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1. SUMMARY

1.1 Objectives

This report covers the first portion of a planned three-year
program of research and development. The entire program is directed toward
the use of adaptive supervisory computer programs to improve the acquisition
and utilization of information by command personnel in large-scale systems
for command, control and communication (C3). The work presented here deals
specifically with the application of adaptive multi-attribute utility models
to dynamically select information for a system user, on the basis of
situational requirements and his observed information preferences. Specific
objectives of the 7-month program included:

(1) Analyze design principles and approaches for the dynamic
control of information flow in C3 systems.

(2) Develop and implement a prototype adaptive (individualized)
information selection model.

(3) Demonstrate and evaluate automatic information selection
capabilities in a simulated C3-type task.

(4) Establish guidelines for application of information selection
models to higher-level, multi-man C3 systems.

These objectives were met by integrating the new system concept with

adaptive modeling technology established by Perceptronics under previous
ARPA-sponsored programs. In particular, the present adaptive multi-attribute
utility model for information selection has at its core a trainable utility
estimator previously developed for computer aiding of dynamic decision
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processes. Similarly, the selection model was applied to and evaluated
on a modified version of a simulated ASW submarine tracking task used in
earlier experimental studies of decision aiding.

This approach allowed us to demonstrate successfully a prototype
adaptive system for automatic information selection in a relatively
realistic C3 situation. It is planned that the present model will be
incorporated into a larger system of adaptive supervisory computer programs.
Together, these computer programs will compose an integrated complex of
man-computer models, procedures, and aids for real-time management of
information flow, in concordance with specific information processing
and decision making requirements. Our analysis and empirical results
indicate that this approach can produce sizeable reductions in decision
time, as well as improvements in the quality of the information-based
decisions.

1.2 Technical Approach

1.2 Rationale. Technical advances have led to increases in the speed,
mobility, and destructive power of military operations. The amount and
rate of information acquisition has increased accordingly. Information
must be processed more efficiently and more effectively for commanders

to make tactical decisions responsive to the rapidly changing succession
of events. To meet this need, new computer-based systems for command,
control, and communications (C3) are being developed and implemented. These
systems are intended primarily to aid in the collection, processing, and
utilization of different types and amounts of military data. The overall
process is cyclic -- as information is being used, other information is
being processed, and new information is being sought and collected. The
dynamics of information flow are, therefore, of critical importance and
must be constantly monitored and directed.
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The consensus concerning current computer-based military systems
for C3 operations is that they have increased the rate and density of
information flow to such an extent as to overwhelm a commander and his
staff. New C3 techniques are required to control information flow so
as to best match system capability with human characteristics in the
man-computer interaction. Our review of previous research, presented in
Chapter 2, suggests that a significant step in this direction would be
to individualize and automate information selection. This would allow

each system user continuously to obtain information that is both relevant

and timely with regard to his individual processing characteristics and
immediate decision making needs. Considering the large number of interrelated
users in a typical C3 system, the effect on total system performance would

be to substantially increase throughput while also improving decision making
quality.

1.2.2 System Concept. The basic concept of the model-based selection

system is illustrated in Figure 1-1. The message universe includes all
information potentially available to the recipient, or system user. In
the manual mode, the recipient continuously selects messages in accord
with a selection strategy. A strategy represents individual preference
for information in response to situational needs. In the automatic mode,
an adaptive information selection mechanism automatically supplies the
user with information on the basis of his individual selection strategy.

The factors which characterize an individual's strategy are
incorporated in an adaptive multi-attribute utility model. In this model,
incoming information is decomposed into measurable attributes. Attribute
levels of a message are determined by vectors which include both situational

requirements and source characteristics. The subjective weight, or utility,
that the user places on each attribute is estimated on-line, by an adaptive
technique, as the user manually selects information. The utilities, in

combination with the measured attribute levels, permit calculation of a 'ﬁ
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multi-attribute utility (MAU) value for each incoming message. The selector
mechanism then passes to the recipient those messages with high MAU, that
is, of high value to him. The selector can also use the MAU values to
improve an individual's information gathering efficiency. For example,
most users select more information than is actually necessary to reach a
decision. The model-based selector can reduce the transmitted message set
by eliminating those messages which contribute less than some criterion
value of utility. In the present study, for example., we examined a pruning
rule which ranked messages in order of decreasing MAU, and eliminated those
messages for which the MAU was less than 15% of the total MAU of previously
selected messages.

1.2.3 Demonstration ard Fvaluation. The methodology used to implement

this system concept is described in Chapter 3. For purposes of demonstration
and evaluation, the adaptive information selection model was applied to

a simulated ASW tracking task. This task requires the operator to track
continuously the movements of a submarine and a whale over a segmented
expanse of ocean. The probable locations of the tracked objects are

given by a computer-generated intelligence report. The operator uses

this report to select a set uf sensors, or information sources, for
distribution over the ocean locations of interest. The available information
sources differ in cost, reliability, discriminability, etc. On the basis

of the information gathered, he reports the present location of the objects.
His status report triggers a new intelligence report for the next cycle,

and the task continues.

In the automatic mode, the process of source selection is taken
over by the adaptive model, and the operator works entirely with this
dynamically selected information. The task provides a realistic information
environment, a large number of selection decisions, and objective measures

of decision performance (tracking accuracy and information cost expenditure).




The model-based selection system, the simulated task, and the associated
performance measurement programs were supported on an Interdata 70
minicomputer with 48K words of memory. The operator interacted with the
system through a graphics terminal and keyboard.

1.3 Findings

System evaluation included a structured study of model performance
and dynamic behavior, and a systematic empirical examination of operator
task performance with varijed types of automatic information selection.

The results, presented in Chapter 4, are summarized below.

1.3.1 Model Performance. In brief, the use of an adaptive muiti-attribute

utility medel for information selection waé successfully demonstrated.
Specific observations of model performance included:

(1) Information Attributes. Seven attributes were sufficient

to characterize the ASW information. These were arrived at
through a reiterative process of analysis and empirical test.

(2) Utility Convergence and Adaptation. Utilities for attributes

converged rapidly to reflect consistent individual strategies
of information selection. Typically, convergence took 10-20
adjustment cycles, spanning a few task trials. Changes in
strategy produced corresponding changes in the selection
behavior of the model.

(3) Individualized Message Sets. Automatic selection of information

yielded distinct message distributions for distinct individual
strategies.
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(4) Information Filtering. Overall, the adaptive system
was able to select automatically about 5 to 7 highly preferred
messages from a potentially available universe typically
in the order of 78,000 messages, a filtering ratio of over
15,000 to 1.

1.3.2 Operator Performance. Empirical evaluations showed that an
operator was able to perform the tracking task successfully with automatic

| selection of information sources by the adaptive model. Comparison of
i different automatic selection modes revealed:

(1) Preferential Strategies. ASW tracking performance was
better when information selection included utility criteria
(individualized attribute weights) than when utility criteria
were eliminated from the selection procedure (uniform attribute

weights).

(2) Reduced Information Set. ASW tracking was further improved
when relatively low-utility information was dynamically

pruned from the individualized information set. The
effectiveness ratio between performance with the reduced
and with the non-reduced set was about 1.5 to 1. The
effectiveness between performance with the best pruned
strategy and with the uniform-weight strategy was 1.8 to 1.

(3) Acquisition Time. Informal observation indicated that
automatic information selection markedly reduced the time

required for manual information acquisition in the simulated
ASW task. Time reduction was in the order of 50 to 1.




1.4 Applications

1.4.1 Domain. The domain of application for the adaptive selection

model developed here is a dynamic Tocal environment, where new information
of the same general type must be processed repeatedly. Such environments
are ubiquitous in modern computer-based command and control operations. If
the man and the computer can be considered as representing a single system,
then the goal of the technique is to provide the man with information

which will improve the overall decision output of the system.

Within its domain of app]icat%on, the multi-attribute utility
approach is highly generalizable. The present demonstration is indicative,
since the ASW test bed was not specially tailored for the model, as is often
the case. In addition to generality, other advantages of the multi-
attribute utility formulation, discussed in Chapter 5, include parsimony,
robustness, speed of adaptation, flexibility and versatility.

1.4.2 Supervision of C3 Information Flow. The present demonstration
dealt with a single information user. However, we can consider the typical
C3 system as a hierarchical, multi-level arrangement of users. People at

one level process information for people at the next level, collecting

and integrating data until a decision commensurate with their level can

be made. Thus each person in the structure is at times a user of information,
at times a source of unprocessed or processed information, and at times a
source of decisions passed to higher levels of the hierarchy. A matrix
analysis, presented in Chapter 5, suggests that optimum information flow

in such a structure could be controlled by a supervisory program incorporating
both heuristic control algorithms which are situation-dependent, and a set

of behavioral models, which depend on psychological constructs and on
individual user characteristics. Among the most significant models will

be those which define:




T et A

(1) Multi-Attribute Utility for Information
(2) Information Routing
(3) Information Pacing and Load

Feasibility of the first model has been demonstrated by the present study.
E The preliminary analysis of Chapter 5 indicates that the multi-attribute

technique lends itself to important aspects of the other two models as
well.

It is planned to explore this approach in our extension of the

current work to a supervisory system of information control, which will
include the pacing and routing functions.
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2. SELECTIVE LITERATURE REVIEW

2.1 Purpose

The purpose of this survey and analysis of relevant literature is
to identify design principles for models of information flow in C3 systems.
Many experiments have investigated information seeking and decision making
in relatively well-structured situations. The results of these experiments
provide much useful data on how people in C3 systems seek and use
information. The review below attempts to demonstrate that these data
support the development of on-line computer models, particularly adaptive
ones, designed to help command personnel in the acquisition of appropriate,
timely, and individually-suited information.

2.2 Organization of Literature

A crude but generally applicable schematic for information flow
within a C3 system is provided below (adapted from Lin and Garvey, 1972).

INFORMATION INFORMATION SEEKING, INFORMATION
REQUIREMENTS ACQUISITION, AND EXCHANGE UTILIZATION

]
\ INFORMATION ORGANIZATION

AND MANAGEMENT

The diagram identifies the major phases of information communication and
indicates an executive structure to govern the flow of information. The
discussion of topics to follow focuses on human performance in specifying
information needs, and in acquiring and utilizing information for decision




making. Throughout the review, emphasis is placed on the rationale for
developing computer-administered procedures to adaptively present automatically
| selected information to-decision makers.

b,_-
—— s W O

2.3 Information Requirements

2.3.1 Specification of Information Requirements. In the context of management

information systems, Ackoff (1967) has implied that the amount and type of j
information that a manager thinks he needs is often not in line with what he
actually does need for effective decision making. In general, the more
deficient the manager's "mental model" of the decision situation, the more
information he will want. The result may be that the manager becomes
overwhelmed from an overabundance of irrelevant information. Ackoff further
states that "one cannot specify what information is required for decision
making until an explanatory model of the decision process and the system

involved has been constructed and tested".

