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A procedure, two—stage least squareb (2SLS), for analyzing structural

equations when one or more explanatory variables are correlated

with the error or disturbance term is reviewed. A brief introduction to

structural equations and the use of ordinary least squaree in causal analysis a

is presented initially. This is followed by an introduction to 2SLS and the

application of 2SLS to designs in which (a) two or more variables are reel—

procal causes of each other, (b) one or more variables contain random

measurement error, and (c) lagged values of one or more dependent variables

are used as predictors. A major objective for the review of these particular

applications of 2SLS is to demonstrate how salient problems in psychology

can be addressed by use of structural equations . 
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Applications of Two—Stage Least Squares in Causal

Analysis and Structural Equations

A procedure, two—stage least squares (2SLS), for estimating structural

parameters vhen one or more explanatory variables are correlated

with the error or “disturbance” term is reviewed . A brief introduction to

structural equations and the use of ordinary least squares in causal analysis

is presented initially. This is followed by an introduction to 2SLS and the

application of 2SLS to designs in which (a) two or more variables are reel-

procal causes of each other, (b) one or more variables contain random

measurement error, and Cc) lagged values of one or more dependent variables

are used as predictors, which focuses on the analysis of the cross—lagged

panel correlation design in terms of structural equations. The above

applications were selected because they were presumed to be of interest to

t
psychologists. They are not, however, exhaustive of the applications of

2SLS.

STRUCTURAL EQUATIONS AND CAUSAL ANALYSIS

A structural equation refers to the “representation of the true struc-

tural or causal properties of real—world phenomena, as contrasted with equa-

tions that are merely used for prediction or estimation purposes” (Namboodiri ,

Carter, & Blalock, 1975, p. 448). Some recent efforts in psychology have

attempted to acquaint psychologists with causal inferences based on recursive

structural equations (cf. Feldman, 1975; Kalleberg & Kluegel, 1975; Kenny,

1975; Kerlinger & Pedhazur, 1973; Sims & Szilagyi, 1975; Werts & Linn, 1970).

A recursive design is one in which the hypothesized causal relationships are

unidirectional or asymeetric, as demonstrated in Figure 1. A recursive

model requires that in a causal sequence each must precede each 
~~ 

where

_
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i ‘C j, and that may be caused either directly or indirectly by each X~,

but that an X1 cannot be caused by an f~
. Thus, causal closure implies

that the relationships are asynnuetric in a recursive or unidirectional

causal model.

Insert Figure 1 abou t here

Recursive models are applicable to numerous types of data sets (cf.

Werts & Linn, 1970), but there exist many designs for which they are not.

Examples where recursive models would not suffice are provided by social

system theory (ef. Indik, 1968; James & Jones, 1976; Katz & Kahn, 1966;

Lichtman & Bunt, 1971; Sells, 1963, 1968) and interactional paradigms (cf.

Bowers, 1973; Ekehammar, 1974; Endler, 1975; Endler & Magnusson, 1976).

These theories project complex models that incorporate feedback and recipro-

cal causation or simultaneity (Goldberger , 1973; Singh & Williams, 1972;

Singh, 1975), and include reciprocal interactions between individuals and

situations over time (Overton & Reese, 1973). Another example is a postu-

late of system theory which states that all events are correlated , thus

obscuring unidirectional cause—effect relationships (Katz & Kahn, 1966).

These theories raise obvious questions for structural analyses that employ

recursive models and their accompanying structural equations. Rather, non—

recursive models that incorporate reciprocal causation are required. An

example of a nonrecursive model Is presented in Figure 2. In this model,

an may be caused directly or indirectly by several X~, including cases

where I c J. 
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Insert Figure 2 about here

It will be emphasized throughout this paper that the structural equa-

tions representing recursive or nonrecursive structural models, or variations

of these models such as block—recursive models (cf. Fisher, 1966), can be

formulated in terms of the general linear model. When viewed in this manner,

structural equations may be employed to test causal hypotheses for a multi-

tude of designs, including (a) truly experimental designs involving randomi-

zation and intervention (cf. Miller, 1971), (b) quasi—experimental designs,

and (c) cross—sectional (static) correlational. designs involving data

$ 
obtained from natural settings. Applications of structural equations to

different designs are of course based upon different assumptions, some of

which may not be testable. Furthermore, the assumptions are of primary

importance because simply casting analyses in terms of structural equations

does not guarantee that one is actually testing causal hypotheses.

Our attention here is focused on applications of structural equations

to correlational designs which employ “passive data” (Cook & Campbell, 1976)

obtained on either static or longitudinal bases. It Is important to empha-

size that the application of structural equations to correlational data ,

particularily from cross—sectional designs, does not represent an attempt

to identify an unambiguous, unique causal model. Rather , it represents a

method for examining the logical consistency of alternative causal hypotheses

and models, and for rejecting those that are untenable (Duncan, 1966;

Feldman, 1975; Coldberger, 1973; Kerlinger & Pedhazur , 1973; Werts & Lit-in ,
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1970). When there are a priori, untestable assumptions or different structural

equations that fit the data equally well, a single, correct set of struc-

tural equations cannot be ascertained. However, untenable causal models that

do not fit the data m ay be discarded. Thus, the application of structural

equations to correlational data does not represent an attempt “to accomplish

the impossible task of deducing causal relations from the values of correla-

tion coefficients” (Wright, 1934, in Duncan, 1966 , p. 15), but an attemp t to

examine whether any alternative theoretical models accepted for possible

causal interpretation are logically con8lstent with the data.

This should not be construed to mean that one is necessarily “making

causal inferences based on correlational data”, which is both ambiguous and

an overstatement (Duncan, 1975, p. 47). On the other han s, the unfortunate

result of rejecting the consideration of causal relations in correlational

designs has frequently led to descriptive rather than explanatory interpre-

tations of data, or even worse, to degradation of research designs to the

extent that subgoals such as maximizing validity coefficients in the absence

of explanatory theory have become ends in themselves. By contrast, thinking

in terms of structural equations and causality with nonexperimental data

requires a strong theoretical base and has definite advantages. Among these

are an emphasis on explanation rather than description (Strotz & Wold , 1971),

estimation of change rather than fixed values (Namboodiri et al., 1975), and

a patteruof interpretation that makes explicit the rationale and assump-

tions underlying analytical procedures while simultaneously forcing the

discussion of results to be at least internally consistent (Duncan, 1966).

Thus, explanatory theories encompassing change and causality, and the goodness
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of fit of data to such theories, become the primary focus of structural

equations. . If nothing else, such an approach forces investigators to place

primary concern on theoretical issues.

To state the matter directly, it is possible to adopt causal, struc-

tural equation models with correlational data based on natural observations

if one is willing to make assumptions regarding prior time sequencing of

variables and relationships among variables (some of which may not be test—

able) and statistical assumptions (some of which may also not be testable).

The fact that economists, and more recently sociologists, have been routinely

employing such models is a case in point. The adoption of such models and

accompanying assumptions provides the basis for the remainder of this paper .

STRUC1’URA L EQUATIONS AND THE USE OF ORDINARY LFAST SQUARES

Structural equations are forms of the general linear model, and when

appropriate, may be represented as ordinary least squares (OLS) multiple

regression equations, where standardized or unstandardized (partial) regres-

sion weights provide unbiased and consistent estimates, based on a sample,

of the population causal or structural parameters. That is, when regression

weights are employed as structural, rather than just statistical, parameters ,

then reference is being made to causal, real—world phenomena (Duncan, 1975;

Heise, 1975; Nemboodiri et al., 1975). For example, an unstandardized

regression weight employed as an estimate of a structural parameter provides

an indication of “the mean change in the dependent variable expected to

result for each unit of change in one particular independent variable,

assuming other independent variables are held constant” (Darlington & Rom ,

1972, p. 452). On the other hand, it is possible to demonstrate several 

— -~ --
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sources of error which result in inconsistent and biased parameter estimation

if OLS is employed. The use of OLS for parameter estimation is discussed

here briefly. This is followed by a discussion of conditions which preclude

the use of OLS, and necessitate the use of other procedures, particularly

2SLS.

In general, in a causal system one is usually addressing several depen-

dent variables. If a structural equation for each dependent variable is

delineated, a system of simultaneous equations is obtained. Generally , the

system of simultaneous equations may be viewed as a system of multiple

regression equations, where the direct causal factors for each dependent

variable are considered predictors. If one (structural) equation is selec-

ted from this system, it would take the general form (assuming linearity and

additivity)

Y a + b  X + . . . + b X + . . . + b L + d  (1)

where represents the dependent variable, a represents the inter-

cept, X
1 

. . • XK 
represent the predictors (raw scores), b

1 
. . .

represent the unstandardized regression coefficients for the Xk, and

represents the disturbance term) (Disturbance terms are synony-

mous with error terms, and include variance resulting from sampling

error as well as effects of unknown or unmeasured outside influences

such as measurement error and variables that assist in causal explana-

tion but are omitted from the theory and/or measurement).

In this context, the coefficients represent sample estimates of

population structural parameters. It will be assumed that the predictors 

_ 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ --. 
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are random variables and that the samples are random and large. Given

these conditions, one of the primary concerns is whether the provide

consistent estimates of the population structural parameters. It will be

assumed that if random samples of increasing size (ii) are selected , then

estimates of the structural parameters (~~~) will converge to the popula-

tion structural parameters (~~~). This is referred to as a probability

limit, or “plim”, and is designated by: plim B (Johnston, 1972),

which com otes that b will converge to B in the limit. Consistent estima-

tors may or may not be asymptotically unbiased , although in most applications

consistent estimators also tend to be asymptotically unbiased estimators

(Pindyck & Rubinfeld, 1976 , p. 24).

The assumptions required to apply OLS to equation 1 to obtain estimates

of the structural parameters include linearity, additivity, interval scales,

and random sampling. It is also generally assumed that the disturbance terms

are distributed as N (0, °d 
2)~ Additional assumptions required for at least

consistent estimation are :

(1) the predictors have no measurement error (random or nonrandom) ,

(2) the disturbance terms from dif feren t s t ruc tura l  equations are

uncorrelated , and

(3) the predictors are uncorrelated in the limit with the disturbance

term. This assumption may be represented as p u n  [(1/n) X dl = 0
(cf.  Christ , 1966; Johnston , 1972 ; Theil , 1971), and implies that

any variable which is causally connected to the dependent var iable

but has been left  out of the structural  equation Is not causal ly

connected to any of the predictors (cf .  Blalock , Wells , & ( :arter ,

A . —-- -
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1970). That is, the effects of an omitted variable will be part of

the disturbance term, therefore resulting in a correlation between

the disturbance term and any predictor causally related with the

omitted variable. From another perspective, this assumption implies

that all major causes of the dependent variable are included in the

structural equation.

