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\ THE ICE REGIME OF HYDROELECTRIC STATION PIPELINES

\\k By: P. A, Bogoslovskiy

/ Covditiens Layoralde tor 16 format

The book examines questions‘gf.gng ice regime of pipelines.)Methods

of quantitatively calculating tﬁ%}fhic ness of the ice layer that forms
on the inside surface of the pipe walls are suggested. Means of com-
batting the harmful consequences of internal icing are evaluated. -In
—passing, the temperature regime of the water moving through the pipes

_issidluminated and certain concepts are given regarding the icing phen-

omena that occur ingturbines.
Wateer )
The book is intended for engineer-hydraulic technicians working

in the field of designing, operating and investigating hydroelectric
stations.
X

X

Foreword

Investigations on questions of internal icing of pipes conducted
by the author are the basis of the work submitted for the reader's
attention. During this process the results of investigations relative
to the same questions and cited in literature sources or listed by the
author in the appended list of utilized literature,were also considered.

The questions examined in this book are of significance when de-
signing and operating pipelines under comparatively severe climatic
conditions. The material on this question published until now, initially
in the foreign literature, is totally inadequate with respect to the
completeness of examination of the questions. The goal of this work is
to fill this significant gap.

The author expresses deep gratitude to Doctor of Technical Sciences,
Professor M. M. Grishin, Doctor of Technical Sciences M. F. Menkel',
and Candidate of Technical Sciences, Assistant Professor L. G. Skritskiy,
as well as to all who have given their suggestions to the author on
the subject of his conducted investigations. These critical remarks
were taken into account in the process of the author's additional work
on the manuscript during its preparation for printing.

The author will be grateful to readers who send in their ideas on
the subject of this book addressed to the publisher (Moscow, 114,
Shlyuzovaya naberezhnaya, 10, Gosenergoizdat). Signed the author.
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Basic Abbreviations, Accepted Values of Physical Characteristics and

Units of Measurement

(]
z
t

= 1.0 kcal/kg degrees - thermal capacity of water.

0.50 kcal/kg degrees - thermal capacity of ice.

(g
(o8
“"

E = 427 kgm/kcal - mechanical equivalent of heat.
H m - water pressure in height of water column.
h cm - funicular distance on radial scales.

J - hydraulic gradient. l
J 4 -design gradient., ;

L = 79.6 kcal/kg - latent heat of ice melting (heat of change of
aggregate state).

mg - scale in which - size of a is depicted on the blueprint;
the scale 1s determined by the number of units of value of
a, consisting in 1 cm.

n - coefficient of roughness;

Q mz/eec - flow rate of water.
Rin m - inside radius of pipe.
Ro " outside radius of pipe.

Rcr .= radius of free cross-section of pipe during critical icing.

Rlim W radius of free cross-section of pipe with limit icing.

r m - radius of free cross-section of frozen pipe.

By & * - relative radius of cross-section of frozen pipe.
Rcr
t day - time.

w m/sec - velocity of wind blowing pipes.

x m - coordinate along the axis of the pipe; the origin of the
coordinate coincides with the entry cross-section.
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m - distance from the beginning of the pipe to the point of
appearance of icing, i.e., the length of the stretch of
pipes free of ice.

*p1

a kcal/m2 hr degree - coefficient of heat transfer from water to
» the inside surface of a layer of ice or the sides of the

pipe.

a kcal/m2 hr degree - coefficient of heat transfer from the outside

a surface of the pipe to the air.
Y, = 1.0 g/cm3 - volumetric weight of water.
y; = 0.917 g/cm3 - volumetric weight of ice.

J*degree - temperature of water.

J&n degree - temperature of water at entry into water.

‘}o degree - temperature of outside air surrounding pipe.

~’0 degree - temperature of ice melting.

§ m ~ thickness of ice layer,

kcal/m hr degree - coefficient of heat conductivity.
Certain Indexes

* _ relative value.

w - applicable to water.

i - internal.

int - relative to intake to pipeline.

cri- critical.

i - pertinent to ice.

0 - outside.

ini - relative to initial moment of time.

pl - pertinent to the point of appearance of ice on the inside
surface of the pipe wall of a stretch free of ice.

W - pertinent to .walls.
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The following system of units was used for the calculations: meter,
day, ton, and degree according to the Celsius scale. In this system of
units heat should be measured in megacalories (the megacalorie is the
amount of heat required to heat 1 ton of water 1°). However, certain
values entering into the calculation are conventionally measured in
other units and during their use one must introduce the transfer co-
efficients. Certain of these coefficients are given below:

1000 kcal = 1 mgkal (amount of heat W);

1 kcal/m hr degree = 0.024 mgcal/m day degree (coefficient of heat
conductivity A);

1 kcal/m2 hr degree = 0.024 mgcal/m2 day degree (coefficient of heat
transfer a);

1 mz/sec = 86400 m}/day (flow rate of water Q);

1 g/cm3 = 1 t/m3 (volumetric weight vy);

1 kcal/kg degrée = 1 mgcal/t degree (heat capacity C);

1 kcal/kg = 1 mgcal/t (latent heat of change in aggregate state L).
Introduction

The internal surfaces of the walls of hydroelectric station pipelines

are covered in certain cases by a layer of ice under the effect of low
Winter temperatures. Open pipes that are most often encountered at
hydroelectric stations are particularly subject to such internal icing.
Internal icing of pipes has been observed in the USSR both in regions
with cold winters - at Nivages II (the Kol'sk Peninsula), at the
Ul'binsk hydroelectric station (Altay), as well as in the southern
regions with comparatively warm winters, for example, the valley of
the Terek River on the sag pipes of the Alkhanchurtsk Canal (7).
In some cases, icing of the inside surface of pipes does not create
operating difficulties and even remains unnoticed; but sometimes it
leads to complete halting of the station, as occurred at one of the
inter-collective farm's hydraulic stations in the Kirgiz SSR, where
measures had to be taken to heat the pipe (17).