A similar point of view, concerning military intelligence, has been
experessed by Williams (1972):

"Information collectors must know what information the commander
needs. Too often he does not tell them. Too often he does not
know himself and too often the intelligence people are not
qualified to anticipate for him. The commander's guidance tis the
vital pulse that should trigger a meaningful collection effort.
Unfortunately, ... experience indicates that many commanders leave
this responsibility almost entirely to their G2s."

Two important implications are evident from these remarks. First, a commander
may be incapable or at least unwilling to accurately specify his information
needs in a particular situations; for example, it would not be entirely
uncommon for a commander to take the easy way out and tell his collectors to
"get all the information you can get". Second, a commander's reliance on

his collectors to supply the appropriate amount of relevant information may

not be justifiable.
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The hypothesis that potential users of information systems consider
“everything" critical has received support from interesting empirical research
conducted at ARI. In one study (McKendry, Wilson, Mace, and Baker, 1973),
staff officers responded to survey questionnaires in which they were presented
with a tactical mission and had to check-off items of information (combat
events) which were perceived as most important to the successful completion
of the mission. An important finding was that many subjects were unable to
limit themselves to 30 crucial events (as instructed) from among a pool of
60 available events. In a second study, experienced field officers performed
offensive and defensive tactigg] planning within a computer-controlled
simulated scenario (Strub and McConnaughey, 1974). The officers were
permitted to request information at will from a hierarchically-structured
data base, and the computer kept track of each request noting the category
of information (e.g., G-2 Intelligence) and level of detail (e.g., enemy
situation) requested. In comparing results from the two research methods,
Strub (1977) found that less information (in terms of amount and level of
detail) was actually requested and used in laboratory exercises that was
specified in questionnaires as being essential and of "should be requested"
merit.

Because of the importance of this last finding by Strub, an attempt
should be made to explain it. One possibility is that the information user,
or supplier for that matter, does not want to be caught short and therefore
overstates his information needs. The conservative bias is similar, in
principle, with the typical observation that subjects, when performing in
diagnostic tasks, purchase more information than recommended by normative
Bayesian procedures (e.g., Levine, Samet, and Brahlek, 1975). Another possible
explanation is suggested by the previously referenced remarks of Ackoff (1967).
Since the user does not generally construct a model of the decision situation
until he is actually engaged in it, he will be inclined to overstate his
needs when asked to anticipate them prior to confronting the problem situation.

Indeed, in the ARI studies, survey-questionnaire subjects (i.e., those who




expressed a need for relatively more information) projected needs across a

problem context described in terms of a hypothetical tactical situation;
whereas laboratory-experiment subjects (i.e., those who requested relatively
less information) experienced actual needs while performing a realistic,
although simulated, tactical exercise.

Additional support for the hypothesis that decision makers tend to

overstate their information needs is available from Schroeder, Driver and
Streufert (1967). They included a measure of information satisfaction within
their studies of information processing in the Tactical and Negotiations

Game (TNG). The TNG is a game simulation in which decision-making teams

are given the task of directing the military, economic, intelligence, and
negotiation activities of a small underdeveloped nation plagued by an internal
revolution. In one experiment, the effects of information load (varied in
terms of number of dimensions of information presented in a given time span,
diversity of the information, and number of alternatives that each unit of
information added) on the level of information processing and decision
performance were assessed. At the conclusion of each game period, subjects
were required to express their preferences for receiving a different amount
of information relative to what was actually received in the previous session.
A11 subjects showed a consistent but unjustifiable bias for having

considerably more information. Subjects even ask for, or say they would H
prefer, more information following periods when their information processing
level is already depressed by superoptimal information load. Apparently,
people are not sufficiently sensitive to reverses in load which are
detrimental to information processing.

2.3.2 Balancing the Information Supply. As a mechanism for summarizing the

problem of information exchange in a field Army C3 system, Baker (1973) has
employed the "economic man" concept:




"Observation of field erercises have led to the hypothesis that the
G2 produces and stores more data than the G3 consumes in the normal
course of operations. [Likewise, G3's appear to ask for data that
G2's have not yet produced. If one considers this situation from the
standpoint of an economic analogy, it is not good business to use
resources to produce ttems for which there is no buyer. Contrariwise,

i1f a buyer desires something, it i& good business to have it available

to gell him. In the dynamics of the GE/G3 operations the G2 can be
Likened to a producer (of information) and the G3 as a consumer
(information user)."

The trick, of course, is to maintain an appropriate, cost-effective balance
of information supply and demand. Focusing upon the information consumer,

it is clear that if too little information is disseminated to him, he cannot
get the job done; on the other hand, if he gets too much information, he
becomes overloaded and must expend valuable time screening items for relevant
information.

The commander in many C3 systems appears to suffer more often from an
overabundance of irrelevant information, much of which he did not ask for,
and therefore two critical functions of the system become the filtration (or
evaluation) and condensation of information. However, as Ackoff (1967)
points out, the literature on information systems seldam refers to those
functions let alone considers how to carry them out. 1f techniques can be
developed to select information for individual users so that each gets the
information that is most relevant and useful for his needs, then the
techniques would simultaneously carry the potential to accomplish information
filtration and condensation. In other words, the process would aid in
weeding-out the information which is not desired by the user.

2.3.3 Individualized Adaptive Selection. As data come into a (3 system, it
must be determined which of the separate users should be the recipients of
messages containing specified classes of information. In a manual system,
the selection procedures arise in response to specifically stated user

requests and by the initiative of support personnel, who through training

i




and experience become aware of the information needs of various system users.
In order to select information within an automated system, a set of
programmable rules is necessary. However, as inferred from the research
reviewed above, it is not sufficient -- because of inherent human biases --

to rely solely on direct user statements or on supplier judgments to determine
selection specifications.

Fortunately, an automated C3 system lends itself to a more promising
approach for determining routing procedures. Namely, an on-line computer
model could be used to observe and track each individual's information
processing behavior and thereby dynamically learn and assess his personal
utilities for specific types of information. The overriding rationale here
is that since the decision maker can attend to only a few information
dimensions among many (Héyes, 1964), especially when under pressure (Wright,
1974), adaptive modeling can selectively choose and present those few
dimensions that are most useful to him.

The notion of an adaptive system for providing information in a C3
system is further supported by writings of Thompson (1964, 1967). He dwells
at length on the important role of situational context and command context
in determining information relevance, as well as on their interaction and

impact on command decision making. According to his conceptualization,

the data base is dynami nd responsive rather than inclusive

It 18 the embodiment ' the curvent soncerns of the partilular

Thompson's theoretical framework has received empirical support from recent

studies of information needs and priorities, as affected by such independent




variables as intensity of war (Coates and McCourt, 1976) and the user's
staff element (e.g., G2, G3) and echelon of command (e.g., Army, Corps,
Division) (McKendry, et al., 1973). It can be expected, therefore, that
certain characteristics of the military situation and aspects of user
identification could serve as useful input to any information selection
model.

2.4 Information Acquisition

2.4.1 Process Description. In their recent, comprehensive review of the

information processing and decision making literature, Nickerson and Feehrer
(1975) identify "information gathering" as one of the principal tasks to be
performed in a decision-oriented system. They describe the process as
follows:

"From the point of view of the decision maker, most decision situations
are characterized by some degree of uncertainty. This uncertainty may
involve the current "state of the world", the decision alternatives
that are available, the possible consequences of selecting any given
one of them, and even the decision maker's preferences with respect

to the possible decision outcomes. One of the major problems facing
the decision maker, therefore, is that of acquiring information in
order to reduce his uncertainty concerning such factors, thereby
inereasing his chances of making a decision that will have a desirable

outcome.

"What makes the problem interesting, and nontrivial, is the fact that
information acquisition can be costly, both in terms of time and
money. Therefore, the decision maker must determine whether the

value of the information that could be obtained through any given
data-collection effort is likely to be greater than the cost of

J

obtaining it. And therein lies a decision problem in its own right."

2.4.2 Experimental Studies. Much research has been done on information

acquisition in decision tasks, but most studies have concentrated on
information purchasing behavior. The latter have, for the most part, failed
to capture the complexity of the problem that often faces the information
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seeker in the real world. In the typical information purchasing experiment,
information from a single source is presented to the subject, with his task
essentially to decide whether it's worth what it will cost to acquire it.
However, in many practical situations, the decision maker or commander must
seek and locate the information he needs or wants, and he must often select
from among alternatively available information sources of differential
quality in ’s of information diagnosticity and cost. A few relevant

i

studies ’

findings are reviewed below.

&

S Kanarick, Huntington and Peterson (1969) studied performance in a

ormation selection behavior heve been conducted and their

simulated scenario in which the subject had to reach a binary decision about
whether an enemy submarine was either present or absent in a given vicinity.
On each trial the subject could purchase data, from one of three different
information sources. The sources varied in both reliability and cost: the
higher the reliability (diagnosticity) of the source, the greater the cost
for consulting it. The penalties for incorrect decisions were also manipulated
experimentally. Subjects' behavior was sensitive to the variations of the
independent variables; however, performance was deficient when compared with
an optimal Bayesian model. For example, they consulted the most reliable
(and most costly) sources less frequently and the less reliable (less costly)
sources more frequently than they should have. Also they generally purchased
less information than required by the optimal model. This last result might
be accounted for by the common finding of recent research that subjects

tend to over-estimate the diagnostic impact of less than perfectly reliable

data (e.g., Johnson, Cavanaugh, Spooner, and Samet, 1973).

Although Kanarick, et al., allowed subjects to choose among multiple

information sources, the sources were presented in parallel. However, in
real life situations, information from various sources is frequently sought,
generated, and made available in a sequential, rather than in a parallel,

mode. In a dynamic situation, furthermore, the uncertainty of the environment




may force the information seeker to perform under fluctuations and restrictions
in the amount of available information and/or the level of resources needed

to acquire the information. For example, the military commander can take
advantage of all the patrol units that he can spare but still require more
information about the enemy.

To study information seeking behavior under these kinds of conditions,
an experiment was conducted by Levine, Samet, and Brahlek (1975). These
investigators required subjects to determine which of four populations was
being sampled in a multinomial Bayesian task. Each sequentially drawn datum
was described on one of three dimensions which represented different levels
of information source diagnosticity (high, medium, and low). On each trial,
the subject purchased knowledge of the jidentity of the information source
which was available on that trial, and he had the option to either purchase
the associated datum at a fixed additional cost or pass it up at no additional

cost. Using this paradigm, the amount of information potentially available
and the percentage of it which could be purchased by the resources provided
were varied factorially, and the effects on information selection and
purchasing behavior were assessed. The principal relevant findings were

that: (a) relative to the low diagnostic source, subjects purchased
information about 5 times as often from the medium and high diagnostic sources;
(b) when more information was potentially available, subjects were more

efficient -- relative to an optimal Bayesien moudel -- in selecting from among

information sources; (c) significantly more information was sought as both !
amount of available information and purchasing resources increased; and (d)

across all experimental conditions, subjects generally purchased more

information than was recommended by the normative model. With regard to the

last finding, the subject was actually paying for information which had a

negative value, i.e., information whose acquisition led to a decrease in

expected payoff.




