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• PREFACE

This document is designed as a companion document to AFWL-TR-75-165,

SIGANAL: A MODULAR SIGNAL ANALYSIS PROGRAM developed by Mr Ramon A. Tenorlo,

Computational Services Division , Air Force Weapons Laboratory. Mr Tenorio’s

programs greatly streamlined and consequently simpl ified hardware data analysis

procedures at the Laboratory. This software immeasurably Increased the capa-

bil .ty for application of sophisticated analysis procedures to our data analysis.

Aided by this new capability and strongly encouraged by Mr Tenorio, the author

set himsel f to the task of demonstrating the utility and Interpretation of

modern random data analysis capability afforded by the new software.

My thanks to Tony Tenorlo for his strong encouragement and his uniquely

organized, efficiently and easily used analysis package. His efforts in pro-

gramming several of the specialized routines used in the simulation analysis Is
a 

gratefully acknowl edged.

Many hours of interesting and enl igntening discussions with Dr Paul Merritt

have clarified my understanding of signal coherence analysis. I thank him for

his Insight.
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SECTION I

INTRODUCTION AND GUIDE

This guide Is especial ly tailored for use as ~ companion document to SIGANAL:

• A Modular Signal Analysis Program (reference 1). SIGA~1AL is a user ’s guide to a
comprehensive package of software routines for signal analysis applications .
These routines, coded in FORTRAN IV , process a user specified sequence of data
manipulation routines which operate on digiti zed data. Presently coded routines

• facilitate calculation of signal stati stics including means , standard deviations ,
signal val ue probability density and distribution functions , Fourier transforms
(discrete), power and cross—spectral densities, coherence functions and linear
system transfer functions. This guide demonstrates the usefulness to which these
routines can be applied in extracting pertinent signal information .

1 PURPOSE OF SIGNAL ANALYSIS

Signals embody and represent characteristics of the systems which generate
them. Signals generated by sensors, for example, convey basic information about
the process being measured. The signal information , conveyed typically as an elec-
tric voltage or current, represents some physical quantity such as position , veloc-
ity, acceleration, force, pressure, temperature, luminosity , brightness , field

• strength, fluid flow, volume , weight, length , density, charge, or any of innumer-
able other quantities . In some cases, the analyst is concerned only with static
measurements wherein a single number adequately represents the desired quantity.
That the gravitational acceleration on the earth ’s surface is 9.81 meters/sec2 Is
suffic iently accurate for almos t everyone except the exper imental and the grav ity
wave physicists. We shall not be concerned with these constant signals. We are
interested in fluctuating signals representing time-varying and dynamic system
variables . Fourier analysis and other transform techniques have been develcped
to represent these si gnals in a frequency domain bas is particularly suitable for
calculating the response of linear dynamics systems or analyzing requirements of
comunication channels. Techniques of stochastic signal analysis reviewed in this
guide are suitable for these purposes ; however , their true utility resides in in-
terpretation of randomly fluctuating signals which arise in phenomena where future
events are not deterministical ly predictable from past events. These signals
occur in statistical mechan ics , quantum mechan ics , turbulence and noise theories.
This guide defines parametrizations of stochastic process and descripti ve param-
eters which may be measured or estimated .
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We adopt the philosophy that power-spectral densities (PSD’s) are the most
convenient format for characterizing stochastic processes. We emphasize this
approach throughout. It has evolved from our experience that linear dynamic sys-
tems described by differential equations have input-output properties that are

-• 
most readily characterized and viewed as frequency domain transfer functions
rather than convoluti on Integrals. Frequency domain characterizations of both
system forcing functions and system transfer functions provide ready visualiza-
tion of output signal characteristics (in the frequency domain). By our emphasis

• on the power-spectral density, we devote little attention to discussion of auto-
correlation functions other than to define them and to derive their relationship
with power spectra. Our preference is not universal .

2 USER’S GUIDE TO SIGNAL ANALYSIS

Concepts essential to the understanding and interpretation of practical
stochastic signal analysis procedures and results are presented in Secti ons II
and III. Section IV concludes these developments with the presentation, Interpre-
tation and comment on the use of SIGANAL routines to analyze random data synthe-
sized by a numerically simulated dynamical system excited by random disturbance
phenomena.

Basic mathematical foundations defining and relating properties of stochastic
processes are presented in Section II. Introductory probability theory is briefly

developed and expanded to define stochastic processes. Probability concepts are
generalized to stochastic process characterizations by autocorrelation functions
and power spectral densities . Attention is restricted to ergodic processes which
most practical stochastic processes approximate. The mathematical basis for calcu-
lating PSD’ s, cross-spectral densities , coherence functions, and transfer function

• estimates is developed.

In Section III , the practical aspects of calculati ng stochastic process char-
acterizations are reviewed . These aspects include data sampling, finite duration
observation interval s, and confidence bounds . The Fast Fourier Transform technique
for efficiently calculating signal spectra is introduced and specific calculation
formulas presented. These topics review technique as implemented in the SIGANAL
code, and accent the proper application of analysis procedures and interpretation.

0
Section IV is devoted to the development of a simple numerical signal analysis

problem which exemplifies the basic interpretation principles and augments our
intuition as to what to expect in the way of results . A first order control

10 
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system excited by error sensor noise and an exponentially correlated disturbance
process Is simulated. Theoretical power spectra and coherence functions are
calculated from the known system transfer functions and the white noise distur-

-

• • 
bance processes . These “expected” results are compared to the quantities calcu-
lated wi th the signal analysis routines.

Readers having no prior familiarity with data analysis should proceed sequei~-
tially from Section II through Section IV and should augment his reading with
material in the references. Those more knowledgeable with signal analysis pro—
cedures should scan Section II to familiarize themselves with notation (see also
the nomenclature) and then may study the numerical example, referring back to
Section III as required for reference.

a

4
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SECTION II

PROBABILITY AND STOCHASTIC PROCESSES

1 INTRODUCTION

A detailed exposition of probability , stochastic processes, and random data
analysis as presented in the references (2, 3, 4) is beyond the scope and intent
of this guide. We do present the basic definitions and concepts required for an

• introductory understanding of these subjects , particularly in their application
toward analyzing random effects observed in measurements. First, the notions of
random effects are introduced to explain phenomena which deterministic system
concepts cannot predict. So motivated , we characterize stochastic processes and
how they Interact with our systems.

2 BASIC CONCEPTS : RANDOMNESS

The basic notion of random data or random signals stems from our inability
to deterministically characterize signals or phenomena we observe. To determin-
istically characterize a signal , we mean that we can specify explici ty signal
val ues as a function of time in uni ts of vol tage, amperage, pressure or some

• other appropriate unit. For example, we know that a voltage V of 10 volts im-
pressed upon a 1 i~f capacitor in parallel with 1 M~ resistor will decay as
V( t) 10 e t once the voltage source is removed. The voltage has been expressed
as a well-known mathematical function of time. Another Important aspect of the
example is that we obtain the same result whenever the experiment is repeated.

Not all experiments are precisely repeatable. The radio interference from
an automotive ignition system does not duplicate with precisely the same output
radio signal . Other experiments involving fluid turbulence , electron ic no ise and
molecular or atomic collisions , for example , resul t In phenomena which cannot be
precisely predicted. These phenomena are random because they cannot be precisely
specified. In subsequent sections, statIstical characterizations of these pro-
cesses shall be defined . These characterizations shall serve as a basis for de-
scribing the response of systems having such random excitations.

Development of analysis definitions and techniques is required for an under-
standing of the response of dynamic systems to random excitations. Application
of these techniques is often essential for proper system design and system per-
formance analysis. Just as a system designer can compute precisely the control
system response to a deterministic input (e.g., step function , sinusoid ,

12
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exponential) we wish to be able to compute the response, on the average, to ran-
dom inputs. Further, we must know the average variation by which one particular
response may differ from the average response. These data allow specification of

• system sensors and actuators so that they will not be saturated by the noises and
disturbances affecting the system. Statistical characterizations of random dis-
turbances and their effect on dynamical systems also allow the designer to com-
pute system accuracy or performance bounds for those cases in which random dis—
turbances are the fundamental system limi tations. With this motivation, we begin
with a discussion of elementary probability theory. A comprehensive treatment is
availabl e In Papoulis (reference 4).

An experiment whose outcome cannot be predicted is said to be random. The
result of a coin toss is therefore random since we cannot predict in advance
whether the result will be HEADS or TAILS. There are some important aspects of
this experiment, however, that can be described. For a fair coin , we would ex-
pect that the result HEADS is just as likely as the result TAILS. Intuitively
then, we would expect that if the coin were tossed N times , HEADS would come up
approximately N/2 times (i.e., NH~~ 

14/2) and TAILS would come up N1~ N/2 times.
The ratio NH/N is cal led the relative frequency of the outcome HEADS in the coin

• toss experiment . We define the probability of the event HEADS as its rela tive
frequency in the limi t as the number of coin tosses approaches infinity. Notation-
ally,

P ({HEADS}) = lim NH/N

(2-1)

Certain properties of the coin toss experiment are common to all random ex-
periments. These properties are the basis of probability theory. Each experiment
has a set of mutually exclusive results or outcomes. To each outcome we assign a
positive number (possibly zero) representi ng the probability (relative frequency)
that the outcome wi ll occur if the experiment is repeated. Sets of outcome we
call events and to each event we assign a probability equal to the sum of the
component outcome probabilities . The event containing all possible outcomes has

probability P 1. These concepts are fully developed in reference 4, Chapter 2,

_  ~••• . • ~~~~ - •~~~~~ • • . •~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~ 
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3 RANDOM VARIABLES

To each outcome of an experiment we may also assign an arbitrary number
called a random number. The functional relationship between the number x and the
events ~ is denoted x(~) and the function x is called a random variable, provided
that it satisfies certain general conditions. Basically these conditions entail
the requirement that the set {x~~y} corresponds to a set of experimental out—
comes (i.e., an event). In our coin toss experiment, for example, we arbi trar ily
define a random variable as the rule which assigns value 1 to the outcome HEADS
and value 0 to the outcome TAILS. We could have just as easily assigned the value
1/2 to HEADS and 1/2 to TAILS, as the particular values assigned are not of impor-
tance. A key concept of the random variable is that there exists a “one-to-one ”
correspondence between experimental events and sets of random numbers. Thus
{x = l} corresponds to the events HEADS and {x = O}, or more generally’ {x <

corresponds to the event TAILS. In each case the random number associated with
each outcome is contained in the given set of x values .

Since each set of random numbers is associated with an event of the under-
F lying probability experiment , we associa te wi th each set the properties of the

underlying events. Most importantly, we associate with each set of random num-
bers the probability P of the associated event. The sets {x~~ y} play a particu-
larly important role. Any set of random variables associated with an event can
be expressed in terms of the basic sets {x4y} related by set operators union,
intersection and complement. Properties of general sets are then obtained in
terms of properties of the basic component sets. Important properties of these
random variable sets are presented.

The probability distribution function is defined as the probability of the
event {x~~y} and written

F(y) = P( {x ~~y}) (2-2)

• - The probability distribution function for the random variable defined on the coin
tossing experiment is plotted In figure 1.

• The probability density function, ~~~~~~ is defined as the derivative of the
probability distribution function. The density function for the coin toss experi-
ment is plotted In figure 2. Notationally,

f(y) - F(y) (2-3)
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F(y)

0 1

Figure 1. Coin Toss Experiment Probability
Distribution Function.

~~y)

_:
0

..... .j ..... ....... .....,.

Figure 2. Coin Toss Experiment Probability
Density Function.

The random variable associated with the coin tossing experiment is a d iscrete
random variable since all events correspond to at most a countable number of spe-
cific random variable values. Discrete random variables have pdf’s whi ch are
col lections of impulse functions .

More generally an experiment may have a continuum of possible outcomes. The
probability density function for these random variables is a continuous function
except at possibly a countable number of points. The pdf for a uniformly dis—
tributed random variable is Illustrated in figure 3. The corresponding probabil-
ity distribution function is plotted in figure 4. This random variable is uni—
formly distributed since each value is equally likely to occur. Suppose we wish
to know the probability that cy1 < x~~y2}. By defini tion we know that

15
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H f ( y )

H • 

1
1- i

Figure 3. UnIformly Distributed Random
Variable — pdf.

F(y)

Figure 4. Uniformly Distributed Random Variabl e -
Probability Distribution Function.

F(y1) = P ({x~~ y1}) (2-4)

F(y2) = P ((x~~y2}) (2—5)

Because the event {x~~y2} includes the event {x~~y1} and since {y 1~~~x~~ y2 }

equals (x� y2} less {x� y~}, it follows that 
*

P({y1 .~~x~~~y2 }) = P({x~~ y2}) — P({x~~y1})

— F(y2) — F(y1) (2—6)
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By integratIon of equation (2-3) we have that

F(y) - / f(w)dw
J-x  (2-7)

Integral properties and equations (2-6) and (2—7) allow us to express equation
(2-6) as

I
P({y1.~ x~~y2}) ‘j f(w)dw

• y1 (2-8)

and for the case that Yz = Yi +~y, ~y being a differential quantity , we have

P({1 .~~x~~ y1 +~y}) = f(y1) ~y (2-9)

Thus f(y) represents a differential probability since it can also be defined as
the l imit

P({y 1 < x <y 1 + ~y})f(y1) = lini
(2-10)

The properties of the probability distribution and density functions ex-
pressed in equations (2—4) through (2—10) are true In general. Additional proper-
ties are presented in reference 3, Chapter 2, an d reference 4, Chapter 4. For the uniform
density , f(y) is a constant for 0 < y < 1 so that by equation (2-10) the probabil-
ity of any differential interval 0f random numbers is the same. That is, each
differential interval is equally likely or has probability zero if the interval
falls outside [0,1].

The normal , chi—square, binom i nal , beta, F-distribution and student’s t—
* di stribution are among those encountered In practice. We limit our attention to

the normal and the chi-square distributions . These distributions play an impor-
tant role in random data analysis. The normal distribution is particularly impor-

• tant in random variable theory since any random variable which Is the sum of K
identically di stributed independent random variables has a density function that

• 17
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approaches a normal distribution as K increases. This result Is guaranteed by
the central limi t theorem (reference 5). The distribution and density functions
for a normally distributed random variable are plotted in figures 5 and 6, re-

• spectively. The normal density function is written:

f(y) 
•~;r— 

exp [-1/2 (i~~IL) 2] 

(2-11)

- F(y)

J& ~L+O

Figure ~~. Normal Random Variable Probability
Distribution Function.

t(y) -

I) _

EL-V L~~ L~ O

Figure 6. Normal Random Variable Probability
Density Function .

The density function is completely specified by the parameters ~ and a. The
plausibili ty of the central limit theorem is demonstrated in figure 7 in which
density functions for the function WK equal to the normalized sum of uniformly
distributed Independent random variables are plotted.

18
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• p(y )

H 
_ _ _ _ _ _ _ _  

w

1 /

\

-

~~ 

NORMA L

Figure 7. Demonstration of the Central Limit Theorem.

x j
1=1 (2—12)

Also plotted in figure 7 Is a normal density function. Observe that the density
function for WK approaches the normal density as K increases.

4 MEANS AND MOMENTS

Except for a few special cases , it is usually inconvenient or mathematically
cumbersome to characterize random variables by specifying their probability dens-
ity or probability distribution functions. These functions can be difficul t to
specify whenever they are not expressible in terms of known or tabulated functions
as Is done In equation (2-11). The pdf totally characterizes the random variable.
An al ternative approach to completely characterizing the random variable through
Its probability density function is to examine exactly what properties of the ran—
dam variable we are Interested in. Then we partially characterize the random
variable In terms of parameterizations of these useful properties. This approach
is exemplified through the following definitions and illustrative examples.

Li 
~

• •
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~
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Two quantities are typically of most interest in the Investigation of random
phenomena. A primary quantity of interest is the mean or average value of the
random variable. That is, if we were to observe independent repetitions of the
same experiment, the numerical average of these observations is the single most
important quantity for us to compute. The second most important quantity is the
dispersion or spread of the observations about the mean val ue. These concepts

¶ are quantified as follows.

We define the expectation operator, denoted 
~~~~~~~~ 

as

e (• ! =4 [ ]  f(y) dy
(2-13)

where the term within the brackets is a specified function of the random variable
y. We Interpret the expectation operator as evaluating the average value of the
function upon which it operates . The average, of course , is with respect to the
random variable and the underlying probability space upon which it is defined.
Let us examine this important concept from another point of view. The average
value of any quantity is simply the sum (integral) over all possible values that
the quantity may assume of a product formed as a value multiplied by the proba-
bili ty that the particular value is assumed. Notationally

Average (g) = / g . P((g <x~~ g + dg})
) 

-
~~~ (2 -14)

Application of equation (2-10) allows us to re-express equation (2-14) as

Average (g) J g f(g) dg
(2-15)

We now real ize that equation (2-13) is simply a variation of equation (2—15). The
equations differ in the following respect. The bracketed quantity in equation
(2—13) is a function, say g(y), of y. Pa,ticular values of g ~~ be obtained by -

‘

greatly different values of y. Rather than combining the probabilities of any y

20
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which wil l yield the specified value g to obtain an equation of the form equation
(2-15), we recognize that we can evaluate the probability density for each y sep-
arately and simply integrate over all possible y values to obtain equation (2—13).
We illus trate this with an example.

EXAMPLE 2—1

Suppose we wish to calculate the average of the absolute value of the random
variable y which is uniformly distributed in the interval (—1/2 ,1/2]. We have
that:

1 ,-1/2~~y~~ 1/2
f(y) =

O ,otherwise

g(y) = J~I

By direct application of equation (2-13),

e IyI] I~I f(y) dy

• r”2
FyI dy=1 /4

1/2

A pdf for g is obtained by first calculating the probability of the random vari-
able g.

P( {x~~~y -~~,cf dx}) + P( { x~~~-y~~~ & dx}), x~ .0P({x .~~g~~ x + d ~} )
0, otherwise

Then by application of equation (2-10) we compute that:

f(g) — 2 f(y) , g~~ O

• 0 , otherwise

Finally, evaluation of equation (2—15) gives

21
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• 
AVERAGE (g) =J gf(g) dg

= 

j

1/2

2gdg = 1/4

We have obtained the same result by application of equation (2-13) or equation
(2—15). Often in practice we shal l find that equation (2-13) is easier to evalu-
ate, generally because f(g) may not be readily expressed or as readily calculated
as It is in this example.— -

The expectation operator provides a basis for defining two sets of quanti-
ties. The ~th moment of the random variable y is defined as

~~[yn] = J ,~,n f(y) dy
J —  (2-16)

The first moment is the mean or average value of the process and is denoted by

The nth central moment Is defined as

~ [(y_1.Ly)n] 

~J’ (y-ii~,)” f(y)dy
—~~~ (2—17)

The first central moment is always equal to zero. It is of no interest to us.

The second central moment is called the variance of the distribution and is de-

noted by ~~~~ The square root of the variance is called the standard deviation

of the process. Both the variance and the standard deviation characterize the

dispersion of the distribution about its mean value. The larger the variance or

standard deviation , the more probable It is that we will observe values of the
random variable outside a fixed interval about the mean.

Higher order moments usually are not of as much importance to us as are the
mean and standard deviation of a process. Generally , however, the odd central

moments (i.e., n equal to an odd integer) characterize the skewness or asymetry

L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _
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of the random variable probability density function . Density functions which
satisfy the syninetry condition

= f(~.i~_a) , for any a (2-18)

have identically zero odd central moments. The even central moments, like the
second central moment, characterize the dispersion of the distribution . We
illus trate the calculation of mean and variance with the followi ng example.

