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ABSTRA CT

/
Autocorrelatlon Pole—Zero modeling identifies the parameters of

a rational transfer function H(z) whose short time—lag

autocorrelations either exactly, match (Autocorrelation partial

Real izat ion~ or closely aDDroxjrnate(Autocorrelation Prediotionj those

of a given spectrum . As a resul t , the spectrum of the H(z) obtained

from either met hod approx imates the gross structure of t he given

spectrum. Autocorrelation Partial Realization (APRY ~ uses the

~~~~ 
aDDroximation to determine the denominator coefficients of H(z).

To compute the numerator cpeffieient~ of H(z), APR uses an

iterative algorithm such as Fejer ’s or Newton—Raphson ’s. ~In

contrast , Autocorrelation Prediot-ton ’ ( AP )  uses only Line ar

Prediction (LP) to determine both the denominator and numerator

coefficients. Therefore, once the autocorrelation function of the

given spectrum is known , AP uses only linear operations and

~~ Fourier Transformation s to determine the parameters of H(z).

Moreover , the result ing rat ional transfer funct ion is guarantee d to

be minimum Dhase and consequently st&ble. AP can also automattc,aiiy,

determine the least (parsimonious) denominator and numerator orders

required to model efficiently a given spectral envelope.

-A dynamic filtering process, based on Wiener f ilter ing an d

Autocorrelation Prediction , was developed to suppress the background

noise from degraded speech . More important, using AP , a Linear



Predictive Vocoder was integrated into the so called “Pole—Zero

Voco der ”(PZV). Computer simulations of both , the dynamic filtering

process and t he PZV were successfully used in speech process ing .

x



CHAPTER 1

INTRODUCTION

1 .1 Problem Presentation

Spectral Pole—Zero modeling has been the focus of many research

efforts in recent years. The success of Linear Prediction [27 ,291 in

All—Pole modeling of the spectral envelope [21 ,231 has encouraged the

search for a technique of comparable success in spectral envelope

Pole—Zero modeling . On the other hand , a 
~
jg
~ 

order All—Pole model

is required to model the spectral envelope having deep valleys . This

is so because a large num ber of poles are required to approx imate a

small number of zeros represented by these valleys. Therefore , to

model a spectral envelo pe hav ing deep valleys , the Pole—Zero model

requires fewer parameters than the All—Pole model. This advantage of

the Pole—Zero model over the All—Pole model is appreciated in data

com pression.

Different methods of Pole—Zero modeling have been proposed for

ma tching the envelo pe or som~ smoothed version of a given spectrum .

These methods may be divided into two groups . The first group

encompasses those which estimate the pole and zero parameters

simultaneously. In contrast , t he metho ds enco mpassed in the secon d

group determine the pole and zero parameters separately. The methods

in the f irst grou p commonly face the problem of solv ing a system of

non—linear equations in terms of the sought—for parameters. Whereas ,

t hose in the second group commonly use var iat ions of Linear
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Prediction to determine the pole and/or zero parameters . Linear

Prediction itself leads to a system of’ linear equations solvable by

fast recursive algorithms [27 ,29,Appe ndix A].

Some recent frequency c~Q~~jp, methods of the second group are

mentioned in the following . Cepstral Prediction [6,33 ,40] and

Homomorphic Prediction [20 ,21] both use Homomorphic deconvolution

[31] to initially ~~Q.oth the given spectrum . Then each of them uses

its own approach to model the cepstrally smoothed spectrum with a

Pole—Zero model. Cepstral Prediction is successful when the

resulting smoothed spectrum is some rational spectrum . Homomorphic

Prediction was reported successful when applied to the short—time

spectrum of natural speech [20,21]. Makhoul proposed a method [27]

in which a variation of Linear Prediction [10 ,141 ] is used to

determine the pole parameters . The zero parameters are then

estimated by Inverse Linear Prediction [27]. This procedure

basically applies Linear Prediction to reciprocal of the ~~oothed

ratio of the given spectrum to the computed All—Pole spectrum.

Autocorrelation Partial Realization and Autocorrelation

Predict ion , described in chapter 3, are new techniques ; modeling the

enveloDe of’ a given spectrum with a Pole—Zero model . Both techniques

determine the pole and zero parameters seoarat~~~ . A lso , both are

autocorrelatjon domain methods . In other words , once the

autocorrelat ion funct ion of the given spectrum is know n , all the

opera tions performe d are in the autocorre lat ion doma in and no Four ier

Transformation is required .

Autocorrelation Prediction was successfully used for Pole—Zero
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modeling in two applications: Wiener filter spectral matching and

natura l speech short—time spectral matching .

1.2 C~~~ter Summaries

The main body of the dissertation is devoted to development of

Pole—Zero modeling techniques and their applications. The first part

of the main body develops new techniques for spectral Pole—Zero

modeling while the last part applies these techniques to natural

speech processing . To make the dissertation more self—contained , a

collection of Appendices is also added . These Appendices provide the

basic algorithms and concepts used in developing the above

techniques .

Chapters 2 and 3 comprise the first part , with chapter 2

providing the background needed for chapter 3. The new Pole—Zero

modeling techniques , APR and AP , are derived in chapter 3. Chapters

14 and 5 comprise the last part , presenting the applications of these

techniques . A dynamic filtering process that suppresses the

background noise from degraded natural speech is described in chapter

14. Chapter 5 presents the “Pole—Zero Vocoder ” (PZV); an

analysis—synthesis process of natural speech based on Autocorrelation

Prediction .

The author ’s majors contribution are: the Pole—Zero modeling

techniques derived in chapter 3, the improved dynamic filtering

process described in chapter 11 , and the integration of’ the Linear

Prediction Vocoder into the Pole—Zero Vocoder presented in chapter 5.

Intro duc ing a new spectra l f latn ess measure , section 2.2, and

preliminary work on a modified Pole—Zero Vocoder to account for



background noine in degraded natural speech , section 5.5, are some of

the author ’s minor contributions.



CHAPTER 2

PARAMETRIC MODELIN G OF SPECTRA

2.1 Introduction

The identification of a parametric model whose spectrum

approximates a given spectrum by minimizing some distance measure is

the general theme of the chapter . A new distance measure having an

upper bound proportional to a well—known distance measure E is

defined. Two types of parametric models , namely All—Pole and

Pole—Zero , are focused upon . To show the effect of’ the order of the

A ll—Pole model on the approximation , the relationship between the

autocorrelation functions of the model and the given spectra is

derived . Also , the dependence of the minimum of the distance measure

E on the order of the All—Pole model is analyzed . Finally, it is

shown that minimizing E to estimate the parameters of the Pole—Zero

model leads to a system of non—linear equations , in contrast to the

system of linear equations for the All—Pole model.

2.2 Spectral Matching ~~ Inverse Filtering

The spectrum of the scaled model G H(z) can be matched, to a

given spectrum ~
S(w)I2 by requiring that when S(z) is filtered by the

—linverse model H ( z ) ,  the spectrum of’ the output E(z) is ~~~~~~~~

Figure 2— 1.
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S (z)~~~ H (z) E(z) ~~

Figure 2—1 . Inverse filtering .

The model scale factor squared G2 is equal to the average of the

inver se f ilter output spectr um E , i.e.

G2 = E ~fJ ~E(w)I
2 dw, (2-1)

where , from Figure 2—1 , the output spectrum ~E-(~ )j
2 is equal to

IE(w)(2 I S(w)~
2
~H~~

(w)
~
2. (2—2)

A distance measure for the flatness of the output spectrum

can be quantified as: The average distance of the output spectrum

from its average E , i.e.

~ 
- EIdw . 4 

(2-3a)

The smaller the distance measure r , the flatter the output spectrum

I E ( W ) l 2 , and consequently there is a closer match between the scaled

model spectrum , Ia H ( w )~
2
, and the given spectrum IS(w)1

2 . This

non—negative distance measure has zero value when the output spectrum

is constant , that is E(w)=E for —71 <w(1I .
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Prooerties Q1 tile Distance Measure r .  Using (2—2), and (2—1) in

(2—3a) , gives another expression for ~~~, i.e.

F 
fJ

E!S(w I 2 f l~ H~~(w)J
2 

- IS
_1
(w)1 21dw .

The relation (2—3b) shows that , for a given spectrum IS(w)J , the

optimum inverse model H 1(w ) minimizes c in weighted least mean

amplitude sense . The weighting function is proportional to the given

spectrum ~S(u )~
2. Hence , from (2—3b), the scaled inverse model

spectrum H 1(w) 1 2 approximates IS~
’(
~)I 2 more accurately at those

frequenc ies where the given spectrum IS (w ) 1 2 has its peaks rather

than valleys .

An upper bound for c may be found by using the fact that the

absolute value of the difference has the least upper bound equal to

the sum of the absolute values , i .e.

IE(w)1
2 

- E~ ~ IE(w)1
2 

+ E. (2-4)

From (2— 1) it is clear that E is always positive except for the

tr iv ial case , E(u ) = 0 for all w in which case E = 0. Thus for

non—trivial E(w), the equality in (2—4) holds only at those

frequenc ies where E(~ ):O. For non—trivial E(w), from (2—4) and

(2—3a), we obtain
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~ ~ J [IE (w) J
2 

+ E]dw. (2-5a)

Performing the integration in (2—5a) and using (2—1) gives the

following upper bound for ~~~.

F < 2E. (2—Sb)

Thus the flatness distance measure E has an upper bound proport iona l

to E, the average of the inverse f ilter out put spec trum . Note that

t he model H0(z) which minimizes the upper bound 2E ~~~
necessarily minimize the flatness distance measure c . It is

guaran teed , nevertheless , that the flatness distance measure for

H0(z) ~~~ nQ.t. exceed the smallest upper bound 2Emin• Since

identification of the model which minimizes C is complicated , we seek

only the optimal model which minimizes the uDDer bound, 2E, of the
N

distance measure c.
\
\

Other InterDretations ~~~ ~~~ . Using (2—2) in (2—1) gives another

interpreta tion for E , i .e. \

E - ~I IS(~)t 2/ IH(w)I 2dw. (2-6)

Thus E is the average of’ the ratio of the given spectrum to the model

spectrum . Hence , for the optimal model H(z), the average of the

ratio of the given spectrum to the model spectrum is minimum.

According to Parseval ’s Theorem [32 ,36], E given by (2—1), is

also the energy in the inverse filter output signal E(z).

\
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2.3 All—Pole 5pectr~,1 Matching

Let H(z) in Figure (2—1) of section 2.2 be a stable All—Pole

model defined as

11(z) — — a(0) — 1. (2—7 )

a(k)z
k=O

To ma tch the spectrum of the scaled H ( z )  to t he given spectr um

the prediction coefficients (a(k) } are computed to flatten the output

spectrum JE(wfl2 by minimizing the output energy E , [24 ,25] . The

sDectrum of the resulting scaled H(z) is called the Linear

Predict ion (LP ) Spectrum .

Using (2—7) in (2—6) gives

E - ~~ J
IS(w) f

2
lA (w) I

2d~. (2-8)

E is minimized by setting

3a( i) — O~ 1 < I < M. (2—9)

On the ot her han d , t he follow ing relat ion hol ds

aau) IM~~I 2 
— aa( i)

M M
— [e u1W(~ a (k)e~

1°
~) + ~~~~~ a (k)e~~~~) ] ,

k— O k— O

1 < i <

or
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H
— 2~ a(k)Cos(i—k)w, 1 < I <M. (2—10)

k-O

From (2—8) , (2—9) and (2—10) and interchanging of summation and

integrat ion , one obtain

11

~~~a (k) ~J f S(w)I
2
Cos(I-k)~ dw = 0, 1 < i <M. (2-11)

We know that the autocorrelation function R(k) is the Inverse Fourier

Transform of the spectrum I S ( c~)I2,i.e.

