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I. INTRODUCTION

This paper is written with a two-fold purpose. First, with the
passage of time, applications (filters, nonreciprocal devices, modulators,
switches, etc.) involving layered structures containing both birefringent
and gyrotropic materials appear likely to become more common (Ref. 1-7).
Indeed, the Faraday rotation isolator with polarizer, 45-degree Faraday
rotating section, 45-degree polarizer is such a system and is in wide-
spread use--at least in its microwave analog of rectangular waveguide,
cylindrical waveguide containing ferrite, and 45-degree rectangular
waveguide.

Here we would like to present a method of dealing with a system con-
sisting of an arbitrary number of mixed birefringent and gyrotropic lavers
including all multiple reflections. The conditions are:

1. Coherent electromagnetic plane waves at normal incidence.

2. Propagation to be along the direction of a principal! axis in each
of the birefringent layers, and along the Faraday axis (i.e., in
the direction of the applied magnetic field) in the gyrotropic
layers.

3. The gyrotropic layers have no intrinsic anisotropy (birefringence)
of their own.

4. The permeability is assumed isotropic.

To our knowledge, no simple rigorous treatment of such a system has
appeared (although the "Scientific Literature Explosion'" of recent vears
should be kept in mind); however, References 8-25 appear cenerally
pertinent.*

The second reason for this paper lies in what seems to have been a
source of confusion among at least some scientists--including the author.
Most of us have been exposed to the idea that conservation of energy
requires that matrices representing dielectric constant, conductivity,
and permeability be symmetric--i.e., cij = Cji' (For example, see
Ref. 26). Furthermore, we are shown, the scattering matrix is syvmmetri-
cal--assuming the matrix elements are properly normalized to the imped-
ance levels on both sides of the obstacle (Ref. 27).

* References 23-25 are available from the author on request.

PRECEDING PAGElBLANK;NOT

FIIMED
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Figure 1 shows the reflection and transmission of electromagnetic
waves from a general obstacle. However, if we write as a black-box
approach to Figure 1:

¢ 21 22 2 (1)

and apply it to a microwave isolator as a two-port device, the scatter-
ing matrix (for a perfect isolator) appears to be

0 0
2% g (2)

It is somewhat difficult to call this matrix symmetrical.”

S Rl RE —_—
1 2
- LEI le -

FIGURE 1. Reflection and Transmission
of Electromagnetic Waves From a General
Obstacle.

It is part of the purpose of this report, then, to show what happens
to the symmetry of the scattering matrices when written in coordinate
systems proper for the normal modes of propagation in the particular
materials involved.

The notation super R, L,E, Sub 1,2 is used rather than the more
conventional E, Sub 1,2, and H', Sub 1,2, representing incident and
reflected (prime) waves on the left (1) side or right (2) side of a
barrier. Here R refers to right propagating and L to left propagating.

4
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IT. DERIVATIONS

PART A: THE BIREFRINGENT PLATE

Consider Figure 2. Plane waves propagating in the *Z directions are
normally incident on a semi-infinite slab of birefringent material whose
principal axes lie along the X, Y, Z axes characterized by the dielcctric

constants EX’ Ey, F7. The dielectric constant matrix is thus: (Ref. 26)
€
* 0 0
0 € 0
¥
0 0 €, (3)
X
€
X
jB.Z
s L— 0
- B —
PR e, R a0kt
il 01
Z
-
Z
+«d>

Y Y
a
— R - R A -— R A R A
L= X+ E sy | g — - + B, ¥
3 a1 v ¥ slab “ng = Fox ¥ Y By
- L A L A — L A L A
= + — ! = > + ¥
ERI ElXX Ely Y «— |e«d-> Fl,z FZXX EZY
b

FIGURE 2. (a) Plane Waves at Normal Incidence on a Birefringent Slab
Such That the Direction of Propagation Is Along a Principal Axis; (b)
Schematic Representation With Input Waves Broken Up Into Incident and
Reflected Components.
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Waves polarized along the X and Y axes propagate in the slab with
different velocities and attenuation, but unchanged in form. These are
the normal modes in propagation along a principal axis in birefringent
material as may be verified (Ref. 23) by reference to Maxwell's equations.

In scattering matrix notation, this situation can be represented by:

o — = — — —
j 7 R
E1x 531 12 Ty Tl | By
RF S S S S LE
"2x Sar Rag Sga Sap 2x
L = R
Ely a1 ®z3 %33 Tl | By
R L
| Fav|  [Ss1 Sa2 Sa3 Saa] | Fay] ol
Examination shows: S =S =8 =S =S =S =g = 5. =0

and:

s ) 'Iiyxd
1 - ri e
b il
fﬁ 1 - e y
- G S e oy d
1 - r; e 9
_Y d
(1~ rl) e o
Pt3 " “op ~ , “Ha
1 -rc e
=Y d
(1 - r;) e ¥
a4 " a5 T 2y d (5)
L - r; e y
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where
n - 1
- SR
Xy n 1
X,y
U
n =J———
i x,y
Y - 32 UE
XY '7C X,y
Equation (4) thus becomes:
— — e - —_—
Le &, 8. 0 8 na
1x 11 12 1x
R L
E
2x B T ML S Eox
L ¥ R
E
ly o 9 533 534 Elg
R i1 (
E. 0 0 S S
| 2y | 34 33) L 2y]
Other arrangements of the scattering elements are possible dependine
on the arrangement of the electric field components in the column vectors,

but this one appears appropriate in that it is symmetrical an
shows the separate nature of the normal modes.

clearly

In dealing with a series of slabs, scattering matrices are inadequit
in that they cannot be multiplied together by the rules of standard matrix
multiplication to obtain an overall scattering matrix--although a special

definition

For our purposes we rewrite Equation (4) as:

FkE T

L

R

L

-

E
E

E
2y_|

(Ref.

2x

2x

2y

28) of matrix multiplication is possible.

—

t

€21

t

-

¢

12

22

32

42

t13

ta3

tq3

43

t

t

t

14

24

34

-

44

—~
Re

L,
E

R
E

Le

—

.

1x
1x

ly

ly_|

(7)
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F12734 %1452

g

o Vo 1 e

14733 13 34
i e W U

"534

59994934840

S125317%11%32

B0 7 o et T s
S32

14533 51975

512%33 1532
T e v

~S12
234732 °17° 3
S

21 ¥ S22%21 t St
S92%22 * S94t42

Sy T Paafay T Sogtey
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Going from the transmission (T) matrix to the (S) matrix:

n

11

12

13

14
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_ B2t T tatus

€22tu4 ~ Eauts2
E kb

Caaas = a4t

£24%43 = Ca3t4s
€r9t4s = t24%42

t.t,, -t

Ea5a0 ~ T2t
et * St
Ca5%42 ~ Fa54

B S,

- AL Bl T

B T 5% T Snat
Sia71a * SaPae

o T Gl
“2°12 ¥ Y147

31 T T%r T S%m
k5”12 ™ ®3450

t

33 T B0%15 T £34%4
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For the particular case of the birefringent plate (Equation 6), Equa-

tion 8 reduces to:

-2r
X
- = -5 /S . = = ginh v 4
“21 117512 = T= 2 sinh ¥ 4
X
‘ -2y d
1 - r; e =
tyy = VS, = e
(1 - r“)e
X
by ™ by = B Tk F0
—Zri.r
tlo} = —533/534 = ¥ o sinh yv d
y
-2y d
Y e g Y‘/{
= y = g
kg = Mogy seclrae ot
(1-x2)e Y
y
-y d Y d
52, <62 e * 27
7 L Tx
11 515 1 - ,i
tyo = 5111512 = “ty
' e e e S
=vd Y d
2 y y
- G 5 -
o Sl ey Ty
Eai T SNSRI e
[ 1 - .
34 -
t =5 /s = -
14 = 5337534 = “ta3
Rewriting Equation 7 for this case:
’_fx’v | [ P-R
P o i 0 ] "1;1
L L
Pl |tz t2 0 0 Ey,
R R
By, 0 0 Eyy By By,
L L
E 0 0 -t E
| el L 3o faaf | Py

10

(10)

L)
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PART B: THE FARADAY PLATE

Consider the case of Faraday rotation. The normal modes for propaga-

tion along the Faraday axis are of the form (Ref. 18, 149, 24, 25):
O
E, =E (x+ jj) e s
+ +
B ty_z
B E (x - jg§) e (12)

The modes X + jy and x - jg are completely decoupled (Ref. 24, 25)
and preserve their form regardless of the direction of propagation--thus
saving any worry over the concept of left- and right-handed circular
polarization and '"Who may be looking in what direction."