EXAMPLE 2—2

Calculate the mean and variance of a normally distributed random variable
with the density expressed in equation (2—11). Explicitly

~ =i: ~~~~ 
exp [-1/2 (

~~~~
)2] dy

Observe that the density function is syn~netric about ~ so that

- j  (y-~&) f(y) dy = 0
J -oo

and since the integral of the density function is unity

IL] f(Y) dY ii
J-~~

Thus the quantity ~i specified in the normal density function is the mean value of
the distribution . To obtain the variance we note that:

f
f(Y)d Y = l

and mul tiplying both s1d~3 by a we have explicity~

_ 
- _ •~1~ - •~~~~~•-•
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J ”°° l/ .,1i exP[_ l/2 (~~~1!~)2J dy = a

Differentiating this result with respect to a gives

f (y~~)2 exp [-1/2 ~~~~~~~ =

and multiply ing both sides by 02 gives

J (y—ji)2 f(y) dy =
-~~~

Thus the quantity a2 specified in the normal density function is the variance of
the di stribution. The normal density function is completely specified in terms
of the mean and the variance 02.

Plots of normal density functions hav ing the same mean and di fferent variances
are presented in figure 8. Observe that a larger variance of the density func-
tion corresponds to a larger dispersion or spread of the density function about
the mean.i-c

For a given probability experiment, there is no unique random var iab e having
real values assigned to each outcome or event of the experiment. Infinitely many
random variables may be defined upon the same experiment. Individually these van — • - •

ables display the properties discussed in section 11.3 and 11.4 of this report.
Together, two or more random variables defined upon the same experiment have addi-
tional properties which we shall find useful in our data analysis. Properties of
two or more random variabl es are defined In the next section.

5 PROPERTIES OF SEVERAL RANDOM VARIABLES

Analogous to equation (2-2) we define the joint probability distributi on

function of two random variables as the probability of the event {x~~ y and w~~ z}

and is written

F(y,z) P({x~~ y and w~~ z}) (2—1 9)

24
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F(y)

.5

~~ = 1
.25

IL-i-  / L !L+1 ~i+2

Figure 8. Va riance Effects of the Normal Density Function.

Similarly, the joint probability density function is defined as the partial de-
rivative of the joint distribution function wi th respect to each variable. Nota-
tional ly,

a2
f(y,z) = F(y,z) (2—20)

The random variables y and z are independent if and only if the joint density
function can be expressed in the form*

f(y,z) = f
1
(y)f

~
(z) (2—21 )

*The subscripts in equation (2-2 1) distin~’iish the two density functions f~(y)• for the random variable y and f
~
(z) for the random variable z. The subsc~ip ts

have no other significance.

25
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Independence of two random variables means , practically, that knowledge of
one of the variables does not convey any information regarding the other.

Joint moments and central moments are defined analgous to equations (2-16)
and (2—17) for single random variables. Explicitly, joint moments are defined as
the expectation of the product of integer powers of the random variables and de-
noted

mk& =e[y
kztj* (2—22)

Join t central moments are defined:

ri tkCkL €[~Y~Ly) (z— ~~) i (2—23)

The or der n of these moments is def ined as the sum of the su bscri pts. For example
m12 is a third order moment; C11 is a second order central moment. The second
order central moment C 11 is of particular importance In data analysis and Is

called the covarjance. For fixed variances of the component random variables ,
an increase in C11 magnitude corresponds to a greater and greater linear depen-
dence between the two random variables . The linear dependence of two random vari-
ables is characterized directly by the correlation coefficient 0yz which is simply
C1~ normalized by the product of the standard deviations of the component processes

C11

~yz 
= 

(2-24)

*The definition of expectation presented in equation (2-13) must be generalized• to the case of two random variables for application to equation (2-22) above.
Explicitl y the expanded definiti on is

ec• =L:L: (.] f(y,z) dy dz

Expectation means the average with respect to all the component random variables .

hi 
- 
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Two random variables are linearly dependent if one of the random variables can
be expressed as a linear function of the other plus a third independent random
variable. In the case that no such linear function exists, the two random van-
ables are linearly independent or uncorrelated. Linearly independent random
variables have Identically zero correlation coefficients. Thus from equation
(2-24) we conclude that:

c 11 .e[(~
—i.

~,) (z—u1)}
= 
~q(yz] 

— 1•IyLlz = 0 (2-25)

Often equation (2-25) is used to define uncorrelated random variables as those
random variables satisfying the condition that

(2—26)

Independent random variables are always uncorrelated since equation (2-26) fol-
lows directly from equations (2—21) and (2-22).

We explici tly show the important relationships between correlation coeffi-
cients and linear dependence of random variabl es by the following construction.
Assume that random variables y and z wi th means and 1’z’ respectively, and
nonzero variances 0y

2 and 0
z
2 and a correlation coefficient 

~zy 
are given.

Then we shall show that there exists a random variable w such that

-
. w — y—az, i.e. y = az + w (2-27)

a -~~~p
(2-28)

— Py - au
~ (2—29)

2 21 1 _  2 1• 0w 
~
y L ~yzj (2-30)
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and

e[(z-iiz) (w-~)I 
— 0 (2-31 )

We proceed with the proof of these properties by defining a random variable x
and then showing that x satisfies all the properties attributed to w in equations
(2—27) through (2-31) above. Because functions of random variables are also ran-
dom variables , we define x as the difference between y and a scalar multiple b of
z.

x ~.y - bz (2-32)

The scalar b is a constant which we conveniently choose so that x satisfies the
desired properties. Clearly, by taking expectations of equation (2-32)

= 11y 
— (2—33)

and subtracting this result from equation (2—32), squaring each side, and again
taking expectations one obtains:

= €{((1~uy) 
- b(z-uz)]2}

= a~ - 2bC~ + b2 (2-34)

Now we explici tly evaluate the covariance of x and z and equate it to zero by
appropriate choice of b.

e[(z—M~) (x-u,jJ = e{(z-lz) [(~
_
~) _b (z_~i~)]}

2 set= 11 — 0z — (2—35)

from which we obtain:

L 28
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b = C~~/ a~ = a~~az (Cii/a~
a
~)

= yz 
(2-36)

Substitution of this result into equation (2-34) and substitution for C11 gives

a2 = a2 — 2
x y ~yz y

= 
~~ [i-~~J (2—37 )

Thus making the identIfication of x with w and b with a and comparing equations
(2—32), (2—36), (2—33), (2—37), and (2—35) with equations (2—27) through (2—31),
respectively, we have completed the desired proof. These observations follow
directly from equations (2-27) through (2—31).

• (i) as the correlation between y and z increases, the var iance
of w, a~ decreases. For Pyz~~ 

0~ = 0

(ii) ~~l since a~ must be nonnegative

( i i i )  a~ < a~ and equality holds only if p~~ = 0

(iv) the error in approximating y by a linear function of z is pre-
cisely the variance of w; the correlation coefficient squared
is precisely the power in y attributable to z normalized by the
total power In y. Explicitly,

e[a 2 (z_~z)2} a2a2
~

YZ 
e[(y_ iiy)2} 0y2 

(2-38)

(v) Zero correlation between random variables y and z implies that
the linearity coefficient a of equation (2-27) is identically
zero and that w y

(vi) The quantities a, ~~~ ~~ 
and a~ are uniquel y determined by the

means , variances , and the covaniance of the random variables y
and z

~~~~~~~~~~~~~~~~~~~~~~~~~~
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The concepts of linear dependence, correlation and joint random variables
and their application to a data analysis problem are demonstrated in the next
example.

EXAMPLE 2-3

Suppose that we wish to estimate the value of an unknown resistance R by• simu l taneously measuring the current I through the resistor and the voltage V
across it. Then using Ohm ’s law we obtain the resistance as R = V/I. Further

- • suppose that because of old equipment and coarse meter dials we cannot obtain a
sufficiently accurate value for R. We repeat the experiment shown pictorially• in Figure 9 for various values of source voltage Vs and make the measurements
tabulated below. From these values plotted in figure 10 we wish to extract the
“best estimate” of the unknown resistance.

V (yolts) .28 .29 .48 .69 .97 1.07 1.24 1.23 1.53 1 .81
• I(ma) .22 .34 .47 .64 .100 1.02 1.18 1.26 1.51 1.90

We formulate a “least-squares ’ solution by assuming that the measured voltage V
is the sum of a linear function of I and a measurement noise term n.

We wnite: V = R I + b

~~~~~
T

E~~~
V j R  4v

l : V f 
.

Figure 9. Experimental Resistance Measurement
for Example 2-3.
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CURRENT (ma)

Figure 10. Mean Square Estimation of a
Voltage Current Relationship.

where the caret above V and R denotes that they are estimated quantities. The
Constant b denotes Instrument bias. Since we have assumed V differs from V bya noise term, we tiave

We arbitrarily choose the unknown parameters R and b so as to minimize the noise
variance, or eqqivalently , we minimize the mean—square error, by which an esti-
mated quantity V differs from the actual measurement V.

We define a performance weasure

E = h  [
~ - ( ~ i~ + b)J 2

and we minimize E by optimum choice of the unknown parameters R and b. The solu-
tion of the unconstrained minimization problem is Amost readily obtained by equat-
ing the partial derivatives 0f E with respect to R and of E with respect to b
both equal to zero and solving these equations simultaneously for the unknowns R• and b. Executing these steps

I
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aE/aR = -2/10 
~~~~~~ 

(v~i~ - ~~ - bI~)
1*1

aE/ab -2/10 
~~~~~~ 

(v 1-~
Ii - b) = o

1*1

and solving the above equations simultaneously yields the result

1/10 
~~ ~1~1_ ( 1/10 ~~ 

I
~)(1

/l0 ~~
= 

i=l i=l = 9.6Kn

(l/lO I1)(l
/1O V 1I~)+(1/10 ~~ )(~ii~ ~~

b = 1=1 1=1 i=l 1=1
D

= 0.04 volts

10 / 10

• where D 1/10 
~~ 

I~ _ (l /lO Z
1=1 1=1 J

In view of the relative frequency interpretation of probabilities developed in
section 11.2, we may re-interpret the above equations in terms of the expec-
tations they approximate. We have

32



- i - ~
- -

~~~ 
_
~~~~~T IIIi

_
~~~

• AFWL-TR-76-l93

1/10 
~~ ~~~ u1
1=1

10

1/10

10

1/10 
~~ 

I~~~~[I~] = a~ +

1=1

1/10 V 1I1~~e[vI] = C11 +
1=1

Thus expressing R and b in terms of these approximations gives

R ~ C11/a~ 
= 

~vI

• - ii a~ - ~~ C11
b~~ 

v I  
2

1 uv R l J I01

Had we known the statistics of V and I we could have simply applied equation
• (2—28) to have calculated R in terms of cv , a~, and pv

~~~
. Typically, however ,

these quantities are not known a priori but must be approximated. Equivalently,
the mean-square-error procedure developed in this example yields the best answer
given the available data.—

• Thus far the concepts of randomness and probability , random variables and
their characterizati on by probability density or distribution functions have been
developed. The mean or average val ue and the variance or dispersion of the ran-
dom variable have been defined and shown to be two of the more Important charac—
terizations. Covariance and the correlation coefficient are shown to be important

• properties of random variables whenever functions of random variables are of in-
terest.

33



— • • 
~~~

—•  
~~~~~~~~~~~~~~

• •
~~~~~

• • •
~~~~~

-
~~~~ 

• —-~~~ 
• —• • ---

• 
•
~ 

- ——- --

~~~~~

- . -

~~~

- -

~~~~~~

• •

~~ 

• •• • •

~~~

- • -

~~~~

• • •

~

-. -. • • • • • . •

AFWL-T R-76-193

6 STOCHASTIC PROCESSES

The concept of random variables introduced in section 11.3 has no time de-
pendence associated with it. This limi tation is serious when one is most inter-
ested in the effect of random phenomena upon systems having input-output rela-

• tionships described by differential equations. In this section, the concept of
stochastic processes is introduced to allow analysis of those situations in
which time dependent random effects excite linear dynamical systems or corrupt
a time dependent information signal we wish to examine.

A time function x(t) having numerical values which depend not only upon
the value of its argument t but also upon the outcome of probability experiment
is called a stochastic process. For example the function

sin wt , if HEAD ’s

cos wt , If TAIL’ s (2-39)

where HEADS or TAILS Is the outcome of a coin toss experiment as in section 11.2
is an example of one stochastic process. In practical cases of interest, the
underlying probability space characterizes the size distribution of atmospheric
turbules or the “shot” rate of electronic noise sources or some other physical
phenonema having outcomes which cannot be precisely predicted In advance but
which do having varying effects upon our particular experiment. Often, the
underlying probability space is not well characterized, known, or understood
other than through observation of the resulting signal or effect on our experl-
ment. The observed effect is also a stochastic process because its value de-
pends upon a stochastic process excitation which in turn depends upon the out-
come of the underlying probability experiment outcome. The observed stochastic
process may be, for example, the intensity fluctuations 1(t) of an electromag-
netic wave propagated through a turbulent atmosphere or the voltage variations
of an electronic system excited by noise.

Random signal analysis techniques, which are the primary topic of this
guide , are in essence a collection of methods for characterizing these stochas-
tic processes and the transform relationships which model the interaction of
stochastic signals with linear dynamical systems .

Basically, stochastic processes are defined on probability experiments in
the same manner as random variables. In fact, for fixed agrument t stochastic
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processes degenerate to random variables . Characterizations of random vari-
ables are adequate to model certain fixed time properties of stochastic pro-
cesses but new concepts, definitions and characterizations are required to
parameterize important additional properties of the stochastic process.

• Recall that a stochastic process defines a real function of the indepen-
dent variable t for each outcome of a probability experiment. The collection
of all possible time functions is the ensemble of the stochastic process. Both
the member of the ensemble (or equivalently the outcome of the experiment) and
time must be known to assign a value to the stochastic process function. A
stochastic process ensemble is partially depicted in figure 11 which shows

X2 _ _ _ _ _ _ _ _ _ _

~~~

• _ _ _ _ _ _

Figure 11 . A Stochastic Process Ensemble.

explicitly the dual dependence of the stochastic process. The properties mean ,
variance , ~th order moments and central moments , joint moments , covariance, and
correlation developed in sections 11.4 and 11.5 for random variables are equally
applicable to a stochastic process at each fixed time. Consequently, these
properties are defined as functions of time for stochasti c processes . Additional
properties of the stochastic process to be developed in this section are general-
izations of the bacic properties that have already been introduced. Stochastic
processes are completely characterized by joint probability distribution func-
tions of the form:

F(xi, ~2 
X~. t1, ~~~~~~ =

P(1x(ti)~~ xii ~~~~~~~~~~~~~~~~~~~~~~~~~~ (2-40)

-

~~~~~~~~ 

_ _ _•

~~~~~~~~
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which must be known for all finite sets of {t1}, (reference 3, p. 51). Such
functions are cumbersome or defy specificati on in all but the simplest cases .
Fortunately, several other properties of stochastic processes -- namely sta-
tionari ty, ergodici ty, and normality .— are generally valid and allow a greatly

• I simplified characterization. These properties are precisely defined subsequent
to the following preliminary definitions .

7. MEANS, MOMENTS, AND ERGODICITY

The concepts of means and moments developed in sections 11.4 and 11.5 for
random var iables are explicitly extended in this section to stochastic processes.
First, probability density functions and expectation operators are defined for

• - stochastic processes. The probability distribution function equation (2-40)
• for stochastic processes is considered for the case consisting of precisely a

single element t1. We define the first order density, in analogy wi th equation
(2-3), as

f(x 11t1) = ~~~~~
— F(x 1,t1) (2— 41)

The density f(x1,t1) has explici t dependence on time t1 by virtue of the time

• dependence of the probability distribution function. An expectation operator
follows from equation (2—41 ) as a straightforward generalization of expectation
for a single random variable as defined in equation (2-13).

• = / 1~.] f(x,t) dx) -
~~~ (2-42)

The mean is defined as the expectation of the process itself.

ux(t) = e[x(t)] 
= I x(t)f(x,t)dx
J-~ (2-43)

The mean at any fixed time is simply the average of x over the elements of the
ensemble.

36
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Second-order moments are defined in terms of the second-order density
function

f(x 1, X2~ ti, t2) ax~ax2 
F(x 1,x2,t1,t2) (2—43a)

The correlation function is defined as the second moment

mX
(t 1~t

2) = f f x1(t1)x2(t2) f(x~~ t1,t2) dx1 dx2

6’[x(t1) x(t2)] (2-44)

and the covariance is defined as

C
~
(ti,t2) =e{[x(t1) — 1~x

(t1~ I [x(t2)—~ ct2)]}

= m
~
(ti,t2) ~

.i
~
(t i) ~x(t2) (2—45)

The functions of m
~ 

and Cx are defined in terms of a single stochastic process
x and therefore they are often called autocorrelation and autocovariance func-
tions, respectively. Correlation and covariance functions between two stochas-
tic processes x and y are defined as

m~~(t 1,t2) =e[x(t1) y(t2)] (2—46)

and

Cxy(t1~
t2) =e{[x(t1) ~

(ti~~~
(t2) ~iy(t2)]}

= m
~~

(t i~
tz) x(t i y(t2) (2—47)
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Stationarity defines the property that the probabilities describing our pro-
cess do not depend upon the time origin or the time frame in which we describe
our process. For example , stationarity implies that the probability density
function satisfies the equalities indicated in the following cases,

• f(x 1,t1) f(x1,t1+t)

f(x1,x2,t11t2) f(xj,x2,t1+r,t2+r) (2—48)

which must be valid for any and all r. Clearly, then f(x 1,t1) is independent of
t1 and may be more simply written f(x 1). Similarly, f(x1, x2, t1, t2) is inde-
pendent of the specific time reference used and therefore depends only upon the
relative time difference r = t1 - t2. Thus for stationary processes,

f(x1, x2, t1, t2) f(x1, x2, ~ (2—49)

Stationarity reduces the complexity of the probabilistic characterization .
Stationary processes have means which are time-invariant. The correlation
and covar iance functions , like the stationary second-order density functions,

• depend only upon the time difference r. We denote these functions m
~~
(r) and

C
~~

(r) for the stationary process correlation and covariance functions, respec-
tively. We shall consi der only stationary processes throughout the remainder of
the guide .

Expectations have been defined as averages over the underlying probability
experiment. In signal ana lys is , another important average is time-average.
Time-average mean , correlation and covariance quantities are defined for a par-
ticular realization x1 and y1 of the stochastic processes as

r T/ 2
£im l/T J x1 (t)dtT-~ )-T/2 (2-50)

4
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r 112
• R (r)  = 2Am 1/T I x (t+t)y (t)dt¶ xy T i i

4/2 (2_51 )*

T/2

• 

~~~
(t) = 2Am l/Tf [X i (t+t ) - ij}[yj(t)~~j}dt (2-52)

provided that the indicated limits exist. The time-averages defined above are
• random variables since they have values dependent upon the particular realiza-

tion x1 and ~i 
of the underlying stochastic process (reference 4, p. 326).

• • 

Assumi ng process stationarity and taking expectations of the above quantities we

find that

T/2
= 2Am 1/TJ~~~~[x i (t)Jdt

r
• (2-53)

Similarly,

= m
~~
(t) (2-54)

= C,~,(t) (2—55)

*In the literature R,~,(t) is also defined as

r T/ 2
Rxy(t) 2Am 1/1 x1(t) y1 (t+t) dt.

J -1/2

The definition is simply a matter of convention and does not substantively change
the results. The reader is cautioned , however , to fami liar i ze himself wi th the
particular convention adopted by another author.

L 
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For many stochastic processes, the random variables 
~~ 

Rxy(t) and ~xy
(t) have

zero var iance, have identical values independent of the stochastic process
real ization x 1 and Yj used In their time-average calculation , and are identi-
call y equal to the corresponding ensemble average. Should these three proper-
ties hold for all average values of a stochastic process, then the process is
said to be ergodic. An important consequence of ergodicity is that each ele-
ment ot the stochastic process ensemble is representative of the ensemble as
a whole. Ergodlcity allows us to compute important characterizations (mean,
covariance, etc.) of a stochastic process by applying time-average calcula—

• tions to a simple observation of the ensemble. We shall consider only ergodic
stochastic processes throughout the remainder of this guide. We state without
proof that most of the stochastic processes encountered in engineering practice
are ergodi c or nearly ergodi c in the sense that o~ir analysis techniques remain
vali d and useful .

8 LINEAR DYNAMIC SYSTEMS

A l inear dynamic system is a system in which certain dependent (output)
variabl es satisfy a given linear differential equation having one or more inde-
pendent variables or forcing functions. We shal l consider the general case in
which these forcing functions are stochastic processes and derive stochastic
process characterizations of the system output in terms of the input and the
system transfer function or differential equation . Having completed this char-
acterization we show the importance or correlation and covariance calculations
in estimating dynamic system input—output relationships . We assume the readier
has a knowledge of differential equations and Fourier transforms such as pre-
sented by DeRusso (reference 6, Chapters 1 through 4). We briefly introduce
these topics to define notation.

It can be shown (reference 6, p. 23) that a time-invariant linear differ-
ential equation has an output of y(t) expressed as a function of the input x(t)
by the equation

y(t) / h(t—t) x(r)dt = / h(t) x (t—r)dt
) -

~~~ -
~~~ (2-56)

where h(T) is the impulse response of the system. Such a system is depicted
diagraninatically in figure 12.
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Figure 12. A Linear Dynamic System.

• 
• The Fourier transform X(w) of a signal x(t) is a complex function representing

the magnitude and phase of the frequency components of x(t) . The transform is
defined as

F[x(t)J ~ X(w) J x(t)exp(_jwt)dt*
J -

~~ (2-57)

An inverse transformation also exists by which x(t) may be obtained from X(w).

x(t) = X (w) exp(jwt)dw
-~~ (2-58)

Observe that the transform is a linear operator.

