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1. INTRCDUCTION

The problem of determining the state of stability of a slender,
flexible missile, modeled mathematically as a free-free elastic beam
subjected to a thrust, has been the subject of several recent inves-
tigations [1] - [9]. It is of particular interest that Wu [9] has
determined that, in the absence of a feedback directional control,
the mechanism of instability of the missile system described in
references [2], (4], and [8] is not flutter but rather divergence.
This discrepancy appears to result from the form of approximate
solution assumed in those investigations. For example, to solve

approximately the fundamental non-self-adjoint boundary value problem

y'V+alxy')' - w?ly =0, 0<«x<I, (1)
¥ ay™ = G at % #0.0, (2)

where y' = dy/dx, etc., and Q and » denote the dimensionless thrust
and frequency parameters, respectively, Beal [2] employed the
Galerkin procedure. He assumed a solution that included the rigid
body motions of translation and rotation, and, as a result, always
obtained two zero frequencies. However, it is very easy to verify
that equations (1) and (2) admit a rigid body mode of rotation when-
ever (>0, i.e., there exists only a single zero frequency. Subsequently,
Wu [9] reported that the loss of stability of the nature of a
structural mode that degenerates to the rigid body mode of rotation
vhen Q » 0 rather than by the onset of flutter which ensues upon the
coalescence of two non-null natural frequencies at a positive critical

value of the thrust parameter Q.
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The objective of the present. investigation is to examine a
related missile problem from a somewhat simpler viewpoint, so as to
expose rather clearly through elementary mathematical relationships
the qualitative stability characteristics of a flexible missile. The
system will be modeled mathematically as a system comprising three
rigid, weightless bars joined by elastic springs, carrying a con-
centrated mass at the center of each bar, and subjected to a cir-
culatory thrust, whose direction may be adjusted through a variation
in the value of a so-called tangency coefficient.

2. THE EQUATIONS OF MOTION

Consider the system depicted in Figure 1 that consists of three
rigid, weightless bars of equal length & with elastically hinged
joints that exert the following linear restoring moments: c(¢] - ¢2)
and c(¢3 - ¢2), where the ¢j's, j=1,2,3, are the (assumed small)
angles formed between the horizontal and each of the respective bars
and ¢ denotes a constant stiffness parameter. The neutral equilibrium
configuration corresponds to ¢j = 0. The concentrated masses mj are
affixed at the center of each bar, and x and y are the coordinates
of the position of the central mass m, relative to the fixed xy -
coordinate frame. A thrust of constant magnitude To with its line of
action specified by the tangency coefficient a, whose vector form f
is E = T0 (cos ¢]i + sin a¢]i), where i and j are unit vectors parallel
to the fixed x - and y - axes, respectively, is applied at the left
free end of the system. It is assumed that the system can translate

in the vertical y - as well as the horizontal x - directions.
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In the usual manner, one can derive the following expressions for
the kinetic energy T, the potential energy V, and the generalized

forces Qx, o s 03:

1

= I | &2 2,2
T =2 (m +my +mg)x® + 5 (my +m, + ma)y® + gmatey *

N | —

1 $ 2 ;O U e IR
+ - (m] + m3)£ 05 + - m32 ¢3 5 M AX sin ¢]¢1

+<% (m] -‘m3)£i sin ¢2¢2— %—m32x sin ¢3$3 -

--% m]z} cos ¢]$] - %—(m] - m3) 2y cos ¢2$2 +

+ %—m32} cos ¢3$3 + %-mlzz cos (¢2 - ¢])$]$2

+ %—m322 cos (¢2 - ¢3)$2$3 s (3)
V= %—c (63 - 2610, + 205 + 63 - 20,03) (4)

Qx = TO cos abys Qy = T0 sin a¢1,

Q = T,e sin (1 - a)éy » Q, = %—Toz sin (¢p - adq), Qy = 0.(5)

In view of the forms of equations (3) - (5), the Lagrange equations

may be written as

30y Q, (6)

