CRDV RAPPOR1 4071 77 DOSSIER: 3634B-001 MARS 1977 DREV REPORT 4071 // FILE: 3634B-001 MARCH 1977

i s mje

PURELY CHEMICAL HC2 LASER BASED UPON THE REACTION OF C7 ATOMS WITH HBr

K.D. Foster

D.R. Snelling

S.J. Arnold

R.D. Suart

APR 22 1877

782 🤱

Centre de Recherches pour la Défense Défence Research Establishment Valcartier, Québec

A STATE OF A

BUREAU - RECHERCHE ET DEVELOPPEMENT MINISTERE DE LA DEFENSE NA IONALE CANADA

RESEARCH AND DEVELOPMENT BRANCH DEPARTMENT OF NATIONAL DEFENCE CANADA

NON CLASSIFIÉ

NRFV_R_À UNCLASSIFIED CRDV R-4071/77 FILE: 3634B-00 DOSSIER: 3634B-001 PURELY CHEMICAL HC& LASER BASED UPON THE REACTION OF C& ATOMS WITH HEr, by K.D. Foster, D.R./Snelling, S.J./Arnold and R.D./Suart (D) Mar 77 (2)26p.(. . CENTRE DE RECHERCHE POUR LA DEFENSE DEFENCE RESEARCH ESTABLISHMENT V

VALCARTIER

Tel:(418) 844-4271

Québec, Canada

404 945

NON CLASSIFIE

March/mars 1977

RESUME

「「「「「「」」」」「「「」」」」「「「」」」」」」」

On a étudié l'émission stimulée de HCl excité vibrationellement dans un laser à écoulement transversal. Ce laser était axé sur la réaction $Cl + HBr \rightarrow HCl^{\dagger} + Br$. Les atomes de chlore ont été produits *in situ* par la réaction chimique de NO avec ClO_2 . La puissance de sortie maximale a atteint 0.34 W, ce qui représente approximativement le tiers de la puissance observée lorsque HI était utilisé au lieu de HBr. On croit que l'efficacité chimique du laser utilisant Cl + HBrest inférieure à celle du laser employant la réaction Cl + HI parce qu'une portion de l'énergie vibrationnelle de HCl est transférée au HBr; en outre, l'énergie de réaction dans le système Cl + HBr est plus faible. (NC)

ABSTRACT

Laser emission from vibrationally excited HCl has been achieved in a transverse flow system whose pumping energy relied upon the reaction $Cl + HBr \rightarrow HCl^{+} + Br$. For these experiments the chlorine atoms were produced *in situ* from the chemical reaction of NO with ClO_2 . The observed maximum output power of 0.34 W was approximately one third the output power if hydrogen iodide was substituted for HBr. Loss of HCl vibrational quanta through collisions with HBr is believed to be a severe limitation on Cl + HBr system and probably accounts for the reduced HCl laser efficiency of Cl + HBr compared with Cl + HIalong with the reduced exothermicity of the pumping reaction. (U)

۰.. ج

ť

÷....

TABLE OF CONTENTS

	RESUME/ABSTRACT	i
1.0	INTRODUCTION	1
2.0	EXPERIMENTAL	3
	2.1 Kinetic Model-Numerical Procedure	4
3.0	RESULTS AND DISCUSSION	5
	3.1 Modelling Results	7
4.0	SUMMARY AND CONCLUSIONS	11
5.0	REFERENCES	12
	FIGURES 1 to 5	
	APPENDIX A	13
	TABLES A-I to A-IV	
	REFERENCES TO APPENDIX A	19

animpintures.

.....

in Sain

Level Harts This Contract of the second second second

1.0 INTRODUCTION

Infrared lasers operating in the 3-5 µm wavelength region are of special interest because of the generally high transmission of the atmosphere at these wavelengths. One example is the hydrogen chloride laser operating on vibration-rotation transitions at (3.6 - 4.0) µm. The use of elementary chemical reactions has proved to be an efficient means of producing vibrationally excited HC^k. The particular reaction which has received the most attention is the very fast reaction of atomic chlorine with hydrogen iodide $k_1 = 1.64 \times 10^{-10} \text{ cm}^3 \text{s}^{-1}$ (Ref. 1):

 $C\ell + HI \rightarrow HC\ell^{\dagger} + I \Delta H = -32 \text{ kcal/mole}$ (1)

Another source of vibrationally excited HCL is the reaction of atomic chlorine with hydrogen bromide

 $C\ell + HBr \rightarrow HC\ell^{\dagger} + Br \quad \Delta H = -15.5 \text{ kcal/mole}$ (2)

Because the exothermicity of this reaction step is only about one half that of the CL + HI reaction only the vibrational levels v=2, v=1 and v=0 are substantially populated. The total rate coefficient for the process is 7.4 x 10^{-12} cm³s⁻¹ (Ref. 1), i.e. reaction occurs for one in every 30 gas kinetic collisions.

The successful operation of a Cl + HBr pumped chemical laser was demonstrated by Airey (Ref. 2) who flash-photolyzed mixtures of Cl_2 and HBr. The laser operated on HCl lines emanating from the v=1 \rightarrow v=0 band only, and it was concluded that the specific reaction rate forming HCl (v=1) was at least as large as that forming HCl (v=0). Another conclusion of this work was that the most important process resulting in HCl (v=1) deactivation was vibration-vibration (V-V) 1=laxation of HCl[†] by HBr:

$$HC\ell_{v=1} + HBr_{v=0} \rightarrow HC\ell_{v=0} + HBr_{v=1}$$
(3)

That the rate coefficient for process (3) was indeed large was subsequently demonstrated by Chen (Ref. 3) and by Bott and Cohen (Ref. 4). These workers measured rate constants of 1.11 x 10^{-12} cm³ s⁻¹ and 2.96×10^{-12} cm³ s⁻¹ respectively.

Recently, the chemistry associated with the NO/CLO₂ system has been exploited to produce laser emission at 10.6 μ m and 3.8 μ m (Refs. 5, 6). For these systems, CL atoms were produced chemically and the CL + HI reaction produced vibrationally excited HCL which lased directly at 3.8 μ m or the energy was transferred to CO₂ which lased at 10.6 μ m.

