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RESEARCH LABORATORI ES FOR THE ENGINEERING SCIENCES

Members of the faculty who teach at the undergraduate and graduate levels and a number of
professional engineers and scientists whose primary activity is research generate and conduct the
investigations that make up the school’s research program. The School of Engineering and Applied Science

• of the University of Virginia believes that research goes hand in hand wit h teaching. Early in the
development of its graduate training program, the School recognized that men and women engaged in
research should be as free as possible of the administrative duties involved in sponsored research . In 1959,

• therefore , the Research Laboratories for the Engineering Sciences (RLES) was established and assigned the
administrative responsibility for such research within the School.

The director of RLES—himself a faculty member and researcher—maintains familiarity w ith the

• support requirements of the research under way. He is aided by an Academic Advisory Committee made up
of a faculty representative from each academic department of the School. This Committee serves to inform
RLES of the needs and perspectives of the research program.

In addition to administrative support , RLES is charged with prov iding certain technical assistance .
• Because it is not practical for each department to become self-sufficient in all phases of the supporting
• technology essential to present-day research, RLES makes services available through the following support

groups: Machine Shop, Instrumentation, Facilities Services, Publications (including photographic facilities ),
and Computer Terminal Maintenance.

Destroy this report when no longer needed.
Do Not return it to the originator.

• The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

I
The citation in this report of trade names of commercially available
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use of such products.
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1.0 SUMMARY

As alternative.~ to lengthy series expensions for globally valid

approximations of the earth’s gravity field, piecewise approximation

methods are evaluated. A single global equation is retained only for

the point mass and second zonal terms of the geopotential; all finer

structure undulations are modeled by a global family of locally valid

functions. A degree 23 spherical harmonic series for the geopotential

is replaced by finite—element approximations within the spherical shell

out to 1.2 earth radii. This example application dem onstrates conclu-

sively the feasibility and desirability of the finite—element approach.

An order of magnitude reduction in the calculation time for gravitational

acceleration is realized over conventional calculations with spherical

harmonic recursions. Preliminary investigations indicate missile

trajectories and satellite orbits can be integrated efficiently and

• accurately using finite-element gravity representations.

3
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2.0 PREFAC E

This report constitutes the final report on Phase I of Contract

DAAG-53-76-C-0067 performed by the University of Virginia for the U. S.

Army Engineer Topographic Laboratories, Fort Belvoir, Virginia, under the

sponsorship of the Defense Mapping Agency. The Phase I effort represents

the culmination of a research and development effort initiated under

Contract N00l78—C00565 for the U. S. Naval Surface Weapon ’s Center.

The Phase I effort is concerned with replacing global gravity

representations (such as spherical harmonic series) by an equivalent

global family of locally valid gravity functions. In Phase II (documented

in a separate report), similar methods are applied to modeling the fine

structure gravitational anomalies. In both the macro (Phase I) and

micro (Phase II) finite—element modeling efforts, the emphasis has been

upon formulating gravity fields which are computationally eff ic ient .

In both cases gravity models have been developed by which acceleration

can be calculated an order of magnitude more quickly than by traditional
approaches , without significant loss of accuracy .

The author is pleased to acknowledge the capable technical guidance

provided by L. A. Gainbino of the U. S. Army Eng ineering Topographic

Laboratory who served as technical monitor of this work. The computer

programming and analysis support of my colleagues, Mr. J. T. Saunders

and Dr. S. Ray, is gratefully acknowledged.

_ _  
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3.0 INTRODUCTION

Gravitational potential of an arbitrary body cannot be written as

a closed expression. A number of infinite series have been form ulated1 3

and truncations of such series currently serve as models of the gravity

field for most computational purposes. These series are identical to,

or are motivated by, classical product solutions of Laplace ’s equation

in spherical coordinates1. One popular f orm of the spherical harmonic
• series for the geopotential at an arbitrary point (r = radius, 

~ 
=

geocentric latitude, A = east longitude) is

U = ~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1)
n=O mn=0

where R = a reference value of the earth ’ s radius = 6378.160 kin, GM =

the earth ’s gravitational-mass constant = 398601.2 kxn 3/sec2 , Pm (X ) =

associated legendre functions (non-normalized), and C~ , S~ = gravity

• coefficients determined to render simulated satellite motion in best

agreement with observations.

