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I
The purpose of this paper is to explore several possible

methods of solving the small separation problem at high Reynolds
number. In addition to using analytical methods, there are sev-
eral numerical approaches which can be used and in addition there
is the possibility of using approximate integral methods. We will
restrict ourselves to high Reynolds number laminar two dimensional
problems for simplicity. Presumably, the same techniques can be
extended to more complicated flow fields. Only a brief discussion
will be given of the finite difference methods since these methods
are discussed in detail by Davis and Werle (ref. 1). Most of the
emphasis will be placed on developing an approximate integral ineth—
od. As a model problem we will choose the supersonic compression
ramp problem since several numerical solutions along with experi-
mental data are available for this case. The techniques discussed
can be modified and applied to other similar type wall geometries.

INTRODUCT ION

It has been recognized for many years that the problem of
computing high Reynolds number separated flows is extremely diff i-
cult. The reason for the difficulty becomes clear if one examines
.the results of the asymptotic theory , see Stewartson (ref. 2).
Davis and Werle (ref. 1) have discussed the implications of these
results and suggested how one might use the results of the asymp-
totic analysis in order to do efficient numerical computations.

Briefly, the asymptotic theory reveals that at high Reynolds
number severe scaling problems exist around and downstream of sep-
aration. In addition the asymptotic theory for the small separa-
tion problem reveals a mechanism for upstream propagation through
boundary-layer interaction , even if the external flow is super-
sonic. These two features require that an efficient numerical
scheme use properly scaled independent variables for resolution
and in addition require that the boundary-layer interaction be
handled in a manner appropriate to boundary value problems . These
features should be accounted for even in the solution of the full
Navier Stokes equations.

t This research was supported by the Office of Naval Research. under
Contract ONR-N00014-76-C-0364, and Naval Ship Research and
Development Center under Contract Ot~.TR-NOOOl4-76—C-O359.

Invited Lecture to be presented at the 13th Annual Meeting of the
Society of Engineering Science, Nov. 1—3 , 1976, Hampton, Va.
Paper to appear in Conference Proceedings.
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The asymptotic theory is partially complete for some massive
separation problems , see Messiter (ref. 3) for example , and the
results indicate that numerical solutions will be extremely dif-
ficult to perform for those type of problems. On the other hand ,
the theory for the small separation problem is essentially com-
plete, see Stewartson (ref. 2), and we can now begin to compute
flows of this type with confidence . For the remainder of this
paper we will therefore concentrate on the type of problem where
separation is of limited extent and can be handled within the
framework of boundary—layer theory.

According to the asymptotic theory, we may define a small
separation problem to be one such that the scales of a bump or
depression on a flat plate are the same as the length scales of
the lower deck in the triple deck analysis , see Stewartson (ref.
2). This requires that the length of the bump or depression
generating the separation scale like Re 3/8 while the height must
scale like Re 5/8. If this is true, the separated region will be
entirely confined to the lower (fundamental) deck and the high
Reynolds number separation problem can be attacked entirely with
the lower deck equations coupled with an interaction law for the

r outer inviscid flow. This is the approach taken by Jenson,
Burggraf , and Rizzetta (ref. 4) and Rizzetta (ref. 5) in consider-
ing supersonic ramp type separations. Smith (ref. 6) has in
addition solved the linear version of the small separation problem
for flow over protuberances.

As an alternative , for the same type of separation problems ,
one may solve the ordinary Prandtl boundary—layer equations in-
cluding interaction with the outer inviscid flow. It can be shown
that these equations contain all of the terms in the triple deck
equations plus some additional ones. The extra terms in fact pro-
vide some corrections which allow better agreement with experiment
at moderately high Reynolds numbers. This is the approach taken
by Werle and Vatsa (r e f .  7) and Vatsa (r e f .  8) in considering
supersonic ramp type separations.

The supersonic ramp separation problem has also been solved
by Carter (ref. 9) and others using the full Navier Stokes equa-
tions. These calculations provide a basis for comparison with
other less exact models of separation .

The high Reynolds number small separation problem may there-
fore be approached in a variety of ways. The most complicated
method would involve the solution of the full Navier Stokes equa-
tions. Next in complexity would be to solve interacting boundary-
layer like equations or one of the sets of so—called parabolized
Navier Stokes equations. The simplest set of equations one could
solve and retain all of the features of the flow would be the
triple deck equations.
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If one wishes to do for example a full Navier Stokes calcula-
tion for flow over a complicated configuration one may not Wish to
provide the mesh refinements in small separated regions as is
indicated as being necessary by the asymptotic theory . These
regions can be excluded from the overall calculation and accounted
for by a local calculation. This local calculation can then pro-
vide a slip type boundary condi tion on the edge of the small sep-
arated region. Thus by excluding the small separation bubble and
replacing it with a slip type boundary condition, the overall
calculation can be made accurately with a much larger mesh size
than would be required if the separated bubble were included .

