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. feature analysis to generate the symbolic description of the regions and image, use of
knowledge to guide the segmentation and symbolic registration procecures, and lastly
change analysis itself. Wepresent s,everaJrgiivgrge scenes (house, cityscape, satellite
images, aerial images, and radar images),’each of which has a task description and a
predefined set of knowledge elements, and will show how several different tasks can
be performed with a general change analysis system. ;

Early segmentation techniques were either designed for specific applications or
were very expensive. The segmentation of an image into regions by a histogram
based region splitting procedure has proved to be useful over a wide range of images,
but also .t:;:nds to be exp.ensive (Ohlander, 1975). In ord_er tor make J!L'j ’gg;edgre
more efficient, we—heve—incorporated the use of "planning”/into the s gmeﬁ'ﬁltnon
processing. This use of planning means that the segmentation is generated in about a
tenth (or better) of the time required without planning. This segmentation method was
originally developed for use on color (ie. multi-spettkal) images, but many of the
images which we must analyze are monochromatic. We wil_present several alterations
to the general segmentation method to use it on a wider range of scenes, including
monochromatic images. The primary alterations are the addition of a few specific
textural measures to aid in the segmentation of regions with certain textural
properties, and use of special heuristics in the segmentation process so that partial
segmentations are possible for the monochromatic images. :

We prasent a set of features which can be used for symbolic description,
matching, and change analysis. The features are grouped into classes of features
similar to those used in human image understanding. These classes include: size,
shape, color, position, etc. The set of features is by no means complete, but the
addition of new features is straight forward. :

" The feature based descriptors of regions in two images of the same scene are
used by the symbolic registration procedure to identify corresponding regions in the
two images. The matching procedures uses a feature based distance metric to find the
region in one image which corresponds to a region in another image (symbolic
registration). For stereo pair analysis and symbolic matching tasks this is sufficient

-.since only symbolic registration is required. For change detection tasks, further

processing is required o generate the change information.

The tasks presented here range from a simple symbolic registration task to a
complex task of the computation of the change in the number of occurrences of a

particular type of region (i.e. the number of occurrences of a particular object). We
present the results of symbolic registration for the six scenes. The resuits are not
perfe.ct, but_most of the matching errors are traceable to the initial segmentation of
the image. We also present alterations to a general segmentaticn method which
reduces the time required for segmentation with this method by about a factor of 10.
Several other alterations are given so that this procedure can be used effectively with
monochromatic images. We present a method for symholic change analysis which
solves many of the problems encountered by signal based change analysis systems.
The problems include the analysis of images with changes in the point of view of the
observer, analysis of multi-spectral images without a corresponding increase in the
complexity of the analysis, and effective analysis of the detected changes in the image.
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Change Detection and Analysis in Multi-Spectral Images

Keith Price

This thesis describes research toward the development of a general image
understanding system. Our system has been directed toward the problem of the
- comparison of pairs of different images of the same scene to generate descriptions of
" the changes in the scene. Unlike earlier work in the change analysis area, we have
performed all the matching and change analysis at a symbolic level rather than a signal
level. To facilitate this symbclic analysis over a wide variety of images, advances in
several other areas of image analysis were also required. These areas are:
segmentation techniques to generate the basic units used in the symbolic analysis,
3 feature analysis to generate the symbolic description of the regions and image, use of
- knowledge to guide the segmentation and symbolic registration procedures, and lastly
change analysis itself. We present several diverse scenes (house, cityscape, satellite :
images, aerial images, and radar images), each of which has a task description and a 4
predefined set of knowledge elements, and will show how several different tasks can
be performed with a general change analysis system.

Early segmentation techniques were either designed for specific applications or
were very expensive. The segmentation of an image into regions by a histogram
based region splitting procedure has proved to be useful over a wide range of images,
but also tends to be expensive (Ohlander, 1975). In order to make this procedure
more efficient, we have incorporated the use of “planning" into the segmentation
processing. This use of planning means that the segmentation is generated in about a
tenth (or better) of the time required without planning. This segmentation method was
originally developed for use on color (i.e. multi-spectral) images, but many of the
images which we must analyze are monochromatic. We will present several alterations
to the general segmentation method to use it on a wider range of scenes, including
monochromatic images. The primary alterations are the addition of a few specific
textural measures to aid in the segmentation of regions with certain textural
properties, and use of special heuristics in the segmentation process so that partial
segmentations are possible for the monochromatic images.

e e

We present a set of features which can be used for symbolic description,
matching, and change analysis. The features are grouped into classes of features
similar to those used in human image understanding. These classes include: size,
shape, color, position, etc. The set of features is by no means complete, but the
addition of new features is straight forward.

The feature based descriptors of regions in two images of the same scene are
2 used by the symbolic registration procedure to identify corresponding regions in the
two images. The matching procedures uses a feature based distance metric to find the
region in one image which corresponds to a region in another image (symbolic
registration). For stereo pair analysis and symbolic matching tasks this is sufficient

g since only symbolic registration is required. For change detection tasks, further
processing is required to generate the change information.
;, The tasks presented here range from a simple symbolic registration task to a

complex task of the compuiation of the change in the number of occurrences of a
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particular type of region (i.e. the number of occurrences of a particuiar object). We
present the results of symbolic registration for the six scenes. The results are not
perfect, but most of the matching errors are traceable to the initial segmentation of
the image. We also present alterations to a general segmentation method which
reduces the time required for segmentation with this method by about a factor of 10.
Several other alterations are given so that this procedure can be used effectively with
monochromatic images. We present a method for symbolic change analysis which
solves many of the problems encountered by signal based change analysis systems.
The problems include the analysis of images with changes in the point of view of the
observer, analysis of multi-spectral images without a corresponding increase in the
complexity of the analysis, and effective analysis of the detected changes in the image.
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1 The Problem

To date, computer scene analysis has been directed either toward the
development of a general system for image understanding comparable to the ability of
a human being, or toward the use of a computer to solve a specific well defined
problem. This work is intended to be a step toward a general image understanding
system rather than a method for the solution of a specific problem. We will describe a
system for the analysis of multiple views of a scene to determine what changes have
occurred between the views. This work is motivated by the fact that human vision
analyzes a dynamic world in order to make changes in the observer’s model for what
is seen, based on changes in the actual visual world (Gibson, 1950).

This work in change analysis differs from earlier computer change analysis
work in the use of symbolic analysis of the image to detect and express the changes
which have occurred. Earlier efforts in the change analysis area (Quam, 1971;
Lillestrand, 1972; Allen et al,, 1973) used correlation guided matching to establish a set
of corresponding point pairs. These point pairs are then used to transform the second
image so that it is precisely aligned with the first. The aligned images are subtracted
and changes are indicated by a large difference in the intensity value of the point in
the two images. That is, two images are processed to produce a third image which
indicates possible changes. We propose that change results should be presented

- symbolically. Rather than generate a symbolic description of the difference image,

which is not always reliable, we also propose that the initial matching shouid be done
symbolically. The use of symbolic analysis is intended to expand the class of images
which can be successfully analyzed for changes compared to the class of images
processed by techniques depending on point to point matching and global
transformations.

Correlation guided matching has also been applied to many other problems
such as stereo analysis (Hanna, 1974; Levine, 1973), and tracking weather echos
through many sets of radar data (Duda et al, 1972; Blackmer et al,, 1973). The work
of Balder(19875) on symbolic motion analysis used completely and correctly segmented
images (i.e. done by a human operator, not by machine). We will be using "real" images
which will require the generation of the symbolic descriptions in addition to the
processing of the symbolic descriptions.

Before the symbolic analysis can proceed, we must first produce the suitable
symbolic descriptions of the image. A symbolic description of an image is composed of
the regions which make up the image, and the features which describe the regions.
There have been several systems designed to segment "natural" images into separate
regions. Two of these techniques, region growing (Barrow and Popplestone, 1971;
Yakimovsky, 1973) and region splitting (Ohlander, 1975) have been applied to different
type of images. The region splitting technique uses less outside knowledge about the
content of the scene for the generation of the segmentation. We will use the basic
region splitting technique for segmentation, but because this technique is "slow", we
will propose several alterations to this method so that it will be more effective. The
major alteration is the use of "planning" (Kelly, 1971). The planning method is also
based on the structure of the human eye where the peripheral area guides the
detailed processing (by the fovea) by larger scale processing. In this same area,
Hanson et al.(1974, 1975) are extending the planning concept to all the processing
done on the image.




The Problem 2

The use of symbolic methods for the analysis of images is not new. Many
systems have worked only with the symbolic descriptions (Guzman, 1968; Balder,
1975), but we must derive the symbolic description from the segmentation. Features
for describing the regions should be features which are useful both for expressing the
change resuits, and for matching or recognition processing. Since these are features
which could also be used in a general image understanding system, we feel that the
features should be the same type that are used by humans for the same type of
processing (Akin and Reddy, 1976). These feature classes (size, shape, etc.) will be
used as a guide to describe the actual features which we will compute. The particular
features which we use are derived from many sources, especially from Tenenbaum et
al.(1974, 1976) and Duda et al(1972). There are other methods for the symbolic
description of three-dimensional objects and scenes. We do not intend to generate a
three-dimensional representation the object which was the goal of the research by
Agin(1972) using data generated by a range finder or Baumgard (1974) using
controlled multiple views of simple objects.

1.1 Organization

The next chapter will discuss the above research in more detail. Much of the
work of these researchers will also be discussed in later chapters, but there the
emphasis will be more on their approach, what they accomplished, and how we used
their work.

Next we describe the images which will be used for analysis, give the tasks to
be performed on each image, and the type of outside knowledge necessary to perform
the task. This chapler also discusses the hardware and software used for this work.

The fourth chapter discusses the segmentation of images of natural scenes into
their basic regions. Several examples are presented with summaries of the
computation times required.

The next chapter discusses the types of features which we use in the analysis,
and the methods for the computation of these features.

Next we describe our method for the symbolic analysis of multiple images.
Several examples are given which will illustrate the matching process for simple well
segmented scenes with a few regions (around fifty), and the matching of more complex
images with many, sometimes similiar, regions.

The final chapter gives a summary of the important results and describes
directions for further research.

The appendices contain descriptions of some of the programs and operators
which are mentioned in the main body of this thesis. The times required for certain
operations and other information which may be useful in understanding various
operations is also presented. The appendices also contain a detailed description of the
processing required for the performance of one of the tasks. We will also present
more details of the matching and change results, showing what exact features were
used and how these features contributed to the matching operation, and how these
features changed.
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The Problem 3

Figures are numbered sequentially within each chapter. References to a figure
within the chapter are by the figure number alone (e.g. Figure 17), and references to
figures in other chapters are by both chapter and figure number (e.g. Figure 19.17).
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2 Background

This chapter will present a survey of the past work in computer vision which is
relevant to this work. This includes work in the segmentation of natural images,
symbolic description of images, and change analysis.

2.1 Segmentation

The segmentation of "natural" scenes (e.g. houses, roadsides, people, animals,
etc.) presented problems not encountered in the analysis of block-like images which
thus required the development of new techniques for image segmentation. Unlike block
scenes, "real" world scenes contain many distinct regions, with many different shapes,
with few straight edges (except for man-made objects), and with highly textured areas.
Two of the new techniques for the segmentation of natural scenes are region growing
and region splitting. We will present several segmentation techniques which have been
used in the past for a variety of images.

Roberts (1963)

No discussion of past work in computer scene analysis is really complete
without a mention of the work of Roberts. Research in the analysis of three-
dimensional scenes began with his analysis of block-like objects. Many successful later
efforts used methods and systems very similiar to those of his early effort. The
Roberts system is an example of a complete computer scene analysis system - it used
pictures for input, applied preprocessors to detect the important features, recognized
the objects, and manipulated the final recognized objects.

The important feature of block-like objects is the edge (change in intensity)
between two faces of one block, two faces of different blocks, or between a block and
the background. The edge is important since blocks can be easily and simply
represented by line drawings with lines representing edges. The preprocessor, which
indicates that an edge may be present, is imperfect (partly because the data itself is
imperfect), and extra edges may be located and some edges may be missing. Because
of this, the edge data must be processed to collect groups of edges into lines, remove
small segments, and extend longer segments until they intersect. This processing will
produce a complete (or at least sufficient) line drawing of the scene.

The line drawing is then processed to extract the three-dimensional objects in
the scene. The representation of the scene is compared with models of the possible
objects (cubes, wedges, and hexagonal prisms). When an object is recognized, it is
removed from the representation of the scene so that it will not interfere with further
matches. The models can be rotated or scaled in any dimension so that they will match
any similiar object. The final three-dimensional representation can be displayed
graphically, and individual objects manipulated (moved, removed, etc.) by a graphics
system,

Many later researchers have developed one (or more) of these areas - by
finding better line drawings, by processing line drawings to recognize objects, or by
extending the manipulative capabilities of the computer system (e.g. robotics) - with
most of the later efforts in block-like objects patterned after Roberts’ work.
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Waltz (1972)

Waltz also worked with line drawings of blocks, but these drawings could also
include shadows. Waltz classified all types of possible vertices to indicate the possible
interpretations (i.e. which faces were in the same or different blocks). The program
started by assigning all possible interpretations to one vertex. Then it made an
assignment of all possible interpretations for an adjacent vertex and eliminated all
inconsistent interpretations (those that were included in one, but impossible for the
other). This "filtering" step is continued at all successive adjacent vertices until there
is an assignment for all vertices and all inconsistencies have been eliminated. This
procedure can possibly yield two or more interpretations, in which case the figure is
ambiguous and both are returned.

This program showed that the segmentation of perfect (or nearly perfect) line
drawings of block-like objects could be reduced to an algorithmic process. This
program is the culmination of the effort in analysis of perfect line drawings of block
scenes and leaves very little left undone in this area.

Barrow and Popplestone (1971)

At the University of Edinburgh, Barrow and Popplestone studied nonplanar
objects while working on the robot project. The initial analysis produces a set of
regions with a smalil range of brightness vaiues. The final regions are grown from the
initial regions by adding small regions to larger regions, and by combining adjacent
regions with low contrast at their common border.

The objects are recognized by comparing features of each region with models
of the known objects. The models are derived by processing scenes containing the
object in the same manner as the processing required for recognition.

The generation of good regions is limited by the quality of the input (shadows, -
occlusions, etc.) and will work with single objects only.

Yakimovsky (1973)

While studying the general problem of navigation of a vehicle on an outdoor
roadway, Yakimovsky developed a system to understand single road scenes. The basic
method used was the generation of regions with similiar features and the
interpretation of these regions based on a world model.

