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ABSTRACT

~Conventional wisdom holds that the more regular the arrival
process and/or service times are , the better system performance
will be. Examples of contrary behavior are presented in three
cases: loss systems, processor sharing, and multi—channel
queues without losses. In each case, it is shown that making
service times more regular can make system performance worse.
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THE EFFECT OF SERVICE TIME REGULARITY ON SYSTEM PERFORMANCE

by

Ronald W. Wolff

0. INTRODUCTION

In undersaturated queues, queueing occurs solely because of the

stochastic variation of the arrival process and/or service times. Thus,

it is generally believed that the more regular (in some appropriate sense)

each of these processes is, the better any of the usual performance

measures will be.

This “conventional wisdom” is very useful when true. For example,

we may be able to improve system performance when the arrival and/or

service processes are under some control. Alternatively, performance

measures for systems which are difficult to analyze can be bounded by

corresponding measures for easier ones . If we are lucky, these bounds

may even be good approximations.

In this paper , we briefly review published results in support of

conventional wisdom and cite one published result which is contrary.

Then , in a series of examples, we exhibit other results which are contrary

to conventional wisdom. All of our examples compare performance measures

for different  service distributions under specified , sufficiently irregular

arrival processes. In some cases, not only does a performance measure

move in the “wrong” direction, but also the magnitude of the change is

large. In the process, our understandj.ng of the nature of these effects

should improve.
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1. RESULTS IN SUPPORT OF CONVENTION WISDOM

Kingman ’s upper bound [7] for the expected delay in a Cl/C/ i queue

is in terms of the sum of the variance of the inter—arrival and service

distributions. Marshall [13] obtained lower bounds on expected delay for

this queue when the inter—arrival distribution is more regular than the

exponential (under either bounded mean residual life or increasing failure

rate). The closeness of the upper and lover bounds shows that, in certain

cases, the upper bound is a good approximation.

For heavy traffic, I(ingman [8], [10] showed that the distribution

of delay in queue is approximately an exponential distribution with mean

equal to his upper bound in [7]. Köllerström [12] extended Kingman ’s result

to the Cl/C/c queue: In heavy traffic, the delay distribution is approxi-

mately an exponential distribution with mean equal to Kingman’s Cl/Gil

upper bound with the variance of service, V(S) , replaced by V(S/c)

Tha t is, in heavy t r a f f i c , a multi—server queue behaves like a “fast ”

single server queue. Thus, the lover bound obtained by Brumelle [1]

for the expected delay in a Cl/C/c queue is a good approximation in heavy

traffic. Similarly, the heavy t r a f f i c  approximations of Iglehart and

Whitt [5] for the number of customers in a Cl/C/c queue are consistent

with conventional wisdom.

Bounds on the delay distribution for the CI/G/l queue [9], [16] are

also consistent with conventional wisdom.

In several papers, with the main results summarized in [15], it is

shown that for the GI/G/l queue under various definitions of regularity,

the stationary delay distribution becomes more regular as the inter-

*Definitions of heavy traffic vary, but for most purposes, we mean heavily
loaded systems where server utilization is less than but near 1.
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arrival and/or service distributions become more regular. For two of

these definitions, the mean delay decreases.

Finally, in a classic paper by Kiefer and Wolfowitz [6], it is shown

that for a stable CI/G/c queue with positive arrival rate, the r
th

moment of the stationary delay distribution is finite if and only if the

(r + 1) 5t moment of the service time distribution is finite.

I

I
.4.
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2. A CONTRARY RESULT FOR THE INFINITE SERVER QUEUE

The evidence in favor of conventional wisdom is impressive . However ,

it should be noted that most of these results pertain to the Cl/Gil queue

without losses (all customers are served). With the exception of [6] , all

results pertaining to the Ct/C/ c queue are heavy t ra f f ic  approximations .

In an unpublished paper by Haj i and Newell [4] , summarized in Newell

([14] , p. 32), an infinite server queue is analyzed for the mean and

variance of N , the stationary number of busy servers.

For arrival rate A and service time S with E(S) 1/p and

P(S < t) G (t) , E(N ) obviously depends only on these rates :

(1) E(N) A/ p

For the variance to mean ratio , V(N) / E (N ) , Haj i and Newell obtain

the approximation:

(2) V(N)/E(N) ~ 1 + (I — l)v

where I is (roughly) the ratio of the variance to the mean number of

arrivals in an interval and

(3) v _ f [ i  - Gft) ] 2dt /E(S)

Now v is a measure of service time regularity (increasing v

means greater regularity). In fact, v is maximized (v — 1) uniquely

in the case of constant service, where (1 — C)2 1 — C for all t
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The effec t of server regularity on (2) depend s on the sign of

I — 1 . For a Poisson process , I — 1 and v has no effect .  For

less regular arrival processes , e.g., batch Poisson arrivals, I > 1

and making the service more reguki.r in the sense of (3) increases

V(N )

While contrary to conventional wisdom (and , at f i rst , quite a shock)

this observation has an intuitive explanation: For arrivals which occur

in batches and constant service , either an entire batch is present or

none of it is at any time t . Irregular service spreads out the departure

times, permiting the observance of “partial” batches , i.e., the number

present from any batch is somewhere in—between “all” and “none .”