One important application of triple deck theory could thus be
to provide local solutions in small separated regions to match
into an overall calculation . It therefore seems important that we
be able to solve the triple deck equations in as efficient a
manner as possible.

The simplest and therefore fastest type of approximate solu-
tions to the boundary-layer equations are obtained with integral
methods. To test the applicability of the integral technique to
triple deck theory , we will develop an integral method for solving
the lower deck equations and compare solutions obtained from this
method with more exact solutions. This is perhaps the fastest
method for solving the small separation problem if one is willing
to accept the inaccuracies associated with an approximate integral
method . The method is attractive for doing local calculations,
especially if one considers that the errors obtained from the
integral method would probably be much smaller than those which
would exist from a course mesh finite difference calculation
which might be used as an alternative.

GOVERNING EQUATIONS FOR SMALL SEPARATIONS

The small separation problem is by definition a separation
generAted by a bump or depression on a flat plate such that the
scaling of the bump or depression is the same as that given by
the lower deck analysis  of Stewartson (r e f .  2 ) .  Thus such a b ump
or depression scales like c 3 in the streamwise direction and c 5 in
the normal direction, as t -

~~ 0 , where c Re~~ /8 . Such a bump or
depression generates an interaction which falls within the frame-
work of triple deck analysis and the problem can thus be handled
by solving the lower deck equations coupled with an interaction
law.

In the lower deck variables defined by equatior.. (4.4) in
Stewartson (ref. 2), the small separation problem is governed by
the following equations, see figure 1

0 , (.
1)3



I
I

,I I and 2
(2)

With boundary and matching conditions

I u = v = O  at y = f ( x  , 
- 

(3)

u ‘
~~ 
y - f(x) - 6 (x) as y -~~ , ( 4 )

I and
6 ( ±  ~) = 0 . (5)

According to linear theory the interaction law is given by

P f (x) + 5 (x) for supersonic flow (6)

or
1 ~ (x1)+ ~ (x1)

= - 
~~~ I - 

dx 1 for subsonic flow . (7)

I 
X

The quantity f(x) denotes the dimensionless surface measured
from the Cartesian coordinate system on the f l a t  plate surface and
6 is the dimensionless displacem ent thic kness. Both of thes e
quantities are nondimensionalized in the same manner as the y
coordinate.

In order to solve the lower deck equations , it is convenient
to shift the coordinate system such that the body surface lies
along a constant coordinate curve . This can be accomplished with
the use of Praridtl’s transposi tion theor em, see Jenson, Burggraf ,
and Rizzetta (ref. 4) for example.

With the change of variables

i z = y — f(x) C8~
I and dfw = v - ~~~~ u (9 )

I and all other variables remaining unchanged we obtain from equa-
tions (1)— (4)

( au
I , ( 10)

dP

I u~~~~~+ w ~~~
. = -

~~~~~+ — 2 . , (1].)

u = w = 0 at z = 0 , (12)

J and
u ‘~~ z — 6 (x) as z -~~ . (13)

The remaining equations (5)-(7) are unchanged by the transformations .

4
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INTEGRA L FORMULATION FOR THE LOWER DECK EQUATIONS

The lower deck equations (10)-(l3) and (5)-(7) can be put
into a form similar to the von Karman momentum integral equation
for two dimensional boundary layers . The advantage in doing this
is that a simple approximate solution technique can be developed
for the lower deck equations along the same lines as approximate
solu tion methods for non interacting boundary layers.

Firs t let z -
~ in the momentum equation (11) and substitute

the outer edge condition for u given by equation (13) . This
resul ts in

I I

v ‘s-. (z — 6 ) 6  — P as z -
~ . (14)

Next integrate the con tinui ty equation (10) wi th res pect to
z to find another expression for v as z -* ~~~. Thus results in

v “v 6 z  — I (U••• U~ ) d Z  as z -
~~

where we have defin ed Ue as

Ue 
= z — 6 . (16)

Equating the two expressions for v as z -
~~ from equations (14)

and (15) we find

66 + P = I (U~U~ )dZ . (17)

