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ABSTRACT

I Autocorrelation Pole-Zero modeling identifies the parameters of

a rational transfer function H(z) whose short time-lag

autocorrelations either exactly match (Autocorrelation Partial

Pt -
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Realization) or closely approximate(Autocorrelation Prediction) those
of a given spectrum. As a result, the spectrum of the H(z) obtained
from either method approximates the gross structure of the given

spectrum. Autocorrelation Partial Realization (APRY uses the

Pade approximation to determine the denominator coefficients of H(z).

To compute the numerator coefficients of H(z), APR uses an
iterative algorithm = such as Fejer’s or Newton-Raphson’s. 3In
contrast, Autocorrelation Prediotionﬁ(AP) uses only Linear
Prediction (LP) to determine both the denominator and numerator
coefficients. Therefore, once the autocorrelation function of the
given spectrum is known, AP wuses only linear operations and
no Fourjer Transformations to determine the parameters of H(z).
Moreover, the resulting rational transfe; function is guaranteed to
be minimum phase and consequently stable. AP can also automatically
determine the least (parsimonious) denominator and numerator orders
required to model efficiently a given spectral envelope.

;uA dynamic filtering process, based on Wiener filtering and
Autocorrelation Prediction, was developed to suppress the background

noise from degraded speech. More important, using AP, a Linear

/Y




Predictive Vocoder was integrated into the so called "Pole-Zero
Vocoder"(PZV). Computer simulations of both, the dynamic filtering

process and the PZV were successfully used in speech processing.




CHAPTER 1

INTRODUCTION

1.1 Problem Presentation

Speétral Pole-Zero modeling has been the focus of many research
efforts in recent years. The success of Linear Prediction [27,29] in
All-Pole modeling of the spectral envelope [21,23] has encouraged the
search for a technique of comparable success in spectral envelope
Pole-Zero modeling. On the other hand, a high order All-Pole model
is required to model the spectral envelope having deep valleys. This
is so because a large number of poles are required to approximate a
small number of zeros represented by these valleys. Therefore, to
model a spectral envelope having deep valleys, the Pole-Zero model
requires fewer parameters than the All-Pole model. This advantage of
the Pole-Zero model over the All-Pole model is appreciated in data
compression.

Different methods of Pole~Zero modeling have been proposed for
matching the envelope or som; smoothed version of a given spectrum.
These methods may be divided into two groups. The first group
encompasses those which estimate the pole and 2zero parameters
simultaneously. In contrast, the methods encompassed in the second
group determine the pole and zero parameters separately. The methods
in the first group commonly face the problem of solving a system of
non-linear equations in terms of the sought-for parameters. Whereas,

those in the second group commonly use variations of Linear
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Prediction to determine the pole and/or zero parameters. Linear
Prediction itself leads to a system of linear equations solvable by
fast recursive algorithms [27,29,Appendix A].

Some recent frequency domain methods of the second group are
mentioned in the following. Cepstral Prediction [6,33,40] and
Homomorphic Prediction [20,21] both use Homomorphic deconvolution
[31] to initially smooth the given spectrum . Then each of them uses
its own approach to model the cepstrally smoothed spectrum with a

Pole-Zero model. Cepstral Prediction 1is successful when the

resulting smoothed spectrum is some rational spectrum. Homomorphic
Prediction was reported successful when applied to the short-time
spectrum of natural speech [20,21]. Makhoul proposed a method [27]
in which a variation of Linear Prediction [10,41] is used to
determine the pole parameters. The zero parameters are then
estimated by Inverse Linear Prediction [27]. This procedure
basically applies Linear Prediction to reciprocal of the smoothed
ratio of the given spectrum to the computed All-Pole spectrum.

Autocorrelation Partial Realization and Autocorrelation

Prediction, described in chapter 3, are new techniques; modeling the
envelope of a given spectrum with a Pole-Zero model. Both techniques
determine the pole and zero parameters separately. Also, both are

autocorrelation domain methods. In other words, once the

autocorrelation function of the given spectrum is known, all the

operations performed are in the autocorrelation domain and no Fourier

Transformation is required.

Autocorrelation Prediction was successfully used for Pole-Zero
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modeling in two applications: Wiener filter spectral matching and

natural speech short-time spectral matching.

1.2 Chapter Summaries

The main body of the dissertation is devoted to development of
Pole-Zero modeling techniques and their applications. The first part
of the main body develops new techniques for spectral Pole-Zero
modeling while the 1last part applies these techniques to natural
speech processing. To make the dissertation more self-contained, a
collection of Appendices is also added. These Appendices provide the
basic algorithms and concepts used in developing the above
techniques.

Chapters 2 and 3 comprise the first part, with chapter 2
providing the background needed for chapter 3. The new Pole-Zero
modeling techniques, APR and AP, are derived in chapter 3. Chapters
4 and 5 comprise the last part, presenting the applications of these
techniques. A dynamic filtering process that suppresses the
background noise from degraded natural speech is described in chapter

4, Chapter 5 presents the "Pole-Zero Vocoder" (PZV); an

analysis-synthesis process of natural speech based on Autocorrelation
Prediction.

The author’s majors contribution are: the Pole-Zero modeling
techniques derived in chapter 3, the improved dynamic filtering
process described in chapter 4, and the integration of the Linear
Prediction Vocoder into the Pole-Zero Vocoder presented in chapter 5.
Introducing a new spectral flatness measure, section 2.2, and

preliminary work on a modified Pole-Zero Vocoder to account for
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CHAPTER 2

PARAMETRIC MODELING OF SPECTRA

2.1 Introduction

The identification of a parametric model whose spectrum
approximates a given spectrum by minimizing some distance measure is
the general theme of the chapter. A new distance measure having an
upper bound proportional to a well-known distance measure E is
defined. Two types of parametric models, namely All-Pole and
Pole-Zero, are focused upon. To show the effect of the order of the
All-Pole model on the approximation, the relationship between the
autocorrelation functions of the model and the given spectra is
derived. Also, the dependence of the minimum of the distance measure
E on the order of the All-Pole model is analyzed. Finally, it is
shown that minimizing E to estimate the parameters of the Pole-Zero

model 1leads to a system of non-linear equations, in contrast to the

system of linear equations for the All-Pole model.

2.2 Spectral Matching by Inverse Filtering

The spectrum of the scaled model G H(z) can be matched to a
given spectrum lS(w)I2 by requiring that when S(z) is filtered by the
inverse model H_l(z), the spectrum of the output E(z) is flat,

Figure 2-1.




S(Z) H-](z) E(Z)

Figure 2~1. Inverse filtering.

The model scale factor squared G2 is equal to the average of the

inverse filter output spectrum E, i.e.

m
¢2-g8 -;7[ lE(m)IZ dw, (2-1)

=T

where, from Figure 2-1, the output spectrum lE(w)lz is equal to

lEw |2 = |s@ |} w2 , (2-2)

A distance measure for the flatness of the output spectrum |E(w)(2
can be quantified as: The average distance of the output spectrum

|E(w)|2 from its average E, i.e.

L

AlJ
| =

- lE(m)lz - zldw. (2-3a)

!
The smaller the distance measure £, the flatter the output spectrum
2
|E(w)| , and consequently there is a closer match between the scaled
2 2
model spectrum, |G H(w)|”, and the given spectrum |s(w)]“. This
non-negative distance measure has zero value when the output spectrum

is constant, that is E(w)=E for =m<dw<m.




Properties of the Distance Measure ¢. Using (2-2), and (2-1) in

(2-3a), gives another expression for €, i.e.

™

£ ;—f Elswlz'lé w2 - 57 w)]?[dw. (2-3b)

=7

The relation (2-3b) shows that, for a given spectrum lS(w)]z, the
optimum inverse model H'l(w) minimizes € 1in weighted least mean
amplitude sense. The weighting function is proportional to the given
spectrum |S(w)|2. Hence, from (2-3b), the scaled inverse model
spectrum lé-H—l(w)fz approximates ls-l(w)'2 more accurately at those
frequencies where the given spectrum |S(m)|2 has its peaks rather
than valleys.

An upper bound for € may be found by using the fact that the
absolute value of the difference has the least upper bound equal to

the sum of the absolute values, i.e.

~|E(w)|2 - E| < |[Ew)|? + E. (2-4)

From (2-1) it is clear that E is always positive except for the
trivial case, E(w) = O for all w in which case E = 0. Thus for
non-trivial E(w), the equality in (2-4) holds only at those
frequencies where E(w)=0. For non-trivial E(w), from (2-4) and

(2-3a), we obtain



-

m

J [IE(w)lz + Eldw. (2-5a)

=T

1

E <
2

Performing the integration in (2-5a) and using (2-1) gives the

following upper bound for €.

€ < 2. (2-5b)

Thus the flatness distance measure £ has an upper bound proportional

to E, the average of the inverse filter output spectrum. Note that

the model Ho(z) which minimizes the wupper bound 2E does not

necessarily minimize the flatness distance measure ¢ . It is
guaranteed, nevertheless, that the flatness distance measure EO for
Hy(z) does not exceed the smallest upper bound 2E ;. . Since

identification of the model which minimizes € is complicated, we seek

only the optimal model which minimizes the upper bound, 2E, of the

distance measure €.

Other Interpretations For E. Using (2-2) in (2-1) gives another

interpretation for E, i.e.

™

1
E = 27[ |S(w)[2/ lH(w)lzdw. (2-6)

-T
Thus E is the average of the ratio of the given spectrum to the model
spectrum. Hence, for the optimal model H(z), the average of the
ratio of the given spectrum to the model spectrum is minimum.
According to Parseval’s Theorem [32,36], E given by (2-1), is

also the energy in the inverse filter output signal E(z).



2.3 All-Pole Spectral Matching
Let H(z) in Figure (2-1) of section 2.2 be a stable All-Pole

model defined as

HG@) = 305 =" T a(0) = 1. 2-7)

) a(k)z-k
k=0

To match the spectrum of the scaled H(z) to the given spectrum |5(w)|2,
the prediction coefficients {a(k)} are computed to flatten the output
spectrum 'E(w)|2 by minimizing the output energy E, [24,25]. The
spectrum of the resulting scaled H(z) is called the Linear
Prediction (LP) Spectrum.