The regions were grown from original seed regions created by simply dividing
the picture into small squares. (Except for time and space limits a one pixel seed
region could be used.) Boundaries between regions were eliminated if the "difference”
between the two regions at that boundary was below some limit. The difference is
calculated both from the difference in image information (such as color and intensity)
between the two regions, and from the length of the boundary between the two
regions,

The final merging of regions and the assignment of meaning to the regions is
based on the probability that a region is part of a particular feature using the
information in the world model.
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The basic system was sufficient to use on road scenes and, with a different
model, on cardiac angiograms, but there is still the need for a training session for each
new type of picture to put new probability distributions in the model. The system had
no provisions for intergrating a sequence of images of a scene into one representation,
but the new probabilities determined by early images in the sequence could be used to
aid in the interpretation of the later images. Because of the necessity to divide the
picture into basic regions which are larger than one pixel, small thin features may be
missed and an edge finding step was needed to obtain an accurate outline of each
feature.

s M st

Tomita et al. (1973)

Researchers at Osaka University in Japan explored a method of segmenting
scenes based on the structural analysis of textures. The scenes studied were
artificially constructed by arranging simple black patterns (squares, dots, triangles,
etc.) on a white background. The preprocessor extracted all these basic regions which
are then used in the further analysis. Larger regions were then extracted by
removing groups of similiar basic regions. The properties for segmentation were
selected by analysis of the histograms of the features of the basic regions such as
size, density, and shapes.

Ohlander (1975) i

At Carnegie-Mellon University, Ohlander did some preliminary work on the
development of a general image understanding system. One of his main areas of
research was one of the major problems in understanding natural scenes: the
segmentation of the image into meaningful objects.

About thirty pictures of six different types of scenes (indoor scenes, people,
animals, houses, cars, and cityscapes) were photographed and one of each type was
selected for experimentation. Each of the scenes was digitized to about one half
million points for each of the three colors (red, green, and blue). Initial
experimentation showed that techniques which produced results in scenes with blocks
; break down completely in natural scenes, which contain few straight lines, many
| . heavily textured areas, and indistinct edges.

T One feature of natural scenes is that an natural "object" is usually
| homogeneous in some property such as textural characteristics, color, surface
orientation, or depth. Ohlander developed a method to use this properiy of
homogeneity to split the image into separate regions, which could then be associated
with objects. By plotting a histogram of the distribution of values for the various ‘
features, objects appeared as peaks in the distribution for some feature. The '
separation of objects by peaks in the histogram is easily seen in simple scenes (e. g. £
surface orientation of blocks), but in complex scenes the feature values overlap and
several objects may have similiar values.
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The primary method used by Ohlander was to split the picture (or subpicture)
into two parts, one of which represents the peak of some feature, and the other, the
remainder of the picture (or subpicture). Then the points corresponding to the peak
are further analyzed to determine if this region can be divided in the same way using
one of the other available parameters. In many cases, multiple objects that have
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similiar properties can be separated by spatial analysis (i.e. they form several distinct
regions). The separation continues until there are no features with more than one
peak, or until the regions generated are below a threshold. Each of the separated
objects (and intermediate segmentations) is represented as a bit mask that indicates
which points in the picture are contained in the region.

On many (lightly textured) scenes this method works very well as is, but a
textured area will usually exhibit a distribution that indicates a possible region split,
but does not yield meaningful connected regions. For example, a bimodal distribution
can be caused by the two or more colors (or intensities) that generate the textural
elements. To avoid this problem, he introduced a texture measure which indicated
those areas which were heavily textured. These areas could be either separated by
texture (i.e. one or more textured regions in a relatively homogeneous region), or
subdivided by other parameters after further processing such as smoothing to
eliminate the effects of texture.

This system was able to obtain good segmentations of several very different
natural scenes, but the system as presented required considerable human interaction.
Most of the required interaction involved peak finding and selection, the selection of
connected regions, and the maintenance of the data base - all of which computers
should do well, so that human interaction can be limited to verification and guidance in
new (or difficult) situations.

Another source of the cost (time) required for this algorithm was the use of
large pictures. Large pictures are necessary for textural information and for accurate
location of objects. Ohlander also discussed that if a general description of the large
objects is all that is desired then it would be reasonable to use reduced pictures. The
reduced regions (a “plan”) can then be used to obtain accurate definitions of the object
in the original picture.

Lastly, Ohlander also described problems concerning shadows (or highlights)
and occlusions, principally the problems of detection and removal of these distortions.

Kelly (1971)

Kelly developed a system for distinguishing pictures of people, using a picture
of both the face and the entire body. The system worked by first finding the most
obvious feature - the body or face outline. This feature location is then used to locate
the next most obvious feature, and so on, until all desired features are located. The
identification is then based on the feature locations (or rather the distances between
feature locations, or the size of the features).

The location to the individual features is done by special heuristics using
knowledge of the appearance of the feature. For example, the mouth is located with a
simple line-tinding algorithm which locates the dark line between the lips, and the eyes
are located by the intensity of a scan line across the eye (the dark iris is surrounded
by the lighter white of the eye-ball and the white of the eye is then bordered by the
darker skin of the face). The program depended heavily on the location of the early
features for the application of heuristics for the later features.

An important aspect of the feature location was the use of "planning”. To
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locate the outline of the first feature, the head, a reduced picture is used to obtain an
approximate location. The reduced picture allows the program to do searching and
backup without incurring a heavy time penalty. The reduced picture also smooths out
small defects in the input picture due to noise, lighting, or background objects.

This program depended on a recasonably clear picture of a person which
conformed to the expected model (i.e. no glasses, hair not too long, no beards for some
features). Because of the use of special heuristics, it would be difficult to extend the
program to handle pictures which do not conform to the current model.

Hanson et al. (1974, 1975)

There is a current effort at the University of Massachusetts to develop a
system to analyze natural scenes. The principal paradigm is to apply an operator on
one image to reduce its size (for example, by half in each dimension) and to use results
derived on the smaller images as guides for locating the features in the larger images.
Other functions, or even the same ones, can be applied at a single level, or on several
images at one level (this is called an iteration stem). Possible operators include a
gradient operator, average of a window, maximum in a window, minimum in window,
normalize three-color image, generate color features (hue, saturation, and intensity),
etc.

The applicafion of severai of these operators is used to locate relevant
features in the image, such as lines, edges, spectral feature values, textures, and
regions. Regions grown in the smaller pictures are then projected back to the larger
images.

Models from Human Vision

The human eye has two types of receptors, rods and cones. The rods are used
for black and white vision and react when one of their rhodopsin molecules is hit by a
few photons. Rods are distributed very unevenly on the retina, with the greatest
density near the fovea (there are no rods in the fovea), and rapidly decreasing
densities away from the fovea. Cones are used for color vision and are concentrated
in the fovea. There are three types of cones with red, blue, and yellow-green
sensitivity peaks.

Visual acuity is best in the foveal region, caused not only by the increased
density of receptors, but also by the increased number of nerve cells (bipolar and
ganglion) per receptor in this region. Since acuity is relatively poor in the periphery,
the eye must be moved so that areas of interest are projected on the foveal area for
detailed analysis. The peripheral area is sensitive to motion and changes, and directs
the eye to study areas with many edges.

2.1.1 Segmentation Summary

We will be using the region splitting techniques described by ORhlander. This
method was originally developed for color images and is very slow. We will modify the
segmentation procedure to operate on monochromatic images by the use of simple
textural measures. Planning techniques will be used to make the segmentation
computationally more efficient.
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2.2 Features and Symbolic Descriptions

In the past, symbolic analysis has been extensively applied to simple block-like
objects and, to a lesser extent, with natural images. The symbolic representation can
either be a feature based description as used in human vision, or representational as a
set of simple three~dimensional objects as is used with blocks.

Akin and Reddy (1976)

At Carnegie-Mellon University there has been some research into what
features are used by people when analyzing scenes (images). These experiments used
recorded protocols of human subjects analyzing an image. The subjects worked under
many of the same constraints that a computer must work under. The subjects did not
view the image directly, but were allowed to ask the experimenter questions about the
image, which the experimenter answered by looking at the image. In each of the
experiments there was a particular task which provided some guidance to the subject.
Some of the tasks were to describe the scene; to select the picture from a set of
twenty pictures; and using a map and questions, to find a location on the photograph
which the experimenter selected.

The experiments showed that people commonly use a limited number of feature
extraction primitives in classes such as size, shape, location, quantity, color, and
texture to analyze the scene.

Tenenbaum et al. (1974, 1976)

At the Stanford Research Institute there has been research on the design of an
interactive system to be used for research in scene analysis. One class of scenes that
has been used in this work is office scenes. The system allowed the user to
interactively select portions of the scene which have certain features, and to generate
descriptions of the object from these features. Possible features are color and
intensity information, height, depth, and surface orientation. The system is not
designed to identify all objects, but merely to locate specified objects.

The description of the features of the object includes information about which
features are the most important for the location of the object. By using an easily
found feature first, the potential search space can be greatly reduced, and the object
might even be located by this simple feature. After this initial feature location, the
selected object or objects are then verified using the more expensive features.

In addition there has been other research at SRl on a procedure for the
interpretation of scenes using a “filtering” technique similiar to what Waltz used on
blocks. The filtering process is combined with a region growing procedure to generate
a segmentation and interpretation of each scene. Initial regions are generated by
grouping all identical adjacent points into an initial region, these regions are assigned
possible interpretations (e.g. all interpretations). The filtering step is applied to
eliminate inconsistent interpretations. After each application the the filtering
procedure, all adjacent regions with identical interpretations are merged together, then
the filtering is applied again.
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An interactive approach such as this easily allows the development of models
of possible objects, the testing of ideas of how to recognize objects, and the
exploration of the recognition of objects in a limited environment. This type of effort
can lead to a better understanding of what is required for the analysis of natural
environments,

Agin (1972)

Agin worked on generating three-dimensional representations of simple objects
(a doll, glove, toy horse) using a laser ranging system coupled with a TV camera for
input. The resulting representation consisted of circular cross sections about several
axes.

Baumgard (1974)

Baumgard studied the generation of three dimensional representations of
simple objects by using the intersection of several conical representations of the
objects. Each conical representation is the locus of all possible objects which could
generate one of the two-dimensional images. The set of images was obtained by

placing the object on a turntable and taking several lateral images at different

rotations.

Several other areas of research had to be explored before this work could be
done, including the generation of object outlines, the matching of features of the
outlines, and the generation and manipulation (computation of intersections etc.) of
polygonal representations of solids.

2.2.1 Feature Summary

We will use features of the same type that are used in human analysis of two
dimensional scenes (Akin and Reddy) rather than the three-dimensional representations
of Agin and Baumgard. The actual measures which we will use to represent features in
these classes are derived from many different sources. Some of the feature measures
are obvious, such as the size of the segment. Many of the measures were taken from
Tenenbaum et al. where they were used as descriptors for individual textural elements.
Other measures were taken from Duda et al.(1972). This last reference is discussed in
the next section on matching.

2.3 Matching and Change Analysis

All the past change analysis systems which use image data have used signal
based matching techniques, and have produced an image as the change result.
Symbolic change analysis has been restricted fo the analysis of scenes which are
already segmented and described (i.e. correctly represented symbolically).

Levine et al. (1973)

Another project in computer vision prompted by the needs of space
exploration is the Mars rover project at the Jet Propulsion Laboratory. This vehicle
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must operate for extended periods without human guidance and must be able to travel
between two points autonomously. One of the important features for navigation in the
Martian environment is the distance from the rover to points on the surface in front of
it. This distance (range) information can be used to detect cliffs (extreme distances)
which must be avoided, rocks (large and small) which may interfere with travel, or
relatively smooth areas which are good for travel.

JPL’s method uses the parallax shift determined from images from fixed stereo
cameras to derive a depth map for the scene in front of the vehicle. Since fixed
stereo cameras are used, the search for corresponding points can be reduced to a
search along one scan line in the television image of the second view. To eliminate the
fruitless matching in large homogeneous regions, only points in the first image that are
along edges (e.g. between a rock and the background) are considered for matching.

This research has been directed more toward a reliable solution to the
navigation problem than toward basic research in image understanding, but the
analysis provided by the stereo camera system can be used in a more complete image
understanding system.

Hanna (1974)

After the results of Quam and others showed that computer matching of
pictures was possible and usefui, it became important to consider more efficient
methods to derive this match. Hanna discussed several different matching functions
(correlation, RMS error, etc.) but it is apparent that the best way to improve efficiency
is to reduce the number of matching operations that are required.

Hanna explored several methods for this. One is to use a fast pretest for a
likely match in a neighborhood (e.g. by comparing the variance or average values).
This will eliminate obvious mismatches and can also be used to sort areas by the
likelihood of containing the best match.

She also discussed growing regions of constant (or near constant) paraliax by
testing points adjacent to known points for the same parallax shift. These regions of
constant parallax can be used to hypothesize surfaces and objects. The camera
focation can also be used to restrict the search to a single line through the image (as
was used by Levine et al. (1973)).

Since the camera locations may not be known, she also explored the derivation
of a camera model from a set of corresponding points. The program iterated on the
camera model trying to reduce the error between the expected and actual point
locations. The derivation of the camera model is not as reliable and accurate as would
be desired, however, for depth calculations.

One area left to future researchers was that of matching regions in the picture
rather than of single points.

Duda et al. (1972, 1973)

A group at the Stanford Research Institute has applied pattern recognition
techniques to the problem of tracking storm cells in digitized weather radar data.

bl
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Some of the problems studied were the consistent extraction of individual cells in a
line of storm cells, matching cells in consecutive images, and forecasting the position of
the cell in the next image.

The cells are located by applying a high threshold to the image (the echo
intensities range from O to 9), and then extending these cells to include adjacent points
with a value one less than the initial threshold. These initial regions are merged into a
single cell only if the extension step causes them to add the same point; therefore two
cells may be adjacent. This procedure proved more reliable than simple thresholding
for this task.

The matching procedure proceeds in two steps. First all echos are translated
by their expected motion and then a global correction is determined by searching for
the best correction, using a simple cross-correlation method. Then each echo is
translated for a best match within a neighborhood of the location given by the global
correction. This limited search is used to prevent two echos from matching the same
echo in the new image.

The prediction program uses the past velocities to approximate the new
locations. Because of fluctuations in the velocity values and the unresponsiveness of
arithmetic smoothing to sudden changes, they used an exponentially weighted
averaging method. New echos receive an initial velocity based on nearby echos with
more weight given to older echos.

The earlier report also discusses echo description, particularly the description
of the contour. The contour is represented as two periodic functions, one for the X
coordinates and one for the Y coordinates. The functions are then represented by
Fourier approximations, which take less space to store than the entire contour.

Quam (1971)

Wilh the space program came a need for the analysis of many pictures. To aid
this, Lynn Quam worked on a system to compare two images taken at different times or
different locations by the Mariner spacecraft in orbit around Mars. This comparison
causes some features to become more apparent that they were in a single image.
Features such as cliffs, canyons, etc. may not be readily apparent in a single image, but
could have a very different appearance in two different images. Because of the
conditions on Mars at the time the pictures were taken, there were also changes due
to dust, from a dust storm, settling around various features.

As a first step, a set of corresponding points in the two images is located. The
program used points on a grid in one picture and found the best match in the other
picture using the correlation coefficient of the neighborhoods of the points. The two
images were known, a priori, to be of the same general area and initial transformations
were applied to one image by using the known satellite locations and camera
transformations, but the orbit locations were not known well enough to use this
transformation as the final result, Based on the discrepancies determined in the match,
a final transformation (rotation, translation, etc.) is calculated to minimize the error
between the two pictures.