Considerable research2’3 has been directed toward developing stable

recursion algorithms to compute Equation (1) and the south , east , and

radial acceleration components as

— 
1 3U

_ _ _ _  
( 2 )

In spite of the success achieved in developing feasible algorithms

based upon Equations (1) and (2)  and analogous series, the increasing

burden of computing acceleration from ever more lengthy global gravity

models consumes an ever larger fraction of the central processor time in

trajectory/orbit integrations. This fact , and other considerations have

motivated research4’5 into other possible global gravity representations.

5
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The present report departs from current practice by separating from

the onset the two important questions : 1) What gravity representation

should be fit  to observed data to estimate unknown model constants from
satellite observations and/or surface gravimnetry (and thereby establish

a global gravity field approximation) ? 2) In highly repetitive gravita-

tional calculations (e.g., computing acceleration for use in integration

of satellite orbits/missile trajectories), what gravity model is most

efficient computationally?

In gravitational modeling research to date, both questions have

been (perhaps subconsciously) addressed simultaneously. Explicit sepa-
ration of the “optimum determination” and the “optimum use” questions

appears to be a most important consideration in further refinement of

existing gravity models to accommodate the ever more precise and abundant

observed data. Without engajing in the important quest for a model which

can be best determined from observed data, we address the problem of

determining an “optimum use” gravitation model.

6
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4.0 FINITE-ELEMENT APPROACH

The dominant global features of the gravity field are efficiently

represented by the dominant low—degree terms in Equation (1) . This fact

motivates the segregation of the total gravitational potential at a point

(r , $, A) as

U = UR~~.(r , 4~, A) + ~U(r, •, A) ( 3)

where it is understood that a single low-degree truncation of Equation

Cl) is adopted to define U~~~ globally. But instead of attempting to

model “everything else” as a single global series, we shall determine

a global family of locally valid disturbance functions to model i~U and

its gradient. Since the local equations must model only the gravity

undulations (in addition to U~~~) in a specific local volume, it is

reasonable to anticipate significantly more compact expressions than a

single global expansion of comparable local accuracy. This is, of course,

the thesis of the finite—element approach.

Having decided to pursue the finite—element approach, it is necessary

to maJce several important decisions; it is necessary to define 1) what

portion of the geopotential is to be approximated as ~U in Equation (3) ,

2) the specific mathematical structure to use as local approximations of

t~U and its gradient, 3) the size of the finite elements, 4) the procedure

to be used in determining numerical values for coefficients in the local

approximations, 5) the order of continuity requirements between adjacent

approximations across their mutual boundaries of validity, and 6)

procedures to evaluate the validity of the finite-element model.

These decisions are coupled and affect the accuracy and eff iciency

of the resulting finite—element model in a complicated way. Analytical

attempts to resolve these issues a priori proved unsuccessful . Therefore ,

guided by intuition, we have developed experimental software and , based

upon systentati~ally collected empirical data , we arrived at a prototype

finite—element model of the geopotential. We present several approaches

for constructing gravitational finite-element models and suninarize

numerical experiments with them in the following .

7



5.0 WEIGHTING FUNCTION APPROACH TO PIECEWISE CONTINUOUS APPROXIMATION

Recent papers61° document the theoretical development and application

of a versatile piecewise continuous approximation technique. This

weighting function approach determines an arbitrarily large f amily of

locally valid functions which join with rigorous piecewise continuity

through any prescribed order of partial differentiation. As applied to

the approximation of a three variable function, F(X1, X2, X3) each final
• local approximation F(X