R (k) = ~~J I
S(w)I

2
e
_1
~~dw~ (2-12a)

or in a more simplified form

R(k) - ~~
J

JS(w)I
2Cos(~~)dw. (2-12b)

Substituting (2— 1 2b) in (2—11) results in the well—known

autocorrelat ion normal equat ions

H
~ a(k)R(i—k) — 0, 1 < i < H. (2—13)
k—O
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The optimum predictor coefficients {a(k)} are obtain~d by

solving the system of linear equations (2—13) using Levinson ’s [37 ]

or Durbin ’s [27] recursive algorithms [Appendix A]. Using (2—13),

(2—12) in (2—8) and some simplification gives the minimum output

energy EM

M
G~ I a(k)R(k). (2—14)

Therefore , from Section 2.2, the spectru m of the scaled H ( z ), i.e.

2 2

IGA
H(e

~
’
~~)I

2 GA 
2 = 

G
A 

2’ (2—15)
IA(~ )l Ii a(k )e~~’~ l

is the optimal All—Pole spectral match to the given spectrum pS (w)12 ,

Figure 2—2. The predictor coefficients {a(k)} in (2—15) and the

scale factor squared G~ are computed from (2—13) and (2-14),

respect ively.

2.4 Autocorrelation Function Q.~Optimal All—Pole SDectrum

The relationship between the autocorrelation functions of the

optimal All—Pole spectrum G~/~A(w)I
2 

and the given spectrum JS(w)I2is

discussed here . Rearranging (2—15) gives
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IC H(e~~~)l
2 

• A(w) ~~ 
1 

, (2 16)
A A (w)

Where “i” indicates the complex conjugate . Taking the Inverse

Fourier Transform of both sides of (2—16) results in the difference

equation that the autocorrelation function of the scaled optimal

All—Pole model obeys , i .e.

H

~ a(k)R(I—k) — G~h(—i), (2—17)
k-O

where

R (k) ~ lA~~~l2 ~~~~~~~ (2-18a)

or

71 2

R(k) — -
~~~~~ J A

2 Cos(kw)&), (2—l8b)

and

h ( 1) — 

~~~ A* (~ ) 
e~~

1
~dw. (2-18c)

Since h(I) is casual and from (2—7)



114

h(O) = 1
(2—18d )

then for i>O (2—17 ) reduces to

M

~ a(k)R(i—k) 0, 1 > 0, (2—19)
k=0

~~~a (k)R(k )  G~, I = 0 (2-20)

The system of equations given by (2—19) for 1<i<M and (2—20) has the

same form as the system of equations given by (2—13) and (2—20).

Therefore , these two systems of equations have identical solutions ,

i.e.

R (JiJ ) R(fiI). o < i < M  (2-21)

Thus , matching the spectrum of a scaled All—Pole model of order M to

a given spectrum is equivalent to finding an All—Pole model whose

scaled autocorrelation function exactly matches that of’ the given

spectrum for the first M+1 time—lags.

Equations (2—21) show that the first M+1 autocorrelations of the

matching All—Pole spectrum G~/)A (~)))
2 are exactly the same as those

of the given spectrum 
~S(to)l

2 . The rest of the autocorrelation

R (k) for Jk I>M are the extrapolation of R(k) for 1<k<M , and are

determined recursively from (2—19) using the optimum predictors {a(k)}.

IS(~)I 2 and G~/lA(w)I
2 

are the Fourier Transforms of’ the
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autocorrelation functions 11(k) and R(k), respectively. Therefore ,

increasing the order H of the matching All— Pole spectrum increases

the range of time—lags over which (2—21) holds , resulting in a closer

match of the G~/lA( w )I
2 to I s ( ui ) 1 2 . Hence , as M+cx we obtain

G2 C2
~ _ _ _ _ _  

2
2 = S(w)1 . ( 2— 2 2 )

~ 
a(i)e~~

”
~

k— 0

The G,~,/~A~ (oi)j2 can be considered the All—Pole representation of the

given spectrum ~S(w)I [35].

2.5 AnaJ.ys is Q1 tile M~n~~n~a~ Ener gy

The minimum energy EM, given by (2—114), of the inverse filter

output is a monotonically decreasing function of’ the All—Pole model

order M. Figure 2-3 shows the normalized minimum energy

V
M 

EM /R ( O) ,  (2-23)

as a function of the order H. It can be shown that O<vM<l for all M

[25 ,42]. The minimum energy decreases sharply as the order M is

incresed up to some order M~ . For increases of the All—Pole model

order beyond ~~ the minimum energy EM decreases slightly. M~ is

referred to as the parsimonious (most economical) order . By the time

the order H has reached ~~ the scaled All—Pole model spectrum

matches all the spectral envelope peaks of’ the given spectrum . The

parsimonious number of poles M~ 1 therefore , depends on the number of

spectral envelope peaks of the given spectrum .
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Figure 2-3. (a) Normalized minimum energy curves for speech
short-time spectra (voiced and unvoiced).

(b) Akaike ’s Information Criterion 1(M) for voiced
speech. The parsimonious order M~ occurs at the
global minimum of 1(M), shown by the arrow at M=l0.

(c) Akaike ’s Information Criterion 1(M) for unvoiced
speech. The parsimonious order M~ occurs at the
global minim um of 1(M), shown by the arrow at M3 .
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To estimate M~ for a given spectrum, as th~ order M of tn~

All—Pole model increases , one might monitor the •o al1~~~ mlnirn u ’n

energy given by (2—23). This monitoring can be drne t~rma ~~i~- al]v

using Durbin ’s recursive algorithm , a simplification of ~vin3 r~~s

algorithm [Appendix A]. Durbin ’s recursive algorithm computes ‘he

minimum energy EM for successive orders as a by—product of the

calculation of the predictor coefficients.

Another approach to estimate M~ , when the length of the time

sequence that generates the given spectrum is known , was proposed by

Akaike [1 ,2,3,4,15]. Makhoul applied this approach to estimate M~ in

speech spectral matching [26]. In this approach , the so—called

Akaike ’s Information Criterion 1(M), given by (2—24) below , has its

global minimum at M~ .

1(M) = Log V
M 

+ -
~~~~ I (2—24)

The W in (2—214) is the time domain window length and the constant c ,

O<c< 1 , accounts for the effective length of the time domain window

(Makhoul reports c o.4 for a Hamming window), Figure 2—3.

To match the spectral envelope peaks ~M valleys of the given

spectrum , a large increase in the order M beyond Hp is required .

This is so, because the spectral zeros represented by the deep

valleys require a large number of’ poles to approximate them. To

avoid the large increase in M beyond M~ 1 zeros are introduced

explicitly into the model. In other words , the given spectrum is

matche d with the spectrum of a Pole—Zero model rather than an

All—Pole model.
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2 . 6 Fole-Zero SD~~tra1 Ma tc hj~g L~1J

Let H(z )  in figure (2—1) of section 2.2 be a Pole—Zero model

defined as

L
~ b(i)z

H(z) = = ~~° a
0 1, (2—25)

~ a(1)z b
0 

= 1.
1=0

2To match the spectrum of scaled H(z) to the given spectrum JS(w) I
the optima l pole predictors ~a(k)} and the zero predictors {b(k)} are

computed by minimizing the output energy E , [27]. Using (2—25) in

(2—6) gives

E = f J I S (w ) 1
2 

~~~~~~~~~~~~~~~~~ dw . (2-26)

E is minimized by setting

3a(i) 
= 0 , 1 < I < H, (2—27a)

~b (i) = 0, 1 < I < L. (2—27b)

On the other hand , similar to (2—10) , the following relation holds:

L
B(w) 1 2 = 21 b(k)Cos(I—k)w, 1 < I < L. (2—28)

k—0

We also define
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R (k) - ~~ I IS(w ) 1 2 IA(~)l 2a Cos(kw)dW , (2-29)cz~

where ~I and ~ are positive integers. Using (2—26), (2—10) and (2—29 )

in (2—27a) and some simplification results in

H

~ 
a(k)R

01
(f—k) 0, 1 ~ I < t’.. (2—30a)

k=0

Similarly, using (2—26), (2—28) and (2—29) in (2—27b) and some

simplifying results in

L

~ b (k)R
12(I—k) = 0, 1 < I < L. (2—30b)

k=0

From (2—29 ) it is clear that R
01
(k) is a function of the {b(i)1

whereas R
12
(k) is a function of both {a(k)} and {b(k)}.

Consequently, the system consisting of equations (2—30a ) and (2—30b)

is non—linear in terms of’ {a(k)} and {b(k)}. To solve this system of

non—linear equations, an iterative scheme can be used [27 ,36] .  An

iterative scheme , however , brings about its own problems , such as

convergence , stability, and high rates of computation .

To avoid these problems, in the next chapter we seek subopt imal

Pole—Zero models whose parameters are partially or totally solutions

to systems of linear equations .
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C H A P T E R  3

AUTOCOR RELATION FUNCTION POLE—ZERO MODELING

3.1 1.ntroduction

Identification of a Pole—Zero model whose autocorrelation

function approximates that of a given spectrum is th.e main issue of

this chapter . To see the relationship between the parameters and the

autocorrelation function of a Pole—Zero model , the difference

equation governing the autocorrelation function of the Pole—Zero

model is derived . Two different techniques , “Autocorrelatlon Partial

Real iza tion ” (APR) and “Autocorrelation Prediction ” (AP), are

developed to estimate the parameters of a Pole—Zero model whose

autocorrelation function approximates that of a given spectrum . In

either technique , the pole parameters and the zero parameters are

estimated seDaratelv

APR uses the Pade ’ approximation to estimate the pole parameters

and an iterative method to estimate the zero parameters by solving a

system of non—linear equations . In contrast , AP uses Linear

Prediction to estimate both the pole and the zero parameters . The

spectral interpretation of AP is given and the selection of orders of’

the Pole-Zero model are discussed . Finally, APR arid A? are compared .

3.2 Autocorrelatipn Function 
~~ 

Pole—Zero Model

To understand the relation between the autocorrelations of a

stable Pole—Zero model , the di fference equat ion that governs the
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Pole—Zero model is derived .

Consider the Pole—zero model:

L

~ 
b~z

1

H(z)  A( z)  = , a
0 

1, (3—la)

I a
1
z

I~0

whose power series representation is:

11(z) 

~ 

h (k ) z~~ , I z i > r , (3-lb)
r < 1,

where , from (3—la) and (3—ib), the coefficients h(k) are obtained

from the following recursive formula:

L H
h(k)  — ~ b(i)~~ (k—I) — I a(i)h(k—i). (3—2)

1=0 i—l

The {a
1} and tb~ } are referred to as pole predictors and zero

predictors , respectively. Multiplying both sides of (3—la) by

H(1/z)A(z) gives:

[H(z)H(1/z) ]A( z )  — B ( z ) H ( l / z )  . (3—3)

Taking the Inverse Z—transform of both sides of (3—3) and using

(3—la) and (3•~1b) results in the difference equation :

H L
I a(i) R(k—I) — ~ b (I )  h ( t — k )  , (3—4a )
1—0 1—0
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or

L H
R(k) — I b ( i ) h ( i — k )  — I a ( i ) R ( k — i )  , (3—4b)

i=0 i—i

where the model autocorrelation function R(k) Is defined by:

~ R(k) z~~ ~ 11(z)H(l/z), r < zi < 1/r , (3-5)
k=-~

and from (3—ib) the power series representation of H(l/z) is:

0
H(l/z)  I h (k ) zk I h(_k)z k Iz I < -

~~~~. (3—6)
k—0

Since h ( k) is causal , then the difference equation (3—14) is further

simplified for k > L .  That is ,

H
I a(i)R(k—I) = 0 , k > L . ( 3—7 )
1—0

Comparing (3—4b) and (3—2) reveals that for k > L the same pole

predictors (a
1) predict both R(k) and h(k) from their corresponding

last values.