Any violation of the above assumptions may lead to biased and inconsisten t

estimates of the structural parameters if OLS is employed. Of primary impor-

tance is the last assumption, which is almost impossible to meet in empirical

research. That is, unless the theoretical causal system is completely known

and all predictors measured with perfect reliability , the last assumption will

ordinarily be violated and some degree of inconsistency and bias will be

introduced into the structural parameter estimates. Problems associated with

omitted variables will be addressed in more detail later; however, at this

time other conditions resulting in correlations between predictors and distur-

bance terms, and the necessity for using procedures other than OLS for con-

sistent parameter estimation, will be discussed,

The first of these conditions involves a situation where one or more of

the predictors is in fact a dependent variable in another equation in the

system (e.g., X1 Yg + ~~ 
and the two dependent variables (

~~ and Y~~~ ~
are reciprocally related. At least part of the equation system is then

nonrecursive, the variable that Is reciprocally related to the criterion is

correlated with the disturbance term, and therefore OLS Is not appropriate

for parameter estimation. The second condition arises when one or more of
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the predictors include rand om measurement errors . This condition also

results in a correlation between the predictors measured with error and the

disturbance term , and again OLS is not appropriate for parameter estimation .

Finally , if one of the predictors is in fact a lagged value of the dependent

variable (e.g.,  ~2 — i~ ’ and the disturbance terms are serially corre—

lated over time , then the lagged depend ent variable will be correlated with

the disturbance term in the limit and OLS should again not be employed .

Each of the above three conditions is addressed separately in this

report. It will be shown how 2SLS , or modified 2SLS , can be applied to the

structural equations to obtain at least consistent estimates of the struc-

tural parameters (assuming that other assumptions are met ) .  These applica-

tions are discussed in the following order: (a) analysis of nonrecursive

structural equations and an introduction to 2SLS , (b) the application of

2SLS to structural equations which include predictors that have random

measurement error , and (c) the application of a modified version of 2SLS to

structural equations which include lagged dependent variables and serially

correlated disturbances.

THE ANALYSIS OF NONRECURSIVE STRUCTURAL EQUATIONS

AND AN INTRODUCTION TO 2SLS

Logic of Nonrecursive Models

A nonrecursive model is one in which two or more variables to be

explained by the model (i.e., dependent variables) are mutually dependent and

reciprocal causes of one another. It is also assumed that the mutual effects

of the two or more variables in mutual interaction are relatively rapid or at

least the time lags are short and cannot be meaningfully identif led nor
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measured (cf. Namboodiri et al., 1975) (If meaningful time lags are identi-

fiable and measureable, then the model can be treated as recursive). For

exemplary purposes, we shall assume that the models presented here incorporate

only cross—sectional, correlational data based on natural observations, and

that the structural equations are algebraic in form. It is also assumed

that the relationships aJAg the mutually interacting variables are stable,

or have reached an equilibrium — typ~ condition (Miller, 1971); this is dis-

cussed in more detail below.

The nonrecursive model selected for this discussion is presented in

Figure 3. In this figure, the three variables labeled by a ‘1 (i.e., Y
1
, Y

2
,

Y
3
) are endogenous variables. Endogenous variables are dependent measures

that are to be explained by the theory or model, For example, as shown in

Figure 3 each of the endogenous variables is dependent upon each of the other

endogenous variables through a system of reciprocal relationships. Each

endogenous variable is also dependent upon one or more predetermined van —

ables, which are represented by the variables labeled by an X (i.e,, X
1
, X

2
,

X3, X~). In general, predetermined variables consist of (a) lagged values

of the endogenous variables, and (b) exogenous variables, which are lagged

or non—lagged variables that are considered to be separate causes of the

endogenous variables. The predetermined variables are treated as “givens”

and are assumed to provide explanatory power to the model but are not them—

selves to be explained by the model. Moreover, they are not dependent on

the endogenous variables, and are treated as predictors or independent

variables. Because Figure 3 is a cross—sectional model, the predetermined

variables (Xk) consist only of non—lagged exogenous variables.

~

.. . .. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Insert Figure 3 about here 

The curved lines among the exogenous variables in Figure 3 connote that

relationships exist among these measures. Curved lines also indicate rela—

tionships that are not explained by the model. As shown in Figure 3, X1, X2,

and X3 are intercorrelated , but X4 is not correlated with any of the other

exogenous variables. The arrows in the model, both from exogenous variables

to endogenous variables and among the endogenous variables (i.e., reciprocal

relationships), represent the causal inferences. Associated with each arrow

is an unstandardized regression coefficient or structural parameter (e.g.,

b12). Finally, each endogenous variable has associated with it a disturbance

term, which is designated by small “d” and subscripted by a numeral corres-

ponding to the numeral of the endogenous variable.

Returning briefly to the assumption of equilibrium , it is assumed that

for each subject the mutual effects of the three endogenous variables (Y1,

~2’ 
Y
3
) on each other have reached a state of stability, and the levels of

each of the variables are constant for each individual subject. It is

further assumed that the levels of the exogenous variables are temporally

fixed for each subject, that the effects of the exogenous variables on the

endogenous variables have been relatively rapid , and that the structural

model Is appropriate for all members of the sample (and population). It is H

then possible to conduct the analysis by employing comparisons across sub—

jects to infer processes that have been at work within subjects (Namboodiri

et aL, 1975).2 

~~~~~~~~~~~~-
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Statistics of Nonrecursive Models —— An Introduction to 2SLS

A number of statistical procedures are available for the analysis of non—

recursive models, including indirect least squares, 2SLS, three—stage least

squares, and limited—information and full—information maximum likelihood

functions. We shall focus here on 2SLS, which has been shown to be applicable

to social science data (cf. Duncan, 1970; Duncan, Hailer, & Portes, 1968, 1971;

Kahn & Schooler, 1973; Mason & Halter, 1968; Miller, 1971; Namboodiri et al.,

1975; Waite & Stolzenberg, 1976), and is generally considered to be as powerful

as more sophisticated methods (cf. Christ, 1966; Johnston, 1972; Theil, 1971;

King, Note 1). The introduction to 2SLS begins with a discussion of identi-

fication, proceeds to statistical assumptIons, analytical procedures, and

tests for goodness of fit, and concludes with a st~~ ary in which an applica—

tion of a nonrecursive model and 2SLS is proposed for a current psychological

research problem.

Two—stage least squares, developed separately by Baseman (1957) and Theil

(1953a,b), is a simultaneous equation estimation method in which the estimation

of structural parameters is conducted independently for each equation in the

system. However, 2SLS cannot proceed without first addressing the question

of identification, which involves determination of whether sufficient inforina—

tion exists to estimate the unknown structural parameters of the structural

equations (Theil, 1971). It should be noted that structural parameters and

structural equations are population terms; in the presentation below, however ,

we continue to use the term structural equations for data based on random

samples, but differentiate between population structural parameters and their

sample estimates. 
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Identification

Theil (1971, pp. 448, 449) has succintly defined identification in the

following manner

when we have a complete linear system of I. equations, the

parameters of the ~jth equation are not estimable when there exists

a linear combination of the other L — 1 equations that does not con-

tain any of the variables of the system which do not occur in the

ith equation; or, to put it in more positive terms, the parameters

of the Ith equation are not estimable when there exists a linear

combination of the other equations that contains only the variables

which do occur in the j th equation , and possib ly fewer . In that

case the Ith equation is said to be not identifiable (or under iden—

tiuied ) in its system.

In the general case , and using present terminology , the iden tif ication

of an equation rests on meeting two conditions , which are the order condi-

tion and the rank condition. With respect to the order condition , there will

be a system of G structural equations representing C endogenous variables.

To these equations will be added K predetermined variables, which as noted

earlier will consist only of non—lagged exogenous variables in the present

examples. For identification purposes, each equation must have G — 1 vari-

ables deleted from the total possible C + K variable set , where the deleted

variables may be either endogenous or exogenous. If the number of variables

deleted from an equation is equal to C — 1, the equation is exactly identified .

If the number of variables deleted is greater than C — 1, the equation is

overidentified. Otherwise, the equation is underidentified, and no solution 

—-~~~~~— -~- -~~~~~~~~~~~~~~~~~~~~—~~~~~~~ -----
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exists. It should be noted that within a set of C equations, some equations

may be exactly identified while others may be overidentified (or even under-

identified).

While the order condition is necessary, it is not sufficient for the

identification of an equation. A necessary and sufficient condition is the

rank condition (cf . Fisher, 1966), A discussion of the rank condition

involves considerable mathematical complexity, and thus such discussion was

included in a technical appendix to this paper (Appendix B). However, it is

generally the case that if the order condition is met, the rank condition is

also met (Namb oodiri et al., 1975). An exception occurs when the structural

equations for two or more endogenous variables contain the same combinations

of variables.

It is important to note that the selection and addition of exogenous

(or more generally, predetermined) variables to the structural equations

should be based on Sound theory, and that trivial variables should not be

added to the equations solely for identification purposes (Duncan, 1975).

The criteria for selection of exogenous variables are that a) the hypothe-

sized direct effects should be significant and substantial, b) the hypothesized

indirect effects should be significant and substantial, and c) the exogenous

variables are not dependent on the endogenous variables at the time of the

study.

Statistics of 2SLS

The use of 2SLS is illustrated by an example, using the nonrecursive

model presented in Figure 3. 
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Design of the structural e~uations. The first step in 2SLS Is to write

out the structural equations for each of the endogenous variables. The

structural equation for each endogenous variable includes those endogenous

and exogenous variables and their (estimated) parameters that have a direct

relationship (i.e., arrows in Figure 3) with the endogenous variable, plus

the disturbance term. The structural equations for Figure 3, written in

deviation form, are

(2)

— b~~ y1 + b~~ y3 + c~~ x3 + d2 (3)

(4)

where the (
~ # h) represent estimates of the structural parameters

for the mutually interacting endogenous variables, the represent

estimates of the structural parameters for the exogenous variables,

and the represent disturbance terms.

Order condition. With respect to the order condition required (but not

sufficient) for identification, C 3, K — 4, and C 4- K 7. The first

equat ion , equation 2, is exactly identified because C - 1 = 2 variables have

been deleted from the equation (I.e., there are five variables, including the

dependent variable, in the equation). Equations 3 and 4 are overidentified

because more than two variables have been deleted from each equation .

Statistical assumptions. The statistical assumptions underlying the

2SLS procedure are:

1) The causal effects are linear and additive.

2) Variables have been measured on interval scales.

.4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
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3) The independent variables have no random nor nonrandom measurement

error, which in the above model would mean chat all variables should

be perfectly reliable because each endogenous variable is used as an

independent variable (as well as a dependent variable).

4) The exogenous variables (Xk) are uncorrelated with the disturbance

terms (~~
) in the limit (i.e., plus [(1/s) — 01). As noted

earlier, this implies that all major causes of the dependent vari-

ables have been ascertained.

5) K (
~~) — 0, and the disturbances are normally distributed (an assump-

tion that allows the use of statistical tests [ef. Johnston , 1972]).

6) The sample selected is random if drawn from a finite population .

An additional assumption is that the variables are ordered correctly. This

is similar to the identification question (i.e,, some variables are deleted

from each equation) and implies that selection of variables is based on

theory and hopefully involves previous research (Duncan, 1975). Violations

of the above assumptions are generally referred to as specification errors

(cf. Spaeth, 1975).

Of importance here is the omission of the assumptions associated with

recursive models and OLS that all variables in an equation be uncorrelated

in the limit with the disturbance term of that equation, and that the distur-

bance terms of different equations be uncorrelated. In nonrecursive models,

the endogenous , but not the exogenous, variables are assumed to be correlated

with disturbance terms , and the disturbance terms may also be correlated .

The rationale for these conditions is that the mutual interactions among a

set of endogenous variables result in influences on each endogenous variable 

