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INTRODUCTION

The work summarized in Ref,. l* has shown that a functional poly=-
nomial input-output model has considerable practical promise as a
unifying concept for the interpretation of ship added resistance and
possibly related problems. |In particular, in this and previous work it
has been demonstrated that; a) both a linear and a quadratic frequency
response function can be derived from experiments in irregular waves, as
well as from experiments in regular waves; b) synthesis of the mean added
resistance and of resistance spectra can be carried out by use of these
frequency response functions, and; c) time histories of added resistance
can be synthesized for an irregular wave input through use of the time
domain representation of the linear and quadratic level non-linear fre-

quency response functions.

All of the just cited work was empirical. The particular input-
output model was hypothesized at the outset and the implications of the
model were checked as far as possible with experiment. The idea that
there exist linear and quadratic frequency response functions followed
from the (non-physical) model assumed. The input-output model provides
no detailed physical basis. In the context of added resistance, a linear
frequency response function may be thought of as the relation between
oscillatory surge exciting force and wave elevation. There are a number
of hydromechanical approaches to the estimation of this function so that
the concept could be accepted as having an identifiable physical base.
On the other hand, methods of hydromechanical computation for the entire
quadratic response function were lacking. Only a very special portion
of the quadratic frequency response function could be estimated from

hydromechanical considerations. This problem was addressed in the work

%
1. Dalzell, J.F., "Application of the Functional Polynomial Model to
the Ship Added Resistance Problem,' Eleventh Symposium on Naval
Hydrodynamics, London, March 1976,
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of Ref. 2*, and in this latter work the relationship between the hydro-
mechanics of added resistance and the ''quadratic frequency response
function' of the input-output model was clarified. Reasonably good
qualitative, and fair quantitative agreement was achieved between results
of analysis and experiment. Thus the work of Ref. 2, by providing a
physical model, lends increased confidence to the use of the two-term

functional polynomial model in analysis and interpretation of experiment.

Insofar as ship model dynamics in waves is concerned, the general
experimental problem is to identify the pertinent parameters or functions
given a wave input and the observed response. An input-output model of
some sort is ordinarily required if an endless series of experiments is

to be avoided.

Historically, the advent of the linear input-output model for some
ship dynamics problems had the effect of expanding the possibilities in
experimental ship dynamics work, Once it was shown that the linear model
was a reasonable engineering approach for the prediction of ship response
under realistic (random) conditions, three experimental techniques were
admissible, Regular wave experiments took on a slightly different mean-
ing, the option became available for the interpretation of experiments
in irregular waves by spectral analysis, and the development of transient
test techniquesB* followed shortly thereafter., Of the three techniques
th= first two are the most widely used, although the transient technique

has undergone additional development in recent years, Takezawa, et a]h,sw

2. Dalzell, J.F. and Kim, C.H., "Analytical Investigation of the Quadratic

Frequency Response for Added Resistance,'' SIT-DL-76-1878, Davidson
Laboratory, Stevens Institute of Technology, August 1976.

3. Davis, M,C. and Zarnick, E.E., '"Testing Ship Models in Transient
Waves,'" Fifth Symposium on Naval Hydrodynamics, Bergen, 196k,

4, Takezawa, S. and Takekawa, M., ''Advanced Experimental Techniques for
Testing Ship Models in Transient Water Waves: Part |, The Transient
Test Technique on Ship Motions in Waves,' Eleventh Symposium on
Naval Hydrodynamics, London, 1976,

5. Takezawa, S. and Hirayama, T., ''Advanced Experimental Techniques for

Testing Ship Models in Transient Water Waves: Part |1, The Controlled

Transient Water Waves for Using in Ship Motion Tests,' Eleventh
Sympos ium on Naval Hydrodynamics, London, 1976,

2
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Given this history and the evidence thus far advanced that the
two term functional polynomial is a realistic input-output model for
added resistance, it is natural to inquire into the extent to which tech-
niques paralleling the three available for the linear case are available
for routine experimental determination of the quadratic frequency response

function,

A regular wave technique has been used for some time in the determ-
ination of mean added resistance operators. |In this technique the total
mean resistance of a model in regular waves is measured and the added
resistance operator is derived from the difference between this observation
and the model resistance in calm water, Multiple runs are required to
cover a range of wave frequency and it has been found by some that frequent
re-running of calm water tests is advisable. Many of the basic problems
with the technique appear to be related to experimental accuracy. The mean
added resistance is usually small in comparison with calm water resistance,
and both are often very small in comparison with the time dependent com-

ponent.

Because the mean added resistance operator corresponds only to a
special portion of the quadratic frequency response function, the existing
regular wave technique is not sufficient if experimental estimates of the
entire function are required, The principle of the required regular wave
technique has been indicated in Reference 1. However, this technique has
hot so far been used in practice. |In brief, to produce results defining
the entire quadratic response function for added resistance,an experimental
technique involving dual harmonic excitation is required; that is, two
superimposed regular waves, This technique corresponds to the basic
interpretation of the quadratic frequency response function given in Ref, 1.
It would involve selection of pairs of regular wave frequencies such that
their superposition in the encounter domain is periodic, as well as the
subsequent harmonic analysis of the added resistance response. The general
nature of the quadratic frequency response function and the principle of
the regular wave technique imply that if N experimental runs in regular
waves are adequate to describe the important part of the added resistance

operator, then about N2/2 runs might be required for a reasonable definition
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of the entire function. Thus a 10 run per model speed mean added resist-

ance test program might turn into a 50 run per speed program for the

o o ki

general quadratic response,

With respect to the possibilities of identifying the linear and '
the quadratic frequency response functions from data obtained in irreg-
ular waves, the techniques are more or less available, Ordinary spectral
and cross-spectral analyses suffice for the linear function, and a tech-
nique called cross-bi-spectrél analysis has been developed for the
quadratic function (Ref.1). In principle the cross-bi-spectral analysis
technique is quite attractive in the sense of increasing efficiency over
that for regular wave experiments. The technique is based on a correla-
tion with the wave fluctuations of the fluctuations in resistance. Thus
this technique is not sensitive to the value of calm water resistance, and
in fact calm water resistance need not be known at all. Again in principle,
either the mean added resistance or the entire quadratic frequency response
may be derived from the same sample of irregular wave input and response,
the difference being the amount of computer time brought to bear.
In practice however, the technique has a quite serious deficiency. It is
that for reasonable precision of estimates an order of magnitude larger
sample is presently required than is customary in the spectral identifica-
tion of the linear response. In many cases it is not possible to accumulate
sufficient sample for the linear identification process in one pass up a
towing tank, Thus it appears that the cross-bi-spectral analysis technique
will always require as many or more test runs as the existing regular wave
technique if only the mean added resistance operator is required -- although
fewer for a determination of the entire function. The mean added resistance
operator is presently the only part of the quadratic frequency response
function which finds routine use, and it is to be expected that the situa-
tion will not soon materially change. Accordingly, it does not now appear
that the technique involving cross-bi~spectral analysis of irregular wave
test data will offer savings in facility time over that now required for

routine added resistance experiments,

In parallel with the possibilities for the linear case, the third

experimental technique involves the analysis of transient wave pulses,
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Conceptually, the transient wave pulse would involve all wave frequencies
of interest, and the wave elevation would be zero or nearly so at begin-
ning and end of experiment, Thus the observed resistance transient,

while containing response at all frequencies, should equal calm water
resistance at beginning and end of the experiment. The ideal advantages
are thus similar to those for the cross-bi-spectral analysis technique in
that all the required information is embedded somehow in a single observa-
tion. The difficulty with the idea is essentially that the existing
theory for the quadratic input-output model does not contain a clear

indication of how to proceed with the analysis.

It was accordingly the objective of the present work to investi-
gate the feasibility of a wave pulse technique for added resistance. For
the practical reasons cited previously the emphasis was to be upon ident=-
ification of the mean added resistance operator rather than the entire
quadratic frequency response function, and the methods to be employed were

to involve digital computer rather than physical experiments,
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THE TRANSIENT EXPERIMENT ‘ |

In order to fix some terminology, various stages of the hypotheti-
cal transient experiment for head seas are outlined in Figure 1. In the
figure the condition of tank and model are indicated for five significant
stages of one experimental run, Time (t) will be considered to be posi-
tive after the wave generator is started. Thus there is shown at the top
of the figure for t < 0 a hypothetical towing tank which has a wave gen-
erator at one end, an absorber at the opposite end, and a model sitting
still in preparation for the run. At this stage the water is assumed to
be quiet everywhere. Position in the tank is denoted by X, which is zero

at the wavemaker and positive in the direction of wave propagation,

At time equal to zero the wave generator begins to generate a long-
crested transient wave, and typically at some subsequent time the model
acceleration begins so that at the second stage (t=ts) the model is
proceeding with constant velocity, U, at tank position X=Xs. The model
is assumed to be in still water at this stage while the wave transient
at the other end of the tank is propagating toward it. |In the third
stage (t=tst) the model enters the wave pulse at tank position X=Xy »
At the fourth stage (t=tet) the model leaves the pulse at position Xy
and continues at constant speed in calm water until time te (position Xe)
when deceleration begins, The useful part of the experiment is between
times tS and tes during which an observer on the model sees calm, then
rough, and then finally calm water at the end. Because of the assumption
of constant speed, the position of the model in the tank is known during

this time from a knowledge of Xs’ tg and U.

Several of the tacit assumptions in the above deserve comment.
One is that of a long-crested wave pulse or transient. The input-output
model has not been extended to the short-crested case. For the purposes
of the present study this is not a serious restriction since none of the
other techniques described in the introduction have been adapted for this
case, and in fact there have as of the present been very few experiments

of any type in short-crested seas.
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Another comment which can be made is about the subject of heading.
Clearly, if there is some component of wave group velocity in the direc-
tion of model travel there may be an ambiguity which would require very
special handling, or the model may never pass out of the transient at
all -- at least not within the confines of a towing tank. For example,
in following seas the model might be started near the wave maker before
the pulse is generated. |f all wave components travel at group velocity
greater than model velocity, the wave pulse will overtake and pass the
model. Alternately if the model speed is high enough it might be possible
for the model to overtake and pass the pulse. |In between these extremes
it is extremely difficult to envision a reasonable following seas
transient experiment when the model speed and the mean group velocity of
the wave components are about the same. For purposes of the present study
the problems about all model headings excepting head seas were ignored on
the grounds that the feasibility of even the head sea test was not clear,
and that the head sea case is usually considered the most important for

adde : r «istance,

The assumption of constant model velocity implies that the model
is restrained in surge and that resistance is measured through some sort
of force balance. This is a system not always used in practice. It was
retained in the present case because; a) it is feasible to do6*; b) it has

been found7’8*

that the mean added resistance for constant speed is not
significantly influenced by surge restraint; and c) it seemed probable
that a ‘technique developed for this case might be adaptable to other con-

ditions of surge restraint.