1
, X2, X3) is defined as a weighted average of

~~~~~~~~ 

preliminary local approximations {fi~k
(X
l~ 

X2, X3
); i,j,k, = o ,l}

1 1 1
F (X 1,X2 ,X 3

) = z ~ ~ W i k (X l ,X2 ,X 3
) f i jk l~

X2 l X 3) (4)
i=O j =O k 0

The eight preliminary approximations may have arbitrary mathematical

structure (a most flexible and powerful feature of this approach) but

must be determined in such a fashion that their respective centroids of

validity lie at the eight vertices of a parallelopiped (in X1
,X
2
,X
3
,space),

which defines the volume in which the final local approximation ~(X 1,X21X 3
)

is valid. The form of the weight functions can be selected6’7 to

guarantee that F and its similarly determined adjacent approximations

are continuous across their mutual boundaries of validity; the order of

partial differentiation to which continuity is desired is controlled by
• selecting appropriate weight functions. Specifically , Table 1. gives

the weight function W111(X1
,X
2
,X
3
) for various orders of continuity.~

The remaining seven weight functions are obtained by reflecting

W111(X1
, X2, X3

) as

W000
(X
1
,X
2
,X
3
) = W

111(l 
— X

1
, 1 — X2, 1 — X 3

) (5a)

W001
(X
1
,X21X3

) = W
111

(l — X
1

, 1 — X2, X3
) (Sb)

• W010
(X
1
,X
2
,X
3
) = w

111
(l — X

1
, X2

, 1 — X
3
) (5c)

tUnder the assumption that Xj, X2, X~ are nondintensionnl local coordinates
with (X1 = i, X2 = j ,  X3 k) locating the eight vertices of the unit
cube of validity of F(X1, X2, X3) .
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Order of
Continuity 1x

m Wlll~ l,x2,x3

0 X
1x2x3

1 [X~ (3 — 2X
1fl 

[x~ (3 — 2X)] [X~(3 
— 2X

3
)]

2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3 4 2 3.11 X (35 — 84X. + 70X. — 20Xj1i=l i 1 1 2.

3 4 2 3.11 X .(35 — 84X. + 70X . — 20X.)]
2. 1 1

~~~~(2m +iH (~l)
in 

~L ~ (;) 
X~
2m
~~~~~1)

Table 1 Weight Function W
111 for Various Orders of Continuity.
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W1Q0 (X~ , X
2 1 X

3
) = W

111
(X
1
, 1 — X

2
, 1 — X

3
) (Sd)

W
011

(x
1
,X
2
,X
3
) = W

111
(l — X

1, X2 , X 3
) ( Se)

W101(X1
,X
2
,X
3
) = W

111
(X 1, 1 — X2 , X 3

) ( S f)

W
110

(X
1
,X21 X3

) = W
111

(X
1, X2, 1 

— X 3) (Sg)

The weight functions are positive and satisfy the constraint that

i=0 j=0 k=O ij k 1 ~~~ X3
) = 1 (6)

They may be interpreted geometrically as follows: The maximum value W ijk
is’ unity which occurs at X1 = i , X 2 = ~~~, X 3 = k; the surfaces of constant

• weight are spherical in the vicinity of (i,j,k) but become increasingly

angular until the surface of zero weight is the walls of the cube

opposite to i,j,k. Thus , in Equation (4), W .k causes the preliminary
• local approximation 

~ • k  to dominate ~ in the vicinity of 
~~~ k ’

~ 
centroid

of validity, but has no effect  on ~ (in value or first m partial deri-

vatives) along the opposite cell boundary . The key to piecewise continu-

ity is the fact that F is completely defined (on each of the six boundary

“walls”) by the four preliminary approximations whose centroids are the

vertices of the respective walls. Since the four preliminary approxi-

mations (defining any given cell wall) are shared by adjacent final

approximations, it is clear that piecewise continuity is assured.

