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PREFACE
This document is designed as a companion document to AFWL-TR-75-165,

SIGANAL: A MODULAR SIGNAL ANALYSIS PROGRAM developed by Mr Ramon A. Tenorio,

Computational Services Division, Air Force Weapons Laboratory. Mr Tenorio’s
programs greatly streamlined and consequently simplified hardware data analysis
procedures at the Laboratory. This software immeasurably increased the capa-
bility for application of sophisticated analysis procedures to our data analysis.
Aided by this new capability and strongly encouraged by Mr Tenorio, the author
set himself to the task of demonstrating the utility and interpretation of
modern random data analysis capability afforded by the new software.

My thanks to Tony Tenorio for his strong encouragement and his uniquely
organized, efficiently and easily used analysis package. His efforts in pro-
gramming several of the specialized routines used in the simulation analysis is
gratefully acknowledged.

Many hours of interesting and enligntening discussions with Dr Paul Merritt
have clarified my understanding of signal coherence analysis. I thank him for

his insight.
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SECTION I
INTRODUCTION AND GUIDE

This guide is especially tailored for use as a companion document to SIGANAL:
A Modular Signal Analysis Program (reference 1). SIGANAL is a user's guide to a
comprehensive package of software routines for signal analysis applications.
These routines, coded in FORTRAN IV, process a user specified sequence of data
manipulation routines which operate on digitized data. Presently coded routines
facilitate calculation of signal statistics including means, standard deviations,
signal value probability density and distribution functions, Fourier transforms
(discrete), power and cross-spectral densities, coherence functions and 1inear
system transfer functions. This guide demonstrates the usefulness to which these
routines can be applied in extracting pertinent signal information.

1 PURPOSE OF SIGNAL ANALYSIS

Signals embody and represent characteristics of the systems which generate
them. Signals generated by sensors, for example, convey basic information about
the process being measured. The signal information, conveyed typically as an eiec-
tric voitage or current, represents some physical quantity such as position, veloc-
ity, acceleration, force, pressure, temperature, luminosity, brightness, field
strength, fluid flow, volume, weight, length, density, charge, or any of innumer-
able other quantities. In some cases, the analyst is concerned only with static
measurements wherein a single number adequately represents the desired quantity.
That the gravitational acceleration on the earth's surface is 9.81 meters/sec? is
sufficiently accurate for almost everyone except the experimental and the gravity
wave physicists. We shall not be concerned with these constant signals. We are
interested in fluctuating signals representing time-varying and dynamic system
variables. Fourier analysis and other transform techniques have been develcped
to represent these signals in a frequency domain basis particularly suitable for
calculating the response of 1inear dynamics systems or analyzing requirements of
communication channels. Techniques of stochastic signal analysis reviewed in this
guide are suitable for these purposes; however, their true utility resides in in-
terpretation of randomly fluctuating signals which arise in phenomena where future
events are not deterministically predictable from past events. These signals
occur in statistical mechanics, quantum mechanics, turbulence and noise theories.
This guide defines parametrizations of stochastic process and descriptive param-
eters which may be measured or estimated.

9
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We adopt the philosophy that power-spectral densities (PSD's) are the most
convenient format for characterizing stochastic processes. We emphasize this
approach throughout. It has evolved from our experience that linear dynamic sys-
tems described by differential equations have input-output properties that are
most readily characterized and viewed as frequency domain transfer functions
rather than convolution integrals. Frequency domain characterizations of both
system forcing functions and system transfer functions provide ready visualiza-
tion of output signal characteristics (in the frequency domain). By our emphasis
on the power-spectral density, we devote little attention to discussion of auto-
correlation functions other than to define them and to derive their relationship
with power spectra. Our preference is not universal.

2 USER'S GUIDE TO SIGNAL ANALYSIS

Concepts essential to the understanding and interpretation of practical
stochastic signal analysis procedures and results are presented in Sections II
and III. Section IV concludes these developments with the presentation, interpre-
tation and comment on the use of SIGANAL routines to analyze random data synthe-
sized by a numerically simulated dynamical system excited by random disturbance
phenomena.

Basic mathematical foundations defining and relating properties of stochastic
processes are presented in Section II. Introductory probability theory is briefly
developed and expanded to define stochastic processes. Probability concepts are
generalized to stochastic process characterizations by autocorrelation functions
and power spectral densities. Attention is restricted to ergodic processes which
most practical stochastic processes approximate. The mathematical basis for calcu-
lating PSD's, cross-spectral densities, coherence functions, and transfer function
estimates is developed.