"6, Dalzell, J.F., "Application of Cross-Bi-Spectral Analysis to Ship
Resistance in Waves,'" SIT-DL-72-1606, AD 749102, Davidson Laboratory,
Stevens Institute of Technology, May 1972,

7. Sibul, 0.J., "Constant Thrust vs. Constant Velocity Method for
Resistance Measurement in Waves,' University of California, Berkeley,
Report NA-71-1, June 1971,

8. Journee, J.M.J., "Motions, Resistance and Propulsion of a Ship in
Longitudinal Regular Waves,' Report 428, Laboratorium voor
Sheepshydromechanica, Technische Hogeschool Delft, May 1976,
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WAVE PULSES

Theory

It was the basic objective of the work to examine feasibility of
techniques which might be employed in towing tanks, and to check any
promising scheme with a computer ''experiment.' Accordingly it was neces-
sary to begin with a consideration of the type of wave transient which is
physically possible, and to generate a few examples for later use.
References 3 and 5 indicate clearly that because of the dispersive proper-
ties of waves, it is not possible to produce anything closely resembling
the ideal impulse, or the isolated step function, etc., which are basic
to much of the theory of transient response as shown in the textbooks of

control and electronics.

The linear theory of the type of wave pulse which is possible is
well developed, is treated in References 3 and 5, and will be used herein,
It is apparent from these references that the linear theory and experi-
ment correlate well so long as average local wave steepnesses are not

such as to produce extensive breaking.

Following the developments in References 3 and 5, the transient
wave elevation at position X in the tank will be denoted hx(t). It is

assumed that hx(t) is absolutely integrable, that is:
JIh(t) [dt <=

where the convention is followed that omission of limits signifies limits
of plus and minus infinity. (This convention will be followed throughout
the present report.) On the basis of this assumption, the transient has
a Fourier transform or complex spectrum, Hx(gg, and the transform pair

relating the transient and its spectrum may be defined as:
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h (t) = 2= [H (w) Expliwt]dw (1)
H (@) = [h (t)Exp[-iwt]dt (2

where w denotes circular wave frequency.

In the practical production of a wave transient, the wavemaker is
given a specified sequence of control signals so as to produce a desired
transient wave elevation., For present purposes the dynamics of the
wavemaker may be neglected and it will be assumed that the transient wave
at the wavemaker is specified. Thus the wave at X=0 (Figure 1) will be

taken to be:

ho(t) = é; IHO(Q)Exp[iQt]dQ (3)

where

HO(Q) is the complex spectrum of the wave pulse.

There are two main constraints on ho(t). The first is that it be zero
for t < 0; that is, ho(t) must be physically realizable according to
the time conventions shown in Figure 1. The second is that the local

wave steepnesses be ''small."

Following the linear theory of wave propagationB'S, the frequency
response function connecting the wave elevation at X=0 (Eq.3) and wave

elevation elsewhere in the tank is given by:
Expl-i | | wX/q]

which simply means that each wave component is assumed to propagate with-
out change in amplitude. From this, the spectrum of the wave transient

at position X becomes:
H (@ = H (@ Exp[-i | @ | gX/q] (&)

and the transient wave itself at position X is:

h(8) = 5 [Ho (@) Expl iwe-i | @ | wx/g)du (5)

10
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Also following from the linear assumption is that the integral square of

the transient is invariant with tank position:
E = jhz(t)dt - o r‘| H (w) r dw = constant (6)
X X o J o= -

in which the last relation is obtained by application of the Parseval

Theorem.

The invariance of the integral square suggests a useful change in

notation for the complex spectrum of the transient at the wavemaker:

Ho (@) = A(w) Expliep(w)] (7)
in which A(w) and @®(w) are real
and:

A(-w) = A(w)

P(-w) = -9(w)

Then the wave transient at position X becomes:
1 3 . .
h (t) = 5= [A(w) Exp[iwt+i®(w)-i | © | wX/g]dw (8)

In the transient techniques described in References 3,4,5 the amplitude
part of the spectrum of the wave at the wavemaker, A(w), is specified
so as to produce wave excitation in all the frequencies of interest.

The phase part, ®(w), is used to control the wave pulse in the run area.

It is shown in Reference 5 that the wave pulse of shortest dura-
tion has a constant phase spectrum. Accordingly, for the shortest
duration of pulse, it is necessary to specify a part of ¥(w) so that
the |w| wX/g term in Eq. (8) is cancelled out at the position of interest.
Thus the phase function for the transient at the wavemaker may be speci-

fied as follows:

P(w) = Cm sgn(w)+ | w|wx /9 - wt_ (9)
In Eq. (9) C is an arbitrary constant. The second term is a phase lead
which will cancel the similar phase lag in Eq. (8) at position X, The

last term is a phase lag which corresponds to a constant time delay in

the time domain, It must be inciuded in the phase prescription as a way

11
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to insure that the transient at the wavemaker will be physically realiz-
able. What is accomplished by the above assumption is to organize the
transient wave at the wavemaker in such a way that about an equal time is
necessary for all component waves to reach position X, in the tank.

At positions closer to the wavemaker the transient pulse is converging,

and at positions further away than Xm the transient is diverging.

In practical testing in the usual towing tank a desirable mid-
point of the data taking portion of the run is usually known from the
acceleration and deceleration characteristics of the carriage drive, and
from the positions of the inevitable obstructions at either end of ihe
tank. Thus the tank position, Xm, in Eq. (9) might reasonably be speci-
fied as the mid-point of the data run, and would ordinarily be determined

by other than wave making considerations. |In the terminology of Figure 1:

Xm = (XS + Xe)/2 (10)

Thus substituting Eq. (9) into Eq. (8) there results a further

expression for the wave pulse at any tank position X:

h(t) = = JAG@Expliw (t-t )+icmsgn(u)-i | | w(X-X )/g]du

i
41—

ImA(Q)cos[g(t-tm)+CW - gf(X-Xm)/g]dg
o

|-

J A(@ecos[em-ut - o (X-X_)/g]coswt dw

A=

[ A(@sin[Cr-wt - & (X-X )/g]singt dw ()
o

In the present case the encountered wave transient, he(t), is
desired. It may be assumed that timing of model acceleration relative to
wavemaker start can be made such that the model will arrive at position Xm

at time (tm-é). For constant model velocity, U, the position of the model

in the tank may then be written as:

Ak U(t-tm+6) (12)

In the practical case Eq. (12) is valid only within the range of time
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(tS £tSs te). Now substituting Eq. (12) into Eq. (11) there results an

expression for the encountered transient:

ho(r+t ) = 2= [B(e)Exp[it(w + | w | wU/g) Jdu (13)

where: T=t=-t
m

B(w) = B, (w) + i8, (w)

with:

Bp(w)

B, (w

A(w)cos[Crsgn(w) + | w | wUs/g]

A(w)sin[CTsgn(w) + | w | wUs/q] (14)

With respect to the practical experiment, Eq. (13) is valid only in the
range (ts-tm) S\T < (te-tm). The time variable change corresponds to the
normal practice in experiments of counting time with reference to some
arbitrary point in the constant speed portion of the run. The function
B(Q) contains only parameters which aie prescribed by programming of the
wave machine, and the timing of model start. The function of w in the
exponential of Eq. (13) may be recognized as the encounter frequency for
head seas, w. The expression, Eq. (13), may thus be transformed into an
integration over w., As such it is in the form of a Fourier Transform.

So long as matters are arranged so that he(t) is zero outside the range of
practical validity of Eq. (13), the inverse transform of the encountered
transient will be valid in the sense that there will be no difference
between the practical experiment and the hypothetical situation in which

the model proceeds at constant velocity for an infinite range of T,
Applying the head sea transformation:
w=w+|wlw/g
and defining:

K(w) = gU (-1 + /T+hat/q)
J(w) = 14 1+hal7g (15)

13
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ho(r+t ) =2 { B (K(w)) 3 (0) cos (o) d
- - 1 [, (K@) I (@) s infur) du (16)
o

The effective Fourier spectrum of the encountered transient is B(K(w))J(w).
From Eq. (14):
| B(K(w))J(w) | = A(K(w))J(w) (17

so that, as would be expected, the amplitude part of the Fourier spectrum

is distorted by the transformation.

Example Evaluations

As noted, some examples of physically possible wave pulses were
desired. The easiest way to insure realism was to evaluate Eq. (11) with
parameters appropriate to a given tank and model size. The Davidson
Laboratory Tank No. 3 (300'x12'x6') was selected as the hypothetical tank,
and the hypothetical experiment was assumed to involve a five foot ship

model at a speed corresponding to Froude Number 0,15,

The first function to specify is A(w). It was assumed on the basis
of prior experimental results that wave lengths between 2,5 and 15 feet
(1/2 to 3 times model length) would include the important parts of the
resistance response. |t was further assumed that for the identification
purposes envisioned it would be of advantage to make the encountered spec-
trum have a roughly constant modulus (Eq.17) in the encounter frequency
range which corresponds to the wave length range just cited., The first
step in constructing A(W) was thus to make A(w) = A(K(w)) = P/J(w) where P
is a constant which controls the magnitude of the generated transient,

The model speed assumed in computing encounter frequencies corresponded to
a Froude Number of 0.15 for a five foot model. The resulting form for A(w)
is shown in Figure 2. The wave frequency range of interest was roughly
3.5 to 9 radians/second. In this range the function is as noted above.

At each end of this range a smooth transition is made to zero over a

one radian/second frequency range.
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The next parameters required by Eq. (11) are X, and t.. InD.L.
Tank 3 the mid-point of the data taking area is usually 150 feet from the
wavemaker, and this distance was chosen for Xm, the designed concentra-
tion point., The time delay was chosen to be a bit more than the time
required for the wave component of highest frequency to travel 150 feet

at its group velocity., The number used was tm = 105 seconds.

The constant, C, in Eq. (11) controls the symmetry of the wave
transient at the point of maximum concentration. If the constant is made
zero, the concentrated transient will tend to have a higher maximum crest
than maximum trough., |If the constant is = 0.5 the maximum crests and

troughs are the same. For present purposes a value of -0.5 was taken,

All that remains to choose in the evaluation of Eq. (11) is the
arbitrary scaling constant, P, in the specified wavemaker spectrum modulus.
This constant is essentially the wavemaker gain, and may be assigned any
number from zero to a value at which the waves produced will be too steep

and start to break.