EXAMPLE 2-4

We explicitly calculate the Fourier transform of x(t) A sin (2,rft) to
show that the transform represents the frequency or spectral content of the cor-
responding time s,ignal . Strictly speaking , the Fourier transform of this par-
ticular x(t) does not exist since x(t) is not absolutely integrable, i.e.,

f’ fAs in(2itft )f dt

*The quantity j  Is the square root of -1, j =

- 

• 

41 
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• Consequently we cannot apply equation (2-57) directly to evaluate X(w). Ob-
serve, however , that assuming

X (w ) = jirA[iS(w+2irf) — 6(w-2irf)]

where 6 is the Dirace delta function, we can verify that X(w) is indeed the
transform of x~t). We evaluate the inverse transform by use of the delta func-
tion sifting property (reference 6) to obtain:

ki: X(w ) exp(jwt) dw = ~~j[exp(-j2irft) - exp

= A sin (2irft) x(t )

This transform pair is shown in figure 13. Observe that as the frequency of
the sinusoid increases , the transform delta functions move farther from the
origin.~~

X ( t )  IX (w) I

I 

-If 0 21f w

j j 
Figure 13. Fourier Transform Pairs .

The linear dynamical system input—output relationship given in equation
(2-56) can be Fourier transformed to yield an equivalent transform descri ption
of the system. Performing the transform, we have

Y(w ) — / y(t) exp (—jwt ) dt
I -c,

h(t-r) x (r) dr] exp (-jwt) dt
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We interchange the order of integration and mu ltiply the integrand by the
• quantity

exp (jwT) exp (—j wT) = 1

and obtain

3
Y(w) 

=f~
[ h(t-r) exp [—jw (t-r )~ dtJex~ (-jwt ) X( t ) dr

= H(w) X(w) (2—59)

Equation (2-59) shows the simple relationship that the Fourier transform of the
output of a linear system is the product of the Fourier transforms of the input
signal and the system impulse response function. A similar input-output re-
lationship is now shown for the system driven by stochastic forcing functions .
Since Fourier transform techniques are not applicable to stochastic process
(they are not absolutely integrable), a few prel iminary concepts must be de-
fined prior to the formulation of a stochastic process transfer function.

Signal frequency distr ibutions for stochastic processes are derived by the
following heuristic argument. Given any stochastic process x(t) we may filter
that process with a narrow band filter having center frequency f0 and bandwidth
£f. The transform of an ideal bandpass filter is plotted in figure 14. The

IH(w )I  •

—04 k—2vaM

—2~f !J
0

Figure 14. An Ideal Bandpass Fi l ter
Transform Characteristic.
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• output signal of this bandpass filter, just as in the analogous case in which H
a deterministic signal is filtered, represents the input signal spectral con-
tent within the passband frequencies. The power of the filter output repre-
sents that portion of the input signal power within the passband of the filter.
We define signal power P as the time average signal squared for both deter-
ministic and stochastic signals. This time-average for stochastic signals is

• 
the autocorrelation funct ion evaluation for zero argument

P = &im~~~j x2(t) dt
T-,co J 1,2

= m
~~
(O) (for stochastic processes) (2-60)

The power output of the filter can also be measured by time—averaging the signal
squared. The complete analysis procedure of bandpass filtering , squaring, and
time-averaging is depicted In figure 15a . We denote the average power density

___________y(t )  y 2(t)
X ( t )  

•
~ 

BANDPASS.I 
L~~

2J ~I ‘f T
( )dt 

_ _ _ _ _

• 

• _ _ _ _ _ _ _ _ _ _  
QUAR (JjP2E AVG

• Figure l5a. Measuring Narrow Band Signal Power.

x (t) ,J BA
~

4
I
O
LT~ SS1 Z ( t) 

,~ 

MULTIPLIER] 

~1 ~tjHdt Eel t)~(t)J
to ~ f I I I I TIME AVERAGE I e[x(t)Y(tPr1J

• 
_ _

y( t )  
~

(8Ar4O PASS1 ~~ ‘J SHIFTER 1 •: {0;O :~~~ 1
~ .RUM

Figure l5b. Measuring Narrow Band Cross—Spectral Power .
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of the stochastic process as P(x,f0,f) and define it as the power output of the
bandpass filter divided by the filter bandwidth (see figure 15).

~ (x,f~,~f) = Ryy(O) /t~f (2-61)

Conceptually these ideas are extended to the use of infinitely many contiguous
• bandpass filters having infinitesimally small bandwidths ~f. The power spectral
• density (PSD), s~~(f), of a stochastic process is defined as the limit as ~f
• 

~
• 

approaches zero of the average power density and we write:

• (f) = 2Am P(x ,f ,Af)
XX (2-62)

Cross-Spectral Densities (CSD), •xy(f)s between two signals x(t) and y(t) are
analogously defined but must be generalized in order to characterize the impor-
tant phase relationships between two distinct signals that do not arise in con-
siderations of a single signal . For PSD measurements, a signal x(t) is passed
through a narrow-band bandpass filter which gives a sinuso idal output signal
y(t) having an amplitude proportional to the square-root of the signal power
wi thin the filter pass-band . The power is determined by the time-averaged fil-

• ter output squared. The cross-spectral power between signals x(t) and y(t) Is

• calculated by multiplying the outputs of two narrow band-filters excited by
x(t) and y(t) , respect ively; then the time average product is computed as shown
in figure l5b . Note that this procedure gives the proper PSD in the case that
y(t) equals x(t) .  ~or more genera~ signals of x(t ) and y(t ) ,  it represents the
in-phase signal power common to signals x(t) and y(t). An out-of-phase compo-

• nent , the guadspectrum, must also be computed to complete the two signal common
characterization. The requirement for calculation of the quadspectrum follows
from consideration of the case in which y(t) is a delayed or phase-shifted ver-
sion of x(t) such that the phase shift y(t) with respect to x(t) is precisely
90°. in this case the averaged input is tie product of orthogonal signals sine
and cosine and the output will be zero . By shifti ng one of the input signals
90° at the pass band center frequency, f0, the roles of the in-phase cospectrum
and the out-of-phase quadspectrum are reversed. Thus by inserting a 90° phase
shifter In the y(t) signal path, the quadspectrum between x and y is determined
by procedures otherwise identical to those employed to determine the cospectrum.
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Denoting the cospectrum power by 
~c we have that

-• P(x ,y1f~~ f) = R~~(o) /~f (2—63a)

• and analogously the quadspectrum power Pq is

Pq(X~Y~f0~~f) 
= Rzw(t)/1~f (2-63b)

where t represents the time shift required to change the relative phase of x
with respect to y exactly 90° at the passband center frequency.

2irf0r = 71/ 2

or

_ l

R~~(t) represents the cross correlation function of signals z and w obtained by
bandpass filtering signal s x and y respectively. The cross-spectral density

is defined in terms of the co— and quad—spectrum as

~~~f) u rn [Pc(x~
y,f ,z~f) - JPq(X~Y~f0~L~f)J (2-64)

Unl ike the power calculations for PSDs which must always yield a non-negative
result, P~ and Pq may assume any real value. Al so note that, in general, the
cross—spectral density is a complex function of frequency. These generaliza-
tions over the PSD are required to account for the phase relationships betwen
two signals.

PSDs and CDS are shown to be directly related to Fourier transforms of the
• auto and cross-covariance functions. By direct calcula tion
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F(w) R
~~
(r) exp (-jw r) dr

~ ~L:f x(t+t) y(t) dt exp(-jwr) dt

T/Z (2-65)

For mathematical convenience we define a truncated function xT(t)

x(t) Iti <T/2 
-

•

XT (t) =
0 otherwise (2-66)

and defining y~(t) similarly, substitute these relations into equation (2-65)
(and ignoring negligible end effects we have)

F (w) - 2A m l/T Jj xT(t+t) y1(t)dt exp(-jwt)dt1-I~ - —~~ (2-67)

Multiplying the integrand by exp (-jwt) exp (+jw ) = 1 and rearranging gives

c,

F(W) = tim iii
J~ ~
[ x~(t+t)exp[_jw(t+T)]dt~

~r (t) exp (jwt)dt

• 
• 

XT(w) Y T (-W)

(2-68)

• 
• Recall from equation (2-58) and Example 2-4 that the Fourier transform represents

a signals spectra l content. From Parseval ’s identity for Fourier transform pairs ,
namely,



-

AFWL-TR-76-l 93

x(t) y(t)dt = J~ 
x (w) y(-w )dw 

(2-69 )

we see that the Fourier transform magnitude squared represents precisely the si g-
naPs energy distributi on in frequency. Specifically we have

x2(t)dt = X(w) X(-w)dw 
(2-70)

but

X(w)X(—w) = X(w)12

Consequently,

~ 
r r —2ir (f0—~f/2) r 2ir(f0+~f/2) 1

~‘J IX(w) t 2dw + I IX(w) Izdw J
LJ-2 (f 0.~f/2) J2 (f 0—~f/2) J

represents a signal energy in a f frequency band about center frequency f0.
These concepts for signal energy properties are also applicable to signal power

considerations because energy normalized by time is power. Consequently,*

*A subtlety in the concept of frequency distribution of power has arisen upon
which we briefly elaborate here. The bandpass conceptualization of power in
equation (2-61 ) and equation (2-62) is valid for positive frequencies only.
We cannot build a filter having only negative bandpass frequencies. Any
realizable filter passes equally frequencies f2 = — f1. Thus we define PSD

• and CSD for positive frequencies only. However, Fourier transforms define
spectral content for both positive and negative frequencies, hence

1 r IXT(W)12 1 ~~ IXT(w)12 i
T dw = 

~iJ T dw =

0

and equations (2-71 ) and (2-72) follow .

48
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X1(w) YT(-w)
• (w/2~) 2 uim
XY T÷c’

• 2F R ~~2 G y w > 0  - (2-71 )

as a special case

IX T (W) 12
• (w/2vr) = 2 limxx

= 2 F ER Ct)] ~ 2 G (w)
• XX XX w > O  (2-72)

The characterization tool s that have now been developed allow us to calculate
input-output signal relationships for linear dynamic systems. Equation (2-56)

repeated below describes a linear system output signal y(t) in terms

of the system impulse response h and the system input x. This equation

is equally valid for stochastic process excitation of the system.

• y(t) = I h(t1) x (t—t1) dt1
(2-73)

Taking expectations of equation (2-73) gives the system output mean as a function
of the input mean . For stationary processes the output mean is simply a scalar

mul tipl e of the input mean.

• I_c ,

Uy gEy(t)] h(t i)u
~ 

dt1
-c,

= h ( t j )  dr 1
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Hence, the average value of the system output is simply the average value of the

• system input mul tiplied by the dc gain H(o) of the linear system.

Higher order moments of the system output and joint moments of the system
output and input are similarly obtained as functions of the linear system im—

• pulse response function h(t) and moments of the input signal. For example , the

• cross—correlation of the system input and output signals Is obtained as follows.
Multiplying both sides of the equation (2-73) by x(t + ~) and taking expecta-
tions yields :

Rxy(r) h(t1) R
~~
(T+ti) dr1

-c, (2-74)

This equation shows that the cross-correlation of the system input and output
signals is given as the convolution of the system input signal auto—correlation
function with the system impul se response. Taking the Fourier transform of both
sides of equation (2—74) gives :

•
~~~

(w/21r) = H(-w) 
~~

(%
~
4/2) (2-75)

Similarl y, multiplyi ng both sides of equation (2—73 ) by y(t + r) and taking ex-

ceptions gives :

R~~(t) =J h(t1) Ryx (t +ti)dt i
—c, (2- 76)

and transforming:

•yy(W/21T ) = H(-w ) •~~
(wI2

~
)

= H(w) •xy (W/21r) (2-77)

By the definition of correlation functions and their transforms we have the fol-
lowing properties :

50
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• R~ ,(t) =

•~ (w /2iv ) = • (w/2ir ) = • (—w/2ir )xy yx xy (2- 78)

Thus substituting for •yx in equation (2-77) from equation (2-75) by using equa-
tion (2—78 ) gives the desired result.

$~~(w/2ir ) = H(—w )

=

= IH(w)12 •~~
(w/2ir ) (2— 79)

since xx is real .

We also write

•yy(f)  = IH (2i~f)!2 xx~’~ (2—80)

‘his equation shows that a linear dynamical system output signal PSO is precisely
the input PSD ‘spectrally shaped’ by the frequency domain transfer function of the
system. We illustrate the response of a linear dynamical system exc ited by a
stochas tic process w ith an exa~nple.
EXAMPLE 2— 5

A simplified linear dynamic system is considered. The system is modeled by the
first order linear time-invariant differential equation

~~ = a y + a x

The quanity y represents the system output while x represents a stochastic pro-
cess excitation of the system. The differential equation specified above repre-
sents a lowpass filter. Spectral components of x having frequencies f less than
the filter cutoff frequency 

~ 
= a/2it are passed unattenuated to the output y.

Spectral components of x at frequenc ies greater than 
~ 

are attenuated. The
linear system impulse response is

51
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h(t) = a exp(-at) t~~ o

and its Fourier transform , also known as the system transfer func tion , is

H(w) = (1 + jw/a)~~

We specify that the stochastic excitation Is a zero mean process with an auto-
correl at ion function

• R~x (r )  = q 6 ( r )

This stochastic process is of particular importance in analysis. Since its
autocorrelation function is zero for all r not equal to zero, we concl ude that
knowledge of the value of x at time t is uncorrelated wi th its value at any
other time. Hence we cannot predict future values of x(t) from past observa-
tions. Stochastic processes having autocorrelation functions of the form q6(t)
are called white noise. This terminology follows from its spectral density,
which is constant for all frequencies , and the analogy with white light, wh i ch
is composed of light of all colors or frequencies. The excitation spectral
density is derived from equation (2-72) and R

~~
(T) as

= 2q ; w~~ o

Using equations (2-75) and (2-80) we calculate that

= H(-w) •~~
(w/2t)

= 2q (1 - jw/a) ’

and

= IH(w)12 •~~
(w/2t)

= 2q [1 ÷ (w/a)2] 1

the correlation functions R
~~
(t) and R~~(r) may be calculated in two ways:

52
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(1) their Fourier transforms may be deduced from •x and • and inverted
or

(2) they can be calculated directly from h(t) and R~ (t )  by use of equa-
tions (2-74) and (2-76). We shall calculate Rxv~r) and Ryy(t) by bothmethods to illustrate methodology and to demonstrate the equivalence of
the alternative approaches. Since

• ~xy(w/21T) = 2q[l-jw/a] 1

we conclude that

FER xy (t)] = q[l—jw/a]—i

whi ch we inverse transform (consul t reference 6 or any convenient table of
Fourier transform pairs) to obtain

R
~~
(t) = aq exp (at) c~~ O

Observe that Rxy(t) = 0 for t > 0. This follows directly from the causalty of
the system output which can be correlated only with past values of the Input.

Similarly

= qEl+(w/a)2]-’

I 
q/2[(1+jw/a) ’ + (l—jw/a) ’]

• and

R7),(T) = 4
exp (_a~tI )

By the al ternative method we calcula te

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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• Rxy(t) J~, 
h (r1) R

~~
(t+ti)dt i

= q ~~(—t )

= aq exp (at) r~~ O

and

Ryy(t) =f_,, h(ti)R
~~
(t+ti)dTi

Pc,

= / qa2 exp(ar1) exp[-a(t+t1)]dr1
i max(0,-r)

= qa2 exp(-at) r exp(-2at1)dt1
J max(O ,-r)

a
= q~ exp (-aItI)

The same results have been obtained by each method available for evaluating the
crosscorrelation functions. The input and output signal auto—correlation func—

5

. tions R
~~

(r) and R~~(r) are plotted in figure 16.

• 
• R

~~
(T) • R~~ (r)

• R 1~ (r)zq~( r)  qa/2
(DIRAC DELTA) • 

q 

i~
”

I 
~\~~~T~~~~ex p [—aIrI)

Figure 16. Linear System Input and Output Autocorrelation Functions. 
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The corresponding power spectral densities are plotted in figure 17. The param-
eter 1/a represents the correlation time of the output stochastic process and

X I
—~~~- . —

• 
S.---

S
.-
-.

- • a)2v

Figure 17. Linear System Input and Output Power Spectral Densities.

• is identical to the time constant of the linear system when excited by whi te
noise. —

The important relationships developed in this section are summarized in
table 1. Al so included in the table are other important equalities which the
reader is invited to validate. These equations play a fundamental role through-

• out the remainder of this guide .

Table 1

CORRELATION FUNCTIONS AND SPECTRAL DENSITY RELATIONSHIPS

Definiti ons T Autocorrelation
R
~~
(r) 

~~ 

x(t+r) x(t) dt

i Crosscorrelatf on
= 

~ .T_T 
x(t+t) y(t) dt

•,~~~
(w/2ii ) = 2 FER

~~
(r)1 w~~ O PSD

= 2 F f R ~ ,(t )] w~~ O CSD
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Table 1 (Continued)

LINEAR SYSTEM RELATIONSHIPS

System
Definitions y(t) =J’ h(r) x (—r)dt

-c,

Y( w ) = H(w)X (w)

• Correlati on

Reiationships R~,(t) =J~_c, h(t1) R~~
(r i+t) dt1

• Ryx (t) =j h(t i)R~~
(t i_t )dt i

= R
xy
(_T)

Ryy(t) h(ti)R
~~(ti

+t)dt1

E. =L:L: h(ti)h(tz) R
~~
(t 1-t2 t)

• Ryy(t) = R~~(_ t )
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• Table 1 (Continued)

LINEAR SYSTEM RELATIONSHIPS (CONTINUED)

• Spectral • (f) = H (-2irf)• (f)
• 

• Density xy xx

• Relationships
= H*(21Tf).xx(f)

~ 
=

=

= IH(2Irf)I2
~xx

(f)

*Denotes complex conjugate.

9 TRANSFER FUNCTION ESTIMATES AND COHERENCE

In the previous section the relationships between stochastic process prop-
erties of the input and output signals of a linear dynamic system are derived ,
given the properties of the linear system. Often in engineering practice we
sus pect that two observed stochastic signals are related by some linear system
which we have not characterized. In this section we are concerned with the
questions : Are two observed signals related by a linear dynamic system? And

• if so: What is the transfer function of that system?

Given any two time functions x(t) and y(t), we coul d compute their power
- 

• 

and cross-spectral densities , and then by using equations of table 1 solve for
an estimate H(w) of the unknown transfer function . This procedure gives

~(w) = 
yx /2 xx (

~
u/
~
2
~

) w~~ Q

and

11(w) = H*(_w) w c 0 (2-81 )

If only the magnitude of the estimated transfer function were required , an
alternative approach Is
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II~(w)I2 = •yy(W/2it)/ •~~
(w/2ir) (2-82)

• or equivalently

A(w) •y~~2 (w/2tr) •-1/2 (w/2ir) (2-83)

As subsequently derived, equations (2—8 1 ) and (2-82) give the best possible
estimates (in the mean—square—error sense) available from the data y(t) and x(t).
However, additional calculations must be made to ascertain whether or not the
signals x(t) and y(t) are indeed related by a linear system. These calculations
are required since the quantities •yy and •~ are strictly pos iti ve and hence
nonzero transfer functions estimates H(w) are obtained for any two signals x(t)
and y(t) regardless of their connection to a single linear system. The signals -•

need not even be measured simul taneously to give non-zero transfer function
estimates. We shall define and compute a coherence function which plays a role
analogous to that of the correlation coefficient introduced in section 11.5 for
random variab les to characterize the extent of linear correlation between two
time signals.

Recall from section 11.5 that given data sets x1 and y1 an estimate can
be derived which is a l inear function of xi. The coefficients a and b of the
functional relationship given in equation (2-84) are derived to minimize the
mean-square-error.