In Section III, the practical aspects of calculating stochastic process char-
acterizations are reviewed. These aspects include data sampling, finite duration
observation intervals, and confidence bounds. The Fast Fourier Transform technique
for efficiently calculating signal spectra is introduced and specific calcuiation
formulas presented. These topics review technique as implemented in the SIGANAL
code, and accent the proper application of analysis procedures and interpretation.

Section IV {s devoted to the development of a simple numerical signal analysis
problem which exemplifies the basic interpretation principles and augments our
intuition as to what to expect in the way of results. A first order control

10
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system excited by error sensor noise and an exponentially correlated disturbance
process is simulated. Theoretical power spectra and coherence functions are
calculated from the known system transfer functions and the white noise distur-
bance processes. These "expected" results are compared to the quantities calcu-
lated with the signal analysis routines.

Readers having no prior familiarity with data analysis should proceed sequen-
tially from Section II through Section IV and should augment his reading with
material in the references. Those more knowledgeable with signal analysis pro-
cedures should scan Section II to familiarize themselves with notation (see also
the nomenclature) and then may study the numerical example, referring back to
Section III as required for reference.
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SECTION II
PROBABILITY AND STOCHASTIC PROCESSES

1 INTRODUCTION

A detailed exposition of probability, stochastic processes, and random data
analysis as presented in the references (2, 3, 4) is beyond the scope and intent
of this guide. We do present the basic definitions and concepts required for an
introductory understanding of these subjects, particularly in their application
toward analyzing random effects observed in measurements. First, the notions of
random effects are introduced to explain phenomena which deterministic system
concepts cannot predict. So motivated, we characterize stochastic processes and
how they interact with our systems.

2 BASIC CONCEPTS: RANDOMNESS

The basic notion of random data or random signals stems from our inability
to deterministically characterize signals or phenomena we observe. To determin-
istically characterize a signal, we mean that we can specify explicity signal
values as a function of time in units of voltage, amperage, pressure or some
other appropriate unit. For example, we know that a voltage V of 10 volts im-
pressed upon a 1 uf capacitor in parallel with a 1 Ma resistor will decay as
V(t) =10 e"t once the voltage source is removed. The voltage has been expressed
as a well-known mathematical function of time. Another important aspect of the
example is that we obtain the same result whenever the experiment is repeated.

Not all experiments are precisely repeatable. The radio interference from
an automotive ignition system does not duplicate with precisely the same output
radio signal. Other experiments involving fluid turbulence, electronic noise and
molecular or atomic collisions, for example, result in phenomena which cannot be
precisely predicted. These phenomena are random because they cannot be precisely
specified. In subsequent sections, statistical characterizations of these pro-
cesses shall be defined. These characterizations shall serve as a basis for de-
scribing the response of systems having such random excitations.

Development of analysis definitions and techniques is required for an under-
standing of the response of dynamic systems to random excitations. Application
of these techniques is often essential for proper system design and system per-
formance analysis. Just as a system designer can compute precisely the control
system response to a deterministic input (e.g., step function, sinusoid,

12




AT RS S e St . =

AFWL-TR-76-193

exponential) we wish to be able to compute the response, on the average, to ran-
dom inputs. Further, we must know the average variation by which one particular
response may differ from the average response. These data allow specification of
system sensors and actuators so that they will not be saturated by the noises and
disturbances affecting the system. Statistical characterizations of random dis-
turbances and their effect on dynamical systems also allow the designer to com-
pute system accuracy or performance bounds for those cases in which random dis-
turbances are the fundamental system limitations. With this motivation, we begin
with a discussion of elementary probability theory. A comprehensive treatment is
available in Papoulis (reference 4).

An experiment whose outcome cannot be predicted is said to be random. The
result of a coin toss 1s therefore random since we cannot predict in advance
whether the result wili be HEADS or TAILS. There are some important aspects of
this experiment, however, that can be described. For a fair coin, we would ex-
pect that the result HEADS is just as 1ikely as the result TAILS. Intuitively
then, we would expect that {f the coin were tossed N times, HEADS would come up
approximately N/2 times (i.e., Ny = N/2) and TAILS would come up Np = N/2 times.
The ratio NH/N is called the relative frequency of the outcome HEADS in the coin
toss experiment. We define the probability of the event HEADS as its relative
frequency in the 1imit as the number of coin tosses approaches infinity. Notation-
ally,