In another study involving the selection of information, Rapoport,

Lissitz, and McAllister (1972) investigated the search behavior of subjects
required to find a single object hidderi in one of four distinguishable
locations. For each location, they were given: (a) the = priori probability
that the object would be detected there; (b) the probability that the object
would not be found by a search (i.e., a random sampling); and (c) the per-
trial cost of search. In agreement with the previous studies, the results
indicated that subjects do not consult information sources in an optimal
fashion. Of particular interest was a finding suggesting individual
differences in search strategies; that is, some of the subjects deviated

from the optimal policy in the direction of maximizing detection probability,

whereas others deviated in the direction of ninimizing search costs.

The results of experiments on information purchasing behavior also
relate to man's capability as an information selector. The typical
experimental paradigm allows the subject on each trial the option of either
purchasing more data relevant to the decision that he is required to make,
or to stop data collection and make a decision. Stoppicg data collection is
also a decision and defines the selection of a predecisional information
set. The various studies have shown that subjects are highly sensitive to
informational and situational parameters. e.g., environmental variance
(Schroeder and Benbasat, 1975), « ;riori probabilities for decision
alternatives (Green, Halpert, and Minas, 1964), data diagnosticity (Snapper
and Peterson, 1971), source reliability (Levine and Samet, 1973), and costs
and payoffs (Pitz and Reinhold, 1968; 0'Connor, Peterson, and Palmer, 1972),
but their performance departs systematically from optimal performance. In
general, it appears that too little information is purchased when much is
required by a Bayesian Model and too much information is purchased when little
is required. For example, subjects have been found to require from two to
nine data observations to revise their opinions as much as Bayes' theorem

would prescribe for one observation (Peterson, Schneider, and Miller, 1965;

Phillips and Edwards, 1966).
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2.4.3 Rationale for Aiding Information Selection. It is evident that when

information quantity is held constant, an improvement in information quality
leads to an improvement in decision performance (e.g., Levine and Samet,

] 1973; Snapper and Peterson, 1971). With regard to military information

: processing systems, the issue has been stated as follows:

"The key to competent decision making is the availability of current
and accurate information. It is not the quantity of information
which is important. Rather, it is the process of selecting the
pertinent information, ascertaining its significance, and displaying
it in a readily understood format which facilitates the decision-

X making process.” (Albright, 1975)

Since one way to achieve an increase in information quality is to be more
selective in collecting information, we can ask how well man does as an
"information selector" or discriminator among alternative information

sources. The basic conclusion reached by each of th2 experiments reviewed
gbove is that although subjects are sensitive to the differences in information
source quality, they perform poorly in selecting among information sources.

If man is sensitive to key informational and situational parameters,
why does he consistently show systematic, sterotypical biases when choosing
among available information for decision making? Apparently, because of his
limited memory, attention, reasoning, and computational capabilities, he is
unable to integrate/aggregate/combine various dimensions of information --
each with its associated graded level -- to arrive at a compositive,
subjective value for the information which is consistent and valid. Thus,
for example, he is unable to appropriately trade off the reliability of

| information and its cost (Kanarick, et al., 1969). Therefore, it appears

sy

that a valuable type of aid for a decision maker would be one which helps

him to assess and to apply consistenly his—ewn—utitity—for—the3nformation g

provided by alternative sources.
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The idea of utility-based aiding of information selection is strongly
supported by a study of McKendry, Enderwick, and Harrison (1971). These
investigators were interested in the effects on decision-making performance
of using information which had been previously judged of low, medium, and
high utility to the task by the decision makers themselves. The decision
making task involved the tracking of a submarine by an airborne ASW aircrew
under the direction of a tactical coordination officer (TACO) who had at his
command all the sensor resources of the real aircraft.

Subjective information value (utility) ratings for various sensor
returns were obtained off-line, by direct elicitation techniques, from a
total of 39 experienced TACOs. Message content areas were judged separately,
and the total subjective information value of a message was determined by a

1inear combination of the form:

n
b=1: K,a
j=1 4
where:
b = worth of information in a message
n = number of content areas in a message
Kj = number of items in jth content area
aj = average utility of items in jth content area
(This formulation is very similar to the one derived independently by

Perceptronics investigators for the multi-attribute utility of information
items; see Section 3.1.5.) The total information value of N messages (B)

was obtained by summation of individual message 'b' values.

In the experiment, aircrews began a tracking exercise with a package

of information items totaling low, medium, or high information value. The




performance measure was the reduction in uncertainty of target location;
uncertainty was taken as proportional to the ratio of remaining search area

to original search area. Figure 2-1 shows the reduction in uncertainty with
time when working with low, medium and high value information. The results
indicated that performance was significantly better for the higher information-
value conditions. That is, crews operating with the high-utility information
were able to reach equivalent uncertainty levels much more rapidly than crews
operating with medium or low utility data. In fact, the time improvement

ratio for useful reductions of uncertainty lay in the range 2.0 to 3.5.

Thus the findings of this highly relevant study imply that: (1) using
information of higher subjective value results in significantly better
decision-making performance; and (2) a linear model for multi-attribute

utility appears to hold up well over various combinations of tasks and
information items, that is, "individual utilities can be summed to yield
aggregate utilities -- at least up to mixtures of three things". As the
authors state, the findings are of considerable importance to builders of
decision-making models.

2.5 Information Utilization

2.5.1 Information Quantity versus Decision Performance. Does more information

lead to better decision making? The pyschological lTiterature provides

several instances where the answer is "no". For example, Schroeder and
Benbasat (1975) found that increases in the level of information detail or

in the historical time period covered by the information did not affect
decision quality. This result is particularly significant since the subjects

themselves determined how much information they would receive.

In an important experiment, Hayes (1964) studied choice decisions
involving which of several airplanes should be dispatched to investigate a
reported submarine sighting in a simulated tactical situation. The

alternative planes differed with respect to their characteristics, such as
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pilot quality, speed, radar quality, take-off delay, etc. Each characteristic

could take on one of several "values" which could be ranked from best to

worst. The independent variables involved the number of planes from which a
choice had to be made (4 or 8) and the number of discriminating characteristics
(2, 4, 6, or 8) on which to formulate a choice. Hayes conducted four
experiments in all, and was able to examine the effects of time stress and
training.

Hayes' principal findings can be summarized as follows: (1) decision
quality was superior when a choice was required among 4 alternatives rather
than among 8; (2) as the number of characteristics (i.e., information
attributes) increased, decision time increased markedly but decision quality
did not improve; that is, decisions based on only two characteristics were
just as good as those based on 4, 6, or 8 characteristics; (3) when limited
time (10 seconds) was available for a decision, increasing the number of
information dimensions could actually degrade decision quality; (4) attempts
at training the decision makers did not enable them to learn to make better
decisions with increasing numbers of information dimensions. The important
conclusion to be drawn from this research is that it is easy to provide a
commander with more information than he can assimilate or use -- especially

when he is operating under time pressure.

It is interesting to note that Hayes' result concerning time stress is
consistent with a theory recently offered by Hogarth (1975). Applying to
situations where a choice must be made among a given set of alternatives,
the theory defines task complexity and cognitive strain as increasing
functions of both the number of characteristics per alternative and difficulty
of choice between alternatives. Because of human Timitations on information
processing, optimal decision time is proposed to be a concave (i.e., inverted-
U) function of task complexity. The same idea was advanced earlier by

Schroeder, Driver, and Streufert (1967), who support the theory with
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empirical data which repeatedly demonstrate an inverted U relationship

between environmental complexity (information load) and Tevel of information

processing. Thus, it is possible that when Hayes' subjects were given too
many characteristics to process within ten seconds, they became cognitively
"overloaded" and could not perform well.

Huber, 0'Connell, and Cummings (1975) studied the effects of information
specificity, information Toad, and group structure on perceived environmental
uncertainty in an exercise using the Tactical and Negotiations Game. Examples

of "low specificity" and "high specificity" messages are contrasted below.

High Specificity Message Low Specifieity Message

Two carrier based F-2's on a routine Carrier based airplanes patrolling
patrol from NG-2A sighted and attacked in Western Shamba sighted and

an enemy truck convoy in sector G-3. attacked an enemy truck convoy.
Five trucks were completely destroyed, Damage determined.

two partially damaged.

The "low specificity" message can be considered a reduced information set
derived from the "high specificity" message. Group decision performance
was measured in terms of the uncertainty in a vector of subjective
probabilities assigned to alternative "enemy" strategies represented in the
game simulation. No significant main effect was obtained for information
specificity, suggesting that a decrease in message detail need not affect
decision uncertainty.

Additional evidence that reduction of information detail does not
necessarily reduce performance levels comes from a recent study by Granda
(1976) which investigated whether reduction of map detail reduces the
efficiency of human information gathering and tactical decision making in
a simulated tactical operations system (SIMTOS). The subjects were 20 mid-
level Army officers that performed both planning and combat tasks during a
SIMTOS offensive scenario. One group performed the task with standard Army
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maps while the other group were only allowed access tomaps of considerably
reduced detail. Some of the performance measures evaluated were combat
effectiveness scores, area captured, amount of information requested, and
information processing time. No significant performance differences were
found between users of the reduced detail maps and the standard maps despite
the fact that some reduced-map users judged them to be inadequate.

2.5.2 Utilization Aiding Through User Modeling. A number of research groups
have provided empirical support for the advantages of user modeling in aiding

information utilization. In a series of experiments, Pask and Scott (1971,
1972) demonstrated that when information presentation techniques are matched
with the information processing characteristics of the user (either a
"serialist" or a holist"), cognitive performance is enhanced by a ratio of
2.0 as opposed to when there is a mismatch. Levit, Heaton, and Alden (1975)
have succeeded in categorizing the decision styles of individuals according
to three bipolar dimensions: active/passive, logical/intuitive, and abstract/
concrete. In a laboratory experiment using a simulated, automated tactical
environment, these researchers provided decision aids to each subject in
accordance with his decision style. Although the results were not
statistically conclusive -- apparently because of insensitivities in the
system performance measures -- the soundness of individualized decision
support in computer-based C3 systems was indicated.

Investigators at Perceptrorics have developed and demonstrated the
technology of adaptive utility assessment for modeling operators (users) in
an on-line fashion. Decision support systems based on this technology have
proved successful as an aid to information acquisition and related decision
making in simulated tactical scenarios (Weisbrod, Davis and Freedy, 1977,
Freedy et al., 1976) and in simulated electronic trouble shooting tasks
(Freedy and Crooks, 1975). Since this work provides a direct background for
the present project, its contributions and results are reviewed in more

detail below.