4 3y .
dt(;})~x,dt(

oT 3V i
L.=2Q,, J=1,2,3
(B(j) ) 8‘1’3 8¢J J

e
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Therefore, substituting equations (3) - (5) into equations (6), one
finds that the linearized equations of motion for the given system are
(m-l + mz + m3)5€ = To (7)

1 my28; - %~(m - m3)2¢2 ] M3y = ol 4y » (8)

(m] e, + m3)y ca

1 1 1 e =
A my & é] m12x¢] ]2y 7 mL ¢2 +C (¢] = ¢2) = Tol(l - a)¢],
; 5 ) !
% (m] + m3)£2¢2 + %‘ (m] - m3)JLXd>2 - ;— (m] - M)y + g mlﬂzé] +
] e ] (9)
* g MR8y - ey + 2co, - cog = - T (¢, - ady) ,
1 1 1 s &

where the familiar small angle approximations have been made and higher
order terms have been neglected.
Solving equations (7) and (8) for X and ¥, one finds
Vo= uTo (10)

and

- y X
Yy - u[’; m]w] + ';' (m = m3)2(£2 m3m$3 \tTO ¢]] ] (]])

where y = 1/(m tm, + m3) Insertion of equations (10) and (11) into

equation (9) yields the following set of three equations of motion:
1 2 1
Z-um](m2 + m3)£ é] + [c - 5 uTél(l - m)(m] + 2m2 + 2m3)]¢1 +
i 7 20 5 2% o
+ a um](m2 + 2m3)£ éz c¢2 + 4 um]m3£ 63 0,

1

: 1
y umllz(mz + 2m3)é] - {c - 2 11(1(m2 + 2m3)ToR]¢1 +

R e

L 2 L2 2N
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- 1T 2(my + 2m3)1ep + T umge?(2m + mp)gy - coz = 0
1-pm m, %6, + l-pm al 2¢, + l-um (2m, + m,)2%$, - do, + ]
3 PR By B DU, Bep T Wlgualy el iep T By *

] 22 ]_ ==
+ z-pm3(m] + mz)l ¢3 + (c - > um3T02)¢3 0 .

It is convenient to use a dimensionless form of equations (12).

For this purpose, the following definitions may be made:

M = gm m, =m, my = ugM,

t = o1; g2 = m£2/4c(1 + 11] + U3) ’ (]3)

Pen]
i

a/(1 + uy +u3) s g =T /2.

It is now a straightforward process to verify that the system of
equations (12) assumes the form

3

§  [Amngn + (Cmn + QDmn)¢n] = 0, m = 1,2,3 (14)
n=1

where now én = d?¢n/dt?, and

Ayy = igl) ®aghs GRyp = gkl Zughs Mg g

Ayp = (1 + 2u3),  RAyp = up + g +ug, Ryg = ua(1 + 21y),

Ay = BqHg s Agp = g1+ 210), Ay =gl 4 uy)s ‘
0 Bl Cp == Syt W

o et Cop = 25 bgr = = 1 E |
o | Bl G TR Ca3 = 1s |
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D]] = (@ - 1)(2 + by + 2u3), .D]Z =0, 013 =N
02] = afl + 2u3), 0,, = —(1+2u3), D23 =0,
Op 9%y Daa = O Hag = =y e 1
3. THE FREQUENCY EQUATION
If a solution of the form
op(1) = xne"‘“, 02 1,243 (16)

where the Xn's are constants, is substituted into equation (14), then
a system of homogeneous algebraic equations in the Xn‘s is obtained.
This system has a non-trivial solution if and only if the determinant

of the coefficient matrix vanishes. Expansion of this determinant

yields
pw' - pu® *+p, =0, (17)
where
g 8u]u3(1 by, g u3) - u]u30[3 * 4(111 + 2u3) ¥ (u] + 1:3)(11] + 5u3) -
= a1+ + )],
P, = 4(uy + Suqug * ug) - QQ3uy + Mg + 3615y + uj + 13u3 +
+ 34u]u§ + 70u§u3 - a(u] + ]1u3 + u% + 22u]n3 + ]1p§ +
(18)
+ 10u§u3 + ]OU,Ug)] + 2u302 (1 + 3p1 + 4u3 - i]n]p3 +
+ ui + 3u; + 7u]u§ 4 3u§u3 - ol + 2y, + bug +