P ({HEADS}) = 1im Ny/N

Nebo
(2-1)

Certain properties of the cein toss experiment are common to all random ex-
periments. These properties are the basis of probability theory. Each experiment
has a set of mutually exclusive results or outcomes. To each outcome we assign a
positive number (possibly zero) representing the probability (relative frequency)
that the outcome will occur if the experiment {is repeated. Sets of outcome we
call events and to each event we assign a probability equal to the sum of the
component outcome probabilities. The event containing all possible outcomes has

probability P = 1. These concepts are fully developed in reference 4, Chapter 2,
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3 RANDOM VARIABLES

To each outcome of an experiment we may also assign an arbitrary number
called a random number. The functional relationship between the number x and the
events ¢ is denoted x(z) and the function x is called a random variable, provided
that 1t satisfies certain general conditions. Basically these conditions entail
the requirement that the set {x =<y} corresponds to a set of experimental out-
comes (i.e., an event). In our coin toss experiment, for example, we arbitrarily
define a random variable as the rule which assigns value 1 to the outcome HEADS
and value 0 to the outcome TAILS. We could have just as easily assigned the value
1/2 to HEADS and 1/2 to TAILS, as the particular values assigned are not of impor-
tance. A key concept of the random variable is that there exists a "one-to-one"
correspondence between experimental events and sets of random numbers. Thus
{x = 1} corresponds to the events HEADS and {x = 0}, or more generally {x < 1},
corresponds to the event TAILS. In each case the random number associated with
each outcome is contained in the given set of x values.

Since each set of random numbers is associated with an event of the under-
lying probability experiment, we associate with each set the properties of the
underlying events. Most importantly, we associate with each set of random num-
bers the probability P of the associated event. The sets {x =y} play a particu-
larly important role. Any set of random variables associated with an event can
be expressed in terms of the basic sets {x =y} related by set operators union,
intersection and complement. Properties of general sets are then obtained in
terms of properties of the basic component sets. Important properties of these
random variable sets are presented.

The probability distribution function is defined as the probability of the
event {x =<y} and written

F(y) = P({x =y1) (2-2)

The probability distribution function for the random variable defined on the coin
tossing experiment is plotted in figure 1.

The probability density function, pdf, is defined as the derivative of the
probabi1ity distribution function. The density function for the coin toss experi-
ment is plotted in figure 2. Notationally,

fly) = g"y‘ Fly) (2-3)
14
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Ny

0 1 -

Figure 1. Coin Toss Experiment Probability
Distribution Function.

f(y)

Figure 2. Coin Toss Experiment Probability
Density Function.

The random variable associated with the coin tossing experiment is a discrete
random variable since all events correspond to at most a countable number of spe-
cific random variable values. Discrete random variables have pdf's which are
collections of impulse functions.

More generally an experiment may have a continuum of possible outcomes. The
probabi1ity density function for these random variables is a continuous function
except at possibly a countable number of points. The pdf for a uniformly dis-
tributed random variable 1s 1llustrated in figure 3. The corresponding probabil-
ity distribution function 1s plotted in figure 4. This random variable is uni-
formly distributed since each value is equally likely to occur. Suppose we wish
to know the probability that {y; < x <y,}. By definition we know that

15
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‘f(y)

0 1 >y

Figure 3. Uniformly Distributed Random
variable - pdf.

Arcy)
4
0 1 >

Figure 4. Uniformly Distributed Random Variable -
Probability Distribution Function.

Fly;) = P ({x<y:}) (2-4)
Flyz) = P (Ix=y,}) (2-5)

Because the event {x=y,} includes the event {x=y;} and since {y; < x=y,}
equals {x< y,} less {x< y,}, it follows that

P(ly; = x=y,}) = P(Ix=y,}) - P({x=y;})

= F(y2) = F(y1)

16
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By integration of equation (2-3) we have that

| y
| F(y) -[ f(w)dw
- - (2-7)
|
3 Integral properties and equations (2-6) and (2-7) allow us to express equation
(2-6) as
2
P({ly; <x=y,}) = f(w)dw
N (2-8)

and for the case that y, = y, +ay, oy being a differential quantity, we have
P(lys<x=y, +y}) = f(y;) oy (2-9)

Thus f(y) represents a differential probability since it can also be defined as
the 1imit

P(ly; < x <y; + ay})
fly1) = lim iy
Ay - 0 (2-10)

The properties of the probability distribution and density functions ex-
E | pressed 1n equations (2-4) through (2-10) are true in general. Additional proper-
'L ‘ ties are presénted in reference 3, Chapter 2, and reference 4, Chapter 4. For the uniformp
] density, f(y) 1s a constant for 0 <y < 1 so that by equation (2-10) the probabil-
ity of any differential interval of random numbers is the same. That is, each
, differential interval is equally 1ikely or has probability zero if the interval
3 falls outside [0,1].