The mechanism for the reaction of NO with ClO_2 has been discussed previously (Ref. 7); and therefore only a brief summary will be included here. The three reactions involved in the branched chain mechanism leading to the conversion of ClO_2 to Cl atoms or ClO radicals are shown below. The first of these reactions is slow while the latter two reactions are fast (Ref. 8). The net effect for equi-molar addition of NO and ClO_2 is to produce NO₂ and ClO (conversion of ClO_2 to Cl atoms of ClO_2 to Cl radicals). If twice as much NO is added as ClO_2 , the complete conversion of ClO_2 to Cl atoms occurs yielding NO₂ and atomic chlorine, Cl.

 $NO + C\ell_2 \rightarrow NO_2 + C\ell O$ (4)

 $NO + ClO \rightarrow NO_2 + Cl$ (5)

$$Cl + ClO_2 \rightarrow 2ClO$$
 (6)

The flexibility of the NO/CLO_2 system in connection with laser experiments was recently demonstrated (Ref. 7). The HCl laser was successfully operated in three distinct kinetic regimes which were defined as chemical (or kinetic) MODES I, II and III depending upon whether the reactant ClO_2 was converted to atomic Cl (MODE I) to ClO radicals (MODE II) or was unaitered (MODE III) before the laser pumping reaction was allowed to occur. Continuous wave operation of a chemical HCL laser in which hydrogen bromide is a principal reactant does not appear to have been reported in the literature. This report describes experiments with a CW purely chemical HCL laser employing transverse flow. The laser pumping reaction for this system was $CL + HBr + HCL^{\dagger} + Br$. It also presents kinetic modelling results in which the rates of relevant processes in the CL + HBr system are integrated numerically. The experimental results for the CL + HBr chemical laser are compared with those of the CL + HI chemical laser. Some of the experimental findings for the CL + HBr system are also examined in the light of kinetic modelling calculations.

Balastron H. S. Annas

あるののをあるなくなる きょうちょう

UNCLASSIFIED 3

This work, which represents a continuation of purely chemical laser studies based upon the NO/CLO₂ reaction system, was performed at DREV in mid 1975 under PCN 34B01 (formerly PCN 07C01, Project 97-01-39) "Research on Chemically Excited Lasers".

2.0 EXPERIMENTAL

Although the ClO_2 generator and transverse flow laser have been described previously (Refs. 6, 7), a schematic diagram of the apparatus is shown in Fig. 1 for convenience. For the experiments described here, three injector rows were employed. These allowed che sequential addition of NO#1, HBr and then NO#2 to the mainstream which contained dilute ClO_2 /He mixtures. The symbol NO#1 refers to the upstream location for the addition of NO and NO#2 refers to the downstream location for NO injection.

The optical cavity consisted of two externally mounted mirrors, a 'total' reflector of the 'protected metal' type having a 4-m radiusof-curvature (RC) and a partially reflecting flat. The flat decoupling mirror was a 4% transmitting multilayer dielectric mirror on a CaF_2 substrate. The reaction vessel was sealed by two CaF_2 flats placed at Brewster's angle.

The experimental conditions which were common to most experi-

Helium (in NaClO ₂ column)	=	17,360	SCCM
Helium (auxiliary)	n	26,000	SCCM
Cl ₂ (in NaClO ₂ column)	=	595	SCCM
NO#1 < 1000 SCCM (variable)			
NO#2 < 6500 SCCM (variable)			
HBr < 5000 SCCM (variable)			

Total Pressure 2-3 torr Average Linear Velocity \sim 210 ms⁻¹

The above velocity was determined from the above flow rates knowing the pressure and the flow channel area.

To handle ClO_2 safely certain precautions were routinely followed (Refs. 5, 6, 9).

2.1 Kinetic Model-Numerical Proceduate

As in the HCl laser in which HI was used as a reactant (Ref. 7), a computer simulation of the relevant processes has been carried out for the Cl + HBr system. A list of the individual processes which were considered along with their rate coefficients is given in the Appendix. The computer program DOLPHIN was used to compute the time evolution of the various reacting species. This program, which is a general program for treating rate processes, will be described in detail elsewhere (Ref. 10).

Since most of the available rate data apply to $\sim 300^{\circ}$ K, no attempt in the program was made to vary the temperature. A simple one-dimensional model was assumed. The rate equations were integrated in the time domain and the results compared to experiment by assuming a constant linear flow velocity.

3.0 RESULTS AND DISCUSSION

All experiments were carried out with the injector sequence NO#1 - HBr - NO#2, already used with HI in place of HBr (Ref. 7). With this type of arrangement it was possible to delay the formation of atomic chlorine until the flowing gases reached the optical region, i.e. the initial injection of NO converted some or all of the CLO₂ to CLO (MODE II).

When HI was replaced with HBr, HCl laser oscillation was again observed. The first experiments were conducted with a flow of NO at the downstream location, NO#2, of 3000 SCCM and a flow of 1800 SCCM of HBr. The maximum laser output power was 0.34 W and was observed with the laser axis located 1.5 cm downstream of the NO#2 injector and with

a flow of 500 SCCM of NO through the upstream injector NO#1. This experiment therefore demonstrates the successful operation of the Cl + HBr chemical laser in the kinetic MODE II, a kinetic regime which was described previously (Ref. 7). At the termination of this experiment the reactant was changed to HI. With 1000 SCCM of NO through NO#1, 3000 SCCM of NO through NO#2 and 1000 SCCM of HI, the HCl laser output power was 1 W. For these experimental conditions then, the Cl + HBr system gave a total HCl laser power about one third that obtained with the Cl + HI system. It should be kept in mind, however, that the laser output for the Cl + HI system is spread over the v=3-2, v=2-1 and v=1-0 vibrational bands, whereas the Cl + HBr system yields v=1 + v=0 laser transitions only (Ref. 2).

The HBr flow required to obtain maximum HCL laser power was found to far exceed the corresponding HI flow when HI was used as a reactant. This was probably due to the fact that the rate coefficient for the Cl + HBr reaction is some 22 times slower than that for the Cl + HI reaction. A high concentration of HBr is therefore required to increase the HCL pumping rate in the Cl + HBr system.

At sufficiently high flows of NO#2 (= 6400 SCCM), it was possible to operate the laser with no NO passing through the upstream injector. None of the ClO_2 was therefore pre-converted to ClO. The dependence of the HCl laser power on the HBr flow in such a kinetic regime, which has been referred to previously as Chemical MODE III, is shown in Fig. 2. The optical axis was located 2 cm downstream cf the NO#2 injector. It will be noted that an HBr flow of \geq 4000 SCCM was required to obtain the maximum power of 0.31 W.