]
|
|
|




2.5.3 ADDAM Decision Support System. Perceptronics' initial system for

decision support, termed ADDAM, was developed under ARPA and ONR funding.
Adaptive or goal-directed techniques were employed extensively in ADDAM for
the acquisition of operator decision strategies. This dynamic modeling is
closely related to the "on-line model matching" methods practiced in
adaptive manual control (Gilstad and Fu, 1970) and to the adaptive linear
models used to augment or replace the expert decision maker (Bowman, 1963;
Kunreuther, 1969; Dawes and Corrigan, 1974). These techniques use pattern
recognition or learning algorithms to estimate behavioral parameters. The
ensuing models are then used to train, replace, or evaluate the operator.
Perceptronics' development extends this field of work by placing the operator
in a real-time interaction with his model, so that the system both
descriptively models and proscriptively aids the operator.

The ADDAM decision support system is composed of a combination of
three complementary elements -- a set of Bayesian probability aggregation
programs, a dynamic modei for tracking operator values for outcomes, and a
strategy recommendation algorithm. The latter two elements are of particular
interest here.

Utility Estimation. In ADDAM, utility estimation is realized through

the use of a trainable multi-category pattern classifier, illustrated in
Figure 2-2. As the operator performs the decision task, this on-Tine
estimator observes the operator's choices among the various decision options.
The estimator, using event probabilities as inputs, attempts to classify
these probability patterns by adjusting utility weights according to an
adaptive error correcting algorithm. In this manner, the utility estimator
tracks the operator's decision making and learns his utilities. Such an
approach has a number of advantages compared to off-line utility estimation.
Dynamic estimation observes and models actual behavior rather than responses
to hypothetical decisions. It does not interrupt or intrude on the process

of decision making. And it responds to ongoing changes in task characteristics
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and operator needs. The characteristics of the dynamic utility estimator
have been evaluated in a variety of decision contexts. In all applications,
the estimates of multiple dynamic utilities typically converged rapidly to
stable and distinct values.

Strategy Recommendation. This element of the ADDAM system follows

naturally from the probability and utility estimators. With these parameters
defined, it is a simple matter to recommend individually optimal decisions.
The choice with the greatest expected utility 1s determined and displayed to
the operator. The recommendations given are thus based on the operator's

own apparent values, and are organized into a normative framework. A certain
generality is present in the normative processing, since the recommendations
are not restricted to the identical circumstances used for training, but can

be applied to other circumstances of the same structure.

Over the past three years, several experimental studies have been
conducted to evaluate the decision support system in realistic but controlled
circumstances. In one, a fishing fleet simulation task was used as the
experimental vehicle (Weisbrod et al., 1977). The task involved the placement
of diverse sensors to track and report the location of several components of
a fishing fleet as they moved over an ocean expanse. The experiments focused
on basic system validation and on how aiding (sensor recommendation) affected
the "internal" quality of decision making. The experimental evidence studies
indicated that (1) the adaptive model accurately predicted the operator's
decisions, (2) aiding significantly improved decision consistency, (3) aiding
significantly improved decision quality, (4) aiding reduced intersubject

variability, and (5) aiding increased decision throughput.

A recent study showed that "external" measures of decision outcome,
such as accuracy, errors, etc., are also improved by adaptive aiding (Freedy
et al., 1976). The experimental task was a new ASW version of the fishing

fleet simulation. Operators tracked the movements of a submarine and an
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interfering object, using the same types of sensors (sonobuoys, helicopters,
MAD's, etc.) available in Naval ASW exercises. The sensors varied in
realiability, specificity, and cost. Unaided operators worked alone, using
computer-generated intelligence reports. Aided operators received additional
computer assistance in the form of (1) Bayesian sensor output evaluation,

and (2) Utility-based sensor placement recommendations.

Results showed that the aided group performed significantly better
than the control group, improving their mean score by almost a factor of
two (88%). Improvement was partially attributed to a small but significant
increase in the number of decision trials completed during the session.
But most of it appeared due to the better overall quality of the aided
decisions. That is, the aided operators incurred slightly higher costs,
but received a much greater return in points, and a substantially lower
number of penalties. Decision consistency, as measured by mean deviation
from maximum expected utility, was significantly enhanced for the aided
group, as in previous studies. Also, in replication of previous studies,
the improved performance of the aided group was accompanied by decreased
intragroup variability.

In most man-machine systems, objective performance criteria for the
immediate task are not well defined, or are only indirectly related to long
term system goals. This indeterminacy is particularly evident in systems
operating in dynamic environments, where the results of earlier decisions
affect later decisions. Such systems thus rely heavily on the operator's
subjective evaluation of the situation at hand, and the decisions should be
based on measurable subjective preferences (utilities) of the operator.
Findings to date indicate that when these utilities are incorporated into

an aiding system, significant improvements in performance can occur.




3. MULTIATTRIBUTE MODEL FOR INFORMATION SELECTION

3.1 Overview

3.1.1 Concept. Steeb (1975) suggested the use of an adaptive multiattribute
model as a means for automatically selecting and distributing information in

a generalized system for command and control. The present model (or model-
based selection system) is based on that suggestion. Essentially, the model
conceptualizes information as a multi-dimensional entity which can be
decomposed into a set of measurable attributes. The model computes an
aggregate multiattribute utility (MAU) as a weighted sum of each information
attribute level (Ai) multiplied by the importance or utility of the

attribute (U.,). The calculated MAU of an information item is used as the

i
selection criterion.

3.1.2 System Organization. Figure 3-1 shows the major components of

the selection system in block diagram form. Incoming information of
potential utility to the recipient is parameterized in terms of both
immediate situational factors (situation mask vector) and the intrinsic
characteristics of its source (source characteristic vector). Together
these two vectors contribute to the computation of the attribute levels
associated with each item of information. The "information utility calculator"
uses as inputs (1) the attribute levels of the incoming information, and
(2) a vector of "attribute weights" which have been dynamically estimated
for a given operator by an adaptive model. Based on these inputs, the
overall multi-attribute utility of each information item is calculated.
Information is then rank ordered along a scale of information utility, and
a selection mechanism is applied to determine what specific information is

presented to the operator.

3.1.3 Application Test Bed. The model-based selection system was
implemented and tested for a simulated ASW intelligence-gathering and
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tracking task. This task, which is described further in Section 3.2,
requires an operator to select among a wide variety of potential information
sources (individual sensor deployments) in order to follow the movements

of a hostile submarine and interfering non-hostile whale. The task

itself was based on an existing computer simulation, used previously by
Perceptronics in several studies of adaptive decision aiding. In order to
adapt it to the present case, the existing simulation was modified
considerably at the conceptual level, and concommitant changes were
introduced into the task procedure. Only the features of the simulation

that are germaine to the present program are described in Section 3.2. For
; a more complete description of the original simulation, the reader is
referred to Freedy, Davis, Steeb, Samet, and Gardiner (1976).

3.1.4 Model Function. The major function of the model is to relieve the

operator of the need to choose among available information sources. That

is, to automate his information selection task. The model accomplishes this
by integrating two different types of knowledge. First, the model takes
into account some basic features of the environment or state of the world;
these features essentially define the operator's current information needs.
In the ASW simulation, this information is expressed by an intelligence i
report, and takes the form of probability data about the location and
status of the objects being tracked. The second type of knowledge involves
a representation of the operator's own utilities for particular attributes
of information, that is, his individual attribute weight vector. Included
is the recognition that his preferences may depend upon the specific
information requirements of the situation. With respect to the ASW task,

the requirements break down to whether the operator is searching for a
submarine, a whale, or both, in a particular location. Obviously, both |
types of knowledge are quite generalizable, and can be similarly applied

to situations outside the present ASW context.




3.1.5 MAU Calculation. Calculation of the multi-attribute utility for

information is central to the workings of the model. The MAU calculation

is shown in Figure 3-2 as a two-step process. In Step 1, the cross-product
of the situation mask vector and the source characteristic vector results

in the attribute level vector. This calculation is described in Section 3.3.
Definitions of the vectors themselves are provided below.

Situation Mask Vector. The purpose of this vector is to define,

for a specific situation, the general information needs of the information
recipient. The parameters reflect both the Tocal environment and the

task objective. For example, in the ASW tracking simulation, the content

of the situation mask vector answers such questions as: Is the object

of search a submarine, a whale, or both? If a submarine is being sought,

is it necessary to discriminate between whether it is in a resting or floating
state? etc.

Source Characteristic Vector. This vector describes the characteristics

of a particular information source. These characteristics are properties which
are assumed to affect the decisions of an operator when he selects among
information items, or messages. For example, how much does the information
cost? To what does it pertain? How reliable is it? In the case of the

ASW simulation, for example, can the sensor discriminate between the presence

of a submarine and a whale, or between a floating and resting submarine?

In Step 2 of the MAU calculation, the dot-product of the attribute
level vector and the attribute weight vector provides the aggregate MAU
value. Derivation of the attribute weights, or utilities, is described
further in Section 3.4. In essence, the multiattribute representation of

the operator's information preferences is built up during performance

sessions in which the operator must make a series of choices among potential
information sources in response to varying situational needs. Although
the ASW task actually requires him to choose among sensors for deployment,
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each deployed sensor can be viewed as a message, or as a multi-attribute
item of information, and each choice as a selection among all alternative
messages that could be generated and presented.

As the operator proceeds, an adaptive model performs in parallel
with him, by predicting which information sources he will select. The model
“learns" through an error correction procedure which dynamically adjusts
estimates of the weights that the operator places on the relevant information
attributes, and the predictions converge upon the actual information
selection behavior of the operator. At this point, the model, which now
accurately mimics the operator's information select i nreferences, can
take over the function of making the selection amo lable information.
Thus, the system assumes a mode in which information is ~utomatically
selected for presentation to the operator, in accord with his own generalized
preferences. The selection rules themselves can also be tailored to the
situational needs and the operator's characteristics or desires. Those
considered in the present study are discussed in Section 3.5.

3.2 ASW Simulation

The experimental simulation, although relatively primitive, includes
the salient decision features of ASW localization and tracking. The
simulation centers on an aircraft carrier, proceeding with a normal complement
of ASW resources. It is assumed that the simulated ASW task begins after
a hostile submarine and an interfering whale have been detected, and
fixed-wing aircraft have deployed sono-buoys over the entire potential
attack zone. The attack zone, displayed on a graphics terminal, is assumed
to remain stationary with respect to the aircraft carrier. Fiqure 3-3
illustrates the configuration.

5 Ty

e ] Operator's Task. The ASW simulation involves a single operator.

His task is to allocate sensor resources in order to track and report on
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the subsequent movements of the submarine and the whale in the well-defined
ocean expanse. The basic cycle is illustrated in Figure 3-4. It begins
with the deployment of sensors which report back what they have detected.

The operator interprets these results and reports the status of the tracked
objects. At this point in the performance of the task, the operator receives
an intelligence report which aids him in the placement of new sensors, and

so starts another task cycle. All previously deployed sensors are removed

at the end of each status reporting cycle.

3.2.2 Sensor Characteristics. To monitor the movements of the objects,

the operator deploys sensors which differ with respect to level of detection,
reliability, and cost. The scenario allows the operator to deploy one

of five types of sensors at each location: Table 3-1 lists the sensors and
summarizes their properties. By evaluating the intelligence report obtained
from the system as a result of his last report on the objects' location,

the operator decides on the sensor-location combinations which will provide
him with the information he needs to continue to track the objects.