The normal, chi-square, binominal, beta, F-distribution and student's t-
distribution are among those encountered in practice. We Timit our attention to
*he normal and the chi-square distributions. These distributions play an impor-
. tant role in random data analysis. The normal distribution is particularly impor-
tant in random variable theory since any random variable which is the sum of K
identically distributed independent random variables has a density function that

17
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: approaches a normal distribution as K increases. This result is guaranteed by

; the central 1imit theorem (reference 5). The distribution and density functions
| for a normally distributed random variable are plotted in figures 5 and 6, re-
spectively. The normal density function is written:

TR Ty

| fly) = —t= exp [-172(¥2)7]

AF(y)

(2-11)

T T Y YT >

p-c B pec

? Figure 5. Normal Random Variable Probability
Distribution Function.

Aty

PRI
Q
)
o

e RSENG <,

AT K pro Y

Figure 6. Normal Random Variable Probability
Density Function.

ol B o o

E The density function 1s completely specified by the parameters u and . The
plausibility of the central 1imit theorem is demonstrated in figure 7 in which
density functions for the function "K equal to the normalized sum of uniformly
distributed independent random variables are plotted.

18
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Also plotted in figure 7 1s a normal density function. Observe that the density
function for NK approaches the normal density as K increases.

4  MEANS AND MOMENTS

Except for a few special cases, it is usually inconvenient or mathematically
cumbersome to characterize random variables by specifying their probability dens-
ity or probability distribution functions. These functions can be difficult to
specify whenever they are not expressible in terms of known or tabulated functions
as 1s done 1n equatfon (2-11). The pdf totally characterizes the random variable.
An alternative approach to completely characterizing the random variable through
its probability density function 1s to examine exactly what properties of the ran-
dom variable we are interested in. Then we partially characterize the random
varifable in terms of parameterizations of these useful properties. This approach
is exemplified through the following definitions and illustrative examples.

19

T T e 1 7 O S T P P T 08 ¥y e £ oA =




AFWL-TR-76~193

Two quantities are typically of most interest in the investigation of random
phenomena. A primary quantity of interest is the mean or average value of the
random variable. That is, if we were to observe independent repetitions of the
same experiment, the numerical average of these observations is the single most
important quantity for us to compute. The second most important quantity is the
dispersion or spread of the observations about the mean value. These concepts
are quantified as follows.

We define the expectation operator, denoted £[-], as

El-1 =f [«] f(y) dy
i (2-13)

where the term within the brackets is a specified function of the random variable
y. We interpret the expectation operator as evaluating the average value of the
function upon which it operates. The average, of course, is with respect to the
random variable and the underlying probability space upon which it is defined.
Let us examine this important concept from another point of view. The average
value of any quantity is simply the sum (integral) over all possible values that
the quantity may assume of a product formed as a value multiplied by the proba-
bility that the particular value is assumed. Notationally

Average (g) =[ g » P({g <x= g + dg})
- (2-14)

Application of'equation (2-10) allows us to re-express equation (2-14) as

Average (g) =f g f(g) dg

: - (2-15)
We now realize that equation (2-13) is simply a variation of equation (2-15). The
equations differ in the following respect. The bracketed quantity in equation

(2-13) 1s a function, say g(y), of y. Particular values of g may be obtained by
greatly different values of y. Rather than combining the probabilities of any y

20

P —— — " y y R




AFWL-TR-76-193

which will yleld the specified value g to obtain an equation of the form equation
(2-15), we recognize that we can evaluate the probability density for each y sep-
arately and simply integrate over all possible y values to obtain equation (2-13).
We 11lustrate this with an example.

EXAMPLE 2-1

Suppose we wish to calculate the average of the absolute value of the random
v:;iable y which 1s uniformly distributed in the interval [-1/2,1/2]. We have
that:

1,-1/2=y=1/2
fly) =

0, otherwise
gly) =yl

By direct application of equation (2-13),

Elly =f ly] fly) dy

1/2
-f [yl dy = 1/4

-1/2

A ?df for g i1s obtained by first calculating the probability of the random vari-
able g.