In scattering matrix notation for Figure 3:

= i =

. (kE1+

REZ+ LEZ+

LE]_ = (sp) REl_

W | ()

The coefficients for the S matrix are (Ref. 24, 25):

“13 " %% T s T ST By T g TG F o Y
( —2y+d)
r, l-e
S = S E 3 Gy p— S ——
11 - S22 3y d
1 -1r2e i1
+
-2y_d
r_(l — )
®33 = Ses * — 2y d
1 - ri e
11
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X
£ = Re, +39) + "5 (@-19) Re, J(#+50) + Re, (53
1+ Yy 1- Ez+(l*19) + Ez_(X‘JU)
L Nors oo L o
|~ E, (#+j9) + TE, (¥-39)
/
L a L & s
+ =
£, (x+54) B, _(%-79)
i
o —
HDC
e
FIGURE 3. Plane Waves at Normal Incidence on a Faraday Plate Such
That the Direction of Propagation Is Along the Faraday Axis.
Gealibt
B e i e
12 23 -2y d
1 - I‘? e P
+
_Y_d
(1 - r<) e
SN PR (ORI - E— 14
T 2y d £
L == @
where
e = 1
S A+
LW —
¥ ™= p v/UF,
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For unity permeability, """ and a dielectric constant matrix of the
form
¢ f 0
XX Xy
(e ) =|-¢ € 0
c Xy XX
0 0 EZ? €1 »)
Then
Yo = Vs
7 ASE
* Yo + Yt
20 o e
i W uco(axx F chy) (16)
Equation 13 becomes
e B T
Eis S Pyg Y g i
R L
Fog Mg - S W 2 ot
L R
Py g e e T
R L,
| %2 4 Y % Smail el (17)

Equation 13 can be rewritten in the transmission matrix format:

R, o 'kE =

L 1+
L. L

Sk Bis
R, Al R,

P, ¥
i )

E,_ _.E]T-

(18)

Since Equation 13 and 4 as well as 18 and 7 are in the same form
with * substituted for x,y, the coefficients ti. are given by Equation 8
and Sij by Equation 9. ’

In going from a birefringent plate where the normal modes are orthog-
onal linearly polarized waves to a Faraday plate where the normal modes
are * circularly polarized, some sort of transtormation is needed.

13
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Consider a general elliptically polarized wave:

E=EXx+E{
o buy (19)

<sz +Y VA
where E and E are in general complex, \E e , E_ e A 3
X y X0 yo

We wish to transform to:

= - ~ N A e N = ~ . = X ~ {
E=E(x+3jy) +E (x -3jy) = (B +E)x+ j(E_~-E)y (20)
foz
(Again E, = E e )
Setting:
B =R R
v = 2 = gl
Eg j(E, - E) (21)
Yields:
1 o
By o g, ™ JEy)
E = l(E + JE ) (22)
- 2 x y

Or in matrix form:

E 1 illE (23)

The inverse of this transformation is readily shown to be:

1 1
o=y (24)

This brings up a point mentioned in the introduction. Consider a
statement of Ohm's law for a material exhibiting Faraday rotation or
Hall effect due to an antisymmetrical conductivity matrix:

14
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Clearly:

<
[
!
)
a
o]
—
|
-
Q

1 ! E

N —

(<]
—_
L)
]
Q
3
m

j : illo o i -ille | (26)
= Xy XX y Xy x ~

; 1 4 . :
Taking - times the first three matrices in the right-hand side of the
last equation results in:

6] 0 ¢ + jo 0
¥ XX J xy
0 0 0 o - jo (27)
= XX Xy
which is symmetrical, verifying that the conductivity matrix is symmet-

rical in the proper (*) coordinate system.

In terms of Figure 4, a birefringent plate followed bv a Faradayv
Rotater, the following sequence can now be built:

fh. R, ]

L2x L]x
B L

£2x E]x

= b i
Rlu‘, i B) RE
2y ly

L, L,

"2y 1y (28)

where (7 ) is given by Equation 10 and 11. However,

B
R ) L 0= O R T
L ] . E
£y, g, | 4
L g 1 0 -j L L
Fae Eox ix
R, = ,l — R = (T,.)(TB) Ry,
Ey 2110 j ) Ey, Ly
7 £ ,
E, 0 1 0 5 E, E (£32)
St By & &) | 1y

where Tf is the transformation matrix from x,yu to * coordinates.

15
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! | R R | R
E, | «d - E. 2, «d, E
Ix | 1 2x T2 dy* | 3+
s i‘ e i mEl
| |
B B N
L. | E,. Exy | | Ty,
1x| I
—— — —— | e
R : ( R, Ry i R
g | xty 2y 2- | ‘3-
—_— } _ — _—
| |
L, ; L. L,. L,
1y i 2y ‘2~ ‘ 3
-——— " — -—— . e
Birefringent Faraday
plate plate
FIGURE 4. A Birefringent Medium Followed by
Medium, Incident and Reflected Plane Waves.

It then follows that:

Since

r—RF =
"3+

L
E5

RF =
g

- =
E
1 x
L,
“1x
(TP (rp) (T | &,
ly
Ly,
1y
L. =
s R
r 0 1.0 E3+
L
o 1 @0 1 E3+
-1
g O =3 0 Rﬁg_ B (Tf)
g g 0-ill"s,
- -ed b el
16

R

A

a Faraday

(30)

(31)
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it follows that

Fkr i hR[_ i
3x “1x
L. L
Eix i
v -1
R, = AT (Tf) (T,) (Tp) R,
3y ly
L L
: (19
thlj F,']u 32)

It has been assumed that the plates were adjacent without intervening
dielectric. The presence of an air or dielectric spacer would not posc
any particular difficulty since an isotropic dielectric can be considered
as either a degenerate Faraday plate where y, = y_ or birefringent medium
when ¥y = YU' Thus, for this case the scattering matrix reduces from
Equation 17 or 6 to a case where Syx = S33 and Sy, = Sq,. The transmission
matrix for a dielectric spacer is found from Equation 1l with tas = E19»
tas = to2s and t11 = t33- This matrix must then be inserted between (7))

and (Tp) in Equation 32.%*

If, instead of a dielectric layer, there is space between the two
plates, the reflection coefficients S;; and S44 go to zero and
_Yod
Sy = S, = E . This is because, in effect, all of our reflection and
transmission coefficients have been normalized to free space. The trans-

mission matri¢ is then (from Equation 10 and 11) t,, = t3, =0,
_ L 2 B i
Sk R R ot Gy S Ry TR

* Since the isotropic dielectric is a limiting case for either a

Faraday or birefringent medium, it could equally well be inserted between
(T¢) and (T¢) in Equation 32. This is readily verified by observing:

P — - — = —
By By v 11 12 ¥ 1 "1z " "y
(Tp) [-t;, t,p 0 O = |tj; t, 0 O (Tp) = | -ty, t,yy, Jt), ~jt,,
A e ¢ A T 11 "1z i *p
Ln 0 -t 2] Lf) By tzgd 212 tyy ~it;, ]t'TJ
17
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As more plates arc added, the multiplication of a string ot 4 X /4

matrices becomes quickly out of hand; however, modern computers handle

such matrix multiplications easily enough.

PART C: ROTATION OF COORDINATES FOR BIREFRINGENT PLATES

In the introduction it was specified only that propagation be
principal axis of a birefringent plate. 1t is likely, howcver, that in a
system of interest that various slabs will have their other tvo ax
rotated with respect to each other--as in Figure 5.

x x
| a1 | | . \
¥ E
\:,13 { 4x
L
R. ) ’l Eér 5
[ 1x ¢ tR |
2 A
J ; ¥ o o ' z. |
\ E
R. 149‘
ly
2 ~ el S
Fly € . : “23
zl ?
—
z
y/ y/ y/ v3

Cyl

FIGURE 5. Birefringent Plate Followed by a Faraday Plate Followed by
Another Birefringent Plate With Its Principal Axes Rotatced at an
Angle ¢ to the Original x,y Axes.

