequency responses (fi lters)

L (w), Le(W)

I. linea r wei ghting coefficient

L
a

(T2)) tb (T2) impulse responses

~Jk 
quadratic weighting coefficients

r(t) resistance transient
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T , T t ime var i ables

~ 
2

t time

U model veloc i ty

X~ Xm 
tank pos ition

difference frequency

At time interval

dummy ti me var i ables

difference frequency

sum frequency (equals encounter frequency)

w, w
~
, w encounter frequency

w wav e freq uency

W 1L frequency of wav e of sh ip length
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