Equation (11) was evaluated with an arbitrary choice of P, and the
parameters selected previously, for four tank positions (at the wavemaker,
and at 125, 150 and 175 feet). The magnitude of the resulting wave ampli=-
tudes was compared with the wave length corresponding to the local apparent

periods to establish a reasonable maximum value of P,

Figure 3 shows the resulting computed transients scaled to corres-
pond to the estimated maximum amplitude. As required, the wave pulse at
the wavemaker is zero for time less than zero, The time duration of the
pulse decreases with position in the tank until the 150 foot position,
whereafter the duration increases. The transient at the point of concen-
tration (150') appears small in the figure because the vertical scale is
less than half of that for the other positions., The maximum peak to peak
amplitude shown for the 150 foot position is about 0.5 feet, which is
probably equivalent to a wave height to wave length ratio of 1/10. At the
125 and 175 foot positions maximum apparent local steepness appears to be
about 1/18, and at the wavemaker maximum apparent local steepness is less
than 1/20. For these reasons the wave pulses shown in Figure 3 were taken

as representing a practical possibility for a relatively severe wave pulse,
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Having established that the computed results were reasonable for
specific points in the tank, some examples of encountered transients could
be computed from Eq. (13). AIll parameters except the model arrival time
delay, 8, had been established, and Eq. (13) was evaluated for a model
speed corresponding to a Froude Number of 0.15, Three cases were considered
according to whether the model arrives at the 150 foot position exactly at
time tm when the wave pulse is most concentrated (6=0), 10 seconds earlier,

or 10 seconds later.

The results of the evaluation are shown in Figure 4 for the three
cases, As in the previous figure the vertical scale chosen for the case
of model arrival during maximum concentration is smaller than that for the
other cases. The duration of the encountered transients is about 10 seconds
in all cases. This duration corresponds to roughly 4 model lengths travel
up the tank. For the speed involved, timing of model arrival at a specific

point in the tank within plus or minus a few seconds is quite feasible.

The complex spectrum was computed for each of the wave pulses shown
in Figure 4. The modulus of the spectrum of the three transients was the
same, and as expected, was constant within the anticipated encounter fre-~

quency range.
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INPUT-OUTPUT THEORY FOR RESISTANCE

As noted in the introduction, the basic assumption in the present
work is that ship model resistance follows the functional polynomial
input-output model treated in Refs, 1,2,6,9*, and elsewhere, This approach
involves the assumption that the model proceeds at constant speed in a wave
system, h(t), which is defined at a point stationary with respect to the
mean position of the model; that is, the input-output model applies to the

encounter domain,

The general time domain representation for the resistance, r(t), is

written as follows:
r(t) =g+ Jo, (t,)h(t-t,)dt,

+ fjga(tl,tz)h(t-ti)h(t-tz)dtxdtz (18)
where:

r(t) is instantaneous resistance
h(t) represents a zero mean wave elevation

t is time

and g_, g, (t,), and g, (t,,t,) are zeroth, first and second degree kernels.
It is presumed that the hydrodynamic properties of the ship model are
contained wholly in the kernels, and (without loss in generality) that

the second degree kernel is symmetric in its arguments; that is,
95 (t,,t,) = g5 (t,,t))

The zeroth degree kernel, g, is the value of r(t), Eq. (18), when
the wave elevation is zero for all time. Since it may reasonably be sup-
posed on physical grounds that the wave elevation will be zero mean, the

kernel, 97 is identified for present purposes as the calm water resistance.

%
‘9. Dalzell, J.F., "The Applicability of the Functional Polynomial Input-

Output Model to Ship Resistance in Waves,' SIT-DL-75-1794, Davidson
Laboratory, Stevens Institute of Technology, January 1975,
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The second term in Eq. (18) is a linear convolution integral and
is interpreted as the oscillatory surge exciting force so that the first

degree kernel is the impulse response function for surge force,

The third term in Eq. (18) is a double convolution integral which
gives rise to the essentially non-linear resistance added by waves. The

second degree kernel may be called a quadratic impulse response.

Both first and second degree kernels are assumed to be absolutely
integrable and thus may be transformed in the Fourier sense. The trans-
form pairs relating the linear and quadratic impulse responses to corres-
ponding linear and quadratic frequency response functions may be defined

as follows:

gI(T) = %; je+iw1 Gl(uﬁdw
6 (0 = Je ' g (v) dr (19)

1 4 .
92(11,12) = -(—2;)—2- ”Exp [+|w11’1 + '%TQ}GE (ml,u;a)dw.ldm2

ffExp r-iu571 - i“Engga(Tz’Tz)dT1dTg (20)

-

G, (w ,w,)

in which w represents circular encounter frequency.

The linear frequency response function, Gl(w), defined by Eq. (19)

is absolutely conventional,

The quadratic frequency response function, Gg(“k’“h) is defined in
a bi-frequency plane, Because the kernel 92(11’12) is assumed to be

symmetrical in its arguments, and is real:

G, (w,uw) = 6, (u,w) (21)

G? (w1 ,wg) e Ga(-wl,—wa)

6, (-, ,-4;) (22)

(The asterisk denotes the complex conjugate.) These relationships simpli=

fy the quadratic frequency response function to the extent that certain
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symmetries result and that as a consequence the function needs only to
be considered in a quadrant of the bi-frequency (uﬁ,uh) plane. Equa-

tion (21) results in a line of symmetry along the line w,=w, . Equation
(22) results in a line of symmetry of the real part, and anti-symmetry
of the imaginary part of Gz(ua,u5) defined by W, ==, .
that along this line the imaginary part of the function is zero.,) These

(1t may be noted

two lines and the w, ,w axes divide the bi-frequency plane into octants,
of which the two on either side of the positive w, axis may be arbitrarily
chosen for reference, The assumptions of symmetry of the second degree
kernel results, with Eq. (20), in a complete definition of Ga(uﬁ,u%) if
the functions are defined in any pair of octants including a semi-axis

of either frequency. Thus without loss in generality, interpretation of
the quadratic frequency response needs only to involve the octants on

either side of the positive w axis. In these octants w is positive and

Py | :

.

12w

Because estimates of the quadratic frequency response function are
the objective of the present work, a summary (after Ref.1) of the interp-
retation of the function is in order. The approach to the meaning of the
function is grossly the same as for the linear case. |If in the linear

case the system is considered to be excited by
h(t) = a coswt

the output may then be written:
Re{aG, (w) Exp(iwt) |

and G, (w) is interpreted in terms of normalized amplitude and phase of

response,

To interpret the quadratic frequency response, dual harmonic

excitation is necessary. Accordingly, it may be assumed that:

h(t) = a cosw t + a cosw,t (23)

In accordance with the previous discussion of symmetry, both frequencies
(w, ,w,) are considered positive and I“ﬁ |2 | w, | . The basic model, Eq. (18)

is good for any zero-mean excitation. Accordingly, Eq. (23) may be

ee
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substituted directly in Eq. (18). After some algebra the final result

for the response to dual harmonic excitation may be written as follows:

2 = 9,

+ Refa G, (w ) Exp(iw t)+a G (w,) Exp(iw t)}
. é;afg? (%,-w1)+a252 (wy5-w,) }
+ % Re{al 6, ( ,, ) Exp(i2u, t) ]
+ —;- Re{aZG, (u,,u ) Exp(i2w, t) ]

+ Re{alaeGe(wl,wa)Exp[i(w1+w2)t]}

+ Re{alaaGa(u&,-uE)Exp[i(uH-ug)t]} (24)

This result shows that the response of the quadratic system,
Eq. (18), to dual excitation contains, in general, a shift in the mean
and components of six different frequencies [u&, w, 5 2w, , 2“5’ (“H+“E)’
and (uﬁ'ué)]‘ The second and third terms of the result are the super-
position of the linear responses at the excitation frequencies. The
fourth and fifth terms of Eq. (24) represent a shift in the mean. These
terms allow the identification of the mean added resistance operator as
the value of Ga(u&,ug) along the line w =-uy (or Gz(uﬁ,~uﬁ)). The sixth
and seventh terms are the second harmonic components (Zuﬁ,ZuE). Similarly,
these terms allow the identification of second harmonic response with the

values of G, (w ,w,) along the line W, = (or Ga(ug,uﬁ)).

The eighth and ninth terms of Eq. (24) pertain to the bi-frequency
plane in general, The eighth term is the response at frequency (u5+ug);
that is, Gg(“ﬁ’“b) expresses the normalized response in the sum frequency
due to non-linear interactions. Similarly, the ninth term involves
response at frequency (uﬁ-ub); that is, Gg(u&,-ug) is the normalized

response in the difference frequency,

A final part of the general theory which is useful in both analysis
and interpretation is the effect of cascaded linear systems. If it is

supposed that the input to the system, h(t) of Eq. (18) is the result of
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a linear operation upon a variable s(t), and the frequency response
function of the linear operation is denoted by Li(w), then the linear
and quadratic frequency response functions (K (w) and Kg(u&,ug)) connect-

ing s(t) and r(t) may be written:

K (@) = 6, (@)L, («) (25)
Ky (wy,w,) = 6 (w,w)) Ly (0)L, (w) (26)

If it is additionally supposed that the output r(t) of the system of
Eq. (18) acts upon a linear system with frequency response function L, (w)
to produce an output v(t), then the linear and quadratic frequency response

functions (Kfv(w) and K:V(uh,wz)) connecting s(t) and v(t) may be written:
k' (@) = 6, ()L, (W)L, (w) (27)
KoY (uy 5u) = G, (g ,uw,) L, (@)L (W)L (u +w) (28)

The relation for the linear part, Eq. (27), is just the same as

for completely linear systems.

Equation (28) shows that filtering of input and output have differ=
ent effects on the apparent frequency response function. For example,
if Li(w) is an ideal low-pass filter dﬁth cutoff frequency @, the effective
quadratic frequency response function, K:v(uﬁ,ub), will be zero outside the
region where |w |and |w, |are less than @, Considering a practical
example of output filtering, if the output is observed through a low-pass
filter, Le(w), with a very low frequency cutoff, the effective quadratic
frequency response will tend to be zero everywhere except near the line
w,==w, which is the location of the mean added resistance operator in the

bi-frequency plane.
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SIMULATION OF RESISTANCE TRANSIENTS

General

Following the conditions involved in the simulation of encountered
wave pulses, Figure 4, it was assumed that the simulated experiment
involved a five foot ship model proceeding at a Froude Number of 0.15 into
a head wave pulse., |In order to take advantage of quantitative resistance
response data developed in Refs, 2, 6 and 9, the model was assumed to be
the Series 60 0.60 block parent, restrained in surge. Because it is
customary in a narrow towing tank to locate a wave probe ahead of the model
to minimize distortion of results by model generated waves, the encountered
wave pulses, Figure 4, were assumed to be the indication of a wave probe

one model length forward of model LCG.