= 
(2-84)

As shown in section 11.5 and Example 2-3, the coefficients a and b can be calcu-
lated from the covariance and the variances of the random vari ables x and y or
they can be estimated from the data sets themselves . An analogous procedure is
derived from estimating the linear dependence of two stochastic processes x(t)
and y(t)• •

Given the stochastic signals x(t) and y(t), we assume that they are related
by a linear system. Logically, an estimate y of y can be written as a convolu—
tion integral like that of equation (2-56). Explicitly we form the estimate
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= / h(r) x (t-r ) dr 
•

(2-85) 11

Since only the functions X(t ) and y(t) are given , no prior knowledge of the sys-
teni impulse response function h(t) or its Fourier transform H(w) is available.
These functions must be estimated from the given data. Some estimation error

• cri terion must be formulated and the transfer functions chosen to minimi ze the
error functional . The mean-square error functional leads most simply to calcu-

• lable results. The estimation error is defined as

e(t) = y(t) - (t) (2-86)

The autocovariance of the error is readily calcu lated as

Ree (t) = e[e(t+t) e(t)]

~~~~(t+t) 1: h(t1) x(t+t-t1) dtl]

• 1y(r) - r h(t2) x(t-r2) dr2 1
L J-~

= R~~(t) -i: h (t1) [R,~~~-ti-t + R~y(t~t i)J dt1

+ / / h(r1) h(r2) R
~~

( r i— r
~ 

— r )  dr1 dr2
• J _c,J _oI, (2 87)

• 
The mean—square error can be minimi zed by proper choice of the system impulse

• response h(t). We define F as those components of Ree (0) dependent upon h.
We minimize Ree (O) by equiva lently minimizing F.

-~~~~~ ~~~~~- S ~ • ~~~~~~~~~~~~~~ —• — ~~~~~~~~~ •• — —S —
~~~~~~ 
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F = -

~~~~~~~ 

h(t1) R~~(-ti) dt1

h(t 1) h(t2) R
~~

(t i_ ta) dt1 dt2

= [ h(r1)~ J h(ta)R
~~(ti 

—
~~~2)  dr2 — 2 R

~y
(—r1) dr 1

J -c, L -c, J (2-88)

A variational method yields conditions which the minimizing function h(t) must

satisfy . Let h0(t) denote the minimizing solution and form

h(r) = h0(t) + ch1(r)

where h1(r) is an arbitrary function and c .is a scalar parameter. Substituting

for h(r) into equation (2-88) and simplifying gives

F = F° + eF1 + c2 F2 (2-89 )

• where

F° J h0(t1) [f ~ 
h0(t2) R~~

(T i -T z) dr2 - 2 R
~~

( t1)] dt1
-c, -c, (2-90)
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F
1 

= ~2f h’ (~1) R
~~

(-ti) dt1

[h1(~~) h0 Ct 2)  +h0(t1) h1(r2)] RXx (ti -t 2) dt1 dr 2

= 
2J”°’ 

h1(ti)(j h0(t 2) R
~~

(ti -r2)  dt2 - Rxy (-t i)] dt1 
(2-91 )

and

I_c, —
c,F2 / j h ’(t i )  h1(t2) R

~~(ri 
-~ 2) dt 1 dr2

J ~~~coJ ~~~oo (2-92 )

It can be shown that F2~~ O for arbitrary h1(r).

The F1 term dominates any variation of F with e for € sufficiently small. Since
£ may assume both positive or negative values , a necessary condition that h0 (t)

be the minimizing solution is the requirement that

F1 o for arbitrary h1(t) (2-93)

which in turn requires that

• 
Rxy

(_t ) =[ 
h0 (~~~2)  R~~

(r_ t2) dt2

-c, (2-94)

The integral equation (2-94 ) is one variant of the so-called Wi ener—Hopf equa-
tion (reference 5, p. 305). Solution for a function h° (r2) which satisfies
equation (2-94) is most readily obtained by Fourier transforming that equation - •
to obtain an equation for H0(w) which can be inverse transformed to yield a
solution. Effecting the transform

61 
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FERxy(_tfl = H0(w) FcR~~(ti)] (2-95)

• denoting

Gyx(w) 
= FER

YX (t)J 
= FER

~ 
(Tfl (2-96)

and

Gxx(W) = F[R~x( r)] (2-97)

gives the solution

i~o(w ) = Gyx(W)/Gxx (W) (2-98)

and

h0(t) = F~~[H°(w)] (2-99)

In general the impulse response function obtained by this technique is nonzero
for ~ � 0. Thus , no phys ical system coul d be cons tructed having thi s impulse
function since all realizable systems are non-anticipating (they cannot begin to
respond to an input that has not yet been applied). A spectral factorization
technique developed by Norbert Wiener (reference 7) does -generate a solution of
equation (2—94) which is implementable by casual systems. This approach is most
readily used in the case that the functions G

~~
(w) and G~~

(w) are expressed as

• rational polyncminals in w. Since such polynominal expressions are not avail-
able from our analysis we discuss his technique no further.

Sunvnarizing these results, if Gyx(W) = F[R,~ (-r)] and Gxx (W) = F[R XX ~~~~
then the best estimate y(t) of y obtainable from the data x(t) is

4, f_c,

y(t) = 
~ 

h(t) x (t— r) dt
.1 -c, (2-100)

62

• -•~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• •-•• • - — -_ _ _ _



AFWL-TR-76— 193

- • -. where

h(t )  = F
~~

EGyx (w) /G
~~(wfl

The estimation error obtained in the minimi zatIon Is R~~(o) + F0 . We
cally manipulate that expression by use of equations (2-90) and (2—94
a more useful result.

F0 = -f~ 
h°(~~ 1) R

~~~~
(-t i) d~~ 1 

= - 

~f_: H w G
~~~

w
~~

1 ~~ IG~~
(w)Iz

= - 

~J c , G,~ (w) 
dw

and cor~sequently

1 r~ IG (w fl 2
E = R~~(o) - 

G
~~
(w) dw

• Recall from equation (2-94) that

• G~~(w ) = F [R~~(t))

Inverse transforming and evaluating at r = o yields

R~~(o) =

- • 
and we can wr ite

- :: ~~‘E (Gyy (w)~~~~~4 X~~~~~~
3d: 

-
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or equivalently

G~~(W) [1 
- 

~~~~~~~~~~~ 
dw 

(2-107)

This latter expression Is particularly useful since it allows a definition of
normal ized error on a spectral basis. We define the coherence function of the
estimate as

IG 1w~~
2 ~ (f~~22 (f) 2 1w \ — _ _ _ _ _ _ _ _ _ _ _ _  - yx ’

• 1xy ~
‘xy ~~~~~~ 

— G
~~
(w) G~~(w) 

— 
~~~~ 

•~~(f) (2-108)

Clear ly

• O~~~
2 (f)~~~11xx (2-109~

The coherence function plays a role similar to the correlation coefficient• It
characterizes the degree of the linear relationship between t’~io signals such
that as ‘r~~(f) approaches 1 the two functions are more highly correlated , while

equal to zero guarantees no li near dependence.

EXAMPLE 2-6

f l  Consider a linear dynamic system wi th input x(t) and response y(t). Power
spectral densities of the input and output signals have been measured as well as
the input—output cross spectral density . An estimate of the system transfer
function is to be obtained from these quantities . The coherence function is
also computed and the results interpreted. The measured spectral densities are

G~~(w ) = 1+(~/~
-
~ 

+ .01

and

G
~~

(w ) = 
I +jw /a
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From equation (2—98) the transfer function estimate is computed as

• G (w) 
_ _ _H(w) = 

G
~~
(w) 

= l+jw/a

• The coherence function is computed by substitution for G (w), G (w), and
G
~~
(w) in equation (2-108). • Yx YY

~2 (w/2ir ) = Il + ~w/aI— 2 • 
= + .01 [1 + (w/a)2] 

k_ i
xY _ _ _ _ _  1- 01 

~1 + (w/a)2

Observe that at lo~ frequenc ies where w < a we have ~2 ~~ 1. At these frequen-
cies the estimate H(w) of the transfer function is very good . At frequencies
w > a, y2 is less than one and it approaches zero as w becomes large. The
estimate is not good at high frequencies. A block diagram description of a
system having the properties gi ven in this examp le is presented i n figure 18.

fl(t)IGnn .01

X ( t )  ••_~ H(w) = 1
G11~ 1 ‘‘ 2 G Z X +G~~

Figure 18. Linear System Transfer Function Identification for Example 2-6.

The estimated transfer function agrees identically with the actual system trans-
fer function . The coherence function decreases from unity at higher frequencies,
however , because the measurement noise n(t) becomes proportionately large with
respect to the linear system output. At very high frequencies, the signal y(t)
is dominated by n(t) and , consequently, y(t) is not accurately modeled by y(t)
as obtained from equations (2-100) and (2-101). The coherence function devia-
tion from unity indicates this fact.—

Additi onal properties of the coherence function and its role in transfer
function estimation are devel oped in section IV. We caution the reader that
these techniques are applicable to stochastical ly exc ited systems . Trans fer
function estimates for linear systems with deterministic input signals are ob-
tained by other techniques. 
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Other useful formats for the presentation of P50 information have been de-
vi sed . These formats , all entailing i ntegrals of PSD& s over a given frequency
band , are used most commonly for characterizing the performance of stochasti-
cally excited systems. Definitions for cumulative power (CUM PWR),wide band
RMS, a, inband RMS, and BACKWARD SUM are presented here for completeness. We
comment briefly upon the interpretation of each term.

diM PWR 
~~~ 

= •.~ (f) df
• 

0 (2—110)

Cumulative power represents a signal’ s mean square value  i n frequency componen ts
from dc to a maximum frequency 

~
H• Wideband RMS represents the root-mean-square

signal value contained in signal frequency components from dc to a maximum fre-
quency. RMS is the level of a dc signal containing the same root—mean-square
value as the time—varying signal being analyzed.

Wide Band RMS = a = 
(oxx n df

o (2-111)

Clearly,

a = ~f~~M PWR (oo)

Inband RNS is simply a generalizati on of wideband RMS. The lower and upper fre-
quency limi t are specified . Inband RMS represents the signal power wi thin the
specified frequency band.

In Band RMS 
~ L’ ~~ 

df

L (2—112)

Finally, BACKWARD SUM 
~~~ 

represents the signal power attributable to frequency
components above the specified frequency 

~
L• •
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-
~ BACKWARD SUM 

~~~~ 
= 

~ 
o~~(f) df

~ 

a2 — CUM PWR 
(2— 113)

10 SUMMARY

The key concept developed in this chapter is that of a stochastic process
representing signals and phenomena which cannot !~e accurately predicted and are
of a random or statistical nature. These signals are characterized in terms of
their mean , covariance and spectral density properties . Gi ven these properties
of a linear system input forcing function , and the system transfer function , one
can calculate the corresponding properties of the system response. These calcu-
lations are important when calculating the response of an hypothesized system
(no hardware ex i sts) to a known stochas tic environment and for the performance
evaluation of such systems. The transfer function estimation techniques pre-
sented in section II.9 al l ow calculation of the linear dependence of two sig-
nals. These techniques can establish cause and effect relationship between

• seemingly unrelated signals.

I
I..

4
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SECTION Ill

COMPUTATIONAL ASPECTS OF ANALYSIS

1 INTRODUCTION

The primary emphasis of thi s section is the development of specific data
analysis procedures based upon the theoretical results presented in the last
section. In developing practical data analysis techniques , we shall prefer (or
in some cases be forced) to make simplifying approximations . These approxima-
tions shall be examined in detail to determine their impact upon the interpre-
tation of our results. The basic results of this section deal wi th development

• of algorithms suitable for use wi th finite duration , sample-data sequences.
These numerical procedures are suitable for coding in a higher level language
and execution tn a minicomputer or a larger computer system. The Discrete
Fourier Transform (OFT) is introduced as a sampled-data equivalent of the
Fourier transform. The Fast Fourier Transform as a computationally efficient
algorithm for calculating the DFT of a numerical sequence is explained . Equa-
tions for computing power and cross-power densities and the coherence function
are presented at the conclusion of this sec tion.

2 FINITE DURATION DATA INTERVALS
The power spectral density of a stochastic process x(t) and the cross-

spectral density of two processes x(t) and y(t) have been shown to be important

• characterizations of stochastic processes. These properties are sufficient for
estimation of the linear dependence of two processes and for calculating the
output power spectrum of a dynami c linear system excited by a stochastic process.
In section II the power spectrum is shown to be the Fourier transform of the
process autocorrelation function, equation (2-71). Thus the process PSD is
readily calculated once the autocorrelation function has been determined .
Theoretically, the autocorrelation function is determined by the second-order
density function , equation (2-44), or , for ergodic processes, by the time-
avera ge correla tion computed from an observe d rea li zation of the process , equa-
tion (2-51). Second-order density functions are generally not known a priori .
Es timation of a process autocorre latlon function is generally much simp ler than
estimation of the second-order density function and calculation of the auto-
correlation function from it. In either approach , we are practically limi ted
by a fini te duration i nterval of data from which the estimates can be computed .
We explicitly examine the effects of the finite duration data interval in the

68 
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calculation of a power spectral density as the Fourier transform of a time aver-
age autocorrelation function estimate.

The finite duration interval has two ininediate consequences in the inter—
pretation of our results. Limiting the data interval to a finite duration

• makes the autocorrelation function a random variable with a nonzero covariance.
The finite interval also distorts the estimated spectrum of R

~~
(-r).

The randomness introduced by using limited data is best described by the
following observations. Define

~~~~~ 
(~) 

~ X~(t) XT(t +~) dt
-00 (3 1)

where

~ x(t) ~
- XT(

t)_ 
~
~ a , otherwise (3-2)

• Note that R~1x1(t) is certainly a random variable since it is a function of the
stochastic processes x(t) and x(t+-r). Under a general set of assumptions (ref-
erence 4, section 9) the covariance of RXTXT(r) approaches zero as T approaches
infinity. For engineering purposes we can treat the estimated correlation func-
tion just like any other deterministic function of r. The finite duration inter-
val , however restri cts 1 to fi nite val ues . Hence , the covariance of the random

-: variable RXTXT(-r) remains non—zero. The finite covariance of the autocorrela-

• tion function estimate has the followi ng practical interpretation . If we were
to compute Rxix1(r) from different data intervals (or from different members of
the time ensemble) of the same ergodic stochas tic proces s , we woul d calcula te
di fferent functions R

~1~1(t) for each. The mean or average value of the differ-
ent calculations i s R

~~
(r); the various values are dispersed about the mean with

a covariance which (in principle , at least) is calculable from the density func-
tions of the underlying probability space. A PSD calculated by Fourier trans-

• forming RXTXT(-r ) necessarily has a corresponding covariance or uncertainty .
Bounds on the PSD uncertainty are derived tn section 111.4.

Calculation of a PSO estimate from a finite duration data Interval is also
claimed to have spectral distortion. By direct calculation 
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Gx x (W) = F{Rx x (T)] = ~ 
X.~.(wfl2 ( )

where

XT(W) 
= FExT(t)) (3 4)

But clearly we can wr ite xT(t) as the product of the untruncated stochastic pro-
cess x( t) and a window function g(t) wh ich is unity for t withi n the ava i lab le
data time frame and zero elsewhere. Observe that explicit calculation of XT(w)
using this expression for xT (t) gives :

X (w) = J x( t) g(t) exp (—jwt ) dt
J .-00 (3-5)

but

- x( t) = X(w 1) exp (jw1t)dw 1 - 
—00 

- (3 6)

so by substitution for x(t) and an interchange in the order of integration

XT(w) 

~LcJ1, X (w 1) exp (jw1t) g(t) exp(-jwt) dw1dt

= 

hi: 
X (w 1) [g(t) exp [-j(wj-w) t] dt] dw1

X(w 1) G (w-w 1) dw1 
-00 (3 7)
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where

p00

G(w) = 
~ 

g(t) exp (-jwt) dt
J .00 (3-8)

Equation (3—7) is interpreted as a complex convolution of the functions X(w) and
G(w) (compare wi th the convolution of time functions given in equation (2—56)).
We see that xT(w) represents a complex weighted average of the va1ut~s X(w1) in a

• neighborhood of frequencies about w. The weighting function G(w) is simply the
Fourier transform of the data window function. Generally ~G(w)I has largest mag-
nitude for w ~ o and its magnitude approaches zero as w becomes large. Typically
a tradeoff exists between the main lobe width and the rate at which IG(wfl rolls-
off with increasing frequency. A sharp main lobe is desired so that X1(w) closely
approximates X(w). A fast rolloff is required to prevent components X(w1) from
significantly contributing to XT(w) whenever w1~w. Examples of various window
functions and their corresponding transform magnitudes are plotted in figure 19.

The spectrum of XT(w) is a distorted representation of the original signal
spectrum. This distortion is most readily seen or the case wherein X(w) has
discrete frequency singularities , as for example , does x(t) = cos w0t. The
actual spectrum (X(w)f and the truncated signal spectrum IXT(wfl are plotted in
figure 20. Notice that JX T(w)J has non-zero valuL~ over frequency bands where
IX(w)I Is zero. This property of 

~
XT(w)l is due to a leakage phenomenon associ—

~‘ted with all finite duration wi ndow functions . ~~c’ primary ~r tati~ri Df data
windows is that they smooth the measured spectra, Introduce leakage components,
and limi t the resolution of the final spectral estimate. These effects are mini-
mized by a choice of T sufficiently large that these attendant degradations are
inconsequential . Generally this requirement means that T > 21~/~f where ~f is
any frequency difference we wish to resolve. The confidence of our estimate
will also require larger I for better estimates. These relationships are pre-
sented in Section 111.4.

The cosine-taper data wi ndow shown in figure l9d is employed in the AFWL
SIGA:~AL data analysis program . This window function provides good sidelobe re—
jection while introducing minimum distortion to the original data signal . A
dominant effect of the distortion is to reduce the variance of the wi ndowed data
wi th respect to the original unwindowed signal (ref. 2, p. 323). The windowed data 
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• g(t) IG(w)I
1 T~~~~~~~~~~~~~~~~~~~~~

I t - 2t/T 4v/T W
g(t) G(w)I

1

1/2 1 t 21/I 4v/T W

g(t) I G(w) I
1 1

• 1/2 I t 2r/I 4Th W

• 
• 

g(t) IG(w)I

1

i_ 

T~~~~~~~~~~~~~~~~

_ 

~~~~~~~

1/10 91/10 T t 2 r/T 4v/T w

Figure 1.. Data Win dows and Their Transform Magni tudes
(a) Boxcar, (b) Triangular , (c) Hanning ,
(d) Cosine Taper.
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• 
W -  ~W 0 _~~~ W 0 cw

~+2~~ 
w

Figure 20. Spectral Leakage of Data Windows .

must be mul tiplied by a 1 correction factor’ which increases the output data vari-
ation to its original , unwindowed value. The approximate correction factor is
given by the ratio of the window function ‘powers.~ A wi ndow power is simply the
area under the curve of the window function squared .

• rTI
I ~8oxcar

- Jo 1CF *~~~t 0.875

J ~~~~~ (t) dt
0 (3—9)

This correction factor is precisely correct for random data as can be seen from
the following calculations:

e[~~] [J..T 

(x(t) - ~~(t))
2 
dt]

2

x (3-10)

while for wi ndowed data •

_ _ _  
- •~~~~ - -j
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e{z] = 411

T 

(x(t) - ~x(t))
2 g2(t) dt]

= a~Jf
T 

g2 (t)dt
o (3—11)

The ratio of these variances is the correction factor we mus-t apply to approxi-
mately boost the variance of the wi ndowed data to match the original signal vari-
ance.

C F = —  T

f g2(t) dt
Jo (3-12)

An al ternant method that can be used to calculate the approximate correction fac—
tor is to actual ly calcula te the sample variances of data both before and after
multiplication by the wi ndow function. The approximate correction factor is then
simply the ratio of these results . Koenigsberg (reference 8, p. 80) gives an ex-
cellent discussion of this procedure. His empirically founded observations pro-
vide useful interpretations regarding the systematicness of the data wher the
correction factors as calculated above differ greatly from that derived from
equation (3—12).

The correction factor is a power boost mul tip l i er for si gnal variances;
hence, it is also the appropriate correction factor for PSD calculations. The
complete PSD formulas are presented in section 111.3.

3 SAMPLED DATA

The second most important aspect of practical stochastic data analysis pro-
cedures deals with the sampled-data nature of signals processed by numerical
algori thms on a digita l computer. The equations presented thus far have assumed
that values of the time function x(t) are known for any t wi thin the analysis
Interval [O,T]. Practically, this is the case only when the signals are speci-
fied analytically in a theoretical deviation or when the data analysis equations
are implemen ted with analog , rather than digital , circuits . Prior to the wide-
spread use of digital computers, analog bandpass filter techniques were employed 

~• • --—--••— -~ • •i~~•--• -~ 
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to estimate spectral densities . (Recall the PSD discussion in section 11.8.)
Digital numerical procedures make feasible and practical many new analysis tech—

• • niques . Consequently, digitization of analog data signals and the numerical
evaluation of our analysis equations requires careful examination as to the im—

• pact of these operations on our overall results. We shall find that data digi-

• tization introduces distortions of the estimated PSO just as did the finite
duration data window.

Data digitization or sampling typicall y is a process whereby a continuous
signal x(t) is converted to a sequence of digital words represented in a binary

• number system comon to modern digital computers. Signal values corresponding
to the digita l sequence are obtained from the original signal at fixed time inter-
vals AT. The sampl ing frequency or sampling rate is f5 

= A T 1 ; ~T is the sampling
interval or period. A pictorial representation of the sampling process is pre-
sented in figure 21.

X ( t )

_ _ _ _  Trrl’L ‘IlL
AT 2 AT 5 AT 1 oAr 1 0

4 ! 
• Figure 21. The Sampling Process for Signal Digitization .

Assume that the sample points Xi 
= x (i AT) for integer i are known rather

than the values of the function x(t) for an arbitrary t. We wish to use these
sample points to determine Fourier transform spectral properties of the unsampled
time signal x(t). We observe that one possible convention for reducing the
original function x(t) to a time function completely characteri zed by the values

75



-: 
__

~~~~~~~~~~~
T 

-- • 

.~~~~~~~~
--—-

AFWL-TR—76—l93

is to define the sampled-data time function x*(t) as the multiple of x(t) with

a time sequence of impulse functions spaced AT seconds apart.* The sequence of
impulse functions is called an impul se-train and is denoted 61(t).

