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ABSTRACT

Miles' theory is unsatisfactory for the prediction of ocean wave
growth under wind action. Hasselmann's nonlinear wave-wave inter-
actions theory may offer another physical mechanism for constructing
a reasonable wave prediction model. An experimental program was
designed to investigate this possibility in the context of the momem-
tum and energy transfer from wind to waves, nonlinear wave-wave
interactions and white-capping dissipation. The wind field (mean
velocity profiles and fluctuating pressure and velocity components)
and wave field (wave height) were measured simultaneously in a fixed
reference frame and as a function of fetch along the Stanford wind-
wave channel under the conditions of steady wind and stationary wave
spectrum. All the data were obtained 5 mm above the highest point of
the wind waves for five stations (3 m apart on average) and at three
wind speeds (7.09, 8.01 and 8.88 m/sec). The wave height, fluctuating
pressure and velocity components were measured by a capacitance wave
height gauge, a crystal pressure transducer and a cross hot film probe,
respectively.

The normalized parameters of a wave field such as spectral peak
frequency Em’ total energy ; and the Phillips equilibrium constant a
of the wave spectrum were found to be fetch and wind speed dependent.
The power spectra of turbulent velocity components in the inertial sub-
range were consistent with Kolmogorov -5/3 power law. The small scale
structure of the power spectra of turbulent velocities seemed to be

wind speed dependent but fetch independent.
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The energy and momentum transfer from wind to waves were confirmed
to be dominated by the normal pressure acting on the wave surface. In
addition, the oscillating wave-associated turbulent stresses accounted
for about 30% of the total momentuﬁ transferred into waves, but made a
negligible contribution to the energy transfer from wind to waves.

The average ratio of momentum transferred into waves over the total mo-
mentum transferred across the wind~wave interféce was found to be about
0.65. The remaining 35% of the total momentum transfer goes directly
to currents.

Based on the experimental results, Hasselmann's nonlinear wave-wave
interaction theory appears to be valid. Barnett's approximate parame-
tric equation for calculating the energy transfer of nonlinear wave-
wave interaction and Hasselmann's white-capping dissipation model were
also verified and appeared to be applicable in the relatively low and
intermediate frequency region of a wave spectrum for a normalized fetch
range of 100 < x < 500.

A method of modifying Barnett's parametric equation representing
the nonlinear wave-wave interaction in the relatively high frequency
region was suggested. Based on the results of overall energy balance
of a gravity wind wave spectrum, the nonlinear wave-wave interaction
mechanism was confirmed to play a dominant role in the energy transfer

processes after the wave spectrum is generated.
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I. INTRODUCTION

1.1 History and Motivation

In recent years many scientists from varied backgrounds have been
working cn problems of wind wave generation. Although important ad-
vances have been made in the wind wave field during the last twenty
years, a basic understanding of the dynamical processes occurring at
the air-sea interface has not been achieved. The difficulties which
impede the progress of the air-sea interaction problem are the lack of
fundamental knowledge of the nature of interaction between the turbu-
lence in the air stream and the perturbed water surface, and the
complex and elusive nature of the non-linear water wave-wave inter-
actions. In addition, accurate experimental data is limited. There-
fore, a complete theory covering all the stages of wind wave generation
processes has not yet been established.

Ideally, a comprehensive theory of wind wave generation should
give adequate predictions during the various stages of wave growth for
a given fetch, wind speed, and direction. In other words, a complete
theory should be able to determine the state of the sea for a given
wind field. The dynamical wave theory is concerned with the local
interactions of the wave field in a coupled ocean-atmosphere system.
That the wind-wave problem is similar to that of an instability between

- fluids with a density discontinuity and moving relative to each other
was first suggested by Helmholtz (1868). The problem was treated in
more detail by Thomson (Lord Kelvin, 1871). The well known "Kelvin-