After deploying the sensors the operator receives information
about their output. An 'H' sensor, for example, can have one of two possible
outcomes: "positive", indicating presence of a floating submarine in the
sector, and "negative", indicating the absence of a submarine. Since sensors
are not perfectly reliable, their response may be erroneous. The reliability
(r) of the sensor is the probability that it will give a true report. The
complement of reliability (1-r) is the likelihood that the sensor will give
a false report. A false report may be one of two types, either failing
to report a detectable object when it is actually there (false negative)
or reporting the presence of the object when it is ni ictually there (false

positive).

G Status and Intelligence Reports. After receiving the sensor

outputs, the operator is required to make a status report reflecting his
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SENSOR TYPE

TABLE 3-1

PROPERTIES OF ASW INFORMATION SOURCES

LEVEL OF DETECTION

Object*

Submarine Floating
Submarine Resting

Submarine Floating
Submarine Resting

*

Submarine Floating
Submarine Floating
Submarine Resting
Whale

RELIABILITY cost
.60 1
.95 10
.80 5
.90 7
.70 4

A Sono-Buoy reports only that an object has been detected but does not

identify whether it is a whale or submarine.




best estimate of the present location of both the submarine and the whale.

He bases his decisions on the prior probabilities of object location as
determined by the intelligence report, and on the sensor outputs in light
of the known error rates of the sensors deployed. Essentially, he must
arrive at a posterior estimate by integrating the newly obtained sensor
data with the prior data. Because the status decisions affect the
subsequent intelligence report, the sensor deployment decisions are, in
turn, dynamically influenced by the status decisions.

The intelligence report which aids the operator in deploying
sensors, is derived from the operator's report on the status of the objects
being tracked and from expert assessments of the behavior of these types
of objects. The system assumes that the operator has correctly reported
the location and heading of each object. By aggregating the conditional
probabilities of state transformations (elicited from experts), it makes
a Bayesian estimate of their next location. Thus, the intelligence
report contains the probabilities that each object will be in each sector
of the attack zone. The whale may move to an adjacent location or remain
in the same location. The submarine may move likewise or remain in the
same location, either floating in the ocean or resting on the bottom.

3.3 Attribute Level Calculation

Sl Information Attributes. A set of s¢ven attributes was required

to model successfully the information preferencai of an operator performing
the simulated ASW task. These attributes were arrived at through an
evolutionary, model-development process. Performaﬁte data and experience
with the ASW simulation (Freedy, et al, 1976) provided an initial set -

of attributes for implementation. The flexibility of the model allowed
this set to be iteratively tested for predictive sensitivity and to

consequently be refined. The refinement procedure involved both the

modification of existing attributes and the replacement of insensitive




ones with more promising ones. The development process was continued

until a distinct set of at{ributes would satisfactorily predict information-
selection behavior for different operator preference-strategies. Aspects

of this process are illustrated in Chapter 4. Table 3-2 lists the final

set of attributes.

TABLE 3-2. INFORMATION ATTRIBUTES FOR ASW TASK

(1) Cost of Submarine Information

(2) Cost of Whale Information

(3) Expected Submarine Information Content
(4) Expected Whale Information Content

(5) Submarine Information Parsimony

(6) Submarine/Whale Discriminability

(7) Submarine Status Discriminability

3.3.2 Attribute Level Vector. The level of each attribute for a specific
sensor source is determined by the multiplication of entries in the
situation mask vector and the source characteristic vector. Table 3-3
defines the situation mask and source characteristic entries for each of
the ASW attributes. The situation mask and source characteristic vectors
are scaled so that each attribute level ranges from O to 1. Further, the
orientation is arranged such that each attribute contributes positively

to the overall aggregate MAU. That is, holding all other attribute levels
constant, an increase in any attribute level increases the MAU. The
individual entries should become more clear in the description of

attributes given below.

3.3.3 Attribute Descriptions. Following are more detailed descriptions
of the information attributes for the ASW simulation. They exemplify the

use of the situation mask and the source characteristic to model

information in a specific selection situation.
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TABLE 3-3

DEFINITION OF MASK AND INFORMATION
CHARACTERISTIC FOR EACH ATTRIBUTE

Attribute Situation Information
Number Mask Characteristic

1 1 when Ps>0, Cost
0 otherwise

2 1 when Py>0, Cost
0 otherwise

3 PS Reliability

4 Pw Reliability

5 1 when Pp=0 1 when both F and R
and P =0, can be detected
0 otherwise 0 otherwise

6 HS W 1 when S and W can

« be discriminated,
0 otherwise
7 HF R 1 when F and R can
& be discriminated,
0 otherwise
Notation: P = Probabi]ity

S = Submarine (either floating or resting)

F = Submarine Floating

R = Submarine Resting

W = Whale

HS,N = ~(PS log, Pg + Py 1092 Pw). with probabilities normalized

F\R = ~(Pp log, Pp + P, Tog, Pp), with probabilities normalized
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(1) Cost of Submarine Information. The cost of submarine

information is the expenditure required to receive information
from a sensor about the presence of a submarine. By virtue
of the situation mask, the attribute comes into play (i.e.,

is non-zero) only when the submarine is being searched for
(i.e., the probability of submarine presence is greater than
zero). The source characteristic of cost used in the
computation of the attribute is derived from the sensor
properties listed in Table 3-1. The formula used to convert
the absolute value of cost (c) into an appropriate relative

quantity necessary for the attribute-level computation was

(11-c)/10. This transformation was necessary to provide
cost with a 0 to 1 range and to conform to the orientation
standard of the model. Thus, a decrease in absolute cost
(Table 3-1) leads to an increase in the source characteristic
of cost which, assuming everything else equal, increases the

MAU of the information. More simply, a decrease in information

cost increases information utility.

(2) Cost of Whale Information. The cost of whale information is

the expenditure required to obtain information from a sensor

about the presence of & whale. The situation mask activates i
A

the attribute only when the whale is being sought (i.e., the

probability of whale presence exceeds zero). The source

characteristic of cost is set and interpreted in the same way
as for the cost of submarine information. Thus, the only
difference between the first two attributes is that one is
relevant when the submarine is being tracked and the other

is relevant wiien the whale is being tracked. Of course, both
are activated when both objects are searched for within the

same location.

i
!




(3)

(4)

Expected Submarine Information Content. This attribute is

the product of the prior probability that the submarine is
present (situation mask, PS’ determined by the intelligence
report) and the source characteristic value corresponding

to the information reliability. The latter value is derived
from the sensor properties (Table 3-1); as in the case of

the cost attributes, a transformation was required to spread
reliability (r) over a 0 to 1 scale. The formula used was

(R - .59)/.36. The attribute 1s proportional to the likelihood
of submarine detection (i.e., Pg x r); when Pg = 0 within the
location, there is no likelihood of finding a submarine there
and the attribute does not contribute to the MAU calculation.
An increase in PS and/or r increases the chances of a true
positive report of a submarine, thus increasing the utility
of the information.

Expected Whale Information Content. This attribute is the

product of the prior probability that the whale is present
(situation mask, Pw, determined by the intelligence report)
and the source characteristic value corresponding to the
information reliability. The source characteristic of
reliability is set and interpreted in the same way as for
expected submarine information content. The attribute is
proportional to the likelihood of whale detection (i.e., Pw x r)s
when Pw = 0 within the sector, there is no likelihood of
finding a whale there and the attribute does not contribute
to the MAU calculation. An increase in Pw and/or r increases
the chances of a true positive report of a whale, thus
increasing the utility of the information. As in the case

of the cost attributes, the two expected informaticn content

attributes differ only with respect to the object of search.




(5)

Submarine Information Parsimony. The attribute of parsimony
reflects the use of a sensor whose capability matches Ehe
information requirements on hand. In the present case,
parsimony refers to the deployment of a sensor which can
detect only the precise object of search, i.e., a floating

subnarine.]

The situation mask activates the attribute only
when a floating submarine is the sinqular target being sought
(i.e., the probabilities of a resting submarine (PR) and a
whale (Pw) are both zero). The source characteristic is set

to 1 when both a floating and resting submarine can be detected

and is set to 0 otherwise.2 Only the H sensor is parsimonious

with respect to the detection of a floating submarine since

it cannot detect anything else. Ideally, an increase in

information parsimony should increase information utility.

Submarine/Whale Discriminai,{ity. This attribute concerns

the discrimination between a submarine and a whale. Discriminability

reflects whether the information source can precisely identify

a detected object. The property of discriminability is different
from that of level of detection (Table 3-1). For example,

the B sensor can detect both the submarine and the whale but

it cannot discriminate between them. In fact, only the D sensor
can discriminate between the two objects; thus it is assigned

a 1 in the source characteristic yector whereas the other sensors

1There was no need for a parsimony attribute with respect to a resting

submarine because the characteristics of the ASW scenario were such that
whenever there was some probability of a resting submarine there was also
some probability of a floating submarine. That is, the very possibility
of a resting submarine presence required discrimination between the two
submarine states.

2Because of a programming error caught too late, the orientation of parsirony
was reversed. from what was originally intended. Thus, as modeled, when the
attribute level for parsimony equaled 1, the information was actually the
opposite of parsimonious. However, although this error makes the orientation
of parsomony inconsistent with that of the other attributes, it does not
affect the performance of the MAU model in any substantive way.

l
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are assigned a 0. The situation mask contains the relative

uncertainty associated with the simultaneous presence of

the submarine and whale. In effect, the mask modulates the
attribute Tevel with respect to the need of the operator to
discriminate between the two objects in the local environment;
the more equal the prior probabilities of the respective
objects being found in the same location, the higher the
uncertainty level. As both the need to discriminate and the
capability to do so increase so does information utility.

(7) Submarine Floating/Submarine Resting Discriminability. This
attribute concerns the discrimination between the states the

submarine can assume -- either floating or resting. The M1,
M2, and D sensors can make this discrimination but the H and
B sensors cannot; the capability is reflected by a 1 or O,
respectively, in the source characteristic vector. The
mechanics of the computation of this attribute and the impact
of the components on information utility are identical to

those for submarine/whale discriminability.

3.4 Attribute Weights

Estimates for an operator's attribute weights, or his utility for
that attribute, are provided by the adaptive portion of the model. The
weights are learned (or trained) during sessions where an operator performs
the ASW tracking task by choosing freely among the five possible sensors
for deployment in specific locations of interest. The model begins with
equal weights assigned to each attribute and then dynamically adjusts

them in accordance with a simple training rule.

3.4.1 Utility Estimator. The dynamic utility estimation technique is

5

based on a trainable, multi-category pattern classifier. Figure 3-
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illustrates the mechanism. As the operator performs the task, the on-Tine

utility estimator observes his choices among the available information

sources (messages) at each location, and views his decision-making as

a process of classifying patterns of information attributes. The utility
estimator attempts to classify the attribute patterns by means of a linear
evaluation (discriminant) function. These classifications are compared

with the operator's choices. Whenever they are incorrect, an adaptive
error-correction training algorithm is used to adjust the utilities. A
comprehensive discussion of this technique can be found in Freedy, et al.(1976).