6
T

(t) o (t -1AT )

(3-13)

Performing explicitly the multipl ication of the signal by the impulse train gives

x*(t) = x(t) 61(t)

= x (i~T) 6(t - 1AT )

(3—14)

The Fourier transforir X*(w) of x*(t) defined by equation (2—57) is

~~~~~ that the impulse functi on (Dirac delta function) is defined by the follow-ing properties:

a. 6(t) dt 1 for arbitrarily small c>o
J-c

r ~~~
b. J f ( t )  6 ( t— -r ) dt = f(t) if f is continuous at r
) 

~~~

c. 6(t) 0 (t>O or t<O) (i.e., t ~ o)
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• X*(w) = / x*(t) exp (-jwt) dt
J ..ØQ

X*(w) = x.~exp (-jw All)
1=—a (3—15)

Certainly we could omi t the intervening steps and simply define a sample-data
Fourier transform as

X*(w) = x(i~T) exp (-jw 1AT)
(3—16)

The time domain mul tiplica tion of the origi nal signal x(t) by the impulse train 
-

requires that the Fourier transform of the resulting sampled-data sequence be
the convolution of the original data transform with the transform of the impulse
train. The Fourier transform is readily seen to be a sequence of singularities
at frequencies w = n~~, I = a, ±l ,±2 This property readily follows from
the fact that 61(t) is periodic with periodicity AT. Also

FC&T(t)3 = exp (-iwiAT)
= 00

k21To’ for w = — (3—17)

We shall show that the sampled-data Fourier transform is related to the original
signal transform by the equation

X*(w) = ~~~~ X(w + ~~.n)
f l - 0 0  (3-18)
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where

X(w) = F[x (t)]

Typical plots of IX*(w)I given ~X(wfl are plotted in figure 22. The extremely

• IX(w)I 
~~~~ 

IX (w)~

_ __ _  _ __ _  _ __ _

AT 1 AT 3

IXtw)I IX~W)I 
• 

tX~(w) J

_ __ _  _ __ _

Figure 22. Spectral Folding of Sampled Signals.

important result is that frequency components in X(w) above the Nyquist frequency
W = ir/AT are folded-down to frequencies wi thin the band Iw l ~ n/AT . Thus these
higher frequency components, mimic , or al ias spectral components in the lower
frequency band . A time domain interpretation of the aliasing phenomena Is shown
in figure 23. Observe the spectral distortion which occurs in the case that the
sample rate is too low. Distortion is minimized with sample frequencies at least
twice the signal bandwidth . Signals which are bandlimited to the Nyquist fre-
quency can be uniquely represented by their sample sequence x1. Unfortunately,
perfectly bandlimi ted signals are seldom encountered In practice . Many practical
signals are approximately bandl imi ted, however. Those signals not sufficiently
bandlimited for the -desired sample rate can be appropriately filtered by anti-
al iasing filters to minimize their spectral content beyond the Nyquist frequency
thereby minimizing aliasing distortion. Anti -aliasing filtering must be accom-
plished prior to digiti zation.
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Fi gure 23. A Time Domain Example of Frequency Aliasing.

The important relationship of equation (3—18) is proven in the followi ng
manner. First note that X*(w) as expressed in equation (3-15) is periodic in w
wi th periodicity w~ = 2ir/~T. This periodicity is a consequence of the periodic-
ity of the complex exponential function.

exp [-~ (~~~ 
n+w) Au ] = exp(-j2irni) exp (-j wATi )

= exp (-jwATl ) (3-19)

since exp(-j2nni) = 1 for all integers n and i. The peri odic nature of X*(w) per-
mi ts it to be represented by a sum of sinusoid s (Fourier series) of the form

X*(w) = c(i) exp [-j ~(~~)i]i~~00 
p

= c(I) exp (-jwAli )
i~~00 (3—20)
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where the Fourier coefficients c(i) are gi ven by

~~ p/2

c(i ) = 
iW~/2 

X*(w) exp {+iw (~
r~ 

~)II 
dw 

(3-21)

Compari ng equations (3-15) and (3-20) we see that

c(i) = x .~ = x (iAT) (3—22)

and equation (3-21) can be re—expressed in the form

n/AT
x(1AT) = 

~:.I
r X*(w) exp (+jwATi) dw
-n/AT (3—23)

Standard Fourier analysis of the original signal expressed as in inverse trans-

form is

x(t) = X(w) exp (jwt) dw

= 
h 

X(w) exp (+jwt)dw
m=-00 12m-1)ir

AT

it

~ ~~~~.00 

x (w + ~ .m) exp (jwt+jrn~ t) dw

• (3-24)
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Rectricting attention to values of t tAT in the above equation and maki ng the
s~mpl 1ficat 1cn in the exponential that this allows gives

+

x(iAT) = 

~~~~~~~:T 

~~~ 

x (w + exp (jwATi ) dw

- 
~T (3-25)

Comparing equatIons (3-23) and (3—25) and the uniqueness of the Fourier transform
gives the identi ty

X*(w )=1~ 
~~~ 

X (w +~~-m )
(3-26)

as was to be proven.

Up unti l this point we have assumed that an i nfinite duration of data is
available. The practical considerations of a finite duration data interval dis-
cussed in sectIon 111.2 also hold for sampled—data . This finite data restriction
reduces equation (3—15) to the form

X*1(w) = Xi exp(-jwATi)
1=0 (3—27)

The above representation of the Fourier transform of the signal x(t) is simply
computed for a given w as the weighted sum of exponentia ls. We shall show that
X*1(w) need be evalua ted for only N equal ly spaced val ues of w in order to
uniquely specify the sampled sequence x1 . Then we shal l show how these N values
may be efficiently calculated .

The discrete Fourier transform (DFT) is defined simply as the Fourier trans-
form of a finite l ength sample sequence evaluated at the discrete frequencies
w = n~~, n = o, 1 , 2 . . . N - 1. We now show the correspondence between the OFT
and the transform X(w) of the original unsampled signal .
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Consider the windowed time function x(t) defined on the interval [0,1) and
elsewhere zero. Let x1, i = o, 1, . . . ,N-l be the corresponding sample se-
quence taken at times t = tAT, where AT = 1/N. Since x(t) is zero outside the
interval [0,1), we may assign values to a functi on x(t) such that x(t) = x(t) for
t in [0,1) and in such a manner that allows us to most easily reconstruct x(t)
from x(t) and its transform. One potentially useful assignment is to define
x(t) as the periodic repetition of x(t) as shown In figure 24.

~(t) 
~~~ 

x(t+nT)
fl~~~~00 (3—28 )

• • X ( t )

Figure 24. Periodic Continuation of a
Finite Duration Signal .

The advantage of this choice is that because of its periodicity , it can be rep-
resented by a Fourier series at frequencies w~ ~~~ and its harmonics. Further ,
if x(t) is truly bandlimited at = then only WL/Wp 

= N/2 components need be
cal cula ted to un iq uely characterize x(t). We shall show that knowledge of N OFT
points is sufficient to characterize x1. Knowledge of transform values at other
frequencies is not required and in fact these values may be deduced from the dis-
crete frequency transform values that are actually evaluated .

In terms of a complex Fourier series, x(t) can be written
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(t) = X~ (k) exp (+~~
L kt)

k=-~ (3-29)

or when t is restricted to values tAT

~(iAt) 
= ~~~ X~ (k) exp (~ ~ i.kATi)

= (k) exp (i~~ ki)
k=-~ (3-30)

since T/AT = N. The exponential term is periodic in k wi th perlodicity N so that
equation (3—30) may be written as a finite sum

~(iAT) 
= ~- X~ (k) exp (J~

2!~ ki)
k=o (3—31 )

The transform X~(k)  is seen to be

X~(k) = N ~~ (k+~.n)
(3—32)

The transform X~(k) is most readily evaluated from equation (3-31 , rather
than by use of equation (3-32). Multiplying both sides of equation (3-31 ) by
exp (-i ~2!~ IL) and suming over the index I gives
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x(1AT) exp (-~~~~~~~~ IL) 
= X~(k) exp

= ~~~~~~~~~ X~,(k) 
[~~ 

~~~ exp i~~~k_L)i]

The term within the brackets is recognized as a geometric series which is sum-
mable in closed form. It equals 1 whenever (k - z) is an integer multipl e of N
and is zero otherwise. Hence we have shown the transform pair

x(iAT) <=> X~(k) (3 34)

-• The transform relationships are summarized by the equations

X~(k) = x (iAT) exp (-~ ~ 1k)i=o (3—35)

and
I

x(IAT) = ~- ~~~~ X~ (k)  exp (~ ~~ ki) (3-36)

Equations (3-35) and (3-36) are the OFT and inverse OFT, respectively, of the
sampled-data sequence x1 

= x(1AT). By reconstructing the steps l eading to equa-
tion (3-35), the relationship between X~(k) and X(w), the Fourier transform of
the original data signal , is established . These steps are summarized in table 2.
Observe that the order in which Steps 1 and 2 are executed may be reversed wi th-
out changing the result. The important conclusion to be drawn from table 2, given
the assumptions that

• .
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• Table 2

• THE RELATIONSHIP OF DISCRETE FOURIER TRANSFORMS TO THE
ORIGINAL SIGNAL TRANSFORM

~~~ Process Input Output Transform Relationship

1 Sampl ing x(t) x*(t) = x(t).61(t) X*(w) = x (w+~~n)

2 Windowing x*(t) x~(t) = g(t).x*(t) X~ = X~(w)~ G(w)

= ~~~ [x~(w+~~n) G(w)]

3 Discrete x1 x1 
= x~(iAT~ X (k) = X*(w) J w k 2ir

Fourier p AT
Transform

(1) the sampling rate is sufficiently fast that

X*(W)~~~~~r X( W ) jwl <f r

and

• (2) the data analysis interval is sufficiently long that the frequency dis-
tortion induced by windowing is negligible (even though a correction

• 
- 

factor may be required).

is that

X( k X(w) 2w = k (3 37)

or

X(w) w=k ~ AT x~(k) ~~~~~ (3-38)
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where X~(k) is the DFT of data sequence. It is defined by equation (3-35). This
method for computing X(w) and the definitions of power and cross spectral densi-

• ties, transfer function estimates and the coherence function establish the approx-
imati ons

PSD 
~~~ 

(
~~
) ~ X~(w )~2 ~~2 C F  

IX~ (k)I
2 I

(3 39)

• K X
T
(W) y~ (w) = X (k)y (—k)T

CSD 
~xy 

(r) = 2 1 J 2 
N2 p p

w=k 
(3—40)

TRANSFER FUNCTION ESTIMATES

(Method 1) I~ (k 4L) = yx (T~~)1
’ xx (~~)

= Y~ (k)/ X~(k) (3-41 )

(Method 2) I~ (k ~L) = ~i/2 (
~~) 

~~1/2(~ )

= IY~(k)/ x~(k)j (3-42)

Coherence Func tion

~~~ (~~~) 
= 

1 x~ ~~ k ~ (see note)
xx (T) yy (ir) (3-43)

Note: The coherence function as evaluated here is a highly biased estimate of
the actual true value of the coherence. This difficulty is removed by
application of frequency averaging techniques developed lvi secti on 111.4.
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Recall that the above equations represent estimated quantities and the above
expressions are “raw ° estimates. Averaging techniques for reducing the variance
of the estimates are developed in section 111.4.

The use of equations (3—39) through (3—43) became particularly attractive
• for digital computer evaluation of signal properties with the introduction of the

Fast Fourier Transform , FF1, by Cooley and Tukey (reference 9) in 1965. The FF1
is a computational efficient algorithm for evaluation of the OFT, equation (3—35).

The FF1 al gorithm depends upon two key aspects. One aspect is that the corn-
putational time required to evaluate X~(k). k = 0, 1 , . . . N—l is domi nated by
the time required to compute a complex multiplicati on. An N point sequence re-
quires N2 multiplications, a computational burden which Is prohibiti ve for large
N. The FF1 ~trades’ complex mul tiplications for an increased number of computa-
tionally less demanding comp lex add itions to achieve a computational comp lexity
comparable to N log2N complex multiplica tions. The computational savings Is the
ratio

N2 
- N

N log~i 
— log2N (3 44)

The computational savings ratio Is tabulated in table 3 for typically used values
of N.

Table 3
THE COMPUTATIONAL SAVINGS RATIO OF THE FAS I FOURIER TRANSFORM

• N N/log2N

512 57
1024 102
4096 341

16384 1170

For example, the numerical evaluation of a 512 point OFT by straight forward
evaluation of equation (3—35) would require 57 times as much computer time as
would the FFT to evaluate the same 512 point sequence. A second aspect of the
OFT formula which makes the FFT possible is the periodicity of the complex
exponential .
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exp~~j ~~ (i +Ln)J = exp (j~1L i) (3 45)

These aspects of computing DFTt 5 lead to computational advantage as follows :
First we observe that the mathematical expression E = ab + ac + ad can be evalu-
ated explicitly as wri tten to require three multip lications and two additions .
Al ternatively, E = a(b+c+d) evaluated explicitly requires two additions but now
requires only a single multipl ication to obtain an equivalent result. This con-
cept is similarly applied toward evaluati on of the DFT.

We separate a N point sequence , assum ing N is an even number , Into two N/2
point sequence x21 and x2L+l . One sequenca has been formed from the points having
even indices and the other from the points having odd indices . Applying equation

• (3—35)

OFT (x 1) x~(k) 
~~ 

x1 exp (~i ~~ 1k)

N/2-l

— ~~ [x~ exp (_~ ~
!~2ik) + x21.~1 exp (_~ ~

!~2l+1k)]
1 o

N/2—l

— 
~~~~~~~~ [x2.~+x21.,.1 exp (_~ v-)] exp (_i v~ 

1k)

1—0

a OFT (x21) + exp 
(-~~ ~~ k) OFT (x2j+l) (3-46)

Thus the ori gi nal N point transform has been changed to an equi valent problem of
evaluating two N/2 point sequences and ltneari ly combining the results . The
computational saving accrues because the computation burden i s proportional to
the sequence length squared . The N2 multiplications required for direct evalua-
tion of the OFT is reduced to 2(N/2)2 + N N2j2 multiplications.

A secondary advantage of the FF1 technique is that one evaluation of the corn-
p lex exponential can be used for the evalua ti on of both the two smaller sequences .
Thus , fewer evaluations of the complex exponential are required .
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The process of dividing evaluation of an OFT into the evaluation of two
DFT’s having half as many points , as done in equation (3-46), can be repeated as
long as the number of points in the DFT actually evalua ted is even. Cooley and
Tukey (reference 9) developed the algori thm for special case that N = 2m , m an
Integer. In this case, N multiplications are performed for each of the m steps
in which OFT’s are expressed as the linear combinations of two shorter OFT’s.
The total number of multipl ications required by this method is

Nm = nlog2N (3 47)

compared wi th N2 multiplications required for direct evaluation of the OFT given
by equation (3—35).

Other methods applicable to cases in whi ch N is not a power of 2 have also
been deve loped (references 10, 11 , and 12). These methods involve the decomposi-
tion of N Into its component prime factors. Each of these methods is equally
applicable to evaluation of the inverse OFT, equation (3-36).

3 CONFIDENCE INTERVALS

In section 11.5 we showed that practical considerations of random data anal-
ysis prevented us from precisely calculating the statistics of an observed pro-
cess. Rather, sample statistics can be calculated which approximate the desired
process statistics. In this section we shall derive a measure of the error or
quality of our estimates .

Generally, the measurement error by which a sample statistic differs from
the true quantity is a random variable since it is the function of random van-
ab les . Consequently, mean values , moments and probability density functions
characterize the error random variable. This aspect of sample statistics is
i llustrated with an examp le.

GIven independent random variables x~ wi th means ~ and variances ci2 , we make
N observations. From these observations we wish to make an estimate ~ of the
p rocess mean. A logical choice i s to s imply avera ge the observa tions to form the
estimate.

X j
1=1 (3-48)
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Suppose now that we were to repeat our experiment. We would expect to make dif-
ferent observations x1. Consequently, the estimate ~i we would compute wi th this
second set of observations would differ from our first estimate. In fact, if we
were to repeat our experiment infinitely often and compute the mean estimate for
each case , we would find that the random variable ~.t has a mean p and var iance
a2/N. These quantities are readily calculated. Taking expectations of both
sides of equation (3-48) establishes the mean value of ~.

~~~~~ 
x~ ~~~~~~~~~~~~~[X j) = P

1—1 1=1 (3—49 )

Similarly

ci~ =e[( ;_ ~~~~)2 ]  = e (X i 
-

(3-50)

The uncertainty of our error depends upon the probability of the underlying
process. Observe that for a very large N , the mean estimate becomes a very good
one s ince the error var iance decreases as N 1 .

The estimate error is a random variable. The question of exactly how much
in error our particular estimate is cannot be answered. In many cases, however ,
we can compute the probability that the error exceeds a specified bound . Both
the probability and bound must be specified to characterize the ‘goodness ’ of
our estimate.

These concepts are applied to the mean estimation problem developed in
equations (3-48) through (3-50). We assume that the random variables x~ have
normal distributions. Then the estimated mean is also normally distributed and
has a PDF completely characterized by Its mean and covariance given in equations
(3-49) and (3—50). 

~•~__~~
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p(;) = exp [- ~- 
(3-51 )

The estimate error e = ~~~ has probability density function

p(e) = 
1 exp 1- 1~1

L 2
~ J • (3-52)

• 
• 

By the definition of probabi1i tie~ presented in Section II, the probability
that the absolute error exceeds a specified bound ed Is precisely calculable from
the error probability density function equation (3—52). Explicitly,

~ 
(
~i ei>e~}) ~ p(e)de 

lied 

p(e)

• .2
_f 

p(e) de
ed (3-53)

Table 4 gives evaluations of this inteqr~l for selec ted values of ed normal i zed

Table 4
CONFIDENCE PROBABILITY TABLE ,ae 

=

ed/’ae P({jeI > ed}) P({Iet ed))

.5 .616 .384

1 . .318 .683

2 .046 .954

91



TTI1I~~T T ~~ I i T~~~~

AFWL—TR-76—l 93

by 
~e~~

N_h hl2 Given ed 
= 2ae~ 

for example, we say that there is only a 4.6%
probability that our estimate error magnitude exceeds 2ae. Equivalently, we say

• that we have 95.4% confidence that our estimate error magnitude is less than

- An important aspect of the preceding analysis if that two quantities must be
enumerated to indicate the quality of the estimate . The required quantities are
(1) the error bound and (2) the probability that the specified bound is (or, is
not) exceeded. Generally one of several alternative approaches is used . Calcu-
latlon of the conf idence from an a prior i error bound i s one app roac h commonly
used. Otherwise, a particular confidence is specified and the corresponding
error bound is calculated . An approach we shall use entails specifying both the
error bound and the confidence. Once these quanti ties are spec i f ied , equations
(3—52) and (3—53) are used to calculate a minimum number of observations N that
must be made to obtain the desired quality estimate.

An identical analysis procedure is applicable to the calculation of confi-
dence bounds for power spectral densities and cross spectral densities. Results
presented in references 2, 8, and 12 are summarized .

The underlying probability of measured signals of dynamic systems tends to
be a normal distribution as demonstrated by the central-limi t theorem. It fol-
lows that the real and imaginary parts of a signal OFT at each component fre-
quency are independent, normally distributed random variables wi th zero means
and equal var iances (reference 2, p. 189). The PSD is calculated from the real
and imaginary OFT components by equation (3-39) or

- 
~~ 
(
~) 

~~ jX~(k)~2 T

— 
2CF 1 {Re

Z Cx~(k)] + ~ 2 [x~(k)]}

As the sum of squares of normal random va riab les , 
~~ (

~~
-) is a chi-square random

variable with two degrees of freedom (reference 4, p. 250). The ratio of the
standard deviation to the mean of a .chi—square distri bution having n degrees of
freedom Is a constant given by

92 



~~~~~TT~~TI

AFWL-TR-76-l 93

(3-55)

Chi -square probability density functions for higher degree of freedom are

plotted in figure 25.