By making a difference picture (between the initial image and the transformed
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second image), the areas that are different in the two views can be located. Most of
the two images will be approximately the same (a difference close to zero), but some
features may cause areas of change and these areas will have large difference values.

This system was intended to aid a human in studying the pictures from Mars, so
there was no need for completely autonomous image analysis and no need for real time
results.

Lillestrand (1972) and Allen et al. (1973)

At Control Data Corporation, there has been work in developing a computer
system for the detection of changes between two images of the same area. The basic
system is a collection of special processors connected so that the two images are
processed in a pipeline. Each stage of the pipe does one major operation, such as the
search for corresponding points, transforming the images, subtraction, etc.

The differences between this system and Quam’s is primarily in the method of
transforming the second image. The CDC system transforms smaller portions of the
image separately. A quadrilateral in the second image that corresponds to a square in
the first image is located (by finding the corresponding points for the four corner
points). This means that the picture can be processed sequentially in one pass
through the pipeline.

The base image and the transformed image are subtracted and differences are
analyzed by a human operator. Some differences can be automatically analyzed and
noted as being uninteresting because they are shadows or highlights.

This method depends on a spectral match of the two images and on a global
transformation of the data. Because of relative position changes inherent in near and
medium field multiple images, a global transformation of a picture or a portion of the
picture to align it with another image would not produce meaningful resuilts.

Balder (1975)

Balder developed a system to produce a linguistic description of the motion in
a sequence of images. The input is a sequence of images, which are already
segmented into primitive regions and objects. This initial data base also contains
feature locations and relations which might be derived from a single image. From this
sequence the system produces a correct English language conceptual description of
motions in terms of trajectories (translations) and rotations of the objects or the
observer. The resulting motion descriptions and relations in the data base are simple,
but sufficient to describe the sequence. The motion of objects is restricted only by
the fact that the objects are natural, the scenes were taken on the earth (so gravity
affects motions), and that the observer is passive and human-like.

A description of the motion differs from an explanation of the motion or an
understanding of the sequence in that an understanding requires high level knowledge
about the type of scene, the environment, and the intended use for the explanation of
the sequence.

Balder made several assumptions about the type of scenes that the system
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would handle. The sequence consists of discrete, static images. This is a practical
restriction; it is difficult to obtain, store, and process continuous pictorial information.
The sampling rate of the discrete images restricts the maximum frequencies of
oscillations that can be correctly detected and analyzed. The sequence contains only
recognizable objects in natural environments (i.e. there are no tigers in offices; no
optical illusions). The allowable motions are only rigid motions (rotations and
translations of the object or a subpart of an object), but the observer is also allowed
to move. If observer motion .is not known, it can be deduced from the movement of
fixed objects. Likewise, the fact that an object can move may be contained in the
description of the object, but it may also be derived from the movement of the object.

The representation of motion uses the same type of structure as the
representation of objects. Models of all objects are represented as a graph structure
with the nodes representing parts of the object (or entire objects) and edges of the
graph representing relations between objects; if an edge begins and ends at the same
node, it represents a property of the object. Object properties and relations include
the type, the subparts, the location, the orientation, and the size of the object.

Motion in the scene is represented as "events® Each event represents one
sequence of continuous motions (or repetitive motions). Event properties include the
subject and agent of the motion event (which object moved or which was moved by
another object), the direction, trajectory and axis of the motion, and possibly an
indication of the next event in the sequence that is needed to describe the motion.

This initial event structure is much too long and repetitious for the purposes of
a simple linguistic description of the changes. This description is condensed by the
use of "demons" which are activated by the presence of certain preconditions and
transform the representation in various ways. By the use of these demons the event
descriptions are simplified by changing the long descriptions into more natural English-
like sentences by modifying the event descriptions into verbs and adverbials which are
commonly used to describe motions and directions in English.

This system was able to describe the motion in several sequences in correct,
relatively concise English, but because of the first assumption (that the scene was
already segmented and recognized), it has little immediate application to the analysis of
"live" dynamic natural scenes. It showed that motion can be detected and described in
an already well-understood set of images (as Guzman(1968) and Waltz have done with
blocks), but does not address the problems of using the motion and change information
to reduce the processing necessary to understand a sequence of images of one scene.

2.3.1 Maiching Summary

The correlation based matching and change analysis systems perform well on a &
limited set of images. But, when the images are taken from very views, the correlation
matching is unreliable, and when there are changes in the number of objects in the
scene (new or missing objects) the matching is impossible. Many changes that occur in
a scene require higher level processing to analyze. Because of these problems we will
attack the matching and change analysis problem at a symbolic level rather than at the
image level. Balder has shown that understanding (in a limited sense) is possible with
completely and correctly segmented scenes, but these results will not necessarily
apply when there are errors in the machine generated segmentation.
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3 Data and System Description

This chapter describes the images which are used for analysis, the tasks which
are to be applied to the sets of images, and a description of the outside knowledge
necessary for the tasks. The chapter also describes some of the hardware and
software support for the work.

3.1 Images

3.1.1 Repreasantation

We represent images as a matrix with an arbitrary number of rows and
columns where each picture element (called a pixel) can be from zero to thirty-six bits
long (limited by the machine word size) and pixels are packed as many as possible into
a word. Each image also requires an indication of the relative offset from the original
image, if it is really a subimage. The top left point in the image is pixel[1,1] and the
bottom right point is pixel[number of rows, number of columns] Picture points are
referenced to by “I" and "J" coordinates, i.e. pixel[l,J]

Since images are an arbitrary size, it is not usually possible to hold the entire
image in primary memory. Thus we have implemented a system where portions of the
picture (individual rows) are read from secondary memory when needed. The system
automatically decides if it is necessary to page the picture or if the picture can be
maintained in primary memory. A small number of recently accessed rows are
maintained in core and are written back on disk (when removed from core) only if
changes have been made.

3.1.2 Scanes to Analyze

A short description of all the images used is given in Figure 1. This figure
shows the amount of data for each scene in terms of the number of rows, columns, the
number of bits per pixel, the number of spectral bands per image, and the number of
images per scene. The types of camera induced changes are also given.

Scene Name Rows Cols Bit BandImages Distance Camera Motion Figures
House 725 748 8 3 2 12M 3 Meters to the left 2,3
Cityscape 725 748 8 3 2 1 Km 50 Meters to the left 45
LANDSAT 2400 3200 6,7 4 2 900 Km 18 Days in orbit 6,7
Rural 2000 1900 6 1 3 -- Rotation 8,9,10
SLR 2000 1800 6 1 2 ~- Translation 11,12
Urban 2000 2000 8 1 2 -- Translation and distance 13,14

Figure 1 Image Descriptions
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Figure 6 LANDSAT 1

8 JUNE 1973
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Figure 8 Rural |
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The House and Cityscape scenes are digitized from color prinlsl. These

pictures were made specifically for the purpose of studying changes between images
which are introduced by a change in the camera location. The house was selected
because is is not surrounded by trees and is clearly visible. The cityscape is of a
portion of downtown Pittsburgh. These scenes contain large (relative to the image
size) and generally well defined regions with varying amounts of textural information -
the cityscape scene has much more textural variation than the house scene. The three
spectral bands for these images are the red, green, and blue intensities in the color
image. The digitized images do not include the entire photograph as shown in the
figures; in all four images the left edge of the image is cut off (the house image ends
at the left window and the cityscape just beyond the left edge of the large building in
the left center of the picture).

The LANDSAT scene is of the Wind River, Wyoming areal. These images were
generated by the multi-spectral scanner (MSS) of LANDSAT 1. This satellite completes
its coverage of the earth every eighteen days, so that these images are of the same
area but there are some differences in the area covered since the satellite position is
not that precisely controlied. Each pixel in the image corresponds to a 50 meter by 80
meter area (about one acre) on the surface. The four spectral bands of these images
correspond to green, red, and two infra-red ranges. The two images are printed (see
Figures 6 and 7) so that they line up with the surface, but are stored as rectangular
arrays.

The rural scene is represented by three monochromatic aerial photographs3.
iThese images contain several large, smooth (untextured) regions, and many more small
bright regions. Unlike our other images, bright points in these images have values
near zero rather than near the maximum value. The first few columns on the left side
contain dark points which will introduce spurious information when histograms of the
entire image are generated.

The SLR (side looking radar) scene introduces a completely different spectral
domain. A SLR image is bright where the surface reflects the radar signal back toward
the source, so the image will tend to get darker further away from the source (i.e.
from the left to the right in the image). For example, a smooth water surface reflects
the radar signal very well so that it will be bright when directly under the source and
dark away from the source. Most of the points in these images (especially the first
one - Figure 11) fall within a four bit range rather than the entire six bit range, so
that the processing is more sensitive to the noise in the image.

The final scene is the urban-industrial scene. These images have many more
distinct objects than the others. In addition to the translation differences encountered
in other images, there is also a scale difference between these two images.

IThese images were digitized by the Image Processing Institute at the University of
Southern California.

2These images were provided by Albert Rango at the Goddard Space Flight Center.

3These images, and those of the next two scenes were provided by the Digital Images
Systems Division of the Control Data Corporation.
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3.1.3 Tasks for Scenacs

Image Task

House Segment the large clear regions in the two images. Illlustrate
symbolic matching by finding the corresponding regions in the two
images.

Cityscape Segment the large regions. lllustrate symbolic matching in images
where the segmentation has more differences than the House scene.

LANDSAT Segment and match certain constant features (the lakes) in the two
images. Find snow cover changes in one area.

Rural Apply the matching process with images that are rotated with

respect to each other. The three images allow matching at an
intermediate rotation and a more extreme rotation.
SLR Segment and match several regions in a different spectral domain.
Urban First: Segment and match certain anchor features. Second: Analyze
the changes (missing or new objects) in a given area of the image.

Figure 15 Tasks.

The tasks to be used for the analysis of the given scenes are outlined in
Figure 15. A task description is necessary to determine what processing must be done
and to allow some evaluation of the results. All the processing of the images
representing the scene is done within the framework of the performance of the task.
The imposition of a task on the processing is not new; usually computer image analysis
systems are designed for one particular task and are unable to perform any other.
The task description will control the type of regions which are segmented, the type of
regions that are matched, and what change information is desired.

The house and cityscape scenes have few changes between the images so that
the primary task is to illustrate the symbolic matching procedure with a simple scene
(the house) and a more complex scene (the cityscape).

The LANDSAT task is a simple example of symbolic matching for use in the
registration of two images. The differences in the location of the lakes in the two
images can be used for transforming one image to correspond to the other. Once
several regions are matched, their locations can be used to guide the matching of the
larger snow regions.

The rural scene will be used to show symbolic matching in the presence of
rotations. This scene has three images, so that matching and change analysis can be
performed on a pair with a small rotation difference, and on a pair with a larger
rotation difference. This scene will also be used to introduce many of the problems of
processing large, monochromatic, aerial images (and how they are solved).

The SLR images will be used as an example of segmentation and matching in a
very different spectral domain.
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The urban-industrial images have the most complex tasks: the detection of new
or missing objects in a given area of the scene. Since this requires limiting the area of
the two images being analyzed, and determining the size and position differences, the
first task is the location and matching of several specific anchor regions in the two
images. Since the final task is to determine the number (change in number) of ships in
the pier area on the right hand side of the image, we will need to determine whether a
region is a ship, water, or pier region rather than whether the region matches another
unidentified region.

3.1.4 Knowledge for the Tasks

For any computer solution of any significant problem in image understanding,
some outside knowledge is necessary to guide the processing. This knowledge is
implicit in the statement of the task and description of the data, or is implicitely
required for the completion of the task. This subsection will describe the knowledge
which has been assumed by the task description, or is required extra knowledge not
given in the task statement. The external knowledge necessary for performance of
these tasks can be loosely divided into knowledge for segmentation and knowledge for
matching or change analysis (see Figures 16 and 17). The segmentation
knowledge indicales what type of regions are necessary for the execution of the task,
and how they may be derived. The matching knowledge indicates which features in
the scene are expected to change, and which are expected to remain constant.

3.1.4.1 Segmentation Knowledge

Scene Segmentation Knowledge

House Large regions, need a complete segmentation with a general
segmentation method

Cityscape Large regions, need a complete segmentation with a general
segmentation method

LANDSAT Lakes: low intensity and small regions (1000 out of 6 million points),
snow: high iniensity and large regions

" Rural Large smooth areas (no edges), bright regions are very small (250

points out of 4 million), some dark regions correspond to image flaws

SLR Smooth regions, general left to right intensity gradient, textures
offer the best chance for segmentation

Urban . Small bright regions for the anchor regions, ships are regions with

many edges, piers are dark and untextured, water is untextured,
general model of pier area

Figure 16 Segmentation Knowledge

In general, the segmentation knowledge is simply an indication of the type of
regions desired, such as the "large regions" for the house and cityscape scenes, the
small regions (1000 points out of 6 million) of the LANDSAT scene, and the bright
and/or smooth regions of the three monochromatic scenes. This type of knowledge is
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used to control the segmentation procedure by limiting the type of regions selected
(bright, smooth) or by setting the minimum size of acceptable regions. This type of
knowledge can be represented as procedures acting as knowledge sources which can
force the segmentation procedure to extract the proper regions, or as parameters to
other general programs (such as the size of acceptable regions).

In the LANDSAT images, the lakes will appear as dark regions in the fourth
band (infra-red) since the water absorbs the infra-red frequencies. The snow surface
reflects all frequencies so that these regions will be bright in all bands. The urban-
industrial task will also require scene dependent knowledge about the appearance of
the water, pier, and ship regions so that they may be easily segmented. This scene
will also use procedural descriptions of the pier area to limit the area of the image
analyzed for the change processing.

3.1.4.2 Matching and Change Knowledge

Scene Matching and Change Analysis Knowledge

House Few changes

Cityscape Changes in the relative "J" position of regions

LANDSAT Small translational changes for the lakes, snow areas change size and
) shape

Rural Rotation difference, with minimal location difference at the center

SLR Translation changes, image infensity differences

Urban Scale, location, absolute brightness differences, different ships and

different number of ships

Figure 17 Matching and Change Knowledge

The matching and change analysis knowledge is used to control which features
are to be used for matching and what types of feature changes are desired or likely.
This knowledge can be represented with lists of features showing which features can
or cannot change. For example, in the house scene there are few changes expected so
that all features can be used in matching. In the cityscape scene there are some
changes in the "J" position (left to right) of the objects so that all but the features
dependent on the "J" position can be used. The LANDSAT images have small
translation changes so that the absolute location features can not be used, but the
relative positions of the objects remains constant. Also the shape and size of the
snow regions changes between the two images, so these features will not be useful to
find the match. The rural images are rotated with respect to each other so that
orientation and location are likely to change and are not very useful for matching. In
the urban scene there are scale, location, and absolute intensity changes so that these
features can not be used for matching. But the scale and location differences are the
same over the entire image so that these differences (once they are computed) can be
used to adjust the feature values for further matches. In the final urban change
analysis task there will be changes in the number of objects (some appear and some
disappear) so that there will be regions in one image without a corresponding region in
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the other image. These changes will also cause the size and shape of the background
regions (primarily the water) to change size and shape.