3 .3 Autocorrelatjpn Parti4l Realization

The idea Is to find the Pole—Zero model H(z), of the form

(3—la ), whose autocorreletion function Rk exactly matches the

symmetric autocorrelation function 11k ’  of a given spectrum

S(z)S(l/z), for the first N time—lags. That is,
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—
~~~~~

—

= , k = 0, l , 2 , .. . N- l , (3-8)

The autocorrelation function 11k is the Inverse Z—transform of the

given spectrum S(z)S(l/z), i.e.

• ~~~~~~~~~ = S(z) S(l/ z) r1 
< Iz i  < 

‘

r1 
< 1

and similarly, Is the Inverse Z—transform of the model spectrum

H ( z ) H ~,1/z):

r ~~~
_k 

}l(z)H(l/z) — ‘ r~ < Iz i < .~~ ,

1

\

The idea is r~alized in three steps , Figure 3—1 :

i. We show that using the Pade’ approximation [Appendix B] on the

right half of’ the autocorrelation function Rk leads to a rational

function C(z)/D(z) whose denominator is equal to the sought for

denominator A(z). Furthermore , P ( z ), the numerator of the two—sided

rational function C(z)/D(z)+C(1/z)/D(l/z) is shown to be the spectrum

of the desired numerator B(z).

ii. Some properties of the polynomial P(z) are discussed , and a

direct method for computing its coefficients is derived .

iii . Some iterative algorithm such as Fejer ’s [37 ] or

Newton—Raphson ’s [43 , Appendix D] is used ~o decompose the P(z) Into
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B(z )B( 1/z) -

Finally some issues invloved in Autocorrelation Partial

Realiztion are discussed.

i. ~~~~ Aooroximpt ion. Consider the one—sided sequence X k

defined as:

1~~i= (3—11)
k > 0 .

Then the two—side power series
~~ 

Ri~
z
~~ 

can be decomposed into the

sum of the following two , one—sided power series:

k~0 

k 

k~0 

—k r
1 

< z r
1 

(3—12)

r
1 

< 1

Furthermore , the right most power series in (3—12) is deraoted by X (z).

That is ,

x(z) — ~ -k I z i > r
1

5 (3 l3)

k—0
r
1 

< 1.

Now , using the Pade ’ approximation [Appendix B], the one—sided

power series X(z) is approximated with the stable rational function

X ( z ) :
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H
r —I
L C Z

X(z) — 
k—0 ~ 

— I k— 0 
~~~

—k 
d
0 

— 1, (3—14)

~ d1z
i~’0 z i  > r2,

r 2 < 1 ,

where , from (3—14), the coef’ficients xk of the C(z)/D(z) power series

representation are given by

— c
1
6(k—i) — I  d1~~~1 

. (3— 15)

The Berlekamp—Massey [7,30] or Trench [39 ,41] recursive algorithms

[Appendix C] can be used to perform the Pade approximation , leading

to t he rat ional funct ion ~(z)=C(z )/D(z). As shown in Appendix C , the

Pade~ approximation ~(z) f’or the power series X(z) has the following

proper ty:

— xk , k 0, 1, 2, ... N— l , (3—16)

where

N — 2M + 1. (3—17)

Also from (3—17) and (3—15) one concludes that

K 
— — d

l
x.K..j , k > N . (3—18)
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Therefore , X (z):C(z)/D(z) approximates the given power series X(z),

satisfying the equations (3—16) and (3—18). In other words , the

first N coefficients of the power series X (z) are ~~~~ to those of

the power series X(z) and the rest are recursive extrapolations of

these first N coefficients. Thus ,

~ ~~~~ 
~ ~~~—k C(Z) 

I z i  > Max(r
11r2

) , (3—19)
k—0 k—0

Max (r
11 r2
) < 1

We now find a two—sided rational spectrum whose Inverse

Z— transform satisfies the equation (3—8). UsIng (3—19) in (3—12) and

some simplifying operat ions results in

k--~ k~0 
~~~k + 

k-0 
~~~~~ 

C(l/z)D(~)+C(z)D(1/z ) (3-20a)

— 
P(z)

D(z)t~(l /z)

Max(r 1,r2
) < z < l/Max ( r

1
,r

2
)

Max( r
15r 2

) < 1

or

—k —k C(1/z)DJz1 rC(z)D(l/z) P(z)R
k ~~~ R

k
z D(z)D(1/z) D(z)D(l/z)

Max(r 1,r2) < I z i < l/Hax(r 1,r2)

Max(r
1
,r

2
) < 1 , (3—20b)

where
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12; k- 0
R K (3—21)

k k~~~~0 .

The two—sided rational spectrum P(z)/D(z)D(1/z), given in (3—20b) ,

has the Inverse Z—transform for which , from (3—21), (3—16) and

(3— 11), the relation (3—8) holds. Since P(z)/D(z)D(1/z) is the

spectrum of the desired Pole—Zero model H(z), then:

B(z)B(l/z) P(z) 
-

A( z)A( l/ z) D(z )D( l / z) (3—22)

From (3—22) the model denominator A (z) is equal to

A(z) — D(z) , (3—23)

while , from (3—22) and (3—20) the spectrum of the model numerator

B (z )  is

B(z)B (1/z) — P(z) C(1/z)D(z) + C(z)D(l/z)  . (3—24)

ii. Prooerties ~~ the. ~Iz1. Before attem~ .,ing to decompose the

pol ynomial P ( z ) ,  we examine some properties of P(z) and give a direct

method for computing P(z). From (3—24) and (3-14), It can be shown

that P(z) is a symmetric two—sided polynomial with real coefficients.

That Is,
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P ( z )  = 

k--M 
PIkI z (3-25)

where

~~kJ 
Cl di÷k + 

M~k 
djCj÷k~ 

k = 0, 1, . - .M. (3-26)

Therefore P(z) has real values on the unit circle in the z plane.

To compute the polynomial P(z) directly, consider the symmetric

two—sided power series U(z) defined as

U(z) = D(z)D(l/z) ~ ~
1
~~-k 

= r UkZ~~~ (3-27)
k — ~

< Z < h r
1

r
1

< 1 .

From (3—20b) we also have

P(z) - D(z )D( l /z)  I ~~~-k r < z i  < h r  , (3-28)
k--~

r
2 

< 1

Similar to P(z), D(z)D(l/z) is also a symmetric two—sided polynomial

of order M . From this property of D(z)D(1/z) and using the equations

(3—8) and (3—17) in comparing (3—27 ) with (3—28), one concl udes that
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~~kI 
U k , k = 0, 1, .. .M  - (3—29)

(3—29 ) shows P(z), given by (3—25) , is obtained by truncatin~ the

power series U(z), i.e.

H M
k -kP ( z )  

~ k 
Z I uk

Z . (3—30)
k=-M k--H

Thus , the polynomial coefficients 
~kI 

can be computed directiy~ by

convolving the autocorrelation function of the A(z) coefficients with

that of the given spectrum .

iii. Decomnosition o1 ~j i~ ~kzj . To decompose P(z) into

B (z)B(.lIz) , Fe~er
’s [37) or Newton—Raphson ’s iterative algorithm

[Appendix D] can be used. Fejer ’s algorithm finds the 2M roots of

the symmetric polynomial P(z) and properly chooses M of the them to

construct the polynomial B(z). The latter algorithm finds the

minimum phase polynomial B(z) whose spectrum approximates P(z) with

desired accuracy.

Discussion. A few issues concerning Autocorrelation Partial

Realization deserve attention . These are: a. the stability of the

Pole—Zero model B(z)/A (z), b. the condition that P(z) should meet to

make its decomposition into B(z)B (1/z) possible , and finally, c. the

non—linear methods required to perform the decomposition in b.

a. To have an stable Pole—Zero model B(z)/A(z), the rational
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function C(z)/D(z) resulting from the Pade approximation should t~e

stable - We used this assumption to show that equation (3—8) holds

for the Inverse Z—transform of P(z)/D(z)D(1/z). For a given N , the

rational function C(z)/D(z), however , is not guaranteed to be stable.

Because of the equations (3— 11) and (3—8), one hopes that by

increasing N and consequently M , one finally finds a stable C(z)/D(z)

and as a result a stable Pole—Zero model B(z)/A(z).

b. To decompose the P(z) into B(z)B (1/z), the polynomial P(z)

should be non—negative on th~ unit circle . Why this condition should

• be met is verified easily from (3—24) where B (z)B(1/z) is

non—negative on the unit circle . On the other hand , P(z) is equal to

the truncated U(z). Though U(z) is non—negative on the unit circle ,

this is not necessarily true for the truncated U(z). Because of

(3—27 ) and (3—30) , the P(z) can be made non—negative on the unit

circle , however , by choosing some high order M.

c. Due to the non—linear equation (3—24), the composition in

(b) requires an iterative method . Consequently , the problems of

non—negativeness , convergence and the high rates of computation

should be dealt with.

3.11 Autpporrelptipn Prediction

The idea is to find a minimum phase Pole—Zero model of the form

L

~ b z
1

B~z~ 10
H ( z )  C ~~~~~

—
~
- = C 

M 
a0 

= b
0 

1 , (3—31)
—fa1z L~~~M ,

whose autocorrelation function R(k) ~p2roxirnates the autocorrelation

function R(k) of a given spectrum S(z)S(1/z), u trig only linear
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operations , i.e.

R ( k )  ‘ R ( k ) , (3—32)

where R(k) is defined by (3—9) and R(k) is defined by

L

~ R
B

(k) z k

I R(k)z ’
~ ~ 

___________ = 
1— L

k=_co I R (k)Z k

i--H A

< z < h r
2

r2 
< 1.

A lso , using (3—31) , the autocorrelation functions RB (k) and RA (k) in

(3—33) are obtained from

L—] k
R
B

(k) 
~~~~~ 

b1 bj+kI. 
(3—34)

M- k I
R
A

(k) = 

~~~~~ 

a1 ai+Ik . (3 35)

The above idea is realized in three steps: i. Estimation of the

minimum phase polynomial A(z), ii. Computation of the “Residual

Autocorrelation Function ” defined as:

R
D

(k) ~ R(k) ® RA(k) , 
(3-36)



33

where “ ® “ indicates linear convolution , iii . Estimation of the

minimum phase All— Zero model B(z) and the gain G , Figure 3—2. At the

end , the approximation error , and how Autocorrelation Prediction

compares with Autocorrelation Partial Realization are addressed.

i. Estimation o~ ~~ Ai~1. The minimum phase polynomial A(z) is

obtained simply by finding the All— Pole model GA /A(z) whose

aui.ocorrelation function G
~
Rh,A (k) exactly matches that of the given

spectrum S(z)S(1/z) for the first M+1 time—lags , i .e.

R(k) = C~ Rl,,A (k), 0 < k < M, (3—37)

where the autocorrelation function G
~
Rl,A

(k) is defined as:

G2 c22 r k A  A AG
A /. Rh,A

(k) z = A( z)A( l/ z) = 
M —k 

(3—38)

I R
A

(k) z
k=-M

r
2 

< I z I < 1/r2,

< 1.