The simulated wave pulses are digital time series; that is,
represent a sampling of the wave pulse at a uniform time interval (At).
Accordingly the analytical time domain model, Eq. (18), has to be re-cast
into a summation form for practical computation purposes, This was done
in the same way as had been done in Ref. 9. The digital model of Eq. (18)

becomes :

r(n)

L}
[fe]

m2
£ L. h(n-j)
j==-ml J
p2 pe
+ £ T Q, hinj)h(n-k) (29)
: J
j==pl k=-pl

ES

where r(n) = computed resistance time series

h(n) = simulated wave pulse time series

and Lj and ij are weighting coefficients in which the differentials are

absorbed.
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Equation (29) requires discrete approximations to the linear and

quadratic impulse responses of the form:
9 (%) = L; 6(r-jar) (30)

(where 6&(t) is the Dirac delta function)

The Fourier transforms of Eqs. (30) and (31) in accordance with Egs. (19)

and (20) yield continuous (aliased) frequency response functions as

follows:
p me
G (w) = = Lj[cos(jwst)-i sin(juat) ) (32)
j==-ml
= p2 pe
G, (0, ,w) = j=?p] k=:£p‘ij[cos(jw1At+kw2At)-i sin(ju At+koat) ] (33)

For practical computing purposes the process of transforming given
observed or analytical frequency response functions amounts to achieving
(with a finite number of coefficients) a reasonable fit of the re-trans-
formed impulse responses (Eqs. 32,33) to the observed response functions.
The general approach followed is to integrate the first of Eqs. (19) and
(20) trapezoidally with observed estimates of the appropriate frequency
response function. This is carried out for a sufficient range of time
variable(s) so that decisions regarding the truncation limits (ml, m2,
and pl,p2 in Eqs. 29 through 33) can be made. Evaluation of the computed
impulse response function is made at integer values of time step At and
these values are multiplied by At or At® as appropriate to result in esti=-
mates of the coefficients Lj and ij. The next step is to adjust the
coefficients so that the discrete kernel reflects the correct behavior
of the frequency response functions at zero frequency. |In the present
case it is assumed that there is no resistance added by an infinitely
long wave. Thus the coefficients Lj and ij should sum to zero. The
final computational step is to insert the coefficients into Eqs. (32) or
(33), compute the re-transformed impulse response function and compare
the results with the original frequency response estimates. Iteration

of the process is sometimes necessary,
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Selection of Data for Use in Eq. (29)

To take advantage of the results of Refs. 2, 6 and 9, it was
convenient to retain the non-dimensionalizations of those references,
The first convention is that all lengths are divided by model length,
For present purposes this meant only that the simulated wave pulse eleva-
tions were to be divided by five feet., The second convention was that
model resistance was to be divided by model displacement. Finally,

a non-dimensional encounter frequency was defined as:

o= w/w]L

where w = encounter frequency, rad/sec

= frequency of a wave of model length, L
= /2"97L

Because this non-dimensionalization can be considered as merely a

1.

change in the time scale, the ¢ notation of Refs. 2, 6 and 9 may be used
interchangeably with the present w notation., For present purposes the

time scale will be multiplied by w,, and corresponding frequencies com-

puted in the conventional way. ln];articular, the real time sampling
interval (At) of the wave pulses of Figure 4 was selected to be

0.066 seconds. The equivalent At in the ''"non-dimensional' time scale is
0.4197, and this value was used through the developments of the weighting

coefficients in Eqs. (29) through (33) to be described.

The first term in Eq. (29) is the calm water resistance, 9g° The
experimental value of raw calm water resistance cited in Ref, 6 for the
five foot series 60 model at a Froude Number of 0,15 was 0.092 1b.

Dividing this by model displacement yields:
9 = 0.0028

The second term in Eq. (29) involves the linear weighting coef-
ficients L., Several sets of estimates from experiment had been made in
Ref. 6 for the modulus of the surge exciting force frequency response
function, G, (w) or G, (5). These were averaged to form a starting point

for the derivation., The phase data was not presented in Ref, 6, but
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had been developed. These phase estimates had been derived with respect
to wave elevation forward of LCG. This wave reference had been shifted
in time to improve the cross-spectral estimation procedure, and it was

a straightforward operation to correct the estimates to a wave phase

reference one model length ahead of model LCG.

The operations described in conjunction with Eqs. (30) through
(33) were carried out upon the experimental surge exciting force data
and the results are summarized in Figures 5 and 6. Figure 5 indicates
the experimental estimates of the surge exciting force frequency response
function as plus signs, and the results of re-transforming the final
weighting coefficients, Lk, as dashed lines., As may be mted, the
experimental data which was thought valid in Ref, 6 does not cover the
entire frequency range. (Extrapolations had been made to zero and high
frequency before starting the transformation procedure.) However the
encounter frequency range of the example wave pulses does not significantly
exceed the frequency range where data is shown, and it would thus not be
expected that the results of the simulation would be seriously influenced
by errors in the extrapolations. Overall, the correspondence between the
transformed discrete linear kernal and the experimental data appears ade-

quate to insure realism in the simulation.

The weighting coefficients, L in Figure 6 are of most importance

k,
for positive k; that is, for the 'past'' of the input wave elevation.
Accordingly the kernel relating surge exciting force to wave elevation

a model length ahead of LCG is nearly physically realizable.

For a starting point for the simulation of the third term in
Eq. (29) there were four choices available, Reference 9 contains three
sets of experimental estimates of the quadratic frequency response function
for the experimental case of interest, and Ref, 2 contains one set of
analytical estimates., |t appears from the analyses of Ref. 2 that in the
regions of the bi-frequency plane not resolved in Ref. 9 there exist
significant values of the quadratic frequency response function, Addi-
tionally, some of the experimental estimates which were questioned in

Ref. 9 appear to have been discredited by the analyses of Ref., 2.
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However, in the region of the bi-frequency plane of most practical
interest (that is, near the mean added resistance operator) the experi-
mental and analytical estimates are not impossibly different. Accord-
ingly, the best choice for present purposes appeared to be the analytical
result of Ref. 2.

The analytical quadratic frequency response function of Ref. 2
relates the quadratic part of added resistance to wave elevation at LCG.
Thus the first necessary operation for the simulation was to develop the
analytical quadratic frequency response function relating resistance to
wave elevations one model length ahead of LCG. This was accomplished in
accordance with the input filtering relationship, Eq. (26)., Essentially,
wave elevation ahead of model and at LCG are related in the wave frequency
domain by the transfer function following Eq. (3). This transfer function

becomes L, (w) after transformation into the encounter frequency domain,

Having thus made an initial estimate of the quadratic frequency
response function, the process outlined in the discussion of Eq. (33) was
pursued. The final results for the ij weighting coefficients correspond-
ing to the quadratic impulse response are shown in an isome:iric view in
Figure 7. The weighting coefficient matrix is 71 x 71, and the value of
the largest coefficient is 0.69. |In the figure straight lines are drawn
through the points along sections parallel to j and k axes so that each
intersection corresponds to a value of ij. Where the function is sig-
nificant it is characterized by undulations in both j and k directions.
Most of the negative values of the function are masked or indistinct,
but are of roughly the same magnitude as the positive peaks shown.

As may be noted at the edges of the plot, the truncation could have been
at slightly higher values of j and k, but, as will be shown, the repre-
sentation seems adequate. In this plot as in Figure 6 positive values
of j and k correspond to the '"past'' of the wave elevation. The most
significant part of the kernel lies in the region where both j and k
are positive. There are weak interactions between positive k and nega-
tive j (and positive j and negative k by symmetry), but very little

interaction response when both j and k are negative.
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Agreement was quite good between the quadratic frequency response
function corrected to wave forward of LCG and the re~transformation of
the truncated, discrete function shown in Figure 7. The re-transformed
function was then corrected to a wave phase reference at model LCG and is
shown in comparison with the original analytical result of Ref, 2 in
Figures 8 and 9. Figure 8 indicates the real part and Figure 9 the imag-
inary part of the function. These two figures are essentially plotted
tables, The magnitude of the function involved is plotted in the non-
dimensional bi-frequency plane (“ﬁ’“b)' A second axis system is shown as
well, This axis system is the '"'sum' and 'difference' system defined by

the transformations:

Q, = w-w
Qy = wytw, (34)

The Q, and 02 axes lie on the lines of symmetry.

The results from the re-transformation of the discrete kernel,
Figure 7, are shown in the quadrant bounded by the #, and Q, axes. In
order to show the analytical results from Ref. 2 in the same figures, the
octant bounded by the +u, and +2, axes has been displaced in the negative
Q, direction, The analytical results are shown in this octant according
to the basic symmetry properties of the quadratic frequency response
function. If analytical results and the simulation were in exact agree-
ment, the simulated results would be an exact reflection about the Q, axis
of the analytical results in the “E'Qa octant., A similar procedure was
adopted to show the analytical results corresponding to the simulated
results in the w, %2, octant. In this case exact agreement would require
that the simulated results would be an exact reflection about the Q, axis

of the analytical results in the Ql-(-wz) octant,

In order to emphasize the important parts of the function, esti-
mates having absolute values less than 2.5 are omitted (blank). The

contours shown are for the zero level.
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On the whole the correspondence between simulation and analytical
result is considered quite adequate for present purposes, The re-trans-
formation was carried out at half the frequency intervals shown in the

figures. The intermediate values indicated that the function was smooth.

Computation of Sample Transient Responses

Having selected coefficients of Eq. (29) which were thought to
fairly realistically represent the resistance characteristics of the
assumed ship model, it remained only to do the convolution arithmetic

for the example encountered wave pulses of Figure L,

There is a numerical start-up and stopping transient in both
convolutions in Eq. (29). However in the present case the input wave
pulse is zero at beginning and end so that the resulting outputs do not

have to be specially treated for this effect.

The basic programming used was that developed in Ref, 9. Before
computing the response to the wave pulses the programming was run with
sinusoidal wave elevation input, and analysis of results in accordance

with Eq. (24) confirmed that the computing system was correct.

As a possible aid in interpretation, the components of Eq. (29)
were separately evaluated for the wave pulses of maximum amplitude (Fig.k4)
and these results were stored separately for later use, so that the

results of the computation were essentially three 1024 point time series:

1. The non-dimensional input wave pulse of maximum
amplitude

2. The resulting linear component of Eq. (29)

3. The resulting quadratic component of Eq. (29)

To produce a simulated resistance transient which could be considered as
the response to a wave pulse of amplitude (F) times the maximum shown in
Figure 4, the linear component time series is multiplied by F, the quad-
ratic component time series is multiplied by Fz, and the simulated

transient is the sum of these modified series and 9
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The basic results of the computation are shown in Figures 10
through 13. The wave pulses of Figure 4 were numbered; No. | corres-
ponds to model arrival at mid-run 10 seconds early, No. 2 to arrival
on time, and No. 3 to model arrival late. Figure 10 involves wave pulse

No, 1, Figure 11 pulse No. 2 and Figure 12 pulse No. 3

In each of the figures the non-dimensionalized wave pulse is shown
in the top frame, the linear and quadratic components of resistance in the
next two frames, and finally at the bottom the simulated resistance (sum

of the calm water resistance and the linear and quadratic components).