3.2 Computer System

Most of the procedures discussed in the next chapters have been implemented
in SAIL (Vanlehn, 1873) on a PDP-10 with 256K words of primary memory. There has
been no effort to maximize efficiency by resorting to machine coding of the inner
loops, but there has been some effort to implement relatively efficient algorithms in
SAIL.

Afl but a few of the preprocessing routines have been incorporated into one
interactive program to aid in combining various operations into useful sequences. This
program has facilities for running in an automatic mode or a manual mode for testing
new operations. Timing information, giving the runtime for each routine (or part of a
routine) is collected for each run of the program. The PDP-10 (a KA-10 processor)
performs about 0.3 million operations per second and all timing information in the later
sections will be presented in terms of the number of operations. These operations
counts will be derived from actual timing files, and are not necessarily the ideal
numbers given in Appendix 3, since the number of operations reflects one
implementation on a particular machine. Some individual operations may require ten or
more PDP-10 instructions. Special purpose image processing machines are capable of
the equivalent of many millions of PDP-10 type operations per second, but only for a
restricted set of operations. Since this is a research effort, we cannot commit major
portions of the computation to special purpose processors, but these processors are
necessary for the implementation of a practical (i.e. commercial) system.

3.3 Data Storage

The information which is used in the matching process and generated in the
segmentation operation must be stored in core when being used, and on secondary
storage between runs. We have implemented a set of programs which allow the data
base in memory to be dumped onto secondary storage (in a text file) and read from
this file back into memory. Figure 18 is an example of the disk file version of the data
structure.

While in core, the information structure is stored using the SAIL LEAP facilities,
which provides the mechanisms for the manipulation of sets, lists, and "relational
triples"”. The triples are defined as an expression: propertyeregionsvalue which is
read as: the property of the regions has some value. A list is an ordered set so that
entries can be referenced by the position in the fist. Each image is stored as a list
with each region being one entry in the list, and relations between regions (or
features of regions) stored with the relational triples. The values of the properties
can have many different types, such as strings, arrays, integers, real numbers, or other
regions. There is a set of properties provided by the system, but these can be
increased by the user.
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4 Segmentation

Image segmentation is a transformation from a multi-dimensional point by point
(iconic) representation of an image to a representation of the image as a collection of
regions which are homogeneous along some dimension. An object in the scene may be
represented by one or more of these regions. Segmentation of a scene has little use
by itself, but it is required before further symbolic analysis of the image can be
attempted. The separate regions will be the basic units used in the symbolic analysis
of the image. These will be the units used in feature extraction discussions in
Chapter 5 and in further analysis of the image in Chapter 6.

We begin this chapter with a description of a basic segmentation procedure for
use with multi-spectral images. We then introduce modifications to this procedure to
reduce the time required for the segmentation operation, and to extend its usefulness
to monochromatic images. The final section presents results for all of the images, with
an evaluation of the accuracy of the segmentation and the time required.

4.1 Segmentation Method

The basic paradigm for the segmentation of images is the splitting of a region
of the image into smaller regions, each of which are homogeneous in at least one
spectral-based parameter. This basic technique was developed by Ohlander (1975).
The operation of splitting a region is simply the application of a threshold on the
feature values. The threshold limits are selected through the analysis of histograms of
all features and the selection of a "good" peak. The use of histograms has long been
used in computer analysis of images for the selection of the optimal threshold for the
separation of various regions from the background (Prewitt, 1970).

It is easier to understand how this works by looking at a very simple example.
For this example we will use an image that is blue on top and white on the bottom (one
of the simplest two region natural scenes, Figure 1).

blue

T N

white

Figure 1 Simple Natural Scene

Ideally the histograms of the various features would show that all the points in
the white region have one value and all the points in the blue region have another (or
the same) value (Figure 2), but, generally, the noise in the image will cause the
values to be distributed about the mean value of the feature (Figure 3). In this
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Red Blue

Figure 2 Histogram of Simple Natural Scene

E

Red Blue

Figure 3 Mcdified Histogr am

example the "good" peak is in the red histogram (either peak), with the lower peak
corresponding to the blue regicn and the upper peak corresponding to the white
region. This example also shows that feature values may overlap in one feature and
not another (the white region must have equal values for red and blue, or it would not
be white). The complete histogram of an image can be thought of as the sum of the
histograms of all the segments of the region. Thus an image with two regions should
have two separate peaks in the histogram for some feature, one with three regions
should have three peaks, etc. But as the number of regions increases and the
similarity of regions increases, the overlap of the peaks for the different regions also
increases so that an individual peak in the complete histogram is really the sum of the
peaks for several regions. As the number of regions increases even more, the valleys
between peaks will be filled in by the values for these new regions.

In more detail, the segmentation procedure works as follows (see Figure 4 for
a flow chart of the procedure):

e S S~
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Figure 4 Segmentation Procedure Fiowchart
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1. Compute the histograms for all the available features (e. g. the
spectral features such as color and texture, and others such as
depth if it is available), over the current portion of the image
(the entire image, a previously segmented region, or a left over
portion). Smooth the histograms to eliminate small variations
which might be detected as narrow peaks (especially by the
automatic peak selector). Figure 5 gives a set of histograms for
the entire second house image.

2. Select the best peak in the set of histograms. Generally a
“good" peak is one that is separated from the other peaks in
the histogram for that feature. Using a separated peak usually
means that two peaks must exist in the histogram before
segmentation can continue. When the histograms for all the
features contain only one peak (each), then the segmentation
for this region is completed and the process continues at step 1
with the next region. The general criteria for a "good" peak are
given in Figure 7 and more detailed information is in
Ohlander{1975). In this example the best peak in Figure 5 is in
the Density (intensity) feature with threshold limits of 205 and
227.

3. Apply the threshold limits computed in step 2. This divides the
image into two parts - all the points with values inside the peak
and all the points outside the peak. Figure 6 shows the regions
segmented by the thresholds given above.

4. Smooth the resulting regions to eliminate small regions, small
holes, thin connections and small bays. Appendix 2 discusses
this operation.

5. Remove each of the spatially separate regions from the
smoothed image, using a size criterion to eliminate other small
regions. If no regions which fit these criteria are found, then
this region has been segmented.

6. Add these regions to the list of regions to be considered for
further segmentation. This step implies that regions are
checked to see if further segmentation is possible with a
different (or the same) spectral band.

7. Continue at Step 1 with the next portion of the image to be
considered.

A complete segmentation of this image will be given later. Several of the
operations in this segmentation process are very expensive, especially when applied to
very large pictures. One of these is the histogram computation which is applied to all
the input parameters (in this case nine of them: red, green, blue, density, hue,
saturation, Y, I, and Q). Appendix 3 tabulates the number of basic operations used
per pixel for many of the segmentation operations. Other expensive operators are the
refinement (smoothing) of the thresholded image and the removal of each of the
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0: Exireme intensity peak (bright or dark)

1: Very low minimum between two peaks, one larger than other
2: Less strict version of 1

3: Bimodal distribution

4: Peak in low saturation range (where applicable)

5: Single peak with large number of points in tail

Figure 7 Peak Precedence Criteria

regions. There is little chance to attain a significant speed-up of this process by
merely modifying the programs, but there are modifications to the algorithm which
offer substantial speed-ups due to a reduction in the use of these expensive
operations.

4.2 Faster Segmentation

The path to a faster segmentation seems to be through the application of the
expensive operators to smaller areas of the image. Several techniques offer potential
savings:

1. Ordering of spectral bands by the likelihood of use in
segmentation.

2. Selection of thresholds for the entire image based on
histograms of a portion of the image.

3. Segmentation of important (large) regions using a reduced
version of the image.

The first technique is applicable only to the segmentation of many similiar
images. The experience gained through the segmentation of similiar images would
allow the selection of the most likely spectral features (and possibly even threshoids)
for several steps of the initial segmentation without analysis of all spectral features.
This technique would require modification of the segmentation algorithm to lock for a
potential split in the more likely features, and to evaluate the other features if no
divisions were located. This technique will not be explored further; it is only
mentioned as one possible extension.

The second technique is feasible when a small area contains many
representative regions. The regions also must be small with respect to the image,
which is true of images taken a great distance from the scene such as satellite and
aircraft images. An extended version of this technique will be discussed later in this
chapter under the topic of monochromatic images.

The third technique can be applied to images which have relatively large
regions. The regions must be large enough to be meaningful in the reduced image.
This plan generation uses the same segmentation procedure as described above, and
will be discussed next.
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4.3 Segmentation by Planning

Planning consists of the reduction of a problem to a manageable size, the
generation of an approximate solution to the original problem (a plan), and the
extension of the plan to an accurate solution of the original problem. In computer
vision the scale of the problem is usually reduced by finding the solution in a smaller
image.

The human visual system uses a type of planning in determining what to look
at. Since the receptors of the eyes are concentrated in one area (the fovea) the eye
must be directed to interesting areas by the gross level processing in the periphery.

Kelly (1970) applied planning to the analysis of pictures of human faces. By
using reduced images, his programs were able to find the outline of the head by
searching the image and by using backup when errors were found. This approximate
outline was then used as a guide to locate the outline of the head in the full size

image.

Hanson et al.(1974, 1975) are working on an image analysis system in which
most of the image processing involves the application of an operator which reduces
the size of the image (by a factor of two) or the application of an operator to project
information gathered (or regions segmented) on a reduced image back onto the larger
image. The step by step reduction and processing causes plans to be generated in a
reduced image which can be used to guide processing in the larger image.

A set of reduced images can be used to generate a plan for the segmentation
of the full size image. At worst the plan will contain only the large, clear, and maybe
important regions. The procedure for segmentation which was described above can be
used with few modifications.

The planning process can be extended to many levels of reduction (as is used
by Hanson et al.), but our use of planning will be limited to one level, usually a
reduction by eight and sometimes by four. The same segmentation procedure is used
on the planning images as was described above for full size images.

4.3.1 Plan Genecration Results

We applied this planning technique to generate a plan for the four images in
the house and cityscape scenes. In this subsection we will give a detailed discussion
of only one of these images (the second house image), and will present the
segmentation of the other three images at the end of this chapter. With some
modifications which will be discussed later, this planning procedure was also used for
the other scenes.

We reduced the original red, green, and blue parameter images by a factor of
eight in each direction (the total size was thus reduced by 64). The amount of
reduction depends on several factors including: the size of the desired regions (the
region must be large enough to be extracted in the plan), and the total image size (it is
desirable that the reduced image be small enough to completely fit in primary memory,

mﬂ—m“w:--—m it ; " —
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i.e. at most about sixty thousand words are available for images). The reduction
program gave more weight to the points in the center of the window than to points on
the edge, and produced a variance image in addition to the mean image. The center of
the window is weighted more heavily than the outside as a compromise between
reduction by sampling and reduction by averaging. The weights are computed as
2-(distance "from the center) Figyre 8 gives the weighting values which were
used. The weights are scaled to make the mean and variance computation easier (the
values in the figure are rounded). The other color parameters (Density, Hue,
Saturation, Y, I, and Q) were then computed from the reduced images (see Chapter 5
for a definition of these features). Each reduction operation for the house scene (one
operation for each color of the three color image) requires about 78.33 million
operations (about 140 operations per pixel of the original image) for a total of about
234.99 million operations to reduce all three colors.

003 .005 .007 ..008 .008 .007 .005 .003
005 .008 0125 016 016 .0125 .008 .005
.007 .0125 .022 .0315 .0315 .022 .0125 .007
.008 .016 .0315 .058 .058 .0315 .016 .008
.008 016 .0315 .058 .058 .0315 .016 .008
007 .0125 .022 .0315 .0315 .022 .0125 .007
.005 .008 .0125 .016 016 .0125 .008 .005
003 .005 .007 .008 .008 .07 .005 .003

Figure 8 Weights for the Reduction Program

The plan generation procedure started by segmenting the bright intensity peak
from 205 to 227 (Figure 9). This selected the sky region above the house (Figure 10).
The next peak is also in the intensity parameter from 24 to 51 (the dark peak)
(Figure 11); this segmented some of the bushes in front of the house (Figure 12). The
next peak was in the Red parameter from 62 to 131 (Figure 13); this selected the roof,
lawn, window, and door areas (Figure 14). This continues for several more steps until
the image is segmented. Most of the regions are completely segmented on the first
pass and do not require further segmentation. One of the regions that required
further segmentation was the lawn area which was segmented on the third iteration.
Even though red was used in the original segmentation, it is not used in this second
segmentation (Figure 15); the best peak is in the Q parameter from 220 to 260. The
compliete plan for the house is given in Figure 16. There are 21 basic regions in the
plan (plus eight which were segmented further). The histogram peak selection was
used to find a split nine different times.

4.3.1.1 Plan Timing

Figure 17 gives the timing summary for the plan generation (in millions of
operations) of the house scene. The total computer time was a little more than two
minutes (the real time was about 54 minutes, and included time for graphical displays
and saving intermediate results). These times were summarized from the computer
generated timing files and do not include some of the times for overhead operations or
the times for operators that required much less than one percent of the total time (the
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timing overhead is normally less than 27). As can be seen from this summary, the most
expensive processing operation is the histogram generation which takes about 567 of
the time, but only half of this processing depends on the picture size; the other half is
histogram array processing (smoothing the array) and depends on the size of the
pixels (byte size). The peak selection takes about 207 and also depends only on the
number and range of the parameters. About 237 of the time is consumed by steps 3
to 5 (threshold, smooth, and region extraction) of the segmentation process. The times
for these operations are dependent on the picture size.

Operation Millions of Percent of Number of
Operations Total Times Used

Histogram Computation .

Generation of array 10.64 26.7 117

Smooth array 11.37 285 117

Other 0.29 i 13
Peak Selection 8.18 205 13
Threshold 1.38 3.4 13
Smooth 3.27 8.2 13
Region Selection

Initialize 3.28 8.2 13

Select a region 0.61 15 22

Save masks 0.83 2.1 32
Total 39.84 ~-

Figure 17 Timing Summary for Plan Generation House 2

4.3.1.2 Plan Evaluation

The plan generation was intended to segment the major (large) regions in the
scene, which it does well. The time for the plan generation alone is significantly less
than the time for a complete segmentation of a full size image.

Because of the smoothing of the image in the reduction operation, many of the
textured regions in the full size image will be relatively homogeneous in the planning
image. Thus we are not confronted with some of the problems that such “"busy"

regions caused Ohlander.

The smaller images caused some problems in the region splitting analysis. The
regions that were extracted could be small (35 pixels or more), so that the histogram
of such a segmented region could have many false peaks because the values in the
region are scattered throughout the entire range of the threshold used for the
extraction, which could easily cover 35 or more different values. This degeneracy of
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histograms also occurs during the segmentation of the whole image, so that many
regions are left as unsegmented areas of the image, after the application of the plan
generation.