As is shown in section 2.3 and 2.14, the pole predictors (a 1) are the

solution to the system of linear equations (2—13) which also

guarantees that A(z) is minimum phase. The gain squared G~ is

obtained from (2—14).

ii. Residual Autocorrelation Function. After finding the pole

predictors (a j), the autocorrelation function RA(k) is computed

according to the definition (3—35). Then , from (3—36), the Residual
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Autocorrelation function R
D
(k) is obtained by simply convolving the

finite length autocorrelat ion function R
A
(k) with the autocorrelation

function R(k).

iii. Estimation of the ~~~ and G. The estimation of the

All— Zero model B(z) and the gain 0 is performed in steps a and b.

a. We find a high order All— Pole model of the form

= q = 1, (3 39 )
Q(z)  N ‘ 0

I q1zi=0

whose autocorrelation function G~R1/Q
(k) exactly matches the Residual

Autocorrelation function RD
( k )  for the first N+1 time—lags . That is ,

C~ R1/Q (k) = RD(k), 0 < k < N , (3-40)

where the autocorrelation function G
Q
R1~/Q (k) is defined as

-fcx, 
G
2

G~~ ~ R
1/Q

(k) 
~ Q(z)~~(1/z) N 

—k 
- (3—41)

I R~(k)z
k--N ‘<

Similar to the estimation of the {a
1}, the coefficients {q1

} are the

solution to the system of hinea~ equations (2—13) after replacing

Laj~ by ~q1}, R ( k) for 0.�j kISN by R.0(k) for 0(jkJ (N , and M by N , i .e.
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N

~ 
q
1
R~ (k—I ) = 0 , 1 k < N. (3—42)

1=0

A lso , the gain squared is obtained from (2—114) after the same

replacement . That is ,

G~~ 
= 

~ 
q1R~(i). (3-43)

Using ( 3 — 39 )  in ( 3 — 1 4 1)  gives the expression for the autocorrelat ion

function RQ (k )  as

N-Ikj
R (k) = I 0 .~~ I k i  < N. (3—44)

Af ter comput ing t he coeff icients {q1) from (3—4 2), the equation

(3_411 ) is used to calculate R
Q

( k ) .

b. Finally, we find the All—Pole model GB
/B(z) whose

au tocorre lation funct ion G
~
R
h,B

(k) exactly matches the

au tocorrelat ion funct ion R
Q
(k) for the first L+1 time—lags , i.e.

G
~
Rh,B

(k) — R~~(k)~ 0 < J k J  < L, (3—45)

where the G
~
R
l,B

(k) is defined as
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2 2C C
I R1,,8

(k)z 
~~z~ Bi~i/z~ 

“ 
L 

(3—46 )
k=_r= I R B (z)

k-—L

Again , similar to the estimation of the {a1},the zero predictors {b1}

are the solution to the system of linear equations ( 2 — 1 3 )  a f te r

replacing (a 1) by {b1},  R(k) for 0<IkkM by RQ
( k ) for O < I k I < l , and M

by L. That is,

~ b1R~(k-1) - 0, 1 < k < L. (3-47)
1=0

Similar to (2—13) , the solution of’ the system of’ linear equations

(3—47) guarantees that B(z) is minimum phase . Also , the gain squared

G~ is obtained from (2—14) after  the same replacement.

~~~ 

b1
R
Q
(i). (3-48)

It is shown in the next section that the gain G is equal to

N
I ~ 1

R~~(f )

G
~~~~~~c~~~~~~~

= ~~~~° 
- (3 49)

B I b1
R ( 1)

1—0
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The i den t i f i ca t ion  process of the Pole—Zero model 0 B ( z ) / A ( z )  is

summarized in Figure 3— 2. Figure 3—3 shows a speech shor t—time

spectrum superimposed by the Al l—Pole  and Pole—Zero model spectra for

comparison . Note the advantage of the Pole—Zero model over the

Al l—Pole  mode l in matching the spectral envelope valley of the given

speech shor t—time spectrum .

A var ia t ion for AP is obtained by computing the pole predictors

from a non—symmetric , rather than a symmetric , toepltiz matrix. In

this  way,  the zeros in the model are explicitly accounted for .  For

this variation , however , the s tab i l i ty  is no longer gauranteed.

Anproximation Error. To show how c lose the autocorre lat ion of

the resulting Pole—Zero model G B(z)/A(z) approximates the

autocorrelation function R (k), the approximation error is derived .

From (3—38) , (3—141) and ( 3 — 4 6 ) ,  the following similar equations are

obtained

G~~ Rl,A
(k) ® R A

(k) G~t~(k) , (3 50a)

N
\ C~ R1/Q

(k) ~ RQ (k) — C~~~(k), (3-Sob)

G~ R1,~~(k) ® R
B

(k) — C~~~(k). (3—50c )

Using (3—40) , we def’ine the error autocorrelatlon function 1
~
RD(k) to

be

\
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Prediction).
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10 0 < I k i  < N
AR.0(k) = 

- G~~ R
11~~(k) I k i  > N. (3-51)

Thus we have

R .0(k) = G~ R
1,~~

(k) + i~tR (k). (3—52)

Using (3—50b) in (3—52) gives

R
Q
(k) ® R

D
(k) = G~~~(k) + t

~
RD
(k) ® R

Q
(k). (3 53)

Similarly, using (3~1I5), we define the error autocorrelation function

A R
Q~

k )  to be

10
L,~RQ

(k) = 
tRQ~~ 

— C~ Rh,B
(k)l I k I  > L. (3—54)

Thus we have

R
Q
(k) = G~ R

l,B
(k) + AR

Q
(k). (3—55)

Using (3—55) and (3—36) in (3—53) and some rearranging of terms

results in

-J



~4 1

(‘.~~ Rl,B
(k) ® R

A
(k)  ® R(k) = G~ S(k) + [AR

D
(k) €1 R

Q
(k)  — AR

Q
(k )  ®

R~ (k)J. (
~—56)

Finally, using (3—5Oa) , (3—50c) in (3—56) gives

R(k) = —i R
B
(k) ®R h,A(k) + AR(k), (3—57)

G
B

where the approximation error is

AR(k) 
~~~

_ R
B

(k) ® Rl,A(k) 0 fAR~ (k) OR
Q
(k) - AR

Q
(k) 0

GB
(3 — 58 )

For proper selection , discussed below , of the orders M , L , and N the

function in the square brackets in (3—56) or (3—58) has values

relatively close to zero for the short time—lags. Therefore ,

R(k) R
B
(k) ® R

h,A
( k ) .  ( 3- 5 9 )

Taking Z—transform of (3—59) and using (3—9)and (3—38 ) results in