+ Tuqug + u% + 3u§ + 3U]u§ + 3ujus)l,




By ®. Q1 - o)luq(2 + uy + 6ug + 2uquy + 4u§)02 - (2 4y

+ 1, + duqug + mug)Q + 3+ qu. +5u.].

3 1 3

A priori, one would have expected the frequency equation (17) to
be a bi-cubic polynomial in w?. However, one can easily verify that
the incrtia matrix A = (Amn) is singular which, therefore, accounts
for the fact that the frequency equation is a biquadratic. Consequently,

the system under consideration is a quasi - dynamic system [10], which

is characterized by the existence of an internal constraint. To
determine this constraint, one merely adds the equations for m = 1
and 3 obtained from equation (14) and then subtracts the equation for
m = 2 from the result to obtain

[2 - Quf1 +p.) - Q(1 - a)(2+ et 2\13)195] - [4 - Q(1 + 2113)]¢2 +

3

+ (2 - 113Q)¢)3 =0 . (19)

It is obvious from equation (18) that Py = 0 when Q - 0. Thus,

il

the frequency equation (14) leads to w? = 0, pg/p* » where
0

]

10 | ), p*

* = fu i
py = Buqug(l + uy + g 2

4(u] + 4y + u3) N

13
The value w? = 0 corresponds to a rigid body rotation of the system.
4. STABILITY CONSIDERATIONS
If Q has an arbitrarily small positive value, then p4 # 0 and
- 0 is no longer a root of the frequency equation (17). Thus, one

must conclude that the system can no longer undergo a rigid body

rotation. As the value of Q is increased above Q = 0, an eigencurve

R
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emanating from the origin in the Qw?-plane must enter either the first
or second quadrant, which implies that the system is either stable or
unstable, respectively. Clearly, if one can establish a relationship
between Q and w? that is invalid in a neighborhood of the origin in
the Qu?-plane, then some conclusions regarding the stability of the

system can be drawn.

To accomplish this for small thrusts Q, the frequency parameter

R A T T T W R R

w? is expanded as a power series in the perturbation parameter Q as
follows:

W = Quq * Qay + (@), (20)

where the coefficients aps A are to be.determined. Substituting

PELEE
enruation (20) into the frequency equation (17) and following the

steps of the classical perturbation process, one finds
- Q(1 - a)(3 + uq + 5uy)

(J.)2 = + (Qz) ’ (2])
4(u] tBpug + u3)

provided that 0 ¢ Q << 1. From this equation it is evident that the

sign of w? is determined solely by the magnitude of the tangency

2 < 0 and the system is

coefficient a. Specifically, if a < 1, then w
divergent for an arbitrarily small positive thrust. Hence, the value

of the critical thrust of divergence is Qb =0whena<1l. Ifa>]

(a super-tangential thrust), then w? > 0 and the system is stable for o
] sufficiently small, positive thrusts. i
3 £
1 If the thrust is a tangential force (a = 1), then, provided that R
]
3

Q>0, Py again vanishes, as is evident from equation (18). 1In this
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case, the frequency equation yields

o
w 0, PZ/PO ’ (22)
where
Po = 2upkal8(1 + uy + u3) - Q1 + g + 3ug + 2uqug + a3l ,
P, = Alup + duquz + u3) - 2QLuy (1 + Tug) + ui(1 + 12u9)] +

+ 2uqus(1 + 203)%Q% (23)

A change in the sign of w?, as given in equation (22), will be signalled
by the vanishing of either Py OF Py - Specifically, if Py = 0, then,

according to equation (23) one has
1+ 2p.)%Q2% - 1+7 + u2(1 + 12 +
u]u3( u3) Q [u]( u3) u3(1 u])Qb
t 20 * dugug t uy) =0, (24)

whereas, if P, = 0 the critical thrust for divergence is given by

4(1 + uy + u3)