3.4.2 Training Algorithm. On each trial, the model uses the previous

utility weights (Uj) for each attribute (j) to compute the multi-attribute
utilities (MAUi) for each sensor (i) in each plausible location of ocean
(i.e., board square):

MAUi = jil Aji UJ

For all squares where there is a non-zero probability of a submarine
or whale, the model predicts that the operator will always prefer the
information source with the maximum MAU value. If the prediction is correct
(i.e., the operator chooses the sensor with the highest MAU), no adjustments
are made to the utility weights. However, if the operator chooses a sensor
having a MAU less than that of the predicted sensor, the model then adjusts
the utility weights by pairing the chosen sensor with the predicted sensor
and applying the error correction training algorithm. In this manner,
the utility estimator "tracks" the operator's information selection behavior
and learns his utilities or weights for information attributes. The training
rule used to adjust the weights associated with each of the attributes is
illustrated in Table 3-4.
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TABLE 3-4

WEIGHT-TRAINING RULE*

CORRECTION DIFFERENCE

Chosen Predicted
Adjusted Previous Adjustment Information-Source Information-Source
Weight Weight Factor Attribute Level Attribute Level
: - A A A.
(v;) (u;) (*) (A;) (Aj)
. < ; : (A c A, )
U] U] + A (ow 1p’
U2 ] UZ + : (“ZC = A?,)
U3 ) U3 S ; (A)L T A?p
= 3 )
- oy, Sk (Age Agp!
U6 - U6 ¥ ' . (A6\ - Aﬁp)
U, = U, . ) (A, - A7p)

*3 was set equal to .4




3.5 Information Selection

3.5.1 One Message Per Location. The final component of the multiattribute

model involves the criteria for selecting information. The model as applied
to the ASW simulation allowed for two types of selection processes. The
first process was confined to the selection of a single item of information
(i.e., sensor) for each grid element having a non-zero probability that
either a submarine or whale would be present. By computing the MAU for

each of the five possible sensors which could provide information on objects
in a chosen element, the sensor with the highest utility is selected as
providing the most preferred information for that element.

3.5.2 Message Pruning. The second selection process begins with the

output of the first process. Given a set of messages representing information
about locations where the objects might be found, utility-based criteria can
be applied to select, for presentation only, the best messages among them.
That is, once all useful messages have been ranked in order of decreasing
utility, any number of selection algorithms or pruning rules can be applied.
For example, a simple rule is to transmit some fixed number of the highest
utility messages. Thus the operator would always receive four messages per
cycle, or five, etc. Another possibility is to transmit only those messages
whose MAU exceeds a certain threshold value. A more sophisticated rule is
to successively transmit each next ranked message only if its utility
exceeds some fixed percentage of the total utility of messages already
transmitted. This rule results in a varying number of messages being
selected, depending on operator preferences and the immediate situation.
Within a given strategy (i.e., fixed set of attribute weights), the prior
probabilities will influence the characteristics of the cumulative utility
curve, and thus the number of sensors selected before the pruning cutoff

point is reached. The latter pruning rule was implemented and evaluated

in the present study, using 157 as the incremental criterion




4. DEMONSTRATION AND EVALUATION

4.1 Approach

Because of the prototypical nature of the multi-attribute information
utility model developed here, an exploratory research approach was taken to
evaluate and demonstrate its properties and capabilities. This chapter
reviews the main stages of the approach. These include certain aspects of
the model-development process, a structured study of model dynamics and
performance, and a systematic empirical demonstration of how the model
contributes to human task performance. The experimental vehicle used
throughout the evaluation and demonstration was the simulated ASW tracking
task.

4.2 Differentiation of Attributes

4.2.1 Situation Specificity. As mentioned in Section 3.3.1, an iterative

developmental process was employed to determine the set of information
attributes for use in the systematic evaluation of the model's characteristics
and capabilities. During this process, much was learned about the design
requirements of a model intended to replace the information selection

function of a human operator. In particular, it became immediately apparent
that there was a need for the model to discriminate between the operator's
preferences in one environmental situation as opposed to his preferences in
another. The demonstration of this requirement is worthwhile because it led
to the development of the general concept of the situation mask.

4.2.2 Effect on Convergence. The seven attributes used to model the
operator's preferences (Table 3-2) include a pair of cost attributes and a
pair of expected information content attributes. Each pair of attributes,
whether for cost or for expected information content, is identical with

respect to the information source characteristic. They differ, however,




with respect to the situation mask, which reflects whether the object of
search is a submarine or a whale. The obvious questions is why one cost
attribute and one expected information content attribute doesn't suffice?
Why are two separate attributes required in each case?

The answer to this important question can be simply illustrated.
Suppose that the operator always preferred an expensive, high expected
information content source when searching for a submarine, but that he
always preferred a cheaper, lower expected information content source when
searching for a whale. If a single, undifferentiated cost or expected
information content attribute were implemented, the adaptive model would
interpret the operator's behavior as inconsistent, and would repeatedly
adjust the weight in opposing directions, resulting in an oscillating,
nonconvergent weight-training curve, as shown in Figure 4-1. The operator
is actually quite consistent, but only with respect to each search situation.
When the attribute is differentiated into two situation-specific attributes,
the attribute weights can be trained to convergent values as illustrated in
Figure 4-2.

4.3 Adaptation of Attribute Weights

4.3.1 Definition of Selection Strategies. The next stage of evaluation was

to demonstrate the general capability of the model to adapt to an individual
operator's information selection strategy to the point of correctly predicting
his information preferences. To accomplish this systematically, we identified
logical information selection strategies which could be employed by an
operator while he performed the ASW tracking task. These Strategies are
summarized in Table 4-1. Essentially the strategies differ with respect to
the way the operator treats the information attributes relating to cost,
information content, and parsimony. Within each strategy, it was assumed

that the operator would always want to discriminate a submarine from a whale
and a floating submarine from a resting submarine whenever the task situation

required him to do so.
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TABLE 4-1

DEFINITION OF INFORMATION PREFERENCES

FOR SELECTION

STRATEGIES TESTED

Strategy Submarine Whale

Cost & Expected Information Content Medium Low
Parsimony Yes --
Submarine-Whale Discrimination = —=-c-eeem-- Yes ------c-en--
Submarine Status Discrimination Yes --

Cost & Expected Information Content High High
Parsimony No --
Submarine-Whale Discrimination = =—cceeece-a- YeS =--mmmmmemom
Submarine Status Discrimination Yes --

Cost & Expected Information Content Low Low
Parsimony Yes --
Submarine-Whale Discrimination = —~c--eeemms YeS -—--mmmmmmeo
Submarine Status Discrimination Yes -~

Cost & Expected Information Content Low High
Parsimony Yes ~-
Submarine-Whale Discrimination = —=-c---oeoo YOS —--m-mmmmmm-
Submarine Status Discrimination Yes ~=
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4.3.2 Model Performance with Consistent Strategy. The predictive

performance of the model with respect to each strategy was first tested
under 1deal conditions. That is, each strategy was carried out with perfect
consistency throughuut a sequence of tracking trials. During this sequence,
which involved 24 trials, an expert operator performed the tracking task in
a manual information-selection mode. A trial consisted of a set of
information-selection decisions, each decision being associated with a
particular location of search (i.e., the grid element of Figure 3-1). Based
' the intelligence report of the probabilities of object presence in
several locations, the operator selected, for each location, the one
information source (among the five available) from which he most preferred
to obtain output. For example, when searching for the submarine by itself
under Strategy II, the operator would always prefer an M1 sensor because it
had the highest cost, gave the highest expected information content, was
not parsimonous, and could -- if necessary -- discriminate between a floating
and resting submarine. Thus an operator's strategy decomposes into a set
of consistent preferences which are associated with the relevant properties

of potential information sources.

The model succeeded in adapting, i.e., arriving at correct predictions
of operator information-selection choices, for each of the four distinct
strategies. At the beginning of each learning session, each of the seven
attributes were set to an arbitrary value of unity. As described in Section
3.4, the model immediately began to perform in parallel with the operator.
The MAU was computed for each information source on the basis of the current
attribute weights, and the model predicted that the operator would prefer
the source with the highest MAU. If he did not, the error correction
procedure was applied to adjust the weights. Since the course of adaptation
of the attribute weights was similar for each of the four strategies
evaluated, the typical adaptation pattern will be illustrated for only one
»f them, namely Strateqy II. The adaptation of the weights for this strategy

1s depicted in Figure 4-3.
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As illustrated, the weights for only five of the seven attributes

required adjustment according to this particular strategy. The weights for
submarine information parsimony and for submarine status discriminability
are not displayed since they remained at the initial value of unity
throughout; that is, the information preferences in this strategy did not
require their alteration. Among the five attribute weights tha* did adjust,
the pattern is pretty much the same across trials. After considerable
adjustment during the first few trials, the weights reach a plateau where
they remain stable from trial 3 through 7. During this period of no
adjustments there is perfect correspondence between the model and the
operator in predicted and chosen information sources, respectively.

After the seventh trial a new environmental situation was encountered
in the scenario, involving the potential collision of the submarine and
whale. At that point it became necessary to discriminate between the
detection of the two objects by the selection of a D sernsor. Since this
choice was not correctly predicted by the multi-attribute information utility
model as it stood, the attribute weights were consequently adjusted by the
model. From the 10th trial through the 24th no environmental situations
occurred which had not been faced previously in the tracking session, and the
model was again able to predict operator information-selection choices with

perfect accuracy. .

The general direction of movement of the attribute weights and their
terminal, convergent values reflect their impact on the overall MAU of the
selected information sources. In Strategy II, the operator's preferences

for high expected information content maintain the associated attribute

weights at high levels. Since higher attribute levels for cost indicate
less expensive information, his preferences for higher information costs
decrease the weights of the cost attributes (except when faced with a
collision, where he prefers lower cost/reliability information which is more

discriminatory -- i.e., a D sensor over an M1 sensor). When a need and




preference to discriminate between a submarine and a whale is invoked at
trial 8 (i.e., collision situation) the corresponding attribute weight
rises above its initial value of one; this heightened weight contributes to
subsequent correct predictions of the operator's selection of information
whenever a collision situation is re-enccuntered.

4.3.3 Model Performance with Changes in Strategy. In the previous section,
it was demonstrated that the multi-attribute information utility model can

rapidly learn a fixed, consistent operator strategy after starting from
scratch. However, one of the major functions of an on-line adaptive model
is to keep track of an operator's behavior. Such a model must be sensitive
to behavioral changes and be able to adjust its parameters in order to
remain in phase with the operator after a limited degree of lag. In the
present case, behavioral changes take the form of shifts in information
selection strategy that might occur in dynamic tracking environments.