~~~~R(k)z
k 

S(z)S(h/z) 
(

~~~~2 B(:)B(1/z) 
= ~~~~R ( k ) z ~~

( 3 — 6 0 )

Hence , the autocorrelation function of the Pole—Zero model

approximates the R(k) at short time—lags and the approximation error

Is given by (3—58). Note (3—56) shows that the autocorrelation
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function of the inverse filter out put , for the obtained Pole—Zero

model , differs from the impulse response (~~(k) by 1/G~ times the

‘small” functinn in the square bracket s

Comp .a rj so n  of APR ari d A P .  There is a trade—off between t~-

Autocor rel~ t~ on (AP) Prediction and Autocorrelatior t Pa tial

Realization(APR) . In AP all the operations are linear and ~-~e

stability is guaranteed , but the short time— lag autocorrelations of

the given spectrum are approximately matched. In contrast , APR has

partially non—linear operations and the stability is not guaranteed ,

but the short time— lag autocorrelations are exactly m a t c h e d .  The APR

is also theoretically more appealing. AP and APR have , howeve” , s~~me

common properties. Once the autocorrelation of the given spectrum is

known , no Fourier transformation is required to estimate the model

parameters ,using either technique . More important , both are well

suited for matching the ~~~ctral envelo~~ of a given spectrum having

fine structure , such as speech short—time spectrum . This is possible

because in both techniques the model parameters are computed such

that the short time—lag autocorr~lations , representing the gross

structure of the given spectrum , are either exactly matched or

closely approximated .

3.5 FreQue ncy Interpretation of AP

The frequency domain interpretation of the steps taken in

Autocorrelation Prediction , described in section 3.14, and selection

of the orders M , L and N are addressed here , Figure 3— 14 .

The given spectrum S(z)S(1/z) can be thought of as being
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composed of ’ s p e c t r a l  ~~ 1es and ~.rc s r -~pre sen ’ I by t ~o 5ç) 0 0 r~~

peaks arid deep valleys . As d i ss c u s o e i  in s’ t ions  2 .  a s I  2 . 5 ,

f i t t i n g  the  All -Pole speccrum ~~/A (z)A(1/z) to the given spectrum

S(z)S(1/z), matches the peaks r I t h e r  the  v a l l e y s  of t he  spec t r a l

envelope. By selecting the crier of the All— Pole model equal to the

pars imon i  )u S ord er  M 1, , t hose  peaks  h a v i n g  h i g h e r  a m p l i t u d e s  are

m a t c h e d , w h i l e  t h e  deep v a l l e y s  are  l e f t  u n m a t c h e d .  The residual

s p e ct r u m  :~( z ) D ( 1 / z ) ,  w h i ~~h is t h ~ g iven  spec t rum a f t e r  r e m o v i n g  f c c

e s t i m a t e d  poles , co n t a i n s  p r i m a r i l y  the  spectra l  zeros represented by 5

the  deep v a l l e y s  i n  the  r e s i d u a l  s p e c t r u m .  To f i t  the A l l — Z e r o

s p e c t r u m  H ( : iB ( 1/ z )  to the  r e s i d u a l spec t rum D ( z ) D ( 1 / z ) , che A l l — P o l e

s p e c t r u m  J~~/ B ( z ) B ( 1 / z )  is f i t t e d  to the  Q ( z ) Q ( 1 / z ) ;  an app rox ima t ion

for  the  r ec ip roca l  of’ the  r e s idua l  spec t rum envelope . To o b t a i n

Q ( z ) Q ( 1 / z ) ,  the  high order All— Pole spectrum G~ /Q (z)Q (1Iz) is matched

to the  r e s idua l spec t rum D ( z ) D ( 1 / z ) .  The hi gh order N is r e q u i r e d

because each of the  spect ra l  zeros of the r e s i d u a l  s p e c t r u m  is

a p p r o x i m a t e d  w i tr i a la rRe  number  of poles in the model GQ/Q(z). The

lower bound for the  order N , t he re fo re , depends on the number  of

spec t ra l  zeros in the res idua l  s p e c t r u m  or , e q u i v a l e n t l y ,  in the

g i v e n  spec t rum S ( z ) S ( 1/ z ) ,  and how close these spec t ra l  zeros are to

t h e  u n i t  c i r c le . S i m i l a r  to the  order  M , the order L may also be

equa l to the  p a r s im o n i o u s  order Lp of the  A l l — P o l e  spect rum match  to

the  spec t rum ~ ( z ) Q ( 1 / z ) .

Tm reduce the  c o m p u t a t i o n  of the  parameter estimation when the

g iven  spectra l envelope has more deep va l l eys  t han  peaks , the

A u t o c o r r el at i n P r e d i c t i o n  is appl ied  to the  rec iproca l  of the  g i v e n



s p e c t r u m  and t h e n  r e c i p r o c al  of’ the r e s u l t i n g  Po1 -7~’r r . 1 ) b l  I c

used . In ch a p t e r  11 t h i s  approach is  used in P o l e— Z e r u  m

~ icn er  f i l t e r  sp e c t r u m .

3 . t  R e a l i z a t i o n  of ’ P~ le— Z er o ~~~~~

The P o l e — Z e r o  model may be r e a l i z e d  u s i n g  any  rj f a i ar i e~~y f

me thods  [ 16 , 17 ] .  We propose a method w h i c h  is more s u i t T h l e  f~r
r e a i i z a t ion  of the  Pole—Zero  model  ob ta ined  by AP ‘~c A P R .

Cascade of Two La t t i ce  Fi l ters .  The Pole—Zero model G B ( z ) / A ( z )

g iv e n  by ( 3 — 3 1 )  can be rea l ized  as the  cascade of the A l l — Z e r o  f i l t er

B ( z )  and the A l l — P o l e  f i l t e r  1 / A ( z ) ,  h a v i n g  the o v e r a l l  ga in  ~~~ .

E i t h e r  of these f i l t e r  is implemented  by a l a t t i c e  f i l t e r  [ 19 ]  wh~ch

is i d e n t i f i e d  w i t h  the so—cal led parcor paramete rs , F i g u r e  3 — 5 .

There is a u n i q u e  set of parcor parameters  {K . }  for t he  se t of

predictor coefficients (a1) and vice versa [Appendix A]. S i m i l a r l y ,

there  is u n i q u e  set of parcor parameters  {K ~~} for  the zero p r e d i c t o r s

(b 1} and vice versa . Both sets of parcor parameters  (K 1 ) and ( K 1)

are ob ta ined  as a b y — p r o d u c t  us ing  AP , but  both should be computed

[ A p p e n d i x  A ] when t he  Po le —Zero  model is i d e n t i f i e d  us ing A P R .
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C H A P T E R  11

D Y N A M I C  PO LE—ZERO F I L T E R I N G

11. 1 ifl~~~~jLction

Quite  of ten speech is degraded wi th  add i t i ve  indep endent

background noise , such as interference of helicopter noise with

pilot ’s speech and surface noise with singing in the play back of old

recordings. To enhance the speech , an input controlled time—varying

filter is devised that suppresses the noise and passes through the

speech.

Speech and s inging may be assumed s ta t ionary  dur in g  short

in terva ls , e i the r T ~3O msec for speech or T ~ 1OO msec for singing .

The noise is assumed s t a t i ona ry  du r ing  a longer period of in teres t .

Dur i ng th is  period of interest , the refore , the degraded speech may be

tho ught of ’ as a concatenat ion of stat iona ~~, ~~pcesses~ sho rt speech

in te rva l s  degraded wi th  add i t ive  s ta t ionary  ~~~~~~ Th e noise

spectrum genera l ly  has a common range of frequencies with the speech

short  i n te rva l  spectrum . To suppress the noise , therefo re , a Wie ner

f i l ter can be used , Fig ure 11— 1 . The Wiener  f i l t e r  smoothed spect rum

I W ( k T , J ) ) 1 2 is es t imated for each short  interval T. The spectrum of a

rational filter H(kT ,W) is then matched to 1/IW (kT ,w)1
2
, using

Autocorrelation Prediction described In sections 3.11 and 3.5.

Finally, the rational filter 1/H(kT ,tA ) is used to filter the

corresponding interval of the degraded speech , Figure 11—2.



n ( t )

s(kT.t) x (kT,t )  j (kT ,t)

Figure 1 1 — 1 .  Short in te rva l  Wiener  f i l t e r i n g .

4 .2 Es t imat ion  of’ Wiener Fi~~ er
Smoothed $p ectrum

The Wiener  f i l t e r  smoothed spectrum I W ( k T , ) 1 2 fo r each i n t e r v a l

T is es t imated from the fo l lowing  equa t ion  *

W(kT,w) = I — (4—1)

where ‘~‘ (w) is an estimate for the smoothed spectrum of the

s ta t ionary  noise and 
~s÷N (k T ,

~~
) is an est imate for the smoothed

spec t rum of the degraded speech during the k—th interval.

Since we are interested in filtering the gross structure of

degraded speech and leaving alone the fine structure , mainly caused

by the speech excitation function , the finite Linear Prediction (LP)

spectrum is used rather than the standard Fourier Spectrum . Thus ,

is obtained by averaging the short—time LP spectrum of the

degraded speech during the k—th interval . To estimate the noise

‘ The equation for Wiener filter spectrum is derived in section 5.5.
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spec t rum , speechless  po r t i ons  of tn e 1~ ’~~r,1,l~~ I1 sp.~~’ h :~r~ 15” 1 . i h I ~~S ,

is ob ta i ned by av e rag ir t t.r t he  o h I r t — ~ i rn ’ LP ;p~’~’ t r u m  b i r i rl~

these speechless po r t i o n s .

14~ 3 Pole-Zero Mode ii rig Q~Filter ~rnooth ed Sp ectrum

Equation (11 .1) shows that the Wiener filter smoothed spectrim

I W ( k T , ) V  has f l a t  pass bands for those frequencies where the speech

dominates the noise , and has deep stop bands at those frequencies

where the noise dominates the speech , Figure 14_3. In the case where

speech dominates the noise at most of the frequencies , the above

remark suggests modeling IW(kT , 1 )1
2 at the stop bands first . This

can be accomplished by matching the spectrum of a rational filter

H (kT, )  to 1/IW( kT ,~~
)
~
2 , using Autocorrelation Prediction described

in Section 3.14. Then , the rational filter 1/H(kT ,u ) is used to

filter the k—th interval of the degraded speech , Figure 14 ...2. In this

way, the parameters of the model H (kT,w) are reduced in number

considerably compared with an All—Pole match to W(kT ,w) f
2. Figure

14...II compares a Pole— Zero model and an All— Pole model spectral match

to the same Wiener filter spectrum in Figure 11~ 3. Note that with

equal number of parameters , the Pole—Zero model matches the deep

valleys much more accurately than the All— Pole model.

Since H (kT,t~) is minimum phase , the stability of’ the rational

filter 1/H(kT ,w) is also guaranteed.

I4~~L4 Implementation And Results

The rational filter 1/H ( kT , I I )  Is identified by two sets of

parcor parameters obtained from autocorrelation prediction . The
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Figure 4-4. (a) Wiener smoothed spectrum superimposed with

30-Pole and 30-Zero model spectrum (Autocorrelation
Prediction).

(b) Wiener smoothed spectrum superimposed with
60-Pole model spectrum (Linear Prediction).
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1/H(kT ,I )  is realized as the cascade of two l a t t i c e  f i l t e r s  d e s cr i b e d

in Section 3. 6 . To i mprove the f i l t e r i r l g process , both sets of the

parcor parameters are interpolated for each sample of the input t.o

the filter.

In theory, the value of’ W(kT , ,) given by (11 .1) is non—negativ e

for all frequencies. In practice , however , W (kT ,1 )  occas ionally

becomes negative at some frequencies. This is so because ml tn~

following : 
~s÷N

(kT ,1) is an estimate for the speech smoothed spectrum

plus the noise smoothed spectrum. On the other hand , the interval T

(30 msec.) during which the speech is stlti-) nsry is not long enough
p

to give a close estimate of the f l r l j 5 C -’ orfl t h c l  s p e c t r u m .  This makes

the 
~s÷N

(kT ,w) a ro~~~ estimat’ and i )ris f~quent ly W (~ T , ) , Riven by

equation (11— 1 ) , becomes negative a t sum~ frequencies. Td~correct for

the above problem , using the function depicted in Figure 11—5 , W (kT , j)

is tailored to positive values at those frequencies where it is

negative .

The above Dynamic Pole—Zero Filtering process was applied to

speech degraded with stationary additive colored noise . Spectrograms

of corresponding portions of the degraded speech , filtered speech and

the original clean speech are shown in Figure 4—6 for comparison.

The process was also used to suppress helicopter noise in a recording

of pilot ’s Speech degraded by helicopter noise. Spectrograms of

corresponding portions of degraded pilot ’s speech and the filtered

speech are shown In Figure 4—7. Figure 4—7a shows the spectrogram of

the helicopter noise from a portion of the recording where the pilot

was silent.
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Figure 11—5 . Tailoring function (after T. Petersen).

The Linear Predition (LP) spectrum of the helicopter noise is also

shown in Figure 11—8. Note the harmonic structure in the helicopter

noise dep ic ted  in both Figure 4— 7a amd Figure ~-5 .

corresponding portions of time domain pilot ’s speech with background

helicopter noise and the filtered speech are shown in Figure ~4 — 9 .
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( a )

Fi gure 4-7. Spectrograms of

(a) Hel icopter noise.

(b) Pilot ’ s speech deqraded wit o background helicopter noise.

(c) Filtered p ilot ’ s speech; output of the Dynamic Pole-Zero

Filtering process.

All three spectrograms have been scaled 6 dB/oct above

400 Hz.
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Figure 4-9. Corresponding portions of

(a) In put pilot ’s speech degraded with background

helicopter no ise.

(b) Filtered pilot ’ s speech; output of the Dynamic Pole-Zero

Filtering process.



CHAPTER 5

POLE—ZERO VOCODER ( PZV )

5 . 1  Introd~.c,~1on

The d igi tal speech product ion model c a p i t a l i z i n g  on ap r io r i

i n format ion  on the s t ruc tu re  of the speech mechanism and the speech

waveform is described. The speech production model is f u r t h e r

approximated with a limited number of parameters , including zero as

sell as pole parameters . Using this parametric representation of the

speech production model , a so—called Pole—Zero Vocoder (PZV) is

levi sed for analysis and synthesis of clean speech . To code speech

degraded with stationary additive colored noise , the PZV is further

modified to account for the noise . The PZV , simulated on a computer ,

was used successfully in analysis and synthesis of clean speech

Finally, some pilot experiments revealing the potential of the

modified PZV in coding speech degraded with stationary additive

colored noise is presented .

5.2 Speech Production Model

For voiced sounds , the time varying filter model in Figure 5— 1

represents the effect of the glottis waveform , the vocal tract , the

acoustic coupling of the nasal tract and the radiation . The

excitation function is a train of unit samples with the same

frequency as the pitch. In contrast , for unvoiced sounds the time

varying filter model represents the effect of the vocal tract and the
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radiati -n , and the excitation function becomes zero mean white no .s,

w i t h  t he  v i r i a n c e ~~
2
~~1.

Generator M~p 1itude

? 11?

~~:w or’-~ 5 — 1 . D i g i t a l  speech p r o d u c t i o n  m o d e l .

~ m~~— . ’a~~-y ~~ roz filter model  is cons ide red  to be a time— invariant ,

f i l ’~ -r  ~~r : s~’ ; ‘c r ~ peri ods of t i m e  ( 1 0 — 3 0  m s e c . ) .  Th is  is a

rerl c r a r  ~~ assum~ ion , be ’ aus e  the dyna mics of the ar t  culat ary

~~~~~~~r~ t i’ n ire ~w due t , t he  i n e r t i a  of musc le  c o n t r o l l e d  j a w

a n d  i p  n ‘ I I r n . I n t s . T re finite— time glottis waveform , the

1 ’ “. ‘ I ’~ up~ i ng  f t h e  n a s a l  t r a c t  and the r a d i a t i o n  cause the

t r a n s fe r  l i r l o t i  r 1 the  f i l t e r  mode l  to have zeros as wel l  the  u sua l

poles , L’~ J .

Toe abov ar g u m e n t s  l a p ly  t h a t  r e p r e s e n t i n g  the  f i l t e r  model

transfer function by a finite dimension pole— zero model [6] rather

than a finite dimension all—pole model [5] may improve the quality of

the synthesized speech and/or reduce the representation parameters.