Using (2-7) in (2-6) gives

m

1
E = z_nj Is()|?]aw) | 2dw. (2-8)
-

E is minimized by setting

OE
() ~ O 1<1em, (2-9)

On the other hand, the following relation holds

3 2 L
a@ 1AW = 5% (aE™aET))
M M
= (eI GF a@ed®) + T q)e W),
k=0 k=0

1£4<N,
or
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M
d 2
== |AW) | = 2] a(k)Cos(i-k)w, 1 <1c<M,. (2-10)
da (1) k=0 -

From (2-8), (2-9) and (2-10) and interchanging of summation and

integration, one obtain

M m

]Z‘ 20 —;;I |s@)|%Cos(i-k)w dw = 0, 1< 1 <M. (2-11)

-
We know that the autocorrelation function R(k) is the Inverse Fourier

Transform of the spectrum |S(w)|2,1i.e.

i
R(k) = %;I IS(w)lze'jk“’dw, (2-12a)

ot

or in a more simplified form

m
R(k) = %J |'s W) | 2Cos (k) dw. (2-12b)

-7
Substituting (2-12b) in (2-11) results in the well-known

autocorrelation normal equations

M

E Oa(k)R(i-k) = 0, 1s4ig (2-13)




1

The optimum predictor coefficients {a(k)} are obtainéd by
solving the system of linear equations (2-13) using Levinson’s [37]
or Durbin’s [27] recursive algorithms [Appendix A]. Using (2-13),
(2-12) in (2-8) and some simplification gives the minimum output

energy Ey

M

2
E, =6, = ana(k)R(k). (2-14)

Therefore, from Section 2.2, the spectrum of the scaled H(z), i.e.

2 2
|6, HEe?) |2 - ——EA——;~ - A , (2-15)
la@] l? a(kye IR0 :
k=0

is the optimal All-Pole spectral match to the given spectrum |S(w)|2,
Figure 2-2. The predictor coefficients {a(k)} in (2-15) and the
scale factor squared Gi are computed from (2-13) and (2-14),
respectively.
2.4 Autocorrelation Function of the

Optimal All-Pole Spectrum

The relationship between the autocorrelation functions of the
optimal All-Pole spectrum Gi/'A(w)l2 and the given spectrum IS(w)lzis

discussed here. Rearranging (2-15) gives
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A (w)

512

2
|GA“(e A(w) = G,

Where "#" jndicates the complex

conjugate.

13

(2-16)

Taking the Inverse

Fourier Transform of both sides of (2-16) results in the difference

equation that the autocorrelation

All-Pole model obeys, i.e.

M

T a(k)R(i-k) = Gih(-i),
k=0
where
L L
R(k) = - £ e jkwdw
2m ‘A( )|2 =
! w
or
i % o ci
R(k) = By I T Cos (kw)dw,
EANVY®Y
and
™
LA o ok i i
h(-1) 2T J * e jiu’dou.
- A (W

Since h(i) is casual and from (2-T7)

function

of

the

scaled optimal

(2-17)

(2-18a)

(2-18b)

(2-18c)
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h(0) = 1,
() (2-18d)
then for i>0 (Z-17) reduces to

M

) a(OR(i-k) = 0, 1> 0, (2-19)
k=0

M A
2

J a(k)R(k) = Gy i=0 (2-20)

k=0

The system of equations given by (2-19) for 1<i<M and (2-20) has the

same form as the system of equations given by (2-13) and (2-20).

Therefore, these two systems of equations have identical solutions,

i.e.

R(|1]) = R(|1i]). 0<1<M (2-21)

Thus, matching the spectrum of a scaled All-Pole model of order M to
a given spectrum 1is equivalent to finding an All-Pole model whose
scaled autocorrelation function exactly matches that of the given
spectrum for the first M+1 time-lags.

Equations (2-21) show that the first M+1 autocorrelations of the
matching All-Pole spectrum Gﬁ/lA(w)l2 are exactly the same as those
of the given spectrum ‘S(m)‘z. The rest of the autocorrelation
R(k) for |k|>M are the extrapolation of R(k) for 1<k<M, and are
determined recursively from (2-19) using the optimum predictors {a(k)!}.

IS(w)I2 and Gi/lA(m)I2 are the Fourier Transforms of the
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autocorrelation functions R(k) and ﬁ(k), respectively. Therefore,
increasing the order M of the matching All-Pole spectrum increases
the range of time-lags over which (2-21) holds, resulting in a closer

match of the Gi/lA(u))l2 to |S(m)|2. Hence, as M»» we obtain

Gi A G2 2
rep— Y = |Sw)]”. (2-22)
'Am(u))’ Z a(i)e—jkw
k=0

The Gi/lAm(m)}z can be considered the All-Pole representation of the

given spectrum ﬂS(w)’z [35]. -

2.5 Analysis of the Minimum Energy EM

The minimum energy Ey: given by (2-14), of the inverse filter
output is a monotonically decreasing function of the All-Pole model

order M. Figure 2-3 shows the normalized minimum energy

iy T EH/R(O). (2~23)

as a function of the order M. It can be shown that O<vy<1 for all M
[25,u42]. The minimum energy decreases sharply as the order M is
incresed up to some order MP' For increases of the All-Pole model
order beyond MP' the minimum energy EH decreases slightly. MP is
referred to as the parsimonious {(most economical) order. By the time
the order M has reached MP’ the scaled All-Pole model spectrum
matches all the spectral envelope peaks of the given spectrum. The
parsimonious number of poles MP’ therefore, depends on the number of

spectral envelope peaks of the given spectrum.
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To estimate MP for a given spectrum, as the order M of the
All-Pole model 1increases, one might monitor the normalized minimum
energy given by (2-23). This monitoring can be done automatically
using Durbin’s recursive algorithm, a simplification of Levinson’s
algorithm [Appendix A]. Durbin’s recursive algorithm computes the
minimum energy Ey for successive orders as a by-product of the
calculation of the predictor coefficients.

Another approach to estimate MP' when the length of the time
sequence that generates the given spectrum is known, was proposed by
Akaike [1,2,3,4,15]. Makhoul applied this approach to estimate Mp in
speech spectral matching [26]. In this approach, the so-called
Akaike s Information Criterion I(M), given by (2-24) below, has its

global minimum at MP.

2M
I(M) = Log v, + 5 (2-24)

The W in (2-24) is the time domain window length and the constant ¢,
O<c$j, accounts for the effective length of the time domain window
(Makhoul reports ¢ = 0.4 for a Hamming window), Figure 2-3.

To match the spectral envelope peaks and valleys of the given
spectrum, a large 1increase in the order M beyond Mp is required.
This is so, because the spectral zeros represented by the deep
valleys require a large number of poles to approximate them. To
avoid the large increase in M beyond MP’ zeros are introduced
explicitly into the model. In other words, the given spectrum is
matched with the spectrum of a Pole~Zero model ather than an

All-Pole model.
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2.6 Pole-Zero Spectral Matching [27

Let H(z) in figure (2-1) of section 2.2 be a Pole-Zero model

defined as

L -1
Y b(d)z
B i=0
H(z) = K%§% = M —1’ a0 =1, (2-25)
Z a(i)z b. =1
=0 0

To match the spectrum of scaled H(z) to the given spectrum [S(w)iz.

the optimal pole predictors {a(k)} and the zero predictors {b(k)} are

computed by minimizing the output energy E, [27]. Using (2-25) in

(2-6) gives
- 2
E = %;;f |s(w)|? 1Ak 5 du. (2-26)
e [B(w) |

E is minimized by setting

JE

da(l) = O 1<1<M, (2-27a)
9

) " 9 1 24 £ Ls (2-27b)

On the other hand, similar to (2-10), the following relation holds:

L
d 2
3b (1) [ Bw) |© = ZE-O b(k)Cos(i-k)w, 1 <1 < L. (2-28)

We also define
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m
20
R 8(k) = %;‘ |S(m)[2 iﬂiﬂll;ﬁ Cos (kw)dw, (2-29)
a IB((A))!-
-1

where a and R are positive integers. Using (2-26), (2-10) and (2-29)
in (2-27a) and some simplification results in

M
) a(k)R,, (i-k) = 0, 1<1i<M (2-30a)

k=0
Similarly, using (2-26), (2~28) and (2-29) in (2-27b) and some

simplifying results in

L
E ob(k)Rlz(i—k) =0, I <1 AT, (2-30b)

From (2-29) it is clear that ROl(k) is a function of the ({b(i)}

whereas Rlz(k) is a function of both {a(k)} and {b(k)}.
Consequently, the system consisting of equations (2-30a) and (2-30b)
is non-linear in terms of {a(k)} and {b(k)}. To solve this system of
non-linear equations, an iterative scheme can be used [27,36]. An
iterative scheme, however, brings about its own problems, such as
convergence, stability, and high rates of computation.

To ayoid these problems, in the next chapter we seek suboptimal

Pole-Zero models whose parameters are partially or totally solutions

to systems of linear equations.




CHAPTER 3

AUTOCORRELATION FUNCTION POLE-ZERO MODELING

3.1 Introduction

Identification of a Pole-Zero model whose autocorrelation
function approximates that of a given spectrum is the main issue of

this chapter. To see the relationship between the parameters and the

autocorrelation function of a Pole-Zero model, the difference
equation governing the autocorrelation function of the Pole-Zero
model is derived. Two different techniques, "Autocorrelation Partial
Realization" (APR) and "Autocorrelation Prediction" (AP), are
developed to estimate the parameters of a Pole-Zero model whose
autocorrelation function approximates that of a given spectrum. In
either technique, the pole parameters and the zero parameters are
estimated separately .