Thus, we expect larger deviations from the fixed E(N ) , and hence a

larger variance, when service is regular.
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3. LOSS SYSTEMS

By a loss system , we mean a system with c servers in parallel

(c channels) such that an arrival finding all servers busy departs

immediately without receiving service (the arrival is lost) .  An important

performance measure for these systems is the fraction of arrivals lost.

A classic result , with a long history in the literature, is called

Erlang ’s Loss Fox,nula, e.g . ,  [18] : For Poisson arrivals and general

independent service (the M/G/c loss system) , the stationary distr ibution

of the number of busy servers ~p , n = 0,1, ..., c} is the unique

solution to:

(4) Ap 
—l 

npp , n = 1,2, ... , c and ~ p 1n n 0

where A and p are the arrival and service rates.

Of course , we could exhibit the solution to (4) explicitly. It is

written in the form above to emphasize that (a) the solution depends

only on the artival and service rates and (b) knowing this, (4) can be

written down immediately by assuming that C is exponential. The fraction

of arrivals lost in this case is aleo the fraction of time there are c

busy servers, P C

Loss systems when the arrival process is not Poisson occur naturally

in telephone systems, in particular, when the arrival process in a loss

systez~ is itself the overflow process of lost calls at some other loss

system. The equivalent random method , described in [2] , is an approxi-

mation technique developed to estimate the fraction of calls lost when

the arrival process is a composite of overflow processes and service is

exponential.
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One might expect loss systems and infinite server systems to be

closely related . The equivalent random method is based on this notion.

More general approximation methods are presently under investigation [3]

which a t t empt  to do this explicitly for general arrival processes and

service time distributions in terms of the ratio V(N)/E(N) in Section 2.

This ratio is called peakedne ss.

While evaluating the accuracy of various approximation methods is

of considerable interest , that is not our purpose here . Instead , we

will show that loss systems can also exhibit contrary behavior.

Our example will be for a loss system with c channels , bat ch

Poisson arrivals (denoted by B)!) with batch arrival rate A and constant

batch size b , and three different service distributions at rate p

constant (D) , exponential (M) , and a special case of hyperexponential

(H)

H — (1 — cz)U + cz exp (ctp)

i.e., H is a mixture of an exponential with mean l/ctp and a unit

step at the origin.

The exponential and hyperexponential cases can be solved from balance

equations. If we choose b and C so that c/b is an integer, then

the constant service case can be solved using Erlang ’s loss formula

because groups of b servers are busy and idle together. Thus , the

constant service case behaves “like” an M/D/ (c/b )  loss system .

For b — c — 2 , the percent of calls lost for constant service

is easily shown to be identical with that for exponential service.

That is, it does not exhibit contrary behavior. However, this case is

—
---_- -- --



8

very special. The irregular arrivals (2 at a time) match perfectly

the number of channels.

Example 1:

We now exhibit contrary behavior for the case: batch size b = 2

and c 4 channels. In this case, we did not explicitly compute results

for H . In the limit (a -~~ 0) it can be shown that the hyperexponential

case behaves like an M/M/4 loss system with the same offered load : 2XE(S)

Results are as follows:

BM/D/4 BM/M/4 M/M/4

2AE(s)\ % loss % loss % loss_
—

.5 2.4 2.0 0.16

1 7.7 6.6 1.5

2 20.0 18.4 9.5

3 31.0 29.5 20.6

4 40.0 38.7 31.1

6 52.9 52.1 47.0

8 61.5 61.0 57.5

Notice that the direction of the effect of service regularity is

independent of the offered load. The effect , at least in this case ,

appears to be greater to the right (less regular) side of the exponential ,

and can be substantial.

While this example is consistent with infinite server results,

the b — c — 2 case shows that peakedness alone may be an inadequate

measure, particularly if the number of servers is small.

*Explicit results for the hyperexponential case will be presented in the
example in Section 4.
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4. PROCESSOR SHARING

Priority rules for processing jobs at a computer system central

processor often permit interrupting jobs. An idealized version of such

a rule is called Round Robin: jobs (customers) join the end of a single

queue at a single server (the CPU). On entering service, each job is

allocated an amount of CPU time, 6 > 0 . The job either completes service

during 6 or, if not , is interrupted after receiving 6 and joins the

end of the same queue. This is repeated until each job completes serv ice

and departs.