5 H A u t n - . r r c l , ’i t i on  Function of the Filter Model

W~ :;ho w ~~ the s h o r t — t i m e  iu t o r,o r r e l a t i on  f u n c t i o n  o~

speech g i v e s  an ,‘: - t i m a t ~ for  t h e  a u t o c o r r e la t i o n  f u n c t i o n  of ‘ r’-

filter model in F i g u r e  5 — 1 .  The s h o r t — t i m e  au t o c o r r e l a t i on  f un t i o n

of the speech is d e f i n e d  as the  a u t o c o r r e l a t i o ri  f u n c t i o n  of w ; r d  w ’-d

speech using a smoothed window of proper length (20—30 rnsec .)

Recalling the speech production model in Figure 5-1 , we denote

the excitation function , the train of pulses or the white noise , by

p(n) and the scaled impulse response of the filter model by v(r).

The speech s(n) is , therefore , expressed as:

s(n) = p(n) ®v(n). (5—1)

To obtain a stationary segment of speech , the speech s(n) is w e i ~th t e d

by some smoothed window w(n) of proper length (20—30 msec .), i.e.

s (n) s(n) w(n) = [p(n) ® v(n)] w(n) (5-2)

Assuming  the  window w(n) is smooth during the  e f f e c t i v e  d u r a t i o n  of

the  impulse response v(n), the equation ( 5 — 2 )  can be app rox ima ted  as:

[p(m) w(n)1 ®v(n), (5— 3a)

or

p (n )  ® v ( n ) ,  ( 5— 3h )

where  P~~
( n )  is the weighted  e x c i t a t i o n  f u n c t i o n  defined as:
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p
~
(n) ~ p ( n )  w ( n ) .  ( 5-4 )

~~~~~~~~~~ 
A o rrt latior 1u r :t of 5pe~ ch Us ing  ( 5 — 3 b )  , the

speech s h o r t — t i m e  s p e c t r u m  S ( z ) S (
~~) is approx ima ted  by :

S ( z ) S  ( l i z )  V ( z ) V ( l / z )  P ( z ) P  (lIz). (5—5)
w w w —

The equa t ion  ( 5 — 5 )  shows t h a t  the  speech s h o r t — t i m e  s p e c t r u m

a p p r o x i m a t e s  the  f i l t e r  model  s p e c t r u m  m u l t i p l i e d  by the  s p e c t r u m  of

t he  windowed  e x c i t a t i o n  f u n c t i o n . From (5—5), the speech s h o r t — t i m e

a u toc o r r e l a t i o n  f u n c t i o n  R ( k )  is a p p r o x i m a t e l y  equa l  to

R(k) R
~~

(k)  ® R~~~( k ) .  ( 5 — 6 )

where R (k) and R~~(k) are autocorrelation functions of the filter

mo d el and  the  windowed  e x c i t a t i o n  f u n c t i o n , r e spec t ive ly .

Now we f i n d  the  R~~~( k )  fo r  both  voiced and u n v o i c e d  speech.  In

the case of voiced speech , the excitation function p(n) is a train of

pulses with the same period T as the pit c h period. Thus using (5—11),

the weighted excitation function p (n) ~ikes the form of a weighte d

train of pulses , i.e.

1” Iw(n) n = 0, +T
= W ( n )  

~ ~(n—fT) 
a (5 7)

L 0 otherwise.

The lutocurrelation f u n c t i o n  of P~~( n ) ,  t h e r e f o r e , becomes
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I ’ w (t’T)w(~’T+k) k = 0, +T ,...

(k) = (5-8)
W ot herwise.

Thus for voiced speech , the short—time autocorrelation function R (k)

is approximately equal to the filter model autocorrelation function

R
~
(k) convolved with the symmetric decaying train of pulses R~~(k).

having the same period T as the pitch period , see Figure 5—2a .

Hence , the R(k) is an estimate of R
~
(k) for short time—lags. For

unvoiced speech , the excitation function p(n) is white noise .

Assuming the smoothed window w(n) is long enough , then the

autocorrelation function of P
~
(n) approximates the autocorrelation

function of white noise namely, k (n). Thus we have

R (k) ó(k). (5~9)

As a result , using (5—6) the short—time autocorrelation function for

unvoiced speech is an estimate for the filter model autocorrelation

function R
~
(k) , see Figure 5—2b.

5. 11 ~~j~ -Zero Anal  i s - Zyn th ~~~j~ of $oeecb

Each short segment of speech can be represented by a

Voiced/Unvoiced decision , the pitch period , if the decisi on is

voiced , and the filter model transfer function . To be able to

represent the short segments of speech with a limited number of’

parameters , the filter model in Figure 5— 1 is represented by a
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Figure 5—2. (a) Short-time autocorre lation function of
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~b) Short-time autocorre lation function of

unvo ice d soun d [P1.
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parametr ic mode l .  R e c a l l i n g  the  d i scuss ion  in ~“ntio r 5 .2 , the

p a r a m e t r i c  model is chosen to ~-e the Po le—Zero  model H ( z )  g i v e n  by

e q u a t i o n  (~~— 3 ) .  F u r t h e r m o r e , s ince  the  n u m b e r s  of the  spe t ra l  pol~~s

and t h e  spec t ra l  zeros in the  f i l t e r  model  s p e c t r u m  ar~ d i f f e r e n t for

d i f f e r e n t  segments of speech , t h e n  f u l l  a d v a n t a g e  of ~~~~ P o l e — Z e r o

m o d e l i n g  is gained by a l l o w i n g  the  orders  M and L to 5e 1-i n i m :  - .

Tne overall block d iagram of the so—called Po.’- -~~ r

Jocoder ( P Z V ) is shown in F igu re  5 — 3 .  The V o i ° e d / U n v o i c e d  decision

and t he  p i t ch  per iod are extracted us ing  any  of a v a r i e t y  of e x i s t t n i ~

methods  [ 2 8 ] .  The parameters  of the  P o l e — Z e r o  model  H ( z )  are

ob ta ined  by appl ying A u t o c o r r e l a t i o n  P r e d i c t io n , F igure  3— 2 , to the

s h o r t — t i m e  au toco r r e l a t i on  f u n c t i o n  of the  speech .  Since the  speech

s h o r t — t i m e  au tocor re l a t ion  f u n c t i o n  is an e s t ima te  for the  f i l t e r

model autocorrelat ion function , then the spectrum of the resulting

Pole-Zero mode l approximates that of the filter model. In applying

A u t o c o r r e l a t i o n  P r e d i c t i o n  to the speech s h o r t — t i m e  a u t oco r r e l a t i o n

function , the parsimoneous (most economical) orders ~~~~, and L~ for

each segment may be obtained using the methods described in Section

2—5 . Finall y, to synthesize speech using the PZV depicted in Figure

5 — 3 ,  we update the Voiced/Unvoiced decision , the pitch period T and

the Pole—Zero model parameters for each segment of speech.

5.5 Pole—Zero Analysis—Synthesis of Speech
In Presence of Additive St at i on ar ~ Noise

The idea is to find the optimal estimate of the speech spectrum

fo r  each short  i n t e r v a l . The au toco r re l a t ion  f u n c t i o n  of t h i s

o p t i m a l  e s t ima te  is then matched w i t h  t h a t  of a Po le—Zero  model u s i n g
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( 1

Au t o c o r r e l a t i o n  Prediction described in section 3.11 . We make the

ass~ pt ion t ha t  the ba~ kgr ou~~d no ise  is st a t i on a ~ y l u r i n g  i 1 ; r ~~

per iod  of interest , while the speech is stationary only in ~t rt.

i n t e r v a l s  (30  m s e c ) .

The op t imum l i n e a r  f i l t e r , namely  the  Wiener  f i l t e r , is des igned

for each short i n t e rva l  of noisy speech , Figure  5~ 14.

n(t)

s(t) x(t) 

~Lh(t) ~ ( t )

Figure 5~~14~ Wiene—’ filtering

The transfer function of the Wiener filter is

= 

~~~~~~ 
. (5-10)xx

Assuming the noise and speech are uncorrelated , then (5—10) takes the

form

lb

= 

~~~~~~~~~~~~ 
= 

1 + N~:~~ 

(5—11)

O r



- -  - - 

H() = = 
~~~ (5-12)

The noise spectrum ~~~(w) can be estimated using speechless portions

from the noisy speech record . From Figure 5— 11 , the optima l estimate

of the short interval spectrum is

~(w) 
= ~ (w)fH(w) J

2. (5-13)
ss

Using (5—11) or (5—12) in (5—13) gives

; _  ( , .
_

~ 
= 

~ ( \ , (5—14)
SS MN /

1 +

or

r 4
~NN (w) 1 2

= ~~~~(w)  
~
1 — I~~~~ (W) ] (5—15)

Equation (5—111) shows how the ratio of the optimal estimate L~ (w) tosS

the speech spectrum ~~~~~~W ) is related to the power ratio

~NN w)/~ss (b0) of the background noise to the speech at different
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frequencies. The optima l estimate , however , is computed from (5—15),