Helmholtz Instability' was the first theory to explain the wind-wave

wjw
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generation. The problem was further studied by Jeffrey (1925), Wuest
(1949), Lock (1954), Eckart (1953) and Ursell (1956). Recently, the
most significant contributions to solution of this problem were
Phillips' (1957) and Miles' (1957) theories of wave generation which
considered the momentum transfer from the wind field into the waves.
Phillips (1960) and Hasselmann (1960, 1962, 1963) made further contri-
butions to the nonlinear wave-wave interaction theory which considered
the energy transfer among different wave components in a wave spectrum.
Phillips' (1957) linear theory assumed that the water motions are
inviscid, irrotational, small amplitude, two-dimensional, and the exci-
tations of the water surface are not affected by the wave-induced
perturbation in the air. This so-called '"resonance model' was con- J
structed by considering turbulent wind flow over a water surface which

is initially flat. The turbulent pressure fluctuations in the wind

field generate oscillations of the water travelling in all directions
and having all the wave numbers appearing in the air pressure spectrum.
When a water wave's speed matches with the speed of translation of

the corresponding air pressure fluctuation, the wave will resonate with
the pressure field and grow as long as the pressure fluctuations retain
their phase relative to the wave. This model results in a linear growth
of the wave spectrum with time in the initial growth stage and gives
order of magnitude agreement with the observed wave growth. The model
becomes invalid when the wave amplitude is sufficiently large, since
the neglected wave-induced perturbation in the air should be taken

into account for the later stage of wave growth.

Miles (1957) assumed an incompressible, inviscid air shear flow
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over single frequency progressive water waves. He considered the feed-
back of the wave-induced velocities and pressure, but the turbulence in
the air was neglected except its role in establishing the turbulent
logrithmic velocity profile. The water motion is assumed to be invis-
cid, irrotational, two-dimensional and of small amplitude. The

governing equations for the wave-induced perturbations in the air stream

' are exactly the same as those in the laminar instability theory (Orr-

Sommerfeld equation). The theoretical result is that the momentum
transferred to the waves by the action of the wave-induced Reynolds
stresses working against the mean velocity gradient is evaluated inside
the critical layer where the mean wind velocity equals the wave propaga-
tion speed. The theory is applicable for those wave components whose
critical layer lies outside the viscous sublayer and in the region where
the gradient and the curvature of the mean velocity profile and the
magnitude of the wave-induced vertical velocity are large.

In recent years, Miles' theory was compared with experimental data
on wave-induced pressure and wave growth rate obtained both in labora-
tories and in the field. Shemdin and Hsu (1967) measured the wave-induced
pressure distribution over mechanically generated waves in the labora-
tory and inferred that the wave growth rate was larger by a factor of
about two than that predicted by Miles' theory. Bole and Hsu (1969)
measured the wave height of mechanically generated waves along the wind-
water channel and found that the growth rate was underpredicted by
Miles' theory by about one-order of magnitude. Similar results were
obtained in the field by Snyder and Cox (1966), Barnett and Wilkerson

(1967), and Dobson (1969). Based on the existing experimental results
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we can conclude that Miles' theory is inadequate for the prediction of
wind-wave growth. Consequently, investigators have been devoting their
efforts to investigate the neglected effects of turbulence as well as
nonlinear mechanisms on wave growth.

Three nonlinear mechanisms were proposed. First, Miles (1967)
improved his own model by considering the turbulence which was neglected
in his laminar model. The expected result is that the turbulent struc-
ture over the wavy boundary will be affected by the interaction with
wave-induced perturbation field, and the oscillating wave associated
turbulent stresses may be essential to the processes of energy transfer
to the water waves. Good turbulence and wave-induced perturbation data
are needed for modeling the relationship between these two fields.
Furthermore, in order to solve the modified Orr-Sommerfeld equation con-
taining the unknown terms associated with the oscillating wave-induced
turbulent stresses, ad-hoc closure conditions would have to be assumed.
Efforts were made by Hussain and Reynolds (1970), Davis (1970, 1972) and
Chao, et al. (1976). As we know, this is one of the basic unsolved pro-
blems associated with the process of the generation of turbulent
stresses. Therefore, more effort is needed before we truly understand
the role of the oscillating-wave-associated turbulent stresses.