P({x<y<x+ dx}) + P({x <=-y=x+dx}), x>0
P{{x<g=x + dy}) =
0, otherwise

Then by application of equation (2-10) we compute that:

f(g) =2 fly) , g=>0

0 , otherwise

Finally, evaluation of equation (2-15) gives
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AVERAGE (g) =f gf(g) dg

1/2
= f 2g9dg = 1/4
o :

We have obtained the same result by application of equation (2-13) or equation
(2-15). Often in practice we shall find that equation (2-13) 1s easier to evalu-
ate, generally because f(g) may not be readily expressed or as readily calculated
as it is in this example.~ :

The expectation operator provides a basis for defining two sets of quanti-
ties. The gff_moment of the random variable y is defined as

e[v"] =f " fy) dy

(2-16)

The first moment is the mean or average value of the process and is denoted by

"y' The nth central moment is defined as

ells,)"] - f (so0, )" #i)ey

(2-17)

The first central moment 1s always equal to zero. It is of no interest to us.
The second central moment is called the variance of the distribution and is de-
noted by o 2. The square root of the variance is called the standard deviation
of the process. Both the variance and the standard deviation characterize the
dispersion of the distribution about its mean value. The larger the variance or
standard deviation, the more probable it is that we will observe values of the
random variable outside a fixed interval about the mean.

Higher order moments usually are not of as much importance to us as are the
mean and standard deviation of a process. Generally, however, the odd central
moments (1.e., n equal to an odd integer) characterize the skewness or asymmetry
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of the random variable probability density function. Density functions which
satisfy the symmetry condition

f(uy+a) = f(uy-a) , for any a (2-18)

have identically zero odd central moments. The even central moments, 1ike the
second central moment, characterize the dispersion of the distribution. We
11lustrate the calculation of mean and variance with the following example.

EXAMPLE 2-2

Calculate the mean and variance of a normally distributed random variable
with the density expressed in equation (2-11). Explicitly

By =j;’ y aJIZ exp [-1/2 (L;”—)z] dy

Observe that the density function is symmetric about u so that

[ (y=u) f(y) dy = 0

and since the integral of the density function is unity

uf f(y) dy=u=f y fly)dy = uy

Thus the quantity u specified in the normal density function is the mean value of
the distribution. To obtain the variance we note that:

f fy)dy =1

and multiplying both sidzss by o we have explicity:
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r 1/42n exp[—1/2 (.Y%P_)z] dy = ¢

Differentiating this result with respect to o gives
-u)2 -u\4
[ (ot gy [ (222) o =
a’¥2r

and multiplying both sides by o2 gives

[ (y-u)? f(y) dy = o2

Thus the quantity o2 specified in the normal density function is the variance of
the distribution. The normal density function is completely specified in terms

of the mean My and the variance o¢2.

Plots of normal density functions having the same mean and different variances
are presented in figure 8. Observe that a larger variance of the density func-
tion corresponds to a larger dispersion or spread of the density function about

the mean.s

For a given probability experiment, there is no unique random variabis having
real values assigned to each outcome or event of the experiment. Infinitely many
random variables may be defined upon the same experiment. Individually these vari-
ables display the properties discussed in section II.3 and II.4 of this report.
Together, two or more random variables defined upon the same experiment have addi-
tional properties which we shall find useful in our data analysis. Properties of
two or more random variables are defined in the next section.

5 PROPERTIES OF SEVERAL RANDOM VARIABLES

Analogous to equation (2-2) we define the joint probability distribution
function of two random variables as the probability of the event {x=y and w = z}
and is written

F(y,z) = P({x=y and w=12}) (2-19)
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Figure 8. Variance Effects of the Normal Density Function.

Similarly, the joint probability density function is defined as the partial de-
rivative of the joint distribution function with respect to each variable. Nota-
\ tionally,

fly,z) = ayaz Fy.2) (2-20)

The random variables y and z are independent if and only if the joint density
function can be expressed in the form*

fly,z) = fy(y)fz(z) (2-21)

*The subscripts in equation (2-21) distinguish the two density functions fy(y)
for the random variable y and f,(z) for the random variable z. The subscr1pts
have no other significance.
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Independence of two random variables means, practically, that knowledge of
one of the variables does not convey any information regarding the other.