The time scale shown in the figures is essentially the point number
of the time series. Only 300 points of the 1024 available were plotted
for each case. The portions of the time series not shown are constant
and equal to the values at beginning and end of the portions plotted,

The vertical scales for each time history frame were chosen to best
resolve the transient being plotted and are not the same from frame to

frame.

Figure 13 illustrates the simulated results when the wave pulse
is assumed to be less steep than maximum. In this case the simulated
results for wave pulse No. 1 of maximum (full) amplitude are compared
with the simulations for the cases when the wave pulse is assumed to

involve wave elevations 1/2 and 1/4 the maximum shown in Figure 4,
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DISCUSSION OF RESULTS CF RESISTANCE SIMULATION

In review of the simulated results presented in previous sections
it may first be repeated that most of the detail was undertaken in an
attempt to provide realistic results for one particular choice of model
and experimental parameters. The experimental observations are concept~-
vally confined to the wave pulse as observed by a wave probe one model
length ahead of the model (top frames of Figures 10 through 13) and the
resulting resistance transient (bottom frame of Figures 10 through 12).
These simulated results are defined as time series in the same way as
actual experimental data would be, after digitization. The components of
resistance transients shown in Figures 10 through 12 are not observable,
The frequency response functions shown in the previous section are also
not available -- these (or parts thereof) are the answers sought in the

analysis of the transients.

Within the particular assumptions of the hypothetical experiment
(D.L. Tank No. 3, a five foot Series 60 model at Froude Number 0.15) the
wave pulses developed appear to be realistic possibilities, and the total
length of the simulated runs (including portions not plotted in Figures
10 through 13) is feasible. It would also be feasible to produce wave
pulses of longer duration by altering the assumptions of a previous
section with respect to the position in the tank of maximum wave concen-

tration,

Given the feasibility of obtaining relatively long stretches of
essentially calm water resistance at beginning and end of the observed
resistance transient, the feasibility of the first and most obvious
step in the anslysis of the resistance transient is confirmed, This is
to remove the effect of calm water resistance (go) by fitting a straight
line through initial and final portions of the observed transient, and
then subtract this mean line from the observation. The portion of
observation left after this correction should be the sum of linear and

quadratic components due to wave excitation. |In practice, since
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electronic zero bias and possibly slight trends must be dealt with,
this type of procedure would probably have to be carried out for the
wave pulse as well so as to produce ''zero' wave elevation at beginning

and end of the observations,

The individual components of resistance shown in Figures 10
through 12 are about what would be expected from the input-output model,
The linear component of resistance resembles a time lagged wave pulse
insofar as symmetry about zero and apparent periods are concerned.

The quadratic component does not much resemble the wave pulse except
in duration, This component contains significant response at about half
the apparent periods in the wave pulse and a visible relatively long
period excursion of resistance so that the quadratic component of resist-

ance is not symmetric about the mean.

The simulated total resistance transients in Figures 10 through 12
are visibly influenced by the quadratic component. These results are for
a wave pulse of probable maximum intensity. It may be noted from Figure 13
that the appearance of the resistance transient is significantly influ-
enced by the magnitude of the wave pulse. A comparison of the linear
component of Figure 10 with the resistance for a wave pulse of 1/4
maximum amplitude in Figure 13 discloses that if the gain of the hypothet-
ical wavemaker is reduced so that the wave steepnesses are 1/4 as great
as the probable maximum obtainable, the obvious influence of the quadratic
non-linearity on the total observed resistance transient all but dis-

appears.

The foregoing is of course implicit in the input-output model
assumed, and was observable in a sense in the irregular wave experiments
described in References 6 and 9. |In the examples herein the quadratic
component of resistance is of the same magnitude as the linear part only
for the wave pulses of an amplitude near the limit for propagation with-
out substantial change in form. |In practice, with recording equipment of
more or less fixed dynamic range, it would be somewhat natural to opt for
a relatively severe wave pulse when best resolution of the quadratic com-
ponent is desired. On the other hand, the qualitative indications of
Figure 13 suggest that isolation of the linear component might be achieved
to acceptable accuracy if wave pulses of the mildest amplitude possible

are employed,
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INITIAL ANALYSIS OF QUADRATIC TRANSIENT RESPONSE

Existing Theoretical Methods

Among the most fundamental and useful engineering treatments of
the functional input-output model (Barrettlo*, Bedrosian and Rice]l*,
Georgele*) only (;eorge]2 treats the possibility of recovering the quad-
ratic impulse or frequency response from transient experiments, The
approach of the latter author involves successive isolation of the time
domain kernels in a series of experiments. The first ""experiment'' is
essentially the same as that implied in previous discussion and consists
of observing that the system output for zero input is the zeroth degree
kernel, 9ge The second series of ''experiments'' involves excitation of
the system by ideal step functions of varying amplitudes. The resulting
sets of output transients are expanded in a series in the amplitude of
the step function for each of a number of successive values of time.
The coefficients of the first power of the step amplitude form a function
of time and the linear impulse response is its derivative with respect to
time. The third series of '"experiments' involves excitation of the system
with two step functions which are separated by a known time delay, T.
This is repeated for a series of step amplitudes as before, and a series
expansion in step amplitude is made. After utilizing some results of the
second experiment, the coefficients of the second power of the step ampli-
tude form a function of time, t, and time delay, T. The whole procedure
must be repeated for different values of T so that finally a two-dimensional
function of time (say 7, and 72) is generated. The quadratic impulse

response is effectively the partial derivative with respect to s and T,

*
10. Barrett, J.F., '"The Use of Functionals in the Analysis of Non-Linear

Physical Systems,'" Journal of Electronics and Control, Vol, 15,
No. 6, December 1963,

£
1. Bedrosian, E. and Rice, S.0., '"The Output Properties of Volterra

Systems (Nonlinear Systems with Memory) Driven by Harmonic and
Gaussian Inputs,'" Proceedings of the |EEE, Vol. 59, No. 12,
December 1971,

12, George, D.A., '"'Continuous Non-Linear Systems,' Doctoral Dissertation,
Department of Electrical Engineering, M.l.T., July 1959,
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The above procedure depends critically upon the properties of
ideal step functions, and, accordingly, this procedure is unworkable
for the present problem, It is not possible to generate wave steps,
ideal or otherwise. |In fact, judging by the numerical results shown in
Figure 4, it is doubtful that it would be feasible to so control the
various experimental parameters that wave pulses of exactly the same
shape but different amplitudes could be encountered by the model. Even
if wave steps were physically possible, the multiple run requirement would
make the approach unattractive since the only point in developing a

transient test technique is to make one test run do the work of many,

Correlation and Fourier Integral Analysis

First intuition suggested that analysis of the non-linear trans-
ient might be approached in grossly the same manner as the previous
analyses of the random process with quadratic non-linearityl. Clearly,
most of the techniques available for analysis of linear random systems
have their counterpart in the analysis of linear transients. The most
important difference is that the operation of taking the statistical
expectation in the random analysis is replaced in the transient analysis
by integration over all time. The expectation or mean value of the type
of wave induced transients shown herein clearly tends to zero as the

limits of integration are increased without bound.

In the analyses to follow the n-dimensional form of Parseval's
Theorem (Barrett‘o) was used extensively, and, for reference, it is

reproduced as follows:

“‘---Iﬂ(ti,ta---tn)fz(tl,ta,---tn)dtldta---dtn

‘”'. . .IF;:‘(wI s e -wn) F2 (w1 Uy, .wn) dw1 dwz i 'dwn \35)

where the (*) denotes complex conjugate and fj(tx"') and Fj(t1°") are

Fourier Transform pairs defined:
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n
% wrtr)dtldta---dtn

Fj(“h’“é"'wn) = Ij"'ffj(ti’tg"'tn)ExP('i x

1 oen , S
e S (e b % e A W

fj(ti’te'.'tn) =

The simplest operation on the resistance transient is integration
over time. Using the basic model, Eq. (18), and transposing the constant,
95"

J(r(t)-g)dt = [fg, (t,)h(t-t,)dtdt,
+ [foa (ty,8,) [a(e-t, ) h(t-t,) dtde, dt, (37)

Noting that the first term on the right hand side is zero for a zero-

mean wave pulse, and applying the Parseval Theorem:
r\ ] "I 2
J(r(t)-g )dt = = [G, (w,-0) | H(w) | "duw (38)

where H(w) is the Fourier Transform of the wave pulse. The integral of
the wave induced part of r(t) is non-zero in general and in form is the
same as the expression for the expected value of resistance in random
seasl, the squared absolute value of the complex wave pulse spectrum

being analogous to the scalar spectrum of the random waves. The operation
yields no approach to the identification of the mean added resistance

operator, G, (w,-w).

The next integral operation which is common in analysis of the
linear case is a lagged product. Forming the lagged product of resist-

ance transient and wave pulse, and substituting Eq. (18):
m, (1) = fr(t)h(t-t)dt
= g [h(t-1)dt
+ [fa, (t,)h(t-t,) h(t-7)dt, dt
P Ijjgz(t1,tz)h(t-tl)h(t-ta)h(t-T)dtidtadt (39)

The first observation about Eq. (39) is that the integral multiplied by
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-

9 is zero within the zero mean wave pulse assumption. Utilizing the

Parseval Theorem to modify the succeeding integrals there results:

1 p E. i
Mi(w) e Jmi(T)ExpL-le]dT

6, (w) | H(w) |”

+

=@ o G, LR HERHES) (40)

where inside the second integral the frequency parameters w and B corres-

pond to the sum and difference frequencies, (i, and (), which are defined

2
by Eqs. (34). |If the system had been entirely linear the integral would
be zero and the result would be exactly as expected for linear systems,

In the case of random wave excitation the analogous integral dropped out
because the excitation was assumed to be zero-mean Gaussian, and the
expected value of triple products of Gaussian variables is zero, Thus
while simple cross~correlation analysis is fruitful in identification of
the linear term from random data, it does not appear useful in the case of

transient data since only the elimination of the constant term is effected.

Proceeding with the analogy with the analysis of random data,

a double lagged product may be defined:

mo(7,57,) = [hlttr ) h(t-1) [r(t-7,)-g_Jdt

JJoy () h(t-r,-t, ) h(t+r, ) h(t-7 )dt, dt

+

Jpjjge(t1,tE)h(t-’tz-tl)h(t-”r?-te)h(t+11)h(t-'tl)dtxdt:dt
(L41)

This product is essentially the same as the product used in the deriva-
tion of the cross-bi-spectrum. The difference is in the integration with

time instead of the expected value operator,

Applying the Parseval Theorem to the integrals of Eq. (4!) there

results:
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M, (T, ,w) = junz('rl,rz)Exp[-iurra]d'ra

= H, (0,7,) {6 (@K (w)

0t

i Jo, (R W R W AR ap) 2)

where
H, (w,7) = jh(t-r)h(t+r)£xp[-itw]dt (43)

and w and B of the second integral are the same as those in Eq. (40).