N=20

1 N 1 0

N=4
.5

y

Figure 25. Chi—Square Probability Density Functions for
Several Degrees of Freedom.

Clearly, our PSD estimate is a chi-square random variabl e wi th two degrees
of freedom. As a consequence of equati on (3-55) wi th n equal to 2, the PS~ es- -

mate gIven by equation (3-54) has a variance equal In magnitude t~ the e s — -~~
itself. This estimation error is intolerably large for most app lica - - - ons

*Roughly speaking , the number of degrees of freedom is t~’e n~-~ernorma l random variables summed to form the chi-square var ’3~le

• That is x2 = x 12 + x22 1 . . • x 2 has vi degrees c’ ‘~~~~
-- -  -

(re ference 4, p. 250J .
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The estimation errors of the raw PSDs computed by equation (3-54) are re-
duced by aver~iging techniques. Averaging, in effect, increases the number of
degrees of freedom of the chi-square random variabl e or PSD. By equation (3-55)
this averaging process reduces the estimated variance in proportion to the esti-
mate mean , a constant. The variance reduction is proportional to r1/2 where £
is the number of independent raw PSDs averaged to obtain the estimate.

Two di stinct averaging techniques are commonly employed. One technique is
to average several PSD estimates each obtained from different time intervals of
the data record. The second technique is to average several adjacent frequency
components of the original raw PSD.

Averaging over several PSD estimates (smoothing over an ensemble of mea-
surements) Increases the number of degrees of freedom of the chi-square dis-
tributed estimate as is seen from the following calculations . Denoting the
averaged estimate by ~~ we have

~ (& ~~~ T ~~~ {R~
2 
[x~~(k)] + 1m2 

{X~~(k)J } (3-56)

Then if £ raw PSO estimates are averaged, the smoothed PSD estimate has n
degrees of freedom. Application of equation (3-55) to this average shows that
the standard deviation of the smoothed estimate is r 1/2 times less than that of
the original estimate .

Similar results are obtained for smoothed estimates derived as averages of
adjacent frequency components of a single raw PSD. This averaging technique is

• particularly advantageous whenever a ~~ (or log •,~ ) versus log—frequency pres-
entation of the PSD Is employed as is coninonly the case (reference 8, pp. 90-93).
The spacing of PSD estimates uniformly tn frequency as occurs with DFT computa-
tions gives a far greater resolution that can be legibily displayed on a loga—
rithmetic frequency graph. These ‘extra’ PSD estimates can be averaged to reduce
the uncertainty of the estimate. For frequency averaging ,
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•,~ (
k+L/2) 

— 12CF 1 
~~ 

{r~ [X~(k+i)] + £jn2 (X ~(k+l)]}

An apparent disadvantage of the frequency smoothing technique in comparison
with the ensemble smoothing technique of equation (3-56) is the loss of obtain-
able resolution, especially at low frequency ranges. However, the ensemble
smoothing technique requires addi tional data samples. For an Identical statis-
tical confidence of PSD estimates given the same number of signal data points,
each method yields the same frequency resolution. The ensemble smoothing tech-
nique is computatlonally less expensive, however. If N points are divided into
£ intervals for which transforms and PSD’s are computed and averaged, then the
computational savings over frequency smoothing a N point sequence to obtain the
same confidence is roughly a factor log2t.

That the ensemble averaging and frequency smoothing yield the same confi-
dence and frequency resolution given the same number of raw data points is
illustra ted by the following example.

EXAMPLE 3-1

Given N = 4 x 210 data points , compute the frequency resolution of smoothed
PSD estimates having a confidence equivalent to 8 degrees of freedom. A 1 KHz
sampling frequency Is used .

Method 1, Ensemble smoothing :

Four separate DFTs must be computed to yield the required degree of freedom. One
fourth the total available samples , or 210 poInts , is available for each OFT.
The frequency resolution obtained is

— 1 . 0 Hz
210/f5

Method 2, Frequency smoothing:

Four adjacent PSO frequency components must be averaged to yield an estimate
with the required degrees of freedom. In this case , all N data points are
ava ilable for the raw DFT computation. The unsmooth frequency resolution is

~~~~ 
1 .25 Hz

2L2/f5

95
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This frequency resolution is 4 tImes smaller than available in Method 1 sInce the
data Interval used for the OFT calculation is 4 times longer. But we must aver-
age 4 adjacent frequency components to obtain the desired confidence.

~f 4 ~~~f’ =l.O Hz

Identical frequency resolution is obtained in either case.—
Confidence bounds are computed from a normalized chi-square distribution .

Normalizing this random variable by its mean we obtain multiplyi ng factors which
determine the upper and lower confidence bounds of PSDs as a mul tiple of the
estimate Itself. Smal l confidence bounds require that the multiplyi ng factor be
nearly equal to unity.

Upper and lower confidence bound multiplying factors tabulated in table 5

Table 5

CONFIDENCE INTERVAL UPPER AND LOWER BOUNDARY MULTIPLIERS,
M, FOR AN n DEGREE OF FREEDOM CHI-SQUARE DISTRIBUTION

lOOa: 80 Percent 90 Percent 95 Percent

U-n 14: M~ M
~ 

M
~

2 .11 2.31 .05 3.00 .03 3.69
10 .49 1.60 .39 1.83 .33 2.05
20 .62 1.42 .54 1.57 .48 1.71
60 .77 1.24 .72 1.32 .68 1.39
120 .83 1.17 .80 1.22 .76 1.27

are derived from the normalized chi-square distribution. Both upper and lower
factors must be specified since the chi -square density function is asymetri c
about its mean. Calculation of upper and lower multiplying factors for cases
not presented In table 5 are calculable by methods illustrated in Example 3-2.

EXAMPLE 3—2

Given the percent confi dence 100 ~ that we des ire a PSD estimate to have and the
number of degrees of freedom n equal to twice the number of raw DFT components
averaged to calculate the PSD estimate, calculate ~he upper and lower confidcnce
bound multipliers for the estimate . The estimate •~ has a chi-square distribu-
tion with mean and standard deviation [see equat~on (3—55)]
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where n is the number of degrees of freedom and Is equal to U. Thus we need to
calculate the upper and lower multiplier M

~ 
and M~ such that

‘ i . > M~ + < Mg xx}) = 1-u

To ensure an unbiased confidence interval we further require that

P({~xx 
> ~~~ xx}) 

= 

~‘({~xx 
< M~ xx})

a new random variable y a n ~~~~~ 
Is defined to facilitate later use 0f mathe-

matical tables . Certainly, y has chi -square distribution with n degrees of free-
dom and mean n since It Is simply a scalar mul tiple of 1xx Now the multiples
can be formulated as

“ ({xx > M~ - P~(y > nM~})

af p(y) dy — .
~~
. (1-a )

nM
~

where p(y) Is the n degree of freedom chi—square probability density function .

Tabulation of nM gtven n and the integral value have been publisP~ed (ref.
erence 13). U

For the purpose of Illustration , let a .9 corresponding to 90% confidence
and suppose n — 10. Then from the tables we find that:

/ p(y) dy .05

for nil 18.3 ~correspond1ng to M,~ 1.83. To compute the lower multiple Mt
using ~he tables, the problem must be recast into the form
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1%ML
1 -r p(y) dy 

—J 
p(y) dy — 1 - ~~

- (1-u)
nM
~

p.

I p(y)dy — .95
.1 nML

From the tables, nM~ = 3.9 or Mt 0.39. These values agree with those tabu-
lated In table 5. An Identical calculati on technique is applied when evaluating
other cases.—

Often PSD estimates are presented in a log magnitude versus log-frequency
graphical format. For this presentation, a confidence interval ‘spread’ ex-
pressed In decibels is more convenient to use than the multipliers M~ and M

~
.

Taking logarithms

14UJ = IV 10910 ir£

10 l09~o (Ma) — 10 logio (M
~
) (3—58)

The spread S expressed in dB is tabulated in table 6 as a function of confidence

Table 6

CONFIDENCE INTERVAL SPREAD (dB) FOR AN n DEGREE
OF FREEDOM CHI—SQUARE DISTRIBUTION

n lOOa : 80 Percent 90 Percent 95 Percent
2 13.4 17.6 21.7

10 5.2 6.7 11.9
20 3.6 4.6 5.5
60 2. 0 2.6 3.1

120 1.5 1.8 2.2

_______________ ~~~~~~~~~~~~~~~~
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and the chi-square degrees of freedom of the estimate. Blackman (reference 14,
p. 23) presents a fairly accurate formula for calculating the dB confidence
spread associated with chi—square distributions. The formula, reasonably accu-
rate for n 10 is

s—  K
(3 59)

I i
where K is determined by the desired confidence according to table 7. For a

Table 7

CONFIDENCE SPREAD CONSTANTS
(See equation (3-59))

100 K(dB)
80% 16
90% 20
95% 24
98% 29

given confidence, S is readily calculated as a function of n. Conversely, n can
be expressed as a function of 5; this technique is coninonly employed to deter-
mine the nunber of terms that must be averaged to achieve a specified confidence
and error tolerance bound.

Similar concepts may be applied toward determining confidence bounds for
CSD’s, coherence functions, and transfer function estimates. The procedures are
significantly more difficult in these cases. The references present some of the
details (reference 2, pp. 193-203). These details are not presented in this
guide. Analyses for these cases show, as in the case of PSD estimates, that the
quality of the estimate Improves as more ‘raw ” estimates are averaged to form the
best estimate. Averages estimates for CSD’s should be formulated in the same
manner as averages for PSD’s. Averages for coherence functions and transfer
function estimates, however, should be computed from averaged PSD’s and CSD’s
rather than by averaging raw coherence ano transfer function estimates. This Is
readily seen to be valid In the case of coherence function estimates where the
later procedure would always yield estimates identically equal to unity (see
equation (3—43)), which Is obviously an incorrect result. Furthermore, recall

F the technical development of section 11.9 whIch demonstrated that transfer

-S :!__ ~~~~_ ._ ._ _ _ ,_ _~~ ~~~
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functions estimates are only valid over the frequency ranges in which the co-
herence function tends toward unity. Otherwise, the “output” is not strongly In-
fluenced by the so-called “Input” signal and a transfer function concept is in-
appropriate.

5. SPECIAL TOPICS

Several additiona l topics of importance in practical data analysis are dis-
cussed briefly in this section. The topics discussed are:

• Anti-aliasing filters

• Special considerations for CSD estimates
• Appending zeroes to signal sequences

• Bias and trend removal

• Sinusoidal signal components

• Transfer function estimates for deterministic inputs.

a. Anti—aliasing Filters

Anti —allasing filters are required to prevent (or at least minimi ze) the
aliasing or mimicking of low frequency signal components In a digi tized signal by

• high frequency components in the original analog signal . The filtering must be
accomplished prior to signal digi tization. The filter attenuation beyond the
Nyquist frequency (one—half the sampling frequency) must be sufficIently great
that the amplitude of the attenuated high frequency component is small in compari-
son with the magnitude of the corresponding in—band frequency component so that
aliasing distortion of a signal spectrum is negligible. This requirement dic—
tates that mul tipole filters be used to give adequate out-of-band attenuation .

r. Also , we require that these anti-aliasing filters have a minimum distortion ef-
fect on the signal spectrum for a reasonably large portion of the useable fre-
quency band. For these reasons, “sharp cutoff” filters are used having break
frequencies equal to approximately 40% of the sampl ing frequency 

~~ 
Signal fre-

quency components below .4f5 are passed with negligible attenuation while compo-
nents above .4f5 are attenuated several orders of magnitude. Signal phase, on
the other hand , is noticeably affected throughout the filter passband . This sig-
nal phase distortion is inconsequential for PSD estimates but becomes critical In
CSD and transfer function estimates. In any event, the data analyst must under-
stand the purpose of the anti -aliasing filter and the manner in which it affects
the interpretation of data, especially if non-standard filters are chosen.

100
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b. Special Considerations for CSD Estimates

Unlike PSD estimates , CSD estimates require calculations involvi ng two dis-
tinct signals. The CSD estimate is sensitive to any process which affects the
relative phase of the two signals. This phase distortion additively corrupts
the CSD phase estimate. Special attention, then, must be paid to sources of
relative phase distortion whenever the CSD phase information is important. One
source of relative phase distortion is difference in signal phase due to use of
different anti—aliasing filters having differing phase properties. Anti-
aliasing filters with identical phase characteristics must be used if the CSD
phase estimate is not to be distorted. Alternati vely, the relative phase dis—

• ~tortion between the filters can be measured or calculated and that result used
to correct the CSD phase computation. Another primary source of relative phase
distortion between two signals is time delay between the signals. A pure time
delay has associated with it a phase delay that is linear in frequency. The
phase difference is related to the time delay Td by the equation:

+ ~
WTd -2wf Td

Generally, this phase delay is intolerable at high frequencies for Td > (10f5 )~~.
By equation (2-95), this phase component Is induced ‘Into the CSD by the time de-
lay transfer function. Sources of an equivalent time delay between two signals

• include inaccurate time bases for either or both signals , recording delays caused
by recorder magnetic head skew, electronic recording and reproduce delays , and
asynchronous sampling while di gi tizing. Whenever accurate phase information is
required, these time delays must be minimized , and the residual delay must be
measured so that it may be removed from the estimate a posterlori.

Another consequence of signal time shift is a reduction of apparent coher.
ence in proportion to the ratio of time shift to the data interval time duration.
As shown In reference 15:

• .2 ~2 [l.t/T]2

where r Is the time shift and I the data interval duration .
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c. Appending Zeros to Signal Sequences

Several authors (references 2 and 12) recomend appending zeros to a data
sequence to increase the total number of signal points to an integer of two.
Such a total number of points is particularly suitable for the most comon FF1
algorithms which can operate only upon data sequences having 2m points. Adding
zeros effectively alters the intended window function and its desired spectral
properties. These disadvantages outweigh any advantage gained by using addi-
tional data points. Al ternatively, modern (reference 11 , p. 307) FF1 algorithms
have been devised which effectively transform N point sequences for any N that
is highly composite (i.e., N is the product of many factors). These methods
should be employed in cases where maximum frequency resolution is required and
hence the longest data interval, possible must. be transformed. Also, appending
zeros to a data sequence will change the RMS level calculated for the signal
interval.

d. Trend Removal

For many applications , the signal ’s mean value and the slope of a straight
line approximation are important signal , characterizations. The mean value
Identifies dc signal bias while the line slope identifies trends or a time cor-
relation of the data. These val ues are calculated by the least-squares tech-
niques presented In section 11.5. Once these values are known, no additional
information is gained by calculating the PSD of the data trend line component,
as the corresponding PSD is uniquely parameterized by the dc and the trend slope.
Trends must be removed if measurement of the low frequency random spectra Is im-
portant to the analysis; otherwise, the low frequency spectra contributed by the
trend can dominate the spectra contributed by the random signal component. Win-
dow functions can also be used to reduce the leakage distortion of linear trends
(reference 8, p. 81). More general ly, any deterministic signal component should
be removed from the signal prior to further processing to characterize signal
stochastic properties. Also, trend removal is important In preventi ng numerical
inaccuracies that may arise when computing transforms on small word length com-
puters.

Procedures for removing deterministic components from measured signals must
be exercised judiciously so that only actual trends are removed. Bendat (refer-
ence 2, p. 291) recomends that the trends be removed only if the trend Is “phys-
Ically expected or clearly apparent in the data.”

102
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e. Sinusoidal Signal Components

Often, spectral techniques identify resonances or modes associated wi th
the process being observed. Lightly damped resonances have corresponding PSD ’s
exhibiting large spikes at one or more discrete frequencies . These spikes are
associated with sinusoidal (or periodic) signal components. The resonant fre-
quency and the energy associated with the sinusoid are typically the quantities
of most interest to the data analyst. The resonant frequency is determined by
the frequency at which the PSD has a local maximum. The uncertainty of the fre-
quency estimate is the resolution bandwidth of the PSD, t~f equals LIT for gen-
eralized frequency smoothed PSD estimates. The energy associated wi th the
resonance is estimated by ascribing all the energy of the PSD spike to the
resonance. This energy is obtained by the techniques developed In section 11.9.

+ t~f/2

E(f5) — J
5 (3-60)

where f5 is the resonant frequency and ~f ‘Is approx imately 5 times the transform
fundamental frequency resolution. This bandwidth is required to include the
spectral leakage side-lobe components as shown in figure 20b.

The amplitude of a sinusoid associated with the spectral resonance spike is
estimated from the spike energy with the assumption that all the spike energy is
associated wi th the energy of a sinusoid A sinusoid with zero-to- peak ampl itude
A has energy ~A2 . It follows that

A ~ E 
~~ (3-61)

Note that the accuracy of the amplitude estimate is proportional to the square
root of the energy estImate error. Thus a 10% energy error gives a 5% amplitude
estimate error. Typically the energy estimate is high since It Includes energy
from the random signal component as well as the sinusoidal component. Good ampl i-

• tude estimates are achieved provided that the PSD spike is an order of magnitude,
or so, higher than the surrounding PSD floor, as , shown in figure 26 for a typical
spike.

Li - --- .-..-- ~~~~~~~~-.~~~~~~~~~~~~~~~~~~~~~~~~
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P50 SPIKE
log 

~~~~~
PSD FLOOR

1 10 100

Figure 26. A Sinusoidal Signal PSD Spike .

Other methods based upon the absolute PSD spi ke amplitude are availabl e for
sinusoi d amplitude estimation . These techniques are generally less accurate than
the energy method because the spike amplitude depends upon the window function
and the type of averaging employed. Additional ly, the spike amplitude may vary
as much as 50% depending upon the alignment of the true s inuso id frequency with
the DFT frequencies.

f Transfer Function Estimates for Deterministic Inputs

One has a natural tendency toward using the transform technique developed in
this guide for determining system transfer functions gi ven samples of determinis-
tic system i nputs and outputs. In view of the stochastic process results, we are
further tempted to simply ratio output to input DFT’s to obtain system transfer
function estimates directly. These concepts can be applied provided that the
analyst bears in mind the limitations of the technique and the poss ible gross
estimate distortions that may result. These distortions arise from the aliasing
and leakage distortion associated wi th DFT ’s. Transforms computed by this method
correspond to systems having periodic steady state waveforms identical to the ob—
served transient waveform. Problems associated with applyi ng transform techniques
to deterministic transfer function estimation are illustrated in the following ex-
amp le.

104 

-- . . --—~~~-“.., - .~~~~~~~~-— _



~~~~~~~

‘ T~~’r~TTT 1i E” ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~~~~~I-

__1~~~~

AFWL-TR-76-193

EXAMPLE 3—3

Consider the system in figure 27a excited by a step input initiated at time T~.

X (t )

a. System 
—

TS iI I
N

b. Transient Input and Output

1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

\j
/Y ss (t )

1\~~~~~~~~~~/’ 

-

C. Periodic Steady—State Response

Figure 27. System Identifi cation From Deterministic’ input Output Data

. ‘•
. I

5 The process is observed from time zero until T wi th data samples taken TIN sec-
onds apart. The output is

y(t) 

f 
e
_
~~
tt)u_i (t_T5)dt

a [1 — e
_
~~

t_T
s)] u 1 (t—T 5)
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where the function u..1 (t-T 5) is defined

(l ,t~~ T5x(t) u..1 (t i5 ) =

( O ,otherwise

the corresponding DFT’s are computed to be

‘ X~(k) exp (-i ~
1 ik) 

exp (;j ELk) l

and

Y~(k) — [1 - exp (‘-ai IT/N)]exp (-i ~2L 1k)
I L

exp (_j~1! Lk) — i 
+ 

exp [—aT (1 — - exp [- ~~
- (j 2irk)]

1 — exp (-i ~~ k) 1 — exp [- ~~
. (.3 2,rk + aT)]

A transfer function estimate formed by ratioin? Y~(k) and X~(k) is compared wi th
the true transfer function H(k) = (i + i~~~) 

— in figure 28. Note the peculari-
ities that occur in even this most elementary examp le.

It follows from the Fourier series interpretation of the discrete Fourier
transform that a perfect transfer function estimate is obtained only in the case
that the transforms of steady state input and output waveforms as shown in figure
27c are used In the analys is , and that the input signal is bandl imi ted.,-i

As illustrated in the example, particular care must be exercised when ex-
tracting function estimates from deterministic input output data. Similar care
is not generally required with ergodic random data for which each analysis inter-
val exhibits the random character of the enti re data interval .
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io2 ,

COMPUTED TRANSFER FUNCTIONS

J= i 1=10

T 001 T .OI

‘H 

A i

ir~- 

~~~~~~~AcTUA ~7SFER FUNCTION

0 100 200 300 400 500
FREQUENCY (Hz)

Figure 28. A Comparison of Transfer Function Estimates.

