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ABSTRACT

ionventional wisdom holds that the more regular the arrival

process and/or service times are, the better system performance
will be. Examples of contrary behavior are presented in three
cases: loss systems, processor sharing, and multi-channel
queues without losses. In each case, it is shown that making
service times more regular can make system performance worse.
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THE EFFECT OF SERVICE TIME REGULARITY ON SYSTEM PERFORMANCE

by
Ronald W. Wolff

0. INTRODUCTION

In undersaturated queues, queueing occurs solely because of the
stochastic variation of the arrival process and/or service times. Thus,
it is generally believed that the more regular (in some appropriate sense)
each of these processes is, the better any of the usual performance
measures will be.

This "conventional wisdom" is very useful when true. For example,
we may be able to improve system performance when the arrival and/or
service processes are under some control. Alternatively, performance
measures for systems which are difficult to analyze can be bounded by
corresponding measures for easier ones. If we are lucky, these bounds
may even be good approximaticns.

In this paper, we briefly review published results in support of
conventional wisdom and cite one published result which is contrary.

Then, in a series of examples, we exhibit other results which are contrary
to conventional wisdom. All of our examples compare performance measures
for different service distributions under specified, sufficiently irregular
arrival processes. In some cases, not only does a performance measure
move in the "wrong"” direction, but also the magnitude of the change is
large. In the process, our understanding of the nature of these effects

should improve.




1. RESULTS IN SUPPORT OF CONVENTION WISDOM

Kingman's upper bound [7] for the expected delay in a GI/G/1 queue
is in terms of the sum of the variance of the inter-arrival and service
distributions. Marshall [13] obtained lower bounds on expected delay for
this queue when the inter-arrival distribution is more regular than the
exponential (under either bounded mean residual life or increasing failure
rate). The closeness of the upper and lower bounds shows that, in certain
cases, the upper bound is a good approximation.

For heavy traffic,* Kingman [8], [10] showed that the distribution
of delay in queue is approximately an exponential distribution with mean
equal to his upper bound in [7]. Kdllerstrom [12] extended Kingman's result
to the GI/G/c queue: In heavy traffic, the delay distribution is approxi-
mately an exponential distribution with mean equal to Kingman's GI/G/1
upper bound with the variance of service, V(S) , replaced by V(S/c) .
That is, in heavy traffic, a multi-server queue behaves like a "fast"
single server queue. Thus, the lower bound obtained by Brumelle [1]
for the expected delay in a GI/G/c queue is a good approximation in heavy
traffic. Similarly, the heavy traffic approximations of Iglehart and
Whitt [5]) for the number of customers in a GI/G/c queue are consistent
with conventional wisdom.

Bounds on the delay distribution for the GI/G/1 queue [9]), [16] are
also consistent with conventional wisdom.

In several papers, with the main results summarized in [15], it is

shown that for the GI/G/1 queue under various definitions of regularity,

DR AT oS e g

the stationary delay distribution becomes more regular as the inter-

*
Definitions of heavy traffic vary, but for most purposes, we mean heavily
loaded systems where server utilization is less than but near 1.
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arrival and/or service distributions become more regular. For two of

these definitions, the mean delay decreases.

Finally, in a classic paper by Kiefer and Wolfowitz [6], it is shown
that for a stable GI/G/c queue with positive arrival rate, the rth
moment of the stationary delay distribution 1is finite if and only if the

(r + 1)St moment of the service time distribution is finite.
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2. A CONTRARY RESULT FOR THE INFINITE SERVER QUEUE

The evidence in favor of conventional wisdom is impressive. However,
it should be noted that most of these results pertain to the GI/G/l queue
without losses (all customers are served). With the exception of [6], all
results pertaining to the GI/G/c queue are heavy traffic approximationms.

In an unpublished paper by Haji and Newell [4], summarized in Newell
([14], p. 32), an infinite server queue is analyzed for the mean and
variance of N , the stationary number of busy servers.

For arrival rate ) and service time S with E(S) = 1/u and

P(S < t) = G(t) , E(N) obviously depends only on these rates:
(1) E(N) = A/u .

For the variance to mean ratio, V(N)/E(N) , Haji and Newell obtain

the approximation:
(2) VIN)/JE(N) = 1 + (I - 1)v ,

where I 1is (roughly) the ratio of the variance to the mean number of

arrivals in an interval and
(3) v -f[l - G(t)]zdt/E(S) "
0

Now v 1s a measure of service time regularity (increasing v
means greater regularity). In fact, v 1is maximized (v = 1) uniquely

in the case of constant service, where (1 - G)2 =] -G for all ¢t .