The terms within curly brackets differ from Eq. (40) virtually only by

a factor of H(w). The quadratic frequency response function is imbedded
in an integral. No separation of linear and quadratic frequency response
functions has been effected for exactly the same reasons as in the previ=-
ous case for the single lagged product. The formation of the lagged
product as a function of 7, is seen to be redundant. |If 7, is considered
constant and equal to zero in Eq. (41), the function of 7, which results
corresponds to the lagged product of resistance and the squared wave
pulse. The result of this variation is exactly the same in form as

Eq. (42).

A final integral analysis of interest is the Fourier Transform of
the resistance transient, R(w). The resistance transient and its Fourier

transform are a transform pair as follows:
R(w) = Jr(t)Exp[-iwt]dt (L)
r(t) = 'E JR(w) Exp[ iwt Jdw (45)

Manipulating the integrals in the basic input-output model, Eq. (18), by
means of the Parseval Theorem,the Fourier transform of the resistance

transient becomes:

R(w) = 2mg  6(w) + G, (w)H(w)
+ 1= Jo, (22,28 (B 2By gp (46)

where 6(w) is the Dirac delta function. This is the expression analogous
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to the scalar spectrum of resistance in the random excitation case], and
the form is very similar. Since H(0) must be zero for a zero mean wave
pulse, R(0) may be seen to be the integral of the wave induced resistance,
Eq. (38), plus a delta function arising from the constant calm water

resistance,

Reviewing the results in Eqs. (40), (42) and (k6) it is clear that
the correlation and Fourier Integral approaches do not immediately suggest
any general methods for data reduction. No separation of linear and quad-
ratic terms is evident. The quadratic frequency response function appears
in an integral, and this integral is practically the same regardless of
the initial approach. Simple Fourier Transformation of the resistance
transient and wave pulse results in information of exactly the same nature

as that found by correlation techniques.

Some explanation of the result is afforded by supposing that the
quadratic impulse response is known,as well as an input transient h(t).
Under these circumstances a function of two times, t and T, may be

developed:
p(t,1) = [fg, (t,,t,)h(t-t, ) h(z-t ) dt, dt, (47)

Applying the Parseval Theorem to Eq. (47):

P(uﬁ,ub) pr(t,T)Exp[-iuHt-iwgrjdtdt

G, (wy ,w, ) H(w, ) H(w,) (L8)

Given the function p(t,T) and the input transient h(t) Eq. (48) implies
a simple identification method for Gz(uﬁ,ub). However, it may be seen
by comparing Eq. (47) with the quadratic term of Eq. (18) that the
quadratic component of resistance is the value of the function p(t,T)
when 1=t, Effectively, the time variable T is lost and is not directly
recoverable when only the transient quadratic resistance component is
known. In none of the correlation approaches attempted was it possible
to achieve the equivalent of the situation in Eq. (47) where the argu-

ments in the two input transients do not have a common term.
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What was sought in attempting correlation methods was some means
of developing from the observables a function of time or time lags which
is a double Fourier transform of the quadratic frequency response func-
tion, Failure to find such a function in the present work does not prove
that it is impossible to do so., However the nature of the quadratic
model is such that it seems possible that insufficient information is
contained in a single resistance transient to enable a more or less direct

identification of the complete quadratic frequency response function,
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A FILTERING APPROACH TO SEPARATION
OF LINEAR AND QUADRATIC COMPONENTS

[ ]

The unsolved problems of the last section may be considered in
two parts: 1) The quadratic component of the resistance was not isolated
and, 2) the quadratic frequency response function appears in an integral,
Of these two problems, the first is at least as critical as the second
since the linear component of the transient would be expected to be domi-
nant in most experimental cases. Even if the integral can be inverted in
some way, the linear component amounts to a ''noise'' which is large rela-

tive to the quadratic signal.

The prospects for something useful resulting from a filtering
operation on the resistance transient are best discussed in conjunction
with the Fourier Transform, Eq. (46). Figure 14 shows the computed moduli
of the Fourier Transforms of the various components of the simulated results
for wave pulse No. 1 (Figure 10). At the top is the modulus of the wave
pulse transform, | H(w) | . In the middle the modulus of the linear compo-
nent, | Gy (w) H(w) | , is shown as a solid line. Superposed in dashes is
the modulus of the transform of the quadratic component (the integral in
Eq.46). Finally the modulus of the transform of the total resistance,

| R(w) | , is shown at the bottom,

It is clear from the example in Figure 14, as well as the form of
the integral in Eq. (46), that the quadratic component of resistance has
some frequency components the same as those produced by the linear part
of the system., |If all the linear components are eliminated by some sort
of filtering a great deal of whatever information is contained in the

quadratic component will! also be eliminated.

To be more specific, suppose the resistance transient corresponding
to Figure 14 is passed through a low-pass filter with cutoff frequency
adjusted so that all frequency components above a non-dimensional frequency
of 0.5 are attenuated to much less than 1% of their original magnitude,

Under these circumstances practically all of the linear contribution to
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NONDIMENSIONAL FREQUENCY

FIGURE 14  MODULII OF COMPUTED FOURIER TRANSFORMS
OF SIMULATED RESISTANCE COMPONENTS,
WAVE PULSE NO. 1
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the transform, Figure 14, disappears, as well as the quadratic contribu-
tion to the transform above a frequency of 0.5. What is left of the
resistance transform will be at frequencies below the lowest wave pulse
frequency, and what will be left in the time domain will be only a rela-
tively long period excursion of resistance. In terms of the quadratic
frequency response function what is thrown away by this operation is
defined by the filtering equation, Eq. (28). Referring to Figures 8 and 9
the low-pass filtering operation just described produces an apparent quad-
ratic frequency response function which is zero or negligible for lﬂg'
greater than 0.5, and which is appreciable only near the position of the
mean added resistance operator (the G, axis, Figs.8,9). So long as the
low-pass filter has unity DC gain, the apparent quadratic frequency
response function after filtering contains the mean added resistance opera-

tor undistorted,

Thus a straightforward low-pass filtering operation appeared to
have some promise if estimates of the quadratic frequency response func-
tion in the neighborhood of the mean added resistance operator are all
that is desired. Because the mean added resistance operator is the only
part of the quadratic response function which has found practical applica-

tion, the approach appeared worthwhile pursuing.

To formalize the low pass filtering approach somewhat, it is first
required that a low-pass filter frequency response function, Le(w), be

specified so that

Gl(w)H(w)Le(w)

is zero or approacnes zero for all frequencies, The filter should have
unity DC gain. Because the linear component of resistance can have
appreciable frequency components only at frequencies at which the wave
pulse has appreciable frequency components, the specification of the cut-
off frequency of the filter may be made on the basis of the frequency of
the lowest appreciable frequency component of the wave pulse. Knowing
this frequency, the filter cutoff must be adjusted so as to attenuate
resistance components at this frequency to some very small fraction of

the original,
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Supposing the filter to be selected in this way, an expression
for the filtered resistance, rl(t), may be written with the aid of
(28), (45) and (46):

ry (t) ~ g L _(0)
* _15 5552(ggé:gég)Le(w)H(E%E)H(QéE)Exp[iwt]dBdw (49)

where as in previous equations, w corresponds to the sum or output fre-

quency and B to the difference frequency.

The elimination of the calm water resistance, 9o’ from Eq. (L49)
may be made as has been previously suggested. This is to fit a straight
line through beginning and end of the filtered transient and subtract the
result from the transient itself, Then after filtering and correction
for the calm water resistance what is left may be called rz(t) and is

written:
o (6) = = [fo, (52 22B0L (0D MR HEZR) Bl fwt Jepew (50)

In Eq. (50) Le(w) is specified by the filter, H(w) is the Fourier Trans-
form of the encountered wave pulse, and ra(t) ic the result of filtering
the observed resistance transient and correcting this result for calm
water resistance. Only the quadratic frequency response function,

Gz(uﬁ,ua) is considered unknown.

Temporarily leaving aside the question of whether anything can be
done with Eq. (50), some practical filtering considerations may be dealt
with, The foremost question is whether the specified filter can be
realized. In the hypothetical experiment the wave pulse is supposed to
be under sufficient control so that the influence of frequency components
below some lowest encounter frequency is nil, The lowest encounter fre-
quency is determined by the longest wave length assumed to be important
and by model speed. |In the present example if the longest wave length of
importance is fixed as shown in Figure 2 and the Froude number is varied,
the lowest wave encounter frequency of importance varies only by + 10%

from that shown in Figure 14 for model speeds ranging from zero to twice
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that of the example. Accordingly the filtering situation as defined by
Figure 14 may be taken as typical., In this case in order to substantiaily
eliminate frequency components above a non-dimensional frequency of 0.5,
something like a six pole filter with nominal cutoff frequency of 0,25 is

required.

If the basic data is digitized before filtering, two methods are
available with which filters of the above specification may be realized,
The easiest is perhaps the FFT based fast convolution. In the present
example a recursive digital filter is difficult because of the very low
cutoff in relation to the folding frequency range (in the example the At
chosen results in a folding frequency 30 times the required filter cutoff).
However it is feasible to implement a two stage digital filtering procedure
where the first stage removes enough high frequency response so that the
data may be decimated, and the second stage, operating on the decimated

data, achieves the desired final filter cutoff.

Alternately, there is the possibility of incorporating a real
analog filter into the experimental instrumentation. The non-dimensional
encounter frequencies noted in Figure 14 are almost numerically equal to
real frequencies (in Herz) for the 5 foot model size described, Six-pole
low-pass filters with fixed cutoff frequency of 0,25 Hz are not now off-
the-shelf items, but solid-state electronic modules with which such a
cutoff may be realized are readily available, |In situations where the
model is ''large', say 20 feet, the filter cutoff would have to be in the
neighborhood of 0.i Hz, These cutoff frequencies are also considered
within reason for modern equipment and the alternative of incorporating
real filters into the experiment is also assumed to be feasible, In

-

such a case the data digitized for analysis would be the filtered output.

Ideally there would be no preference between digital and analog
filtering == only a matter of whether high frequency content would be
thrown away at the outset or after the experiment is over. In practice,
preference might be given to analog filtering during the experiment,
Judging by ghe examples previously shown, the filtered resistance excur=-

sion is apt to be small relative to the maximum peak to peak range of
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the total resistance transient. Real time analog filtering would make
possible the adjustment of gains so that the best use is made of the
resolution available on the recording medium -- a particularly important

consideration if the recording medium is analog magnetic tape.

AN APPROXIMATE APPROACH TO THE IDENTIFICATION OF
THE MEAN ADDED RESISTANCE OPERATOR

Presuming that the linear component of the resistance transient
may be removed one way or another by filtering there is left Eq. (50),
which has the form of a pure quadratic system. The function to be
identified is Ge(%, - %). Continuing the approach in the last section,
if the pass band of the filter Le(w) is reduced even further than is
required to eliminate the linear component, the effective quadratic fre-
quency response function is concentrated along the line W, ==w, (ﬂa=0,
Figures 8,9).