The dynamic response of the model was tested by beginning with equal
attribute weights and having the operator perform the tracking task according
to a predefined, fixed strategy until steady state behavior of the model was
observed. Once the model was accurately predicting (over several trials)
the strategy actually being employed, that strategy was modified in some way.
When the modified strategy was stabily predicted, another change in information
preferences was implemented. Thus, a total of three different information
selection strategies were used in succession. These strategies, which are
distinguished by the type of information preferred for tracking the submarine
and the whale, are depicted in Table 4-2.

The attribute-weight training curves are displayed in Figures 4-4,
4-5, and 4-6. The curves plot the changes in specific attribute weights as
a function of model adjustments. The points at which each new substrategy
(either for tracking the submarine or the whale) is adopted are indicated by

the arrows in the figures. The information source preferences annotating
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TABLE 4-2.

Environmental

Situation

Submarine, floating
or resting

Submarine, floating
only

Intelligence
Report
Characteristics

SENSORS PREFERRED ACCORDING TO STRATEGIES
UTILIZED IN DYNAMIC ADAPTATION EVALUATION

Strategy
1 2 3

M1 M2 M1

Whale, high
probability

Whale, Tow
probability

By > 40

Submarine-Whale
Collision

B D B
B D D
) D D
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these points are the operator preference versus the model prediction. For
example, H>B implies that the operator prefers an H sensor to the model
prediction of a B sensor; B=B means that the operator choice and model
prediction start off equivalently.

Figure 4-4 shows the sensitivity of the cost weights to changes in

strategy. To illustrate how the graph might be read, the adaptation of the

weight for the submarine information cost attribute is considered. In
Strategy 1 (H>B when PF-f‘ and PR;U, M1>M2 when P.>0 and 5'}(; 0), higher
information cost is consistently preferred and thus the attribute weight
declines from its initial value of 1 to clos ). Then with Strategy 2,
higher information cost is preferred in or irine search situatior

(H>B for PF 0 and PR:U), but lower cost referred in the other submarine
search information (M2>M1 for P_-0 J?h.i’v . Thus the attribute weight

F
moves up and down until eventually stabilizing after about 55 adjustments.
Finally, in the third strategy where the most expensive sensor (M1) is
preferred in all submarine search situations, the weight level shows a
steady decline. With respect to the other curves in Figures 4-4, 4-5, and
4-6, similar analyses can be made concerning the changes in information-

selection " trategy and their impact on the attribute weights. Overall,

examination of the data reveals that it usually takes the model less than
20 adjustments to catch up with the operator in terms of correctly predicting

his new information preferences.

}.3.4 Size of Adjustment Step It is obvi f | ires 4-4, 4-5, and
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Referring to Table 3-3, it is seen that the situation mask for the cost
attributes, is either 0 or 1, but for the expected information content
attributes, the mask is a probability or continuous number between O and 1.
The information source characteristic levels are continuous (between 0 and
1) for each of these two types of attributes, but the difference in the
scales for the situation mask account for the relatively steep adjustments
for the cost attributes and relatively shallow adjustments for the expected
information content attributes (Figures 4-3, 4-4, and 4-5). In contrast,
the adjustments for the submarine information parsimony attributes are
steepest of all. This is because both the situation mask and source
characteristic for this attribute assume a descrete distribution -- either
0 or 1, consequently; the attribute level can take a value of only 0 and 1
resulting in the highest intra-attribute level variance.

4.4 Automatic Information Selection

Section 3.5 described two different levels of information selection.
The first involves the selection of a single information source in each
location of search having non-zero object prooability. The second process
relates to the further selection of an "optimum" set across a number of
locations. As reported below, both selection processes were demonstrated
in the empirical evaluation of the model.

4.4.1 Information Source Selection. The mechanism used to select among

competing sources within each location of ocean was a straight-forward
application of the MAU principle; namely, the source giving the highest
computed MAU value was selected. Table 4-3 gives two examples of the
computation taken from an actual performance run. The examples represent
two different intelligence reports (i.e., object pfobabilities) regarding
the subject location. The calculation is made during the latter part of the

implementation of Strategy II, after the attribute weights had converged to




TABLE 4-3

TWO EXAMPLES OF COMPUTATION OF INFORMATION UTIL
FOR DIFFERENT SOURCES USING WEIGHTS FROM STRATEG
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stable vaiues. Both examples show the entries for the situation mask vector

corresponding to the given intelligence report, the information source
characteristic vector and computed attribute level vector for two sburces
with the highest MAU values, the attribute weight vector, and the aShregate
MAU or utility for the two competing sources considered. In Example \, the
M1 sensor was selected as the information source with the maximum MAU. \In
Example 2, the D sensor was similarly chosen. i e

One of the more important implications of employing the multi-attribute
utility model to automatically select among competing information sources is
that different strategies (i.e., attribute-weight vectors) will lead to
different distributions of selected information. Figure 4-7 illustrates the
relative frequency of selection for the five possible information sources after
training on Strateqy I and Strategy II. Each histogram is based on a total
of about 150 separate information messages. Under Strategy I, more than
90% of the automatically selected messages consisted of H and B type sensors,
each represented a little more than 45% of the time, with the remaining
messages contributing a total of less than 7%. Under Strategy II, the
frequency distribution is roughly the complement. The M1 and D sensor types
are each selected about 50% of the time, while the H and B sensors, which
are most frequently used in Strategy [, are almost never selected.

4.4.2 Information Set Selection. The second level of information selection

was based upon the output from the first level of selection. The first-level
output is a group of several sources (sensors), each providing the information
message with the maximum MAU from a separate sector of search. Taken together
for a single tracking trial, this group of sensors represents a full set of
information messages covering all locations where the objects of search may
actually be. Since some of these messages have much less information utility

than others, the MAU principle can be used to prune away messages which

contribute relatively little to the overall utility of the information set.
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In this way, the operator can be provided with a reduced set of the most

valuable information.

The pruning rule implemented was as follows. First, all the members
of the full information set for a trial were ordered according to decreasing
MAU. It had been previously determined that because of the tracking task
requirements, the three messages with the highest MAU must always be
transmitted to the operator. The selection algorithm then added messages
to this minimum set according to the following instruction: add each next
highest ranked message only if its MAU exceeds 15% of the sum total MAU of
the messages already in thc¢ set. Once the final set was determined all
selected messages were transmitted simultaneously to the operator. The
cut-off point of 15% was arrived at by analysis of previous data (Freedy et
al., 1976) and through pilot experimentation.

Figure 4-8 demonstrates the effect of this pruning rule in reducing
information sets generated by two different operator strategies. Strategies
I and II were each run for 22 successive trials taken from an identical
portion of the ASW tracking scenario (i.e., identical trial-by-trial movements
of the submarine and whale). The convergent set of attribute weights were
frozen for each strategy, and information messages were automatically selected
and pruned according to the 15% rule. The results are plotted in terms of
the median percentage of accumulated utility cortributed by each additional
ranked message.

For Strategy I, the 15% cut-off line hits the accumulated utility
curve between the third and fourth ordered message. For Stratety II, the
157 line hits the curve between the fifth and sixth messages. Thus more
information is pruned under Strategy II than under Strategy I. Taking into
account the characteristic preferences of each strategy, the results are
entirely reasonable. Strategy II emphasizes the use of high cost sensors

with high expected information content. Therefore, under this strategy,

4-19
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most of the MAU in the full information set is concentrated in a few locations
with the balance distributed in small amounts among the other locations. In
contrast, Strategy I relies on sensors which are less costly and carry less
expected information content; thus it generates a more homogeneous
distribution of MAU across the different search locations. Under Strategy

I, therefore, a larger set of information messages is required to provide
approximately the same relative level of incremental utility as obtained

under Strategy II.

4.5 Operator Performance with Automatic Information Selection

4.5.1 Purpose. The demonstrations described thus far focused on model
performance. In sum, they illustrate that the model can select information
on the basis of adaptively-estimated needs and preferences. It remains to
be shown that an operator presented with information automatically selected
in accordance with a stable preference model can successfully perform the
ASW tracking task. This demonstration was accomplished using a single
expert operator, who performed the ASW task under several conditions of
automatic information selection.

4.5.2 Test Conditions. Information was automatically presented in accord

with Strategies I and II. For each strategy, the convergent attribute weights,
previously obtained from sessions run in the manual mode, were input into

the multi-attribute information utility model. The model was then employed

to select information and present it automatically to the operator over a

set of 24 task trials; during these trials, movements of the objects were
different than in the original model-training sessions. Two automatic

selection modes were tested: (1) presentation of the full information set,

and (2) presentation of a reduced set pruned according to the 157 rule. On
each tracking trial, the operator simultaneously received the intelligence
report and the information output of the automatic selector mechanism. On
the basis of these data alone, he made an object status report, which
generated a new intelligence report and new source selection, and so on.




In addition to the 2x2 combination of demonstration conditions, i.e.,

Strategy (I or II) x Information Set (Full or Pruned), a control treatment
was introduced for performance comparison. The control strategy took into
account the information needs of the operator (situation mask vector) and
the differential properties of the sensors (source characteristic vector),
but it did not include the operator-initiated, differential preferences for
information attributes. That is, the MAU calculation utilized the same
attribute level vector as did the other strategies, but the attribute weight
vector was replaced by a unit vector. Thus, each attribute was accorded
equal importance throughout the test session, and attribute weights remained
equiva1eﬁ% to the initial state of the adaptive model. Data collected under
automatic information selection governed by equal attribute weights was
expected to reflect baseline performance with a strategy characterized by
minimal cost, minimal expected information content. Because the information
generated by the control strategy was of such low overall utility, it was
not meaningful to apply the pruning rule to reduce further the information
set.

4.5.3 Performance Results. The results of the performance evaluation are
summarized in Table 4-4. For each strategy tested, the percentages of
submarine and whale hits are listed together with the mean cost expenditure
per trial. For Strategies I and II, the performance data is contrasted for
the sessions under which a full or pruned information set was presented to
the operator. In comparing any two conditions, performance in terms of the
hit rate is generally better at the expense of higher (.ntu.] For example,

more than four times the costs were expended to achieve a 92% hit rate under

Strategy II versus a 58% hit rate under the control strategy. Because of
this trade-off between hits and costs, it was useful to assess overall or
net performance in terms of an effectiveness index The measure employed
was:

A "hit" is a correct detection of a submarine or whale.




TABLE 4-4

OPERATOR TRACKING WITH
AUTOMATIC INFORMATION SELECTION

Utility-Based Strategies Control

Selection Strategy 1 Stratggy I ) Strﬁﬁegy g
Criterion Sub Whale Mean Sub Whale Mean ° Sub Whale Mean
Hits Hits Info.| Hits Hits Info Hits Hits Info
% % Cost % % Cost % % Cost
Full Info 75 4?2 25 92 9?2 44 58 58 10

Set

Pruned 75 29 2 100 88 32 - - -

Info Set
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TABLE 4-5

PERFORMANCE EFFECTIVENESS SUMMARY

|
|
EFFECTIVENESS MEASURES 1

CONTROL - STRATEGY IT
STRATEGY FULL SET PRUNI
TRACKING PERFORMANCE 48 252 27¢ \
INFORMATION COST 10 44 32
EFFECTIVE INDEX 4.8 Sl 8.6

STRATEGY I PRUNED VS. CONTROL STRATEG)

PERFORMANCE RATIO 5.8:1

COST RATIO S.ael

EFFECTIVENESS RATIO =851




50 seconds. In constrast, the model automatically selected and distributed

the sources in about 1 second. The throughput ratio of automatic to manual
selection was thus on the order of 50 to 1.