Second, Longuet-Higgins (1969a) proposed a nonlinear '"Maser me-
chanism" based on the commonly observed phenomenon: long waves sweeping
over short waves and causing short waves to break on the forward face of
the long wave crests and to give up their energy to the long waves. The
energy transfer rate is proportional to the orbital velocity of the long

waves since the orbital motion is forward at the forward face of the

wly
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long wave crest, the short wave therefore supplied a positive amount of
energy to the long waves. However, Hasselmann (1971) proved that this
positive energy transfer is almost exactly balanced by the loss of po-
tential energy arising from the mass transfer. Analyzing the field
data, Barnett (1971) failed to identify the energy transfer caused by
this mechanism, he concluded that '"maser mechanism" is not of first
order importance to the energy balance of the wave spectrum.

Third, Hasselmann (1962, 1963) proposed the nonlinear wave-wave
interaction theory which shows that the energy can be transferred
among different wave components in a gravity-wave spectrum. He em-
ployed perturbation technique to find the nonstationary growth in the
initial energy spectrum. Appreciable modification of the initial sea
state was found from the solution of the fifth-order perturbation
equation. The rate of change of the energy spectrum can be expressed
by an integral expression in terms of wave spectral density and a
transfer function.

Figure 1.1 (Barnett 1971) shows the comparison of energy transfer
calculated from Hasselmann's nonlinear wave-wave interaction theory by
using an empirical fully developed Pierson-Moskowitz spectrum and ob-
served field spectrum. For the broader Pierson-Moskowitz spectrum, the
major transfer acts to sharpen the spectral peak, while the nonlinear
transfer in the observed spectrum acts to maintain the low frequency
steep forward face of the spectrum and serves as an influential growth
mechanism. The figures show an important fact, namely, the energy
transfer is always from the high frequency portion to the low frequency

portion of the spectrum. Based on JONSWAP (Joint North Sea Wave
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Project) data, Barnett (1971) found that from 307% to 90% of the observed
wave growth is accounted for by the nonlinear wave-wave interaction
theory. Therefore, Barnett suggests that the nonlinear wave-wave inter-
action mechanism will dominate all the energy transfer soon after the
wave spectrum generated by Phillips' resonance mechanism. Because it
takes excessive computer time to integrate the triple integral equation
for the nonlinear energy transfer, Barnett (1966) proposed a parame-
terized equation to approximate Hasselmann's theoretical results for
practical applications. This parametric equation is applicable for both
fully and partially developed wave spectra. Mitsuyasu (1968b) employed
Bamett's parametric equation in his investigation of nonlinear energy
transfer in a wave decaying region and indicated the importance of this
mechanism.

Barnett (1968) developed a wave prediction model based on the radia-
tive transfer equation. This model takes into account energy transfer
by both resonance and instability mechanisms, the nonlinear wave-wave
interaction mechanism, and the wave-breaking dissipative mechanism.
Although it was only a first attempt to establish a framework for ra-
tional wave prediction, reasonable results were obtained.

It will be shown later that successful prediction of a wave spec-
trum evolution depends not only on the source function S&l (associa-
ted with the nonlinear wave-wave interaction), but also on the source
function Sln (turbulent air-input to waves) and Sés (wave dissipa-
tion due to white-capping). Hasselmann(1974) proposed a white-capping
dissipative model which could be useful for a wave energy balance

scheme. If the appropriate air-input model could be constructed, then
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we should be able to formulate a more complete wave prediction model
based on the radiative transfer equation with source terms of air-input,
nonlinear wave-wave interaction, and white-capping dissipation.