At an HBr flow of 4500 SCCM in the previous experiment, a flow of NO was added at injector NO#1, which converted the laser from MODE III to MODE II operation. The laser power increased by 10%. The $C\ell$ + HI system behaved differently. Whereas the laser power in MODE III for HCl was about 70% that of MODE II for the $C\ell$ + HI system, it was about the same for MODES II and III for the $C\ell$ + HBr system.

FIGURE 2 - Dependence of laser power on initial HBr flow for chemical MODE III

3.1 Modelling Results

<u>1</u>

Computer simulations were carried out with input conditions corresponding to the above experiment. Specifically, the conditions corresponded to

He (total di	luent) 46,320	SCCM
Cl ₂	595	SCCM
HBr	4500	SCCM
NO#1	0 or 330	SCCM
NO#2	6400	SCCM

Total Pressure 3.2 torr

The time evolution of the species ClO_2 , Cl and HCl was plotted along with the total amount of vibrationally excited HCl and also the amount of vibrationally excited HBr. The relative rates of excitation of $HCl_{v=1}$ and $HCl_{v=2}$ has been measured by Polanyi et al (see Appendix, note G and Ref. A-16). The amount of excitation in $HCl_{v>0}$ was estimated by assuming the rate of formation of $HCl_{v=0}$ in reaction (2) was 1/10 of that in v=1. This assumption is somewhat arbitrary but is consistent with evidence indicating that the rate into $HCl_{v=1}$ is

greater than that into $HCl_{V=0}$ (Ref. 2). The conclusion is unaffected by the choice of the precise value of the ratio of the rates. The first plot, Fig. 3, corresponds to a NO#1 flow of 330 SCCM (MODE II operation) which is sufficient to convert 33% of the ClO_2 to ClO radicals. Figure 4, on the other hand, corresponds to zero NO#1 flow (MODE III operation) which means that no ClO radicals are initially present at NO#2.

To Lot a state

and the set of the state of the set of the s

FIGURE 4 - Time evolution of HCl in Chemical MODE III

The difference between the total HCl produced and the HCl (v>0) in these plots points out a severe limitation of Cl + HBr as a laser system. Since the pumping reaction for Cl + HBr is slow compared to that of the Cl + HI system, an excess of HBr is required to increase the pumping rate. The ultimate attainable output power, however, becomes more and more limited with increasing HBr because of the vibrational relaxation of HCl by collisions with HBr (Refs. 3, 4). The build-up of HBr (v=1,2) and accompanying fall-off of HCl (v>0) will be noted in both Figs. 3 and 4.

UNCLASSIFIED

The results of Figs. 3 and 4 were combined in Fig. 5 to compare the simulation with experimental results. The data in Fig. 2 were obtained with the laser axis about 2 cm downstream of the NO#2 injector, which corresponded to $\sim 100 \ \mu s$ of flow time from the NO#2 injector. It will be recalled that for this experiment the addition of NO through the upstream injector needles did not greatly affect the output power. This result seems to be in accord with the modelling results of Fig. 5 which show that at 125 μs the total excited HC ℓ concentration is fairly insensitive to the extent of pre-conversion of C ℓO_2 to C ℓO radicals. According to Fig. 5, the concentration of excited HC ℓ^{\dagger} is determined primarily by HC $\ell^{\dagger} \rightarrow$ HBr relaxation for reaction times greater than 100 μs .

FIGURE 5 - Composite of Figures 3 and 4

4.0 SUMMARY AND CONCLUSIONS

Continuous wave purely chemical laser emission in a transverse flow system has been demonstrated in HCL in which the pumping reaction was $Cl + HBr + HCL_{v=0,1,2} + Br$. These experiments were performed using the NO/CLO₂ chemical system in a regime where the atomic CL for laser pumping was formed in the optical region.

The maximum total HCL laser output power observed was 0.34 W. This represents about one third the output power observed if HI was used as a reactant under similar conditions. The lower HCL laser efficiency when HBr was used, rather than HI, probably reflects the lower pumping reaction exothermicity as well as the adverse effects of a slower pumping rate for CL + HBr and the resultant more rapid HCL^{\dagger} relaxation because of the presence of excess HBr.

The experimental observation that for certain conditions the laser output power was insensitive to the extent of pre-conversion of ClO_2 into CLO radicals was consistent with the kinetic model, which indicated that the effects of pre-conversion should be most dramatic early in the reaction sequence. As the reaction proceeds, however, the level of vibrationally excited HCL is determined largely by the HBr concentration. The initial presence or absence of CLO radicals by pre-conversion is therefore less important at these later reaction times and the efficiency in MODE III is almost equal to that in MODE III.'

For applications in which the HCl laser efficiency is a prime consideration, the $Cl + HBr \rightarrow HCl^{\dagger} + Br$ system would be inferior to the $Cl + HI \rightarrow HCl^{\dagger} + I$ system.

5.0 REFERENCES

- Bergmann, K., and Moore, C. Bradley, "Energy Dependence and Isotope Effect for the Total Reaction Rate of Cl + HI and Cl + HBr", J. Chem. Phys. <u>63</u>, 643-649 (1975).
- Airey, J. Richard, "Cl + HBr Pulsed Chemical Laser: A Theoretical and Experimental Study", J. Chem. Phys. <u>52</u>, 156-167 (1970).
- Chen, Hao-Lin, "Vibrational Relaxation of Hydrogen Bromide in Gaseous Hydrogen Halide Mixtures", J. Chem. Phys. <u>55</u>, 5551-5556 (1971).
- Bott, J.F. and Cohen, N., "Vibrational Relaxation of HC2 (v=1 in the Presence of Several Diatomic Molecules at 295-750°K", J. Chem. Phys. 63, 1518-1524 (1975).
- 5. Suart, R.D., Snelling, D.R., Foster, K.D. and Arnold, S.J., "Purely Chemical Laser Based on Chlorine Atom Reactions:Hybrid CO₂ Laser", DREV R-4015/76. April 1976, UNCLASSIFIED.
- 6. Foster, K.D., Suart, R.D. and Snelling, D.R., "An Efficient, Purely Chemical HCl Laser", DREV R-4059/76. November 1976, UNCLASSIFIED.
- Foster, K.D., Snelling, D.R., Suart, κ.D. and Arnold, S.J., "Optimization of the Pre-Pumping NO/CLO₂ Chemistry in a Purely Chemical HCL Laser", DREV R-4060/76. UNCLASSIFIED.
- Bemand, P.P., Clyne, M.A.A. and Watson, R.T., "Reactions of Chlorine Oxide Radicals. Part 4- Rate Constants for the Reaction of Cl + OCLO, O + OCLO, H + OCLO, NO + OCLO and O + CLO", J.C.S. Faraday Trans. I, <u>69</u>, 1356-1374 (1973).
- Suart, R.D., Snelling, D.R., Foster, K.D. and Lambert, R., "Purely Chemical Laser Based on Chlorine Atom Reactions: ClO₂ Generator", DREV R-4005/76. April 1976, UNCLASSIFIED.
- 10. Arnold, S.J., "DOLPHIN A General Program for the Treatment of Chemical Rate Equations", (in preparation). UNCLASSIFIED.