The limiting version of the round robin rule as 6 + 0 is called

Processor Sharing. Under a work—conservation assumption , it was first shown

in [17] that the M/G/l Processor Shared (PS) queue possesses a remarkable

property analogous to Erlang’s loss formula: the stationary distribution

of the number of customers in systems, {
~~

} is

(5) (1 — )
fl 
, n = 0,1, ... , and

(6) L
~~~~~

nPn = i~~~p

where p XE(S) , independent of the form of the service distribution .

For non—Poisson arrivals , can the PS rule exhibit contrary behavior?

By now, it should be clear how to proceed .

Example 2:

Consider a batch Poisson arrival process with batch rate A and

random batch size ~
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(a) For exponential service, L is independent uf the rule, i.e.,

f or BM/M/l

(7) L = L = • ~j(v)(v + 1))PS FIFO 1 — p 2E( v)

(b) For hyperexponential service with H = (1 — a)U0 + n exp (ap
) , the

customers with zero service time go through immediately under a PS

rule. This leaves customers with exponential service . Thus , this

system is equivalent to a BM/M/l FIFO queue composed onl y of “ long”

service time customers. Therefore ,

_____ 

E{ (v & ) (v & + 1))
(8) ‘

~PS 1 —
~~~~~ 2E(v~)

where v~ is the number of “longs” in a batch of si ze v . It is

easily shown that

(9) E{(v,)(\)R, + l)} 2E(~ ) + ct[E(~
2) —

2E(v 2,) 2E(’v)

and

(10) li mLp g 1 ~~ p

(c) For constant service, restrict the batch size to be a constant v b

Sharing customers is equivalent to sharing batches , where the expected

number of batches in system is given by (6) . Since each batch in

system contains exactly b customers,
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(11) Lps - 1 
pb

In this example, the effect of service regularity can be large.

If b is large, (11) is nearly double (7). For fixed p , we can make

(7) as large as we want by making batches large and/or irregular. The

effect of hyperexponential service is to remove the batch effect, i.e.,

for fixed v and sufficiently small a , ‘v
~ 

is likely to be 0 or 1

We also remark that quite apart from the arrival process , Processor

Sharing is a terrible rule when service is sufficiently regular. For

constant service , every customer departs later under PS than under FIFO

(strictly later , excep t for those jobs that end busy periods) .

When interruptions are permitted , one needs to interpret conservation

laws with care , e .g. ,  for the conservation law on pg. 199 of [11], it is

not true that reducing the delays of some jobs can only be achieved by

increasing the delays of others.

I.
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.1 5. MULTI—CHANNEL FIFO QUEUES WITHOUT LOSSES

In Section 1, we observed that in heavy traffic , multi—channel queues

behave like fast  single channel queL 2s . Contrary behavior is possible

only for suff ic ient ly  “ligh t ” t r a f f i c .

In fact, one might expect that for a sufficiently irregular arrival

process , there will be a “crossover” point of server utilization such that

irregular service is preferred below that point and regular service is

preferred above. (The crossover point would presumably depend on the

distributions being compared.) The following example exhibits this behavior.

Example 3:

Consider a batch poisson arrival proc :ss with constant batch size

b = 4 and c = 2 channels, with server utilization p 2X/p

(a) For the BM/M/2 queue, the generating function of the state probabilities

P(z) = p ~~ was found and differentiated , yielding

‘12’ L —  + 
p

‘ / 4+ p 2(l — p)

(b) The BM/D/2 queue may be analyzed as two BM/D/l queues with batch

arrival size b — 2 at each. Finding L is now easy:

(13) L — 2 p + 1)

There is a crossover point at p — p 0 ~~ .35 , with exponential service

preferred for p > p and constant service preferred for p < p 0

For the case c — b — 2 , no crossover point exists. Constant service

is preferred to exponential service for all p
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHE R RESEARCH

The results of this paper are provacative rather than definitive.

In all three examples , we compared service distributions for specified

suff ic ient ly  irregular arrival processes. Exhibiting contrary behavior in

the converse situation appears to be much more difficult . If examples of

this kind exist , it is this author ’s judgment that they would depend on

very special structural relationships between the arrival process and

service facility. For example , batches of size three might perform better

than batches of size two for a loss system with three servers.

The Poisson process appears to be a boundary between irregular

arrival processes which can exhibit contrary behavior and regular arrival

processes which cannot. Contrary behavior also depends on structure, e.g.,

it occurs in processor sharing under circumstances in which it does not

occur in loss systems .

The competing effects which account for the crossover in the multi—

channel case (Example 3) t end to diminish the effect  of service t ime

variability on system performance. Thus , the mathematically convenient

assumption of exponential service may result in surprisingly good

approximations f or system performance in moderately loaded multi—channel

queues with irregular arrivals.

For arrival processes which are more regular than Poisson in some

appropriate sense (including the Poisson i tself)  it is conjectured that

contrary behavior cannot occur. In particular , this author would expect

results similar to those in [15] to be true.
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