One of the most important questions, which must be answered, in
the wave generation process is '"What fraction of the momentum available
in the air can be transferred directly into the wave field?" Stewart
(1961) reanalyzed some older wave data measured at known fetches and
wind speeds and came to the conclusion that the lower limit is about
0.2 and the upper limit is unity. Based on Miles' theory, Phillips
(1966) estimated this fraction for waves with c/u, > 5 , where c
is the wave speed and u, 1s the friction velocity, and found the
fraction to be less than or equal to 0.1. Such a small fraction of
momentum flux to the wave field must be associated with an underestima-
tion of the energy transfer in Miles theory. Wu Jin (1968) measured
the wind generated waves in the laboratory and his results were in the

range from 0.1 to 0.4 for cp/u* < 7.5, where c¢ is the wave speed of

P
the peak frequency of the wave spectrum. Based on this field measure-
ments, Dobson's results are in the range from 0.6 to 1.6 for

9.6 < cp/u* < 49 . The average fraction is 1.1, which is greater than
1 and seems unreasonable. One of his most reliable sets of data yield
a value of 0.8. The momentum in the air was estimated from the empi-
rical formula, o, c4 u52 (where p, 1is air density, the drag coeffi-
cient cyq equals 0.0012, and ug 1§.the mean velocity above five
meters of the water surface). The uncertainty in drag coefficient may

be a main source contributing to the large apparent error. Because of

differences in the range of cp/u* values, comparisons between Dobson's
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and Wu's experimental data can not be made. Barnett (1971) analyzed
the field data by computing the atmosphere external source function in
the energy balance equation and found that the average values of the
momentum fraction varied from 0.1 to 0.2. There are close to the
Phillips' prediction and Wu's data, but deviate considerably from
Dobson's results. The recent JONSWAP results presented by Hasselmann,
et al. (1973) showed that the fractions are at least 0.8 for x = 102,
and 0.2 for 10° < x < 10 , where x 1is nondimensional fetch

(x = xg/u%O , X 1s fetch, g 1is the gravitational acceleration and
u10 is the mean velocity at ten meters above the water surface).
Therefore, these fraction could be fetch and wind speed dependent.
Careful and direct measurement of this fraction must be done in order
to supply correct information to establish a complete wave generation

theory.

1.2 Objectives

Based upon the previous discussion, we conclude that Miles' model
alone can not predict wave growth successfully. The relative importance
of the nonlinear wave-wave interaction mechanism should be investigated,
especially as the basis for a practical wave prediction scheme. There
have been no systematic experiments designed to investigate this
mechanism in the laboratory. Although there are some preliminary field
data on nonlinear transfer, the limited accuracy of the field data makes
the interpretation of the experimental results difficult, leading to
some reservation about the results. It seems to be expedient to verify

presence of the non-linear wave-wave interaction process, to obtain a




quantitative determination of the momentum and energy transfer from
wind to waves, and to examine Hasselmann's proposed dissipation
mechanism due to white-capping of a gravity wind wave spectrum in a
laboratory under controlled conditions. Therefore, a complete experi-
mental program was proposed and carried out. The main objectives are
as follows:

(1) To obtain the simultanecus experimental data of wave height,
fluctuating pressure and velocity components in close proximity to a
wave-perturbed air-water interface in order to evaluate the momentum
and energy transfer from wind to waves.

(2) To study and verify Hasselmann's nonlinear wave-wave inter-
action mechanism experimentally, and to verify Barnett's approximate
parameterized equation for practical applications in calculating energy
transfer due to nonlinear wave-wave interactions.

(3) To study and verify Hasselmann's white-capping dissipative

mechanism experimentally.
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2. THEORETICAL BACKGROUND

The energy balance equation of a gravity wind wave field during
its generation processes 1is described. The relevant source functions

associated with the wave generation are also presented.

2.1 Energy Balance Equation of Wind Wave Spectrum

The energy balance equation (radiative transfer equation) for deep
water gravity wave was proposed independently by Gelci, et al. (1956),
Hasselmann (1960) and Groves and Melcer (1961). This equation describes
the propagation and the processes of generation and dissipation of a
wind wave spectrum and can be represented by [The more complete form

formulated by Hasselmann (1968) is presented in Appendix B.]