Qb T fhy ¥ 3p3 + 2u1u3 + ZU; . (25)
It must be noted that Py can vanish whenever
ug(2 + g+ Bug + 2ugug Qu3)Qp - (2 4 ug + Vg + dugug
+10u3)Qy + 3+ uy + Sz =0, (26)

which also provides a critical thrust for divergence. The values of
Qb obtained from equation (26) are completely independent of the

tangency coefficient a.
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The condition for the determination of the critical thrust for
flutter, namely that of coalescence of a pair of roots of the
frequency equation (17), is p; - 4%p4 = 0 which, by virtue of
equation (18), can be expressed as the following quartic polynomial
T Qs

5

] rnQZ'] 0, (27)
n:

where the rn‘s are lengthy polynomials in u],u3, and a which will not
be recorded here.

5. SOME_EIGENCURVES

To identify regions of stability, flutter, and divergence in the
stability maps that will be presented later, it is first efffcacious to
solve the frequency equation (17) and then to examine some typical
eigencurves, such as those shown in Figures 2 to 4. These figures were
prepared for three values of the tangency coefficient: o = 3/10, 4/5,
and 3/2, in the case of Hy = Mg = 1. In agreement with the conclusion
drawn from equation (21), one sees from Figures 2 and 3 that the branch
of the eigencurve emanating from the point (w?,Q) = (0,0) extends
inmediately into the second quadrant. Thus, the system is unstable by
divergence for arbitrarily small, positive values of Q. Indeed, in the
case of o = 3/10, the value of the critical thrust of divergence must
be Qb = 0. In the case of a = 4/5 (Figure 3), one has w? = 0 at Q = 0,
w? <0 for 0 < Q< 0.4127, and w? > 0 for 0.4127 < Q < 0.506. The

bounds in these inequalities are obtained from equation (26).

Consequently, one may conclude that the system diverges whenever the
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Eigencurve for a = 3/10, uy = uz = 1.
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thrust parameter Q is in the interval 0 < Q < 0.4127 and that it is
stable when Q is in the interval 0.4127 < Q < 0.506. At Q = 0.506,
the frequencies of the first and second modes merge, which signals the
onset of instability by flutter. For Q > 1.2, flutter gives way to
divergence.

In Figure 4 plotted for a = 3/2, the branch of the eigencurve
initiating at the origin enters the first quadrant, reaches a
maximum value of w?, and then decreases until it intersects the Toad
axis at Qb = 0.4127.

The dashed horizontal lines appearing in Figures 2 to 4 are
horizontal asymptotes which represent the value of Q at which w?
becomes infinite. This value of Q, hereafter designated as Qa’ is
determined from the condition e) = 0, which, by virtue of equation (18),
leads to
S 8(1 + uy # u3)
3+ 4(uy + 2u3) + (uy + u3)uy + Suz) - a1 +uy + u3)?

Qa

6. STABILITY MAPS

Having in mind the observations made in the preceding section, one
now can identify the regions of stability, divergence, and flutter in

qu-plane’ In Figures 5 to 7, stability maps are shown in the qa-plane

*The thrust parameter q was defined in equation (13). It is more
desirable to consider the qa-plane rather than the Qu-plane since the

quantity Q tends to mask the influence of the mass distribution of the

system on the value of the critical thrust.
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over the range 0 ¢ o < 2 for (a),p] =15 My

= 5, respectively. The regions of stability, flutter,

= 1, {b) My = ug = 1, and

(c) uy =1, uy
and divergence are labelled with the symbols SR, FR, and DR.

It should be noted that. for o < 1, the minimum critical thrust of
divergence is qb = 0, whereas, for o > 1, its value is positive and is
associated with the smallest of the two roots of equation (26). For
anti-tangential (a < 0) and super-tangential (a > 1) thrusts, flutter
does not occur.