Saluaran internet the construction of the second second second second second second second second second second

APPENDIX "A"

A generalized computer model describing the chemical processes taking place in the laser has been developed. The mechanics of the computer simulation are described in detail in DOLPHIN, a general program for the treatment of chemical rate equations. The time evolution of the reaction ensemble was simulated using a Runge-Kutta numerical integration routine.

This Appendix consists of a listing of the processes considered in a computer simulation of reacting mixtures typically used in the laser experiments. Table A-I contains those reactions used to produce chlorine atoms and Table A-II, those used to generate vibrational excitation during the reaction of chlorine atoms with HBr and some of the subsequent V-V exchange reactions of HCl thus formed. Table A-III considers further deactivation reactions of HCl for which reliable rate data are available. (No rate data is available for the deactivation of HCl by NO_2 , O_2 or NOCl, all of which are present in appreciable concentrations at various times in the evolution of the reacting mixture.) Table A-IV consists of additional reactions of bromine atoms.

References are given to the literature in support of the rate constant assignments when available. Additional explanations are given in the lettered footnotes. Rate constants are given in cm³ molecule⁻¹s⁻¹.

The tables are presented directly by a line printer with the notation E-11 = 10^{-11} .

NOTES

- (A) Rate constants calculated for 300° K; M=He
- (B) The overall rate constant for the reaction k_{f}

 $2ClO \rightarrow products$

is given in Ref. A-3 as $(1.3 \pm 0.1) \times 10^{12} \exp(-1150 \pm 50/T)$. Clyne et al (Ref. A-10) indicate that at 298⁰K reaction 4 accounts for 4% of the total reaction. The ratio of reaction 5 to reaction 6 is not accurately known. Watson (Ref. A-11) indicates that $k_5 / k_6 \sim l$ at low pressures (1-3 torr) while Clyne et al (Ref. A-10) state that reaction 5 is a major reaction channel in the second order decay of CLO. For the present calculations $k_4 = k_6 = 0$ and $k_5 = k_f$.

(C) A value of the rate constant, k_7 , was calculated from the relationships

$$Cloo + M \stackrel{k_7}{\neq} Cl + O_2 + M$$

$$k_8$$

$$k_7 = \frac{\text{kequil}}{k_8} = \frac{e^{-\Delta H/RT} e^{\Delta S/R}}{k_8}$$

where $k_8 = 5.6 \times 10^{-34}$, and the required thermodynamic data from Ref. A-12.

- A value of the rate constant, $\boldsymbol{k}_{10},$ was obtained from the (D) ratio $k_g/k_{10} = 15$ of Ref. A-13 and the value of $k_g =$ 1.56×10^{-10} of Ref. A-5.
- Basco et Dogra (Ref. A-14) in a study of CLO recombination over (E) a pressure range similar total to that of Johnston et al (Ref. A-5) found no dependence of the overall rate constant on M. For the present calculations $k_{11} = 0$.

The value of the rate constant k_{16} is assumed equal to k_{13} . (F)

The value of the overall rate constant (G)

> $C\ell + HBr (v=0) \rightarrow HC\ell (v=n) + Br$ n=0,1,2is 7.4 x 10^{-12} (Ref. A-15). Polanyi et al (Ref. A-16) give the

relative rate of formation into v=1 and v=2 to be 1.0:0.4. It is assumed that the rate of formation into v=0 is 1/10 of that into v=1.

(H) The values of the rate constants for

いためのためのため

 $Cl + HBr(v=n) \rightarrow HCl(v=m) + Br$ n=1,2 m=0,1,2 are assumed to be the same as that of G.

- (I) The average value of the rate constants given in Refs. A-17 and A-19 was used.
- (J) No reliable values of the rate constants for reactions 28-31 are given in the literature. A detailed discussion of the V-V transfer processes occurring for HC& is given in Ref. A-20.
- (K) The average value of the rate constants given in Refs. A-21 -A-24 was used.
- (L) No reliable values of the rate constants for reactions 34-39 are given in the literature. Estimates of the rate constants for reactions 34-37 can be made from the value of the rate constant for reaction 32 using the method described in Ref.A-25 for estimating V-V transfer probabilities for HC ℓ (v=n) + NO(v=0) $\stackrel{\Rightarrow}{\leftarrow}$ HC ℓ (v=n-1) + NO(v=1).
- (M) The average value of the rate constants given in Refs. A-26 -A-27 was used.
- (N) The values of the rate constants for reactions 43-47 were obtained from the ratios given in Ref. A-29 and the value of $k_{42} = 8.8 \times 10^{-12}$ given in Ref. A-28.
- (0) k [HCl(v=n)] = nk [HCl(v=1)].
- (P) The average value of the rate constant given in Refs. A-31 -A-33 was used.

(Q)

Leone et al (Ref. A-34) have measured the total rate of removal of HCl(v=2) by Br atoms

 k_{T} HCl(v=2) + Br \rightarrow products

and obtained a value of the rate constant, $k_T = (1.8 \pm 0.33)$ x 10^{-12} at 294°K. They believe that reaction 64 is predominent. For the present calculation, $k_{63} = 1/10 \ k_T$ and $k_{64} = 9/10 \ k_T$. The value of the rate constant for the total rate of removal of HCL(v=3) by Br atoms is assumed to ϵ ual that for removal of HCL(v=2) with $k_{65} = 1/10 \ k_T$ and $k_{66} = 9/10 \ k_T$.

(R) The average value of the rate constants given in Refs. A-32-A-53 was used.

(S) Clyne et al (Ref. A-37) state that the heteroatom recombination $C\ell + Br + M \rightarrow BrC\ell + M$

> is noticeably faster than the homoatom recombination Br + Br + M \rightarrow Br₂ + M Consequently the value of the rate constant for reaction 73 was multiplied by 1.5 to give an approximate value for the rate constant for reaction 74.