4.5.5 Information Filtering. Overall, the adaptive system was able to

select automatically about 5 to 7 highly useful messages from a potentially
available universe typically in the order of 78,000 messages, a filtering
ratio of over 15,000 to 1. This value was calculated as follows. Each

l trial yielded an average of 7 locations for which there was a non-zero
probability of finding a submarine or whale, and information from each
location could be obtained from one of five sources. Thus the potential

L
message universe was 5 = 78,125.




5. DISCUSSION AND IMPLICATIONS

5. Generality of the Multi-Attribute Utility Model

5.1.1 Demonstration Approach. More often than not, a specialized task

scenario is designed whenever a newly developed decision aiding system must
be implemented for experimental testing. In fact it has been said that a
skeptic might arqgue that demonstrations of certain decision-aiding systems
"merely show that one can design a simulated task in which it helps to have
machine assistance” (Slovic, Fischhoff, and Lichtenstein, 1977). In the
present work, however, a different course was taken; that is, the new multi-
attribute information utility model was applied to an existing ASW simulation
task. The ASW scenario had, in fact, been originally designed as a test bed
for the outcome-based ADDAM model (described in Section 2.5.3) which is
conceptually very different from the model developed here. The successful
demonstration of the implementation of the new model to a scenario developed
for another purpose endorses the generality of the nodel.

5.1.2 Replacement of Human Function. The modei| developed here provides

another demonstration of how a simple linear model can be employed to replace
an important human function within a decision system. Such models have
proved successful in a variety of tasks (e.g., judgmental, decision making,
attitudinal, perceptual) and applications (e.q., military, medical, social).
In the present work, the application was extended to an information selection
task within the context of ASW tracking. Furthermore, unlike the more
commonly used methods of direct elicitation or regression analysis, the
linear weights employed by the multi-attribute information utility model wer
adaptively estimated from on-line behavicr. Certainly, the highly
generalizable features of multi-attribute utility assessments (e.qg., Brown,
Kahr, and Peterson, 1974; Edwards, 1977) combined with an adaptive dynamic

4

utility estimation technique which is growing in application depth (e.qg.,

Felsen, 1976) provide a tool of far reaching potentia




Because of the generality and power of operator-based models or

decision rules, it is important to ask why they can perform as well or better

than the actual operator himself. Several investigators have suggested that

the superior performance of the models, linear or otherwise, is due to their

ability to eliminate or reduce "noise" effects in the subjective weighting

of information and in erratic operator responses. For example, Bowman (1963)

described the filtering process as follows:
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5. Advantages of the Multi-Attribute Utility Model

The multi-attribute information utility model developed in this
research is characterized by several attractive features. These features,
which are itemized below, can be seen as advantages which endorse the
application potential of the model. The advantages arise out of the
theoretical structure of the model, especially the decomposition property.
However, they have all been empirically illustrated to some degree in the

demonstration and evaluation.

5.2.1 Generality. The adaptive, multi-attribute model for information
selection holds a considerable amount of generality. It can be applied in
situations where information messages can be decomposed into a small set of
manageable, quantifiable attributes which have two critical characteristics.
First, they must be locigally related to the situation-specific information
requirements, that is, their relevance to specific situations must be known. i
Second, they must directly impact upon a dec1siqg maker's choices among

competing information sources or messages. Several military decision making

environments have already been demonstrated to fit this paradigm (e.q.,
Coates and McCourt, 1976; Hayes, 1964; McKendry, Enderwick, and Harrison,
1971; Samet, 1975).

5.2.2 Parsimony. The model is parsimonious; it need only assess an operator's
weights for a Timited number of information cimensions or attributes. Besides

significantly minimizing the model's computational needs and software
complexity, this feature is in consort with the results of psychological
experiments (e.g., Hayes, 1964; Slovic, 1975: Wright, 1974) and contemporary
decision theory (e.g., Tversky and Kahneman, 1974); namely, that a decision

\‘\,
1LYy

maker can perform an intuitive conscious weighting and aggregation of o

a relatively small number of what he considers to be the important dimensions

common to the decision alternatives. Furthermore, when decisions are based




on a manageable number of information dimensions, they are easier to
communicate and rationalize -- especially in group decision making situations
(Gardiner and Edwards, 1975).

5.2.3 Robustness. Like other linear composition models, the multi-attribute
information utility model is robust; that is, its performance (i.e.,
capability to mimic the information selection behavior of an operator) is

not significantly degraded by proportionztely small perturbations in the
model's parameters (Dawes and Corrigan, 19/4). Such robustness probably
contributes to the finding that multi-attribute utility assessment techniques
have proved, in certain instances, to be more reliable and valid than direct,
holistic assessment procedures (Newman, 1975; Samet, 1976).

5.2.4 Speed of Adaptation. The adaptive model adjusts all parameters with
each incorrectly predicted operator decision (i.e., information selection).
Thus, weights (utilities) for specific information attributes can be trained

rapidly during sessions in which the operator chooses information manually.

5.2.5 Flexibility. The multi-attribute utility model is inherently flexible.
If accuracy of prediction of information selection behavior is not sufficient
(i.e., if attribute weights cannot be trained to stable values), additional
features or attributes can be added and inappropriate ones deleted. The
response to dynamic changes in conditions is similarly flexible. In instances
where conditions change rapidiy and radically. new sets of weights trained

for the conditions can be substituted. Such weight vectors could be
previously trained either in actual operational situations or in step-through

simulations.

5.2.6 Versatility. The model can be applied in a variety of situations,
involving deterministic as well as probabilistic environments. In the
probabilistic situation, an attribute might not be present at all in some

information messages, or it might occur with some known probability.




Whatever the case, the modeling equation allows for any attribute level to

either be zeroed out (i.e., be made irrelevant) or multiplied by the
probability that the attribute will be present, giving a measure of expected
attribute presence.

5.3 Supervision of Information Flow in C3 Systems

As stated in the Introduction, development of the present adaptive
multi-attribute utility model represents one step toward development of a
supervisory set of adaptive programs to control overall information flow in
C3 systems. This section outlines a method for C3 system description, and
suggests in brief how the present model might contribute to the supervisory
control function. Further development of the supervisory concept will be
the subject of subsequent project reports.

5.3.1 C3 System Description. We can consider the typical C3 system as a

hierarchical, multi-level arrangement of users. Figure 5-1 illustrates the
general configuration. People at one level process information for people
at the next level, collecting and integrating data until a decision
commensurate with their ievel can be made. Thus each person in the structure
is at times a user of information, at times a source of unprocessed or
processed information, and at times a source of decisions passed to higher
levels of the hierarchy. The idea that information transmission in such a
system could be expressed in matrix form was advanced by Thornton Roby (1968),
whose untimely death prevented his further development of this concept. We
can illustrate the methodology by considering a prototypical ASW command
team, consisting of people (A, B, and C), each of whom tends to focus on
information from the outside world relating to certain specific aspects of
the ASW picture, and each of whom 1s responsible for certain types of ASW

decisions.
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Figure 5-2 exemplifies the steps involved in constructing the overall

information transmission matrix (HRN) from the constituent matrices (H, R

and N) for this illustrative situation. In matrix H, the column headings

(i, j, k, ...) represent classes of information (e.g., intelligence, weapons
characteristics, sensor returns, equipment availability, etc.), while the

row headings (0, P, Q) represent information sources. A unit entry in any
row indicates that the source is a producer of information in the associated
class. Column headings (w, x, y, z) in matrix R represent classes of
decisions (e.g., target location, sensor allocation, weapons readiness, etc.).
Cell entries in R give the relevance of a given class of information to a
certain decision. Finally, matrix N relates personnel to class of decisions;
in this simple case, person A is responsible for w decisions, B for y
decisions, and C for x and z decisions. Matrix multiplication of H and R
yields matrix HR as an interim product, this matrix indicates the contribution
of each information scurce to the output decisions. Matrices HR and N are
multiplied to obtain the information transmission matrix HRN. This matrix
relates sources of information to users of information, cell entries are

information classes, as mitigated by the decision needs of the system.

In this simple example, only outside sources were considered, and
users acted only as users. Since users can also act as sources to other
users, the next step of complexity would add another dimensions to the
transmission matrix, i.e., it would become a three-dimensional matrix,
relating outside sources, users, and inside sources. Other dimensions are

also possible, and the procedure would have to be adjusted to handle multipie

sources for information items. Digital computers are well suited to
manipulation of multi-dimensional matrices, and reasonable expansion of size
should pose no immediate problems. The most important refinement, however,
lies in replacing the basic 0 and 1 matrix entries with numerical weights
which reflect the value of that connection in the information system. The
overall value of a constituent C3 link, then, would be determined by
combination of weights through the matrix. Optimum information flow




through the system, i.e., maximum true value, would be achieved .when the

weights are adjusted in accord with the immediate requirements of the users
and of the situation.

The supervisory computer program constitutes the mechanism by which
the weights of the elements in the communications matrix are adaptively
adjusted. It is suggested that the program contain both heuristic control
algorithms, which are situation-dependent, and a set of behavioral models,
which depend on psychological constructs and on individual user characteristics.
Together, these determine the instantaneous element weights. Among the most

significant models are those which define:

(1) Multi-Attribute Utility
(2) Information Routing

(3) Information Pacing and Load

Feasibility of the first model has been demonstrated by the present work.
Application of this work to realization of the other two models is discussed

briefly below.

5.3.2 Information Routing. The multi-attribute utility model combines well
with the communication matrix techniques suggested by Ruby (1968) and
described above. In essence, the matrices relate information sources to
information classes or attributes, attributes to types of decisions, and
decision types to users. By multiplying the matrices together, communication
connections are enumerated between sources and users. To establish the
strength of connections, the information attribute weights could be determined,
and be adjusted on-line by an adaptive model. In this way, the model could

be implemented to build upon the application of the communication matrix

concept in order to provide a degree of automatic routing. In addition,

+

since the model keeps track of a separate weight for each i1nformation
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the 15% pruning rule, the size of the information set was apparently reduced

to a more intellectually manageable size.

The important general implication that emerges is that if the optimal
information load can be calibrated for a given operator, then an adaptive,
on-line, multi-attribute information utility model such as developed here
could be applied to select the appropriate amount of most useful available
information. More specifically, one input to the multi-attribute model
would be the immediate circumstances of the operator or recipient of
information. That is, one attribute of incoming information would be defined
as the current information load or message rate. If the load is high, the
utility weight for load would act to devalue new information. On the other
hand, if his load is low, the load weight would act to increase his overall
utility for new information. By requiring information to exceed a certain
utility threshold before being presented, the model could include the
capability to adaptively pace information. It is planned to explore this

approach in our future work.
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