Considering the variation of the actual quadratic frequency response
function near the line W, =-w,, according to the general symmetry proper-

ties of the function it is expected that

o, (RER | <o+ iF ()]
w=0

in which FI(B) is an even function in B. Accordingly, for values of w
not far from zero it would be expected that the quadratic frequency

response function would have the form:

Fr(B) + iuF (B)
in which FR(B) is the mean added resistance operator [Ga(% y = %)], and
is even in B.

Now if it is assumed that the low pass filter can be made suf=-
ficiently narrow, the effective quadratic frequency response function

may be approximated by:
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K, (2,%8) = L (IF(B) + 1wk, (p)] (51)

In the approximation it is assumed that La(0)=l so that FR(B), the func-
tion of interest, is not distorted. It is further assumed that La(w) is
nearly zero for values of w for which [FR(B)+in|(B)] is not a good

representation of the actual frequency response function,

The filter in the above approximation is assumed to be an analysis
filter which has a lower cutoff frequency than any real filter which might
have been applied before digitizing the data. There is no reason why this
filter has to be realizable in the real time sense, and some convenience
in taking it as non-realizable. Thus La(w) will be taken as real and

even in w.

In general, the approximation, Eq. (51) must correspond to an effec-

tive quadratic impulse response, kg(tl’tz)' Applying Eq. (20):

k (ty,tg) = Te-w!? JlExplioy ty+in,t, K (uy ,w,) duy du,

| 1 - t1+t2 . t1 "t2 wHp w=-p
2 (on)? Jexplio =5= + iB =521k, (55 dwdp (52)

(after making the usual transformation; w=w +w, , and B=w, -, )

Letting: T, =

P -

and substititing Eq. (51) into Eq. (52), and noting that FR(B) and Fl(B)

are even in B, and that La(u0 is even in w, there is finally obtained:

ke (tyst)) =3 £, ()« £, (T,)

> % 4, (M) £, (1) (54)

57




R-1928

where:
0 (1) = ‘E J"La(w)cosrzwdw (55)
(1) = 3 o (@)siaT,ede (56)
F,(1,) = &= JF,(B)cosT, pdp (57)
f (Ty) = —'2-; jFl (B) cosT, BdB (58)

The apparent quadratic impulse response Eq. (54) has the correct
symmetry. Interchange of t, and t, leaves T, unchanged, and T, negative,
but the function is the same because both Eq. (57) and (58) are even in L P
Equations (55) and (56) are just Fourier sine and cosine transforms of a
filter frequency response which is specified. Given what is known about
the quadratic frequency response function the left hand sides of Eq. (57)
and (58) are expected to be absolutely integrable so that the inverses

may be written:

I

Fa(B) = [f, (7)) Exp[-ipT, 14T,

£, (T,) cosT, BdT, (59)
(since f, (T,) is even in T)
similarly:

F,(B) = f,(1,) cosT, BdT, (60)

Now assuming that the analysis filter has been applied to the
resistance transient and the calm water resistance has been corrected for,

the result (denoted r,(t)) may be written:

ry(t) = Hg(tl,ta)h(t-tl)h(t-ta)dtidta (61)

Equation (61) is exactly analogous to the third term of Eq. (18). Appli-
cation of the Parseval Theorem would result in a form exactly the same
as Eq. (50) with the substitution of Eq. (51) for the effective quadratic

frequency response function,
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Substituting Eq. (54) in Eq. (61) and making the variable trans-
formation defined by Eq. (53) there results:

ra(t) = [, (T,) [£_(T,)h(e-T, =T, ) h(t-T_+T )dT,dT,
+ 6, (7)) [2, (T h(e-T_-T ) h(t-13+T,)dT dT, (62)

Alternately, by replacing the quadratic frequency response in the third

term of Eq. (46) by the approximation, Eq. (51) there results the Fourier
transform of ry(t):

Ro(0) = = JL (@) [Fg(B)+iuF (3) MR H () ap (63)

In either form the result of the approximation to the apparent
quadratic frequency response is to separate an unknown function of two
variables into the product of a known function and an unknown function of
one variable. Equations (62) and (63) are equivalent in the sense that

application of the Parseval Theorem, Eq. (35), to Eq. (62) yields Eq. (63).

A start at a practical data reduction method based upon Eq. (62)
or (63) was first made by considering Eq. (62), the time domain version.
Because the simulated transients correspond to response to a wave eleva-
tion forward of the model it is known from the work of Refs. 1 and 6
that the imaginary part of the function near the mean added resistance
operator will vary strongly, that is, FI(B) will be relatively large.
However, it was shown in Refs, 1 and 6 that a simple time shift of input
relative to output tends to minimize the magnitude of the imaginary part
of the function near the line w ==, . In the case of the present simula-
tion the actual best time shift is the same as that in Ref., 6, or
18 points. In order to simplify a first trial it seemed reasonable to
assume that the shifting operation would make FI(B) very small (that is,
the imaginary part of the effective quadratic frequency response function
would be nil). Under this further approximation f,(T,), (Eq.58) is also
negligible and the filtered, time shifted resistance response was approx-

imated as:

ra (8) & [, (Ty) [2, (T, h(t=T =T ) h(t-T_+T,)dT,dT, (644)
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For purposes of an actual digital computation it was assumed that
the same type of representation which had produced the simulated trans-

ients (Eq.29) would be adequate. Thus to transpose to the digital form:

= mt
T, = jat

= kAt
2

and Eq. (64) becomes:

s IR s LE e
r, (p) JZ : fljﬂakh(p k=j)h(p=-k+j) (65)
where h(p-k-i} =-a h(p-k+j) represent points on the time history at time
steps (p-k-j) and (z-k+j). Similarly, r,(p) is the resistance time history
at time step p. In Eq. (65) discrete approximations to f, (T,) and ﬂa(Ta)

were made as follows:

f (1) = £y 8(Ty-jae) (66)

8(Ty) = 2. 6(T -kat) (67)

aj

Now taking the Fourier transforms of Eq. (66) and (67); there results:

FR(ﬁ) = flO + 2 z f'jcos(jﬂAt) (68)
J J=1,2...
[a(w) = lao + 23 lakcos(kmﬁt) (69)
k
k=1,2...

Manipulating Eq. (65) slightly,

ra(p) = f . C . (70)

L.

j=0,1,2...
where
m

C ;: =g, Y L h(p=k=j)h(p=k+]j 1
Tt s tak (p=k=j) h(p=k+j) (71)

with q_ =1

60




R~1928

Once the filter impulse response (zak) is specified, Eq. (71) is calcul-
able as a function of j for each response time step, p. Accordingly,
Eq. (70) represents a series of linear algebraic equations in the unknown

discrete impulse response, f It was hoped that this series of equa-

hi
tions could be solved in a least squares sense for the fl" and thus

ultimately estimates could be made of FR(B) via Eq. (68).
The steps done in trying this approach out were as follows:

a. Compensate the simulated resistance transient for

calm water resistance.

b. Assume a Hanning Type Filter and compute Ea 3

%

]
£ = —

e E[l+c05ﬂk/m] (72)
where:
m
E= T [l4cosmk/m]
k==m

and m is chosen to control the cutoff.
Specifically, the corresponding frequency
response, [a(w) is unity for w=0 and roughly
1/2 for w=m/mAt.

c. Compute [a(w), Eq. (69).

d. Filter the resistance transient with [a(w)

utilizing the FFT fast convolution method.

e. Shift the wave pulse time series relative to

the resistance time series as previously noted,

f. Compute ij for each point in the wave time series,
and accumulate the coefficients in a least squares
fit of Eq. (70).

g. Scale the coefficients in the resulting L.S, fit

equations as required.

h. Solve for the flj using a standard Gauss elimination
technique (Subroutine GELG or DGELG, IBM Scientific

Subrout ine Package).
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i. Estimate ?R(B) via Eq. (68) using the results of
step h,

The above procedure was applied to the simulated sets of transient
data with various choices of m, that is, various choices of low pass
filter cutoff. The number of estimates of fl' solved for was varied from
10 to 30. In no case were the results of the procedure meaningful.

Double precision accumulation of L.S. fit coefficients and solution for

flj was necessary in order to get any sort of solution for the case that
the scaling (step g) involved only division of the entire set of equations
by the largest absolute value in the coefficient matrix. A scaling pro-
cedure was devised with which all the coefficients on the left hand
coefficient matrix were of the order of unity and by which each row and
column of the coefficient matrix contain a value near unity. The solution

after this scaling was no more meaningful than those mentioned previously.

The coefficient matrix obtained in step f of the procedure is
certainly numerically ill-conditioned. Those answers which were returned
for the flj were typically alternately positive and negative and of about
the same magnitude irrespective of the magnitude of j. To see what answer
should have been obtained, the simulated added resistance operator, Fig-
ure 8, was transformed numerically in accordance with Eq. (57) and
evaluated at a time step corresponding to that used in the analysis.

These results indicated that the absolute values of the f]j should have
decreased as j increased, the magnitude should have been small enough to
disregard after 30 time steps, and that semi-oscillations plus to minus
should have been about 4 time steps. This evidence along with the nature
of the fitted results suggested an over-fit, Thus ill-conditioning appears
not to be merely numerical but that there is really not enough independent
information left after the heavy filtering operation to enable a solution
for the 30 or so values of flj which seem to be required for a reasonable

estimate of the mean added resistance operator,

There is of course the possibility that the assumption that Fl(B)
is negligible is at fault., However, the low pass filtering operation

plus the shifting, was certainly enough to make the imaginary part of
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the apparent quadratic frequency response function relatively small,

if not negligible. Given that the results obtained under the assumption
of negligible FI(B) were not even in the ballpark it was doubted that a
procedure involving Eq. (62) rather than Eq. (64) would be worth the
substantially increased effort, and accordingly the above approach was

abandoned.