~~~~~~~~~--“~~-- -—~~ --. .~~~~--~~~~ .- ,rn.
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by the disturbance terms of the other endogenous variab les (cf , Johnston ,

1972, p. 343). That is, the disturbance terms include variance representing

reciprocal causes of the endogenous variables which are reciprocally related

(Naaboodiri et al., 1975). -

With respect to the assumptions of 2SLS, the absence of measurement error

or the restriction of the equations to variables measured by interval scales

might appear to be overly confining to psychologists. Fortunately , models

are available f or guiding analysis when some of the assumptions cannot be

met. Models developed for random measurement error are discussed in the

following section of this paper, and the reader is tef erred to Namboodiri et

al. (1975) for a discussion of models which involve nonrandom measurement

error. With respect to interval scales, while some authors have argued that

ordinal scales will suffice for parametric purposes (cf. Bohrnstedt & Carter ,

1971; Spaeth, 1975) , it appears reasonable to require that the scales be

“essentially interval” (i.e., while perhaps not perfectly interval, the

scales should possess interval qualities and be regarded as substantially

better than ordinal). This rationale is based on the causal interpretation

of a structural parameter presented earlier, where one would presume that a

unit increase in the predictor should connote (approximately) uniform degrees

of change throughout the range of the scale (the same is true for dependent

variables). On the other hand, paradigms are available for the use of ordi—

nal and nominal scales in structural equations (cf. Boyle, 1970; Namboodirt

et al., 1975). Such paradigms are closely associated with present statistical

knowledge in psychology inasmuch as structural equations are a form of the

general linear model.
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Violations of assumptions regarding linearity and additivity have also

been addressed (cf. Darlington & Rom, 1972; Namboodiri et al., 1975; Werts

& Linn, 1970). Because structural equations are forms of the general

linear model, polynomial regression and the use of cross—products to repre-

sent interaction terms are a~~licable, although there are some questions as

to whether these procedures can be employed with random variables (Sockloff ,

1976). Moreover , the addition to the structural equations of squared , cubed ,

etc., terms and possible moderators and cross—products involving moderators

(cf. Saunders, 1956) may result in problems concerning identification , multi—

co1lineari~y, and interpretation of the regression weights for cross—product

terms. Identification problems pertain to the need to include more predeter-

mined variables in the equations when polynomial regression or interaction

terms increase the number of endogenous variables. Multicollinearity concerns

the problem where highly intercorrelated variables (e.g., a variable and a

cross—product term in which the variable is included) lead to “bouncing beta

weights” and large sampling errors for the estimates of the structural

parameters (Darlington , 1968; Werts & Linn, 1970). The multicollinearity

probles& is not limited to polynomial regression and interaction analysis; it

can occur with any highly correlated variables that en te r into the same

equation. Methods for alleviating multicollinearity include deletion of vari-

ables, formation of composites, and factor analysis (cf. Goldberger , 1971;

Johnston, 1972; Joreakog, 1970). Finally, the interpretation of regression j
weights for cross—product terms is questionable because “regression weights

in nonlinear regression equations can be changed by changing the means of the

independent variables, and the means are often chosen arbitrarily” (Darlington
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& Rom , 1972, p. 453). The reader is referred to the Darlington and Rom

paper for possible solutions to this problem.

lit practice, the assumption concerning the lack of correlation between

the exogenous variables and the disturbance terms in the limit is often

violated, as noted earlier with OLS. The omission of relevant variables

from the model and spuriousness are of particular concern. It is generally

impossible to assume that all relevant variables are known and included in

an equation for a particular endogenous variable (cf. Duncan, 1975; Heise ,

1975; Kenny, 1975; Spaeth , 1975). The costs associated with omitting rele-

vant variables are a function of their importance in the system and of the

way in which their effects are transmitted throughout the system (Spaeth,

1975). The effects of omitted variables might include a) biased estimates

of at least some of the structural parameters included in the model and

underestimation of the dependent, endogenous variable (Duncan, 1975; Spaeth,

1975); b) alternative explanations of results based on spurious relationships

between measured and unmeasured common causes (Kenny, 1975) and , as noted

above , c) correlations among predetermined variables and the disturbance

terms, as well as correlations among the disturbance terms for reasons other

than simultaneity (cf. Miller, 1971).

In general, the omitted variable specification error can be quite

serious because it implies an incomplete theoretical system. On the other

hand , presently unknown omitted variables might be responsible for the speci-

fication error, or it may be difficult to obtain reliable and accurate

measures of variables of hypothesized theoretical importance (e.g., an

ultimate criterion). In practice, therefore, it is not uncommon to allow

-- - -——-—~~~~~~~~~~~~~~~~~~~~ - — .- -~~~--- .~~~~~~~ —~~~~-—
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certain trade—of fs. For example, exogenous variables with low rather than

zero correlations with the disturbance term in the limit may be accepted

(cf. Fisher, 1971). We note here, however , that in the statistical presen-

tation below the exogenous variables are assumed to be uncorrelated with the

disturbance terms in the limit.

Ana lytical procedures. The presumed correlations between the endogenous

variables and the disturbance terms in the limit ( i.e. ,  pliui [( 1/n) ~~ d~~] # 0,

where & ~ Ii) result in inconsistencies and bias if OLS is used to est imate

the values of the structural parameters in nonrecursive models , The 2SLS

procedure is employed to obtain estimates of the endogenous variables that

are uncorrelated with the disturbance terms in the limit for  the equations in

which the endogenous variables are used as predictors. These estimates are

then used to obtain consistent estimates of the structural parameters. Thus,

two stages of estimation are required to estimate the structural parameters.

A discussion of the general algebraic steps involved in applying 2SLS to

nonrecursive equations is presented below. An outline of the matrix algebra

steps involved in this procedure and a discussion of the rank condition

required for identification are presented in Appendix B.

To obtain estimates of the endogenous variables that are uncorrelated

with the disturbance terms, a reduced form of the set of structural equations

is constructed. A reduced form, which is the first—stage of 2SLS, consists

of a set of equations in which each endogenous variable is represented as a

function of only the exogenous (predetermined) variables and a disturbance

term (Duncan, 1975). That is, each endogenous variable serves as dependent

variable for one equation, and the Independent variables for each of these

_ _  
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equations include all exogenous (predetermined) variables from the system of

equations , plus a disturbance term. Ordinary leas t squares is then applied

to each of the reduced form equations to obtain estimates of each of the

endogenous variables (see Appendix A for an example derivation of a reduced

form).

For example, the reduced forms for the model in Figure 3, and equations

2 through 4 , are
. A A A
yl~~~

1 X l + 2x 2 + 7 x 3
.f
~~ hl4 x4 + m l (

~)

A A A A

~2l x1 + ir 22 ‘~2 
+ 

~23 x3 + it24 x4 + m 2 (6)

A A A A
~ ~~31 X1 

+ ‘
~32 ~2 

+ ~~33 X
3 

+ it 34 + m 3 
(7)

In equations 5 through 7 , the variables are presumed to be in deviation form ,

the represent predicted scores for the endogenou s variables , the r epre —

sent unbiased estimates of population reduced form parameters (~~~
) based on

OLS in a random sample , and the In represent disturbance terms for the reduced

form equations .

It Is important to note that the predicted ~~ (
~~

) are exact functions

of the xk (exogenous variables) and thus the correlations between the and

the disturbance term in a particular structural equation (I .e ., equations 2

through 4) are equal to zero in the limit (cf. Johnston, 1972, p. 383). That

is , the xk are uncorrelated with the disturbance terms in the limit and

therefore exact functions of the xk will also be uncorrelated wi th  the d i s—
A

turbance terms in the limit . In a sample the it are estimates of the it

and may not result in predicted y that  have zero sample correlations with

~

-

~
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the respective disturbance terms, although divergences from zero tend to be

smaller as sample sizes increase (Duncan , 1975).
A

Assuming that the correlations between the and are at least

asymptotically equal to zero, it is possible to proceed to the second—stage

of the 2SLS procedure, which involves replacing the original sample values

of the with the in equations 2 through 4 and conducting OLS. The new

equations for estimating the structural parameters, based on a rand om sample ,

are
-‘- A ‘- A

~ ~‘l2 ~
‘2 + b13 y3 + c11 x1 + c12 x2 + d1’ (8)

• A • — - A
~ b21 y1 + b23 y3 + c23 x3 + d2

’ (9)

A —‘-‘- A
y b y

l
+ b

~~~
y2 + c

~~~
x4 + d 3’ (10)