10
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6.0 LOCAL GRAVITY APPROXIMATIONS VIA TAYLOR’S SERIES

Given an a priori-determined global gravity model (e.g., a spherical

harmonic series), perhaps the most obvious strategy of generating local

approximations is by Taylor’s series. The disturbance potential and its

gradient can be locally approximated as the truncated Taylor ’s series

of three variables

AG. .k(r,~~
,A ) AG(r.

~~~
., A

k
) + 

n~ l ~ 
~ G1J.~X~~X~~X~ (7)

where ( AU f A u ~~)

AG. - ~J —l/r(~~(AU)/~ ~) ~ E )  AG3 ~ (8)
ij k 

~~l/r cos ~ (~~(AU)/3 A) ( ‘
~

L ~ (A U ) / ~ r ) L~~R

(Ar) I(A~)
J(AA) K 

_______  1~
j 

(9)
I!J!K! ~ I J K (

er ~ ~A ‘

~ 

AG
E1 AGL R (r , t~ , A )  = (r.,

~~
.IA k

)

K = n - I - J , M = order of the local Taylor ’s series. 
~~~~~~~~ 

= an

arbitrary local expansion point (which is the centroid of validity of

Equation ( 7 ) ] ,  (2Ar , 2A~~, 2 AA ) = dimensions of the region of validity of

Equation (7) , and (X 1,X2 , X 3
) ~~{(r — r.)/Ar, (c ~ — ~.)/A4~, (A — A k ) / A A }  =

nondimensional local coordinates.

The partial derivatives Equation (9) can be regorously derived from

the parent global model of AU. Reference 14 gives analytical expressions

for computation of the partial derivatives specifically for the case

that the parent global model of AU is a spherical harmonic series. It

should be pointed out that specific numerical values for the elements

of G1~~ are computed a priori and stored ; for centroids of validity

distributed over the (r,4,X) space according to some specified pattern.

In using (say) the foregoing weighting function formulation to

compute local disturbance acceleration (from a piecewise continuous,
11
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finite—element model), the appropriate, previously computed, set of

G1~~ coefficients are employed to compute Equation (7) as preliminary

local approximations for substitution into

~ 

U(r~cP~A)
’
~) I ~~~~~~~~~~ 

~
)

) G5 (~~,~~, A) (
~ ) — l/ r ( 3 U

~~ F/3$) ~ 
+

G~~(r ,4 , A ) 

~

‘ ‘) h r  cos 
~

( aU
~~ F/aA) i=0 j=0 k=0 ijk

L 3U~~~/3r J
(X l, X21X3)AG..k (r ,t , A ) (10)

where

= Cr — r0)/Ar, X2 = (41 — 410) /A41, X 3 
= (A — X 0 ) / A A

are nondimensional local coordinates and (r
0,410,A0

) are coordinates of

the “lower left corner” of Equation (l)’s region of validity: { o  < X1 ~
i = l,2,3}.

The gravity representation (10) leads to a nonuniform distribution

of errors over the cell volume. Observe that the approximations become¶ exact as the displacement of the evaluation point from a centroid of

validity (expansion point) decreases to zero; but more generally , the

• f inal approximation is the average of eight approximations containing

errors . This observation led us to expect from the outset that Taylor’s

series would not be the optimum choice of preliminary approximation
• functions; one should seek preliminary approximations with more uniform

error distributions.

12
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• 7.0 LOCAL GRAVITY APPROXIMATION VIA LEAST SQUARES APPROXIMATIONS

As an alternative to the local Taylor ’s series [Equation (7)], we

consider as the local model of disturbance gravity

• 

• f::~~~
= 
~~~ ~~~ 

~~

f

~~~~~~~
FIJK(Xl~

X2~
X3
) (11)

• R1~~

where K = n - I - J .

(F
000

;F
001,F010 ,F1000

;F002 ,F011 ,F101 ,F020 ,F110 ,F200 ; . . .  ,FMoo
(X

l~
X

2~
X3

) ]

are a suitable set of linearly independent basis functions, and

{ u — [U000U001U010U100 . . .U~~ 0 ] ,

( } TS — (S
000S001S010S100 . . .SMOO ] ,

{E} T 
= (E 000EOO1EO1OE100 ...EMOO ] ,

(RIT = [R
000

R
OO1

R
O1O

R100
...R

MOO].

are coefficients determined so that the sum square residual error (between

Equation (11) and the parent model of disturbance gravity) is minimized.