If the permittivity matrix for the third plate is written in terms
of the principal x,y axes of the first plate there will result the form:

€ £ 0
XX Xy
€ £ 0
Xy yy
0 0 3 £33
Y44

18
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The solutions to the wave equation will no longer be in terms of £
and E, as normal modes; rather the normal modes will be counter-rotating

elliptically polarized waves (Ref. 19, 23).

It is quite possible to write a transformation matrix (and its inverse)
from x,y coordinates to counter-rotating elliptical coordinates, similar to
the procedure followed for a Faraday plate. It seems conceptually simpler,
however, to transform the x,y coordinates to the x/,u/ coordinates so that
the scattering and transmission matrices (Equation 6 and 11) may be used
directly with x and y replaced by ¥ and g’.

The transformation from xy to x’yl is

Fxh cos ¢ sin ¢] [x

_uu -sin ¢ cos ¢ y (34)
with an inverse

'xw cos ¢ =-sin ¢ Fxl

y sin ¢ cos ¢ y/
e L
Thus, we have
. e 1 e .
E s & 0 0 E E
" cos sin ¢ _1 . %
L L L
4 < 0 si 5 E
IX/ 0 cos ¢ sin ¢ Fx 5
K = = (T )
E ; -sin ¢ 0 cos ¢ 0 R: B RE
Y y y
L L L
H(/ 0 -sin ¢ 0 cos ¢ E E
e ak ok o i e 2
and
—R e b = '_R par
A 0 -si 0 E
Fx cos ¢ O sin ¢ <
L L
Ex 0 cos ¢ O -sin ¢ E ;
R R
E sin 0 cos 0 E /
y 0 ’ y
L L
E 0 sin ¢ 0 cos ?J B 2 (35)
T " e T

19
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E
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Possibly a word of caution is in order here.

s 3 . : ’
three birefringent slabs in a system with axes, xy, x y , and x
rotated at angles 0, ¢, and 6 to the xy axes.

= (1

= (1)

32) (TB) (Tf)

1
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1 P
T2 15 T

5 is an extension of Figure 4 with one plate added, so that
transmission can be written from Equation

~1
(T, (1) @)™ @) &

for this system is then

cos 6 0
0 cos 0
(r,®) e (r 0-0)) ) (r @) (T
B 83’ \Tg 820 \Tg %) )( Bl) = | sin 6 0
0 sin 6
cos(6-9) 0 sin(6-¢) 0 cos ¢ 0
0 cos(6-¢9) 0 sin(6-¢) 0 cos
-8in(0-¢) 0
0 -sin(8-¢)

cos(6-9) 0 (TB2) ~sin ¢ 0

0 cos(0-¢ 0 -sin

32 as
VRF
“1x
LF
“1x
RF‘
i
L
lyJ
rk 50
E
Ly
L,
“1x
(TBl) RE
ly
L
E
| 1y ] (36)

are

SupPo§e there I
Yy

’

A proper set of matrices

-sin 6 0
0 -sin 6
o5
cos 6 0 ('83)
0 cos 6
sin ¢ 0
¢ 0 sin ¢
cos ¢ 0 (TBI)
¢ 0 cos ¢ (37)
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In order to end up in the original xy coordinate system the trans-
formation (7}§("-¢))) is introduced since at that point it is necessary

oo

= ro "won =
to transform from the x y to x y not from xy to x y

PART D: A PARTICULAR EXAMPLE--THE FARADAY ROTATION 1SOLATOR

Consider the isolator in Figure 6. The basic principle is, of course,
the Faraday plate rotates the X-polarized wave 45 degrees so that it
passes unattenuated through the second polarizer. A (reflected) wave
traveling from the right is rotated 45 degrees further and ends up y
polarized at the first polarizer and thus cannot be transmitted on to the
left~hand side of the system. A little thought shows, assuming a loss-
less Faraday element, that at least one polarizer must absorb along its
non-polar (y or q') axis; otherwise, the wave would be reflected from
polarizer 1, rotated a further 45 degrees to be polarized along the J
axis, reflected, rotated 45 degrees to be polarized along the x axis,
and passed by the first polarizer back to the generator side.

x

X
12
4 0% /

7 N

" e

y y
e
"DC !/
45° Faraday rotation 45° polarizer

FIGURE 6. Faraday Rotation Isolator.

In microwave isolators, the polarizers are frequently rectangular
TEyn waveguides which propagate only £ (or E_,) with Eq (or Hq') below
cutoff. A strip of absorber is placed either along the y direction on
the input side and/or the q' direction on the output side of the Faraday
element to avoid multiple reflections and loss of isolation.
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Figure 6 is a special case of Figure 5 and the general transmission
is given by Equation 36. As an example to illustrate a point we would
like to assume perfect polarizers and Faraday element. It turns out
that this is conceptually ambiguous even though it would simplify the
mathematics.

Let the scattering matrix for the polarizer be given by:

—Lz-:l: ?1 RNEE S i r;f;l:
s B SN = 40
LFlu 0 0 53 62 RElg
ang SN SR IO Lzszq (38)
s — s — it

where

‘&1] (the X-reflection coefficient) << 1.

ZF\ (the x-transmission coefficient) is a fraction very nearlv equal
to 1.
553| (the y-reflection coefficient) %< 1.

fﬁzl (the y-transmission coefficient) < 1.

These conditions mean practically all x-polarized signal is trans-
mitted and the y-polarized signal mostly absorbed. As the &'s approach
zero the conditions for a perfect.polarizer are approached.

The scattering matrix is converted to the transmission matrix by use
of Equation 10:

71“2 - 8:]2)/F 6,/F 0 0 -
-84 /F 1/F 0 0
(Tpy) = 0 0 (8 - 65318, 6,18,
3 0 0 -63/62 1/62_J (39)

Equation 39 shows why it is difficult to work with the scattering
matrix for a perfect polarizer, since tyq, ty4s t43 become indeterminant,
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while t,, gO€s to infinity. It need not surprise us that some coefficients
are greater than one in magnitude since (referring to Equation 7) the re-
lationship, for example, between REZU to REly is not output to input, as
somewhat implied, but rather input to output.

Turning now to Equation 18 and (TF)‘ it is not possible to produce an
ideal non-absorbing Faraday plate. This requires Y, = a, + jB, = jB,. It
is furthermore required that r, = 0. This in turn indicates r, = r_ and

therefore B, = B_, which in turn means zero rotation per unit length.

By letting €, = €(1 * §) there results

1-‘/-?(1*6)

e ooy = (40)
f +
1 +JII (1 = &)

Choosing € = p and making § arbitrarily small (by, for example, re-
ducing the applied DC magnetic field) we arrive at

r, ~ £8/4 (41)
The rotation is given by!8

g I o B At
= 5 [Phase E,_ - Phase E2+] e

For small r,  this is essentially

1
6 = & 413)
) =5 (B_d - B d) (
Since
B, =2 Ve, =2 Ve (1 +2) (44)
& c 2
then
pou 34 o (45)
2c

where d is the thickness of the Faraday plate. Thus, by making d arbi-
trarily large we can in principle obtain 45 degree rotation while having
r, — 0 for small §. Since a, = 0, the ellipticity of the transmitted
wave also goes to zero.
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For an isolator

B é 4, - ¢_) = 2 (46)

Thus the scattering matrix for an ideal Faraday plate is

— , —‘1
—]®+
0 e 0 0
-j
¢ * 0 0 0
(SF) = -jb_
0 0 0 e
=5
Q 0 e 0 R (47)
and the transmission matrix
BN ]
e 0 0 0
jo
0 e 2 0 0
" g
(Tg) =
0 0 e 0
Jjb_
@ 0 0 e (48)
From Equation 46, this may be rewritten
e BN 0 0o
, 0 je7® ¢ 0
("f) .
0 0 e Y @
0 0 0 e | (49)
where ¢ = ¢

Utilizing this matrix causes no particular difficulty in our isolator
analysis.
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For the 45-degree polarizer the coordinate rotation matrix (TB) is

1 0 1 0

] 0 1 0
(7}‘) » = )
e hay 8 -F .
0 5 | 0 1 (50)

and the birefringent plate matrix (TBZ) is identical to (TBI) assuming
identical polarizers.