4.3.2 Expansion

When a plan is generated there must be a method for transforming the plan
into a segmentation of the full size image. An approximation of the full size region can
be generated by expanding the plan generated mask by the reduction factor, but this
will not produce an accurate segmentation. Therefore, the expanded segmentation
mask must be refined by using the same threshold parameters which were used to
generate the plan mask. The following procedure has been implemented for this
purpose. Figure 18 gives a flow chart for this procedure.

1. Generate
Plan

2. Select
Region

3. Enlarge
Mask by
Smoothing

4. Threshold
in Full Size
Image

5. Select
Largest Region
in Binary Image

Figure 18 Expansion Flow Chart

1. Begin with the plan - a partial or complete segmentation of the reduced
scene. Figure 16 shows the outlines of the regions in the plan (the
second house image).

2. Select the next region in the plan (starting with the first region) which

e
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is not further divided into smaller regions (i.e. a region that has no
descendants). Figure 19 shows such a region (the scale is selected so
that this figure shows the region the same size as it will be in the full
size version); this is region number 8, the roof, in the plan.

3. Enlarge the binary image (mask) in the plan by adding a layer of pixels
(of “1™s) on the outside of the region. This is necessary to allow for
the nonexact alignment of the plan region with the full size region.
Figure 20 gives the enlarged mask. This enlarging is done by the
smoothing operator as discussed in Appendix 2.

4. Expand the plan mask by the same factor that was used in the
reduction of the image. Thus, if the reduction factor is eight, then
each point in the plan mask is duplicated 8 by 8 (i.e. 64) times in the
expanded mask. This mask is not the final result; it needs to be
refined. Using this expanded mask, apply the same threshold to the
full size image as was used to generate the plan. Figure 21 shows the
results of applying this threshold (Density from 62 to 131) to the
applicable area of the image.

5. Select the largest region in the resulting picture. Many times there is
only one region in the thresholded image, but if a second region is
relatively large (compared to the first image), it should also be
retained as a separate region. This step is primarily intended to
eliminate the small regions near the main region which may have the
same spectral characteristics, or pieces of other (large) regions which
are near enough to be partially covered by the expanded mask.

6. Continue at 2 until there are no more regions. Figure 22 shows the
final expansion of the regions in Figure 16.

4.3.2.1 Expansion Timing

Figure 23 gives a summary for the times required for the generation of an
expanded segmentation from the plan for the house segmentation. As would be
expected, the operations on the large masks consume most of the time. The smoothing
operations are applied to remove small indentations and small regions from the mask.
This operation could be eliminated; this would generally affect only the shape of the
resulting regions. Elimination of the smoothing would also mean that the region
extraction procedure would need to expect more regions and thus might need more
temporary space.

4.3.3 Overall Scgmentation Times

The plan generation and expansion operations, combined, take about 125
minutes of computer time. This is equal to about 226 million operations for the
segmentation of a picture with .5 million pixels (with the 9 parameters it is about 4.5
million total pixels) or about 450 operations per pixel.
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Operation Millions of Percent of Number of
Operations Total Times Used

Enlarge Small Mask 1.19 .6 21

Large Mask Threshold 23.44 12.6 21

Smooth Large Mask 116.72 62.7 63

Extract Regions 4492 24.1 21

Total 186.28

Figure 23 Expansion Timing House 2

4.4 Using Knowledge in Segmentation

The segmentation procedure as described so far attempts to completely
segment the image without relying on outside knowledge. In a general image
understanding system, this complete segmentation would rarely be required as the first
step. Generally, the extraction of several large general regions, or regions with
certain characteristics, or the continuing of the segmentation of large general regions
is more important than the generation of a complete initial segmentation. The
segmentation procedure we described above can be used for this type of partial
segmentation with very few modifications; those would be in the outer level control of
the procedure. Segmentation based on specific characteristics requires an alteration
of the peak selection procedure to look for the specific peak and no other (e.g. only
bright peaks in red, the biggest peak, etc.). When looking for a specific peak the
constraints on the "goodness" of the peak for acceptance may be relaxed. Large
general regions are extracted by applying the basic segmentation procedure (possibly
with altered peak selection priorities), but eliminating the requirement that all regions
must be checked by the segmentation procedure for further segmentation. The first
two scenes (the house and the cityscape) did not require any of these modifications
because a near complete segmentation was desired, but the other scenes, as will be
seen, use specific knowledge about the task to determine how the segmentation will
proceed,

For example, in both of the LANDSAT images (Figure 3.6 and Figure 3.7) the
task, for the segmentation step, is to locate (i.e. segment) several lakes in the two
images. The outside knowledge also describes the spectral characteristics of these
lakes as the darkest regions in the fourth spectral band since the water absorbs the
infra-red radiation. Given this knowledge, it is necessary only to compute the
histogram of the band four data and to determine the upper threshold of the peak at
(or near) the zero intensity level. The use of this knowledge means that it is
necessary to compute only one histogram and there is no need to analyze any of the
other three spectral bands. For another task, one might use another band and another
peak might be specified.
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In this scene, the peak was located at the zero intensity level, with the upper
threshold given by the minimum between this pcak and the large peak of medium
intensity values. This minimum value occurs at about 6 (this histogram is given in
Figure 24). As before, the segmentation procedure is applied to a reduced image
(hence a plan is generated), rather than to the full size image so that the small
shadows are not segmented. The expansion procedure, described above, is used to
expand the plan regions. The lakes (and other regions) in the full scale image are
shown in Figures 25 and 26. The two large lakes near the left edge are segmented in
both images along with several long thin lakes near the center of the images (below
the white snow area). In the first image, another large lake (above the snow region) is
also segmented, but it is obscured by clouds and is not segmented.

The LANDSAT task also requires the location of snow cover regions, which are
defined as the large high intensity regions in the image. The bright regions are given
by threshold limits of 34 and 63 (in the fourth band, see Figure 24). The larger
regions generated with this threshold are shown in Figures 27 and 28 (the plan) and
Figures 29 and 30 for the full size segmentation (which includes the lakes).

The use of partial segmentations will be very important for the matching and
change analysis discussed in Chapter 6 since many of the less important (less likely
to match) regions are eliminated from the analysis by the simple process of never
generating them.

4.5 Segmentation of Monochromatic Images

When a segmentation procedure has been developed for one type of image, it
is usually not the case that the procedure will work on very different types of images.
The region growing system of Yakimovsky(1973) was applied to two very different
types of data by using a different world model for each type of image (outdoors and
heart angiograms). But, this system required a learning phase to generate the world
model for the different scenes. Our segmentation procedure was originally developed
for images of natural scenes with many spectral bands, large regions, and oblique
views, and might not be expected to work very well on monochromatic aerial images.
In scenes with many small different objects (as is the case with aerial photographs),
the histogram will generally have only one peak because the range of intensities for
each object will probably overlap with the ranges for other objects. Because there
are no other spectral inputs that are directly available, we can not combine several
inputs to generate other spectral features (such as is done to get Y, I, and Q from red,
green, and blue).

As expected, when the original procedure is applied to the large black and
white aerial images, a "good" segmentation is limited to partial segmentations of the
type discussed above (e.g. the very bright or very dark regions or large varied
regions), but even these peaks for the partial segmentation may be obscured. Thus
our monochromatic images introduce two new problems. First, there are too few
spectral bands for adequate separation (i.e. only one). Secondly, there are too many
small regions which cause all the separate peaks to blur into one.

We atiack the first problem by the introduction of simple "textural™ measures
which can be used to generate the reduced image instead of the simple weighted
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Figure 27 LANDSAT 1 Plan of Snow Regions
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averaging procedure. These "textural" measures can then be used as if they were
ordinary spectral features. The second problem is attacked by partitioning the image
into subimages and using the histogram of each subimage as a different spectral
feature. These two methods will be discussed in the following two subsections.

4.5.1 Textural Moasures for Segmentation

In the original description of the general segmentation method (Ohlander, 1975;
and modified here) a simple “textural” measure was used to classify certain areas as
very busy (containing many edge elements in a given size window) or nonbusy
(containing few edge elements in the window). These different textured areas were
then processed in special ways. Our use of "textural" measures is intended to be more
tightly integrated into the overall segmentation procedure.

Textural measures which can be used in the plan type segmentation procedure
include: number of micro-edges in the reduction window (for one of the many possible
ways to generate micro-edges see the subsection on textures in Chapter 5), the
maximum {(or minimum) value attained in the window, and the range of values
(excursion) within the window. Textural measures used for the segmentation of an
image should be expressed in the same terms as the other features used for
segmentation (i.e. as another spectral input). Thus, we are not interested (at this
stage) in a single textural description of a large region of the image.

The histogram of the edges in window measure generally has a single peak at
zero edges or sometimes at one edge (even when the window size is 8 by 8), and
decreases smoothly as the number of edges in the window increases.

The rural scene gives a chance to illustrate the use of this simple "textural
measure in the segmentation process. The outside knowledge indicates that the
segmentation of the large untextured (no edges) regions will aid in the matching task,
therefore these regions should be extracted first. Figure 31 shows the points in the
first rural image where micro-edge elements are located. A threshold of the edges in
window image at zero (i.e. only those points with no edges in the reduction window)
will select the large untextured regions. Figure 32 shows the regions which are
segmented at this threshold setting (the plan).

The expansion procedure described above is not meaningful when applied with
the edges per window plan image. The values in the plan image can range from O to
64 (for an eight by eight window), but the values of the original image only range from
O to 1. In this particular case there is no problem since the upper and lower threshold
values are both zero (i.e. no edges) so that the expansion method can be applied as it
has been described. But if the upper threshold is greater than zero all points in the
image (under the enlarged mask) will be selected, and conversely if the lower
threshold is greater than one then no points would be chosen. Because of this
problem with thresholds other than zero through zero, we skip the refinement steps of
the expansion procedure and accept all the points under the expanded mask. This is
acceptable since general regions are all that is desired with textural measures of this

type.

The expansion procedure was applied to the plan generated for all three of the
rural images and produced the regions shown in Figure 33 for the first image of this
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Segmentation 66

scene (the others will be presented later). The segmentation of the other regions
which are needed for this scene will be discussed in the next subsection on
partitioning of the image.

This smooth area extraction procedure is also applied to the SLR images and
produces a partial segmentation; Figure 34 shows the first image and Figure 35 shows
the second. These regions are sufficient for part of the task: find several key regions
in both images for use in symbolic registration operations. But they are not enough
for the second part of the task: the location of large texturally different regions. It
seems that given enough simple “textural operators the area in the upper right (dark,
but with many bright regions, and high contrast) could be distinguished from the area
on the left (many edges, but lower contrast, higher average intensity).

Another possible textural measure is the "excursion"” measure (maximum in the
window minus the minimum in the window). This measure should distinguish regions in
the image with low contrast (low excursion values) from regions with high contrast
(large excursion values). This measure was used in the SLR-1 image after the
extraction of the nontextured (no edge elements) regions. The goal here is to
separate the low contrast regions on the left side of the image (see Figure 3.11) from
the higher contrast regions on the upper right side. But before we can perform this
segmentation we must introduce another technique, partitioning, in the next subsection.
Since this measure has no directly corresponding full size image, the expansion of
regions in the plan is handled the same as the edges per window measure, i.e. there is
no refinement step and all the points under the mask are accepted.

4.5.2 Secgmentation with Pariitioning

As the number of separate regions in an image increases, due to either
decreasing the region size or increasing the image size, the amount of overlap of the
peaks in the histogram associated with the separate regions increases. For example, in
the urban images, the histogram of intensity does not exhibit a clear peak for the
separation of the bright regions as seen in Figure 36. But there are clearly bright
regions in the image (Figure 3.14). There are values (in the histogram) indicating
bright values, but there is no separate peak for these bright regions. If we could
decrease the number of separate regions included in the computation of the histogram,
then a peak for the bright regions may become apparent. One way to reduce the
number of different regions is to partition the image into subimages of smaller and
smaller size until a desired peak appears or the histograms degenerate. This is the
same technique used by Chow and Kaneko(1370) to select thresholds in medical
images.

Figure 37 shows the histogram of the four quarters of the images. The
histogram labeled "1" is the top left quadrant of the image, "2" is the top right, etc.
There is still no separate peak in any of the four quadrants. The peak from 220 to
248 in the top left histogram does not meet the Ohlander criteria for an acceptable
peak (peak maximum:peak minimum must be 2:1 or greater), but could be acceptable
with less constrained peak criteria.

Figure 38 is the set of histograms when the image is divided into 9 subimages.
In these, the histogram labeled "1" is the top left ninth of the image, "3" is the top
right, "5" the center, etc. In this set of histograms, there are four acceptable bright
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peaks (in 1" "2" "4" and "8"). Since the selected threshold values will be used over
the entire image, a threshold range of 220 to 256 was selected to cover all four of
these bright peaks. There are other peaks in these histograms, but, since were are
looking for a way to separate only the bright regions, the others are ignored.

“This threshold value (220-256) is applied to the entire urban-2 image and
produces the regions shown in Figure 39 for the plan and Figure 40 for the full size
image. This selects the group of round bright regions (top center) and the long thin
region (bottom center) which are desired as anchor regions in the task for the urban
scene.

After the initial extraction of smooth regions, the segmentation task for the
rural images is the same as the urban images: find the bright regions. But there are a
few differences; the required regions are much smaller and bright regions have fow
values rather than high values. After the smooth regions are extracted, the histogram
for the remaining scene (Figure 41} shows no peak of bright points. This is the
histogram of the full size image rather than the planning image since the desired
regions are as small as 250 pixels, which would be be too small in the plan image to be
considered useful (i.e. three or four pixels).

There are still no separate peaks (for the bright regions) in the two by two
partitioning Figure 42 and the three by three partitioning Figure 43 of the image. But
an analysis of the histograms in Figure 42 shows that two of them, "2, and "4"
corresponding to the right side of the image, indicate that bright points occur in those
quadrants, while the other two ("1% and "3") show that fewer bright points occur in
the two left quadrants. If the histogram for the lower right quadrant ("4™) is thought
of as the sum of the histograms of the individual regions (each with a single peak),
then we can assume that the points below about 25 or 30 come from the bright
regions, and there is probably another peak centered around 30 covering the less
bright regions (or points partially in a bright region). Also there is the large
background peak which appears in the other quadrants ("1", and "3").

If we use these assumptions we can select a threshold of about zero to 25 to
extract the bright regions. This process is an ad hoc method for the extraction of
specific peaks and can not be considered for the extraction of general segmentation
peaks. But when the segmentation procedure is directed to find the brightest (or
darkest) regions such ad hoc techniques can be used. If the partifioning were carried

_ to the extreme, then the division between the bright regions and the background

would become apparent. This would occur when the partition included only the bright
region and the background or only the bright region alone. Figure 44 shows the
bright regions which were extracted with this threshold.