の私事業の設置を見ていたいです。

į.

TABLE A-I

	REACTION	RATE CONSTANT	REFRENCE
1	CL + OCLO + CLO + CLO	5.9 5-11	4
2	NO + OCLO + CLO + NO2	3.4 8-13	1
3	NO + CLO + CL + NO2	017 D 10	1
4	CLO + CLO + CL + OCLO	1.7 8-11	2
5	CLO + CLO + CLOO + CL	0 0 5 4 4	
6	CLO + CLO + CL2 + O2	2.8 5-14	3 <i>B</i>
7	CLOO + N + CL + O2 + N	1 345-14	-
8	CL + O2 + M + CLOO + M	1.048-14	C
9	CL + CLOO + CLO + OO	5.6 8-34	4
10		1.56 <i>E</i> ~10	5
		1.048-11	ñ
17	CLO + CLO + N + CL2 + O2 + N	6.5 B-32	58
12	CD + CL + N + CL2 + N	6.395-33	ě.
13	NOCL + CL + NO + CL2	3.0 8-11	
14	NO + CL + N + NOCL + N	0 2 F-22	1
15	NO2 + CL + N + NO2CL + M	3.3 B-32	8
16	NO2CL + CL + NO0 + CL0	7.7 8-31	9
• •	nored + eff + nor + eff	3.0 8-11	F

TABLE A-11

	REACTION	RATE CONSTANT	REFERENCE
17	CL + HBR(V=0) + HCL(V=0) + BR		
18	CL + HBR(V=0) + HCL(V=1) + BR	4.936-13	G
19	CL + HBR(V=0) + HCL(V=2) + PP	4.938-12	G
20	CL + HBR(V = 1) + HCL(V = 0) + PP	1,978-12	G
21	CL + NBR(V=1) + VCI(V=1) + DR		r .
22	CL + HRR(V=1) + HCI(V=0) + DR		
23	CL + HBR(V=2) + HCL(V=2) + BR		H
24	CL + PPP(V=0) + RCL(V=0) + BR		H
25	CL + HBP(V=2) + HCL(V=1) + BR		
26	CD + BD3(V=2) + BCL(V=2) + BR		и #
27	HCL(V=1) + HCL(V=1) + HCL(V=2) + HCL(V=0)	4.695-12	(17-19)7
20	BCL(V=2) + BCL(V=0) + BCL(V=1) + BCL(V=1)	2.858-12	(17-19/1
20	HCL(V=2) + HCL(V=2) + HCL(V=3) + HCL(V=1)		(11-19)1
29	HCL(V=3) + HCL(V=1) + HCL(V=2) + HCL(V=2)		<i>.</i>
30	HCL(V=2) + HCL(V=1) + HCL(V=3) + HCL(V=0)		<i>.</i>
31	HCL(V=3) + HCL(V=0) + HCL(V=2) + HCL(V=1)		÷.
32	HCL(V=1) + HBR(V=0) + HCL(V=0) + HBR(V=1)	1 008-10	5
33	HCL(V=0) + HBR(V=1) + HCL(V=1) + HBR(V=0)	1.048-15	(21-24) <i>K</i>
34	HCL(V=2) + HBR(V=0) + HCL(V=1) + HBR(V=1)	2.265-13	(21-24) <i>K</i>
35	HCL(V=1) + HBR(V=1) + HCL(V=2) + HBR(V=0)		L
36	HCL(V=3) + HBR(V=0) + HCL(V=2) + HBR(V=1)		L
37	HCL(V=2) + HBR(V=1) + HCL(V=3) + HDR(V=0)		L
38	HCL(V=1) + HBR(V=1) + HCL(V=0) + HBR(V=0)		L
39	BCL(V=0) + BRR(V=2) + BCL(V=1) + BRR(V=2)		L
40	BCL(V=2) + BBP(V=1) + BCL(V=1) + BBR(V=1)		L
41	$HCL(V=1) \rightarrow HPP(V=2) \rightarrow HOL(V=1) \rightarrow HPR(V=2)$		L
42	$\frac{\mu}{\mu} \frac{\mu}{\mu} \frac{\mu}$		Ī.
4.3	$\frac{40\pi(Y-1)}{40\pi(Y-1)} + \frac{40\pi(Y+1)}{40\pi(Y+2)} + \frac{40\pi(Y+2)}{40\pi(Y+2)}$	6.768-12	(26-27)M
	abaly=2) + abaly=0) + ABR(V=1) + HBR(V=1)	4,385-12	(25-217N) (26-07)N
			14974118

TABLE A-111

Ciller,

The second se

	REACTION	RATE CONSTANT	REFERENCE
44	$HCL(V=1) \rightarrow CL \rightarrow HCL(V=0) + CL$	8.8 8-12	28
45	HCL(V=2) + CL + HCL(V=1) + C!	1,058-11	N
46	HCL(V=2) + CL + HCL(V=0) + CL	4,115-12	N
47	HCL(V=3) + CL + HCL(V=2) + CL	1,135-11	N
48	HCL(V=3) + CL + HCL(V=1) + CL	5,868-12	₩ .
49	HCL(V=3) + CL + HCL(V=0) + CL	2,548-12	N
50	HCL(V=1) + NO + HCL(V=0) + NO	9,695-14	30
51	HCL(V=2) + NO + HCL(V=1) + NO		0
52	HCL(V=3) + NO + HCL(V=2) + NO		0
53	HCL(V=1) + HCL(V=0) + HCL(V=0) + HCL(V=0)	2:935-14	(31-33)P
54	HCL(V=2) + HCL(V=0) + HCL(V=1) + HCL(V=0)		0
5.5	HCL(V=3) + HCL(V=0) + HCL(V=2) + HCL(V=0)		ò
56	HCL(V=1) + CL2 + HCL(V=0) + CL2	1.005-14	21
57	HCL(V=2) + CI2 + HCL(V=1) + CL2		ō
50	$\frac{1}{1} \frac{1}{1} \frac{1}$		o o
50	$\frac{\mu}{\mu} \left(\left(V + 1 \right) + R P \right) + \frac{\mu}{\mu} \left(\left(V + 1 \right) + R P \right) + \frac{\mu}{\mu} \left(\left(V + 1 \right) + R P \right)$	3 268-14	34
60	$\mu_{OI}(N=0) \rightarrow Bb0 \rightarrow \mu_{OI}(N=1) \rightarrow Bb0$	01100 14	<u>a</u>
61	HOT(V=3) + BBO + HOT(V=3) + BBO		õ
6.2	$\frac{n c D(V-3) + D n z}{2 + n c D(V-2) + D n z}$	2 88-13	34
202	$\frac{ncp(v-1)}{ncp(v-1)} + \frac{ncp(v-1)}{ncp(v-1)} + nc$	2,00 10	0
0 J 6 II	$\frac{\pi}{\mu} \frac{\pi}{\mu} \frac{\pi}$		0
66	UCI(V=2) + DK + ADK(V=0) + DD		4
0.0	ncb(y-3) + br + ncb(y-2) + br		
66	#CU(V=3) + B# + #B#(V=0) + CU VBP(V=4) + VBP(V=0) + VBP(V=0) + VBP(V=0)	1 708-14	(22-23)8
67	$\frac{n \sigma r(v=1)}{v \sigma r(v=0)} + \frac{n \sigma r(v=0)}{v \sigma r(v=0)} + \frac{n \sigma r(v=0)}{v \sigma r(v=0)}$	1,728-14	(32-33)N
08	aBR(v=2) + aBR(v=0) + aBR(v=1) + aBR(v=0)		25
69	HBK(V=1) ~ BK + NBK(V=0) + BK	D.J 6-12	35
70	HBR(V=2) + BR + HBR(V=1) + BR	1,938-11	35
71	HBR(V=2) + BR + HBR(V=0) + BR	1.054-11	35