It is simple if tedious to multiply out Equation 36 assuming
Equation 50 to vield

— = e —
R R
E, » E
4+ X lx
L L
[4X' Elx
R = AT ) IR
El&gl 1 Elq
L L
4y ] | Py (31)
where
- 2 2 jn/4
26111 = (Eeqptyy T 2ttt T Eepaty)) €
2 2 . -jn/4
* ety = et T traty2’
s jn/4
) = - >
26112 = (Eepptyotin ¥ Eeaatantin * teratirtan ~ trratya) ¢
F (€t 4 o o e tz)'r‘"
£33%11%2 T Ceat11%22 * Eraa®12%22 T tr3ati2
2t = O S t -t (i -t t:t)e"n/A
113~ et 1%3s T Smatiatae T teet1rt3 T Caatrrn
t.t t t .t.,) =Inis
- - = S v e
* Ea1t11t33 T Eeatintas T tr12f12%33 T Ee22%12%34
2 = ( + + t, .t -t tr)ej“/‘l’
F114 ° “Ce3at11%se T Ce33%11%96 T Ceaat12%a T Fraati12%sa
+ ( t + B, b b, L Bt )e’j"/‘/‘
€£12%11%4 * Cea11%36 T te22%12%a T Te12%12%%

43




2t
131

Lt
134

)
G (1

142

NWC TP 5900

= tea3biatay

= Cegatartyy T

+

(Eerat20tus ~ tF12%22%34

= {F

tr35%12%33 T et T e

* (€e12%12%5 ~ Tenf1itas

“34 T Frast29%94 T tm3

*r12%12%3% © Teotert
2
) Rk

F11733 .

= Eeatiatay T S22

2

+ (tf33r33 - 2

* Eanfaafa ¥ Satstan T tes

+ (Epgatygty, + tegutaatyy

(

Criao%aa T et T

t (Eppatintas ¥ tr12ti1tas

(Eeyqtiaty, *

aps (tfllt12t3& -+ tf12t22t34

26

R L 7«

te3at12%4 T

Ee34°33%38 =

tr3a%12%34 * Fr33tna

Fr34t22%30 T Cem1atas T

= Ea2%12t

& 1253

+ ¢

1¥13%33 =

" ta1t12833 T Eerataatsy)
Z jn/b
34 €

2

-jn/4
CEngtan

) e

2 jn/4
2%3a%us = tr12t3s) ®

€

-in/4

—jn/4

2 -jn/4

) e

R T T Rl LT

jn/4
o e

“ teafi2t34 Tttt

jn/ &
teaata2t4s) ©

*teatiates T Eeaataatad)

(S

-jn/4

)-jn/&




—_——

>

it s = (E £ oy P S T koo, =k tt)ejnﬂ'
143 £12°36 7 "r11%93%536 T Tr12%33%4a T tr22%34%44
* Beyfoy = Coanbadtay = Eaatati, ~ Cptarti) =
2t1ss © (’f:)*ia = 2eatatis T 'fl]'ia) "/
+ (t £ 2 tz)e_j"/4

When Equati
equations, thin

(a4
"

111
g i v A
‘113
“114 °

121
122
123
124
131
132
133

* Equation

t1ij

where repeated
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£4s%68 = “Craatatss T Tt

on 49 is plugged into this rather horrendous set of

gs simplify considerably to

2 -jo /4
e &

tll

LR LI
R

b I/
LR LT

Bk & i 1
2 =36 -jm/4
ej¢ejﬂ/4
oI Im/4
LI

Eyatay
y 3o_jn/4
t22t34 e e
2 e—]¢e-]ﬂ/4

ty

52 can be directly checked by using the equation:

= =1
A (TB)ik(TB)kl(TF lm(TF)mn(TF)np(TB)pj

indices indicate a sum.
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2 ~i6_-3u/4
134 " Gaafqp = e

: jb /4

1 e T T

e b in/4
Frap ™ TEagfy, # TS

e -jé _-jn/4
t1&3 t33t34 e e

2 i -jn/4

5 7V

(53)

While all 16 components of the matrix are present, Equation 53 is a

large improvement over Equation 52.
Equation 53 results in

2 C—]p@-]ﬂ/&

r-I” x F
~ & )'7.":) ‘-j”/a
tIlZ O (= €
-5.68 b
t = —l~é ere]n/a
115 &uF
8 .
. -1 _Jjo_ju/4
114 (X)ZF
e -j¢ _~jn/4
o1 ™ <9
Eygz =¥
-4 )
" - s oI IHL4
%23 821
- Lo _jn/4
“104 T F© °
2
&

2183 o _im/a

‘131 ° %
3 o ju/a
- J
132 5,7 SEE

28

Substituting Equation 39 into




NWC TP 5900

4
N QRS I 0"
133 " 2
Y2
i
A _ %3\ -je -gm/4
t134 = %3\ i ¢ i
2
5
I S
11 " T FY ¢
2
_ -1 36 jn/d
L2 75 ey
2
di -jé -jn/4
tray = 9 i Aje e
2
_62
t . e_j¢e—jn/a
144 = 2 : (54)
2

where some of the smaller terms have been dropped. Some of the terms in
Equation 54 are larger than one in absolute value, and some are indeter-
minant depending on the relative values of 81, 62, and 3. Again, as in
Equation 39 it should be borne in mind that inputs (waves traveling toward
the isolator) and outputs (waves traveling away from the isolator) appear
on both sides of Equation 36.

A clearer picture arises if Equation 9 is used to transform Equation 54
back into the scattering matrix, or

S11 % %

S 0

12

14

14

Sl? 0

S

14

PR I L)
14 621 e e
52! ~ F2 e-j¢e—j"/4
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f
14
o

)
14
o

1
14
O

0
14
o

s,, @8 ‘ (55)

1 :
where terms of order greater than § have been dropped. Written out in
matrix notation this is

£ I -J0 /& [R
Elx 61 0 0 —62Pe e 51;T
R 2 -jo -jv/4 L
El.x' F e e 61 0 0 EAX'
I . =ib ~im/4 "
Ell,l 0 (SZIL e (53 0 E‘]u
R L
. ' ( 6
aau ) 0 0 63 549, (56)
el - S 45|

This scattering matrix is not symmetrical even though each of the
components making up the isolator has a symmetrical scattering matrix.
This is evidently because the polarizers are not lossless--specifically
they have a very heavy absorption along the y axis, this being true even
if F— 1, 61, 62, 83 — 0.

An examination of Equation 55, Figure 6, and Equation 38 allows the
matrix elements to be deduced directly, as follows:
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The input x polarized wave from the left is reflected directly
as 61. The next higher order x term from this component is

transmitted, (F), rotated, reflected (5F) rotated to the y
plane, reflected (6]62F), etc., so Sy1 x~ 81.

The reflected x polarized wave on the left is related to the

left traveling ¥ polarized input wave from the right by going
through the right polarizer (F), being rotated to the y direc-
tion, being reflected (AXF) being rotated to the q' direction,

reflected (5%F). etc., so0 51, = 0.

The reflected x polarized wave on the left is related to the
right traveling y polarized input by transmission (57), rota-
tion to the q' direction, reflection (62683), so S13 = 0.

Tbe reflected x polarized wave on the left is related to the
y polarized input wave from the right by transmission (&2)
rotation to the (minus) x direction and transmission (=5)F)
: : [ 8 -j0 -in/4
times the phase retardation of the Faraday plate, e J¢e J -
- it =]k
.Je.J/.

~

Therefore, Sy4 = -69F e

’ .
The right traveling x polarized component is related to the
right traveling x polarized component by transmission F,
-jo_-jn/4
e

rotation and retardation e , and transmission F.