where ;~~~~
( )  is the noisy speech spectrum for the short interval (30

msec) and 
~~~~~ 

is the noise spectrum for the period of intere st,.

An estimate for 
~dw) 

Is obtained by averaging spectra or LP

spectra for short overlapping segments of noisy speech . An estimate

for :NN~~~ 
is computed by averaging the short—time spectra or LP

spectra during speechless segments of noisy speech. Finally, the

Inverse Fourier Transform of the optimal estimate i~~ (oi) gives the

autocorrelation function (k), i.e.

R(k) = ~~ J ~(w )e
WdW. ( 5-16)2~t ss

—Tn

The overa l l  block diagram for the  ana ly s i s  and syn thes i s  of

speech in the presence of additive stationary noise is depicted in

Figure 5—5. Similar to clean speech analysis , applying

Autocorrelation Prediction to the R(k) gives the parameters of the

Pole—Zero model , the autocorrelation function of which approximates

the R(k). The Voiced/ Unvoiced decision and the pitch period

extraction for the short segments of speech , becomes more complicated

in the presence of noise [411]. The synthesis remains the same as the

one in PZV.

5.6 Implementation ~~ Results

The Pole—Zero Vocoder (PZV) based on Autocorrelation Prediction

was simulated or~ a PDP— 1O computer. The parameters of a fixed order
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Po le—Zero  model  are estimated by applying Autocorrela tion Prediction

~o the  speech s h o r t — t i m e  autooorI-eiat ion fu n c t i o n . The P o l e— Z er o

model is realized by a la t t ice f i l t e r  augmented  w i t h tap p ara rn et -’r:3

[17]. The gain G for the lattice filter is computed such that t te

corresponding synthesized speech and the natural speech have equal

energy [5,81.

The V o i c e d / U n v o i c e d  dec is ion  and the p i t ch  period is e x t r a c t e d

us ing  an i m p l e m e n t a t i o n  of the SIFT a l g o r i t h m  [28 ] by Bol l  Ht ] .  The

a n a l y s i s — s y n t h e s i s  is q u a s i — p i t c h  synchronous  [9] .  The tugm ’~ntec

l a t t i ce  f i l t e r  parameters are linearly interpolated between two

su c c e s s i v e  a n a l y s i s  segments .

This  vocoder was used for ana lys is  and s y n t h e s i s  of passages of

n a t u r a l  speech. For proper select ion of the  f ixed  orders L and ‘.‘,

informal hearing tests show some improvement of the synthesized

speech generated by the Pole—Zer’o Vocoder over that generated by the

All— Pole vocoder having comparable number of parameters. The

improvement is more noticeable when the corresponding natural speech

has more nasalized sounds. The Pole—Zero synthesized speech has less

“ringing ” quality than the corresponding All— Pole synthesized speech.

Figure ,,— 6 shows corresponding segments of natural Pole—Zero

synthesized and All— Pole synthesized speech.

A pilot experiment to test the performance of the Pole—Zero

analysis— synthesis of speech in presence of a d d i t i v e  colored noise

was implemented as follows : Using the dynamic pole—zero filtering

process described in Chapeter 11 , the noisy speech was first filtered

and then the Pole—Zero Vocoder (Pzv) was applied t the resulti nir



filtered speech. Fig~re 5—7 shows the  spectrograms of c o r r e sp o n d i n g

portions of vocoded noisy speech , vocoded filtered speech and vocoded

clean speech Informal hearing. t est s  reveal an improvement in the

vocoded f i l t e r ed  speech over the  vocoded no i sy  speech . The T h i e_ Z e r o

coding of speech in the  presence of noise , described in section 5.5,

which combines the Pole—Zero filtering of noisy speech and the

Pole—Zero coding of clean speech , seems to have the potential to

generate improved coded speech.
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Figure 5—7 . Spec~~roqrarns of corre s~ond inq po r~ iors of
(a) Vocoded fi1~ r~’erl speech.

( b )  / O c ~~~t-~d clean s~)4? - :h.

(c) Vocoded no i~~’ ~~~~~~~~~

A H n hrpe cPer t ro c r Imc  have he-en s~ il ed r~ dB/oc~
above 400 H z.
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c N 1 ~~~~ L :NS

h. 1 ~~~~~~~~~~~~

The g i l  of t h i s  research  h i :  eOn t o develop o w  Pole— Zero

m o d e l  ing  t e c h n i ’iu e c  an d  uppl v t hem to op~ ech process ing . Thi s  g o a l

nas been a c c o m p l i s h e d . Tw o Pole—Z ero m d - l  ing te chni oues ,

A u ~~~c r ’ r t - l i t i o n  P a r t i a l  R e a l i z a t i o n  ( A P R )  and A u t o : o r r e l a t i o n

P r e d i c t i o n  ( A P ) ,  have  been deve loped  and t h e i r  theor ies  w er e

e ’ ab l i s h e d .  APR , u s i n g  part ia i ly 1i~ ear ope ra tions , i d e n t i f i e s  toe

P~J e — Z e r o  model whose shor t  t i m e — l a g  a u t o c o r r e l- i t i o n s  ~ 2~Act]~~

‘ hose of a g i v e n  s p e c t r u m ,  in c o n t r a s t  AP , u s in g  onh l  r ear

oper-i t :ns , i d e n t i f i e s  the  P o l e — Z e r o  m o d e l  whose shor t  t i m e — l o & ~

, , t oc . ’r r e , - i t t o n s  closely ~p~~~oxim at e  those of a g i v e n  spectrum .

N - i ~ her f t hem uses F o u r i e r  T r a n s f o r m a t i o n , bu t  f a st  r e 2 u r : i v ’ -

a n d / o r  i t er ~~t i v e  a l g o r i t h m s  to e s t i m a t e  the  model pa ra m~- ters . A P R

AP n a v e  been compared and Lhe p r o p e r t i e s  of the Pole—Zero  mode l s

~1e n t i f i e d  by them were d i s c u s s e d .  I t  has been shown that t he

Po le -Zero  mode l , i d e n t i f i e d  by A u t o c o r r e l a t i on  P r e d i c t i o n , has

a d v a n t a g e s  over  the  A l l — P o l e  model , i d e n t i f i e d  by L i n e a r

Pred ~ t on ( L P )  , when t he  the  enve lope  of t he  g i v e n  s p e c t r u m  has 1°ep

v a l l ’— y s .  A caseade of t w o  l a t t i c e  f i l t e r s  has been propo sed as a

r e a l i z a t i o n  f t he  P o l e — Z e r o  mode l s  i d e n t i f i e d  by A P  or A P R .

A d y n a m i c  f i l t e r i n g  process , based on W i e n e r  f i l t e r i n g  m d

A u t o c o r r e l a t  ion P r e d i c t i o n  ci: been deve loped  and  i m p l e m e n t - I to

supp re s s  b a c k g r ou n d  no ise f rom d e U r a  e l  speech .  U s i n g  A P , rs~ 
her
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than LP , to model the estimated Wiener filter spectrum , has improved

the performance of this dynamic filtering process. Moreover , a

Pole—Zero Vocoder (PZV) based on AP has been developed and

implemented . PZV becomes an All— Pole Vocoder (Linear Predictive

Vocoder) on one extreme and an All— Zero Vocoder (different from the

Homomorphic Vocoder but similar in quality of the synthesized speech)

on the other extreme. For proper selection of the Pole—Zero model

orders  U-I is roughly three times L) , informal tests has shown that

PZV generates more “natural sounding ” synthesized speech than the

other two extremes .

6 . 2  F u t u r e  Research

To use the  Po le—Zero  model obta ined  from A P R  in a p p l i c a t i o n s

o ther  than  spec t ra l  m a t c h i n g , l i ke  f i l t e r i n g , the  s t a b i l i t y  of the

model should  be resolved . This area needs futher investigation .

To o b t a i n  a low b i t  r a t e  h i g h  qu a l i t y  vocoder , the  o rders  of the

Pole—Zero  model  in PZV can be made  dynamic ; p r e f e r a b l y  equa l  to the

p a r s i m o n i o u s  orders  M and L for  each f rame  of a n l y s i s .

M o d i f y i n g  the  PZV to accoun t  e x p l i c i t l y  for the  b a c k g r o u n d  no i se

of degraded speech seems promising when the noise is stationary and

~~~~ the degraded speech is available. The restriction of toe

stationarity of the background noise may be relaxed if a ~orrelated

version of the background noise , recorded by another ilicrophone mwa v

from the speaker , is also available.

Finally, the applications of Autocorre lation Prediction , as a

Pole— Z’-ro modeling t.echiique , in areas other than speech processing

ire open for further research .



P P E N D I X  A

DURBIN AND PARCOR RECURSIVE ALGORITHMS

A sy s tem of linear equations can be solved recursively by the

Border ing  method  [13]. When the coefficient matrix of the system of

linear equations is a Symmetric Toeplitz matrix , then the Bordering

method is simplified to Levinson ’s algorithm [42]. If the constant

vector in the right hand side of the system of linear equati ons is

also of the following form , equation Al , then Levinson ’s algorithm is

further simplified to Durhin ’s algorithm [12, 27].

R0 
R1 R2 R~ _ 1 a1 

R
1

R1 R0 R1 
‘ ‘ ‘ 

~~~ i , R
2

R2 R1 R0 RN 
R
3

— — (Al )

RN 1  RN—2 RM 
- ‘ R a,~ RN

Durbin ’s Recursive A~~orithm

1 h e system of l inear  equa t ions  (Al ) can be solved re cu r s i v e ly  by

D u r b i n ’ s a l g o r i t h m :
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I )  E
0

= R 0, j = O ,

2) j = j  + 1 ,

r j 1  . m
3) K. = -IR . + V ~~~~ R . . 1 J R

~l U i~ l 
1 3 1 J  I i’~

4)  ~~~~ = K .

5) ~~~~ = ~~~~ + K. ~~~~~~~ i < i < i_ i ,

6) E~ (1 -

7) if = M stop; otherwise go to 2 (A2)

When the algorithm stops , the solution to the system of equation

(Al) is:

aj = a~
0 1 1 ~~ M . ( A 3 )

The corresponding by—product parameters K1, for 1 < i < M are

referred to as the reflection coefficients , partial correlations or

pareor parameters.

If the function R.~< 
represents an au t n-orrelation function , then

the coefficient matrix in (Al) is po sit iv e definite [34]. In

this case , it can be shown that the parcor parameters K . have the

property

1 , 1 i < M , (A4 )
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and the polynomial A(z) = 1 + a .  z 1 
is minimum phase. That is ,

i=l
all the roots of A(z) are inside the unit circle [18].

There is a unique set of parcor parameters K 1 
for the set of

pred ictor coefficients {a.} and vice versa . To compute directly the

cor responding  parcor parameters  [k 1} from the p red ic to r  c o e f f i c i e n t s

a recursive algorithm is derived. Substituting j—l for i in

step 5 of Durbin ’s algorithm and rearranging the terms gives

a
(]_1) 

= aP~ — K. ~~~~~ 1 < i < j—1. (AS)
j—i 3—i ~ 

I , — —

Again substituting for a~~~
1
~
1 in step 5 of Durbin ’s algorithm

from (AS) and some simplifications results in

~~~~ = 
[a~~~~ 

— K
1 
a~~? ] /(l_K~), I < i < j—l , (A6)

Thus from step 4 in Durbin ’s algorithm , (A3) and (A6)  we o b t a i n  the

sought for parcor recursive algorithm .

1) j = M , a~
M) 

= a1, 1 i < M

~~‘ K =/ a

3) If j = 1 stop

4) a~
j 1.) = [a~~ — K

1 ~~~~ 
/(1_K~), 

I < i < j—i

5) j = j — 1 ,

6) Go to 2 . (A7)



APPENDIX B

PADE APPROXIMATION

A function represented by a one—sided power series is approxi-

mated with a rational function using the Pads approximation.

Let X(z) be a function represented by the following one—sided

power series

X(z) = 
k=O 

X
k 
z k

, for zj r1 
. (Bl)

Also , consider the rational function

L -i
~ c1 

z

d 0 = l ,

~ d . z~~ dM # 0,
1=0 L < ~1, (B2—a)

whose power series representation is

X(z) = 
~ 

~~ z~~, for I z i > r 2 . (B2-b)

4
From where (B2—a) and (B2—b), the coefficient is equal to

L M

~ 
c1
6(k—1) — ~ d 1 ‘~k—i 

k > 0 , (B3)
:1—0 i 1
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To approximate the X(z) by X(z), the

N = L + M + 1, (R4)

unknown coefficients (d.} and {c1
} are computed such that the first N

terms of the x(z) and ~(z) power series representations are equal ,

i.e.

Xk 
= Xk , 0 < k < N—i . (85)