&= Zir,0,%,0) + V(£,0) TF(£,0,%,6) = S'(£,0,%,0)

> -> -
= S'in(f,e,x,t) + S;\l(f,e,x,t) + S;S(f,e,x,t)

-
+ s're(f,e,x,t) (2.1)

where F 1s the two-dimensional (frequency f and angle 6 ) energy
spectrum defined by the ensemble average (denoted by the bracket < > )

of the wave height n , i.e

fj" f: F(f,0) dfde = f: E(f) df = <n> (2.2)

-
and V(f,8) 1s the group velocity of the wave with frequency f and pro-

pagating at an angle 6 measured clockwise from the wind (x-) direction.

-10-
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In equation (2.1), S' is the net rate of energy transfer due to all
the interaction processes existing in the fields of wind, wave, current,
etc. S;n is the rate of energy transfer from wind to waves, which
includes the linear mechanisms proposed by Phillips (1957) and Miles
(1957), and nonlinear interactions between the wave-induced field and
background turbulent field. S;l

sulting from Hasselmann's (1962, 1963) nonlinear wave-wave interactions.

is the rate of energy transfer re-

S;S is the rate of energy dissipation caused by white-capping; the
theoretical model of this transfer was proposed by Hasselmann (1974).
SLe is the rate of energy transfer between wind-mean current and wave-
mean current fields, etc.

p Because of the extremely limited variation of energy spectra with
respect to 6 1in laboratory channels, one-dimensional (frequency f)
energy spectra were measured and used in the equation. Consequently,
equation (2.1) should be simplified to one-dimensional form for this

study. It is commonly assumed that under the assumption of the in-

dependence of frequency, f and direction, 6, F(f,6) can be approxi-

mated by the product of the one-dimensional energy spectrum E(f) and

the normalized directional spreading factor D' (8), expressed as

F(£,08) = E(f) D'(8) (2.3)

where E(f) 1s defined by equation (2.2) and D' (6) 1is chosen (Hassel-

mann, 1963b; Mitsuyasu, 1968b) for the narrow directional distribution

of a wind-wave channel as

_ll_
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p'(8) = (8/3m) C0549 for |8] <

=0 for |6] >« (2.4)
u '

and J D'(e)de =1
-

Substituting equations (2.3) and (2.4) into (2.1) and integrating with
respect to 6 from -m/2 to n/2, by assuming the absence of backward
scatter in the wind-wave channel, we can reduce equation (2.1) to a one-
dimensional equation (frequency dependent only). After the integration,
equation (2.1) can be further simplified, in the x-direction along the

channel and for a stationary deep water gravity wave spectrum, to

o, 8 7 (£) §§§§l - S(E) = S, (£) +S_ () + 5, (F) (2.5)
- /2 2
where Vx(f) 5 5 V(f) Cos® F(f,6) d6 / E(f) = 32g / (457" f) is the
s |

mean group velocity in x-direction, V(f) = g /4nf 1is the group velo-
city of the wave with frequency f and is equal to half of the phase
speed in deep water and Py is the water density. Because of the small
drift-current in the channel and weak interaction between wave and
current, S;e in equation (2.1) is neglected. Sin(f)‘ Snl(f) and Sds(f)
in equation (2.5) represent the first order processes of the energy
transfer associated with a wave spectrum. The detailed description of

these transfer processes 1s given in the following sections.
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2.2 Energy Transfer from Wind to Waves

The energy transfer from wind to waves in a turbulent developing
boundary layer is derived in Appendix D. The work done by the normal

pressure in quadrature with the wave height (Stewart 1961) is

5,,(8) = -p(r) 1 (2.6)
where p(t) 1is the pressure at the interface, 9n(t) / 3t 1s the
vertical velocity of the water surface. [The negative sign is associa-
ted with a defined positive upward cartesian co-ordinate system.]
Because of the limitation of the present laboratory instrumentation and
the difficulties of following the whole wave spectrum, it is exceeding
difficult to measure the pressure at the interface. The alternative is
to use a fixed-frame of reference and to measure the pressure as close
to water surface as possible.