TABLE A-IV

	REACTION	RATE CONSTANT	REFERENCE
72	BR + NOCL + BRCL + NO	1.0 E-11	7
73	CL + BRCL + CL2 + BR	1.458-11	36
74	CL + BR2 + BRCL + BR	1.2 E-10	36
75	$BR + B^+ + N + Bh2 + N$	3.155-33	6
76	BR + CL + M + BRCL + M	4.5 5-33	S
77	BP + OCLO + BPCL + O2	5 178-14	37

All and the second second

REFERENCES

APPENDIX

- A_1 Bemand, P.P., Clyne, M.A.A. and Watson, R.T., "Reactions of Chlorine Oxide Radicals. Part 4. Rate Constants for the Reactions C1 +OC10, 0 + OC10, H = OC10, NO + OC10 and O + C10", J.C.S. Faraday Trans. I. <u>69</u>, 1356-1374 (1973).
- A-2 Clyne, M.A.A. and Watson, R.T., "Kinetic Studies of Diatomic Free Radicals using Mass Spectrometry. Part 2. Rapid Biomolecular Reactions Involving the ClO X²Π Radical", J.C.S. Faraday Trans. I. 70, 2250-2259 (1974).
- A-3 Clyne, M.A.A. and White, I.F., "Reactions of Chlorine Oxide Radicals. Part 3. Kinetics of the Decay Reaction of the ClO(X²II) Radical", Trans. Faraday Soc. <u>67</u>, 2068-2076 (1971).
- A-4 Stedman, D.H. in Clyne, M.A.A. and Coxon, J.A., Proc. Roy. Soc. A303, 207-231 (1968).
- A-5 Johnston, H.S., Morris, E.D. s 'Van den Bogaerde, J., "Molecular Modulation Kinetic Spectrometr. C100 and C10, Radicals in the Photolysis of Chlorine in Oxygen", J. Am. Chem. Soc. <u>91</u>, 7712-7727 (1969).
- A-6 Widman, R.P. and DeGraff, B.A., "On the Gas-Phase Recombination of Chlorine Atoms", J. Phys. Chem. 77, 1325-1328 (1973).
- A-7 Clyne, M.A.A. and Cruse, H.W., "Atomic Resonance Fluorescence Spectrometry for Rate Constants of Rapid Bimolecular Reactions. Part 1. Reactions 0 + NO₂, Cl + ClNO, Br + ClNO", J.C.S. Faraday Trans. II. 68, 1281-1299² (1972).
- A-8 Clyne, M.A.A. and Stedman, D.H., "Recombination of Ground State Halogen Atoms. Part 2. Kinetics of the Overall Recombination of Chlorine Atoms", Trans. Faraday Soc. 64, 2698-2707 (1968).
- A-9 Clyne, M.A.A. and White, I.F., unpublished data, see page 2882 of Clyne, M.A.A. and Cruse, H.W., Trans. Faraday. Soc. <u>67</u>, 2869-2885 (1971).
- A-10 Clyne, M.A.A., McKenney, D.J. and Watson, R.T., "Reactions of Chlorine Oxide Radicals. Part 5. The Reaction 2ClO(X²Π)→ Products", J.C.S. Faraday Trans. I. 71, 322-335 (1975).
- A-11 Watson, R.T., "Chamical Kinetics Data Survey. VIII. Rate Constants of Cl0, of Atmospheric Interest", NBSIR 74-516, (Interim) June 1974 page 28.

Strain Line Atholis

the second state of the second

- A-12 Wagman, D.D. and Garvin, D., "Provisional Thermochemical Data Sheets for C10 and C100", Nat. Bur. Stand., Washington, D.C. (May 1974).
- A-13 Nicholas, J.E. and Norrish, R.G.W., "Some Reactions in the Chlorine and Oxygen System Studied by Flash Photolysis", Proc. Roy. Soc. A<u>307</u>, 391-397 (1968).
- A-14 Watson, R.T., private communication.
- A-15 Bergmann, K. and Moore, C.B. Bradley, "Energy Dependence and Isotope Effect for the Total Reaction Rate of Cl + HI and Cl + HBr", J. Chem. Phys. <u>63</u>, 643-649 (1975).
- A-16 Maylotte, D.H., Polanyi, J.C. and Woodall, K.B., "Energy Distribution Among Reaction Products. IV. X + HY(X≡Cl, Br; Y≡Br, I), Cl + DI", J. Chem. Phys. 57, 1547-1560 (1972).
- A-17 Hopkins, B.M. and Chen, H.-L., "Vibrational Excitation and Relaxation of HC1 (v=2) State", J. Chem. Phys. <u>57</u>, 3816-3821 (1972).
- A.18 Leone, S.R. and Moore, C. Bradley, "V→V Energy Transfer in HC1 with Tunable Optical Parametric Oscillator Excitation", Chem. Phys. Lett. 19, 340-344 (1973).
- A-19 Burak, I., Noter, Y., Ronn, A.M. and Szöke, A., "Vibration-Vibration Energy Transfer in Gaseous HC1", Chem. Phys. Lett. <u>17</u>, 345-346 (1972).
- A-20 Arnold, S.J., "V-V Energy Transfer Processes in HC1", (in preparation). UNCLASSIFIED.
- A-21 Bott, J.F., and Cohen, N., "Vibrational Relaxation of HC1(v=1) in the Presence of Several Diatomic Molecules at 295-750[°]K", J. Chem. Phys. 63, 1518-1524 (1975).
- A-22 Chen, H.-L. "Vibrational Relaxation of Hydrogen Bromide in Gaseous Hydrogen Halide Mixtures", J. Chem. Phys. <u>55</u>, 5551-5556 (1971).
- A-23 Donovan, R.J., Husain, D. and Stevenson, C.D., "Vibrational Relaxation of HBr(v=1) by HC1 at 300[°]K", Nature, <u>227</u> 602 (1970).
- A-24 Chen, H.-L. and Moore, C. Bradley, "Vibration→Vibration Energy Transfer in Hydrogen Chloride Mixtures", J. Chem. Phys. <u>54</u>, 4080-4089 (1971).
- A-25 Foster, K.D., Snelling, D.R., Suart, R.D. and Arnold, S.J. "Optimization of the Pre-Pumping NO/ClO₂ Chemistry in a Purely Chemical HCl Laser", DREV R-4060/76, UNCLASSIFIED.