where the for the exogenous variables are unchanged with respect

to equations 2 through 4, but the
~~~h. 

for the endogenous variables

indicate that these estimates of the structural parameters are based

on predicted rather than original 
~~ 

-

The regression weights provided by equations 8 through 10 are consistent

estimators of the population structural parameters (B), but they are not

generally unbiased , although the bias tends to become negligible in large

samples (cf. Johnston, 1972; Namboodiri et al., 1975). The parameter esti—

mates for a given set of structural equations are mathematically, but not

necessarily causally, unique if the equations are exactly identified or

overidentified. The significance of the estimated structural parameters can

be tested using well—known significance tests for unstandardized (partial)
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regression coefficients (cf. Kerlinger & Pedhazur , 1973). The null hypothesis

• is that the population structural parameter does not differ significantly from

zero (i.e., has no causal effect). In overidentified models It will be noted ,

however, that one or more variables are presumed to have structural parameters

equal to zero in particular equations. As shown below, this provides an ave-

nue for assessing the goodness of fit of the data to the model, where in fact

the estimates of certain parameters may change (thus questioning the uniqueness

in a causal sense of the parameter estimates in the same, overall causal

model).

Goodness of fit. As discussed earlier, the goal of causal analyses

based on correlational data is to examine the logical consistency of alterna-

tive causal hypotheses and to reject those that are untenable. However,

because of untestable assumptions or sets of structural equations that fit the

data equally well, a simple , “correct” set of structural equations cannot be

ascertained. With respect to the present example , it Is quite possible that

different models and therefore different sets of structural equations could

be developed. In fact, in the typical case a rather considerable number of

alternative models can be construct~4 (ef. Duncan, 1975).~ For example , the

reciprocal relationship between Y1 and Y3 could be replaced with a single

arrow from to Y3. Thus, the theoretic~l assumptions and the questions of

the goodness of fit of a particular set of s~çuctural equations to a set of

data become salient. A method for testing the goodness of fit is presented ,

which can be conducted only with overidentified equations .

The test of goodness of fit discussed here is estimation of omitted

parameters. Other, and often more sophisticated procedures are jvallable

• 
—-- - •
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(cf. Costner & Schoenberg, 1973; I(alleberg & Kluegel, 1975; J~reskog, 1973;

Namboodiri et al., 1975), but they generally require stronger assumptions

and the differences among the methods are not definitive (Johnston, 1972;

• Namboodiri et al., 1975; King, Note 1).

In the example above, it will be recalled that structural equations 3

and 4 were overidentified . In essence this means that in these equations

certain variables were assumed to have population structural parameters

equal to zero. For example, in equation 3, the population structural para—

• meters C~~, C~~, and were a isumed to be zero. A test of the goodness of

f i t  based on sample data would be to ascertain empirically if in fact at

least some of the estimates of these parameters (i.e., c21, c22, c24) are

equal to zero. As outlined by Namboodiri et al. (1975), the parameters in

which there is the least fai th of a zero value are inserted into the struc-

tural equations until each structural equation is exactly identified . In

the example , only one sample structural parameter could be inserted Into

equations 3 and 4 to achieve exact identification. Once the over identified

equations have been exactly identified , a 2SLS analysis is conducted on the

new set of structural equations . Significance tests for all estimated strut—

F tural parameters are then conducted. Particular interest is attached to

(a) whether the estimated structural parameters which the causal model

specified as being equal to zero are in fact  “approximately” zero (i.e .,

within the realm of sampling error) , and (b) any meaningful changes in the

original estimates of the structural parameters when compared to the f i r s t

2SLS ana lysis with overidentified models.
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The correlations between the exogenous (predetermined) variables and

the disturbance8 terms, as well as the correlations among the disturbance

terms from different equations , may also be checked (see Duncan, 1975 for

computing equations). Although the latter set of correlations is not con-

strained to equal zero, large correlations would bring the model into

question. For example, a large correlation between two disturbance terms

• could indicate the presence of omitted variables that should be in the model,

or of correlated, nonrandom errors.

SuuE~~y

Theoretical and mathematical developments in this section are explained ,

by way of su~~ary, first by postulating how a nonrecursive model might he

applied to a salient problem in social—organizational psychology , and then by

reviewing verbally the steps involved in employing 2SLS for analysis pur-

poses. The problem selected concerns the causal determinants of leader and

subordinate behaviors in formal groups (e.g., workgroups).

A basic assumption underlying much of the leadership research has been

that the behavior of the leader toward subordinates is a major causal factor

in respect to organizationally related attitudes and behaviors of subordinates

(cf. Gibb, 1969; Kerr & Schriesheim , 1974; Likert, 1967; Stogdill , 1974;

Vroom, 1976). A considerable body of data provide support f or this assump-

tion, which reflects an asymmetric or recursive model. However, an increasing

accumulation of research has indicated that leader behavior is at least par-

tially determined by the behaviors of subordinates and by leader—subordinate

relationships, and further that a particular leader may display different

(flexible) behaviors with different subordinates in the same workgroup

III ~• •• •~• • - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• (cf. Barrow, 1976; Cuinmins, 1972; t)ansereau, Graen, & }Iaga, 1975; Evans,

1973; Farris & Lim, 1969; Fiedler & Chemers, 1974; Green, 1973, 1975; Hill &

Hughes, 1974; House & Mitchell, 1974; Lovin & Craig, 1968).

The latter type of relationship is illustrated by studies involving

experimental or quasi—experimental designs (including cross—lagged panel

• correlation) in which high or increasing subordinate performance levels

caused leaders to employ more supportive—consideration oriented behaviors,

while low or decreasing subordinate performance levels resulted in more use

of structuring—authoritarian behaviors on the part of the leader (Barrow,

1976; Dansereau et al., 1975; Green, 1973, 1975). Other studies, primarily

of a correlational nature, have suggested that a number of subordinate vari-

ables might affect supervisory behavior, either directly or as moderators.

These include (a) job knowledge, (b) satisfaction, (c) role ambiguity and

role conflict, (d) locus of control (e.g., internals were more satisfied

• with considerate leader behaviors), (e) race of both supervisor and subor—

dinate, (f) perceived organizational independence, (g) hierarchical level of

subordinate in the organization, (h) expectations concerning leader behavior

and rewards , (i) the acceptance of the leader by subordinates, (j) needs for

structure and independence (and the degree of congruency between leaders and

subordinates for these needs), (k) complexity of subordinate tasks, and (1)

various other needs such as needs for achievement and performing meaningful

tasks (cf. lierold, 1974; House & Mitchell, 1974; Kerr & Schriesheitn , 1974;

Lowin & Craig, 1968; Parker, 1976; Steers, 1975; Stogdill, 1974; Vroom ,

1976). There are, of course, a number of additional contingencies, such as

the leader’s hierarchical influence, specificity of goals, power and authority,

- I  • • • • • • • ~~~~~ • -‘~--~ -- --- •- 
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organizational incentives and feedback , organizational structure , and others

that might well enter into the determination of leader—subordinate relatfon—

ships.

This is not an exhaustive review and it is realized that the leadership

process involves many contingencies. Nevertheless, there is ample evidence

to postulate that the causal relationships between leader and subordinate

behaviors are at least partially symmetric and reciprocal rather than asym-

metric. Furthermore, it appears that the effects of many of the reciprocal

interactions between leaders and subordinates are relatively rapid and thus

that meaningful time lags are essentially unidentifiable. Finally, if we

assume that the reciprocal relationships between leader and subordinate

behaviors tend to stabilize in situations, then a nonrecursive model is

appropriate for attempting to identify the causal factors for both leader and

subordinate behaviors.

The following steps provide a rough outline of the application of 2SLS

for the analysis of the proposed nonrecursive relationships between leader

and subordinate behaviors. For exemplary purposes , we shall assume that

(a) the data are cross—sectional and based on natural observations ; (b) the

unit of analysis is the subordinate , where the managerial strategies (Oldham,

1976) employed by each leader for each subordinate are measured , while other

data describing the leader are duplicated for each subordinate; (c) moderator

analyses would be conducted using the subgrouping technique (cf. Guion , 1976)

(this avoids the potential problem of multicollinearity if cross—product

terms were used, although it would require the construction of separate and

perhaps different structural equations for each subgroup); (d) the structural

_ _ _ _  -~~~~~—----~~~~ —-•~~~~~~~ • • •••
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• equations are identified ; and (e) the structural equations are otherwise

• correctly specified (e.g., assumptions regarding linearity, reliability.

random sampling, inclusion of all relevant causal factors, and so forth have

not been violated) . The structural parameters for each dependent variable

for which a reciprocal relationship exists cou ld then be estimated by the

* following steps (these steps follow roughly those presented by Heise [1975,

p. 169]).

1. Design a structural equation for each dependent variable that

expresses the values of the dependent variable as a function of other endo—

genous variables with which the dependent variable has reciprocal relation-

ships , predetermined variables (nonlagged exogenous in this case) with which

there is a direct relationship, and a disturbance term. For our purposes

here, we shall assume that there are two sets of endogenous variables, namely

(a) leader managerial strategies (e.g., providing rewards and punishments ,

setting goals, designing feedback systems, etc.), and (b) subordinate behav-

iors (e.g., job performance levels on different behavioral criteria , reactions

to the leader, etc.). Reciprocal relationships are presumed to exist between

the sets of endogenous variables for at least one variable from each set,

• and, if appropriate, for selected variables within each set.4

It is also assumed that there are three sets of exogenous variables,

namely (a) variables that have direct effects on leader behavior and indirect

effects (through leader behavior) on subordinate behavior (e.g., leader intel—

ligence, experience, hierarchical influence, power, authority, etc.); (b)

variables that have direct effects on subordinate behavior and indirect

effects on leader behavior (e.g., subordinate intelligence , experience ,

_ _  _ • •
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knowledge, satisfaction, motivation, etc.); and (c) variables that have

direct effects on both leader and subordinate behaviors (e.g., structure of

the organization, subsystem, and workgroup , complexity of the tasks, con-

gruency indices between leader and subordinate needs, expectations , and race,

etc.). Thus, as an example, the structural equation for a particular subor-

dinate behavior (dependent variable) would include the following predictors

(a) leader behaviors which have a reciprocal relationship with the dependent

variable, (b) other subordinate behaviors which have a reciprocal relation-

ship with the dependent variable, and (c) exogenous variables that have

direct effects on the dependent variable, which would include variables that

directly affect only subordinate behaviors as well as variables that directly

affect subordinate behaviors and leader behaviors.

2. Separate from the system of all equations those variables which are

exogenous. These variables cannot include a variable with which the recipro-

cally related endogenous variables (i.e., leader and subordinate behaviors)

have a reciprocal relationship.

3. Regress, using OLS, each of the reciprocally related endogenous

variables on all of the exogenous variables identified in step 2 to obtain

regression equations for predicting values of the endogenous variables

(i.e., develop a reduced form and conduct the first—stage regression). Use

the first—stage regression equations to obtain predicted values for the

reciprocally related endogenous variables. These predicted values will be

purged , in the limit, of their correlations with the disturbance terms

associated with the structural equations constructed in step 1.
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4. Return to the structural equations constructed in step 1 and

estimate the structural parameters by OLS, substituting the predicted values

of reciprocally related endogenous variables obtained in step 3 for the o n—

ginal values of the endogenous variables (i.e., conduct the second—stage

regression).

At this point, the 2SLS procedure and hypothe8es regarding parameter

estimates and goodness of fit can be addressed following procedures discussed

earlier.

RA1~DOM MEASUREMENT ERRO R

Random measurement errors , particularily in the predetermined variables ,

may have disturbing effects on the estimation of structural parameters. A

general treatment of the effects of random measurement error on parameter
)

estimation, which is often referred to in econometrics as the “error in vari-

ables” problem , is described below. This is followed by an introduction to

the use of instrumental variables as a solution to the random measurement

error problem , and a demonstration of the relationships bet ween ins t rumenta l

variables and 2SLS . It will also be noted that 2SLS is the more geners~

procedure because it can be used with overidentified equations.

From a general standpoint, a bivariate relationship between two vari-

ables in a random sample may be displayed in deviation form as

1~~~b x  + d (11)
)

where b is an estimate of population structural parameter B, x is a

random variable which takes on values from a distribution of true

scores randomly sampled from the population , and d represents the

disturbance term.
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For purposes of unbiased and consistent estimation using OLS , it is assumed

that the explanatory variable (
~) is uncorrelated with the disturbance term

in the limit [i.e. , plim [( 1/n) X d  — O~ . However , it can be shown rather

easily that this assumption is incorrect if x involves a random error com-

ponent (only random measurement error is addressed here). That is, if the

observed x is equal to t + e, where t equals the true score on the variable

and e is a random measurement error, then equation 11 becomes

+ (d-be) (12)

which was obtained by replacing x in equation 11 with x - e (The x

in equation 11 assumes no measurement error , or conversely , a true

score. Thus , if the observed x is measured with error , the term in

equation 11 should be x — 
~~~

In equation 12, x is correlated with the disturbance term (
~, - b e) in

the limit because x is a function of e (cf .  Blalock et a l .,  1970; Bohrnstedt ,

1969; Christ, 1966; Goldberger, 1971; Johnston, 1972; Theil, 1971; Wiley &

Wiley, 1971). Thus, the use of OLS to estimate B from b will be both biased

and inconsistent (random measurement error in ~ is considered a part of the

d term and does not affect bias or consistency of parameter estimation). In

the bivariate case, the bias is in the direction of attenuating (underesti—

mating) the estimate of B. However, in the multivariate case with several

explanatory variables, each with different random measurement errors, the

bias in the estimates of the structural parameters may be postive or negative.