” 2 =-jo -jn/4
Thus, $,; = F" e “a -
The right (RT) x polarized component is related to the left
(LT) x component by reflection, 81, all other terms being of
higher order. S)') = (gl'
The RT x' polarized component is related to the RT y polarized
component by transmission through the first polarizer 52,
rotation to the v direction, reflection, §382, rotation to

’ .
the x direction, reflection §;8485, rotation to the x direc-
tion, and transmission Fdj5362 = 0.
The RT x' polarized component is related to the LT g component

by transmission §), rotation to the x direction, reflection
§152, rotation to the x direction and transmission F&18) = 0.

The LT y component is related to the RT x component by trans-
. i ’ 5 . ¢ .

mission, F, rotation to the x direction, reflection 01F,

rotation to the y direction, and transmission ﬁlﬁ]F ~ 0.

U 3
The LT y polarized wave is related to the LT x polarized wave
by transmission, F, rotation to the y direction (times the

CR g aip
phase retardation e 7¢e ]n/A) F e Iov jnlb
--j¢e—j“/4

, and transmission.
Sq9 = F52 €
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The (LT) y polarized wave is related to the RT y wave by
reflection &3, all higher order terms being negligible.

S33 = 83.

The LT y component is related to the LT y' component by trans-
mission 62. rotation to the x direction, reflection 8167. etc.
Sax = 0

.31’ .

The RT y’ component is relatgd to the RT x component by trans-
mission F, rotation to the x direction, reflection §1F, rota-
tion to the y direction, reflection ¢351F, rotation to the g
direction, and transmission (ignoring the phase retardations)
or 826331F ~ 0.

The RT y' component is related to the LT X component by trans-
mission F, rotation to the y direction, reflection &3F, rota-

tion to the u' direction, and transmission 5453F o

The RT g’ component is related to the RT y component by trans-
2

: . . ’ . . <
mission 62, rotation to the y plane, and transmission 62 ~ 0.

The RT yl component is related to the LT g' component by re-
flection 63.

is not so much to show a compli-

cated derivation for what can be arrived at with a little physical reason-
ing, but merely to demonstrate that the approach outlined in this report
converges to the proper answer.

* These
there is no

[ S

Z23

626

w

scattering coefficients can be summed to infinity since
reflection at the Faraday plate, so that

- wo f 4
. o in2 s

2(3 ~Jb4d -jm
26153F e e + 6§

4.5 -j6¢ -j73n/2
26163F e e +

e-j2¢e‘jﬂ/2 E ({S
N=0

B it i
]63)_N oTI2NG jNT/2

F e—‘72¢e—]n/2

1 -9

- N

6§ o~ J20 -in/2
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For perfect polarizers, F = 1, 61 = 62 = 63 = 0, and Equation 56
becomes just
P—L‘ — r F"R =
By 0 o 0o ol X,
R -jb -j
E, ' e L e LU S Y
VX 4x
Le 0 o 0 6}l%
ly ly
R
o 0 o o of|",, (57)
Mg & 38 N k. 2

Equation 57 can be compared to Equation 2, and the relationship is
obvious. Since the matrix is 4 X 4 rather than 2 X 2, however, perhaps
it is clearer that the scattering matrix does not represent a truly
lossless system and therefore is not necessarily symmetrical (Ref. 27).
A "Quasi-Isolator," formed by a polarizer followed bv a quarter-wave
plate is discussed in Appendix A.

[TI. CONCLUSION

We have outlined a method for determining the overall transmission
and reflection coefficients at normal incidence, for an "N'" layered
system, where each laver consists of either a Faraday plate or birefrin-
gent plate with the Faraday or a principal axis, respectively, lying
along the direction of propagation.

Another example of the application of this method is worked out in
Appendix B. Considered is the rotary vane phase shifter, widely used
in microwave and millimeter wave circuitry.

The case where a layer shows both birefringence and Faraday rotation
is not included in this analysis, although it appears to be a straight-
forward extension. In this case the normal modes of the plate would be
t elliptically polarized (Ref. 19, 23) and so the transformation would
be from linear to * elliptical form rather than * circular.

The more general case where the individual plates show Faraday rota-
tion and birefringence while propagation is not necessarily along either
a principal or Faraday axis can probably also be treated by an extension

of the methods given here, although the details have not been carried out.

In this case Equation 15 would contain all nine terms with €} 5 # €4i°

The solution consists of * elliptically polarized waves for the RF H
fields normal to the direction of propagation. The exact form of AL,
a_, Y+, and Y_ in the solution

-Y.z -y 2
, (x + A4_3) (58)

= o A
H Hl e (x + A+y) + H
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1

is determined by Oyxs pxg, P puy where P;; are the elements of (g£) ,

as shown by Penz (Ref. 19).

J

The accompanying El 9 vectors possess an electric field component in
’

the direction of propagation so that the Poynting vector E X H lies at
some angle to the direction of propagation (Z).

Nonetheless, although the necessary foot work has not been carried
out, it appears intuitively feasible to extend the analysis presented
here to this general case, if such appeared desirable.

34




10.

| 31 98

NWC TP 5900

REFERENCES

S. E. Harris, E. 0. Ammann, and 1. C. Chang. '"Optical Network Syn-
thesis Using Birefringent Crystals. 1. Synthesis of Lossless Net-
works of Equal-Length Crystals,'" J. Opt. Soc. Am., Vol. 54 (October
1964), pp. 1267-1279.

J. H. Dennis, "A 10.6-Micron Four~Port Circulator Using Free Carrier
Rotation in InSb," IEEE J. Quant. Mech., Vol. QE-3 (October 1967),
P4 416,

J. M. Yarborough and E. 0. Ammann, "Experiments on Single-Pass and
Double-Pass Birefringent Networks," J. Opt. Soc. Am., Vol. 58 (June
1968), pp. 776-783.

J. Katzenstein, '"New Type of Birefringent Filter," J. Opt. Soc. Am.,
Vol. 58 (October 1968), pp. 1348-1355.

B. M. Schiffman and L. Young, "Birefringent Filter for Millimeter
Waves," IEEE Trans. Microwave Theor. and Tech., Vol. MIT-16 (June
1968), pp. 351-360.

J. Katzenstein and S. Ward, "Realization of a New Type of Birefringent
Filter," Appl. Opt., Vol. 10 (May 1971), pp. 1119-1124,

J. H. Williamson, "Simple Multiple-Pass Birefringent Filters," . (!

Soe. Am., Vol. 61 (June 1971), pp. 767-769.

R. Clark Jones, "A New Calculus for the Treatment of Optical Systems,"
J. Opt. Soe. Am., Vol. 31 (July 1941) (Parts I, II, and III), pp.
488-503.

C. C. Robinson, "Electromagnetic Theory of the Kerr and the Faraday
Effects for Oblique Incidence," /. Opt. Soc. Am., Vol. 54 (October
1964), pp. 1220-1224.

------ . "Polar and Longitudinal Magneto-Optic Effects in a Planal
Geometry," J. Opt. Soc. Am., Vol. 58, No. 11 (October 1968), pp.
1342-1347.

R. P. Hunt, "Magneto-Optic Scattering from Thin Solid Films," /. Appl.
Phys., Vol. 38 (15 March 1967), pp. 1652-1671.

35




16

18.

21.

22,

23.

NWC TP 5900

N. Eberhardt, V. V. Harvath, and R. H. Knerr, "On Plane and Quasi-
Optical Wave Propagation in Gyromagnetic Media," IEEE Tranc. Micro-
ave Theor., and Tech., Vol. MTT-18 (September 1970), pp. 554-565.

S. Teitler and B. W. Henvis, "Refraction in Stratified Anisotropi«
Media," . Opt. Soc. Am., Vol. 60 (June 1970), pp. 830-834.

C. J. Gabriel and H. Piller, '"Determination of the Optical Verdet
Coefficient in Semiconductors and Insulators,'" Appl. Opt., Vol. 6
(April 1967), pp. 661-667.

C. J. Gabriel and A. Nedoluha, "Transmittance and Reflectance of
Systems of Thin and Thick Layers," Opt. Acta, Vol. 18 (June 1971),
pp. 415-423.