APR uses the Pade’ approximation to estimate the pole parameters

and an iterative method to estimate the zero parameters by solving a
system of non-linear equations. In contrast, AP  uses Linear
Prediction to estimate both the pole and the zero parameters. The
spectral interpretation of AP is given and the selection of orders of

the Pole-Zero model are discussed. Finally, APR and AP are compared.

3.2 Autocorrelation Function of Pole-Zero Model

To understand the relation between the autocorrelations of a

stable Pole-Zero model, the difference equation that governs the
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Pole-Zero model is derived.

Consider the Pole-zero model:

L
Z biz—1
< B2 _ 180, . - i
H(z) A(z) ? p: 5 a0 B (3~1a)
a,z
i=0 :

whose power series representation is:

H(z) = § h(k)z ¥, lz| > =, (3-1b)

k=0 s

where, from (3-1a) and (3-1b), the coefficients h(k) are obtained

from the following recursive formula:

L M
h(k) =} b(1)8(k-1) - J a(d)h(k-i). (3-2)
i=0 i=1
The {ai} and {bi} are referred to as pole predictors and zero
predictors, respectively. Multiplying both sides of (3-1a) by

H(1/z)A(z) gives:

[H(z)H(1/z)]A(z) = B(z)H(1/z). (3-3)

Taking the Inverse Z-transform of both sides of (3-3) and using
(3-1a) and (3-1b) results in the difference equation:
M

~ L
J a(i) R(k-1) = ] b(1) h(i-k), (3-4a)
1=0 1=0
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or

2~ L M -
R(k) = ] b()h(i-k) - | a(i)R(k-1), (3-4b)
i=0 i=1

where the model autocorrelation function R(k) is defined by:

A SR
] R(k)z = = H(z)H(1/z), r < lzl < 1/2, (3-5)

k==

and from (3-1b) the power series representation of H(1/z) is:

w 0
H(1/2) = ] h(0z5 =] he-)z %, |z <1, (3-6)

k=0 k=-c o
Since h(k) is causal, then the difference equation (3-4) 1is further

simplified for k > L. That is,
M A

} a({)R(k-1) =0, k> L. (3-7)
i=0

Comparing (3-4b) and (3-2) reveals that for k > L the same pole

predictors {a,} predict both ﬁ(k) and h(k) from their corresponding

i
last values.

3.3 Autocorrelation Partial Realization

The idea is to find the Pole-Zero model H(z), of the form
(3-1a), whose autocorrelation function ﬁk exactly matches the

symmetric autocorrelation function Rk » of a given spectrum

S(z)S(1/z), for the first N time-lags. That is,




23

ﬁ = R 2 k=0,1,2,...N=1, (3-8)
[k [k

The autocorrelation function Rk is the 1Inverse Z-transform of the

given spectrum S(z)S(1/z), i.e.

40 ok 1

] Rz =5(2)S(1/z), IS |z] < = (3-9)
k=-o 1

T <1

and similarly, ﬁk is the Inverse Z-transform of the model spectrum
H(z)H(1/2):

4o

o <k 2 - B(z)BQl/z} < < l 3-10
g B = RGN S Selaie” 2 LB i
r2 < 4

The idea is realized in three steps, Figure 3-1:

i. We show that using the Pade” approximation [Appendix B] on the
right half of the autocorrelation function Rk leads to a rational
function C(z)/D(z) whose denominator is equal to the sought for
denominator A(z). Furthermore, P(z), the numerator of the two-sided
rational function C(z)/D(z)+C(1/2)/D(1/z) is shown to be the spectrum
of the desired numerator B(z).

ii. Some properties of the polynomial P(z) are discussed, and a
direct method for computing its coefficients is derived.

iii. Some iterative algorithm such as Fejer’s [37] or

Newton-Raphson’s [43, Appendix D] is used ‘o decompose the P(z) into




$40321paud
0432

Ly
_o—

{"aq}
(W

‘weabeip ¥201q uoLIRZL|BIY [BLILL4 UOLIR|DIL0003NY

ey oy

J030W1353
S3Ua1214420)
403 eddumy

I
|

"L-€ 34nbiy

L+HW2>A> L+ N

$40321p34d D=1 | uoy3e|3440203NY
w400 | ajod-11y o= 1. _‘aaxﬁoaogg
10,1y, _ 0t U
e} = 9A|0
WC® =P 10§ d
L}
; _
|
I W |
S3Ud1914420) |
403 a3uny 1030wp3S3 |

J0 uop3duny

uotje{asuod03ny !

S3U313144307 J0JeujWOUIQ




25

B(z)B(1/z).

Finally some issues invloved in Autocorrelation Partial

Realiztion are discussed.

i. Pade Approximation. Consider the one-sided sequence X

defined as:

N =
e
=~
]
o

= (3"11)
" Rk k >0.

+w®
Then the two-side power series Z sz'k can be decomposed into the
=00

sum of the following two, one-sided power series:

+(r (o] Lo o]
. -k 1
) z k= X+ xz s £, < [2] <= (3-12)
k=-c " k=0 "k k=0 " . *1
r1 <1

Furthermore, the right most power series in (3-12) is denoted by X(z).

That is,

o '-k =
X(z) =} i lz| > ry» (3-13)
k=0 x

Now , using the Pade’ approximation [Appendix B], the one-sided
power series X(z) is approximated with the stable rational function

ﬁ(z):




26

c,z 1 w
2 k= o ks
TR 1o e . SO S, e (3-14)
D(z) M 0
-1 k=0
Z diz
1=0 lz| > r,,
;< 1

where, from (3-14), the coefficients ;k of the C(z)/D(z) power series

representation are given by

M M A
X, = ) c8(k-1) -} dx __ . (3-15)
s N N ooy 1 Bt

The Berlekamp-Massey [7,30] or Trench [39,41] recursive algorithms
[Appendix C) can be used to perform the Pade approximation, leading
to the rational function X(z)=C(z)/D(z). As shown in Appendix C, the

Pade” approximation X(z) for the power series X(z) has the following

property:

%, k=0, 1, 2, voo N1 (3-16)
where

N=2M+1. (3~17)

Also from (3-17) and (3-15) one concludes that

M ~
§ we T oRR k2N, (3-18)
R My
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Therefore, i(z):C(z)/D(z) approximates the given power series X(z),
satisfying the equations (3-16) and (3-18). 1In other words, the
first N coefficients of the power series ﬁ(z) are equal to those of
the power series X(z) and the rest are recursive extrapolations of

these first N coefficients. Thus,

B el e S Lk c
kZo X, 2 :kZQ Xz = —5%5% > lz]| > Max(rl,rz) s (3-19)

Max(rl,rz) < g,

We now find a two-sided rational spectrum whose Inverse

Z-transform satisfies the equation (3-8). Using (3-19) in (3-12) and

some simplifying operations results in

40 oo oo : !
- Sk ~ -k_ C(1/z)D(z)+C(z)D(1/z)
] Rz%= 7 x4+ § xo - , (3-20a)
k--m Rk kno xk k'o D(Z)D(l/z)
P(z
D(z)D(1/z)’
Max(rl,rz) < |z| < 1/Max(r1.r2)'
Max(rl,rz) <1,
or
o -k L -k _ C(1/2)D(z) rC(2)D(1/z) _ P(z)
kz.m » ;.Em N3 D(z;D(I/z) D(z)D(1/z) ’
Max(rl,rz) < |z] < 1/Max(r1,r2),
Max(rl,rz) Sl oy (3-20b)

where
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(3-21)

The two-sided rational spectrum P(z)/D(z)D(1/z), given in (3-20b),
has the Inverse Z-transform ﬁk for which, from (3-21), (3-16) and
(3-11), the relation (3-8) holds. Since P(z)/D(z)D(1/z) 1is the

spectrum of the desired Pole-Zero model H(z), then:

B(z)B(1/z) _ B(z)
A(z)A(1/z) D(z)D(1/z) (3-22)

From (3-22) the model denominator A(z) is equal to

A(z) = D(z) , (3-23)

while, from (3-22) and (3-20) the spectrum of the model numerator

B(z) is

B(z)B(1/z) = P(z) & C(1/2)D(z) + C(z)D(1/z) - (3-24)

ii. Properties of the P(z). Before attempting to decompose the
polynomial P(z), we examine some properties of P(z) and give a direct
method for computing P(z). From (3-24) and (3-14), it can be shown
that P(z) is a symmetric two-sided polynomial with real coefficients.

That is,
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- -k
P(z) = ) Pig|® (3-25)
k=-M
where
Mik M-k
Pl | = cd ..+ 7 de .., k=0,1, ...M. (3-26)
el by T Pl &y :

Therefore P(z) has real values on the unit circle in the z plane.

To compute the polynomial P(z) directly, consider the symmetric

two-sided power series U(z) defined as

R R R
U(z) = D(2)D(1/2) | Rz = ] vz s (3-27)

k=-o k=-o

t, < |2 < l/rl.

<
rl 1

From (3-20b) we also have

SR T 8
P(z) = D(z)D(1/z) | Rz, r, < |2} < e, , (3-28)

k==

r2 < L

Similar to P(z), D(z)D(1/z) is also a symmetric two-sided polynomial
of order M. From this property of D(z)D(1/z) and using the equations

(3-8) and (3-17) in comparing (3-27) with (3-28), one concludes that
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p(k! = u|kl s k = 0, 1, eeoM . (3-29)

(3-29) shows P(z), given by (3-25), is obtained by truncating the

power series U(z), i.e.

. M K M ik
P(z) = > _
: kg_n Plk|*® E_M up? . (3-30)

Thus, the polynomial coefficients qkl can be computed directly by
convolving the autocorrelation function of the A(z) coefficients with

that of the given spectrum.

iii. Decomposition of the P(z). To decompose P(z) into
B(z)B(1/2), Fejer’s [37] or Newton-Raphson’s iterative algorithm
[Appendix D] can be used. Fejer's algorithm finds the 2M roots of
the symmetric polynomial P(z) and properly chooses M of the them to

construct the polynomial B(z). The latter algorithm finds the

minimum phase polynomial B(z) whose spectrum approximates P(z) with

desired accuracy.