For example, as discussed by Blalock et al. (1970), it is possible (a) to

infer that a relationship between two variables is partly spurious when in

fact it is totally spurious, (b) to treat an additive model as if a
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statistical interaction existed, and (c) to obtain incorrect estimates of

structural parameters, including a sign reversal (cf. Kenny , 1975), part i—

cularily when the explanatory variables are correlated and have differing

degrees of random measurement error ,

A number of authors have proposed approaches for dealing with random

measurement error in variables , especially if the observed measures are

ccnsidered as fallible “indicators” of unobserved constructs (e.g., true

scores) (cf. Blalock , 1969 , 1970 ; Blalock et al. ,  1970; Bohrnstedt , 1969;

Costner, 1969; Duncan , 1975; Goldberger , 1971; Coldberger & Duncan , 1973;

Hauser & Goldberger, 1971; Heise, 1975; Johnston, 1972; Jdreskog, 1973;

Kalleberg & Kluegel, 1975; Kenny, 1975; Namboodiri et al., 1975; Pindyck &

Rubinfeld, 1976; Werts & Linn, 1970; Werts, Linn, & J~reskog, 1971; Wiley,

1973; Wiley & Wiley, 1971; Wold, 1975). We shall focus here only on obser—

vables, and employ a popular approach known in econometrics as “instrumental

variables”. The relationship between instrumental variables and 2SLS will

be demonstrated. It should be noted, however, that the “multiple indicator”

procedures, which are not addressed here, have a strong tie to known methods

in psychology (e.g., confirmatory factor analysis, utultitrait—multimethod

matrix) and thus offer another attractive alternative to the analysis of

variables with random measurement error and to the analysis of unobservables.

The discussion of the instrumental variables approach and its relation-

ship to 2SLS generally follows presentations by Heise (1975), Johnston (1972),

and Pindyck and Rubinfeld (1976), Beginning with equation 12, where x is

correlated with the disturbance term, the in8trumental variables approach

proceeds by attempting to find a variable “z” such that (cf, Heise, 1975)
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(1) plim [(1/n) Z (4— b e)) 0; which connotes that ~ is not

causally connected to factors which affect ~ but have been

omitted from the equation, nor is z related to the random

measurement error in x.

(2) z is a cause for x , preferably a direct cause although an

indirect cause through intervening variables is acceptable

as long as the intervening variables are not causally rela-

ted to ~~~. In addition, z itself cannot affect ~ directly.

(If z is causally related to ~ in any way other than through

x, then it is possible for z to be causally related to omit-

ted causes for ~ and thus create a specification error, such

as violating the preceeding assumption).

(3) z is not affected causally by ~ or x.

(4) z may have random measurement error as long as such error is

not correlated with the disturbance term in equation 12 (a

highly reliable z is of course preferable).

Given these conditions, with accompanying assumptions of linearity ,

additivity, essentially interval measurement, random sampling , and

E (d — b e) — 0, it is possible to use to obtain a consistent estimate of

B by the following equation

E~~~z
______ 

(sum is from 1 . . . .n) (13)

~~x z

which replaces the usual OLS estimation : b (Z x ~) / (Ex
2)~ and

where z is used as an instrument for x.

In the above equation , b will be a consistent estimator of B because
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p l im b - B +~~~z (d - b e )

where the numerator for the second term on the right—side of the

equation approaches 0 in the limit (see assumption

The rationale for equation 13 can be seen more clearly if the intuitive

and statistical relationships between instrumental variables and 2SLS is

demonstrated. In essence, equation 13 is represented by the model

z— ~ x -— ~~~ (Heise , 1975), where x is measured with error. Assuming that z

meets the criteria for an instrumental variable, the first stage of 2SLS j

A
consists of replacing the fallible measure (x) with an estimate (x) that is

not correlated with the disturbance term (~ — I e) in the limit, In this

context, the first—stage of 2SLS involves the creation of an instrument

(Pindyck & Rubinfeld, 1976). The second—stage of 2SLS then involves the use

of the created instrument (~
) in place of the fallible measure to obtain a

consistent estimate of the structural parameter. For example, the first—
A

stage of 2SLS consists of regressing x on z and obtaining an estimated x.

The regression equation is

A

where the predicted score (instrument) for x (~
) is equal to a z,

which by definition is not correlated with (d — b e) in the limit.

The second—stage of 2SLS then consists of replacing x with in equation 12,

and conducting OLS, although a more direct comparison of 2SLS and instru-

mental variables is shown by the following simple derivation

For the usual OLS calculation of I, (E ~ x) / (Zx
2), the x in the )

numerator is replace
ft
by x, and one x in the denominator is replaced
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by x (replacing both x ’s in the denominator with x results in an

inconsistency (cf. Christ, 1966; Pindyck & Rubinfeld , 1976]). We

thus have

~~
- 

~~~~~~~~~ 

L~~(!&

~x x ~-~s (
~.!) 

E

where the last term is the same as the instrumental variable esti-

mator presented in equation 13.

En this example, 2SLS is equivalent to instrumental variables . This

will not always be the case; the instrumental variables approach typically

focuses on the use of only one instrument for each fallible variable . Where

more than one instrument exists for a fallible variable , each instrument

provides a separate estimate for the structure parameter (e.g., equation 13

is replicated for each instrument), and the problem Is then to decide which

estimate to accept, or how to combine the separate estimates to arrive at

one estimate (cf. Goldberger, 1971, 1973). On the other hand , 2SLS automa-

tically acconmiodates multiple instruments for each fallible variable because

a least squares weighted combination of multiple Instruments (~~
) can be

employed to create a new instrument (
~

) for each fallible variable in the

first—stage regression. In other words, the first—stage of 2SLS provides

the basis for developing a weighted linear combination of the origInal Instru-

ments in the creation of a new instrument .

In more general terms , 2SLS and the instrumental variables approach

will provide uni que and identical parameter estimates in an exact ly  ident i~-

fled system of simultaneous equations if all predetermined variables are

used in the first—stage of 2SLS and the instruments (analogous to ~
) used in
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the second—stage of 2SLS consist of the predicted values from the first—stage

(reduced form) regressions (Pindyck & Rubinfeld , 1976). In overidentif led

structural equations, however, 2SLS again provides unique parameter estimates

while the instrumental variables approach does not. Furthermore, as noted

by Goldberger (1973 , p. 151), 2SLS “is as efficient as any other instrumental

variable estimator in the present context”, which referred to the weighting

and combination of instruments in overidentified structural equations.

The application of 2SLS to simultaneous equations where some variables

involve random measurement errors is sunsearized below, and follows the pre-

sentation by Johnston (1972). To simplify matters , it was assumed that the

equations were based on a recursive model, although nonrecursive or block—

recursive models could also be treated in this general paradigm (i.e., both

nonrecursiveness and random measurement error would have to be addressed as

reasons for correlations among explanatory variables and disturbance terms).

Matrix algebra was employed to conserve space (the reader may wish to con—

suit Appendix B before proceeding with this section).

To begin, one equation from the system of simultaneous equations is

represented by

y - Y  ~~+ X  c + ,9,,• (14)
~p 1 lA ,

where y in an n x 1 vector of observations (raw scores) for an endo—

genous variable,

is an n x A matrix of observations on variables which include

random measurement errors and are correlated with the disturbance

term (Y1 does not include y), 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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bis a X 1 vector of structural parameter estimators attached to

the Y1 varlables ,

is an n x k matrix of observations on variables appearing in this

equation which are not correlated with the disturbance tern,

c is a k x 1 vector of structural parameter estimators attached to

the X1 variables, and

uis an n x 1 vector of disturbances, which can also be written as

(d— E b ) ,  where d is the vector of original disturbance terms

and E b , analogous to b e equation 12, represents the effects of

random measurement errors in the Y1 variables.

If it is presumed that the equations are identif led and all assumptions

for 2SLS have been met , with the exception of the random measurement errors

in the Y~ variables, then the specification error for the above equation is

plim (
~~
Yi
’&#0

which connotes that the variables in ?1 are correlated with the dis-

turbance term in the limit, and further that the estimates bof the

structural parameters B will be biased and inconsistent.

It is important to reiterate that the variables in are not correlated

with u in the limit. In addition, there will exist a set of variables In the

remainder of the simultaneous equations that are also not correlated with the

disturbance terms. These variables do not appear in X1, and will be considered

as comprising a matrix X2• (Although we are not dealing with a nonrecursive

model here, perhaps an analogy to such a model would be of assistence. That

is, the variables are analogous to the interdependent endogenous variables

in nonrecursive models in the sense that they are correlated with the

~~II ~~~~~ ~~~~~ - —~~~~~ ~~~~~~ -~~- - —~~~~
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disturbance terms. The X1 and variables are analogous to predetermined

variables in the sense that they are not correlated with the disturbance

terms).

The application of 2SLS to the above situation is designed to develop

a set of instruments for the Y1 variables in the first—stage regression

which are purged of their correlations with the disturbance term , and then

to use these instruments in place of Y1 in the second—stage regression in

order to obtain consistent estimates of the structural parameters. The

reduced form employed in the first—stage regression for the estimation of

the Y1 variables is based on both the X1 and X2 variables, which by defini—
-t_-

tion are not correlated with the disturbance term. Thus, estimates of
A

(i.e., Y~), which are direct linear functions of and X2, will also not

be correlated with the disturbance term, The reduced form, first—stage

regression is therefore (Johnston, 1972, p. 381):

/ 1 /
— x (I x.)~~ x ~~~~ 

(15)
A .~~~. ,..- A

where X [X1 X2].
-‘-‘- -~ - A

F The second—stage regression proceeds by first noting that Y1 — V1,

where V1 is an ii x 
~ 
matrix of the residuals obtained from regressing Y1 or.

X. Second, in matrix terminology the instruments used in the second—stage

regression are comprised by the matrix [Y1 
— V

1 
X1], which will be employed

in place of [Y1 X1], the original observation matrix (the reader will note

that X1 does not change in the above two matrices and that — V1 provides
A

a computing method for Y1 which precludes the need to actually determine the
A

values for Y1 [Johnston, 1972, pp. 382 and 390]. Given these conditions,

the estimating equations for the second—stage of 2SLS are:
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/ /
(Y1 — V1) Y1 (Y1 

— V1) X1 b (Y
1 

— V
1

) y (16)
_ -~~~

, 
~~-

S

/ I I
X, Y X X c X y• A 1 1 1 ..~~~~~

~~~- -,--

The above computing equations will provide consistent estimates of the

structural parameters as long as
/ /

plim (Y — V1) u’] and plim (
~ X u) 0 (cf. Johnston, 1972;1 l~~~—~Pindyck & Rubinfeld , 1976).

In su~~ary , an outline of the use of instrumental variables and 2SLS in

situations where some explanatory variables are correlated with the distur-

bance term for reasons of random measurement error has been presented . Space

limitations preclude a thorough discussion of specification errors which are

salient for the random measurement error problem ; however, we shall briefly

mention some of the more important of these errors (it should also be noted

that all assumptions regarding the use of 2SLS are operational).

Of initial concern are the criteria mentioned earlier for the selection

of instrumental variables. For example, as discussed by Fisher (1971) and

Blalock et al. (1970), it is often difficult to obtain instrumental vari-

ables which are uncorrelated in the limit with the disturbance term while at

the same time being major and direct causes for the fallible variables.

Moreover, the use of multiple instruments for one variable (i.e., in over—

identif led equations) may result in the problem of multicollinearity . In

the former case, it may be necessary to use instrumental variables which have

low rather than zero correlations with the disturbance term in the limit,

and/or are indirect causes for the explanatory variables comprised partially
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• of random measurement errors. In the latter case, some instrumental vari-

ables may have to be deleted or a principal components analysis conducted

on the instrumental variables in order to obtain independent predictors

• (Amemiya, 1966; Johnston, 1972).