Integrating this expression with respect to x and using the con-
di tion that all quan tities in the equation die ou t as x ~ -

~~~

we obtain

2
+ p = I (u — Ue)dZ C18)

0

We nex t integr ate the momen tum equation ( 11) wi th resp ec t to
z from z equals zero to infinity . After some fairly straight-
forwar d algebra , this resul ts in

I (u 2 
— U~ ) dz  + 6 f (U_ U

e)dZ = 1 — u
~~

(x ,0) • 
(19)

We therefore have thr ee integral quan tities wh ich mus t be
evaluated. The di~~p1acement thickness 6 , f r om equation (13) can
be wri tten as

6 =  1 (l— ~~-~)dz . (20)

I
1
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The remaining two integral quanti ties are define d as

D = I (U  — Ue)dZ (21)
0

and

M = I (u~ — U~ )dz . (22)

With thes e definitions the equations ( 18) and (19) become
2

(23)

and
dM dD

= l T W (24)

where

= u~ (x ,0) . (25)

The simplest possible approximate solution method to the
integral equations (2 3 )  and (24 )  is to assume a linear shear pro-
file of the followin g form

= ~~~ + (1 - T W
) L(x) for z < ~.

and t26~

for z > L

where L ( x )  is the boundary-layer thickness function. Substituting
the above equations into equation (20 )  results in

6 = (1 — . (27)

Integrating equation (2 6 )  results in a parabolic velocity
profile of the form

2
U = Z +(1 - T

w
) ~~ + C(x )  for z < L

and (28)

u = U = z - 6 for z > L

We choose to satisfy the conditions that u = 0 and z = 0 and u =
te at z = t. The first condition results in C(x) = 0 and the
second reproduces equation (27). Thus the velocity profile is
given by 2

U = t w Z +  (l - T w) h for 
z < t 6
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and (29)

u = z — 6  for z > L

This profile satisfies the no slip condition , is continuous and
has a continuous first derivative at z =

Usin g the abov e veloci ty profile , the expression (21) for D
gives

D = ~~! (30 )

( while the expression (22) for M gives

£26 7 2M = —

~

--— — 1-~~L6 . (31)

Substituting these expressions into the integral equations ( 18)
and (19) gives

~~~~~ ( 32)
and

d £ 2 6 7 6~ + 6 d ( L6 
— 

26 (33 )
dx~~~ 6 dx 3 ) L

In order to close the problem , equation (6) or equation (7)
for P is used depending upon whether the flow is supersonic or
subsonic. Initial and downstream boundary conditions are pre-
scribed in the form of equation (5).

The inte gral formulation therefore resul ts in the so lution of
two nonlinear firs t ord er ordinary differen tial equations for 2.
and 6 for the supersonic case and the solu tion of one nonl inear
integral equa tion and one nonlinear firs t or der ord inary differ-
ential equation for the subsonic case.

The pres ent choice of profile shapes iS the sim plest possib le .
Howev er , more complicated profiles can easily be chosen. The pur-
pose of the pre sent analysis is to show how an integral method
may be formulate d wi thou t payin g attention at thi s point in tim e
to accuracy of the method.

We can easily find an approxima te soluti on corr espon d ing to
Lighthi ll’ s (ref. 10) analysis of the initiation of a free inter-
action process in supersonic flow. If we consider the possible
emergence of a sublayer at a point 4 on a flat plate , see Ste-
wartson (ref. 2), we can study the i~ii tiation of the sublayer
using the linearize d version of equations (32) and (33) . For
supersonic flow, if we consider 6 to be small , these equations
resul t in

£6  ( 34 ) 7
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and

d 2. 2 6 25a~ ~~~ = r—
Dividing the first equation by the second and integrating , it is
easy to show that the approximate solution corresponding to
Lighthil l’ s exact solution is

(36 )
and

6 = 60e 
X (37 )

whe re

k = 0.8165 . (38)

The approximate value of k giv en by this ana lysis compares favor-
ably with the exact value of 0.8272 given by Lighthill’s analysis.
From the expression (27) and the linear version of (32), assuming
£ = , 6 can be eliminated to give

T
w

= 1 — P  (39)

which also compares favorably with 1 - l.209P given by
Lighthill’s analysis.

Nex t we consi der the case of compressive free interac tion s,
see Stewartson and Williams (refs.. 11 and 13), Stewartson (ref. 2)
and Will iams (r e f .  13) . The fu l l  approximate equations ( 3 2 )  and
(33 )  for  supersonic flow , i .e .  P = d6/dx , were integrated numeri-
cally using a fourth-order Runge Kutta method.* The results were
adjusted such that the zero shear point occurs at x = 0 in order
to compare with Stewartson and William ’s resul ts , see Stewartson
(ref. 2) and Williams (ref. 13).

Figure 2 shows that the approximate results agree quite
favorably up to and through the separation poin t. Far downs tream
of separation the approximate results produce a shear which asymp-
totically approaches -1/3 rather than zero from the exact results
and a pressure which goes to zero rather than 1.800 (see Williams
(ref. 13)) from the exact results. These deficiencies are due
to the complicated nature of the lower deck free interaction solu-
tion as x -

~~ ~~~, see Williams (ref. 13). A more elaborate and
phy sic ally meanin gful assumption for a she ar profile to handle the
region for large x should overcome this deficiency . However , it
is important to note that the present approximate integral me thod
preserves the qualitative features of the exact results , except
when the interaction region is too long.