• In particular, if the least square coefficient estimates are

determined by fitting Equation (11) to local evaluations of a global

gravity model, then the coefficient estimates are given by the normal
11equations

{u} = (B ] {A U
c

}

{s} = (B 1{AGS c}

fE )  = (B]{AGE
c
}

r {R} = [B1 (AGR
c

} (12)

where

(B] = ((ATWA) IATWI (13)

13
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• F
000

(X
11

,X
21
,X31

) F
100

(X
11

,X
21

,X31
) • • •  F

MOO
(Xhl ,X21D X31

)

F
000

(X
12
,X
22

,X
32
) F

100
(X
12,

X
221X32

) 
~~
•• F

Moo
(X
l2

,X
22~

X
32
)

(A]

F
000 1

,X2 ,X
3
) F

100
(X
1

,X
2

,X
3
) F

MOO
(X
l~~

X
2 IX3

)

(WI = [w . . ]  = an n x n positive definite weight matrix.

{Au
c
}T = {Au(x

11
,x
21

,x31) AU (x
12

,X22
,X32

)... AU(X
1

,X
2

,X2
)}

{AGS
C
}T = {AG

3
(X
11

,X
21
X 

3i~ 
AG
3
(X121X221X32

)... AG
5
(X
1

,X
2

,x
3
)}

(15)
• {A GE

c
}T = {AG

E(xll,x21,x3l
) AG

E
(Xl2,x22,X32)... AGE

(X
1 IX2 ?X3

)}

{A GR
c
}T = {AG

R(xll
,x21

,x3l
) AG

R(Xl2,X22,X32) AGR(Xl ?X2~~
X3n

)}

are local evaluations of disturbance potential and acceleration (from a

parent, global gravity model) at the set of points

r~ 
- r. - 41 . A~ - Ak(X

1~ ,X21,X32
) = Ar ; £ = 1,2,... ,n (16)

• in the vicinity of the centroid of validity (r.,41.,Ak). It has been

found advantageous to generate the data (15) on a uniform grid in the

local (X
l~

,X2L,X~~
) space; providing this grid is held identical for all

• cells, then Equations (13) and (14) can be computed only once and simply

reused in (12) to operate upon appropriate local data to generate the
• entire global set of local coefficients for use in Equation (11).

An infinity of choices exist for the basis functions in (11); after

some experimentation, we selected the set of all chebyshev polynomial

products up to Mth order (Table 2) as

1FQ00
~~ C 1

J 
P’
001 ( = 

j T1(X3) 
~

F010 ( ) T1(X2) (
L F100J LTl~ lJ

14
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n t (X) (dt /dX)

0 1 0

1 X

2 2X2 — l  4X

3 4X3 — 3 X  l2X2 — 3

Recursions :

$ t (X) 2X t~_1(X) 
— t~~2(X) —1 < x < 1, n > 2

(dt /dX) 2t~_1(X) + 2X 
dt

1 
- 

dt 2 
n > 3

Shifted Chebyshev polynomials:

T (Y) = t~ (2Y 
- 1) 0 < Y < 1

I

Table 2 chebyshev Polynomials.
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8.0 NUME RICAL TRADEOFF STUDIES

To gather the empirical evidence upon which to base selections from

the many alternatives implicit in the above developments, a versatile

computer software systemt has been developed. Figure 1 summarizes a

portion of a tradeoff study whose objective is to help decide whether

Taylor ’s series or locally fit Chebyshev polynomials should be employed

as local gravity approximations. The RMS of the acceleration error norm

was determined by computing the variance of a directly evaluated accelera-

tion error sample. In this case, the sample consisted of 216 uniformly

spaced error calculation points over each finite element. Using the

RNS acceleration error norm as an accuracy criterion (for a given order

of the local approximation) it is clear that the locally fit Chebyshev
• polynomials are superior to equal order Taylor’s series. The very

nonuniform error distribution characteristic of truncated Taylor ’s series

(zero error at expansion point, but rapidly degrading away from that

point) is partially compensated for in the weighting function approach

by the bell shaped weights and redundancy of the method. However, the

RMS of the locally fit Chebyshev polynomials have been found consistently

superior for low order approximations (< 4), usually by an order of

magnitude. Consideration of other goodness of fit criteria (smallness of

mean error, smallness of maximum error, near Gaussian residuals, etc.),

support the choice of locally fit  polynomials over local Taylor ’s series.