We can now return to the SLR-1 segmentation using the excursion planning
image. The three by three partition histograms for the remaining image are given in
Figure 45. In most of the sections there is a large peak centered near 20 (the low
contrast regions) and a much smaller peak near 55, except the top right ninth (labeled
"3") has a large peak around 60. If we then segment the image twice using each of
the peaks in this ninth, then we can extract the large high contrast areas and low
contrast areas. Figure 46 shows these two types of regions.
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4.6 Results

This final section on segmentation will present the segmentation results for the
thirteen images which were presented in Chapter 3 plus the segmentation results for
the "pier" area of the two urban images. Some of the segmentations have already
been presented, but will be given again in this section (without discussion) for
completeness.

The segmentation for the house-2 image has already been presented along
with the times for all the operations. Figures 47 and 48 give the final segmentation
for the two house images. The segmentation of the house-1 image produced the large
sky, lawn, and roof areas. In addition, four wall regions (above the window, the right
side, the left side, and the middle), several bushes, the chimney, door, shadows, and a
few regions in the window area were segmented. The house-2 image was segmented
into approximately the same regions, with some differences in the number and size of
the "bushy" regions, and some differences in the door and window regions. These
differences should not be too much for effective matching. The times for the
segmentation of the house-1 image are about the same as for the house-2 scene.

We have not yet presented any results for the cityscape scene. The
segmentation results are given in Figures 49 and 50. These two segmentations are
generally poorer than the segmentation of the house scene since many of the adjacent
regions are very similiar (all the regions are somewhat bluish due to the distance and
haze). In both of the images, the two large buildings on the left and center are
segmented along with the building in the lower right. Several buildings in the upper
right are also segmented, but there are differences between the segmentation in the
two images. This group of buildings are all silver-gray and it is difficult to determine
where one ends and the next one begins. The hill side is broken into several regions
in both images and the park in the lower left is segmented. Figure 58 shows the
times for the plan generation of the first cityscape image and Figure 59 gives the
time for the expansion of the plan regions. These times are similiar to the times given
earlier for the house-2 image.

The complete segmentation for the LANDSAT scene has already been given, but
they are presented here for completeness in Figures 51 and 52.

The SLR scene presented a more difficult problem for accurate, complete
segmentation. The regions in the original image (Figure 3.11 and 3.12) are not very
well defined (except the dark and untextured regions). The segmentation of these two
images produced the regions in Figures 53 and 54. Several untextured regions are
segmented in both images, especially the “river" in the lower right, the reverse "C".
shaped region in the lower left, and the "runway" area on the left (in two pieces). In
the first image the "runway" regions include the surrounding areas which are not
included in the second image. The larger differently textured regions are rather
general and amorphous, but that is the same way that they appear in the original
image.

The segmentation of the first rural image has already been given in two parts.
The complete segmentation of all three are given in Figures 55, 56, and 57. The
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Segmentation 86

Operation Millions of Percent of Number of
Operations Total Times Used
Histogram Computation
Generation of array 12.32 29.2 135
Smooth array 10.26 23.4 135
Other 0.33 .8 15
Peak Selection 7.88 187 15
Threshoid 155 3.7 15
Smooth 351 83 15
Region Selection
Initialize 3.86 9.2 15
Select a region 0.92 2.2 31
Save masks 1.50 3.6 43
Total 42.13 --

Figure 58 Timing Summary for Plan Generation Cityscape 1

Ope'raﬁon ' Millions of Percent of Number of
Operations Total Times Used

Enlarge Small Mask 1.62 7 30

Large Mask Threshold 32.32 13.8 30

Smooth Large Mask 151.18 64.6 90

Extract Regions 49.02 20.9 30

Total 234.14

Figure 59 Expansion Timing Cityscape 1

method of segmentation of all three images was the same as for the first image; extract
the untextured regions with the plan, then extract the bright regions from the full size
image. Many regions are extracted in all three images. The two large regions on the
top and bottom of the scene, the "river” on the left of the large regions, and several of
the bright regions in the center are found in all three. Many of the houses in the
lower right are segmented in the second and third image, but only a few are extracted
from the first image. There are some differences in which smaller untextured regions
are segmented in the three images, but most of the larger regions are the same. The
lower left of the first image is more textured than that area of the other two, so that
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Segmentation 94

the large region on the bottom and the "river" region do not extend into this area.
Afso, the "river" is broken into two parts in the second image.

The final scene is the urban scene. The segmentation processing on the entire
image is limited to the extraction of a few bright regions for use in limiting the area to
be used in future analysis. Figures 60 and 61 show the bright regions extracted in the
two urban images. The group of round, bright objects are extracted along with a large
rectangular region in the lower right, and several other bright regions (buildings).
Some of the round regions in the first image are not completely extracted because of
the shadows due to the lower sun angle. Later matching procedures will use some of
these regions to limit the area to be analyzed as the pier area. This portion of the
image is separated from the rest of the image and further segmented.

The complete segmentation of the pier areas is shown in Figures 62 and 63.
The regions in first image are not as clean as the regions in the second since the
water in the first image is rougher and sometimes the water blends in with the ship
regions. The ships are segmented in both images, but some are only partially
segmented and some blend into a part of the piers. The water regions in the second
image are clearly segmented and are used for locating the pier area for further
segmentation. The shadow regions in the first images are used for the same purpose
since the water is not as clearly separable.

4.6.1 Summary of Segmentation

One way to evaluate the advantages of using a "plan" for generation of the
segmentation, is a comparison of the time for the segmentation of the complete image
with the plan and without the plan. There is no need to segment the full size image to
determine the approximate time required for segmentation. We can use the times for
the plan generation and multiply them by the size reduction factor (64 for the eight by
eight reduction). (Only the times which depend on the image size are multiplied by this
factor.) Using the times for the house-2 plan segmentation (Figure 17), we can derive
an approximate number of operations for the segmentation of the scene without a plan
of 1300.5 million operations, compared with about 226.1 million for the segmentation of
the scene with plan generation (see Figure 64). This time difference will more than
make up for the extra time required for the generation of the reduced images. With
the reduction time and the color transformation times included, the total is about 465.5
million operations. This approximation for the full size segmentation assumes that the
times for each operation will increase linearly with the picture size. This is true in the
ideal case, but in the current implementation for the very large pictures there is
substantial overhead in reading the files from secondary storage.

The segmentation times would not be substantially different if the reduction
was by a factor of sixteen rather than a factor of eight, since the expansion of the
plan and the reduction of the images accounts for a substantial portion of the total
time. Some of the extracted regions are rather "fuzzy" since the plan threshold values
are not necessarily the optimal levels for the full size image. The accuracy of the
segmentation could be improved with an additional refinement step after the
expansion. That is, refinement is performed by the segmentation procedure rather
than the plan threshold. In this case the segmentation procedure should concentrate
on removing the "lails" from the peak since usually there should be only one peak in

each of the histograms.
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Operation Millions of Percent of
Operations Total

Histogram Computation

Generation of array 681 82

Smooth array 114 1

Other 0.3 --
Peak Selection 8.1 1
Threshold 88.2 6
Smooth . 210 16
Region Selection

Initialize 210 16

Select a region 38.7 3

Save masks 52.8 4
Total 13005

Figure 64 Timing Approximations for Segmentation of House 2

This chapter has described a segmentation scheme and not a combined
segmentation and interpretation as is given in Yakimovsky(1973) or Tenenbaum et
al.(1976). The segmentation method can be used to completely segment a scene
before any recognition or other processing is attempted, to select specific regions for
further analysis, or to further analyze previously segmented regions.

Most of the segmentation processing has been automated. The default peak
selection criteria (the one described by Ohlander(1975)) has been implemented, but the
specific peak selector needed to extract regions indicated by other outside knowledge
has not been programmed. This problem also arises when a high priority peak does
not segment any regions of an acceptable size: there is no provision to force the peak
selection to look for the next priority peak the next time through. This peak selection
process is one area where the addition of more knowledge sources is needed.
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5 Features

Symbolic analysis of images depends upon the extraction of meaningful
features to describe each region. The features can be used for the identification of
objects (a task not attempted here), or for the comparison of multiple images to
determine changes. Chapter 4 discussed the initial segmentation of an image. These
segments (regions) will be used as the basic units for the extraction of features.
Chapter 6 discusses the use of the features derived here for the matching of regions
and images.

This chapter describes the features which were used for segmertation and
symbolic analysis. We also discuss the methods of computation of these feature
values. Finally we will present some timing information for the computation of many of
these features.

5.1 Generation of Features

The features used for the analysis of images will be similiar to those used in
understanding images by humans. This will aid in the understanding of extracted
features by a human operator and the analysis of the results of this system. These
include classes of features such as: size, shape, location, color and texture, and
patterns (Akin and Reddy, 1976).

We will discuss the features which we are using under each of these classes
(except patterns which would include features such as how many occurrences of an
object). We will include some computation times in this section, but the complete
timing summary is given in the final section.

5.1 Size

The size of a region includes features such as area, length, height, area relative
to other regions (largest, smallest), and extent of the region.

The size (area) of the region is just the number of points that the regions
covers. This is computed by counting the number of points in the mask which
describes the region (either the plan mask, the full size mask, or both). The size of a
region is also a by-product of many other feature computations (such as the average
intensity) so that the area computation can be considered to take "no" time.

5.1.2 Shapa

A human observer describes the shape of a region as irregular or regular (e.g.
a rectangle, a circle, a triangle, etc.), elongated, linear, curved, flat, convex, etc.

5.1.2.1 Regular Regions

An irregular region is characterized by having a long perimeter relative to the
area of the region, and a small area relative to an enclosing regular object such as a
rectangle. The ratios of PerimeterZ/Avea and Area/(Area of Minimum Bounding
Rectangle (MBR)) (called the "fractional fill") are used for this measure. The perimeter
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is computed by the boundary following program given in Appendix 4, and |s the
number of pixels which are on the outside border of the region. The Perimeter2 [Area
measure is chosen rather than Perimeter/Area since it is a dimensionless quantity. (In
a continuous world this ratio would be minimal for circles, but this is not necessarily
true for the digital world, where there are no true circles. This measure will not
distinguish circles and diamonds, but our primary use for the measure is to distinguish
compact regions from "loose” regions.) The fractional fill measure is highly orientation
dependent: a long, rectangular region has a very small fractional fill ratio when
oriented at an angle, buf it is near one when the region is horizontal.

5.1.2.2 Elongated Regions

An elongated region is a region with a high length to width ratio; this is also
called eccentricity. This length to width ratio can be calculated from the dimensions of
the MBR for the region. This method of calculation is simple, but it assumes that the
region is oriented in the MBR so that the primary axis of the region is parallel to the
longer side of the MBR. Elongated regions will also appear to be irregular regions
since Perimeterz/Area is large for long and thin regions as well.

5.1.2.3 Orientation of Regions

Because of the problems with the simple length to width ratio using the MBR
dimensions, it is desirable to obtain an orientation-independent length to width ratio
and the orientation as well. In the work by Duda et al(1872) on the analysis of
weather radar images, there was a discussion of the use of Fourier transforms of the
boundary for reducing storage requirements of the contour. There was also a mention
of some of the properties of the values at various harmonics of the transform. For
example, if the contour is reconstructed with only the first harmonic, the new contour
appears as an ellipse. The orientation of the major axis of the ellipse, and the ratios
of the major and minor axes of the ellipse can be used for the orientation and length
to width ratios. We will now present the general techniques used to generate the
Fourier coefficients which can then be used to generate these two measures.

5.1.2.3.a Fourier Computations

The contour of the region is represented in terms of two functions I(s) and Xs),
which give the 1 and J coordinates of each element on the contour. These functions
are periodic about the contour (i.e. I(s+P)=I(s), where P is the perimeter length) and
the reconstruction can be made as accurate as desired by increasing the number of
harmonics used.

The formulae to reconstruct the contour from the Fourier coefficients are:

I(s)=ag +:Zolan cos(n vs - 6) (1)
and
[oe]
Hs)=bg +nzlb" cos(n vs - ¥,) (2)

where a, and b, are the amplitudes and 6, and ¥, and the phase angles of the nth
harmonic, and o is the common fundamental frequency 2n/P where P is the length of
the perimeter.




Gttty B b )
- : 5

e

4
3
!

Features 102

The Fourier coefficients are given by:
'ao - Ao / P (3)

an = (2/nm) sin(nn/P) SQRT(A,2 + B,2)

6, = tan"1(8,, / A,) - nn/P (4)
'Where

A, = kE_ I cos(2nkn / P) (5)

B, = kzp_{k sin(2nkn / P) (6)

Where Iy is the I coordinate of the kih boundary element. With b, and ¥, defined
using equations (3) and (4) by substituting J, for I, in equations (5) and (6). The
constants ag and by are the average of Iy and Jy, the center of mass of the border.

Using polar coordinate we can write the two parametric equations of the ellipse
(i.e. the reconstruction with one harmonic) as:

11(s) = ag + aj cos(w s - ©)) = ag + r cos() (7)
Ji(s) = bg + by cos(w s - ¥1) = bg + r sinlet) (8
which then gives the equation of the ellipse as: 3

22,2 by 2 sin(0; - ¥;)
i 1M It -
a;2 + by 24(by2-a; 2)cos(200)-2a 1 by cos(; ¥} )sin(2ec)

The angle of the major axis is given by the relation:

2a1b1c05(91-¥’1)
tan28 = (10)
alz-—blz

The angle of the minor axis is simply (8+n/2). These two angles can then be
substituted for ¢ in equation (9) to determine the length of the major and minor axes
and thus the length-to-width ratio.

Generally the computation of Fourier coefficients is considered to be an
expensive operation. But in the application here it is not much more expensive than
the computation of the border itself, especially when only the first harmonic is
computed. In the house images the mean time for each boundary computation is about
0.3 million operations and the mean for the Fourier coefficient computation (including
another boundary computation) is about 2.8 million operations for the first nine
harmonics. For fewer than nine harmonics the times are much closer. In another
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image where only the first two harmonics were computed the mean for the boundary
computation alone is 052 million operations and 1.32 million for the Fourier
computations (including the 0.52 million for another boundary computation to determine
the border coordinates). Since we use only the first harmonic (ie. two terms: the
zeroth and first), the coefficient computation time would be significantly less if the
program were designed as a special purpose program to compute these coefficients
rather than as a general program to compute any number of coefficients. A more
complete timing analysis and discussion is given in the final section of this chapter.

5.1.3 Location

The location of a region includes both the absolute position in the scene, and
the position relative to other regions. Position relative to other regions includes
features such as above, below, neighboring, to left, to right, etc.

5.1.3.1 Absolute Position

The absolute position features are defined (for our purposes) as the location of
the center of mass of the region. The location of the extremes of the mask, or any
other consistent location in the mask would also be reasonable. The center of mass
for 1 and J coordinates are used as two separate features. The center of mass is
computed as the mean 1 (and J) coordinate location. The time required for this
computation is little more than the time required to compute the size and also gives
the size as a necessary by-product, that is about 0.45 million operations for each
region in the house-2 image, »nd size alone would be about 0.19 million operations.