Another set of concerns pertains to the decision of whether to use instru-

mental variables and/or 2SLS versus OLS when the criteria for instrumental

variables have not been fully met. For example, Blalock et al. (1970)

demonstrated that the use of an instrumental variables approach (and 2SLS)

may be inferior to OLS if an instrumental variable is related to the dependent

variable either directly or indirectly . Finally, as noted earlier the multi-

ple indicator approaches, which focus on unobservables (e.g., confirmatory

factor analysis), provide another avenue for addressing variables with random

measurement errors, and perhaps a combination of the procedures discussed

here and the multiple indicator approaches might well provide the most viable

methods of analysis for the random measurement error problem.

In conclusion, it must be stressed that the procedures described in this

section do not provide a solution when unreliable variables are used . For

example, one could question the efficacy of the predicted scores following

the first—stage regression if the variables to be replaced were highly unre-

liable to begin with. Rather, it is presumed that the variables to be

replaced are at least moderately reliable. Furthermore, it is also question—

able that instruments should be developed for variables that are highly , but

not perfectly, reliable (cf. Blalock et al., 1970). That is, the specifica-

tion errors associated with developing instrumental variables (e.g., multi—

coll-inearity) might have more serious contaminating effects on parameter

• ~~~~•
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estimation than simply proceeding with highly reliable variables and

recognizing that some bias and inconsistency might be present in estimation ,

In fact, Duncan (1975) has noted that highly reliable variables encompassing

small amounts of random measurement errors would not be likely to provide

undue strain on structural models.

LAGGED ENDOGENOUS VARIABLES

The present application of 2SLS addresses the question of dynamic

analysis, namely the inclusion of lagged explanatory variables in structural

equations. As noted earlier, both endogenous and exogenous variables may be

lagged. Furthermore, the model may be recursive or nonrecursive, or a com-

bination of both recursive and nonrecursive (e.g., block—recursive). In the

application of 2SLS selected for discussion here, the rather thorny problem

of including lagged endogenous variables in nonrecursive structural equations

is presented. This application provided an opportunity to demonstrate how

two applications of 2SLS might be combined (i.e., nonrecursive models and

lagged endogenous variables); however, the application is not exhaustive of

the applications of 2SLS for structural models with lagged variables. For

example, Johnston (1972, pp. 318—320) has presented a procedure which includes

a version of 2SLS for analyzing recursive models with lagged endogenous vari-

ables.

Another reason for selecting this application of 2SLS was its implications

for a currently popular procedure employed for causal analysis in psychology ,

namely the cross—lagged panel correlation design (Campbell, 1963; Cook & Camp— j
bell, 1976; Campbell & Stanley, 1963; Feldman , 1975; Kenny , 1973, 1975). In

fact, it is hoped that this discussion will serve to encourage psychologists
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to begin to think of cross—lagged panel correlation designs in terms of their

place in a more holistic theoretical system as well as in terms of competing

causal hypotheses (e.g., nonrecursive rather than recursive models). With

this interest in mind, the application of 2SLS for nonrecursive structural

equations which include lagged values of one or more endogenous variables was

addressed by formulating the analysis of the cross—lagged panel correlation

design in terms of structural equations,

The reader is referred to Kenny (1975) for a review of the cross—lagged

panel correlation (XLPC) design. We shall focus here on a brief comparison

of the goals of XLPC and structural equations, and then proceed to the appli-

cation of structural equations to the XLPC design. As shown in Figure 4,

the XLPC design involves two dependent or endogenous variables measured at

the same time 
~~lt 

and 
~2t ’ where t represents observations), and two lagged

values of the endogenous variables, both measured at time t—l (Yi~~i *md

The latter variables are considered predetermined in the present

context. The XLPC analysis is a test for spuriousness, the null hypotheses

being that the relationship between 
~2t 

and 
~~~~~ 

(for example) is due to the

effects  of one or more other variables rather than causal relationships between

the two variables (Kenny, 1975). However, failure to reject the null hypo-

thesis is not sufficient to conclude that the relationship was in fact

spurious (cf. Kenny, 1975).

Insert Figure 4 about here
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As noted by Kenny, the XLPC design is intermediary , in terms of causal

explanation, between purely correlational designs and well—elaborated struc-

tural models. Kenny further reported that although XLPC and structural

models have been contrasted, the two models address different objectives and

make somewhat different assumptions. For example, the XLPC design is a test

for spuriousness, does not require that all causal variables be included in

the model, and does accommodate measurement error. Structural equations, on

the other hand, focus on the estimation of causal parameters, and, as noted

earlier , omitted causal variables and measurement error result in specifica-

tion errors. Thus, structural equations are typically more demanding, both

in terms of theory and psychometric/statistical criteria. Kenny also con—

cluded that XLPC designs were more applicable to social science data, given

the present state of theoretical systems and the pragmatics of measurement.

While we agree with this conclusion, we also feel that a great deal is to be

gained by thinking in terms of more complete theoretical systems, identifying

sources of spuriousness (i.e., omitted variables), and improving upon

measurement techniques. For these reasons, the application of structural

equations to XLPC designs was addressed , with the presumption that such

applications represent a desirable goal for psychology.

A number of authors have proposed methods for transforming the XLPC F

design into structural (or path) equations (cf. Duncan , 1969; Bohrnstedt ,

1969; Goldberger, 1971; Heise, 1970; Pelz & Lew, 1970). These equations

typically involve lagged endogenous variables , in c luding (a) lagged values of

the dependent variable (e.g., 
~lt l 

is viewed as a cause for  and (b) what

will be referred to here as “cross—lagged endogenous variables” (e.g., 
~lt l
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is viewed as a cause for Y ). Furthermore, as discussed later it can
2t

frequently be assumed that serial correlation exists among the disturbance

terms for structural equations representing an endogenous variable measured

at different points in time. Such conditions require special and somewhat

complex statistical procedures for solution, including several modified ver-

sions of 2SLS (cf. Amemiya, 1966; Fair, 1970; Fisher, 1971; Johnston , 1972 ;

Miller, 1971; Nerlove, 1971; Pindyck & Rubinfeld, 1976). The procedure

presented by Fair (1970) was reco~ uended by Pindyck & Rubinfeld (1976) as an

optimal solution for structural equations involving lagged endogenous vari-

ables, and was used as basis for this presentation.

In constructing the structural equations for the XLP C design and lagged

endogenous variables, the possibility of a nonrecursive relationship between

the dependent variables was added to the model presented in Figure 4 ( i .e . ,

a reciprocal interaction between and 
~~~~~ 

Although XLPC design8 typically

rule out the possibility of nonrecursive causal relationships between the
)

dependent variables “by fiat” (Cook & Campbell, 1976), their inclusion in the

model provided a more general discussion of lagged endogenous variables while

at the same time attending to the concerns of several authors that such rela-

tionships may be meaningful, competing hypotheses for XLPC (Duncan, 1969;

Goldberger, 1971; Heise, 1970). The structural equations for the XLPC design

were therefore

— b12 72t + c13 ~
‘2 t —1 ~ c , v

_1~ _ 1 + (17)

— b~~ y1 + c2~ ~~~~ 
+ c • - 

• d 
~ 

(18)

where all, variables are prt~.cIt.~: In i~’v iat  ion form .

)
_ _ _ _ _ _ _  .4
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In each equation, the endogenous variable is seen as a function of

(a) the other endogenous variable measured at both time t (a nonrecursive

relationship) and time t—l (a cross—lagged, first—order autoregressive rela-

tionship), and (b) a lagged value of the endogenous variable (a lagged ,

first—order autoregressive relationship). All of the variables with c

regression coefficients on the right—side of equations 17 and 18 are regar-

ded as predetermined. For the present purposes, the following assumptions

were made: (1) linearity and additivity, (2) essentially interval measure-

ment, (3) no measurement errors, (4) E (
~~~

) 0, and (5) random sampling.

In addition, it was assumed that: (6) the model followed a first—order

autoregressive scheme with discrete time lags (this allowed the use of dif-

ference rather than differential equations), (7) the variables were measured

at the same points in time (i.e., synchronicity [cf . Kenny, 1975]), (8) the

measurement intervals corresponded to the causal intervals, and (9) the

structural relationships were invariant with respect to time (i.e., station—

arity [cf. Kenny, 1975; Pindyck & Rubinfeld , 1976]).

As with earlier applications, a number of the above assumptions are

difficult to meet in research. Problems associated with the first four

assumptions have been discussed, while problems regarding the latter set of

assumptions are discussed in a number of publications cited earlier which

deal with XLPC designs, autocorrelation, and/or time—series analyses. We

shall focus here on a third set of assumptions which intrinsically cause

estimates of the structural parameters in structural equations 17 and 18 to

be inconsistent. In general , these assumptions may be categorized as follows :

(a) the disturbance terms f or each dependent variable are likely to be
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serially correlated over time (the disturbance terms d
1 

and d
2t 

are also

likely to be correlated because of the nonrecursive relationship and because

of serial correlation among the disturbance terms), and (b) all predetermined

variables are likely to be correlated with one or both disturbance terms.

Each of these assumptions is addressed below. It should also be noted that

equations 17 and 18 are underidentified ,

10. The current values of the endogenous variables are correlated in

the limit with the disturbance terms of the equations in which they are used

as predictors.

That is:

plim (
~ Y~~ die) # 0, and plim (

~ ‘~1t ~ # 0

This is due to the nonrecursive nature of the design.

11. The disturbance terms for the current and lagged endogenous variables

are most likely serially correlated. This problem can be visualized by means

of Figure 5, which employed Heise (1970) as a base. 
~lt 2 

and 
~2t2 

represent

an assumed , but not actually measured , additional wave of data. Potentially

estimable relationships given two waves of data are depicted by solid lines ,

although because equations 17 and 18 are underidentified , no causal relation-

ships could be estimated until additional predetermined variables are added .

Dashed lines delineate implied relationships, and the curved line between

~lt—l 
and 

~2t—]. 
denotes that these variables are being treated as predeter-

mined in equations 17 and 18 (with two waves of data , the relationship

between these variables is estimable but not causal).

Insert Figure 5 about here
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As an example , if a stable, omitted variable exists which is a cause

for 
~~~ ~1t—l’ 

and 
~ l t 2 ’  then the disturbance terms ~~~~ d i~ ....i, d i~ ,,.,2 will

be serially correlated (i.e., the stable, omitted variable, which is part

of the disturbance terms, correlates with itself over time). This problem

can be avoided by including all relevant causal variables in the equations

so that the disturbance terms reflect only random and unstable influences .

Because equations 17 and 18 include only a few variables , it is likely that

stable, causal variables have been omitted , thus resulting in a serial cor-

relation among the disturbance terms.

The correlations among the disturbance terms for times t and t—l may be

represented as

— p11 dlt_l + and d2~ 
— p22 d2~~i 

+ t2t

where p11 and p22 represent first—order serial correlation coefficien ts

which vary between 1 and —l (if ~ is greater 
than + I , the system

explodes), and c~~ (and C2t) is a random error component , distributed
2

N (0, a ), and is independent of other disturbances for Y11 (Y~~)

measured at different points in time, including dit (d 2~
) (cf. Pindyck

& Rubinfeld , 1976).