Based upon the numerical experiments done thus far, the following

tentative conclusions have been drawn:

1) Rigorous piecewise continuity of the local approximations,
• while desireable from conceptual and esthetic viewpoints, appears

weakly justified using the small RMS error criterion. The weighted

average of eight local approximations is consistently superior to

any of the original approximations, but often not sufficiently

superior to justify the 8:1 redundancy of the method.

tThe FORTRM IV language has been used exclusively , all computation has
been carried out using the University of Virginia ’s Control Data
Corporation CYBER 172 computer system.
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rr A A Looal M~~ Order Taylor ’s Series
a~~roxiJMtia~t of diat~mben~ gravity
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~~~~l0 A

A

~~ ~~~~~~~~

.
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2 3 4 5

Order (M) of the Local Approximation
[Cell Size: 5°x5°xO.2R Located on the Equator]

Figure 1 Order of Local Approximations vs RMS Acceleration 4

Approximation Error. C = (spherical harmonic model)
minus (finite—element acceleration model).
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2) By fixing the order of the local approximations and selecting

a specific accuracy criterion, straightforward variation in the

finite-element dimensions leads quickly to the family of maximum

volume elements consistent with these two constraints. Global

numerical tests support the conclusion that global decisions can

usually be reliably made based upon local numerical experiments, so

long as the local experiments include a full range of latitude

variation.

3) Analysis of repeated statistical samples of acceleration errors,

(between local Chebyshev approximations and a degree 23 global

spherical harmonic series) taken from various finite elements support

the following conclusions regarding distribution of approximation

errors: (a) The mean acceleration error has always been found to

be at least one order of magnitude less than the sample RMS accelera-

tion error, providing the sample was taken from at least 200 sample

points located either on a uniform grid or randomly located within

the element; and (b) The maximum acceleration error has always been

found to be less than 4 times the sample RMS acceleration error ,

with the same sample restrictions as (3a).
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9.0 PROTOTYPE FINITE-ELEMENT MODEL OF THE GEOPOTENTIAL

Based upon insight gained in parametric studies with the experimental

sof tware , a prototype finite—element model has been developed. The global

finite model has the following structure:

r U(r,41,A) ~%

) ~~~~ 

tJ(r ,41 ,A )~)
t o  (r,41,A ) I G (r,41,A) l N n n—i ) S I
1 

s 
= 

S 
+ ‘~~~ 

~
TI
(X
l
)TJ(X2)TK

(X
3
)

~ 
G~ (r,41,A ) 1 1 GE(r ,41,A) 

~

‘ n=O 1=0 J 0  ~ E1~~ 
~L0R~4 11~J (~

GR(r~
41,A)JREF LR IJKJ

(18)

where

U
REF

(r,41,A) ~~ (1 + C~ (j2
p0(sin 4 1 ) ]  (19)

1 3U REF -GM O R 2 d 0 .
GsRE~

, = ‘~~~~ C2 ~ ~~~ (P
2

(si.n 4 1) ]  (20)

= 
1 aUREF (21)

REF r cos~~

= 
REF 

= — (1 + 3C~ (•~ )2 P~ (sin 41)] (22)

and U1~~~, S~~ 1(~ E1,~~ , R1~~ are the appropriate set of a priori computed

local coefficients; computed according to Equations (12-14) with

F1,~~(X1
,X
2,
X
3
) = T

I(Xl
)T
J
(X
2
)T
K
(X
3
)