H. Piller, "Effect of Internal Reflection on Optical Faraday Rota-
tion," J. Appl. Phys., Vol. 37 (February 1966), pp. 763-767.

E. D. Palik, J. R. Stevenson, and J. Webster, "Multiple Reflection
“ffects in the Faraday Rotation in Thin-Film Semiconductors,"
ippl. Phys., Vol. 37 (April 1966), pp. 1982-1988.

B. Donovan and T. Medcalf, "The Inclusion of Multiple Reflections
in the Theory of the Faraday Effect in Semiconductors," T /
ippl. Phys., Vol. 15 (1964), pp. 1139-1151. Corrigendum:

Appl. Phys., Vol. 15, p. 1452.

P. A. Penz, "Helicon-Type Solutions for an Anisotropic Magneto-
resistivity Tensor," J. Appl. Phys., Vol. 38 (September 1967),
pp. 4047-4050.

S. Herman, "Analysis of Multilayer Optical Filters Using Signal
Flow Graph Techniques,'" Appl. Opt., Vol. 9 (September 1970),
pp. 2119=2122.

D. J. White, R. J. Dinger, and H. H. Wieder, "Free-Carrier Faraday
Rotation of Dendritic InSb Films in the Microwave X-Band Region,"
J. Appl. Phys., Vol. 38 (July 1967), pp. 3171-3178.

D. J. White, "Room-Temperature Faraday Rotation in N-Type InSb Films
at 23.4 GHz," J. Appl. Phys., Vol. 39 (October 1968), pp. 5083-5086.

Naval Ordnance Laboratory. Free Carrier Faraday Hotation in Den-
dritic InSb Films at y-wave X-Band Frequencies, and helated Topics,
by D. J. White. Corona, Calif., NOL, February 1967. (Tech. Memo.
42-63, publication UNCLASSIFIED.)

36




~zr

N
W

26.

27,

28.

NWC TP 5900

Naval Weapons Center. The Effects of Multiple Reflections on the
ransmissiton Properties of Multi-Layer Systems of Gyrotropic Materia
in the Faraday Comfiguration-Coherent Radiation, by M. L. Knotek and
D. J. White. Corona, Calif., NWC, October 1968. (Tech. Memo.
Ch12-2, publication UNCLASSIFIED.)

7

r

—————— . Effects of Multiple Reflections on the Transmission Proper-
‘es of Multilayer Gyrotropic Systems, by D. J. White. Corona,

Calif., NWC, October 1968. (NWCCL TP 815, Foundational Res. Projects

Quarterly Report, July-September 1968, publication UNCLASSIFIED.)

J. F. Nye. Physical Properties of (vystals. Oxford, Clarendon Press,
1957. Reprinted from the Corrected Sheets, 1960.

C. G. Montgomery, R. H. Dicke, and E. M. Purcell. ZPrinciples of
Microwvave Cireuits. New York, McGraw-Hill Book Co., 1948.
University of California, Los Angeles. Difference ana -
Fquations in Transmisstion Line Theory, by R. Redheffer. Los Angeles,
Calif., UCLA, September 22, 1959. (Department of Mathematics,

¥

Numerical Analysis Research Technical Report, publication UNCLASSIFIED.)

37




NWC TP 5900

Appendix A

A QUASTI-ISOLATOR FORMED BY A POLARIZER FOLLOWED BY A QUARTER-WAVE PLATE

Consider Figure A-1. The polarizer scattering matrix is given by
matrix by Equation 39. The rotation

Equation 38 and the transmissior
X Y coordinate system

through 45 degrees from the XY coordinates to the
is given by Equation 50.

x
x
|
B, = . R R
P, ) By 5+ 3“0 th,?’ + xh/o'
N -
'lhiokl‘i) .. ;’“.g\l
vy 2x 2y % Lg‘;"z y-Lz ?’*LE 7 Y
i - 3x Iy 3w/ 3/
b NP - o - AR
Bpa® ® lly v leli + levi N 45°
Gl P \(
R R
no? ¢y ¥ Y
/
by ¥ sy
x + e
e 27 2y j P

s g
y polarizer y 2

v

A/& plate

FIGURE A-1. [solator Formed by Polarizer Followed

by a Quarter-Wave Plate.

The form of the scattering matrix for the quarter-wave (birefringent)
plate is given by Equation 6. In optical work surface reflection coef-

frequently ignored in discussing A/4 and A/2 plates. In any

ficients are
=] and €4 = 1 + A,

case, assuming a lossless medium where (for example) €1

9
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by making the path longer and longer and A smaller and smaller we can
make the reflections at boundaries smaller and smaller and thus approach

arbitrarily close to .‘w'll = 53‘ = (). For a P('r'-l'('l A 4 plate the scat-
tering matrix is

r —

0 kl_’ 0 0

‘]2 0 0 0

(s) =
(§] 0 0
J34
0 0 ] 0 A-
L T34 ] (A-1)

Taking the A/4 plate as lossless, Equation 5 reduces to

=3B rd
g X
= @

—j[']l'l d
i 4 (A_Z)
The definition of a 1/4 plate requires

(8 : =~ nq' yd = = (A-3)

From Equation 10, the transmission matrix is just

—i’f.‘l(A’
@ 7 0 0 0
iff r d
0 e 0 0
Wig = -3B 1 d
y
0 0 e 0
j“U'd
L0 0 0 e ] (A-4)
. ) : R . R .
At this point we have all that is required to go from I:]x‘ Ly
L A L . -
E. , [! sy Lo R/;‘, ’ RE, ' L1~f + and E, ¢+ in Figure A-1l. defore
1 x ly 3x 3y 3x 3y

carrying out the required matrix multiplication Equation A-3 can be used

to rewrite FEquation A-4 as
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[_- iB 1 d
© % 0
jB 1 d
0 &
(1,) =
Ly 0 0 tj e
L 0 0
Now
Fe ’ - . .
L?x' Elx
L L
F3x' le
R_ = (Tz) (TB) (Tl) R,
4391 1!}
LE‘ L
v !
o 3%4 IQJ

¥j e

0 E

0

0

j“x'd
=

where (TB) is given by Equation 50 and (Tl) by Equation 39.

out the indicated multiplication

41

] [ . 2
= - - 5
FRE F 6x £ jax d i‘ 2 ]B’id 3
3x' F F
i &% 4 %
LE . ]B.nd ) jB .+ d F
3x' F F 5
= l»
/2 3 g2
67 - F° -jB.d § =-jB.d
Ry P Sty St TN DR
*3y’ J F ) F J
5 '
LE ' %5 % c}B':d oy | P)B' d s
L Jy F =J ¥ J
e |-

- r
~
5 A2
e Diin ot §
:’e 1x
1 jB +d L
T e .‘.‘l
Z x
o4 63 ',’U’(rd R
b E—e qu
2
5 1 ijB » d L
e !lq
z ) S

Carrying

(A-5)

(A-6)

(A-7)
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This can be inverted, using Equation 9 to find the scattering matrix, or

B T B -JB 1 d -JjB +d T 7
LE ! 8§ ke e 3 0 P L & ﬁ!
b 7 | Fx
| H {
- =3 -32B | |
RE Vs 2 1erd 1 ( + 8. e ’ Bx'd ol + & e x A
3x 7 2 9. % 2 5 i e |
- s
- 62 ~)Bx:d 8, -yBx:c' 2
+ < £
Ely 0 :Fz e ‘3 j—=e 1
. ~jB.d -728 ¢ d 5 -8 +d -32B + 4 [
R, s JF x ed (2 x . x £ 2 X | L Q
E- » P e < (8§, - 6.)e tj = e ( - Je | B, (/\— )
L] L7~ 2 %37 Ul IRRED

In order to more clearlv understand the device, it seems easier to

use a perfect polarizer where 6, = 8§, = 6, = 0, F =1 so that Equation

1 2 3
A-8 becomes
— = ~ e as =
Le 0 e o il 0 iy 51 (;r
Ix Wil | “1x
-jB 1d :
Ry 4 . = 0 0 0 B
Ix Ix
/2 -
L '
E 0 0 0 ] 5
ly | ly
-JB +d
Ra_, % i Tl 0 0 0 } ke (A-9)
! 3y ‘ L by

Unlike Equation 57 for the Faraday rotation isolator, Equation A-9
is symmetrical and gives little hint of any isolation-like qualities.
However, note that

-JB 1 d R
' = e 2 Y 3z / g
Egs = ¢ (X T 3jY ) le/,H

(A-10)

This, as the output of a A/4 plate should be, is circularly polar-
ized. Also,

L L L _jBx'd
‘E, = - 0, S , /2 (A-11
P]x ( F,}xr * 3 3llr)t v )
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If LE3r is circularly polarized, so that

Eyp = E ()?' + ];/) (A-12)

then LElx = 0 by substitution.