* The author wishes to express thanks to Mr. S. Khullar for per-
forming these and later calculations using the integral method .
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As a final example of the application of the approximate
method , we consider flow past a compression ramp. Exact numerical
solutions have been provided to the lower deck equations for this
problem by Jenson , Burggraf and Rizzetta (ref. 4) and Rizzetta
(ref. 5)

Consider supersonic flow along a flat plate which abruptly
encounters a wedge type compression ramp . Jenson, Burggraf and
Rizzetta (ref. 5) have considered the formulation and numerical
solution of this problem within the framework of triple deck
analysis. In terms of their formulation , the appropriate problem
to be solved wi th the approxim ate set of equations is giv en by
equations (32) and (33) with the supersonic interaction law (6)
given by

for x < 0

and ( 4 0 )
P =

~~~j
+ c

~ 
for

where is related to the physical angle a. through

~112 [C
(M
~e
_l)]1/4 

. (41)

The governing equations were again integrated using a fourth
order Runge Kutta method. The initial conditions were applied at

= -20 with £ = . A shooting method was used to find the
correct initial condition on 6 at x -20 to produce a ~ which
goes to zero as x -+ ~~~. The solutions branch as downstream infin-
ity is approached and therefore become very sensitive to initial
guess. A more appropriate way to solve the problem is to recog-
nize that it is boundary value in natur e and therefore solv e it
as a time relaxation process using central differences on all of
the space variables. This type of technique has been used by
Werle and Vatsa (ref. 7) to solve the interacting boundary layer
equations.

Figures 3 and 4 show the results for pressure and wall shear
as a function of the reduced angle a. Rizzetta (ref. 5) has pre-
sented exact numerical results for the same problem . For small
a there is good agreement between the present results and those
of Rizzetta. A direct comparison is given for a = 2.5. The
comparison_between the present results and Rizzetta ’s becomes
poorer as a increases. This is at least partially due to the fact
that the free interaction portion of the .colution has extended far
enough upstream for values of a greater than 2.5 that the diffi-
culties of the present approximate method with the free interac-
tion plateau region are beginning to appear. However , overall
this s imple integral metho d gives the main f eatur es of the f low --
field and with improvements would seem to be a reasonably accurate

9
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and extremely fast method for finding lower deck solutions.

NUMERICAL FINITE DIFFERENCE SOLUTION OF
THE SMALL SEPARATION PROBLEM

Jenson , Burggraf , and Rizzetta (ref. 4) have developed a
f ini te diff erence numerical sch eme for solvin g t he low er deck

( equations for the supersonic case. As was mentioned in the pre-
vious sections, they have applied their numerical method to the
problem of flow past a compression ramp. Rizzetta (ref. 5) gives
more extensive numerical results for the same problem using
essentially the same finite difference technique.

• It can easily he shown that the ordinary Prandtl boundary—
layer equations contain all of the terms indicated as being im-
portant in the triple deck analysis as long as one takes into
account the interaction of the boundary layer with the outer in—
viscid flow. It is not a simple matter to solve the resulting
set of interacting boundary—layer equations since , like the lower
deck equations, they are boundary value in nature.

A very natural way to solve the interacting boundary-layer
equations is by the use of an alternating direction impl ic i t  (ADI )
method . This is the approach taken by Werle and Vatsa (ref. 7)
and Vatsa (ref. 8) in their solution of the same type of compres-
sion ramp problems as were considered by Jenson , Burggraf and
P~izzetta.

Figure 5 shows a comparison of the results for skin friction
obtained using Werle and Vatsa ’s method with those obtained from
the triple deck analysis by Rizzetta , see also Burg-graf et al.
(ref. 14). The results show that the interacting boundary layer
model slowly approaches the triple deck asymptotic solution as
Reynolds number goes to infinity .

Because of the slow approach to the infinite Reynolds number
limit indicated in the comparison , the triple deck results do not
tend to agree well with experimental data at high but finite
Reynolds numbers. On the other hand , interacting boundary-layer
results tend to agree well. Figure 6 shows a comparison of
Navier Stokes and interacting boundar~’ layer results with the
experimental data of Lewis , Kubota and Lees (ref. 15).

Tu and Weinbaum (ref. 16) have suggested that the principle
cause of the poor agreemcnt between triple deck results and
experimental data lies iLl the fact that triple deck analysis
neglects stream-tube divergence in the middle deck reg ion . Sinc e
interacting boundary-layer results contain this effect , they tend
to show much better agreement with experiment .

10
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CONCLUSION

The idea of solving separation problems using triple deck
theory is still relatively new . It is anticipated that with time ,
the theory will be modified to incorporate the additional terms
which will allow better agreement with experimental data. Even if
this were not done, the insight gained from triple deck theory
into the mechanism of high Reynolds number separation is in itself
extremely val uable .
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