Discussion. A few issues concerning Autocorrelation Partial
Realization deserve attention. These are: a. the stability of the
Pole-Zero model B(z)/A(z), b. the condition that P(z) should meet to
make its decomposition into B(z)B(1/z) possible, and finally, c¢. the
non-linear methods required to perform the decomposition in b.

a. To have an stable Pole-Zero model B(z)/A(z), the rational
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function C(z)/D(z) resulting from the Pade approximation should be
stable . We used this assumption to show that equation (3-8) holds
for the Inverse Z-transform of P(z)/D(z)D(1/z). For a given N, the
rational function C(z)/D(z), however, is not guaranteed to be stable.
Because of the equations (3-11) and (3-8), one hopes that by
increasing N and consequently M, one finally finds a stable C(z)/D(z)
and as a result a stable Pole-Zero model B(z)/A(z).

b. To decompose the P(z) into B(z)B(1/z), the polynomial P(z)

should be non-negative on thé unit circle. Why this condition should

be met 1is verified easily from (3-24) where B(z)B(1/z) is
non-negative on the unit circle. On the other hand, P(z) is equal to
the truncated U(z). Though U(z) is non-negative on the unit circle,
this 1is not necessarily true for the truncated U(z). Because of
(3-27) and (3-30), the P(z) can be made non-negative on the unit
circle, however, by choosing some high order M.

c. Due to the non-linear equation (3-24), the composition in
(b) requires an iterative method. Consequently, the problems of
non-negativeness, convergence and the high rates of computation

should be dealt with.

3.4 Autocorrelation Prediction

The idea is to find a minimum phase Pole-Zero model of the form

L
Z biz_i
H(z) = G A(z) G m B2 " ag bO s [ (3-31)
a,z
=g 1 58

whose autocorrelation function R(k) approximates the autocorrelation

function R(k) of a given spectrum S(z)S(1/z), using only linear
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operations, i.e.

R(K) = R(K), (3-32)

where R(k) is defined by (3-9) and R(k) is defined by :

. -k
+0 / RB(k)z
Sk 8 2 B(2)B(1/2) _ d=-L
k=§wR(k)z =0 XA/ T H Y (3-33)
) R, (k)z
1=-M

rz < 'Zl < 1/r2 ’

r2 < lie

Also, using (3-31), the autocorrelation functions Rg (k) and Ry(k) in

(3-33) are obtained from

L-|k
R (k) =] k] by bi+|k'. (3-34)
= 1=0

M- [k |
R, (k) = § o ta” (3-35)

The above idea is realized in three steps: i. Estimation of the
minimum phase polynomial A(z), ii. Computation of the "Residual

Autocorrelation Function" defined as:

(3-36)
R () & R(K) ® R, (),
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where " ® " indicates linear convolution, 1iii. Estimation of the
minimum phase All-Zero model B(z) and the gain G, Figure 3-2. At the
end, the approximation error, and how Autocorrelation Prediction

compares with Autocorrelation Partial Realization are addressed.

i. Estimation of the A(z). The minimum phase polynomial A(z) is
obtained simply by finding the All-Pole model GA/A(z) whose
autocorrelation function Giﬂl/A(k) exactly matches that of the given
spectrum S(z)S(1/z) for the first M+1 time-lags, i.e.

2

R(k) = G, R, (k), 0<k <M, (3-37)

1/A

where the autocorrelation function GZR (k) is defined as:

A1/A
2 2
+o0 G G
2 -k A A = A
S L Rua®= " " ieyaare T H 7 (3-38)
) R, (k)z
k=-M
Iy 5 Iz! = l/rz,
rz <ok

As is shown in section 2.3 and 2.4, the pole predictors {ai} are the

solution to the system of linear equations (2-13) which also
2

guarantees that A(z) is minimum phase. The gain squared G, is

obtained from (2-14).

ii. Residual Autocorrelation Function. After finding the pole
predictors {ajy}, the autocorrelation function Rp(k) is computed

according to the definition (3-35). Then, from (3-36), the Residual
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Autocorrelation function RD(k) is obtained by simply convolving the

finite length autocorrelation function RA(k) with the autocorrelation

function R(k).

iii. Estimation of the B(z) and G. The estimation of the
All-Zero model B(z) and the gain G is performed in steps a and b.

a. We find a high order All-Pole model of the form

B -1, (3-39)

whose autocorrelation function G Rl/Q(k) exactly matches the Residual

2
Q
Autocorrelation function RD(k) for the first N+1 time-lags. That is,

2 = —
Cq R1/qtE) = Ry(k), 0< [k] <N, (3-40)

where the autocorrelation function GéRl/Q(k) is defined as

2 2
+o0 G G
- 4 Q k Q
Sl . *e™ = g@eare Ty = (3-41)
] R (K)z
k=-N @

Similar to the estimation of the {ai}, the coefficients {qi} are the

solution to the system of linear equations (2-13) after replacing

{ag} by {ag}, R(k) for O<|k|<N by R (k) for 0<|k|<N, and M by N, i.e.




36
N
) QR (k-1) =0, 1 <k <N. (3-42)
i=0

Also, the gain squared Gé is obtained from (2-14) after the same

replacement. That is,

N
2

¢o= 3  a R (1) (3-43)
Q7 fup 4D

Using (3-39) in (3-41) gives the expression for the autocorrelation

function RQ(k) as

N- k]
R (k) = [ By iie s 0 < |k|] <N. (3-44)
Q P

After computing the coefficients {qi} from (3-42}, the equation
(3-44) is used to calculate Rq(k).

b. Finally, we find the All-Pole model GB/B(z) whose

2
BRl/B

autocorrelation function RQ(k) for the first L+1 time-lags, i.e.

autocorrelation function G (k) exactly matches the

2
CgRy pk) = RQ(k), 0< |kf <1, (3-45)

where the GZR (k) is defined as

B 1/B
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2 2
4 G G
2 -k A B B K
GB E——m Rl/B(k)z B(z)B(1/z) L . (3-46)
. RB(Z)
k=-L

Again, similar to the estimation of the {ai},the zero predictors {bi}
are the solution to the system of linear equations (2-13) after

replacing {ay} by {bj}, R(k) for 0<|k)<M by R.(k) for 0<|k|<1, and M

Q
by L. That is,

L

) b.R_(k-1) = 0, 1
1=0 10

| A
P
IA
ol

(3-47)

Similar to (2-13), the solution of the system of 1linear equations

(3-47) guarantees that B(z) is minimum phase. Also, the gain squared

G% is obtained from (2-14) after the same replacement.

: E
G; = J bR (1), 3-48
¥ dep- ¥ b

It is shown in the next section that the gain G is equal to

N
! R )
G i
G=gl - 2 — (3-49)
B
b byRo (1)

i=0
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The identification process of the Pole-Zero model G B(z)/A(z) is

summarized in Figure 3-2. Figure 3-3 shows a speech short-time

spectrum superimposed by the All-Pole and Pole-Zero model spectra for

comparison. Note the advantage of the Pole-Zero model over the

All-Pole model in matching the spectral envelope valley of the given
speech short-time spectrum.

A variation for AP is obtained by computing the pole predictors

from a non-symmetric, rather than a symmetric, toepltiz matrix. 1In

this way, the zeros in the model are explicitly accounted for. For

this variation, however, the stability is no longer gauranteed.

Approximation Error. To show how close the autocorrelation of

the resulting Pole-Zero model G B(z)/A(z) approximates the
autocorrelation function R(k), the approximation error 1is derived.
From (3-38), (3-41) and (3-46), the following similar equations are

obtained

2 2
Gy Rl/A(k) ® R, (k) = G,8(k), (3-50a)

2 2
(] = x
GQ RI/Q(k) RQ(k) GQG k), (3-50b)

X
2
Gy X

\
\

2 -
1/3“‘) ® Rp(k) = G (k). (3-50¢)

Using (3-40), we define the error autocorrelation function ARD(k) to

be
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Figure 3-3. (a) Speech short-time spectrum superimposed with
14-Pole model spectrum (Linear Prediction).
(b) Speech short-time spectrum superimposed with
8-Pole and 6-Zero model spectrum (Autocorrelation
Prediction).
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0 0< |kl <N
AR (k) = R (K) - Gé PN T (3-51)
Thus we have
Rn(k) = Gé Rl/Q(k) + ARD(k). (3-52)

Using (3-50b) in (3-52) gives

2
RQ(k) ® RD(k) GQG(k) + ARD(k) ® RQ(k). (3-53)

Similarly, using (3-45), we define the error autocorrelation function

ARQ(k) to be
0 gF< k<l
AR _(k) = 2
Thus we have
2
RQ(k) = GB RllB(k) + ARQ(k). (3-55)

Using (3-55) and (3-36) in (3-53) and some rearranging of terms

results in
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2

2 i
Gy R1/B(k) ® RA(k) ® R(k) = (-Qﬁ(k) + [/\RD(k) ® RQ(k) AR (k) ®

Q

Rﬂ(k)]' (3-56)

Finally, using (3-50a), (3-50c) in (3-56) gives

G
R(k) = — RB(k)®R

oON

1/A(k) + AR(k), (3=57)

X
=N

where the approximation error is

AR (k) é—%—RB(k) @R

; (k) ® (AR} (k) @Ro(k) - ARQ(k) ® Ry () 1.
B

1/A

(3-58)

For proper selection, discussed below, of the orders M, L, and N the
function in the square brackets in (3-56) or (3-58) has values

relatively close to zero for the short time-lags. Therefore,

o2

-8 \ -59
R(k) = 2 Ry(K) @ R/, (K). (3-59)
B

Taking Z-transform of (3-59) and using (3-9)and (3-38) results in

< 6. \2 o
= A 1 A -k
E=—mR(k)z L S(z)S(1/z) = E;*) iéi)il/i; = Ea_mR(k)z .