Joint moments and central moments are defined analgous to equations (2-16)
and (2-17) for single random variables. Explicitly, joint moments are defined as
the expectation of the product of integer powers of the random variables and de-
noted

my, =€[v 2] (2-22)

Joint central moments are defined:

Chy =€ [(""y)k ( "“z)z] (2-23)

The order n of these moments is defined as the sum of the subscripts. For example
m;, is a third order moment; C;; is a second order central moment. The second
order central moment C,, is of particular importance in data analysis and is

called the covariance. For fixed variances of the component random variables,

an increase in C,; magnitude corresponds to a greater and greater linear depen-
dence between the two random variables. The linear dependence of two random vari-
ables 1s characterized directly by the correlation coefficient Pyz which is simply
C;1 normalized by the product of the standard deviations of the component processes

C1
p =
T (2-24)

ET————

*The definition of expectation presented in equation (2-13) must be generalized
to the case of two random variables for application to equation (2-22) above.
Explicitly the expanded definition is

;- €l =f f (] f(y,z) dy dz

Expectation means the average with respect to all the component random variables,
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Two random variables are linearly dependent if one of the random variables can
be expressed as a 1inear function of the other plus a third independent random
variable. In the case that no such linear function exists, the two random vari-
ables are linearly independent or uncorrelated. Linearly independent random
variables have identically zero correlation coefficients. Thus from equation
(2-24) we conclude that:

c €[frs) (]

= £lyz] - My = 0 (2-25)

Often equation (2-25) 1is used to define uncorrelated random variables as those
random variables satisfying the condition that

éo[.yz] s uyuz (2-26)

Independent random variables are always uncorrelated since equation (2-26) fol-
Tows directly from equations (2-21) and (2-22).

We explicitly show the important relationships between correlation coeffi-
cients and 1inear dependence of random variables by the following construction.
Assume that random variables y and z with means My and My respectively, and
nonzero variances ¢ 2 and °22 and a correlation coefficient o, are given.

Then we shall show that there exists a random variable w such that

w=y-az, f.e. y=az+w (2-27)
g
a=-L,
i (2-28)
Wy T My T A, (2-29)

o " °y2 [] 4 p§z] (2-30)
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| and

| elfes) (] = e

L | We proceed with the proof of these properties by defining a random variable x

j and then showing that x satisfies all the properties attributed to w in equations
(2-27) through (2-31) above. Because functions of random variables are also ran-
dom variables, we define x as the difference between y and a scalar multiple b of
Z.

| X ﬁy - bz (2-32)

The scalar b is a constant which we conveniently choose so that x satisfies the
desired properties. Clearly, by taking expectations of equation (2-32)

My = My - by, (2-33)

| and subtracting this result from equation (2-32), squaring each side, and again
taking expectations one obtains:

0')2‘ i 6{[(.Y“-l_y) = b(Z-uz)lz}

= i 2 - 2
Ty - 2Ly * b2 o} (2-34)

Now we explicitly evaluate the covariance of x and z and equate it to zero by
appropriate choice of b.

&[{zrng) (eone)] = () [(ny) o(z-w,)]}

& set

from which we obtain:
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b=Cyy/ o2 = o /9, (Cu/cyoz)

(2-36)

Substitution of this result into equation (2-34) and substitution for C,; gives

02 - pz g2

2
% 9y Py Y

% [1-052] (2-37)

Thus making the identification of x with w and b with a and comparing equations
(2-32), (2-36), (2-33), (2-37), and (2-35) with equations (2-27) through (2-31),
respectively, we have completed the desired proof. These observations follow
directly from equations (2-27) through (2-31).

(1)  as the correlation between y and z increases, the variance

2 5 = 2 =
of w, on decreases. For pyz-l, T 0
(i1) Ipyzl =1 since cﬁ must be nonnegative
2 2 2. -
(111) o5 < % and equality holds only if oY 0

(iv) the error in approximating y by a linear function of z is pre-
cisely the variance of w; the correlation coefficient squared
is precisely the power in y attributable to z normalized by the
total power in y. Explicitly,

: ‘8[32 (z-uz)j B azczz
yz B2 2
6[(" “y) ] % (2-38)
(v) Zero correlation between random variables y and z implies that

the 1inearity coefficient a of equation (2-27) is identically
zero and that w = y

(vi) The quantities a, Pyz® My’ and c& are uniquely determined by the
means, variances, and the covariance of the random variables y
and z

29
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The concepts of linear dependence, correlation and joint random variables

and their application to a data analysis problem are demonstrated in the next
example.

EXAMPLE 2-3

Suppose that we wish to estimate the value of an unknown resistance R by
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