If LE3: is generated by reflection of RE}' off any isotropic material
with reflection coefficient 61, then Equation A-12 will be the proper form

for LE31 and isolation will indeed occur.

For perfect polarizer and A/4 plate, one doesn't have to go through
all of the multiplications to see how the device works. The polarizer
insures an x-polarized input. From Equation A-5 it is evident that the
output of the A/4 plate is the circulsrly polarized signal

R

; - R p
. ‘JBX' d R ]Bx' d EIX e—_]Bxy d(xl - 5 ]Y, )

X e t E rl/je = 7

3x 3y

Upon reflection by any scalar coefficient the signal retains its form as

R 5
E -JjB 1 d
1x X A ~
e & ¥ j¥)
V2

Transmission in the opposite direction is given by the inverse of
Equation A-5 or

[ B 1 d g

e = 0 Q 0

-jB 1 d
0 e " 0 0
~1 - jB »d

(Ty) 0 0 $je * 0

~jB 1 d
0 0 0 3 8 (A-13)

Thus the signal passed through the A/4 plate in the opposite direc-
-jB 1 d -jB 1 d R -jB 1 d
tion is just LE e » ¥+ LE '(ije . §=0_1x ¢ x
2x 2y 75

& +3).
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From Figure 5 this is a signal polarized along the y axis which is
-32B 1 d
absorbed, as & El,e L
x

Note that if the polarizer reflected instead of absorbed (i.e.,
30 = 1 instead of zero) the signal would again go through the }/4 plate,

emerging now as
-j d -3j 7 -3j 1
B ie T £ + B, je o df' ® : ]38’(”(;’ £ 35
r . e 2 4 je = SO
3X }y J 1 € ]

--that is, circularly polarized in the direction opposite to that ob-
tained as the first pass through the A/4 plate. The signal would again

R 3
: E]x -]3erd
V.4 Al ~ .
be reflected (as & —;;m-o (357 A ju')),transmltted through the
2

A/4 plate as in Equation A-13, ending as

polarized along the x axis. Thus it is clear without absorption in the
system, this device will not function as an isolator, as was also the
case for the Faraday rotation isolator.
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Appendix B

THE ROTARY VANE

PHASE

5900

SHIFTER

A rather clever device used as a phase shifter at microwave and

by a A/2 plate followed by a A/4 plate.

millimeter wave frequencies consists essentially of a A/4 plate followed

The principal axes of the A/4

plates are identical while the principal axes of the A/2 plate are
rotated with respect to the axes of the A\/4 plates to varv the phase

shift. The
plate axes.

input signal

x
& A/b | a2
R
l’hQ + 31’9
L L
B3 llJL_
g 452
l\ iy ’
X
—1 x.f—’— z
8
] »
/ / U
v y v
y
FIGURE B-1. The Rotary Vane

45

is linearly polarized at 45 degrees to
Figure B-1 shows the general arrangement.

A /4
x
R a a
+
— E“,x 2‘99
+ E
tk:' Ayy

Phase Shifter.
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In waveguide a rectangular '['I{lo waveguide supplies the proper
polarization, there is transition from rectangular TF.“J to circular ‘H.”
where thin, fixed diclectric vanes at 45 degrees to the rectangular
TE1g v axis form the A/4 plates. Between the A/4 sections is another
rotatable, (about the propagation direction or long axis of the waveguide)
dielectric vane (twice as long as the A/4 vanes) to form the */2 plate.

Just how the device works is not obvious (at least to the author) and
the matrices form a handy way of analyzing the problem.

The transformation (TBl) from the x,y to the x ,u' is given by
Equation 50. The transmission matrix (TBI) for a perfect A/4 plate (no
reflections) is given by Equation A-4, in general, or by Equation A-5 at
the center frequency. The transformation (TBZ) from x"g' axes to x",g"
axes is given by the first of Equation 35 with ¢ replaced by 6.

The transmission matrix (TBZ) for the A/2 plate, being just twice as
thick as the A/4 plate is given by

i -j2B 1 d 1

e = 0 0 0

j2B 1 d
0 e = 0 0
(T ) = -j2B 1 d

B 0 0 I 0

j2B ' d
0 0 0 R (B-1)

" " 5 ' ] u
To return from the x ,y coordinates to the x ,y coordinates,

-1
identical to that for the first and is given b'v Equation A-4 again as
’

is used. The transmission matrix for the second A/4 plate is

(Tgy)- Finally, the transformation from the x ,u axes back to the x,v
axes is given by (’I'Bl)-l Our matrix equation is thus
r— j o — —_

R, N, ] R

h/U( F'lx Elx

L L. L

Fax 1 : Eix B

= Bt T S T = (T

. (Tyy)  (Ty) (Tgp) ~ (Tp) (T ) (Ty ) (Tgy) 0 (e o

h’t'/ Ely 519

L L L

E g E E -
B | "1y | Py (8-2)
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This series of multiplications can be carried out fairly quickly by
use of a chain rule:
-1 -1

(T = Tp) i T1) 5282 1m

i Bl ik Bl (Tgy) (TBZ) (Tgy) (TBJ)

B2 mn np" Bl pg (8-3)

93
where repeated indices indicate a summation.
Although this is a rather long string of matrices, the simple form

of the individual matrices enabled the procedure to be carried out
reasonably readily, resulting in

( -j4B +d -74B ;d) —jZ(Bx: + Bu:)d
2t = cos Ble * + e 9 + 2 sin"H e
tll
-j(B + + 3B 1)d -7(3B +B:)d)
+ 2 sinf cos@(e b g - e " J
2t = cosze(e—Jan'd - e_JABg'd)
t13
j4B » d j4B 1 d j2(B+ + B 1)d
= )( X y ) 53 X Yy
2tt22 cos BO\e + e + 2 sin" 6 e
j(B+ + 3B .)d F(3B +B")d)
+ 2 sinf cosO(e i Y - e = J
( j4B 1 d j4B ,d)
2t = cos B\e % - e J
t24
e " Fans
'743 v d "‘]'ZOB r d 9 —j.)(['} iy + B 1)d
A 0( X W y ) A0 X y
2tt33 cos e € + 2 sin O e
( -3(3B+ + B 1)d -i(zxx, + BI;U.)d)
+ 2 sinf cosB\e il y - e
Ceaz = o4
j4B 1 d j4B r(i) " 7'2(Bxl + Ull')d
Ztt44 = cos ﬁ(e » + e 9 + 2 sin"H e
( (3B + + B 1)d j(B 4+ zu”,)d)
+ 2 sinf cosBl\e * Y - e
- =t =t =t =t = t = t = t =0 (B=4)

12 tl4 t21 t23 t32 t 34 tal t43

47




NWC TP 5900

When Equation A-3 applies, the transmission matrix reduces to

~ = s -
R [ -i48,d 7726 o e
E e e 0 0 ] £
4x Lx
jZ&B vd e
’ ) L
g 0 g ¥ g i 0 0 E
4x 1x
=F4B ¢ @ . ioa
(R 20 R
E, 0 0 gt J 0 ;
by 5
J4B 2 d _ .
L r 2¢ L
E 0 0 0 & “E
b4y J Ij
- —— L —
or, in scattering matrix notation
: B ¥529 e 7]
KN 0 ed 0 0 E
L3¢ Ix
R ¥326 i1
£ ly C+J2 0 0 e H[ X
+ X —][‘B 'd 42
= LA x
+426
17‘ 0 0 0 . j2€ Rh
ly ly
R, 0 0 326 0 L.
L by by
The input to such a device is usually a single component, such as
R K .
Elx and the output would be HAx These are selected by polarizers
such as the T]’.”) mode rectangular waveguide for microwaves. The ountput
~-74B + d

is thus retarded in phase by a fixed amount, e de~
Y ' '
pending on whether the y or x

lar rotation of the A/2 plate.

plus twice (*

axis is the slow or fast axis) the angu-

This approach does not add much to finding out just how the added

+ 49
phase shift e‘J°H is obtained. This is perhaps most easily seen by
breaking Equation B-2 into groups, or multiplying through one matrix at

a time. Thus,

48
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—-}B v d -jB «d 7

e ¥ 0 e x 0
jB +d B+ d

0 e ¥ 0 e i

o | -jB +d -JjB +d

(Tal)(ral) /2 |e y 0 e 0
jB +d JB +d
L 0 e y 0 e y =

And invoking Equation A-3, (B, - Bq;)d = +1 /2
X

-j8d =jRad A

e . e‘je (¢] e = e" 0
8 ejax' dqu-e " e‘75" d?z 36

T -jB .+ d -jB .+ d .