(3-60)

Hence, the autocorrelation function of the Pole-Zero model

approximates the R(k) at short time-lags and the approximation error

is given by (3-58). Note (3-56) shows that the autocorrelation
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function of the inverse filter output, for the obtained Pole-Zero
model, differs from the impulse response G&(k) by 1/G§ times the

"small" function in the square brackets

Comparison of APR and AP. There is a trade-off between th
Autocorrelation (AP) Prediction and Autocorrelation Partial
Realization(APR) . 1In AP all the operations are 1linear and the
stability 1is guaranteed, but the short time-lag autocorrelations of
the given spectrum are approximately matched. In contrast, APR has
partially non-linear operations and the stability is not guaranteed,
but the short time-lag autocorrelations are exactly matched. The APR
is also theoretically more appealing. AP and APR have, however, some
common properties. Once the autocorrelation of the given spectrum is
known, no Fourier transformation is required to estimate the model

parameters,using either technique. More important, both are well

suited for matching the spectral envelope of a given spectrum having

fine structure, such as speech short-time spectrum. This is possible
because 1in both techniques the model parameters are computed such

that the short time-lag autocornélations, representing the gross

structure of the given spectrum, are either exactly matched or

closely approximated.

3.5 Frequency Interpretation of AP

The frequency domain interpretation of the steps taken in
Autocorrelation Prediction, described in section 3.4, and selection

of the orders M, L and N are addressed here, Figure 3-U4.

The given spectrum S(z)S(1/z) can be thought of as being
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composed of spectral poles and zeros represented by the spectrum
peaks and deep valleys. As disscussed in sections 2.3 asd 2.5,
fitting the All-Pole specctrum Gi/A(z)A(1/z) to the given spectrum
S(z)S(1/z), matches the peaks rather the valleys of the spectral
envelope. By selecting the order of the All-Pole model equal to the
parsimonious order MP' those peaks having higher amplitudes are
matched, while the deep valleys are left unmatched. The residual
spectrum D(z)D(1/z), which is the given spectrum after removing the

estimated poles,contains primarily the spectral zeros represented by

the deep valleys in the residual spectrum. To fit the All-Zero
spectrum B(z)B(1/z) to the residual spectrum D(z)D(1/z), the All-Pole
spectrum 05/8(2)8(1/2) is fitted to the Q(z)Q(1/z); an approximation
for the reciprocal of the residual spectrum envelope. To obtain
Q(z)Q(1/z), the high order All-Pole spectrum Gé/Q(z)Q(1/z) is matched
to the residual spectrum D(z)D(1/z). The high order N is required
because each of the spectral zeros of the residual spectrum is
approximated with a large number of poles in the model GQ/Q(z). The
lower bound for the order N, therefore, depends on the number of
spectral zeros in the residual spectrum or, equivalently, in the
given spectrum S(z)S(1/z), and how close these spectral zeros are to
the wunit circle. Similar to the order M, the order L may also be
equal to the parsimonious order Lp of the All-Pole spectrum match to
the spectrum Q(z)Q(1/z).

To reduce the computation of the parameter estimation when the
given spectral envelope has more deep valleys than peaks, the

Autocorrelation Prediction is applied to the reciprocal of the given




45
spectrum and then reciprocal of the resulting Pole-Zero model is
used. In chapter 4 this approach is used in Pole-Zero modeling of

Wiener filter spectrum.

3.6 Realization of Pole-Zero Model

The Pole-Zero model may be realized using any of a variety of
methods [16,17]. We propose a method which is more suitable for

realization of the Pole-Zero model obtained by AP or APR.

Cascade of Two Lattice Filters. The Pole-Zero model G B(z)/A(z)

given by (3-31) can be realized as the cascade of the All-Zero filter
B(z) and the All-Pole filter 1/A(z), having the overall gain G.
Either of these filter is implemented by a lattice filter ([19] which
is identified with the so-called parcor parameters, Figure 3-5.

There is a unique set of parcor parameters {Ki} for the set of
predictor coefficients {ai} and vice versa [Appendix A]. Similarly,

there is unique set of parcor parameters {K;} for the zero predictors

-

}

{b;} and vice versa. Both sets of parcor parameters {K;} and {K

i i

are obtained as a by-product using AP, but both should be computed

(Appendix A ] when the Pole-Zero model is identified using APR.
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CHAPTER U4

DYNAMIC POLE-ZERO FILTERING

4.1 Introduction

Quite often speech 1is degraded with additive independent

background noise, such as interference of helicopter noise with
pilot s speech and surface noise with singing in the play back of old
recordings. To enhance the speech, an input controlled time-varying
filter is devised that suppresses the noise and passes through the
speech.

Speech and singing may be assumed stationary during short
intervals, either T =30 msec for speech or T =100 msec for singing.
The noise is assumed stationary during a longer period of interest.
During this period of interest, therefore, the degraded speech may be
thought of as a concatenation of stationary processes, short speech

intervals degraded with additive stationary noise. The noise

spectrum generally has a common range of frequencies with the speech
short interval spectrum. To suppress the noise, therefore, a Wiener
filter can be used, Figure 4-1. The Wiener filter smoothed spectrum
‘w(kT,m)lz is estimated for each short interval T. The spectrum of a
rational filter H(kT,w) is then matched to 1/|w(kT,m)|2, using
Autocorrelation Prediction described in sections 3.4 and 3.5.
Finally, the rational filter 1/H(kT,w) is used to filter the

corresponding interval of the degraded speech, Figure 4-2.




48

s(kT,t) + x(kT,t) s(KT,t)

L > Wiener >
+ Filter

Figure 4-1. Short interval Wiener filtering.

4.2 Estimation of Wiener Filter
Smoothed Spectrum

The Wiener filter smoothed spectrum Iw(kT,m)l2 for each interval

T is estimated from the following equation *

& (w)
W(KT,w) = 1 - -

(4-1)
®S+N(kT,m)

where ¢N(w) is an estimate for the smoothed spectrum of the
stationary noise and ®S+N(kT’w) is an estimate for the smoothed

spectrum of the degraded speech during the k-th interval.

Since we are interested in filtering the gross structure of
degraded speech and leaving alone the fine structure, mainly caused
by the speech excitation function, the finite Linear Prediction (LP)
spectrum 1is wused rather than the standard Fourier Spectrum. Thus,

¢S+N(RT,m) is obtained by averaging the short-time LP spectrum of the

degraded speech during the k-th interval. To estimate the noise

The equation for Wiener filter spectrum is derived in section 5.5.
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spectrum, speechless portions of the degraded speech are used. Thus,
¢N(m) is obtained by averaging the short-time LP spectrum during
these speechless portions.

4.3 Pole-Zero Modeling Of Wiener

Filter Smoothed Spectrum

Equation (4.1) shows that the Wiener filter smoothed spectrum
|w(kT,m)l2 has flat pass bands for those frequencies where the speech
dominates the noise, and has deep stop bands at those frequencies
where the noise dominates the speech, Figure 4-3. 1In the case where
speech dominates the noise at most of the frequencies, the above
remark suggests modeling ]w(k'r,m)l2 at the stop bands first. This
can be accomplished by matching the spectrum of a rational filter
H(kT,w) to 1/|w(kT,m)|2, using Autocorrelation Prediction described
in Section 3.4. Then, the rational filter 1/H(kT,w) is wused to
filter the k-th interval of tne degraded speech, Figure 4-2. In this
way, the parameters of the model H(kT,w) are reduced in number
considerably compared with an All-Pole match to Iw(kT,m)lz. Figure
4-Y4 compares a Pole-Zero model and an All-Pole model spectral match
to the same Wiener filter spectrum in Figure U4-3. Note that with
equal number of parameters, the Pole-Zero model matches the deep
valleys much more accurately than the All-Pole model.

Since H(kT,w) is minimum phase, the stability of the rational

filter 1/H(kT,w) is also guaranteed.

4.4 Implementation And Results

The rational filter 1/H(kT,w) 1is identified by two sets of

parcor parameters obtained from autocorrelation prediction. The
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1/H(kT,n) is realized as the cascade of two lattice filters described
in Section 3.6. To improve the filtering process, both sets of the
parcor parameters are interpolated for each sample of the input to
the filter.

In theory, the value of W(kT,w) given by (4.1) 1is non-negative
for all frequencies. In practice, however, W(kT,w) occasionally
becomes negative at some frequencies. This is so because of the
following: $S+N(kT,m) is an estimate for the speech smoothed spectrum
plus the noise smoothed spectrum. On the other hand, the interval T
(30 msec.) during which the speech is stationary is not long enough

»
to give a close estimate of the noise smoothed spectrum. This makes

A

the ®S+N(kT,w) a rough estimate and consequently W(kT,w), given by
equation (4-1), becomes negative at some frequencies. TJ ‘correct for
the above problem, using the function depicted in Figure 4-5, W(kT,w)
is tailored to positive values at those frequencies where it is
negative.

The above Dynamic Pole-Zero Filtering process was applied to
speech degraded with stationary additive colored noise. Spectrograms
of corresponding pbrtions of the degraded speech, filtered speech and
the original clean speech are shown in Figure 4-6 for comparison.
The process was also used to suppress helicopter noise in a recording
of pilot’s speech degraded by helicopter noise. Spectrograms of
corresponding portions of degraded pilot’s speech and the filtered
speech are shown in Figure 4-7. Figure 4-Ta shows the spectrogram of
the helicopter noise from a portion of the recording where the pilot

was silent.
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Figure 4-5. Tailoring function (after T. Petersen).

The Linear Predition (LP) spectrum of the helicopter noise is also

shown in Figure 4-8. Note the harmonic structure in the helicopter

noise depicted in both Figure U4-7a and Figure U4-8. Fi

[}

corresponding portions of time domain pilot’s speech with background

helicopter noise and the filtered speech are shown in Figure 4-9G.
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Figure 4-6.

(a)

Corresponding spectrograms of

Input degraded speech; clean speech plus stationary
colored noise.

Filtered speech; output of the Dynamic Pole-Zero
Filtering process.

Clean speech.