to accurately replace the spherical harmonic model12 of disturbance
gravity

~~~ 23 n
R

n m mAU = -~~
- P (sin 41) (C~ cos mA + S sin
n 2  m=l (24)

and its gradient.

Figure 2 is a projection of a global contour map of the radial

disturbance acceleration (3(AU)/~r] on the earth ’s surface. To fully

define the procedure for constructing the finite elements, the following

decisions were made: 1) develop a finite—element model for the spherical

20
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shell within 1.2 earth radii; 2) adjust the finite—element size and/or p
the order of the local approximation so that the acceleration approxi-

mation errors enter (at worst) in the seventh significant figure; and

3) fix the order of the local approximations at N = 3 [in Equation (19)].

Holding the radial dimension fixed at 0.2 R and adjusting the

longitude by latitude dimensions to maintain requirement (2) led to the

set of 1500 finite-elements whose bases are shown in the flat projection

of Figure 3. The acceleration error residual norm

AG = ((GSH - GFE)
T(GSH — GFE)]½ (25)

where

GSH = GE (26)

GR spherical harmonic series model

Gs 1
OFE = G

E 
(27)

O
R] finite—element model

were computed as were its RilE and maximum value for N = 23 in Equations

• (1) and (2). We found that

N
AG = ~ AG . = 0.00000003 m/sec2

i=l

= 

[~~~ 

~~ AG i
2] 

= 0.000002 rn/sec2

AG = 0.000008 rn/sec2

N 360 x 91 = 32760 sample points (1°xl° grid in the
• Northern Hemisphere)

These errors are the worst case errors arising generally in the most
• anomalous region near the earth’s surface; analogous statistical analyses

reveal the magnitude of the gravity modeling errors on the surface of a

1.03 R sphere are about one half of the above values while the errors

are reduced by order of magnitude on the surface of the 1.2 R sphere.
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10.0 TRAJECTORY/ORBIT INTEGRATION

This level of precision has been found to be satisfactory for inte-

gration of most missile trajectories and satellite orbits; typical single

revolution position integration errors have been found to be on the order

of 0—25 m. Clearly , greater precision can be easily achieved , if desired,

by decreasing the finite-element size (thereby increasing the number of

elements), or by increasing the order of local approximations (thereby

decreasing the computational efficiency of the method).

The computational speed of the finite-element model versus typical

spherical harmonic recursion3 favors the finite—element model of Equation

(19) by better than an order of magnitude. The computational picture

is complicated , however, by virture of the fact that random access

retrieval of previously stored coefficient subsets is necessary. In

this case, each component of acceleration requires a total of (20) (1500)

30 ,000 coefficients to define the entire global family of gravity functions

(although only twenty are used in each element). Since the elements are

large (hundreds of miles) compared to small errors (tens of miles)

associated with two body or other simplified dynamic extrapolations,

simple logic can be devised to bring into central memory several local

sets of coefficients before they are needed and thereby hold the lost

time during random access to a minimum. For the ballistic missile problem ,

• most of the acceleration evaluations occur in two local regions (i.e.,

during atmospheric powered flight, and during re-entry); thus hundreds

of acceleration evaluations are likely within a single finite element.

Even if no systematic pre—access scheme is used and the local coefficients

are accessed each time acceleration is required , the finite—element

approach still maintains an order of magnitude advantage on the UVA CYBER

172 computer system.

I-

24

U _ __ _ __ __ _ __ __ _ __ _ _  _ _ _

- 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~ ~~~~



11.0 CONCLUSIONS

The finite-element approach to modeling the geopotential has been

studied analytically and numerically. Many degrees of freedom exist in

our approach to this problem. The specific finite-element model developed

and discussed herein is not put forth as the optimal computational model

of the geopotential. Rather, we believe the prototype finite model to

be a representative finite-element geopotential model which will probably

be improved upon in future refinements of our approach. The computational

speed advantages over spherical harmonic expansions is clear, however

(prim~.riiy because a 23rd order expansion is locally replaced by a 3rd

order expansion). The ultimate computational speed advantage depends

upon the number of random accesses required to maintain the appropriate

local coefficients in core memory. For a given trajectory/orbit integra-

tion, simulations done to date support the conclusion that an order of

magnitude savings is achieved.
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