The energy transfer spectrum can be obtained by taking the Fourier

Transform of equation (2.6), viz.,
sin(f) = 2nf Qupn(f) (2.7)

where Qupn(f) is the quadrature spectrum of pressure and wave height.
Since the ratio of energy to momentum for a deep water gravity wave is
equal to its phase speed c, Stewart (1961) suggested the spectrum of

momentum transfer can be expressed as (see also Dobson, 1971)

tw(f) = Sin(f) / ¢ = 2nf Sin(f) / g (2.8)

-13-
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where c = g / 27f 1s the phase speed of the deep water gravity wave.
Based on equations (2.7) and (2.8), we can evaluate the energy and
momentum transfer from wind to waves due to normal pressure acting on

water surface.

2.3 Energy Transfer of Nonlinear Wave-Wave Interactions

2.3.1 Theoretical Expression of Energy Transfer of Nonlinear Wave-

Wave Interactions

Hasselmann (1962) proposed the conservative nonlinear wave-
wave interactions mechanism for the gravity wind wave spectrum. As a
result of this interaction, energy can be transferred and redistributed
} among different wave components. The theoretical derivation was based
on the assumptions of inviscid fluid, two-dimensional and irrotational
water motion. The velocity potential ¢(x,t) and free surface n(x,t)

were used as the perturbation parameters. Hence they were expanded

v: in a series and substituted in the governing Laplace equation, kinema-
‘ tical and dynamical boundary conditions, as well as in initial condi-
tions to generate higher order perturbation equations. The aim of his
e investigation was to determine the change (nonstationary growth) in the
ﬁ?: initial energy spectrum brought about by the nonsteady higher-order

perturbations. On using a fifth order perturbation, the nonstationary
solution was found to grow continually with time, resulting in an
appreciable modification of the initial sea state. The rate of change
of the energy spectrum was determined by the following equations

(Hasselmann 1963),

-14~
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wz(kzlkl) f(k3,e 3 ) f(k4'°4) f(kl’el)
- w, (k, /k,) £0k,0 0y £k, ,6,) £(k,,097)1) de. dk, dk
1312 33 4’74 2712 s o B
(2.9)
where k and » are the wave number and frequency, respectively.
The resonance conditions are
> > >
i + 122 =k +k,
and
Wy i wy = wq s w,
The dispersion relation for a deep water wave is
w, = 2nf, = (gk,)1/2 (2.10)
] ] ]
The equations of resonance conditions and dispersion relation can be
reduced to the single equation (Hasselmann, 1963b)
..15..
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-+ -+ - > >
2 Cos8 |i,| [k, - k| = (] + /i - i - k% - (k, - k (2.11)

2 4)

> > -
with B being the angle between k, and (k1 - kA)‘ Since the

2

> >
interaction surface is three dimensional in (kl,kz)-space, the trans-
formation to the surface integral can be affected simply by introducing

=
polar coordinates, i.e. k, = (k,,0,). In examining equation (2.9)

3 3"
for fixed ka and 94, and the given values of the integral variables,
it is seen that 6

kl, k2, and 6 k and 6 are the remaining

)i 2’ 3 3

undetermined variables for completing the integration. B can be
determined from equation (2.11) by giving the values of kl, 81, k
-> -> ->