6. SUMMARY

Numerical algorithms required for analysis of digiti zed random data using a
digi tal computer have been developed in this section. The digiti zation, the
truncation of data sequences, and the statistical nature of the data all pre-
sented limi tations In the scope in which our computational results could be In—
terpreted. Frequency aliasing , leakage phenomena, and estimate confidence bands
have been shown to have important consequence In data analysis.
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SECTION IV

A NUMERICAL DATA ANALYSIS EXAMPLE

1 , INTRODUCTION

An appreciation of the benefits and utility as wel l as the limitations of
random data analysis techniques can only be gained through practical experience
in the use of these techniques . In this section, a simpl ified dynamic system
with random inputs is formulated to demonstrate the analysis procedures and the
proper interpretation of results. Theoretical analysis (section II technique) Is
applied to the system model to predict the results we would expect to obtain by
observing system inputs and responses , and analyzing these data with practical
data analysis procedures . A numerical model of the system is developed and simu-
lated with a digita l computer. Simulation signals are analyzed by the practical
techniques presented in section III to demonstrate power-spectral density esti-
mation, transfe r function estimates , coherence and confidence calculations , and
frequency averaging . The system model and the associated numerical equations are
developed in section IV.2. Theoretical analysis results are derived In section
IV.3 and the simulation and analysis results are presented in section IV.4.

2 A MULTISENSOR SYSTEM

A suitable numerical example system must be sufficiently generalized to ex-
emplify the significant aspects of the availabl e random data analysis techniques.
Simultaneously, the considered system must be simple enough to be amenable to
direct theoretical analysis which could be compared to the simulated results.
Finally we desire that the chosen example resemble the random data analysis situ-
ations which we encounter in practice.

Most generally in engineering practice, we are interested in characterizing
random disturbances and the responses of dynamic systems to that disturbance. We
are constrained to practical measurements of signals. System responses and dis-
turbance phenomena are observed with imperfect sensors which contribute additional
random components (sensor noise) to the observed or measured quantities . 5-For ex-
amp le, the measurements and analyses of random , aerodynamically induced pressure
fluctuations acting upon mechanical structures are directly affected by random
signal components due to the pressure transducer, the instrumentation system, and
the signal processing , as well as the desired signal directly attributable to T
actual pressure fluctuations.
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- 



*‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘ ‘

~~~~~~~~~~T~~~~~~~~

AFWL-TR-76-l93

Two distinct cases of sensor noise data corruption occur. In one case, a
sensor is used for instrumentation purposes only. Sensor noise addi tively cor-
rupts the measured quantity. Another case of importance occurs with sensor im-
bedded as a control sensor in a dynamic system. System dynamics as well as
sensor noise must be known in these cases to properly account for the measured
random phenomena . Examples of such sensors are pressure transducers of a hy-
draulic actuator or the tracking sensor of a pointing system.

The generalized system we choose to investigate includes one sensor of each
type. A simple dynamic system described by a first-order differential equation
Is used. Sensor noise is modeled simply as white noise so as not to obscure im-
portant aspects of random data analyses with a multitude of parameters . Approxi-
mation of noise spectra by white noise is valid in many practical cases because
the noise is “wide-band” in comparison with system dynamics. Effects of “colored”
sensor noise are comented upon as appropriate in the theoretical derivations .

In addition to control loop sensor noise the dynamic system is stochastically
excited by an exponential ly correlated stochastic disturbance phenomena. Such a
disturbance model is the simplest correlated (colored) disturbance we can en-
counter; yet it exemplifies the notions of correlatedness, bandwidth and non-
constant spectra which we typical ly encounter, though often in a more complicated
manner, in practi ce .

The complete system model used for our theoretical and simulati on investiga-
tion is described by its transfer function block diagram given in figure 29. The
control system output y is compared with the desired system output (reference in-
put) r by the control system sensor. This sensor measures the control error
accurately except for an additive sensor noise v. The noise corrupted sensor
output em is the only system error signal which can be instrumented and analyzed .
The error signal is amplified by gain K; the resulting signal drives the system
plant G. The system plant is also driven by the external disturbance d. In fact,
the purpose of the control system Is to maintain the plant output y at the de-
sired level r (zero ) despite perturbations induced by the disturbance .

The Laplace transform complex variable s is used in the representation of G
and the stochastic disturbance model (see reference 6). The system plant is a
simple integrator. The stochastic disturbance is modeled as the output of a
single—pole low—pass filter. The filter has bandwidth xI2ii (Hz) and unity dc
gain. The disturbance model excitation and the sensor noises are modeled as
independent normally distributed white noise stochastic processes.
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DISTURBANCE PROCESS 1— — ~~~~~~~
—

~ DISTURBANCE SENSOR

- 

CONTRO L SYSTEM 1
~~ H’ d 

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 29. Stochastic Analysis Example Model .

Model Nomenclature

K - control system loop gain

r - dynamic system reference input; r(t) = o

y - control system output

e - actual system error

v - error sensor noise (white spectra, gaussian pdf)

em - measured system error

d - exponentially correlated disturbance phenomena

w - disturbance measurement sensor noise (white spectra, gaussian pdf)
dm - measured system disturbance

n - disturbance model exci tation (white spectra , gaussian pdf)

x - disturbance model bandwidth parameter 8W (in Hz) = AI2~r

In absence of disturbance phenomena, the control system of figure 29 has
zero steady state error and output responses. Disturbances excite the system to
give non-zero error and system output. RMS characterizations of these quantities
are a useful figure of merit indicating the performance of the system. The
sma ller the RMS of these quantities , the better the system performance.
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Equations modeling the analysis system are presented in the remainder of
this section. In section IV.3 theoretical stochastic relationships among the
various signals are developed. Finall y, in section IV.4 numerical results are
presented, interpreted, and compared with the theoretically expected results.

The disturbance process is modeled by a first order differential equation.

d X(n-d ) (4-1)

The true system disturbance is represented by d. The constant A is a disturbance

bandwidth parameter and n is a white noise excitation of the model . Only a noise
corrupted signal is available for measurement. The noisy disturbance measurement
is modeled by simply adding a white noise signal component w to the true system
disturbance. Denoting the disturbance measurement by dm gives the following
algebraic relationship.

dm = d + W  (4—2)

Th~ control system is modeled by the following signal relationships evident from
figure 29

= 

~ m + d = K(v-y ) + d (43)

and the algebraic relationships

em e + v  (4 4)

and

e = r-y = -y (r—o) (4-5)

Differential equations (4-1) and (4-3) and the algebraic equations (4-2), (4—4),
and (4-5) specify the structure of the system. The model is completely character-
ized by additionally specifying numerical values for the parameters ~ and K and . 5
by specifying the statistics of the white noise process n, w and v. These white
noise processes are chosen to have zero means and spectral densities 2, •~~, and
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.v’,, respectively. All combinations of each signal having either a low or a high
spectral density make up the four cases considered. Parameters A and K are given
val ues 2ir50 and 2wl 0 respectively.

- - The equations presented here are not suitable for numerical simulation . The
differential equations must be approximated by finite-difference equations.
These equations are obtained by approximating derivatives with a finite differ-
ence.

~ ~ir Ex(t) - x(t-~t)] (4-6)

Substituting this approximation -into differential equations (4-1) and (4—3) leads
to the fini te difference equations

dk = dk l  + ~T A(nk l  - dk l ) (4-7)

and .

= + ~T K(uk l  - ~~ 1) + ~T dk l  (4-8)

The subscript k denotes the successive increments of the discrete process and re-
lates ’ to time ~ = k ~T in the continuous process.

dk d(k
~

T) (4 9)

The discrete data algebraic equations are simply:

(dm)
~ 

= dk + w k (4-10)

(em)k 
a + Uk (4—11)

and

ek 
a 

(4—12)
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Finally, the ‘white ’ noise sequences nkl V ki and wk are obtained from a random
number generator. Samples from the generator have variances ~~~~~~~~ and

Q~/~
T respectively and are independent 0f each other and from sample to sample.

Normalization of the variances by AT is required for an accurate approximation
to ‘continuous ’ white noise which has infinite variance. The random number gen-
erator described in reference 16 is used In the simulation. It produces Inde-
pendent samples having normal distributions. Three separate starting seeds are
used to produce the three independent sequences.

The finite—difference equations used to produce signal sequences for stochas—
tic signal analysis are sumarized In table 8. These equations approximate the

Table 8.

SUI+IARY EQUATIONS FOR THE DISCRETE TIME
STOCHASTIC SYSTEM NUMERICAL EXAMPLE

DISTURBANCE PROCESS MODEL

dk — dk~ 
+ AT ~ A . 

~‘~k—l — dk...J )

CONTROL SYSTEM MODEL
= 

~‘k-i + AT . K(vk l  - 
~
‘k—l~ 

+ AT dk_ l

SYSTEM ERROR SENSOR MODEL

(em)k = e k +v k
= _ y

k +v k

DISTURBANCE SENSOR MODEL

(dm)k = dk + W k

White noise sequences 
~k’ V k~ 

and W k generated by
a gauss ian number generator to have variances Qn/’AT
Q~/AT. and Q

~
/AT , respectively.

—55

differential equations describing a single-pole control system excited by feed-
back sensor noise and a stochastic disturbance. The approximation is very good
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at low frequencies; it suffers from aliasing like distortions at higher frequen-
d es. The discrete time model has greater phase lag and less magnitude attenua-
tion at frequencies approaching one half the discrete equation update frequency.
The equations given In Table 8 represent a complete mathematical description of
the process under investigation. In section IV.3, the theoretical analyses of
section II are appl ied to determine the PSD’s, transfer function , and coherence
functions we expected to calculate from the data. These theoretical analyses are
possible In this case since we have perfect knowledge of the system and the sta-
tistics of the component stochastic signals.

3 THEORETICAL COMPUTATIONS

Given the mathematical system model characterized by differential equations
(4—1 ) and (4—3) along wi th algebraic relationships equations (4—2), (4—4), and
(4-5 ), and applying to linear sys tem relationships sumoarized in table 1 and
equation (2—8 ) we can make theoretical calculations of signal PSD and coherence
funct ions we should expect to calculate by random data analysis procedures.
These theoretical results are compared with the signal analysis results as the
latter are developed In section IV.4. 

-

Two aspects of the stochastic analysis model example are investigated.
First, the disturbance process model is studied ; PSD’s of the disturbance sensor
output signal dm are computed for several signal-to-noise ratios obtained by vary-
ing the amplitude of the wideband sensor noise signal w. Transfer function esti-
mates for the disturbance process d/n are estimated from the quantity n (not mea-
surable in practice) and the measured disturbance dm • Transfer function methods
for several RMS level s of w are compared. Secondly, transfer function estimates
as wel l as PSD and coherence calculations are made from the measurement of system
error em and the measured system disturbance dm • These quantities are also com-
puted for a variety of cases ln which the signal to noise ratio of each sensor is
varied over a 100dB range.

The basic analysis tool is the transfer function H(2i~f). Two sybsystems of
the numeric example are analyzed. We first consider the simple process relating
measured disturbance dm to the white noise excitation n. We realize that a sim-
ilar analysis is not possible with a practical system since no signal correspond-
Ing to n Is physically available. However, we proceed wi th analysis of this
simpl e process as it shall lend insight to the use and interpretation of our pro—
cedures. Next we shall consider the process relating system measure error em with
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the measured disturbance dm~ 
These functional relationships are depicted ex-

plicitly in block diagrams of figure 30.

W Signals Available
+ d for Analysis

n 4 r hz id +
A~~~2i5O m

a. Disturbance Process Model

Signals Available
+ d for Analys is

,_±.(“~ 
_. _~,• 

dm
em

4iis l 

a 
L

1’ 
_ _ _ _  

K 2v10
I 

{K}

b. Control System Model

Figure 30. Theoretical Process Transfer Functions.

The transfer function from input n to output d is seen to be

An~Wj 
~ 

(4-13)

It follows from equation (2-80) that

= tH(Z1
~
f)f2Gnn(f)

- [1 + L 2  j 4~~(f) (4-14)
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The additive noise w adds spectral component o~, to the measured disturbance
signal. Hence, the relationship

dm = d + w  (4-15)

implies

• -l =
~~~ +.

m~
Am (4-16)

because the processes n and w have been assumed (and constructed) to be indepen-
dent. A useful representation of •dmdm equivalent to that of equation (4—16) is
obtained by factoring •dd~

r •
0 = $  I l + — ~~dm m dd L dd (4-17)

The second term within the brackets is a ’noise-to—signal ratio, which we denote
notationally as N/S. Observe that N/S is a function of frequency since, in gen-
eral , both •~ and •dd are functions of f. Over those frequency bands in which
N/S << 1 , the measurement spectrum closely approximates the spectrum of the de-
sired signal d. The noise is inconsequential in these cases. Over the remaining
frequency bands, the noise term contributes significantly to the measured spectrum.
Substituting equation (4-14) into equation (4—17) gives the result