All three spectroarams have been scaled 6 dB/oct

above 400 Hz.
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(c)
Figure 4-7. Spectrograms of :
(a) Helicopter noise.
(b) Pilot's speech degraded with background helicopter noise.
(c) Filtered pilot's speech; output of the Dynamic Pole-Zero

Filtering process.
A1l three spectrograms have been scaled 6 dB/oct above
400 Hz.
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CHAPTER 5

POLE-ZERO VOCODER (PZV)

5.1 Introduction

The digital speech production model capitalizing on apriori
information on the structure of the speech mechanism and the speech
waveform is described. The speech production model 1is further
approximated with a limited number of parameters, including zero as
well as pole parameters. Using this parametric representation of the
speech production model, a so-called Pole-Zero Vocoder (PZV) is
devised for analysis and synthesis of clean speech. To code speech
degraded with stationary additive colored noise, the PZV is further
modified to account for the noise. The PZV, simulated on a computer,
was used successfully in analysis and synthesis of clean speech
Finally, some pilot experiments revealing the potential of the
modified PZV in coding speech degraded with stationary additive

colored noise is presented.

5.2 Speech Production Model

For voiced sounds, the time varying filter model in Figure 5-1
represents the effect of the glottis waveform, the vocal tract, the
acoustic coupling of the nasal tract and the radiation. The
excitation function is a train of unit samples with the same
frequency as the pitch. In contrast, for unvoiced sounds the time

varying filter model represents the effect of the vocal tract and the




radiaticn, and the excitation function becomes zero mean white noise

with the variance<12:1.

J pitch period
Digital Filter

Unit Sample Coefficients
£ Sy 0

Generator 7 Speech

Time Varying [ Samples
‘ Linear ——
—,f Digital Filter

Random
Number

Generator ’ Amplitude

Ty

Figure 5-1. Digital speech production model.

The time-varying filter model is considered to be a time-invariant
filter during short periods of time (10-30 msec.). This is a
reasonable assumption, because the dynamics of the articulatary
configuration are slow due to the inertia of muscle controlled jaw,
tongue, and lip movements. The finite-time glottis waveform, the
acoustic coupling of the nasal tract and the radiation cause the
transfer function of the filter model to have zeros as well the usual
poles, [14].

The above arguments iaply that representing the filter model
transfer function by a finite dimension pole-zero model [6] rather
than a finite dimension all-pole model [5] may improve the quality of

the synthesized speech and/or reduce the representation parameters.



We show how the short-time autocorrelation function of the
speech gives an estimate for the autocorrelation function of the
filter model in Figure 5-1. The short-time autocorrelation function
of the speech is defined as the autocorrelation function of windowed
speech using a smoothed window of proper length (20-30 msec.)

Recalling the speech production model in Figure 5-1, we denote
the excitation function, the train of pulses or the white noise, by
p(n) and the scaled impulse response of the filter model by v(n).

The speech s(n) is, therefore, expressed as:

s(n) = p(n) @ v(n). (5-1)

To obtain a stationary segment of speech, the speech s(n) is weighted

by some smoothed window w(n) of proper length (20-30 msec.), i.e.

>

s(n) w(n) = [p(n) @ v(n)] w(n) (5-2)

s, (n)

Assuming the window w(n) is smooth during the effective duration of

the impulse response v(n), the equation (5-2) can be approximated as:

s, () = [p(n) w(n)] ® v(n), (5-3a)
or
g (M = p, (n) @ v(n), (5-3b)

where Pw(n) is the weighted excitation function defined as:
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R, (M 2 p(m) w(n). (5-4)

Short-time Autocorrelation Function of Speech Using (5~3b), the

speech short-time spectrum Sw(z)ﬁw(;) is approximated by:

S, (2)S _(1/z) = V(z)V(1/z) P_(2)P (1/z). (5-5)
w w w

The equation (5-5) shows that the speech short-time spectrum

approximates the filter model spectrum multiplied by the spectrum of

the windowed excitation function. From (5-5), the speech short-time

autocorrelation function R(k) is approximately equal to
R(k) = Rv(k) ® RPw (k), (5-6)

where Rv(k) and RP (k) are autocorrelation functions of the filter
model and the windzwed excitation function, respectively.

Now we find the Rp (k) for both voiced and unvoiced speech. In
the case of voiced speégh, the excitation function p(n) is a train of
pulses with the same period T as the pitch period. Thus using (5-4),

the weighted excitation function pw(n) takes the form of a weighted

train of pulses, i.e.

by w(n) n= 0, #1,...

P, (n) = w(n) S (n- =
o s a_m i 0 otherwise. (5-7)

The autocorrelation function of Pw(n), therefore, becomes
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e
b w(@T)w(¢T+k) k = 0, +T,...
(:—(h
RP (k) = (5-8)
W o otherwise.

Thus for voiced speech, the short-time autocorrelation function R(k)
is approximately equal to the filter model autocorrelation function
Rv(k) convolved with the symmetric decaying train of pulses RPw(k)'
having the same period T as the pitch period, see Figure 5-2a.
Hence, the R(k) is an estimate of Rv(k) for short time-lags. For
unvoiced speech, the excitation function p(n) is white noise.
Assuming the smoothed window w(n) 1is 1long enough, then the

autocorrelation function of Pw(n) apprcximates the autocorrelation

function of white noise namely,§(n). Thus we have

R =
” (k) S(k). (5-9)
w

As a result, using (5-6) the short-time autocorrelation function for

unvoiced speech 1is an estimate for the filter model autocorrelation

function R, (k), see Figure 5-2b.

5.4 Pole-Zero Analysis-Synthesis of Speech

Each short segment of speech can be represented by a
Voiced/Unvoiced decision, the pitch period, if the decision is
voiced, and the filter model transfer function. To be able to
represent the short segments of speech with a limited number of

parameters, the filter model in Figure ©5-1 1is represented by a
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parametric model. Recalling the discussion in section 5.2, the
parametric model is chosen to be the Pole-Zero model H(z) given by
equation (3-3). Furthermore, since the numbers of the spectral poles
and the spectral zeros in the filter model spectrum are different for
different segments of speech, then full advantage of the Pole-Zero
modeling is gained by allowing the orders M and L to be dynamic.

The overall block diagram of the so-called Pole-Zer«
Vocoder (PZV) 1is shown in Figure 5-3. The Voiced/Unvoiced decision

and the pitch period are extracted using any of a variety of existing

methods [28]. The parameters of the Pole-Zero model H(z) are
obtained by applying Autocorrelation Prediction, Figure 3-2, to the
short-time autocorrelation function of the speech. Since the speech
short-time autocorrelation function is an estimate for the filter
model autocorrelation function, then the spectrum of the resulting
Pole-Zero model approximates that of the filter model. In applying
Autocorrelation Prediction to the speech short-time autocorrelation
function, the parsimoneous (most economical) orders MP and LP for

each segment may be obtained using the methods described in Secticn

2-5. Finally, to synthesize speech using the PZV depicted in Figure
5-3, we update the Voiced/Unvoiced decision, the pitch period T and
the Pole-Zero model parameters for each segment of speech.

5.5 Pole-Zero Analysis-Synthesis of Speech
In Presence of Additive Stationary Noise

The idea is to find the optimal estimate of the speech spectrum
for each short interval. The autocorrelation function of this

optimal estimate is then matched with that of a Pole-Zero model using
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Autocorrelation Prediction described in section 3.4. We make the
assumption that the background noise 1is stationary during Ta 1ong
period of interest, while the speech is stationary only in short

intervals (30 msec).

The optimum linear filter, namely the Wiener filter, is designed

for each short interval of noisy speech, Figure 5-4.

n(t)

s(t) *ox(t) s(t)

L h(t) — e

Figure 5-U4., Wiener filtering

The transfer function of the Wiener filter is

fsx(w)

H(w) = ""xx(“’) . (5-10)

Assuming the noise and speech are uncorrelated, then (5-10) takes the

form

Pgg (W) 4 1
bsg () + o (W) By (@)’ (5-11)

. -
r!’Ss(m)

H (’A)) -

or
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H(w) = = 1 - =—— (5-12)

The noise spectrum ¢NN(“0 can be estimated using speechless portions
from the noisy speech record. From Figure 5-4, the optimal estimate

of the short interval spectrum is
2 ;
Pan(w) = ¢xx(m)|H(w)| . (5-13)
SS

Using (5-11) or (5-12) in (5-13) gives

W s B
"58§ ¢NN(M) ’ 3
1+35 @
SS
or
2
¢ (w)
L (5-15)

.y = & () Il = ===,
S8 XX L Sux (W)

Equation (5-14) shows how the ratio of the optimal estimate ¢..(w) to
SS

the speech spectrum ¢Ss(w) is related to the power ratio

@NN(mb/bgq(m) of the background noise to the speech at different
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frequencies. The optimal estimate, however, is computed from (5-15),
where ¢Xx(n0 is the noisy speech spectrum for the short interval (30
msec) and ¢NN(m) is the noise‘specirum for the period of interest.

An estimate for ¢X{m) is obtained by averaging spectra or LP
spectra for short overlapping segments of noisy speech. An estimate
for ¢NN(u0 is computed by averaging the short-time spectra or LP
spectra during speechless segments of noisy speech. Finally, the

Inverse Fourier Transform of the optimal estimate ®§§(m) gives the

autocorrelation function (k), i.e.

m
. SN ~fk
R(k) = o J ¢§§(w)e

-

P (5-16)

The overall block diagram for the analysis and synthesis of
speech in the presence of additive stationary noise is depicted in
Figure 5=5. Similar to clean speech analysis, applying
Autocorrelation Prediction to the R(k) gives the parameters of the
Pole-Zero model, the autocorrelation function of which approximates
the R(k). The Voiced/ Unvoiced decision and the pitch period
extraction for the short segments of speech, becomes more complicated
in the presence of noise [44]. The synthesis remains the same as the

one in PZV.