94 and k2. Since B 1is the angle between k2 and (k

G S e L

and B. Finally, k3 and 63 can be calculated by equation (2.10)

for all determined values of k

(1) (2) (2)
R0 R e, s T

-8 respectively. The spectral density in polar co-ordinates is

can be determined by providing the values of k

(¢8)
Bas Rgy 8, Ky, ond 6,. 8,7,

are correspondent to the values of +8 and

19

f(k,8) = Dwgf F(£,8) / 2k (2.12)

and the function T can be expressed as

3
2w3

Y
- k,| |sin8] g

T = w(zp~—l&p )2 for |CosB| <1

W ow W w
w 192%3% k, Ik1
=0 for |CosB| 1
(2.13)
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where D =D> =+ o> 1s the transfer coefficient. The full expres-

kl,kz,-k3
sions for D were given by equations (4.9) and (4.10) in Hasselmann
(1962). Based on the described relationship of all 6 and k and
the defined functions of f(k,0) and T, we can calculate the rate of
nonlinear energy transfer due to water wave-wave interaction by
equation (2.9).

The results of nonlinear energy transier (equation(2.9)) were
interpreted by Hasselmann (1962) in terms of quadruple interactions
between three "active' wave components which determine the interaction
rate, and a ''passive'" fourth component which receives energy from the
first three components but has no direct influence on the interaction.
The numerical calculations of a fully developed Neumann spectrum were
performed by Hasselmann (1963b). The results showed that the transfer
process tends to reduce sharp peaks in the spectrum and redistribute
the energy more uniformly over all wave components by transferring the

energy from the middle frequency range into the lower and higher fre-

quency ranges.

2.3.2 Parametric Approximation of Energy Transfer of Nonlinear

Wave-Wave Interactions

The evaluation of the nonlinear wave-wave interactions
involves complicated numerical computations with equation (2.9), re-
quiring six hours computer time (Hasselmann 1963b) on a CDC 1604.
Even the newly developed program by JONSWAP still takes 20 minutes of
computer time on a CDC 6600. Thus, it seems to be uneconomical and

impractical for field application. In addition, the new program

-17-
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provided by Dr. Sell can not be directly used for this study because of
the differences in frequency scales. Efforts were made to change to
frequency scales consistent with this study, but unfortunately, this
did not succeed. Consequently, Barnett's (1966) parametric equations
to approximate Hasselmann's theoretical results were used in this study.

The parameters to characterize the wave field are defined as

ﬂ 00
Energy: e =f_ﬂ fo F(f,0)dfde

X e .:!'. T ® 2 1/2
Mean frequency: fo = [e I_“ Io F(f,0) f< dfde]

d g o dfdo
Mean direction: 6 = o f_ﬂ Io F(f,6) d

The parametric equation of energy transfer associated with non-

linear wave-wave interactions is
S, (£,8) = [T'(£,0) ~ ' (£,6) F(£,0)] o g (2.14)

where I' and 1t are integral functions of F. This approximation
was considered to be the sum of two processes as originally demon-

' was related to the passive components

strated by Hasselmann (1962). T
which receive energy from other components, while v F was related to
the active components which transfer energy to other components. Using
dimensional analysis and the qualitative features of Hasselmann's

]

theory, Barnett proposed the following forms of TI'' and 1' for the

case of fully developed sea:

-18-
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,83f8 B £
r'(f,e) L 4.4 lzae o Cos4( o eo) (f 0£42 Q)3

f
o eupled(l - ;3)2 ) °'1(F°')5]

for £ > 0.42f and [6 -6 | < /2

=0 otherwise (2.15)
' 7.5-10’e? 7 3
T (£,8) = === (1 +16 |Cos(® - 8,0]) £,' (£ - 0.53£,)
g4f
for f > 0.53f°
=0 otherwise (2.16)

The one-dimensional form of the nonlinear energy transfer equation
can be derived by substituting equations (2.4), (2.15) and (2.16) into
equation (2.14) and integrating it with respect to 6 from -m/2 to

m/2. The resulting form can be expressed as

S.1(E) = [T(f) - () E(D)] o g (2.17)
where

, 4.4-108e3f.8 31 £ - 0.42f5.3 |
R e el i Zpo
£ £
* expl-4(1 - 7 + 0.1

for f > 0.42f, and [0 - 6,5| < m/2

=0 otherwise (2.18)
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and

eaZ
7.5:10"e 162.8 7 3
- + -
T(£) r A+ £, (£ - 0.53¢,)
for f > 0.53f,
= 0 otherwise (2.19)

The results of nonlinear energy transfer calculated with the para-
meterized equation (2.17) compared well with those of Hasselmann's
theoretical equation for the fully developed and partially developed
seas. The comparison for a typical fully developed sea is shown in

Figure 2.1.