The effect of server regularity on (2) depends on the sign of
I -1. For a Poisson process, I =1 and v has no effect. For
less regular arrival processes, e.g., batch Poisson arrivals, I > 1 ,
and making the service more regular in the sense of (3) inmcreases
V(N) .

While contrary to conventional wisdom (and, at first, quite a shock)
this observation has an intuitive explanation: For arrivals which occur
in batches and constant service, either an entire batch is present or
none of it is at any time t . Irregular service spreads out the departure
times, permiting the observance of 'partial"” batches, i.e., the number
present from any batch is somewhere in-between "all" and "none."

Thus, we expect larger deviations from the fixed E(N) , and hence a

larger variance, when service is regular.
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3. LOSS SYSTEMS

By a loss system, we mean a system with ¢ servers in parallel
(c channels) such that an arrival finding all servers busy departs
immediately without receiving service (the arrival is lost). An important
performance measure for these systems is the fraction of arrivals lost.

A classic result, with a long history in the literature, is called
Erlang's Loss Formula, e.g., [18]: For Poisson arrivals and general
independent service (the M/G/c loss system), the stationary distribution
of the number of busy servers {pn , n=0,1, ..., c} 1is the unique

solution to:

(4) Xpn_l =nup , 0= 15255 <s 5. ¢ and § Py % 1
n=0

where A and u are the arrival and service rates.

Of course, we could exhibit the solution to (4) explicitly. It is
written in the form above to emphasize that (a) the solution depends
only on the arrival and service rates and (b) knowing this, (4) can be
written down immediately by assuming that G 1is exponential. The fraction
of arrivals lost in this case is also the fraction of time there are ¢
busy servers, P ¢

Loss systems when the arrival process is not Poisson occur naturally
in telephone systems, in particular, when the arrival process in a loss
systeni is itself the overflow process of lost calls at some other loss
system. The equivalent random method, described in [2], is an approxi-
mation technique developed to estimate the fraction of calls lost when
the arrival process is a composite of overflow processes and service is

exponential.




One might expect loss systems and infinite server systems to be
closely related. The equivalent random method is based on this notion.
More general approximation methods are presently under investigation [3]
which attempt to do this explicitly for general arrival processes and
service time distributions in terms of the ratio V(N)/E(N) in Section 2.
This ratio is called peakedness.

While evaluating the accuracy of various approximation methods is
of considerable interest, that is not our purpose here. Instead, we
will show that loss systems can also exhibit contrary behavior.

Our example will be for a loss system with c¢ channels, batch
Poisson arrivals (denoted by BM) with batch arrival rate A and constant
batch size b , and three different service distributions at rate yu :
constant (D) , exponential (M) , and a special case of hyperexponential

(H) ,

H= (1 - a)Uo + a exp(ap) ,

i.e., H 1is a mixture of an exponential with mean 1/ap and a unit
step at the origin.

The exponential and hyperexponential cases can be solved from balance
equations. If we choose b and c¢ so that c/b 1is an integer, then
the constant service case can be solved using Erlang's loss formula
because groups of b servers are busy and idle together. Thus, the
constant service case behaves "like" an M/D/(c/b) loss system.

For b =c = 2 , the percent of calls lost for constant service
is easily shown to be identical with that for exponential service.

That is, it does not exhibit contrary behavior. However, this case is
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very special. The irregular arrivals (2 at a time) match perfectly

the number of channels.

Example 1:
We now exhibit contrary behavior for the case: batch size b = 2
and ¢ = 4 channels. In this case, we did not explicitly compute results
*
for H. 1In the limit (o - 0) it can be shown that the hyperexponential
case behaves like an M/M/4 loss system with the same offered load: 2)\E(S)

Results are as follows:

BM/D/4 BM/M/4 | M/M/4
2XE(S % loss % loss % loss
.5 2.4 2.0 0.16
1 Jeil 6.6 1.5
2 20.0 18.4 9.5
3 31.0 295 20.6
4 40.0 38.7 31.1
6 52.9 52.1 47.0
8 61.5 61.0 DD

Notice that the direction of the effect of service regularity is
independent of the offered load. The effect, at least in this case,
appears to be greater to the right (less regular) side of the exponential,
and can be substantial.

While this example is consistent with infinite server results,
the b =c = 2 case shows that peakedness alone may be an inadequate

measure, particularly if the number of servers is small.

*
Explicit results for the hyperexponential case will be presented in the
example in Section 4.



4. PROCESSOR SHARING

Priority rules for processing jobs at a computer system central
processor often permit interrupting jobs. An idealized version of such
a rule is called Round Robin: jobs (customers) join the end of a single
queue at a single server (the CPU). On entering service, each job is
allocated an amount of CPU time, & > 0 . The job either completes service
during § or, if not, is interrupted after receiving ¢ and joins the
end of.the same queue. This is repeated until each job completes service
and departs.