5.6 Implementation and Results

The Pole-Zero Vocoder (PZV) based on Autocorrelation Prediction

was simulated on a PDP-10 computer. The parameters of a fixed order
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Pole-Zero model are estimated by applying Autocorrelation Prediction
to the speech short-time autocorrelation function. The Pole-Zero
model is realized by a lattice filter augmented with tap parameters
E3T 1. The gain G for the lattice filter is computed such that the
corresponding synthesized speech and the natural speech have equal
energy (5,8].
The Voiced/Unvoiced decision and the pitch period 1is extracted
using an implementation of the SIFT algorithm [28] by Boll [9]. The

analysis-synthesis is quasi-pitch synchronous (9]. The augmented

lattice filter parameters are linearly interpolated between two

successive analysis segments.

This vocoder was used for analysis and synthesis of passages of
natural speech. For proper selection of the fixed orders L and M,
informal hearing tests show some improvement of the synthesized
speech generated by the Pole-Zero Vocoder over that generated by the
All-Pole vocoder having comparable number of parameters. The
improvement 1is more noticeable when the corresponding natural speech
has more nasalized sounds. The Pole-Zero synthesized speech has less
"ringing" quality than the corresponding All-Pole synthesized speech.
Figure ©-6 shows corresponding segments of natural Pole-Zero
synthesized and All-Pole synthesized speech.

A pilot experiment to test the performance of the Pole-Zero
analysis-synthesis of speech in presence of additive colored noise
was implemented as follows: Using the dynamic pole-zero filtering
process described in Chapeter 4, the noisy speech was first filtered

and then the Pole-Zero Vocoder (PZV) was applied to the resulting
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filtered speech. Fignre 5-7 shows the spectrograms of corresponding
portions of vocoded noisy speech, vocoded filtered speech and vocoded
clean speech. .Informal hearing tests reveal an improvement in the
vocoded filtered speech over the vocoded noisy speech. The Fole-Zero
coding of speech in the presence of noise, described in section 5.5,
which combines the Pole-Zero filtering of noisy speech and the
Pole-Zero coding of clean speech, seems to have the potential to

generate improved coded speech.
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CONCLUSIONS

6.1 Review

The goal of this research has been to develop new Pole-Zero
modeling techniques and apply them to speech processing. This goal
has been accomplished. Two Pole-Zero modeling techniques,
Autocorrelation Par£ial Realization (APR) and Autocorrelation
Prediction (AP), have been developed and their theories were
established. APR, using partially linear operations, identifies the
Pole-Zero model whose short time-lag autocorrelations exactly match
those of a given spectrum. in contrast AP, wusing only linear
operations, identifies the Pole-Zero model whose short time-lag
autocorrelations closely approximate those of a given spectrum.
Neither of them wuses Fourier Transformation, but fast recursive
and/or iterative algorithms to estimate the model parameters. APR
and AP have been compared and Lhe properties of the Pole-Zero models
identified by them were discussed. It has been shown that the
Pole-Zero model, identified by Autocorrelation Prediction, has
advantages over the All-Pole model, identified by Linear
Prediction (LP), when the the envelope of the given spectrum has deep
valleys. A cascade of two lattice filters has been proposed as a
realization of the Pole-Zero models identified by AP or APR.

A dynamic filtering process, based on Wiener filtering and

Autocorrelation Prediction has been developed and implemented to

suppress background noise from degraded speech. Using AP, rather
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than LP, to model the estimated Wiener filter spectrum, has improved
the performance of this dynamic filtering process. Moreover, a
Pole-Zero Vocoder (PZV) based on AP has been developed and
implemented. PZV becomes an All-Pole Vocoder (Linear Predictive
Vocoder) on one extreme and an All-Zero Vocoder (different from the
Homomorphic Vocoder but similar in quality of the synthesized speech)
on the other extreme. For preoper selection of the Pole-Zero model

orders (M is roughly three times L), informal tests has shown that

PZV generates more "natural sounding" synthesized speech than the

other two extremes.

6.2 Future Research

To use the Pole-Zero model obtained from APR in applications
other than spectral matching, like filtering, the stability of the
model should be resolved. This area needs futher investigation.

To obtain a low bit rate high quality vocoder, the orders of the
Pole-Zero model in PZV can be made dynamic; preferably equal to the
parsimonious orders M and L for each frame of anlysis.

Modifying the PZV to account explicitly for the background noise

of degraded speech seems promising when the noise is stationary and
only the degraded speech 1is available. The restriction of the
stationarity of the background noise may be relaxed if a correlated
version of the background noise, recorded by another microphone away
from the speaker, is also available.

Finally, the applications of Autocorrelation Prediction, as a

Pole-Zero modeling technique, in areas other than speech processing

ire open for further research.




APPENDIX A

DURBIN AND PARCOR RECURSIVE ALGORITHMS

A system of linear equations can be solved recursively by the

Bordering method [13]. When the coefficient matrix of the system of

linear equations is a Symmetric Toeplitz matrix, then the Bordering

method is simplified to Levimson's algorithm [42]. 1f the constant

vector in the right hand side of the system of linear equations is

also of the following form, equation Al, then Levinson's algorithm is

further simplified to Durbin's algorithm [12, 27].

R R
51 o Sy Ry
Byt Ry s

RM—-l RM—Z %«—3

b

Durbin's Recursive Algorithm

(0}

s it [ -
%3 M
a5 Ry
a3 R3
= - (Al)
a
M Ry
—t — J — a—t

The system of linear equations

Durbin's algorithm:

(Al) can be solved recursively by
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1) E

J= s
¢y SRR A —[R. +°7 a9™D g ] /r ,
J J Bring o4 1 jel
i=1
8 a9 =g,
a J
5) a3t o JUE g aFJ‘l), <% 1
J i S = =l
6) E, = (1-K)E
j 37551
7) If j = M stop; otherwise go to 2 (A2)

When the algorithm stops, the solution to the system of equation

(Al 1isis

1<1<M. (A3)
The corresponding by-product parameters Ki’ tor LS < M are
referred to as the reflection coefficients, partial correlations or
parcor parameters.

If the function Rk represents an autocorrelation function, then
the coefficient matrix in (Al) is positive definite [34]. In
this case, it can be shown that the parcor parameters Ki have the

property

]Ki{ < I, 1<1<H, (A4)
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M e
and the polynomial A(z) = 1 + X a; z is minimum phase. That is,
i=1
all the roots of A(z) are inside the unit circle [18].

There is a unique set of parcor parameters Ki for the set of
predictor coefficients {ai} and vice versa. To compute directly the
corresponding parcor parameters {ki}from the predictor coefficients

tai}, a recursive algorithm is derived. Substituting j~1 for i in

step 5 of Durbin's algorithm and rearranging the terms gives

G- _ .3 _, ,G-D PR
3, 4 ay~y Kj a; ’ 1< d < §-1, (A5)
Again substituting for a§i;1) in step 5 of Durbin's algorithm

from (A5) and some simplifications results in
G- _ [ ) 2 o
a; aj Kj aj—i (1-Kj), 1 e [ U (A6)

Thus from step 4 in Durbin's algorithm, (A3) and (A6) we obtain the

sought for parcor recursive algorithm.

i M _
1) j =M, ay = a,, 1

| A
o
A
<

-

J 3.2

3) If j = 1 stop

5 0 ) B (J) G 2 e k
4) ay = [;1 - Kj aj—i] /(I—Kj)' A O

5) s R 1

6) Go to 2. (A7)




~

APPENDIX B
PADE APPROXTMATION

A function represented by a one-sided power series is approxi-
mated with a rational function using the Padé approximation.
Let X(z) be a function represented by the following one-sided

power series

X(z) = § x 2K for |z| > r, . (B1)

Z =1
cy 2
3 C(z i=0
X = ——g-—l = — =
(z) D(2) v = d 1,
} 4, 2 d, # 0,
i=0 & M
L < M, (B2~a)
whose power series representation is
A -
X2y = ) % 2z for |2] > .. (B2-b)
k=0 k 2

From where (B2-a) and (B2-b), the coefficient ik is equal to

x, =

B il

M
c 8(k-1) - 121 4, X, _, k>0 , (B3)

i=0
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T2,

To approximate the X(z) by X(z), the
N=L+M+1, (BR4)

unknown coefficients (di} and (ci} are computed such that the first N

terms of the X(z) and %(z) power series representations are equal,

X, =X 0 <€ k € N1, (B5)
Using (B5) in (B3) results in the following system of linear equations

M
¢, 8 (k=1) - 5

L
x = ] gl B <k <Nl . (B6)
k' 4=0 e
L
In matrix form, equations (B6) become
- 1 [q e e
X, X4 X 0 . 0 0 } i ~1 X4
d X
%e 51 X R Xy « w0 0 2 L+2
M-l *M-2 e M 2 S TR %
2N *M
X2 am-3 0 0 M2 M3 0 0L By [ *L4M-1
[LLWI;I Baeat t Tl w2t "R R 9 dy ML

(B7-a)
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0k <L, (B7-b)
where the matrix (XL+i—j)T (B7-a) is non-symmetric teeplitz. The

Trench recursive algorithm [39, Appendix C] can be used solve the

system of linear equations (B7-a). After computing the {di} the

coefficients {ci} are obtained simply by performing the summation in

(B7-b).

Pade ;Lproximation Error

Uging (B1), (B2-b) and (BS), the Padé approximation error, Figure

i 5;}. is defined by the following power series
e, T

>

X(z)

[ ——— —

X(z)= %%;—

Figure B-1. Padé approximation error
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Ez) = ) e 2z fx@ -x() = § (x - x)2
k=0 k=0
o i _k
= ) (x, - x.)z
k=N k k
fZ) > Max(rl, rz)‘ (Bg-a)
Using (B5) and substituting for Qk from (B3) in (B8-a) gives
another expression for E(z), i.e.
© 553 M
-k -k
E(z) = Z e 7 = Z E d, x .2 . (B8-b)
k=0 X o fgmo KT

Relation (B8-a) shows that. the first discrepancy between the
corresponding power series coefficients of the X(z) and i(z) occurs

at k = N. The relation (B8-b) shows that different errors E(z) are
obtained, depending on the selection of the orders L and M for a given
N. All of these different errors E(z), nevertheless, have the following
property:

e, =0, 0<k<N-1. (B9)

Special Case

The Pade approximation %%%% for the special case L=M, and conse-,

quently N=2M+1, is considered here. Also, the value of the first

discrepancy e, is expressed in terms of only the given power series

N

coefficients xk.