Although not discussed here, tests for serial correlation of disturbances in

the presence of lagged endogenous variables are presented in the econometrics

literature (cf. Johnston, 1972, pp. 312—313).

Several procedures are available for removing the serial correlation from

the disturbance terms, including first—order differencing , genera]ized differ—

encing, and generalized least squares estimation . The generalized differeneing
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and generalized least squares procedures are approximately equivalent for

first—order serial correlation (Johnston , 1972); the former technique is briefly

described here and the reader is referred to econometrics texts for more exten-

sive treatments of both procedures . In general , the generalized differencing

process replaces p, which is generally unknown, with an estimated value

(processes for estimation are not discussed here) ,  and then replaces each term

in the structural equation with a difference score based upon the estimated ~

t imes a first—order lagged variable . For example, equation 17 would be
A A

— 

~ll ~
‘lt—l — b12 ~~2t 

— ~ll ~‘2t—l~ 
+ 

~13 ~~2t—l —

A A A
~ll ~2t— 2~ 

+ f.]! ~~lt—l 
— P11 ~‘lt—2~ 

+ ~~~ 
— p11 d1~_1)

where 
~ll 

represents an estimate of p11 (a population term), and an

additional wave of data would have to be obtained (i.e., 
~lt— 2 

and

~2t-2~~

A
As discussed later, if p~~ is a “good” estimate of p11, then the distur-

bance term for the above equation would be tlt’ the random error component.

A
That is , dlt — p11 dlt_l will be equal to tlt’ and serial correlation will

have been removed from the disturbance term .

12. If the disturbance terms are serially correlated , then the lagged

values of the endogenous variables will be correlated in the limit with the

disturbance terms for both equations 17 and 18. That is

plim 
~~ 

‘t’
~~~~~1 ~~~~ 

plim (
~ ~2t—l d~~), plim (! ~lt—l 

d~~), and

plim (
~ ~2t—1 

d~~) are all not equal to 0.
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For example, unmeasured causes of Y~~—1 
are related to unmeasured causes of

“1~ 
through the paths 

~lt—l 
< d

1 1~ > d~ in Figure 5, thus

building in a correlation between Y
~t~~ 

and die . Moreover , following the

above logic paths can be used to show a relationship between ‘x’1~—1 
and d

2

(or Y and d ).
2t—l it

13. It will be assumed that following the generalized differencing

process discussed above, the lagged values of the endogenous variables

(Y , Y , s — 1. . . S) will not be correlated in the limit with either
it—s 2t—s — — — —  ____

£
i 

or (Fair, 1970). This provides a basis for consistent and asympo—

tically efficient estimation of the structural parameters , although the

estimates will be biased in small samples (Johnston , 1972). However , due to

the nourecursive nature of the model, the conditions described in assumption

10 for the correlations between the current values of the endogenous vari-

ables and the disturbance terms will still be in effect for and (e.g.,

Y will still be correlated in the limit with c )._i~ In suamary , OLS estimates of the structural parameters for equations 17

and 18 wil l  be b iased and inconsis ten t because the mod el is nonrecursive , the

disturbances are serially correlated , and the predetermined variables are

correlated with the disturbances. In addition , as no ted earl ier , the struc-

tural equations are underidentified. The identification problem is addressed

first , followed by a discussion of a procedure presented by Fair (1970) fo r

obtaining consistent and asympotically efficient estimates of the structural

parameters using a modified version of 2SLS (denoted , following Fair [1970]

and Amemiya [196bJ, as S2SLS).
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The identification question is at the heart of applying structural

equations to XLPC designs; it is desired to not only exactly identify or

overidentify the equations, but to include all major causal variables in the

equations, particularly those providing spurious relationships (e.g., syn-

chronous or cross—lagged co~~on factors [cf. Kenny, 1973]). As discussed

earlier , not all causal variables will likely be included , thus creating a

specification error. However, an emphasis on including multiple sources of

relevant causality provides a more explanatory theoretical network as well

as an opportunity to test competing hypotheses in overidentif led models.

For exemplary purposes , only enough exogenous variables were added to

equations 17 and 18 to exactly identify the equations. This involved adding

variables and to equation 17 , and var iables and X3~ to equation

l8.~ The exogenous variables were assumed to be independent of the distur-

bance terms in each equation . The new equations are (in deviation form)

~it 
— 

~~~~ 
y~~ + C11 ~~~~ + x2~ 

+ 
~
‘2t—l + c14 Y~ t~~ 

+ 5lt (19)

y — b  y +c x + c x +~~ y + c  y + g (20)
2t 21 lt 22 2t 23 3t 24 it—i 25 2t—1 2t

where g
~ 

and 52t are the disturbance te rms; se r ial co rr elation bet ween

the disturbance terms is represented by 
~~~ ~

. p11 ~~~~~~ + h
i~ 

and

— p
22 g2 

+ h 2~ ; and all previou s probability limits remain the

same with ci replaced by £‘ and c replaced by h.

The application of S2SLS proceeds in the following manner. To conserve

space, the equation for ~~~ received focus. First, the generalized differ—

encing process is applied to equation 19 in order to replace serially corre—

lated g~~ with the random component h it .
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A A A
(x - p x )

+c (x — p x )+c (y — p  y )
1.2 2t 11 2t— l 13 2t —l 11 2t—2

A A
+ 

~~~~~~~ ~~~~~~~~~~~~~ 

— !~ ~
‘lt— 2~ 

+ 
~~~~ 

— 
“ll~ ~~~~ 

+ (21)

A
where p11 is an estimate of p11, the disturbance term will equal

if an appropriate least squares estimate of is obtained

(discussed later) , and an addit ional wave of data must be co l lec ted

for the endogenous and exogenous variables.

The second step involves the first—stage of S2SLS. To visualize the

development of the reduced form, it should be noted that the only variable

itt equation 21 correlated with the new error term (hit) in the limit Is 
~2t ’

which is due to the nonrecursiveness of the equation. All other variables

in equation 21 are predetermined (i.e., lagged endogenous , cross—lagged

endogenous, and current and lagged exogenous), and are not correlated with

(htt ) in the limit as a result of either assumptions or the generalized

differencing process. Thus, a reduced form is needed to obtain a predicted

score for based upon all predetermined variables in equation 21 and the

predetermined variables that would be obtained from applying the generalized

differencing process to equation 20.

In general terms, using reduced form estimated parameters , the reduced

form for 
~2t 

is

A A A A
— ~2l 1T2t—l + iT 22 ~

‘2t-2 + 
~23 ~1t-1 

+ 
~24 ~1t-2 

+ “25 X 1~

A A A A
+ 1 L~~~ X

1 1  
+ 1 27 X

2t
+ 1 128 X

2ti
9

29~~3t
T llO x

3 t 1  
~~2~!

-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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where the predicted scores for 
~2t 

are direct functions of the

predetermined variables , and m~~ — (b~~ h i~ + h~~ ) / (l/[l—b 21 b12)).

OLS provides the predicted Y2t scores.
A

The third step in the procedure is to replace 
~~2t 

— 

~11 ~2~—1~ 
with

A A
~Y 2t — 

~11 ~2t—l ~ 
in equation 21, where plim ~— ~~~ 

h1~) is now equal to
A A

zero. If 1’2t 
— 

~
‘2t is set equal to the new disturbance term for equa—— — A

tion 21 for the second—stage regression is equal to — 
~ii~ ~~~~~ +

A
hit + b12 vie]. The second—stage of 2SLS is then conducted using OLS .

However , because p11 can only be estimated , several OLS analyses are con-
— il

ducted, using values of p11 varying between 1 and -l (or an iterative proce-

dure is used). The OLS analysis with the estimated value of p11 which yields

the smallest sum of squared residuals of the second—stage regression , and

the corresponding estimates of the structural parameters , is selected as a

solution (an iterative procedure is provided by Fair [1970, p. 509]).
A

The minimum sum of squared residuals occurs where p11 equals p 11 
(in

A —

large samp les), leaving the error term (h1t + b12 v12) ,  which has a zero
—

expected value and j~ ~~~ limit is uncorrelated with as well as with the

predetermined variables. That is, the predetermined variables are neither
A

correlated with his, for reasons already discussed , nor with b12 v1~ because

they were used as predictors in the first—stage of S2SLS. The values for

~2t are uncorrelated with the disturbance tern in the second—stage of S2SLS

based on the logic presented earlier for 2SLS. (Another reason for employ ing

lagged endogenous, cross—lagged endogenous, and current and lagged exogenous

variables in the f i rs t—stage regression is to insure the orthogonality of

F A
and ~~1~~_ 1~ which is necessary if the minimum sum of squared resldua]s 1~
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to occ ur vhere
~~~~ 

equals P~~ [Fair, 1970, p. 509]). Thus, the S2SLS

procedure provides consistent estimates of the structural parameters .

For tests of goodness of fit , one would have to begin with overidenti—

fled structural equations , and , usi ng the logic  presented for nonre curs iv o

models , add predetermined variables to the equations u n t i l  exac t i den t i f i ca -

tion was achieved . The S2SLS rrocedure would then be repeated on the exactly

identified equations and the resulting parameter estimates exam ined to ascer-

tain if they diverged from the assumed causal model.6

In summary, the application of structural equations and S2SLS to the

XLPC design, or more generally to models involving lagged endogenous variables

and nonrecursive relationships, is a rather complex process , complexity being

interpreted in terms of the theoretical system that is required , the assunip —

tions that must be made , the amount of data that must he collected , and the

statistical procedures that are necessitated . For example , at least three

waves of data must be collected (which includes the exogenous variables if

lagged values of such are included in the equations prior to differencing) .

The variables must be highly reliable for reasons of parameter estimation ,

the calculation of difference scores (cf. Cronbach & Furby , 1970; Lord &

Novick, 1968) , and the possibility that the measurement errors of unreliable

variables could be serially correlated over time (cf. Naniboodirl ci al.,

1975; Pindyck & Rubinfeld, 1976). Furthermore , the inclusion of lagged

variables in the equations may well presen t a problem of multic olilnearity

(cf. Johnston, 1972). Thus , while multiple lags are desirable to analy?e

such possibilities as positive or negative feedback loops (ci. Miller , 1971;

Pelz & Law , 1970), the addition of lagged variables to the equations may be

-4
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dysfunctional from another standpoint. Finally, the time lags and the model

in general must be correc tly specified, both of which are sizeable require-

ments. For example, the model may not be first—order autoregressive as

assumed here, nor may the stationarity assumption be viable (see Pindyck and

Rubinfeld [1976] for time—series procedures that might be employed when these

assumptions are violated). A related concern is differing stabilities of the

causal factors over time, where for example differing degrees of stability

(short—term versus long—term) have different effects on the magnitude and

even the sign of the parameter estimates , especially if the measurement periods

do not correspond to the causal intervals (cf. Fisher, 1971; Pelz & 1ev , 1970).

Unfortunately , space does not permit further consideratIc~n of the above

issues, and the reader is referred to the cited references for additional

reading. This section is concluded by simply reiterating that the XLPC

des ign, or some variation thereof , is perhaps the most likely candidate at

the present time in psychology for analyzing designs which include lagged

endogenous variables and recursive relationships. This should not be con-

strued to mean that the XLPC i8 a nondemanding procedure. The truth of the

matter is that XLPC designs are quite demanding with respect to assumptions

and data, although not as demanding as structural equations. Nevertheless ,

the development of appropriate structural models, which may include nonre—

cursive relationships, is a desirable goal for psychology because they provide

a stronger theoretical and causal foundation.

DISCUSSI ON

The major goal of the present report has been to introduce psychologists

to the rationale, assumptions, and analytical procedures of 2SLS and its

_ _ _  _ _ _  _ _ _ _ _ _  _ j
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applications to selected structural equations. These include nonrecursive

structural equations, structural equations which contain predictors with

random measurement error, and structural equations which involve lagged

values of endogenous variables. In addition , nonrecursive relationships

were included in the last application in order to increase generality and

to demonstrate how two of the applications could be combined . The first and

last applications, however, assumed perfectly reliable variables (or, from

a pragmatic standpoint, highly reliable variables). If this assumption is

not met , then a procedure such as outlined in the second application (i.e.,

the use of instrumental variables) could be added to the analysis , although

the instrumental variable approach is not a panacea for variabies with large

measurement errors.

The selected applications were considered to be re~f1ecttve of many

psychological phenomena. In particular , nonrecursive models may add a new

dimension of analysis to the current Zeitgeist of interactionism in psycho-

logy. Moreover, in the presence of strong theory , hopefully based in part on

previous research, the use of cross—sectional data should not preclude the

development of at least tentative causal models if in fact assumptions have

been reasonably met. Such research can provide a strong foundation on which

to proceed to dynamic models, which presumably provide a stronger test of

the model. It is of utmost importance to note that a crucial issue in the

use of dynamic models and lagged variables is the degree to which the

measurement of variables corresponds to real—world temporal sequences and

time lags. Furthermore, assumptions such as the equilibrium—type condition

are maintained in the dynamic analyses. That is, the statlonarity assumption

_________________ 
j
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of cross—lagged panel correlation requires that the causal process is in

equilibrium (i.e., the structural equation for a variable is invariant with

respect to time of measurement). However, if the assumptions for dynamic

ana lys is are met, opportunities are provided to address and to tear directly

several issues which are typically assumptions and not wholly testable In

cross—sectional analyses. These issues include the source and direction of

causation, the necessity—sufficiency of causation, and dynamic—static causal

relationships (cf. Feldman, 1975). On the other hand , if assumptions regar-

ding dynamic analyses cannot be met, analyses based on cross—sectional data