5.1.3.2 Neighbors

Two regions are adjacent if their borders touch (or come close to touching) at
some point. The following procedure describes a method to calculate all the neighbor
relations for a list of regions:

For all of the regions in the list do the following:
Follow the boundary of the region: (see Appendix 4 for a
description of a boundary following program).-

a. Store the outline of the region in a temporary buffer using
a unique identifier for the region (e.g. a sequence number).

b. Check the neighborhood of this point (in the temporary
buffer) to see if this region is adjacent to any other region
which has already been outlined, and, if true, store the
adjacency relation.

The neighborhood size is used to determine how close two regions must come to be
considered to be adjacent (e.g. a neighborhood of one point on either side of the
boundary means that the regions "touch”, two points means that there may be at most
one pixel between the regions, etc.).

Since we usually calculate the neighbors with the plan results, the times are
not excessive: less than 2.3 million operations for each of the house images. A third of
that time is for reading the mask buffers from secondary storage. Because of the
increased overhead when image buffers will not fit into core memory, this calculation
would be very expensive if it was performed on the full size segmentation.
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5.1.3.3 Relative Position
% Another useful location feature is the position of one region relative to ;
another. Region 1 is above Region 2 if the top of Rl is above the top of R2, the

bottom of Rl is above the center of mass of R2, and the regions overlap horizontally.
This is expressed as:

(Top(R1) < Top(R2))
A (Bottom(R1) < Center-of-Mass-1(R2))
' A (Left(R1) MAX (Left(R2))  (Right(R1) MIN Right(R2))).

Below, To-right, and To-left are defined in the equivalent manner. This operation
turned out to be one of the more expensive feature computations. Very little of the
time doing image calculations; most was in the checking of the four relations between
pairs of regions (about 68.53 million operations for the house images, i.e. twice the
time for a plan generation).

5.1.4 Color and Texture

The color and texture feature includes all spectral information and
transformations of it, such as saturation, intensity, red intensity, which color, what
textural pattern. These features are the parameters which are used in the
segmentation process.

5.1.4.1 Color |

In some of the preceding segmentation examples there were nine spectral

; features: Red, Blue, Green, Density, Hue, Saturation, Y, 1, and Q. The first three are the

| output of the scanner and are used to generate the last six. Density, Hue, and

‘ Saturation are psychologically inspired features and are based on the color triangle

(which is a color solid when Density is included) (from Tenenbaum et al, 1974). Y, ],

and Q are U. S. color television standards (from Hunt, 1967). The I and Q which we use

have been scaled so that the values are positive (Kender, 1976). The formulae for
' computing these are:

: Y | .299 .587 .1141 Red O
El 1= |1.0 -.468 -.5481 Blue + M
v Q | .403 -1.8  .597| Green 8

Where M is the maximum value in the image.

Density=(Red + Blue + Green) / 3 + 05
b . (A rounded average is used for the digital representation.)

Hue Computation depends on the sextant of the circle.
Given: Angle=ARCTAN(SQRT(3) # (max - mid)/(max - min + mid - min))
Hue=<for max=r, mid=g, min=b> 60+angle

<max=g, mid=r, min=b> 60+angle

<max=g, mid=b, min=r> 180-angle

<max=b, mid=g, min=r> 180+angle

<max=b, mid=r, min=g> 300-angle

<max=r, mid=b, min=g> 300+angle
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Saturation=maxsat * (1 - (3 * min) / (Red + Green + Blue)) + 0.5
Where maxsat is the maximum saturation value, min is the minimum color value (Red
MIN Green MIN Blue), max is the maximum color value (Red MAX Green MAX Blue), and
mid is the the middle color value.

These are not the only spectral features that we used. The LANDSAT pictures
have four bands ranging from green to infra-red. Other images contained only one
band, the density.

The color features for a region are the average (and standard deviation) of
each the spectral features over the entire region. For a nonlinear feature such as hue
it is possible only to compute the average hue as the hue of the average red, blue, and
green.

The figures given in Appendix 3 indicate that these six color transforms
should require about 51 operations per pixel. The actual color transform for the
reduced images (91 pixels by 93 pixels) required 4.431 million operations, or about
524 operations per pixel. This discrepancy can be partially explained by the fact that
each basic operation as counted in Appendix 3 is not necessarily one operation on
the current implementation (a high level language on a PDP-10). Also, there is
substantial initialization of certain tables to make the transform calculations faster
which has a greater impact on the times for these small images than on the times on
much larger images.

The extraction of the color feature averages is done on the full size images.
The transform colors (density, Y, I, and Q) could be generated from the average red,
green, and blue, but are not. Hue and saturation must be computed from the average
of the three colors. In the house-2 image, the average number of operations for each
color average is 0.489 million (i.e. about the same as the center of mass).

5.1.4.2 Texture

Texture poses a different problem since it is harder to quantify. For computer
analysis, texture can be viewed as a statistical or structural property, but for humans
textural descriptions are usually structural (e.g. "checker board pattern", "herring bone
pattern”, “random pattern", "lined", etc.). Such structural descriptions are harder to
derive and would primarily contribute to the description of regions. Statistical
descriplions offer the best features for incorporation into our general segmentation
procedure. There are many different textural descriptions which could be computed,
but a few simple measures are sufficient for our purposes, the segmentation
applications and some region description applications. These measures are intended to
locate regions which are untextured (i.e. homogeneous), or regions of high contrast.
When used as symbolic descriptors of a region, these features are used in the same
manner as the other "color" features. Rosenfeld(1969) has discussed several texture
measures including the use of micro-edges. Haralick et al(1971) describes several
measures which are used to generate a single textural description for a large area of

the image.

A common use of the textural measure in segmentation is the location of
regions which contain little textural information (i.e. smooth, homogeneous regions). A
homogeneous region is one where there are few points which would be selected as an
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edge point by some edge operator. Since we are interested in an indication of the
possibility of an edge at a point (i.e a micro-edge) rather than of collecting edges into
lines and objects, we do not need an accurate edge locator or follower.

A micro-edge should be indicated at a point where the image values are
changing (in its neighborhood), but should not be indicated in constant areas or in
areas with a constant intensity gradient. The following describes one (of many)
possible methods to generate micro-edges. If we look at one row (or column, or
diagonal) of the image, we can say that an edge occurs at each point where the
derivative of the intensity (with respect to position in the row) changes sign. Since
the actual derivative of the image values is not trivial to compute, we can approximate
it at each point by the difference between the point value and the one before it.

Difference oty S
P S s T
PN e
b

Position on the Line

Figure 1 Micro-edge Computation Using Zero Crossings

In Figure | edges would be marked at the three points where the difference
value crosses the zero line. In general, if all transitions are included there are zero
crossings at far too many points: a homogeneous region does not have exactly
constant values. Therefore a "noise level" must be used to limit the indicated edges
{indicated by the extra horizontal lines in the figure). The "noise level” means that,
instead of zero crossings, we are looking for crossings of a band between +noise and
-noise. An edge is indicated where the difference goes from above the noise level to
below the negative of the noise level (or the reverse). (Thus the initial definition
corresponds to a noise level of zero.) With the noise level indicated in the figure there
would be only one edge, just to the right of center. The operator is applied in both
the horizontal and vertical direction (at the same time) producing a binary image where
a point is "1" if a micro-edge is indicated at that point, and "0" if no micro-edge is
indicated. Figure 2 shows several edge images of the Urban-1 image with different
noise levels. The points where edges are indicated appear black in the figures. This
does not necessarily mark all the true edges in the image (no matter the noise level),
but the true edges are not the intended result. A less constrained definition of the
operator would be to mark a micro-edge when at least one of the extremes is outside
the noise range, rather than both. This texture operator takes about 481.6 million
operation for the Urban-1 image, or about 118 operations per pixel. It is also possible
to generate one complete micro-edge file (for all noise levels) and extract each noise
level with a threshold operation, which is how the sequence of noise level figure was
generated.

Other textural measures, which also can be used for the generation of the
planning image, include the maximum value in the window and the total difference of
values in the window (or the excursion of values). The maximum value would indicate
areas where bright points occur {possibly a single bright point which would be lost in
the mean computation). The minimum value in the window is a similiar operation; it
shows up dark points. The excursion image shows the areas of the image where there
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are large (or small) changes in the reduction window: high contrast areas or low
contrast areas. The maximum and minimum values are a necessary by-product of the
computation of the excursion value. These two were used with limited success for the
SLR images where textural separations were desired. These operations take about the
same number of operations as the reduction procedures (783 million for images the
size of the house and cityscape scenes).

Another textural measure is the variance in the reduction window. This value
is generated along with the mean by the reduction program. We used this feature in
the matching in the color images, but not for segmentation.

5.2 The use of Features

We selected a large group of features to describe an image so that its
description could be compared with other images of the same scene. This is covered
in detail in the next chapter (Chapter 6). In addition, these are the same classes of
features that would be needed in a system designed to analyze and recognize features
in a single image.

5.3 Results
Feature Millions of Number of Mean Number of
Computation Operations Times Used Operations
Neighbors 2.37
Read files 0.74 22 0.034
Follow outline 1.62 22 0.074
Relative Positions 68.53 496 0.138
Compute Center Mass 1137 25 0.455
Extract Center Mass 6.02 674 0.009
Color (9) Average 140.98 288 0.489
Count (size) 452 24 0.188
Border length 7.23 24 0.301
Shape Transforms (9) 67.73 24 2.822
" Orientation 1.39 50 0.028
Length to Width 0.08 50 0.002
Variance 0.97 25 0.039
Save Data 5.47
Read Data 8.19

Figure 3 Feature Extraction Times House 2

Figures 3, 4, and 5 show the feature extraction times for the second
house image, the first cityscape image, and the second Urban pier regions. None of
the individual operations is expensive when taken alone, but when the feature
computation is applied to many regions, some can be expensive. The relative position
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Feature Millions of Number of Mean Number of 1
Computation Operations  Times Used Operations !
Neighbors 3.44
Read files 1.34 31 0.044
Follow outline 2.06 31 0.067 ,
Relative Positions 119.85 946 0.127 1
Compute Center Mass 11,95 30 0.398 :
Extract Center Mass 8.74 1087 0.008
Color (9) Average 21553 348 0.619 i
Count (size) 7.29 29 0.251 ;
Border length 11.28 29 0.389
Shape Transforms (9) 93.92 29 3.239
Orientation 1.78 60 0.030
Length to Width 0.09 60 0.001
Variance 433 30 0.144
Save Data 6.71
Read Data 21.89

Figure 4 Feature Extraction Times Cityscape 1

Feature Millions of Number of Mean Number of
Computation Operations Times Used Operations
Neighbors 6.98

Read files 151 28 0.054

Follow outline 5.47 28 0.195
Relative Positions 77.63 496 0.157

Extract Center Mass 0.16 756 ———-
Color (2) Average 53.28 52 1.025
Count (size) 9.67 26 0.372
Border length 11.01 26 0.423
Shape Transforms (2) 34.57 26 1.330
Orientation 0.05 54 0.001
Length to Width 0.08 54 0.001
Save Data 3.65
Read Data 5.15

Figure 5 Feature Extraction Times Urban Pier 2 Subsection

calculation (above, below, etc.) compares each region in the image with all other
regions (except the regions already compared since the relation is reflexive) so that a
relatively cheap computation, the checking for relative position relations between two
regions, becomes expensive because of the many calls. Each individual relative
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position operation takes a lot of time to retrieve much of the information from the
LEAP data base every time, and LEAP is not the most efficient storage mechanism.

The operations such as size, center of mass, and color averages all require
about the same number of operations. For these features, the expense is in looking at
the picture points (or mask points) rather than the feature computations. Some of the
features are generated from the results of other operators (such as P2/Area,
fractional fill, and orientation), and, therefore, are very cheap (the time is in the
procedure overhead and several LEAP operations to extract the feature values).

In terms of the total time required, the expensive operations are the reduction, )
color, and texture computations. Most of the initial operations (color etc.) and the
feature operations could be performed on much simpler (i.e. cheaper) special purpose
(or even general purpose) processors since the limiting factor on the feature
computation speed is the time required to read through the the image rather than the
computation at each point. An exception to this is the relative position computation,
which could be improved by storing the position information more efficiently for this
program, instead of using the general LEAP storage facility. These feature extraction
times represent very unoptimized implementations, and do not reflect the best
attainable times. Since each single application of the feature extraction operators took
so little time (as shown in the column giving the mean number of operations per
application), little effort was applied to making these operations more efficient.
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6 Matching and Change Detection

Change detection has many uses. Among them are the following: Analysis of
changes in objects in a scene or in the scene itself. Analysis of stereo images for
precise location and altitudes. Precise registration of images taken at different times
or from different sensors. Analysis of medical data to detect health changes. But
before change detection and analysis is possible, it is necessary to match images or
parts of images. This chapter explores the use of features (see Chapter 5) in matching
regions of images, and the analysis of changes in the images. We explore some of the
problems with current systiems for change detection, and propose the use of symbolic
analysis to avoid these problems.

In this chapter we will present the symbolic registration and change analysis
methods. We will begin with a simple example of symbolic matching. This example will
be used to illustrate the basic technique, and to point out some trouble spots for
correlation-base registration systems. We will then discuss some of the aspects of
changes in certain features, and illustrate the extraction and use of these features in
our work. The last section will present the results of the symbolic registration
processing for the six scenes and a discussion of the time required for this final
matching operation.

6.1 Matching of Regions

The above change detection problems all require a preliminary step of locating
correspondences between the parts of the image. Earlier systems used correlation
measures (or similar match measures) to find matches for many pairs of points, and
then warped the entire picture to minimize the differences in these matching pairs.
This matching process will fail when the area being matched is obscured in one image,
or when the selected point is in the middle of a homogeneous region, where it will
match almost any point in the corresponding region as strongiy as any other. Also,
warping the image will not work when objects are in different relative positions in the
two images. '

Our method is to find corresponding pairs of regions in the two images (called
symbolic registration) using the features discussed in Chapter 5. The selection of
which features should be used in the matching process, and the determination of which
of these features are most important for the task being considered is controlled by the
semantic knowledge. The guiding knowledge includes what the task is and which
features may or may not change.

6.1.1 Maiching Example

We will first present two simple examples of the operation of symbolic
matching. These examples will be used to show some of the problems encountered by
correlation-type registration systems. The examples will also illustrate the basic
techniques used in symbolic registration to avoid these same problems. Consider the
two simple “images" shown in Figure 1, which have the (nonobvious) features
given in Figure 2. If we assume thal the task is to find the region which best
matches regionl in imagel, it is clear that region6 in image2 matches regionl using
every available feature (location, size, length to width ratio, neighbors, color, etc.). No
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other region matches with all these features (region4 differs in color, and region5
differs in length to width ratio and size). Therefore, any method of combining feature
matches to generate a region-to-region comparison should indicate that regionl and
region6 are corresponding regions. The same holds true for matching region2: the
best match is regiond, but for region3 the best match of regionS differs in the
absolute position feature. This difference is less than the differences between region3
and region4, or regino3 and regionb, so the best match for region3 should be region5.