~e
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The matrix equation (B7-a) for L=M takes the form
zl e 2 =0

o SR ", (R S s M1

w1 XM Ty 2y d, X2

XoM-2 X2M-3 R Egal My XoM-1

P .

oM-1 *2M-2 el M L.M XoM : (B10)

e Lo o b .

The non-symmetric toeplitz matrix (XM+' M in (B10) is symmetric
i-j7

around its second diagonal. Therefore, by rearranging the unknown

coefficients {di} of (B10) in reverse order, the matrix equation (B10)

takes the following form

— - [ | - r —
o W S N dy M+1
- i PRSI -1 XM42
X1 M * ¢ Touy Xowed d, XoM-1
. . X X v
M M1 2M-2 *oM-1 d, - (RAL)
- A .J - -

M

1+j-l)l in (Bl1l) is a Hankel matrix.

The symmetric matrix (x
The Berlekamp-Massey algorithm (Appendix C) can be used to solve the

system of linear equations (B11). From (B8-b) and (B5), the first
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discrepancy ey for the case L=M 1is given by

N T Cam1

d

If>43

"
i *oMH1-i Rz
i=0

To compute ey directly in terms of only the given power series coef-
ficients X o the system of equations (B1l) is augmented by the

equation (B12). ey is considered as an unknown. This leads to

- M+1
i+j-1
e = 1 ) (Bl})
2M+1 # M
i+j-1
;
M M
where lxi+j_1 is the determinant of the Hankel matrix (xi+j-1)1
1 (M+1
given in (B11) and the xi+j-1f is the determinant of the following
1

Hankel matrix:

[ e T e |me
x2 x3 W xM+1 lxM+2

1 w2 v " oy |X2M+1 (B14)




APPENDIX C

TRENCH AND BERLEKAMP-MASSEY RECURSIVE ALGORITHMS

In using the Padé approximation, one encounters the system of

linear equations of the form

- e T
‘:]O ¢)_1 ¢_2 L RS ¢’_M_+_l ,v“ (:1
LR R R S Yy by
Py Ry By ew S bWy = 19
b ¢ ¢ b v
M-1 "M-2 M-3 ° 0 M )
o 24 S éﬁ i (c1)
M

where the coefficient matrix (®i—j

Toeplitz matrix. Using the Bordering method [13], Trench [39],

) in (Cl) is a non-symmetric
1

and Whittle [41] derive a fast recursive algorithm to

solve simultaneously  (Cl1) and the following system of equations
- - o -
-] a
o &1 % ey Ty b
.1 % % * Oz} ™2 g
b2 %3 % © V-3 LY .3

¢0 WM ¢ (c2)

¢ ® ¢ o
ML -M+2 -M+3 = | M | "-M_|
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Trench's Recursive Algorithm:

2) j=j+1:

: 1=l G-D
(‘]) &= - J~ 1 ¢ ] A
N o5+ 1w oy /.J._l,

=t
-1 ~
G) _ _[ 5T G-D J A
2 nj Q-j x izl ni q)'(j“i) -1’
(4) (=1L} @) G=1)
5) Wi = Wi + Wj ”j-i s TS AR L
; -1 : (-1
6) mi]) e niJ ) ) n§J) W;ii ) ; f 22 < g1,
(GG
A = 3=
7) Ay (1 wj N )Aj_l :
8) If j = M stop; otherwise go to 2.

The system of equations (Cl) becomes identical to the system of

equations (B7-a) by replacing @k by

x -L < k < M-1

’

0 Otherwise , (C3)

and wk by dk for 1 < k < M. Thus Trench's recursive algorithms can be

used to solve the system of equations (B7-a) encountered in the Padé
approximation. Note also, the system of equations (Cl) becomes identi-

cal to (C2), except for the unknown names, when the coefficient matrix
M
1 In this case, the Trench

(@i_j) is symmetric, i.e., ¢, = ¢_

k k'




algorithm reduces to Durbin's algorithm.

Berlekamp-Massey Algorithm:

1) 1 = D(z) 1> B (z) L > B

0+ M 1-+p 0+ k.

2) If k = N, stop; otherwise compute

k i=1 i k=i
3) If e = 0, then 8+ 1 - B and go to 6).
4) If e # 0 and 2M > k, then

D(z) - ep—l z_HP(z) > D 2)

and go to 6).
5) If e # 0 and 2M < k, then

D(z) » T(z) (temporary storage of D(z))
-1 -F

D(z) - ep z P(z) * D(z)

k+1~M>M

T(z) > ¥ (z)

6) k +1 >k and return to 2).
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where
Pz current denominator
M: order of current denominator
p(z): last denominator of lower order
e: next discrepancy
P the discrepancy corresponding to the last denomination
of lower order
ke current number of matched terms

difference between current number of matched terms and

that corresponding to last denominator of lower order.

The Berlekamp-Massey algorithm [7, 30] recursively finds the

weights Jdi: of the shortest Linear Feedback Shift Register (LFSR)

}Nﬂl Figure C-~1.

that can generate exactly the given sequence {xk {=0*
Ji=

The LFSR given in Figure C-1 represents the rational function

C'(z) _ _i=0 ¢ =l
D(z) M o
/

The coefficients {ci? are obtained from the first M values

’

sequence {x, } stored in the shift register as initial
0

k

{

the weights \di? using the following relation:

Hence one can use the Berlekamp-Masse

nator coefficients of the least dime
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Initial

Values XM-I XM-Z XO
Xj | %
I s 4.2 5o TR ERRTOL
_d‘ -dz _dM
Figure C-1. Linear Feedback Shift Register (LFSR)
representing %—%%% =
initial
Values X" xM_] X] XO
X
J x' X x x y—..x._M_z...X]X
j-1 j-2 jM[*j-M1 J
-d‘ -d2 -dM

Figure C-2. Linear Feedback Shift Register (LFSR)

representing & (2)
D (2)

0
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(C4) for which the first N terms of its power series representations
are given.

We are interested, however, in the rational function of the

form

M M-1

z ciz-1 Z c'z”1 »
Clz) _ _1=0 . o SO L - i
D(z) M o + 'z v Xq i) Xz, d0 &

-1 -1 i=1
] ds ¥ dz
i=0 i=0 (C5)

rather than the form (C4). From (C5) and (C4) one concludes that the
denominator coefficients {di}in (C5) are the feedback weights of the

N-1
shortest LFSR which generates the sequence {x,}

N-1 i i=1
sequence {xi}i=0 .

rather than the

Therefore, applying the Berlekamp-Massey algorithm to the sequence

}N—l

{ j=1 &lves the desired denominator coefficients {di}. Using (C5),

b |

the numerator coefficients are obtained from the following formula

i
g, = ) AR BcL<H., (C6)
SN s

Figure C-2 represents the rational function %%%% defined in (C5).
}N*l

1’10 Was indeed generated by some

unknown rational function of the form (C5) and the condition N > 2M+1

If the given sequence {x

holds, then the Berlekamp-Massey algorithm detects the order M and

M

gives the corresponding denominator coefficients {di}i=1'

When the

sequence {xi}g:é corresponds to some real data, however, the Berlekamp-
N-1

1}1-1 , recursively computes

the solution to the following system of equations, (C7), of order

Massey algorithm applied to the sequence {x
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M= [N/Z]. The [N/Z] means the largest integer less than or equal

to the real number N/2.

o s, I SRR AU S A 1 dy 1
e TR S W R G A " | dy-1 M2

TR SRR L dy-2 M+3

X Pl w2 ¢ 0 0 Foyq 4 | - (€7)




APPENDIX D
NEWTON-RAPHSON ITERATIVE ALGORITHM
To decompose the symmetric polynomial

M

P(z) = Z p’il z-i s (D1)
i=-M

into the product of the form

M i i M M—{i| L
B(z)B(1l/z) = (izo biz ) (120 biz ) = 12 M( . bjbj+|i DZ ’

the polynomial P(z) should be non-negative on the unit circle in z-
plane. Assuming P(z) has this property, an iterative algorithm based

on Newton-Raphson method is formulated to compute the polynomial B(z)

such that
M M-|1] o
P - = - =
(z) - B(z)B(1/z) 1§-M(p|i| §-0 bjbj+|1|)z 0. (D3)

Consider the vector function (fi) whose i-th element is defined
as
M-1i

£, =p, - I bb 0<1i<M
R R

(D4)
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Computing the B(z) such that the relation (D3) holds, is equiva-

lent to finding the vector

(b

L M_J £ (DS)

for which the vector function (fi) has zero value. Therefore, the
Newton-Raphson iterative method can be used to find the vector (bi)
and as a result, the desired polynomial B(z). The iterative Newton-
Raphson formula for the vector function (fi) takes the form

a(f,)

(tp+ (o)™ = afle < 0, (06)
i

where (bi)t is the estimate for the desired (bi) at the t-th

iteration.
g i)
From (D2), the matrix T = szg—y is equal to
- 17 ~ -
) » bo b1 S o bM bo b1 - M
A i 1Y, I ® b by « = + B
T 3(b1) ( % ) 1 2 M + 0 M-1
j . . . .
| Pu S R ®0 | on

Using (D7) 4in (D6) and rearranging the terms, results in

t+l t =
B = )" -T

(fi). (D8)




93
The relations (D4) and (D7) and (D8) provide the iterative

algorithm for computing the desired vector (bi)'

Assuming p >0, the starting vector (bi)0 can be chosen to be

4
P,
@B3* -1

0
(Y O (D9)

The iteration 1is considered to have converged when for some pre-

scribed value € the following inequalities hold
gL 0<i<M. (D10)

It can be shown that the convergence is of second order and the
t 0
polynomial Bt(z) corresponding to the vector (bi) , having the (bi)

as starting vector, is minimum phase [43].
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