~~~ provide the more meaningful results, particularly if an equilibrium—typ e

condition exists and the unmet assumption for dynamic analysis is measurement

corresponding to real—world temporal sequences.

In concl usion , causal analyses that employ structural equations and

pass ive data , either lagged or nonlagged , have as a primary focus the identi-

fication of untenable causal models rather than the identification of a

“true ” causal model. This requires the use of overidentified models so that

different models may be tested , and emphasis is placed on conceptual Issues ,

rationale, and assumptions, and the internal consistency of results with

respect to the theory, rationale, and assumptions. The strength of these

models lies in nonexperimental inference (Kenny, 1975), even though problems

concerning causal inferences associated with passive data obtained from

natural observation and thus lacking randomization and control are well known .
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Reference Notes

1. King, D. Feedback and reciprocal causation: A Monte Carlo stud~~jj

the relative small sample prop~rties of simultaneous eq~uation estimators.

Unpublished dissertation, University of North Carolina, 1974 .
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1The equations presented in this paper employ uns tand ard ized  va r i ab l e s

and unstandardized regression weights as estimates of (unstandardized)

structural parameters. The use of standardized variables and their corres-

ponding “beta” weights has been quite popular because structural equations

can then be addressed in a “path analysis” paradi gm . However , we have

chosen to employ unstandardized variables because standardization of vau-i--

abbes might obscure distinctions between estimates of structural parameters

and the variances—covariances that describe joint distributions of variables

in a population . That is , if it is possible for a variable to have different

distributions for reasons such as the use of different populations or changes

in a particular population over time, then unstandardized regression weights

should be employed because they are still comparable across the distributions

while standardized regression weights are not (cf . Namboodirl et al., 1975;

Wiley & Iwiley , 1971).
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Footnotes (cont’d)

2The authors would like to thank an unknown reviewer for pointing out

that a sufficient condition for equilibrium would be “to allow some movements

of the dependent variable values if these are compensated by the inverse

movement of the dependent variables by other individuals with similar values

on the exogenous variables”.

3The total number of alternative causal models that might be tested in

many designs could be considered infinite . In this sample, we have only

considered the causal relationships among observables , wi th  the assumptions

associated with nonrecursive models (e.g., correlated disturbances). How-

ever, the introduction of nonobservables, the possibility serially correlated

disturbances, and so forth could greatly extend the complexity of the model

as veil as competing causal hypotheses. On the other hand , the number of

competing causal hypotheses is usually reduced depending on the causal

closure and the nature of theoretical orientation . That is , if there Is a

compelling reason to believe that there are only a few causal structures

that would be meaningful, there is no reason to test all possible permuta-

tions and combinations which may emerge. For example, if one is fairly sure

of the fact that there is an asymmetric causal relationship which will hold ,

the number of alternative models are automatically reduced and would not

require further testing.

4There is, of course, the possibility of recursive relationships , which

include the leader causing subordinate behaviors , the subordinate causing

leader behaviors , and various feedback loops with known time lags . To avoid

complexity , we have not addressed these possibil ities here .
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Pootnotsi (cont ‘d)

5The additional inclusion of lagged values of the ex~genous variables

would present a more realistic example ; however, we are attempting to pro—

vide a general introduction and to minimize complexity . On the other hand ,

as will be shown, lagged values of the exogenous variables will enter into

the analysis.

6~~ noted earlier, one reason for employing a nonrecursive model in the

present discussion was that a reciprocal relationship between the dependent

variables provided a competing hypothesis for the XLPC design , which tradi-

tionally has been viewed as an asymmetric causal niocel . h owever , the S2S1.S

and goodness of fit tests may indicate that the structural model Is recursive

rather than nonrecursive (i.e., the nonrecursive relationships are not empir-

ically substantiated). In this circumstance , or in cases where nonrecursive

relationships can be ruled out a priori , a different application of 2SLS may

be employed when the XLPC design is viewed in terms of structural equations

(or in more general terms, when the model is recursive and includes lagged

endogenous variables with serially correlated disturbances). As described

by Johnston (1972) and Wallis (1967), this procedure involves replacing the

lagged endogenous variables with instruments , based on estimates provided by

lagged values of exogenous variables, and then applying a generalized least

squares estimation procedure to compute the second—stage regressions .

k -
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Figure Captions

Figure 1. Graphic illustration of a recursive model.

Figure 2. Graphic illustration of a nonrecursive model.

FIgure 3. A nonrecursive model incorporating exogenous variables

and disturbance terms.

Figure 4. Cross—bagged panel correlation design.

Figure 5. Cross—lagged panel correlation design viewed in terms

of a structural model with three—waves of data.
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Appendix A: Development of a Reduced Form in 2SLS

The reduced from for a set of equations is obtained by a process of

substitution in which the endogenous variables appearing in a particular

• equation as predictors are replaced by the right—side of their respective

structural  equation . The solution for  the value of each endogenous variable

is then obtained in terms of the exogenous (predetermined) variables on ly ,

plus a di sturbance term. For example , In the exactl y iden t i f i ed , non recur—

sive equations

b 12 Y2 + c11 x1 + d1 (A . l)

y
2 

1,~~ y1 
+ c~~ x~ + d

2 
(A.2)

y1 may be expressed as a function of the predetermined variables (x1 and x2)

and a disturbance term by substituting the right—side of equation A .2 in

equation A.l to replace y2. The reduced form for y
1 

is therefore

+ c
~~~

x2 + d2) + +

— b12 b 21 y1 + b 12 c22 x 2 + b12 d2 + c11 x1 +

= 
__________  

[b1~ C~~~ x2 + c11 x1 + (d1 + b12 d2)] (A.3)

(1— b
12 

b21)

In more general term s, the reduced form for the y
1 

and y2 
equations is

viewed as
A ~~ A

(A.4)

A A A
+ 

~22 x2 + m2 (A.~~) 

~~~~~~~~~~---.—- .-—. -
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1% A

where y
1 
and y2 represent the predicted values of the endogenous

variables, represent the unbiased estimates of the population

reduced form parameters (~~ ), and the represent the disturbance

terms for the reduced form.
A A

The predicted values y1 and y2 are obtained by simply applying OLS to
A

equations A.4 and A.5, which also provides the es t ima tes  ~~~~~~ Of interest ,

however, is the fact that the (estimated) reduced form parameters are exact

nonlinear functions of the (estimated) structural parameters , and vice—versa

(Duncan , 1975). For example, in equation A.4 is equal to (b~~ c~~ x-,) /
(1/[l—b 12 b21]).

Appendix B: Matrix Algebra for Applying 2SLS to

Non recursive Structural  Equations

and the Rank Condition

As presented by Johnston (1972), a particular equation selected from a

set of simultaneous, nonrecursive equations may be viewed as

y = Y 1 b + X
1
c + d  (B.l)

where

y i s  an n x 1 vector of observations (raw scores) on the dependent

variab le,

is an n x £ matrix of observations on mutually interacting endogenous

variables included in the equation ,

b i a  a x 1 vector of estimated structural parameters attached to  the

Y1 va r iab les ,

_ _  ---. ~~~~ -~-- 



--- -— 
_ _ _

Two—Stage Least Square.3

80

IC1 is an n x k matrix of observations on the exogenous (predetermined)

variables in the equation (a column of ones is included if an

intercept is required),

cf is a It ~ 1 vector of estimated structural parameters for the X1

variables, and

an n x 1 vector of disturbances for this equation.

It is assumed that
/ 1 /

p un (~ X1 ~~ 0, while p un (... Y1 d) ~ 0

The first stage regression or reduced form is
A / /
Y — X (X X)~~ x y (B.2)1 ‘~~

- — ‘~~ -
~~ 1

where X —  (
~~ X~j~ which is equal to the n x k matrix of observations

on all exogenous (predetermined) variables , given that X 2 is the mat rix

of observations on the exogenous (predetermined) variables not incluaed

in the equation under study.
A

The second—stage of 2SLS involves regressing y on Y1 (which replaces 
~~~ 

and

X1. The estimating equations for this analysis are

~1 
[1

where b and c are estimates of the population s t ruc tura l  pa rameters

based on 2SLS.

The necessary and suff ic ient  rank condition fo r  i d e n t i f i c a t i o n  can be

shown by designating X 2 as a column vector of exogenous variables excluded

from equation Lb  (for  derivation purposes , the refe ren ces to observat ions
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will be deleted, and population values are assumed). The equations for the

reduced form corresponding to the Y1 variabbes only are then (Fisher, 1966,

p. 52)
A
Y - fl~

L.L X + II X + V1 -s-”-’ -‘-- - 2  1
-w _

where X~~ is a column vector of exogenou s variables included in the

equation, JI~~ and ~12 represent (population) reduced form parameters ,

and v.1 i~ a column vector of reduced form disturbances.

A necessary and sufficient condition for identification of equation B.l is

that the rank of~~~
2 be equal to be number (r) of endogenous variables inclu-

ded in Y (fl12 has r rows and K — f columns where f is equal to the numberl c..~ ‘
of exogenous variables in IC1) (Fisher, 1966, p. 54).

),
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