T T ) Td = lhas % S 0 « ¥ SP 0
jBsd . ) - o
- 0 s3e x e!)@ " Fie X e VJ

These three matrices multiplied together produce, as thev should, circu-

larly polarized waves, but note that the fir
F10
eV ig already present.

If the matrix of Equation B-8 is multipl
results

[ 8 1d ]
-j3B .d & =338 .

e J x 28)29 0 e x ?‘]26 0

o ej]a-'de:jZG 5 e"Bx'd 328
1 :
-1 - -j3B +d 0 -j3B d | 28

"n) ﬂu)ﬁ”)ﬂ”)ﬂ“) /2 + Je x 0 %je XY o
338 +d 138.d o
L 0 tje ¥ b 0 $9e " e 4

The phase shift is now the complete ¥26.

(for linear polarization input) is * circularly polarized.

of the remaining two matrices (the A/4 plate
x,y coordinates) is to change these circular
polarization.

49

st half of the phase shift
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The output of this matrix
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and transformation back to
polarizations into linear
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Equation B-4 can be put into scattering matrix notation by use of
Equation 8, resulting in

Be1d * T3 " Togn T Spny T Fean ¥ Bpy S Boys =8, =0
S =t / (¢t t -rz )

£12 t44 t22 t44 t24

S = —t /(t t —t2 )
“tlA t24 t22 t44 t24
Feqg ™ Fers
G =t LGt t —t2 )

£9A T Seanf Voaatesn T Sem
Sea1 " Fayy
Sean ™ Teny
Ses1 ™ Fsa

= S

St&J tt33 S0

An examination of Figure B-1 convinces one that the device is
reciprocal--the results are identical regardless of disection or trans-
mission. Thus st'j = Stji' If one uses Equation B-4 and carries out a
2
somewhat messy multiplication, it is found that

jA(BX, + Bd)d

L el (B-11)

Ceaetean T Tz

Substituting this result in Equation B-10 results in the scattering matrix

Fz"l;- % te11 ¥ ttl;q riH]x
B fe11 S ey 2 LEax
Lﬁly s 0 tt]3 ¥ tt33 Rng (B-12)
j”aq_ B AR, RN :”4[;_
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One of the remarkable things about this type of phase shifter is its
broad band ability--in microwave usage such a phase shifter will main-
tain is relative phase accuracy within *2 degrees over an entire wave-
guide band. At first glance this seems peculiar for A/4 and A/2 plates
are all narrow band devices. Using Equation B-12 we can make a cursory
examination of this behavior.

In a waveguide the input is RElx and the output REAx (as a choice).
20’

e R : ’
Since E ttll alone determines the phase shift. Suppose we choose

ly
an operating frequency 0.9 of the center frequency where the quarter- and
half-wave plates are just that. Thus

(Bx: - Bg:)d = +0.9 m/2 (B-13)

Then, from Equation B-4 (choosing Equation A-3 to be + 1/2),

j(onld 2 9
2t e = (1.80902 - j0.58779) cos © + 2 sin " ©(0.95106 - 3j0.30902)

- 2 sin 6 cos 6(0.61042 + ;j1.8787) (B-14)

The phase set by a phase shifter is relative (i.e., one starts with
an undetermined total phase shift and introduces so many degrees addi-
tional phase shift, reading from a dial calibrated in degrees rotation
(X2) of the A/2 plate). Thus, for § = 0, Equation B-14 comes out to be

j4B 1d

x
Zrtlle = 1.902 e

-j18°

or

TEB ¢  aw Jox o
e8I L age M

t11 o,

With this information we can produce a table of 20, and

lond + 18° + At

|
e ls

11 versus 9. It should be observed that at the center

frequency, where the condition of Equation A-3 is met, that lttlll =1,

and the relative phase shift is just 26. In this case where f = 0.9 fo.
Equation B-12 shows some of RElx is siphoned off into RHAq' Since we

have postulated just A/4 followed by A/2 followed by A/4 plates, sans
polarizers, this energy is lost for the purposes of the present discussion.
In the case of a commercial phase shifter, the A/4 plates are followed by

a circular waveguide to rectangular transition which acts as a polarizer.
Since the rectangular waveguide is below cutoff, Ey is either absorbed

or reflected--probably some of both, so Table B-1 should be a reasonable
approximation to the real thing.
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TABLE B-1. Phase Shift and Insertion Loss of Rotating Vane
Phase Shifter at Center Frequency f_ and 0.9 f_
Versus Angle of Rotation.

Angle of vane Phase shift, ° Insertion loss, dB Relative phase
rotation, 9° 5 177 B.9 £ £ 0.9 f error,
e b R R e S U0 o Sl e oo R I R S
0 o 0 0 0.45 0
2 4 4.15 0 0.45 0.15
4 8 8.31 0 0.45 0. 3d
6 12 12 .46 0 0.45 0.46
8 16 16.60 0 0.45 0.60
10 20 20,74 0 0.45 0.74
12 24 24 .87 0 0.35 0.87
14 28 28.99 0 @35 0.99
16 32 33.10 0 6. 35 1.10
18 36 37.28 0 0. 35 1.28
20 40 4129 0 0. 85 1 .29
Z2 44 45 .37 0 0.35 1.37
24 48 49.44 0 Ui Z6 1.44
26 53 53.49 0 0.26 1.49
28 56 59:.53 0 0.26 b .53
30 60 61.56 0 0.26 1.56
32 b4 65 5if 0 0.26 T
34 68 69.58 0 0.18 1.58
36 72 7357 0 0.18 .57
38 16 T <55 0 0.18 .55
40 80 81.53 0 0.18 .53
42 84 85.49 0 0.09 1.49
44 88 t 89.44 0 0.09 .44
46 92 93.39 0 0.09 1.39
48 96 9733 0 0.09 , 1233
50 100 101 .27 0 0.09 } Vel d
52 104 105.21 ! 0 | 0.09 .23
54 108 | 109.14 | 0 0.09 1.14
56 112 | 113.06 | 0 0 . 1.06
58 116 | 116.99 | 0 0 l 0.99
60 120 120.92 0 0 0.92
62 124 124 .84 0 0 (.88
64 128 128.77 0 0 Qi 1
66 132 132.70 0 0 0.70
68 136 136.63 0 0 0.63
70 140 140.56 0 0 0.56
72 J 144 144.49 0 0 L 0.49
IRENCNE (S PP EPLE L, "SISO RIS SRS SR ST S [Ny ey
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From Table B-1 it is evident that the maximum phase error in a rotary
vane phase shifter designed for a center frequency of 10 GHz would be
about 1.6 degrees when operated at 9 GHz. Furthermore, the increase in
insertion loss should be less than 0.5 dB. This substantiates the experi-
mentally known fact that these devices are broad band.

To the extent that the quarter-wave and half-wave sections are not
perfect, an actual device would show some deviation from Table B-1.
However, if the departure from perfection is known (e.g., reflection and
absorption coefficients), it should be straightforward to program a com-
puter to produce the equivalent of Table B~1 for such a "real” device.
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