112 3 6| 4
5
Image 1 Image 2
Figure 1 Simple Match Example Regions
color of 1is red color of 4is blue
color of 2is blue color of 5is blue
color of 3is blue color of 6is red
L/Wof lis 4 L/Woft 4is 4
L/Wof 2is 4 L/Wof b5is 1
L/Wof 3is 1 L/Wof 6is 4
Image 1 Image 2

Figure 2 Simple Match Example Properties

In this first simple example a correlation-type matching program should
perform well on the left side of the image where regionl and region2 match region6
and regiond4 with no relative position changes, but the position difference between
region3 and region5 could cause problems in determining any global warping
transformations. Correlation-based registration schemes should generate an area
where an object is missing at the location of region3 and an area where a new object
appeared at the location of region5 rather than just indicating that region3 moved
(which should be the result for symbolic registration). This means that correlation
registration works well under some conditions (few changes in the relative positions of
objects) and less well under others (changes in the position of objects when compared
to other objects). But, symbolic registration programs should work under both of
these conditions.

Consider the two images in Figure 3 (these two images are rotated ninety
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degrees with respect to each other). These two images will present more difficult
problems for correlation matching and searching procedures. Unless an initial
approximation of the relative rotations is known, the search for matching points will be
complicatled. For example, the system described by Lillestrand(1972) and Allen et
al.(1973) assumes that the orientation of the two images to be compared is
approximately the same. Their procedures scan across the two images computing the
warping functions for each subsection of the image as the matching points are found.
With extreme rotations, the matching subsection would not be appear in the search
area unless an initial approximate rotation were known and used for an image
correction. The symbolic matching procedure would proceed the same way as before
to locate the best match. To find the best match for region2, compare its features
with the features of the regions in the second image. Region2 and region4 differ in
location and orientation features; region2 and region5 differ in location, length to width
ratio, and size (orientation is not relevant for square regions); region2 and region6
differ in location, orientation, and color; so region4 is the best match for region2.

6
112 3
4
5
Image 1 Image 2

Figure 3 Second Match Example Regions

This last example shows that some features can be more useful thaother
features, if the knowledge given for the task specifies which features will probably
change and which are more reliable. If, in these examples, it is given that there may
be an orientation change or a position change, then these two features (and any
related features) would not be used in the matching process (or they would receive
much less weight in combining their results with other features). In this case, region2
and regiond4 would match using all the important features; likewise regionl with
region6, and region3 with region5.

6.1.2 Region Maiching

In a set of real images, the question is usually not whether the regions match
exactly, using a given feature, but how close the regions match. When applied to the
initial matching problem (finding the corresponding regions), the question is: how well
do the two regions match compared to how well the first region matches other regions
in the second image using all features - both those that should not change and, to a
lesser extent, those thal can. Once two regions are known to be corresponding
regions, they can be compared again, with the same procedure, to determine which
features have changed between the two images, and how much the features have
changed. We would like a general purpose program which could be used for both of
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these operations: finding the best match, and performing a region-to-region
comparison to find changes. This procedure would produce both an indication of how
well the regions matched with all the features, and an indication of how well each
feature matched. The procedure also must be able to treat features in several
different ways: that is, some as very important and constant features, some are
probably constant, and some are probably changing. Also, since the important question
is how well one region matches another region, we do not want a procedure which
generates a complete image-to-image match for all available regions.

When looking for the quality of match between two regions (as when searching
for the best match), the rating for the region to region match should be a function of
all the feature to feature matches for the two regions. A first order feature to feature
match rating is simply the difference in the feature values. But when these ratings are
combined, it is necessary to weight the differences due to different features so that
each feature has approximately the same contribution to the matching procedure. The
feature weights are selected to minimize the effect of near misses since few feature
values can be expected to be exactly the same in different images. Some of the
weighting values depend on the feature value of the first region, such as the size and
average color values. Figure 4 gives the current feature weights. Generally, the
teature weight is the inverse of the acceptable difference between the feature values
in the two images for the two regions to be considered to match reasonably well.
These were arrived at through some experimentation. First a weight was chosen, then
several matching operations were performed using this weight. If the matches were
good, then the weight was not changed. But if this feature caused many incorrect
matches (such as mismatches caused by minor changes in the feature value
downgrading the match rating), then the feature weight was reduced so that it would
have less effect. Rarely did we make the feature weights more strict.

Feature Type Inverse of Comments
Weighting Value

Size Size_of_first«0.2 minimum 100 for plan, 10000 for full size
Colors 2%0 slor from the color in the first image

Location 12 for plan, 100 for full size image

Neighbors 1

Relative Positions 1

P2/Area Value of the first+0.5

Variance Tfeature feature value from the first image
Oricntation ; value in radians from -n/2 to +n/2
Length to Width 0.5 value from O to 1

Fractional Fill Valuex0.3 feature value from first image, O to 1

Figure 4 Feature Weighting Values

This gives a feature to feature match rating of:
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where V1, is the value of the ith feature for the region in the first image, V2; is the
feature value in the second image, and W, is the feature weight. This rating function
means that an exact malch has a rating of zero, and that the rating decreases as the
difference between the values of the features increases. As has been mentioned
before, depending on the scene, some features should be weighted more strongly than
others 'when being used for finding corresponding regions. This can be incorporated in
the above rating function by adding another term - the strength term:

V1 - V2 s W, % §;

Where S; is the strength of the ith feature. Then the overall rating for the region-to-
region match is the sum of ail the feature to feature matches. Currently we have
three different strength factors for the features, but usually use only two. The
different strength functions were chosen so that a poor match using an important
feature would out weigh several poor matches on the other, less important, features.
Values of 200, 100, and 10 were chosen, but only the lower two are generally used.
These matching methods can be used for features with numeric values (such as size,
absolute location, orientation, etc.).

But other properties have nonnumeric values. For example, the neighbor_of
feature is a relation between regions in the same image. The use of this feature in
matching must be somewbat different than the use of the numeric features. It is
defined as follows: If Region_l in the first image has a neighbor Region_X, and
Region_X is known to be the corresponding region for Region_Y in the second image,
and Region_Y is a neighbor of Region_2, then Region_l and Region_2 match with the
neighbor_of feature. An alternative way to express this is in SAIL:

foreach Y such thai region_in_next ® (neighbor @ region_1) = bind Y do
if neighbor @ Y = region_2 then it_is_a_match

else no_match_yet;

In this program segment, the regions match if the procedure it_is_a_match is executed
(at least once) and fail to match if only no_match_yet is executed. But if neither
routine is called, then no judgment can be made, since none of the neighbors of
region_1 have yet been matched. The other relations between regions such as above,
below, to_left, and to_right are treated in the same way. If the two regions match
with these features, then the rating will be zero. If they fail to match, then the rating
will be minus the strength value. And, if no judgment is possible it will be minus half
the weighting value. (In this last case, it does not matter since no judgment will be
made for any pairs checked in the search for a corresponding region.)

6.1.3 Symbolic Registration

The above region matching procedure can be used to determine the quality of
a match between region, or the quality of a match between each feature. This
procedure is used in the symbolic registration procedure to find the best matching
region from a set of potential matching regions.

The symbolic registration procedure is given the following: a region to find the
corresponding region, a list of regions (i.e. the second image), several (three) lists of
features with each list indicating which features are to be used with different weights,
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and the current "best" rating. The program matches the given region with each
region in the list using all of the features in the several feature lists. The program
stores the best matching region that is encountered, and this region is considered the
corresponding region. We also keep track of the second best match which is found, so
that we can compare it with the best match to see what features were used to
distinguish the best match from the second best. The current best match rating
parameter is used to terminate the feature comparison in a region to region match if
the match rating falls below this value, since this particular region to region match will
never be the best. Since we are locating the second best match, this value should be
the current second best match value.

This registration process is mostly automatic. The selection of which features
will be given which strengths is based on the expected changes in the images. The
user may either select a region and ask the system to produce the best match, or may
allow the system to find the best match for each of the regions either in order of
segmentation or in order of size. The normal use of the registration procedure is to
use it to lacate the corresponding region for a specific user selected region.

The results of using this procedure are given in the last section of this chapter.
Appendix 6 gives detailed results for applying this matching procedure on many of
the matching regions. Some contain errors. Most are correct matches. These listings
give the contributions of each feature to each match, and the mean and standard
deviation of the contributions of each feature for all the best matches in that pair of
images. This same summary for the second best maiches is also included.

6.2 Change Detection

The uses of change detection mentioned in the introduction all require the
analysis of changes in some feature value. For example, the detection of changes in
medical data usually requires locating objects in one image which were not in the other
image. Registration of different images requires the computation of accurate
differences in the iocation of objects in the two images. The analysis of stereo images
is similar: finding the location difference for corresponding regions. The analysis of
two images in order to find changes in objects in the scene is best done by matching
the regions and finding which features changed between the two images. .

6.2.1 Kinds of Changes

Since we are concerned with changes in features, we will next study what
kinds of changes are possible in the several features.

6.2.1.1 Size

Changes in size occur because of distortions introduced by changes in the
camera positions, or by changes in the relative positions of two regions causing one to
obscure the other (caused by object or camera movement), or by actual growth (or
shrinkage) in the object, or, possibly, by differences in the segmentation of the two

images.

The size is greatly altered by changes in the distance of the observer from the




e ———
R £ P8

A @
S 7
:

A Y 4

Matching and Change Detection 121

scene (or object), but if the camera positions are not extremely different, most of the
larger (smaller) regions in one image will match the larger (smaller) regions in the
other image. The effects of a different observer distance can be minimized by
adjusting the computed values of the sizes of regions in one image to account for this
distance change. This adjustment process is valid only for sets of images where it is
given that there is no perspective difference between the two images. When the size
adjustment factor is not known, then the size changes from a computed match can be
used as an approximation of this factor,

In the urban scene the regions in the first image are larger than the
corresponding regions in the second image. When two regions are matched without
using size as an important teature, then the difference in size of these two regions are
used to adjust the values of the size feature of the regions in the second image for
the future matches. Size can then be used as one of the important features. In the
urban scene we matched the regions marked "M" (Figure 4.60 and 4.61) without using
size as an important feature. The size of region "M" in the first image is 1.484 times
the size of region "M" in the second image. This size adjustment factor is used for all
future matches between the urban-1 and urban-2 images.

Another size change example is the pair of LANDSAT images, one task is to
determine the change in the size of the snow areas. The change due to satellite
positions (altitudes) is minimal and the major change is due to the melting. The large
middle snow region in the LANDSAT-1 image ("G" in Figure 451) is matched with the
corresponding snow region in the LANDSAT-2 image ("G" in Figure 452) even though
the sizes differ greatly (both are the largest region in their respective images). The
region in the first image (taken in late May) has 627045 points, and in the second
image (taken in early June) it has 354184 points.

The cityscape images are atfected by size changes due to different amounts of
occlusion of objects, with few size changes due to changes in the objects (the pictures
were taken within minutes of each other).

6.2.1.2 Shape

~ Shape changes are caused by the same factors that cause changes in size, e.g.
camera and object movement, growth, and segmentation differences. In some sets of
images the camera positions are known to be approximately the same, and therefore
changes in shape will be due to changes in the objects. Shape can then be used as a
feature in matching. In the two LANDSAT images (the segmentation given in
Figure 451 and 4.52), the shape (as given by P2/Area, fractional fill, and length to
width ratio) of the snow regions changes due to melting, but the shape of other
regions (such as the lakes) remains about the same. For the largest snow region
another shape feature, the orientation, does not change significantly.

The rural scene (Figure 455,456, and 457) has orientation changes. The
orientation change also means that the regions which are on the edge of the image will
be altered in size and shape. It would be possible to use the computed orientation
changes to adjust orientation, location, etc in the future matches, but this was not used
beyond the adjustment of the orientation.
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6.2.1.3 Location

Location changes are caused by the same factors as size changes. But there
are additional factors involved in location changes. In oblique views (such as the
house and cityscape scene), objects in the scene have different relative positions as
the observer position changes. These relative positions changes are due to the
different distance from the object to the observer (i.e. a parallax shift). These changes
are used to calculate depths from stereo views. Location changes are also caused by
actual movement of objects in the scene. )

If the location differences are uniform throughout the image (e.g. in the SLR
scene; the urban after sceale differences are removed; the LANDSAT scene
approximately) then the location difference computed for one pair of matching regions
(or several pairs) can be used in future region matches in the same way as size
differences are used. (Note however that these differences are additive, and size
differences are multiplicative.)

In the SLR scene (Figure 453 and 4.54) the location difference from good
matches of homogeneous regions (those labeled “C") can be used to adjust the
locations of future malches. This allows absolule location to be used in the later
matches which means that the regions labeled "A" and "B" can be indicated as matching
regions.

6.2.1.4 Color and Texture

Color and texture changes can be caused by actual changes in the scene (such
as changes in crops), or by lighting differences (a different time of day means that the
sun angle will be different and thus shadows will be different), or by sensor or film
effects (quality control). Also, no matter how much control is exercised the two views
of the same scene will always have minor differences in spectral values. Correlation
based change detection systems produce an indication of changes in the spectral
values (i.e. color), but these systems require further analysis to deduce that these
changes are changes in a region of the image rather than many "random" points. The
house and cityscape images had some small differences in the color properties of the
various regions. But these differences were not significant enough to affect the
matching procedure.

6.2.1.5 Quantity

Changes in quantity are a slightly different problem, since the number of
occurrences of an object (or type of object) must be determined before changes in the
number are computed. This is the basic task required for the urban scene: find the
changes in the number of "ships" between the two images.

As an approximation, we selected a few sample regions in the two images to
serve as "ships”, "water"”, and "piers" in an ad hoc image to use for matching. The two
"real" images were the matched with this ad hoc image to locate regions which would
match to "ships"”. The regions labeled "S" in the two segmented images (Figures 5 and
6) were matched to the "ship" regions ("S2" means matched to the "two adjacent ship"
region). By counting the number of regions matched to "ships" it is possible to
determine the change in the number of “ships" in the scene (9 in the first and 21 in
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the second). Note that the matching procedure matches some partial "ships” as "ships"

since other likely matches are too different.
6.3 Results

This section will present the symbalic registration results for the six scenes
and a discussion of what features were used in the matching. We will also discuss
errors in the matching and the contribution of various features to the matching. The
symbolic registration is performed by finding the best match for a region in the first
image among all the regioss in the second image. This match may receive a very low
rating, but the best one is accepted. Therefore regions which have no corresponding
region may be matched to some unsuspecting region. Each scene will be presented by
outline drawings showing the corresponding regions found in the two regions. The
matching pair will be labeled with the same letter or symbol in the two images.
Generally, the times for the matching operation is significantly less than the time for
any of the previous processing, and is dependent on the number of features and the
number of regions that must be checked for a match.

Figures 7 and 8 show the matching results for the house scene. The first
figure gives the matches from the first house image to the second and the second
figure gives the matches from the second image to the first. In this scene the matches
in both directions produce the same results; this is not always true, but it is an
indicator of a good match. All the "obvious" regions are correctly matched.
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