From Figures 5 to 7, it is clear that there exists a value of a,
say a,, at which qy = Qe The value of a, may be computed from the
requirement that equation (27) and equation (26), written now in the
form

By g a2 0
where

b] =3 + Uy + 5U3s bz = - (2+ 15 + HU3 2 4U]U3 + 10u§).
b3 = U3(2 iyt 6“3 + 2U1U3 * 4U§):

possess a common root in the thrust parameter. This requirement leads,
according to Sylvester's dialytic method of elimination [11], to the

condition

19




rb s rs r2 ™ 0
0 r5 ' ry rs ™
b3 b2 b] 0 0 0
0 b3 b2 b1 0 0 =0 . L
0 0 h3 b2 b] 0
0 0 0 b3 b2 b] |

Expansion of this determinant produces a polynomial in a from which the
value of a, may be determined numerically for given values of M and
‘13.

Consequently, one may now observe that for a sub-tangential
thrust (« < 1) for which 0 < a < a,, flutter cannot occur and the
minimum critical thrust of divergence is 9 = 0. However, for a
sub-tangential thrust for which a, < a < 1, flutter can occur (e.g.,
see Figure 3). For « in this latter range, the system is first

iver = + +
unstable by divergence for 0 < q < qb], where qb] Qb1 (1 by u3),

with Qb denoting the smallest root of equation (?6), and it becomes

1
stable whenever qb] <q % qe], where qe1 = Qe] i+ M + u3), with

Qe] denoting the smallest real root of equation (27). For qe] < q
<q, . the system is prone to flutter, and for qe2 < q it is divergent
| once again.
The stability maps in Figures 5 to 7 indicate that a stable
f1;ght at relatively low values of the thrust parameter q can be achieved

provided that the direction of the thrust is controlled in such a way

&
5
3
i

that @ > 1. The critical super-tangential thrust is, of course, q, .
1

e 2 U




B e e i

e

D B e S

R RN

T

Suppose next that the value of a is only slightly greater than
unity. If, as the value of q is increased to qb], the value of a is
changed to a value very slightly less than unity, then a stable
motion with thrusts greater than qb] would be possible. In this
second region of stability, the maximum permissible sub-tangential
thrust would be q < qe] < q;] , where the values of qe] and q;] can
be obtained from equations (27) and (24), respectively. For a only
slightly less than unity, qe] =~ q;] . For example, with My = Mg = 1.
one finds S 1.2381 and qg1 = 3. Thus, a significant increase in
the admissible magnitude of the thrust appears possible, provided,
certainly, that the control system can accomplish the necessary reduction
in the value of o in a periad of time that is sufficiently brief so as
to avoid large angular changes relative to the equilibrium configuration
of the system.

Finally, it is of interest to consider the influence of the
distribution of mass of the system on the value of the critical super-
tangential thrust. To do this, one may first presume that the total
mass of the system is assigned some value. Then, in terms of the

dimensionless mass parameters, one may write 1 + or tug = B

where R is assigned a fixed value. Therefore, Hy < B - My s where
0 < ug < B Substitution of My =B - ug into equation (26) and

introduction of Qb = qb/(e + 1) lead to

21




u3[2 + 8+ (5 + 23)113 + zug]qg - (B + 1)[2 %+ g+ 2(5 + 23)u3
2 2 =
+6u3]qb+(8+1) (3+B+4u3)—0. (28)

In Figure 8, the variation of qb1, i.e., the lowest root of
equation (28), versus Mg for 8 = 1,2,...,5 has been plotted. All the
curves show essentially the same behavior, namely, the value of qb
decreases monotonically as Mg increases, with the difference
A = qb(e') - qb(a"), where g' < p" and M3 held fixed, increasing as
the difference g" - B' is increased. Consequently, significantly
greater critical thrusts result when the tail portion of the system

is more massive than the head portion. The lowest critical thrusts

are obtained when the head is more massive than the tail.




Figure 8. Variation of qb with 113 for five values of B.
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