Some effort was made to develop a similar procedure with Eq. (63),
the frequency domain version of Eq. (62). Referring to Eq. (63), the

product:

La(w)H(E%E)H(Qéé)

is calculable from the Fourier transforms of the wave pulse. In addition
to a relative time shift, a re-location of the (arbitrary) position of
time = 0 was advisable before carrying out the Fourier transform on both
the wave and resistance transients so that the arguments of each were
slowly varying. The net result of the development was an estimation

equation of the form:

Ry (w) = [Fe(B) ¢, (v,B)
+ JF(®) ¢, (w,B)
+i JFa(®) G (0,B)
+i jFl(a) C, (w,B) (73)

in which the Cn(w,B) are calculable functions of w and B. This approach
was carried through in a similar manner to that indicated in Eq. (65)
through (71). The results obtained after applying the approach were just
as bad as before -- regardless of whether F|(B) was assumed to be neglig-
ible or not. The basic problem with this approach is that after applying
the Fast Fourier Transform to the resistance transient and carrying out
the low-pass filtering there are a limited number of values of R, (w)
available. In the present case with IK arrays defining the transient,
and a filter narrow enough to eliminate the linear component of resist-

ance, there were only a dozen or so estimates of R, (w) which were not
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negligible due to the effect of the low-pass filter. Thus FR(B) and Fl(B)
needed to be approximated by no more than a dozen discrete values along
the B axis from zero the the folding frequency. This frequency resolu-
tion is much too coarse for a practical data reduction procedure. On
paper, the solution would be to add zeros to the transient arrays,
doubling their length so that more estimates could be obtained in the
pass~band of the filter. This approach is thought illusory and was not
attempted because all that is achieved is an interpolation -- no new and
independent information is achieved. Just as in the time domain approach,
the few results achieved with the frequency domain approach indicated that
there is really not enough independent information left after filtering to

allow reasonable answers,
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CONCLUDING REMARKS

Because the experimental determination of the characteristics of
mean ship model resistance added by waves is one of the more difficult
and time consuming problems in seakeeping towing tank practice, it was of
practical interest to see if a technique involving wave pulses could be

developed, and if so, if it promised better efficiency.

Toward this end a fairly realistic digital simulation was made of
the head wave pulse experiment and of the resulting resistance transient.
There appears to be little doubt that such an experiment is feasible, and
that the influence of calm water resistance can be eliminated in a straight-
forward way because the ""memory'' of the nonlinear part of the added

resistance is not exorbitantly long,.

The development of a data reduction procedure was approached from
the point of view that any practically attractive data reduction procedure
must involve a very few wave pulse runs, preferably only one. This point
of view was re-inforced by the wave pulse simulation because it appeared
that the detailed shape of the wave pulse would be seriously affected by
small changes in wavemaker and model control parameters. For example,
wave pulse time histories of exactly the same shape but different ampli-
tudes appear to require more precise control of experiment than is
ordinarily possible. Accordingly it appeared that if reasonable estimates
could not be obtained from one experiment, there would be little point in
attempting methods which required multiple experiments for any purpose
other than confirmation,or for improving quality of estimates through

simple averaging.

Several correlation and Fourier analysis approaches to the ident-
ification from transient data of the quadratic frequency response function
for added resistance were investigated. All the approaches were analogous
to one or another of the known approaches for outputs of linear and quad=

ratic systems in response to random excitation, None of these investigations
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resulted in a clean approach to the problem. Evidence was developed that
a conceptually clean approach may be impossible. With respect to a
recovery of the entire quadratic frequency response function for added
resistance, it appears that insufficient information is contained in a
single transient. It should be remarked that this is in contrast to the
case for random Gaussian excitation, |In this latter case a clean approach
arises and is traceable to statistical properties of the expected values

of products of input.

By taking advantage of the general properties of the quadratic model
which appears to be valid for added resistance, it was possible to develop
a ''dirty'" approach for the identification of the mean added resistance
operator from a single transient experiment. However no meaningful results
could be obtained with this latter approach. Those results which were
obtained imply that there is not enough information in a single transient
experiment to enable the identification of even a special portion of the

quadratic frequency response function (the mean added resistance operator).

It appears that if there is a practical wave pulse technique for

added resistance experiments, it is not yet in hand.
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PRINCIPAL NOTATION

approximating functions

impulse responses

weighting coefficients

linear frequency response function

quadratic frequency response function
gravitational constant

zeroth degree kernel (calm water resistance)
linear kernel (surge force impulsive response)
quadratic kernel (added resistance impulse response)
Fourier transform of wave pulse

encountered wave pulse

wave pulse at tank position x

indices

linear frequency responses (filters)

linear weighting coefficient
impulse responses
quadratic weighting coefficients

resistance transient
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time variables

time

model velocity

tank position
difference frequency
time interval

dummy time variables
difference frequency
sum frequency (equals encounter frequency)
encounter frequency
wave frequency

frequency of wave of ship length
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Attn: Dr. A. Fabula (6005)
Dr. J. Hoyt (2501)
Library (13111)

Library
Naval Underwater Systems Center
Newport, Rl 02840

Research Center Library
Waterways Experiment Station
Corps of Engineers

P.0. Box 631

Vicksburg, MS 39180

Dept. of Transportation
Library TAD-491.1

400 - 7th Street S.W.
Washington, DC 20590

Charleston Naval Shipyard
Technical Library

Naval Base

Charleston, SC 29408

Norfolk Naval Shipyard
Technical Library
Portsmouth, VA 23709

Philadelphia Naval Shipyard
Philadeiphia, PA 19112
Attn: Code 240

Portsmouth Naval Shipyard
Technical Library
Portsmouth, NH 03801

Puget Sound Naval Shipyard
Engineering Library
Bremerton, WA 98314

Long Beach Naval Shipyard
Technical Library (2L6L)
Long Beach, CA 90801

Hunters Point Naval Shipyard
Technical Library (Code 202.3)
San Francisco, CA 94135

Pearl Harbor Naval Shipyard
Code 202,32

Box 400, FPO

San Francisco, CA 96610

Mare Island Naval Shipyard
Shipyard Technical Library
Code 202.3

Vallejo, CA 94592

Assistant Chief Design Engineer

for Naval Architecture (Code 250)
Mare Island Naval Shipyard
Vallejo, CA 94592

U.S. Naval Academy

Annapolis, MD 21402

Attn: Technical Library
Dr. Bruce Johnson

Naval Postgraduate School
Monterey, CA 93940
Attn: Library, Code 2124
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Study Center

National Maritime Research Center
U.S. Merchant Marine Academy
Kings Point, L.l., NY 11204

U.S. Merchant Marine Academy
Kings Point, L.l., NY 11204
Attn: Academy Library

Bolt, Beranek & Newman
50 Moulton Street
Cambridge, MA 02138
Attn: Library

Bethlehem Steel Corporation
Center Technical Division
Sparrows Point Yard
Sparrows Point, MD 21219

Bethiehem Steel Corporation
25 Broadway

New York, NY 10004

Attn: Library (Shipbuilding)

Esso International

Design Division, Tanker Dept,
15 West 51st Street

New York, NY 10019

Mr. V. Boatwright, Jr.

R & D Manager

Electric Boat Division
General Dynamics Corporation
Groton, CT 06340

Gibbs & Cox, Inc.

21 West Street

New York, NY 10006

Attn: Technical Info, Control

Hydronautics, Inc.
Pindell School Road
Howard County
Laurel, MD 20810
Attn: Library

McDonnell Douglas Aircraft Co.
3855 Lakewood Blvd,

Long Beach, CA 90801

Attn: T. Cebeci

Lockheed Missiles & Space Co.

P.0. Box 504

Sunnyvale, CA 94088

Attn: Mr. R.L. Waid, Dept 57-74
Bldg, 150, Facility 1

Newport News Shipbuilding &
Dry Dock Company

L101 Washington Avenue

Newport News, VA 23607

Attn: Technical Library Dept.

Nielsen Engineering & Research Inc,
510 Clude Avenue

Mountain View, CA  9L043

Attn: Mr. S. Spangler

Oceanics, Inc,
Technical Industrial Park
Plainview, L,i., NY 11803

Society of Naval Architects
and Marine Engineers

74 Trinity Place

New York, NY 10006

Attn: Technical Library

Sun Shipbuilding & Dry Dock Co.
Chester, PA 19000
Attn: Chief Naval Architect

Sperry Systems Management Division
Sperry Rand Corporation

Great Neck, NY 11020

Attn: Technical Library

Stanford Research Institute
Menlo Park, CA 94025
Attn: Library G=-021
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Southwest Research Institute

P.0. Drawer 28510

San Antonio, TX 78284

Attn: Applied Mechanics Review
Dr, H. Abramson

Tracor, Inc.
6500 Tracor Lane
Austin, TX 78721

Mr. Robert Taggart
3930 Walnut Street
Fairfax, VA 22030

Ocean Engr. Department
Woods Hole Oceanographic Inst,
Woods Hole, MA 02543

Worcester Polytechnic Inst,
Alden Research Laboratories
Worcester, MA 01609

Attn: Technical Library

Applied Physics Laboratory
University of Washington
1013 N,E. LOth Street
Seattle, WA 98105

Attn: Technical Library

University of Bridgeport
Bridgeport, CT 06602
Attn: Dr. E. Uram

University of California
Naval Architecture Department
Coliege of Engineering
Berkeley, CA 94720
Attn: Library
Prof. W. Webster
Prof. J. Paulling
Prof. J. Wehausen

California Institute of Technology
Pasadena, CA 91109
Attn: Aeronautics Library

Dr. T.Y., Wu

Dr. A.J. Acosta

Docs/Repts/Trans Section

Scripps Institution of

Oceanography Library

University of California, San Diego
P.0. Box 2367

La Jolla, CA 92037

Catholic University of America

Washington, DC 20017

Attn: Dr, S. Heller, Dept of
Civil & Mech Engr.

Florida Atlantic University
Ocean Engineering Department
Boca Raton, FL 33432
Attn: Technical Library

Dr. S. Dunne

University of Hawaii

Department of Ocean Engineering
2565 The Mall

Honolulu, HI 96822

Attn: Dr, C. Bretschneider

Institute of Hydraulic Research
The University of lowa

lowa City, 1A 52240

Attn: Library

Department of Ocean Engineering
Massachusetts [nstitute of
Technology
Cambridge, MA 02i39
Attn: Department Library
Prof. P. Mandel
Prof, M. Abkowitz
Dr. J. Newman

St Anthony Falls Hydraulic Lab.
University of Minnesota
Mississippi River at 3rd Ave., S.c.
Minneapolis, MN 55414
Attn: Prof, E. Silberman

Dr. C. Song
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Department of Naval Architecture
and Marine Engineering
University of Michigan
Ann Arbor, Ml L8104
Attn: Library
Dr. T.F. Ogilvie
Prof, F. Hammitt

College of Engineering
University of Notre Dame
Notre Dame, IN L6556
Attn: Engineering Library

Davidson Laboratory
Stevens Institute of Technology
711 Hudson Street
Hoboken, NJ 07030
Attn: Library
Dr, J. Breslin
Dr. S. Tsakonas

Stanford University

Stanford, CA 94305

Attn: Engineering Library
Dr. R. Street

Webb Institute of Naval Architecture
Crescent Beach Road
Glen Cove, L.l., NY 11542
Attn: Library
Prof. E.V, Lewis
Prof. L.W. Ward

Applied Research Laboratory

P.0. Box 30

State College, PA 16801

Attn: Dr, B. Parkin, Director
Garfield Thomas Water Tunnel

Dr. Michael E. McCormick

Naval Systems Engineering Dept.
U.S. Naval Academy

Annapolis, MD 21402

Dr. Douglas E. Humphreys (Code 712)
Naval Coastal Systems Laboratory
Panama City, FL 32401