2.4 Energy Dissipation of White Capping

Because dissipative processes such as molecular viscosity and
turbulence (Phillips 1959, Hasselmann 1968) are inadequate to account
for the observed energy removal from wind waves, the white capping is
generally believed to be the dominant dissipative mechanism in a wave
field at moderate and higher wind speeds. The effect of white capping
on the spectral energy distribution was investigated by Hasselmann
(1974). The problem was treated by expressing the white-cap inter-
actions in terms of an equivalent ensemble of random pressure pulses.

It is first shown that the source functions S;s for any non-expansible

interaction process which is strongly nonlinear locally but still

weak-in-the-mean is quasi-linear with respect to the wave spectrum,i.e.,

W e Vel oo
= - 2.20
Sds(k) Yy E (k) ( )
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where Y' 1s the damping factor which depends on the entire wave
spectrum; Y' 1s found to be y' =d (2nf)2, under the assumptions that
the space-time scales of a white cap are small compared with the wave-
heights and periods of the waves. Here, d 1s a constant for a given
wave state and can be determined indirectly from the energy and momentum
balance in the high-frequency equilibrium range. Finally, the dissipa-
tion spectra of ocean waves due to white capping can be expressed in

the frequency domain by assuming that d is independent of the

direction 6 ; the spectra is then
s, (£) = -d (276)% E() o_g (2.21)
ds w

We can measure the net rate of energy transfer S (equation (2.5))
and the rate of energy transfer from wind to waves Sin (equation(2.7)).

Based on equation (2.5), we can subtract sin from S to obtain

experimentally the sum Snl + Sds' It is clear that in order to sepa-

rate the sum of the experimentally determined Sn + Sds’ either S

i

or Snl would have to be assumed. Based on the measured wind wave

ds

spectrum in the channel, equations (2.17) and (2.21) were used alter-

nately in calculating the S,; and S4g , respectively.

2.5 Mean Momentum Transfer from Wind to Waves

The momentum transfer across the wind-wave surface in a turbulent
developing boundary layer is derived in Appendix C. By neglecting the
relatively small viscous terms, the final results of momentum transfer-

red into current and waves, in the direction of wave propagation, can

-21~-
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be expressed as

M. = ~ Pg u'v' (2.22)
~ 9n a'2 on
Mw = p 3; + pa u x (2.23)

where M, and M, are momenta transferred to the current and waves
respectively. From these, we find the momentum transferred into waves
is not due only to the normal air pressure acting on water surface but
also due to the oscillating turbulent Reynolds stresses (wave associated
turbulent stresses) in the air. Finally, the ratio of the momentum
transferred into the waves (or supported by the wave form) over the
total momentum transferred across the interface in the direction of

the wave propagation can be estimated by the following equation

Y =M,/ (M +M) (2.24)
22~
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3. EXPERIMENTAL APPARATUS

Based on the objectives and theoretical background, the required
data are water wave height, fluctuating pressure and velocities in the
wind stream and the mean ve' i ity profiles along the wind-wave channel
as a function of fetch for a range of wind speeds. The facilities and
instrumentation relevant to this experimental study are presented in

the following sections.

3.1 Channel Description

All the experiments were conducted in the Stanford Wind-Wave
Channel (Hsu, 1965) in the Hydraulics Laboratory at Stanford University.
A schematic 1s shown in Figure 3.1. The channel is 37.7 m long with a
rectan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>