•
d
m
d
m
(f) = nn I~~

2
~~~

I2 + 
2 

]IH(2~rf)i nn (4—1 8)

This PSD is plotted in figure 31 for several ratios of •~,/•nfl~ 
In the examp les

considered, nn and •~~, are constants because they represent spectral densities
of ‘white ’ noise processes . Thus, a low signal-to—noise condition, as previously
defined , exists whenever

•
IH(2~f) I2 > —

~~
-

nn (4—19)
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Figure 31. Disturbance Measurement Power Spectral Densities .

In addi tion to PSD ’s, we are als o interested in transfer function estimates and
the coherence function. These functions are computed by use of the equations de-
veloped in section 11.9. The measured disturbance signal is taken as the trans-
fer function output. The input is the white noise excitation n (see figure 30a).

TRANSFER FUNCTIONS
METHOD 1

l~(w) = •d n  (w/2r)/ .~~

(4-20)

Method ‘I yields an ideal estimate. The output noise, as long as it is incoher-
ent with the system excitation, has no effect on the transfer function estimate .

_ _ _ _ _  
_ _ _ _ _
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METHOD 2

- 

1 I~(w ) I — [Odmdm
(W/21f)/Onnl 

1/2

—1/ 2 2 • 1/2

. [~+~~.~a] ~l + [1 +(
~~
.) I nn (4—21 )

Thus Method 2 estimates the correct transfer function in thi5 case only when the
output signal measurement as wel l as the input measurement is noise free. The
Method 2 estimate is plotted in figure 32.

101
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\<:
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~~~~ , ~~~~ , , ,,,,~

100 101 io 2
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Figure 32. Disturbance Process, Method 2
Transfer Function Estimates.

COHERENCE FUNCTION

The coherence function y2(f) is calcula ted by using equation (2-109)
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~~~~12d -n (f) 
•d~d~(f) ~~

— 
J 1 + + (~~ )z] 

~~
A — 2ir50 (422)

We see that if •~, << •,.~ that ~2 is approximately unity at frequencies less
than 50 Hz. At higher frequencies , y2 becomes smaller. The theoretical coher-
ence function is plotted in figures 39 and 40 of section IV.4 in comparison wi th
a coherence function calculated from the actual data. Observe that the coher-
ence function is near unity over those frequency bands in whi ch both transfer
function estimates are accurate. Also , in the same frequency bands the coherent
output power dominates the sensor noise.

Identical procedures are employed to calcula te the power spectra l dens ity
•em em ’ In this linear system, the error em is made up of two independent com-
ponents — one due to the disturbance d and the other due to the sensor noise v.
The appropriate transfer functi ons are

em~ — 1/K
a- = H1(w) 

— 1 + .1W/K (4—23)

and

m A H- 
~

‘ ) — .1w/K — 
. ,

— 2~~ 
— 1 + .1W/K 

— 3W 1 kW J (4—24)

By superpos ition and from the linear system theorem we have

•emem 
= IH 1(2irf)12 dd+1H 2(2fffhZ vv (4—25)

Notice that In the latter case , the precise manner by whi ch the error sensor
noise corrupts the error measurement is influenced by the control system dynamics .
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This is a general result true for any sensor embedded as a feedback sensor in a
control system. Plots of the theoretical e e are presented in figure 33.

m m

ir 2 -

•: .002

1r3
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ir5 NO SENSOR NOISE

1 ~—6 i ‘ I i i  i i I 1 1 1 1 1 1  I I I I l i l t  I I I I I IIt~
10 1 io 2

FREQUENCY (Hz)

Fi gure 33. Control Error Measurement PSD’s.

The measured signals dm and Cm may be considered as the input and output,
respectively, of a linear system. These signals, each corrupted by additive
noise components , represent the general signal analysis transfer function estima-
tion problem encountered In practice. Theoretical transfer function estimates
based on the model transfer function and the noise characteri za tions are
IDEAL

H ~~ 1(w) - 

~~ i + jw / K (4-26)
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METHOD 1

d
H(W)=

•
m m =
dmdm dmdm (4-27)

H(w) [1 + dd] (4-28)

The last step follows from equation (4—17). We again note the importance of a
noise— to-signal ratio, N/S. In this case the noise is characterized by •~,
while •dd characterizes the signal . Over low N/S frequency bands the transfer
function estimate is accurate. Conversely, over high N/S frequency bands the
estimate is poor. Observe that the estimated transfer function magnitude is
less than the true magnitude. Al so note that the estimated transfer function
is a real scalar mul tiple of the actual transfer function . Consequently, the

phase component of the estimate remains accurate despite the noise—to—signal
level .

METHOD 2

• 1/2

I~(w) I — 

emem
•dmdm

r •I1+w2 J~
— H(w) I “dd

L i + — ~0.,., (4-29)

Only the transfer function magnitude can be estimated by Method 2. As for the
Method 1 estima te, this estimate magnitude differs from the true transfer func-
tion magnitude by a scalar mul tiple. In this case, the mu l tiple may be either
less or greater than unity. The numerator terms represent an output signal
noise— to—signal ratio. The w2 factor appears in this term to compensate for the
fact that the signals characterized by •vv and •dd occur in different locations
of the control system; to properly compare them, they must be transferred to a
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comon comparison point. The output (see figure 30a) Is chosen as the comon
comparison poin?. Observe that the relative transfer function from d or v to
the output em is s imply 1/s corresponding to I4~ 

= 11w2. This factor is the
appropriate mul tiplier of •dd so that it can be compared, on a noise-to-signal
basis, wi th •~. Similarly, ’ the denominator factor also has a N/S term. An
accurate transfer function estimate is obtai ned whenever the N/S ratios are
much less than unity. For larger N/S ratios, the estimated transfer function
deviates from the actual transfer function (except for the pathological case
wherein the numerator and denominator N/S ratios vary so as to maintain a unity
multiplyi ng error factor).

COHERENCE FUNCTION

2

~ de (~~~ ) 
— 

• 
m m

m m dmdm emem

• + 
w2 vv 1 f1 +1dd J L ddJ~ (4-30)

Observe that the coherence function is made up of N/S factor terms. As either
transfer function estimate (Method 1 or 2) devIates from.the actual transfer func-
tion , y2 reduces in value from unity . Also note that y is simply the ratio of
the Method 1 to the Method 2 transfer function amplitudes .

The transfer function estimates and the coherence function theoretical
values are plotted in comparison wi th transfer functions and coherence functions
calculated from the simulated model data In section IV.4. We note the general re-
sult that typical ly, as the system noise increases, these functions diverge from
their desired values.

4. SIMULATION AND ANALYSIS RESULTS

Results of applying the numerical analysis procedures developed in sections
II and III to the simulated control system using the SIGANAL software are pre-
sented. These results are compared wi th theoretical values to demonstrate repre-
sentative accuracies and Interpretative procedures useful in analyzing PSD and
transfer function estimate data.
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For the hypotehtical system used in this simulation , two comparisons of the
results are possible and equally instructive . The analysis results are compared
to ideal values . Transfer function estimates, for example, are compared to the
actual system transfer functions. Also , analysis results are compared to those
theoretically expected results as derived In section IV.3. This later compari-
son is only possible in this simulated examp le, since the theoretical calcula-
tions require precise knowledge of system transfer functions and measurement
noise properties which are not known in practice.

The system was simulated by iterating the model ing equations in table 8.
The numeric val ues obtained for the di sturbance process r

~k, 
dk, (dm)kI wk, and

the control system vk, 
~k 

and (em)k were written in blocks on an engineering
uni t (EU) format data tape for subsequent analysis by the SIGANAL software (ref-
erence 1).

The simula ted signals were obtained wi th a finite difference update rate of
1 k Hz corresponding to a simulation of time increment AT = .001 second. The
equations were iterated to give 8192 signal values simulating T = 8.2 seconds of
system response.

The simula ted signals stored on EU tape are analyzed by the SIGANAL software.
The SIGANAL summary list and NAMELIST input cards used for the analysis are
lis ted in table 9. Excerpts of these analysis results are presented and dis-
cussed in the remainder of this section.

a. Disturbance Process PSD ’s

The results of the disturbance process analysis presented in figures 34~4O
are first reviewed. The disturbance process excitation signal measured PSO is
plotted in figures 34a and b. These measured values differ somewhat from the
actual value •fln 

a 2.0 also plotted because of the statistical uncertainty of
PSD estimates made from a finite duration observation of the signal as discussed
in secti on 111.4. Confidence bounds for 95% confidence are also plotted and were
derived by use of the methods illustrated in Example 3-2. The PSD estimate in
figure 34a is obtained from a minimum of eight frequency averages while the PSD
in figure 34b, whi ch varies more from the theoretical value , is obtained wi th a
minimum of only four averages. The 95% confidence bound calculation results are
suninari zed in table 10 for each of these cases. Case A employs at least four
times the number of raw PSO estimates per average than Case B. The spread of the
SIGANA L PSD estimates scale wi th the confidence bound calculations . Comparisons
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Table 10

STOCHASTIC SYSTEM NUMERICAL EXAMPLE
95% CONFIDENCE BOUNDS FOR P50 ESTIMATES

Avera ged Confidence
Frequency Resolution Degrees of Multipliers

Band Bandwidth Freedom M M Spread
(Hz ) (Hz) N = 2(BW/~F) £ (magnitude)

Case 0—20 1 16 .4 1.8 4.1 Case
A 20-100 4 65 .7 1.4 2.0 A

100—250 10 164 .8 1.2 1.6
250—500 25 410 .9 1.1 1.3

Case 0—20 .25 4 .1 2.8 23 Case
B 20— 100 .50 8 .3 2.2 8.1 B

100-250 2.5 41 .6 1.6 2.4

of figures 34a and 34b show dramatically the advantage of adequate frequency
averaging to obtain smooth PSD estimates.

Similarly, the true disturbance process, d , output PSD estiamte •dd ~
plotted in figures 35a and b along wi th the theoretical value and the 95% con-
fidence bounds. Observe that the calculated values closely follow the trend of
the theoretical value and the 95% confidence bounds . Further note that the cal-
culated P50 varies about the theoretical value with amplitudes that scale wi th
the confidence bounds. This result again demonstrates the advantage of adequate H

frequency averaging; the actual PSO Is readily more apparent from the analysis
calcula tions in f igure 35a than the similar calculation with less averaging
shown in figure 35b.

A second theoretical PSD curve has been plotted in figure 35a to illustrate
the distortions from the ideal introduced by the finite—difference equations used
to model the process. The distortion causes less amplitude attenuation than the
ideal fi l ter at frequencies approaching l/2t~T as explained in section IV.2. The
correspondence of the SIGANAL PSD estimate with the finite-difference theoretical
PSD shows that the SIGANAL ca lculations estimate accura tely the actual s ignal PSD .
The finite-difference PSD is expressed by the equation

• 2(XAT)2 ~[cos (2irf~t) - (1 — x~T)]2 + [sin(2~rftaT)]2I
’ (4-31)
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which is obtained from the finite difference equation , equation (4-7), by methods
described in references 6 , 10, 11 , 17 , and 18.

The disturbance process is a low—pass process. At frequencies below 10 Hz
r the white noise excitation is passed by the filter wi thout attenuation (compare

figures 34a and 34b). At frequencies above 10 Hz, the process attenuates the in-
put by a factor that increases wi th frequency as described by equation (4-14).
This example demonstrates the filtering action of linear systems .

b. Disturbance Process CSD’s

Given the disturbance process excitation n and the output y, cross—spectral
densities are computed. The CSD amplitude is simply the amplitude of the input
spectra , in this case a constant 

~~ 
2.0, mul tiplied by the amplitude of the

disturbance process transfer function. The SIGANAL CSD’s are presented in figures
36a and b where different frequency averaging schedules have been used as in the
previous figures and as listed in table 10. The theoretically expected CSD ampl i-
tude is followed by the SIGANAL calculations wi th only statistical variations due
to the finite data observation interval . Like the PSD , the CSD estimate improves
wi th more averaging . Exact confidence bounds for CSD’s have not been calculated ,
but figure 36 suggests that they are approximately the same as PSD bounds.

The disturbance process input output cross-spectral density phase is
plotted in figure 37. The same phase curve is obtained independently of the fre-
quency averaging used . The SIG.ANAL CSD phase calculation deviates somewhat from
the ideal phase curve but follows exactly the phase of the finite-difference nu-
mprlc model . As ~~ the c~se ~~f the dtsti~rbancp prr~~~~ cc  output ~St~I ~i ffer alces
between the Ideal and the calculated phase values stem from the distortions of the
finite—difference simulation equations rather than from inaccuracies of the CSD
phase calculation. For reference, the ideal phase ~ Is obtained from the process
transfer function equation (4-13) as

ldeal = -tan ’ (
~

) (4-32)

while the phase associated wi th the finite—difference model is

— -1 1 sin (2~f&r) 1
F-D tan 

L cos(2~~
t) - ([ - X~T)J (4-33) 
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The CSD phase calculation does not exhibit the statistical variation we
saw in the PSD and CSD magnitude estimates. This result is typically valid when-
ever the signals used to generate the CSD estimate represent the actual input and
outputs of a linear system and that further , neither measurement is corrupted by
noise. Examples subsequently presented (e.g., figure 40d) show that the CSD
phase signal does exhibit variations from the true linear system phase character-
istic when one , or both, of the si gnals become corrupted by an additive noi se
signal .

c. Disturbance Process Transfer Function Estimates

Transfer function es timates of the di sturbance process are obtained from
the input and output PSD’s and their CSD. The Method 1 transfer function ampli-
tude Is the CSD magnitude normal ized by the input exc itation PSD , ~~~ The re-
sulting Method 1 transfer function es timate is plotted in figure 38a. The Method
2 estimate obtained by taking the square root of the ratio of the output PSD to
the input PSD as in equation (4-21 ) matches exactly the Method 1 estimate since
there are no extraneous noise sources present. Both estimates deviate from the
ideal transfer function , also plotted , but match exac tly the actually simulated
transfer function. Figure 38a shows that precise transfer function estimates can
be calculated by either Method 1 or Method 2 techniques .

The transfer function phase is simply the CSD phase in Method 1. No tech-
nique for calculating the transfer function phase is presented in the Method 2
analysis. Those familiar wi th linear systems theory migh t suggest that a phase
estimate could be obtained by differencing the Fourier transform phases of the
system output and input. The phase estimate obtained in this manner is plotted

L 
in figure 38b along wi th the ideal phase. The estimated phase is extremely noisy ,
especially at higher frequencies , and is attributable to the phase uncertainty of
Fourier transforms of stochastic processes , even when there are no additive noise
signals. Because of their high uncertainty , phase estimates obtained in this
manner are seldom used in practice. We shall restrict our attention henceforth to
CSD phase estimates.

The coherence function is not plotted for this no noise case. Wi th no
noi se , the noise-to—signal ratio terms vanish ~e.g., ~~ = 0 in equation (4-22))
and the ideal coherence function is unity over the entire frequency band . The co-
herence calcula ted by the SIGANAL routines is not precisely unity because of nu-
merical roundoff. However, the calculated coherence values are in the range
(.998, 1] which indica tes extremely high coherence between the process Input and
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output signals. We expect high coherence because the output signal Is totally
generated by application of the input signal to the disturbance process.

d. Noise Corrupted Disturbance Process

The previous example dealt wi th a noise free measurement of the process
input and output signals. In the following, only the noise corrupted process out-
put signal dm is available for analysis. The additive noise signal w adds biases
and variations to signal PSD and transfer function estimates. Transfer function
estimates by Methods 1 and 2, coherence calculations and the CSD phase are plotted
in figures 39a — d. In this case, •~,, equals .02 corresponding to a noise to sig-
nal (N/S) ratio of 1/100 In the low frequency band ( c  50 Hz). Note that the trans-
fer function magnitude estimates display a more erratic charac ter than the noise
free estimates in figure 38. The presence of corruptive noise is indicated by the
coherence function which is biased from unity and which diverges further from
uni ty at frequencies beyond 50 Hz. This behavior is predicted by a N/S analysis.
The constant amplitude noise •~~ = .02 becomes a larger fraction of the signal
P50 ~~ which is increasingly attenuated at higher frequencies .

The degradi ng effect of higher N/S ratios Is demonstrated in figure 40. A
low frequency band N/S ratio of 1 is simulated by increasing •~, to 2.0. Both
Method 1 and Method 2 transfer function amplitude estimates and the CSD phase be-
come appreciably erratic. The Method 2 transfer function estimate has also be-
come biased from the true value. This bias arises from the output measurement
noise which adds a bias to the true process output PSD as shown In equation (4—16).
The biased output PSD biases the transfer function estimate. The presence of

additi ve noise components correspondi ng to large N/S ratios Is indicated by the
coherence function, figure 40c which has dropped to at most .5. As shown in sec-
tion III , a coherence of .5 shows that only half of the output s~gna1 power is
attributable to a linear system excited by the input signal . Thus , as inspection
of figure 30a shows, •~~ contributes to the measured output power; •~~ contributes
one—half the total output power in this case.

e. Control System PSD s

The control system analysis results are presented in figures 41-44. A sum-
mary of the theoretical transfer function estimates, which are wel l -ma tched by the
SIGANAL results , are plo tted in figures 45-47.
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• Figure 47. Coherence Function Sumary.

The power spectrum of the control system error depends upon the error per-
turbation of the system disturbance input d and the component due to the sensor
error. The contribution to the error signal PSD of each of these sources is char-
acterized by equation (4—25) developed in section IV.3. These theoretical re-
suits are plotted in figure 33. The PSD estimate obtained by analyzing the digi-
tally simulated error signal with the SIGANAL routines is plotted in figure 41.
The theoretical PSD estimates of figure 33 are also plotted to show the excel lent
agreement of the calculated and theoretical results. The error PSD •emem for low
sensor noise (.~ ~ .00002) is plotted In figure 41a and for high sensor noise

~ vv .002) In figure 4lb. The low frequency behavior of •emem is unalterated by
these variations in 

~vv while the hi gh frequency PSO amplitude var ies directly
with the changes in •vv ) the error sensor noise. This observation suggests the
hypothesis that the low frequency error contribution is dominated by the dis-
turbance process and that the high frequency behavior is domi nated by the error
sensor noise. The hypothesis is correct for this simulated control system and
the ranges of •~ considered. Moreover, in the •vv = .00002 case, the error PSD
shows that the system error energy is concentrated in the low frequencies (c  20 Hz
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or so). When vv is increased to .002, the control system error becomes concen-
trated in the high frequency band C> 20 Hz). Comparisons of figures 4la and 41b
show that the RMS of the error is much larger in the latter, since , by equation
(2—ill), the RMS is given by the square root of the integral of •emem over the
entire frequency band , and since the PSD in figure 4lb is greater in magnitude
than the PSD of figure 41a.

f. Control System Transfer Function Estimates

Estimates of the closed l oop transfer function from the disturbance exci-
S tation (input) to the system error (output) are obtained by appropriately pro-

cessing measurements of the system disturbance and the system error. These esti-
mates are obtained by using tlethods 1 and 2 transfer function formulae as had been

used to obtain disturbance process transfer function estimates. The control pro-
cess transfer function estimate problem adds several additional features not ex-
hibited in the disturbance process example. They are:

• The system input signal measurement, as well as the output, Is cor-
rupted by additive measurement noise.

• The system input signal PSD varies with frequency (the disturbance is
a ‘1 colored” or correlated process).

• The output measurement noise is infl uenced by the control system in
• which the noisy error (output) sensor is embedded.

The transfer function estimates are presented in figures 42—44 for three
cases of noise level . In figure 42 the case of low measurement noise is exami ned.
The hi gh input measurement noise case (with low os’tput noise) Is examined in fig-
ure 43. High output noise but low input no is~ I~ considered in f igu re  44. Method
I transfer function SIGANAL results are plotted In part a of each figure , Method 2
resul ts are plotted in part b and the coherence function resul ts are plotted in
part c. Also plotted in each figure are the theoretical results that we would ex-
pect to obtain given perfect knowledge of the system transfer functions , the true
disturbance PSO and the measurement noise PSDs. These theoretical results are
plots of equations (4—28), (4—29), and (4—30) derived in section P1.3. These
theoretical results are summari zed in figures 45-47. Also plotted with the trans-
fer function estimates is the ideal (or actual) transfer functi on , which typically
differs from the theoretical transfer functi on . Differences between the ideal and
the theoretical transfer functions are distortions introduced into the theoretical
transfer function estimate by the noise signals inherent in the signal measure-
ments. These distortions are systematic errors and cannot be removed from the
transfer function estimation process.

~~~IM4 
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Except for the case of the high error sensor noise Method 1 transfer func-
tion estimate in figure 44a, the SIGANAL transfer function resul ts , obtained by
processin g the simulated si gnals , agree very closely with the theoretical ly ex-
pected results. Thus , the SIGANAL processing is shown to prov id e, in a practical
data analysis situation , accurate results . The erratic variations of the computed
estimates about the theoretical curves are variati ons wi thin the statistical con-
fidence as limited by the finite duration data interval processed. These varia—
tions woul d increase if less frequency avera ging were emp loyed to smooth the raw
estimates. Conversely, the variations could be reduced by frequency averaging
more adjacent estimates to Increase the number of degrees of freedom. The esti-
mates could also be improved by processing a longer data interval . The Case A
frequency averaging schedule listed in table 10 is employed to obtain the esti-
mates plotted in figures 41—44.

The anomalous variation of SIGANAL and theoretical resul ts in figure 44a
stems from a low statistical confidence of the SIGANAL result in the frequency band
of 30 Hz and above. Deviation of statistical confidence bounds for transfer func-
tion estimates Is extremely complex , Is data (transfer function) dependent, and
often cannot be practically and accurately calculated in a given problem . Nonethe-
less , we argue that the variation of results exists because of low statistical con-
fidence caused by the relatively high noise level of the error signal in the high
frequency band. Reference figure 4lb. The cross-spectral density between the
Input and output (error) signals in this high frequency band , while theoretically

-

• having near zero magnitude , computationally has components large compared wi th with
the true CSD, unless enough averaging can be performed to improve the computational
average. Arguments as to the source of this variation are academic in the practi-
cal data analysis case where we must Ignore or disregard transfer function esti-
mates over frequency bands in whi ch the coherence is low. In thi s case, the co-
herence is low above 5 Hz and we must ignore the transfer function estimates .

The coherence function Indicates the relative l evel of noise present in
either the input or output meas urement. The coherence function decreases as the
noise level Increases . Since increased noise levels bias and corrupt our transfer
function estimates, we must discount these estimates In high noise situations ,
which we can determine from the coherence function . As a rule of thumb , we should
not trust estimates made In frequency bands for which the coherence is 0.5 or less.
Theoretically, output sl gnal no ise does not effec t the Method 1 transfer function
estimate. Unfortunately, there is no technique by which we can take advantage of
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this fact since we cannot determine whether the Input or the output signal noise
is causing low coherence.

Figures 45 and 46 show that the Method 1 transfer function estimate is the
better estimate. This result is generally true since Method 1 estimates are sen-
si tive to only input signal measurement noise while Method 2 estimates are sensi-
tive to both input and output measurement noises . Examination of the coherence
functions plotted in figure 47 shows that the best transfer function estimates are
obtained at low frequencies. At higher frequencies, the N/S Increase thus lower-
ing the coherence and corrupting the transfer function estimates .

g. Miscellaneous Topics

The simulated si gnal analysis example prov ides a mechani sm for additional
insight and analysis that might be applied. The character of stochastic process
sIgnals is illustrated in figures 48a and 48b in which the time histories of two
simulated signals are plotted. The control system output signal y Is plotted In
figure 48a. This signal is limi ted in frequency content to 10 Hz by the band-

S width of the control system. Notice the slow temporal variations of the signal.
The true disturbance signal plotted in figure 48b has a noticeably hi gher fre—
quency content. This signal is the output of a 50 Hz process which does contain
higher frequency components . A review of the signal time histories , as these
plots provide , should be performed in any analysis to determine whether the signal
behavior is random, as the figure 48 plots appear , or whether there are determIn-
Istic components characterized by trends, dlscontl nuities , or low frequency varia-
tions .

Another useful analysis Is a probability density function calculation of
the measured signal values . The probability density function Indicates the rela-
tlve frequency with which signal values occur. The pdf also characterizes signal
mean values and the dispersion or variance of the signal values about the mean.
Finally, the pdf allows the analyst to determine if the density function Is gaus-
sian , symmetric, or skewed and whether or not there are anomalous data points .

Probabi lity densi ty calcula tions of the whit e noise di sturbance process
exci tation signal n are plotted in figure 49. In figure 49a the pdf of the n Is
compared wi th a theoretical gaussian probability density function parameterized by
the signal mean and variance. The excellent correspondence indicates that n Is
derived from a gaussian process. The random number generator from which n is di-
rectly obtained is designed to produce gaussian deviates . The pdf plotted in fig-
u~e 49b is the same signal n after It has been processed by the SIGANAL TAPDC
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routine. This program module removes signal biases and trends and multiplies the
result by the cosine data window described in Section III. Multiplication of the
data by the wir dow functi on alters the pdf of the original signal by adding a con-

s
- centration of new values near zero ; hence the sharp peak of the pdf. Otherwise

the pdf retains the same character (symmetry , mean value) displayed in figure 49a.
Genera lly, however , pdf calculations should be performed before the TAPDC signal
modification required for transform analysis.

h. Example Summary

The following conclusions have been illustrated by the analysis example and
the theoretical calculations.

• Accurate signal PSD’s are obtained from the magnitude squared of the
signal discrete Fourier transform.

• Averaging must be employed to reduce to statistical variati on of PSO ,
CSD, and transfer function estimates.

• Signal PSD reflects the signal energy distribution wi th frequency.

• System transfer function estimates are best obtained as the input-output
signal cross—spectral density magnitude normal ized by the magnitude of
the input signal power spectral density.

• The coherence function indicates the noise to signal levels of signals
associated wi th a single input, single output linear system. It should
be calculated to determine the validity of transfer function estimates.

S The coherence function also determines the fraction of output signal
power caused by the input signal .

• SIGANAL is an accurate software program for data analysis of stochastic

• processes.
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NOMENCLATURE

A sinusoid amplitude

C11 covartanc e~~ (y - ~~ (z -

CkL joint central moment et(~ — ~~)k (z —

Cxy(t1 t2) stochastic process covariance function

Cxy(t) time-average covariance function

CF Correction factor for power loss by data windowing

DFT Discrete Fourier Transfo rm

6(t) Dirac delta function

periodic train of delta functions - period al

expectation operator

ed error probability confidence bound

f cycles per second frequency variable,f=wf2ir

Fourier transform of [.]

f(y) probability density function - pdf

F(y) probability distribution function

f(x 1,t 1) stochasti c process first-order density function

f(x11x 7, t1,t2) stochastic process second-order density function

F(x 1,x2,x , t11t2,t ) stochastic process ~th order probability distributionn n function

FF1 Fast Fourier Transform

G
~~
(w) two-sided power spectral densi ty - PSD

G
~~

(w) two-s ided cross-spectral density - CSD

Y~y coherence function

h(t) linear dynamic system impulse response

H(w ) linear system transfer function , H(w) F[h(t)]

j  unit imaginary number, j =

mkL joint moment ,ELykzU]
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mxy(t1 ,t2) stochastic process correlation function

lower bound confidence multiplier for PSD ’s

M upper bound confidence multiplier for PSD’s

mean value (average ) of the random var iable y

p mean value estimate

N number of data points

P time average signal power

P (.) probability of the indicated C.)  set, outcome or event

P(x, f0,~f) average power density of signal x at frequency f0 wi th
bandwidth ~f

0 phase variable

one-sided power spectral density , PSD

one-sided cross spectral density, CSD

Rxy(t) time-average correlation -

a~ (a~ variance (standard deviati on) of the random variable y

t time variable
-I

I data observation interval

Td delay time

~T sampling Interval

w radian frequency variable

x(t) time function or signal

the 1th sample of the signal x -

time-average of the 1th ensemble element

x1(t) truncated time function

X(w) Fourier transfer of x(t)

X (k) discrete Fourier transform of x at the kth frequencyp
{x} a set or event
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