The limiting version of the round robin rule as § - 0 is called
Processor Sharing. Under a work-conservation assumption, it was first shown
in [17] that the M/G/1l Processor Shared (PS) queue possesses a remarkable
property analogous to Erlang's loss formula: the stationary distribution

of the number of customers in systems, {pn} is

() Pn=(1-p)pn,n=0,1, ... , and
© N il

where p = AE(S) , independent of the form of the service distribution.
For non-Poisson arrivals, can the PS rule exhibit contrary behavior?

By now, it should be clear how to proceed.

Example 2:

Consider a batch Poisson arrival process with batch rate A and

random batch size v .
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(a)

(7

(b)

(8)

9

(10)

(c)

10

For exponential service, L is independent of the rule, i.e.,

for BM/M/1 ,

T =T, et Bt b 1))
PS FIFO 1 -p 2E(v)

For hyperexponential service with H = (1 - a)Uo + a exp (au) , the
customers with zero service time go through immediately under a PS
rule. This leaves customers with exponential service. Thus, this
system is equivalent to a BM/M/1 FIFO queue composed only of "long"

service time customers. Therefore,

E{(v,) (v, + 1)}
S 2E(v,)

where vy is the number of '"longs" in a batch of size v . It is

easily shown that

E{(vy) vy + 1)} _ 2EQ) + a[E(v?) - E()]
2E(v2) 2E(v) :

and

lim L, = —&— .

0 PS 1 p
For constant service, restrict the batch size to be a constant v =b .
Sharing customers is equivalent to sharing batches, where the expected
number of batches in system is given by (6). Since each batch in

system contains exactly b customers,
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In this example, the effect of service regularity can be large.
If b is large, (11) is nearly double (7). For fixed p , we can make
(7) as large as we want by making batches large and/or irregular. The
effect of hyperexponential service is to remove the batch effect, i.e.,

for fixed v and sufficiently small o , v, is likely to be O or 1 .

2
We also remark that quite apart from the arrival process, Processor
Sharing is a terrible rule when service is sufficiently regular. For
constant service, every customer departs later under PS than under FIFO
(strictly later, except for those jobs that end busy periods).
When interruptions are permitted, one needs to interpret conservation
laws with care, e.g., for the conservation law on pg. 199 of [11], it is

not true that reducing the delays of some jobs can only be achieved by

increasing the delays of others.
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5. MULTI-CHANNEL FIFO QUEUES WITHOUT LOSSES

In Section 1, we observed that in heavy traffic, multi-channel queues
behave like fast single channel quev2s. Contrary behavior is possible
only for sufficiently "light" traffic.

In fact, one might expect that for a sufficiently irregular arrival
process, there will be a "crossover" point of server utilization such that
irregular service is preferred below that point and regular service is
preferred above. (The crossover point would presumably depend on the

distributions being compared.) The following example exhibits this behavior.

Example 3:
Consider a batch poisson arrival process with constant batch size
b=4 and c = 2 channels, with server utilization p = 2\/u
(a) For the BM/M/2 queue, the generating function of the state probabilities

P(z) = 2 P, z" was found and differentiated, yielding
n

s s
4 4+ p 2(1 - p)

(12) L=

(b) The BM/D/2 queue may be analyzed as two BM/D/1 queues with batch
arrival size b =2 at each. Finding L is now easy:

+ 1

“ plp + 1)
(13) L=2p + S =g "

There is a crossover point at p = o % .35 , with exponential service
preferred for p > Py and constant service preferred for p < Po
For the case ¢ =b = 2 , no crossover point exists. Constant service

is preferred to exponential service for all p .
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The results of this paper are provacative rather than definitive.

In all three examples, we compared service distributions for specified
sufficiently irregular arrival processes. Exhibiting contrary behavior in
the converse situation appears to be much more difficult. If examples of
this kind exist, it is this author's judgment that they would depend on
very special structural relationships between the arrival process and
service facility. For example, batches of size three might perform better
than batches of size two for a loss system with three servers.

The Poisson process appears to be a boundary between irregular
arrival processes which can exhibit contrary behavior and regular arrival
processes which cannot. Contrary behavior also depends on structure, e.g.,
it occurs in processor sharing under circumstances in which it does not
occur in loss systems.

The competing effects which account for the crossover in the multi-
channel cas; (Example 3) tend to diminish the effect of service time
variability on system performance. Thus, the mathematically convenient
assumption of exponential service may result in surprisingly good
approximations for system performance in moderately loaded multi-channel
queues with irregular arrivals.

For arrival processes which are more regular than Poisson in some
appropriate sense (including the Poisson itself) it is conjectured that
contrary behavior cannot occur. In particular, this author would expect

results similar to those in [15] to be true.
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