Using (35) in (33) results in the following system of linear equations

L M
X
k ~ c1

iS(k’-i) ~ d . X
k i

, 0 < k < N— l . (86)
i=0 i=l

In ma t r ix  form , equatio ns (B6) become

X
L 

X
L 1  

. . X
O 

0 . 0 0 1

XL+l X
L 

, ,
1 . 0 0 d2

~M-.1 X1 4 2  : ~~~ 

X~~~~~~~ . 

~~~ T° dN L
XM

X
L+M 2 

XL+M_ 3
• - XM 2  XM 3  . . X

L 
XL I  dN l  XL+M l

X
L + l  ‘~L+M-2

’ XM l  XM-2 
. XL+l X

L 
dM

(B7—a)
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M
Ck~~~~~ 

dj xk_i ,

0 < k ~~~L , (B7—b)

where the matr ix  (x L÷j .)
M (B 7— a)  is non—symmetric  t o ep i i t z .  The

Trench recursive algorithm [39, Appendix C~ can he used solve the

system of linear equations (B7—a). After computing the {d .} the

coefficients {ci
) are obtained simply by performing the summation in

(B7—b).

\ )
Pade A proximation Error

Ti Ing (Ri), (B2—b ) and (B5), the  Pad e a p p r o x i m a t i o n  e r r o r , F i g u r e

B—L , is defined by the following powe r series
- ~~
— 

-

________ X ( z )  ______________

1 
_ _ _ _

_ _ _  
_ _

_ _ _ _I

Figure B—i . Pad~ approximation error
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E(z) 
k=0 

e
k ~

_k 
~ x(z) — ~~(z )  = 

k=O 

(x
k 

- x
k

)z

‘ — k
= 

~ 
(x~~~~

— x
~~)z

k=N

> Max (r1, r2). (38—a)

Using (35) and substituting for X
k from (B3) in (B8—a) gives

another expression for E(z), i.e.

E(z) = 
~ 

ek 
-k 

~ 
d .  xk ilz k 

. (B8-b)
k=O k=N Li=0 J

Relation (B8—a) shows that , the first discrepancy between the

corresponding power series coefficients of the X(z) and X(z) occurs

at k = N.  Th e relation (B8—b) shows that different errors E(z) are

obtained , depending on the selection of the orders L and N for a given

N. All of these different errors E(z), nevertheless , have the following

property:

ek
= 0 , 0 < k < N — 1  . (B9)

S~eciai Case

The Pade approximation for the special case L M , and const-

quently N 2M+ l , is considered here. Also , the value of the first

discrepancy eN is expressed in terms of only the given power series

coefficients X k .
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The matrix equation (B7—a) for L=M takes the form

KM KM— i ~2 ~‘i 
d1 KM+l

KM+i KM x3 x2 d2 KM+2

X2M2 X 2 M 3  KM XM l  dM l

X
2 M 1  

X2M_2 XM+l ‘
~I 

- 

X 2M 
— 

(810)

The non—symmetric toeplitz matrix ~~~~ ~)M in (BiD) is symmetric
i j i

around its second diagonal. Therefore , by rearranging the unknown

coefficients {d .} of (BlO) in reverse order , the matrix equation (BlO)

takes the following form

x
1 

x
2 

. KM—i X
M 

d
M

x
2 

x
3 

. . K
M 

x d
M i

KM — i KM . X 2 M 3  X2M2 d2 X 2 M 1

KM X2M2 X2M 1 ‘
~2M ] (Bl i )

The symmetric matrix (x1+. i
)i~ 

in (B1l) is a Hankei ma t r ix .

The Beriekamp—Massey algorithm (Appendix C) can be used to solve the

system of linear equations (Bli). From (B8—b) and (B5), the first



discrepancy e
N i for the case L M  is given by

M
= M+I ~ d. x

2~~~1 .  . (hi?)
i=0

To compute °N 
directly in terms of only the given power series coef-

fici ents X
k 

, the system of equations (Bil) is augmented by the

equation (B12). e
N 

is considered as an unknown . This leads to

M+i
xi+j-l

e2M+l 
= , (B13)

x
i+j—l

1

M N
where x . . is the determinant of the Rankei matrix (x. . )

i+,j—i 
~ M+i 1+3—1 1

given in (Bil) and the x
1~~~1 

i is the determinant of the following

I’
Hankei matrix:

X
1 

X
2 

. . KM
X
2 

X
3 

. . KM÷i j KM+2

KM KM-+-i X
2M 11

X 2M

X
M+l 

X M+2 . . . X 2M IX 2M.~1 (814)



APPENDIX C

TRENCH AND BERLEKAMP-MASSEY RECURSIVE ALGORITHMS

In using the Pad~ approximation , one encounters the system of

linear equations of the form

~0 ~‘~ l ~-2 ~~~~~~ ~~~ F’
I ~~ ~—1 ~—M+2 2 2

~2 ~l ~O ~~M+3

_
M—1 ‘12 ~M— ’3 . 

— - .~
1 

- , (C l )

M
where the coefficient matrix in (Cl) is a non—symmetric

Toepiitz matrix. Using the Bordering method [13], Trench [39],

and Whittle [41] derive a fast recursive algorithm to

solve simultaneously (Cl) and the following system of equations

~0 ~i ‘2 i
~M~.l 

fi

~—l ~O ‘1 ~M— 2 
T
~2

~—2 ~—1 ~O ‘13 = —

4 . .  

1M ~-M 
( C2 )



Trench’s Recurs iv~~~~~~~~~ hm :

1) A0 
= 

~o’ ~ = 0 ,

2) j = j + 1 ,

( • )  j-l (i-I) 1 /
~~ 

= - L’~ 
+ 

~~~~~~ /~~~
_

~

4)  ~~( i)  
= _ [

~~
• + 

.
~ l 

, (j-l)~~~~~~~ /j _ ~
(j—l) (j) (j—l)

5) ~~ = + 

~j ),j—i ‘ 
I ~ ~. ~ i l

6) = 0
(j—i ) 

+ 
j )  ~(j— l) 

, 1 < I < j—i

7) A . = (1 - ~~

8) If J = N s top ;  otherwise go to 2.

The system of equations (Cl) becomes identical to the system of

equations (B7—a) by replacing 
~k 

by

JX L+k — L < k < M — 1

k 
= 

lo Otherwise , (C 3~

and 
~k 

by d
k 

fo r 1 < k < M . Thus Trench’ s recursive algorithms can be

used to soive the system of equations (B7—a) encountered in t h e  Pads

approximation . Note also , the system of equations (Ci) becomes i l e n t i —

c al  to (C2), except for the unknown names, when the coefficient matr ix

is syrmu et r i c , ~~~~ ~k = 
~-k~ 

In this case , the Trench



algorithm reduces to Durbin ’s algorithm .

her leT — ‘1o -.scy  A I~~irit hm :

1) 1 D(z) 1 P(z) 1 3

O~~~ ’1 1 ~~p O~~~k.

2) If k = N , stop; otherwise compute

e x  + d . x
k 1 k—ii=l

3) If e = 0, then ~ + 1 6 and go to 6).

4) If e � 0 and 2N > k , then

D(z) - Cl) Z 
6P(z) -~ D ( z )

+ 1

and go to 6).

5) if e ~ 0 and iN < k , then

D(z) -* 1(z) (temporary storage of 0(z))

D ( z )  - 
~~ z P ( ~ ) D ( z )

k + 1 — ‘1

1(z) P (z)

e ~ p

1

6) k + 1 k and return to 2).
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wher e

D ( z ) :  current denom inator

‘1; order of current denominator

p ( z )  l as t  denomina tor  of lower order

nex t discrepancy

the  d i s c r e p a n c y  cor r e s p o n d i n g  to  t h e  las t  denomina t ion

o h  lower order

current number of matched terms

differen•:e between current number of matched terms and

that corresponding to last denominator of lower order.

The Berlekamp—Massev algorithm [7, 30] recursively find s the

weights ~~~ of the shortest Linear Feedback Shift Register (LFSR)

t O at  ca n g e n e rat e  e : -:act  l y the given sequence (x
k}~~~~

, Figure C— I.

The LFSR given in Figure C—i repre sents the rational function

‘1—1 —l
c • z

C (z) —i
= — - - 

~~~~~~~
-

~~~
-
~~~~

= “ z  d = 1
D(z) N i=O ~ ‘ 0

d z
1=0

The coefficients {c .} are obtained from the first N values ot

sequence  ~x }~~~1 s tored in the  s h i f t  reg i s t e r as in i t i a l ~‘dk 0
th e weights (d 1

} using the following r e l a t i o n :

>1
c! = ~ d x . , 0 < i c ‘-

~~
-
~~

‘ k=0 k i—k

Hence one can us the Ber 1eko~np— N.e - .~ ~~~

nator coefficients of the l e a s t  d i m ~ ns



/

Initia l
Va l ues XM l  XM 2

X
i 

,X~~
4 J X. .1

}

~~d 2

Figure C-i . Linear Feedback Shift Register (LFSR)

representing

Initial
Val ues XM ~4—1 

X 1 X0
X
i 

~
[ L ~i~21 J XjM ~ Xj M T h341 2

— 

j_dM

Figure C-2. Linear Feedback Shift Register (LFSR)

representing C (z)
D (z)
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(C4) for which the first N terms of its power series representations

are given.

We are i,nterested, however, in the rational function of the

form

M M-l—1
~ c1

Z ~ C
1
Z

= 
10  

= c + z 1 ~~~° — = x + x z 1 d =1D(z) M 0 M 0 1 ‘ 0 ’

~ d iz 
~ 

d~ z 1 1—i_

i=0 i=0 (C5)

rather than the form (C4). From (C5) and (C4) one concludes that the

denominator coefficients {dilin (CS) are the feedback weights of the
N—i

shortest LFSR which generates the sequence {~1
}
1 1  rather than the

N—i
sequence

Therefore, applying the Berlekamp—Massey algorithm to the sequence

gives the desired denominator coefficients {d1J . Using (CS),

the numerator coefficients are obtained from the following formula

i
c1 = 

~ 
dk X j_k 0 < i < M . (C 6)

k-0

Figure C—2 represents the rational function %~
- defined In (C5).

If the given sequence was indeed generated by some

unknown rational function of the form (C5) and the condition N >  2M+1

holds, then the Berlekamp—Massey algorithm detects the order M and

gives the corresponding denominator coefficients {d1}~~1. When the

sequence corresponds to some real data, however, the Berlekamp—

Massey algorithm applied to the sequence (x 1
}~ _~ , recursi! computes

the solution to the following system of equations , (C7), of order
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M — [N/2]. The [N/2] means the largest integer less than or equal

to the real number N/2.

x1 x2 
x
3 . . dM

x2 x3 
x4 . . x~~]. dM l

x3 x4 x5 ‘~M+2 dM 2  
= —

‘
~M 

X
M+l ‘~M+2 . X 2 M 1  d1 X 2M (C7)



APPENDIX D

NEWTON-RAPHSON ITERATIVE ALGORITHM

To decompose the symmetric polynomial

M
P( z) ~ p 

~ 
, (Dl)

i - M

into the product of the form

M M M - I i I
B ( z ) B ( l / z )  — ( ~ b1z~~~ ( ~ b~z

1
~ ~ 

( ~ b b 
+i..0 / \ i—0 / i=—M j—O

(D2)

the polynomial P(z) should be non—negative on the unit circle in z—

plane. Assuming P(z) has this property, an iterative algorithm based

on Nevton—Raphson method is formulated to compute the polynomial B(z)

such tha t

M M-~ 1I 
-P( z ) — B(z)B(l/z) — 

~ 
( p 

~ 
—

~~ 
b4b4+ ~ 

= 0 . (D3)
j — 0 -‘ -~

Consider the vector function (f1) whose i—th element is defined

as -

M-i
p
1 

— 
~~ b~b~÷1 , 0 < 1 < M (D4)

j—0
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Computing the B(z) such that the relation (D3) holds, is equiva-

lent to finding the vector

b
0

(b1) =

bM , 
(D5)

for which the vector function (f1
) has zero value. Therefore, the

Newton—Raphson iterative method can be used to find the vector (bi
)

and as a result, the desired polynomial B(z). The iterative Newton—

Raphson formula for the vector function (ft
) takes the form

~~f )
(f
r
) + [(bi)

t+l 
— (b~)

t
] 
~(b~) 

0 (D6)

where (b1)
t is the estimate for the desired (bi) at the 

tth

iteration.
~~ 

_____From (D2), the matrix T — is equal to

b0 b1 . . . b M 
l,~ b

1
. .

T ____ - (~~)- b~ b2 
bM + 

bo : .
bM 

b
0 (D7)

Using (D7) in (D6) and rearranging the terms, results in

(b
1)

t+I 
— (b1)

t 
— T 1 (f1). 

(D8)
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The relations (D4) and (D7) and (D8) provide the iterative

algorithm for computing the desired vector (br).

Assuming p0>0. the starting vector (b1
)° can be chosen to be

0 0(b k )

0 (D9 )

The iteration is considered to have converged when for some pre-

scribed value c the following inequalities hold

If~I < , 0 < I < H . (DlO)

It can be shown that the convergence is of second order and the

polynomial B
~
(z) corresponding to the vector (b1)

t
, having the (b1)

0

as starting vector, is minimum phase [43].
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