A-26 Hopkins, B.M. and Chen, H.-L , "Vibrational Excitation and Relaxation of HBr (v=2) State", Chem. Phys. Lett. 17, 500-504 (1972). A-27 Burak, I., Noter, Y., Ronn, A.M. and Szöke, A., "Vibration-Vibration Energy Transfer in Gaseous HBr", Chem. Phys. Lett. 16, 306-309 (1972). MacDonald, R G., Moore, C. Bradley, Smith, I.W.M. and Wodarczyk, A-28 F.J., "Vibrational Relaxation of HC1(v=1) by C1 Atoms", J. Chem. Phys. 62, 2934-2938 (1975). Wilkins, R.L., "Vibrational Relaxation of HCl(v=1,2,3,6) by H and A-29 Cl Atoms', J. Chem. Phys. 63, 534-543 (1975). Zittel, P.F. and Moore, C. Bradley, "V+T,R and V+V Relaxation in A- 30 DC1 Systems", J. Chem. Phys. 58, 2922-2928 (1973). Chen, H.-L. and Moore, C. Bradley, "Vibration+Rotation Energy A- 31 Transfer in Hydrogen Chloride", J. Chem. Phys. 54, 4072-4080 (1971). Ahl, J.L. and Cool, T.A., "Vibrational Relaxation in the Hr-HC1, A- 32 HF-HBr, HF-HI and HF-DF Systems", J. Chem. Phys. 58, 5540-5548 (1973). Zittel, P.F. and Moore, C. Bradley, "Vibrational Relaxation in A- 33 HBr and HCl from 144[°]K to 584[°]K", J. Chem. Phys. 59, 6636-6640 (1973).Leone, S.R., MacDonald, R.G. and Moore, C. Bradley, "Vibrational A- 34 Relaxation and Photochemistry of HC1(v=1,2) and Br Atoms", J. Chem. Phys. <u>63</u>, 4735-4741 (1975). White, J.M. and Thompson, D.L., "Monte Carlo Quasiclassical A- 35 Trajeccory Study of Br + HBr and H + HBr: Effect of Reactant Vibration and Rotation on Reaction Rates and Energy Transfer", J. Chem. Phys. 61, 719-732 (1974). Clyne, M.A.A. and Cruse, H.W., "Atomic Resonance Fluorescence A- 36 Spectrometry for the Rate Constants of Rapid Bimolecular Reactions. Part 2. Reactions Cl + BrCl, Cl + Br₂, Cl + ICl, Br + IBr, Br + IC1", J.C.S. Faraday Trans. II. <u>68</u>, 1377-1387 (1972). Clyne, M.A.A. and Coxon, J.A., "The Formation and Detection of A-37 Some Low-lying Excited Electronic States of BrCl and other Halogens", Proc. Roy. Soc. A298, 424-452 (1967).

DREV REPORT 4071/77 (INCLASSIFIED) Research and Development Branch, Department of Mational Defence, Canada. DREV, P.O. Box 880, Courcelette, Que. GM 180. DREV, P.O. Box 880, Courcelette, Que. GM 180. Prurely Chemical HCI Laser Based upon the Reaction of C1 Atoms with HBr ^H by K.D. Foster, D.R. Snelling, S.J. Arneld and R.D. Suart Laser emission from vibrationally excited HCI has been achieved in a transve flow system whose pumping energy relied upon the reaction C1 + HBr + HCl ⁺ + Br. these experiments the chlorine atoms were produced for sfut from the chemical reas of N0 with ClO_2 . The observed maximum output power of 0.3.4 M was approximately of third the output power if hydrogen iodide was substituted for HBr. Loss of HCL vioual quanta through collisions with HBr is believed to be a severe limitation of C1 + HBr system and probably accounts for the reduced &CI laser efficiency of C1 + HBr compared with C1 + HI along with the reduced exothermicity of the pumpin reaction.	DREV REPORT 4071/77 (UNCLASSIFIED) Research and Development Branch, Department of National Defence, Canada. DREV, P.O. Box 880, Courcelette, Que. GOA IRO. Purely Chemical HCL Laser Sased upon the Reaction of CL Atoms with HBr rd by K.D. Foster, D.R. Smelling, S.J. Arnold and R.D. Suart "Purely Chemical HCL Laser Sased upon the Reaction of CL Atoms with HBr rd by K.D. Foster, D.R. Smelling, S.J. Arnold and R.D. Suart Iaser emission from vibrationally excited HCL has been achieved in a transver flow system whose pumping energy relied upon the reaction CL + HBr \rightarrow HCL ⁴ + Br- these experiments the chlorine atoms were produced in situ from the chemical rea of MO with CLO. The observed maximum output po-er of 0.34 M was approximately tinted the output power if hydrogen indide was substituted for HBr. Loss of HCL tion: I quant through collisions with HBr is believed to be a severe limitation CL + HBr system and cchridy accounts for the reduced exothermicity of the pumpin reaction.	
DREV REPORT 4071/77 (UNCLASSIFIED) Research and Development Branch, Department of National Defence, Canada. DREV, P.O. Box 880, Courcelette, Que. GOA IRO. DREV, P.O. Box 880, Courcelette, Que. GOA IRO. "Purely Chemical HCL laser Based upon the Reaction of CJ Atoms with HBr" by K.D. Foster, D.R. Smelling, S.J. Arnold and R.D. Suart Laser emission from vibrationally excited HCL has been achieved in a transverse flow system whose pumping energy relied upon the reaction CL HBr + HCL ⁺ + $\eta_{\rm r}$. For these experiments the chlorine atoms were produced in situ from the chemical reaction of N0 with CGO ₂ . The observed maximum output power of 0.34 W was approximately one third the output power if hydrogen iodide was substituted for HBr. Loss of HCL vibra- tional quanta through collisions with HBr is believed to be a severe limitation on Cl + HBr system and probably accounts for the reduced exothermicity of the pumping reaction.	URE: REFORT 4071/77 (UNCLASSIFIED) Research and Development Branch, Department of National Defence, Canada. Research and Development Branch, Department of National Defence, Canada. DREV, 7.0. Box 880, Courcelette, Que. GOA IRO. "Purely Chemical MCA Laser Based upon the Reaction of C2 Atoms with 13r" by K.D. Foster, B.R. Smelling, S.J. Arnold and R.D. Suart Laser emission from vibrationally excited MCA has been achieved in a transverse flow system whose pumping energy relied upon the reaction CA + HBr + HCA ⁺ + Br. For these experiments the chlorine atoms were produced in after for the chemical reaction of No with C40 ₂ . The observed maximum output power of 0.34 W was approximately onc third the output power if hydrogen iddide was substituted for HBr. Loss of HCX vibra- tional quanta through collisions with HBr is believed to be a severe limitation on C1 + HBr system and probably accounts for the reduced exothermicity of the pumping reaction.	

al the Arnold state and an and the state of the second second

a nagetieres que l'âlle la compact d'anno entre service est

٤

)

.

and the second second second

DREV REPORT 4071/77 (UNCLASSIFIED) Bureau - Recherche et Développement, Winistère de la Défense nationale, Canada. CRDV, C.P. 880, Courcelette, Qué. GOM 1R0. "Purely Chemical HC2 Laser based upon the Reaction of CL Atoms with HBr" by K.D. Foster, D.R. Snelling, S.J. Arnold and R D. Suart On a étudié l'émission stimulée de HCL excité vibrationellement dans un laser a écoulement transversal. Ce laser feait axé sur la réaction CL + HBr + HC2 [†] + Br. Les atomes de chlore ont été produits én sétu par la réaction chimique de NO avec CGO ₂ . La puissance de sortie maximale a atteint 0.34 W, ce qui représente approximativement le tiers de la puissance observée lorsque HI était utilisé au lieu de HBr. On croit que l'efficacité chimique du laser utilisant CL + HBr est inférieure à celle du laser employant la réaction Ct + HI parce qu'une portion de l'énergie vibrationnelle de HCL est transférée au HBr; en outre, l'énergie de réaction dans le système Ct + HBr est plus faible.	DREV REPORT 4071/77 (UNCLASSIFIED) Bureau - Recherche et Développement, Ministère de la Défense nationale, Canada. CROV, C.P. 880, Courcelette, Qué. GOA 1RG. "Purely Chemical HCI Laser based upon the Reaction of CL Atcms with HBr" by K.D. Foster, D.R. Snelling, S.J. Arnold and R.D. Suart On a étudiú l'fmission stimulée de HCL excité vibrationellement dans un laser les avmes de chlore ont été produits in stitu par la réaction cL + HBr + HCl ⁺ + Br. Les avmes de chlore ont été produits in stitu par la réaction chimique de NO avec CGO ₂ . La puissance de sortie maximale a arteint 0.34 N, ce qui représente approximativement le tiers de la puissance observée lorsque HI était utilisé au lieu de HB.: On croit que l'efficacité ch'mique du laser utilisant C2 + HBr est inférieure à celle du laser employant la réaction C2 + HI parce qu'une portion de l'énergie vibrationnelle de HC1 est transférée au HBr; en outre, l'énergie de réaction dans le système C2 + HBr est plus faiblé.
DREV REPORT 4071/77 (UNCLASSIFIED) Bureau - Recherche et Développement, Ministère de La Défense nationale, Canada. CRDV, C.P. 880, Courcelette, Qué. GOA 1R0. "Purely Chemical HCL Laser based upon the Reaction of CL Atoms with HBr" by K.D. Foster, D.R. Snelling, S.J. Arnold and R.D. Suart On a étudié l'émission stimulée de HCL excité vibrationellement dans un laser 3 écoulement transversal. Ce laser était axé sur la réaction CL + HBr + HCL + Br. Les atomes de chlore ont été produits in situ par la réaction chimique de NO avec ClO ₂ . La puissance de sortie maximale a atteint 0.54 W, ce qui représente approximativement le tiers de la puissance observée lorsque HI était utilisé au lieu de HBr. On croit que l'efficacité chimique du laser utilisant CL + HBr est inférieure 3 celle du laser employant la réaction CL + HI parce qu'une portion de l'énergie vibrationnelle de HCL est transférée au HBr; en outre, l'énergie de réaction dans le système CL + HBr est plus faible.	DREV REPORT 4071/77 (UNCLASSIFIED) Bureau - Recherche et Développement, Ministère de la Défense nationale, Canada. CRDV, C.P. 880, Courcelette, Qué. GOA IRO. "Purely Chemical HCI Laser based upon the Reaction of Cl Atoms with HB:" by K.D. Foster, D.R. Snelling, S J. Arnold and R.D. Suart On a étudié l'Emission stimulée de HCL excité vibrationellement dans un laser A A:coulement transversal. Ce laser était axé sur la réaction Cl + HBr - HCl ⁺ - Br. Les atomes de chlore unt été produits in situ par la réaction chimique de NO avec CHO2. La puissance de sortie maximale a auteint 0.34 W, ce qui représente approximativement le tiers de la puissance observée lorsque HI était utilisé au lieu de HBz. On croit que l'efficacité chimique du laser utilisant Cl + HBr est inférieure à celle du laser employant la réaction Cl + HI parce qu'une portion de l'énergie vibrationnelle de HCL vst transférée au HBr; en outre, l'énergie de réaction dans le système Cl + HBr est plus faible.

يمتك للأحد أعلاقا مثغا