Icing of the inside surface of the walls occurs with particular
intensity if the pipe is filled with water but the water is not
running through it. In this case the thickness of the layer of ice
gradually increases and the ice can fill the entire cross-section of
the pipe. If a certain flow of water is run through the pipe, then
this protects it against complete freezing for the following reasons.
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First, during its movement the water liberates a certain quantity of
friction heat which prevents freezing. Second, the water running in
the pipe can contain a certain amount of heat that causes the same
effect. Third, during movement through the pipe the water undergoes
pressure changes; the thermodynamic processes that arise in case of an
increase in pressure, which usually occurs in the turbines of pipes of
hydroelectric stations, and also prevent freezing. The reserves of heat
in the water at the time of its entry into the pipe are sometimes quite
great (for example, if the water is coming in from a reservoir), which
entirely prevents icing on a certain stretch of the pipes adjacent to
the entry. The reverse phenomenon is also possible, when the

water entering the pipe has a temperature near the freezing point, as
the result of which very strong icing of the internal surfaces of the
walls near the intake to the pipeline proportional to recession
from the intake, this icing diminishes.

The entry of brash ice together with water into pipelines that receive
water from open streams (rivers and canals) is possible in Winter.
One can assume that brash ice will facilitate an intensive increase in
the thickness of the ice layer on the inside surfaces of the wall.
With a large content of brash ice in the water, the brash ice can cause
complete blockage of the pipe by ice.

If slight icing of the pipe causes no interference in operations
and even remains unnoticed, then heavy icing can entail various com-
plications. Internal icing causes a reduction in the handling capacity
of the pipe, which is occasionally extremely significant. With internal
icing the velocity of the water increases, which facilitates an increase
in pressure witn hydraulic shock. The increase in pressure with hydraulic
shock is particularly noticeable in wooden pipes, since icing of the in-
side surfaces of the walls prevents the escape of water through the
grooves between the staves that is possible under conditions of no icing.
During thaws or with strong insulation, the layer of ice can separate
from the walls and form an ice-gang in the pipe, which has a ruinous
effect on the mechanisms located downstream. Icing disrupts the normal
operation of pipeline valves, ventilation devices and compensaters.

Various methods of thermal insulation are employed for the purpose
of combatting internal icing of pipes. Wooden and reinforced concrete
superstructures are built over pipelines which do not hinder inspection
and preventive maintenance. Pipes are buried in the ground, covered with
concrete sections laid in covered trenches, covered on the outside by a
layer of ice, piles of snow, etc. In order to reduce heating by radiant
energy, pipes are painted white or are placed under screens. Stretches
of pipe with mechanisms are covered with heated housings.
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It becomes obvious from all of the above that the range of questions
involved with planning the pipeline should include the analysis of its
ice regime.

Ice phenomena in the broad meaning of the word already long ago
interested Soviet scientists and engineers who worked in the field of
hydraulic technology. Thus, in 1929 Professor V. Ye. Timonov suggested
a plan for constructing an ice-testing station on the Neva River (21).

In 1930, a group of ice technologists was organized under his supervision
?s g part of the hydraulic sector of the State Institute of Facilities
22).

Finally, the second All-Union Conference on the Operation of
Hydroelectric Power Stations, held in the Summer of 1946 in Leningrad,
directed attention to the significant dimensions of ice interference
and suggested that scientific research institutes undertake studies
in the field of ice phenomena and give practical instructions for
cohducting normal winter operation of hydroelectric stations (6).

Questions of the internal icing of pipes are of interest not only
to hydraulic technicians, but also to the petroleum industry, where
hardening of petroleum products similar to the freezing of water is
possible.

Soviet engineers and scientists concerned with the indicated fields
of technology have done a great deal for studying the question of in-
ternal icing of pipes and for combatting the harmful consequences of
icing. We shall list several of these works.

Professor M. Ya. Chernyshev, in a book published in 1933 (25),
posed the problem of calculating the heat of hydrodynamic resistances
in pipes.

In 1931, Professor L. S. Leybenzon (14) published an extremely
valuable solution to the problem of hardening of petroleum products
in the pipeline for practical use, with respect to a line through
which there was no liquid flow. The obtained conclusions are entirely
applicable to hydrotechnical pipelines. From a theoretical standpoint,
a similar solution was published in the same year by V. S. Yablonskiy,
P. P. Shumilov and V. M. Pokrovskiy (27), on the subject of hardening
of benzene in railroad tank cars.

In 1935, A. Ya. Popkov published (19) the results of experiments
on the freezing of water in wooden and cast iron pipes and the suggestions
of L. S. Eygenson regarding the thermal calculation of small diameter
pipes . were published in that same year.
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In 1939, Professor A. M. Yestifeyev published (8) a formula for
calculating the icing of a pipeline that takes into account the heat
of hydrodynamic resistances of moving water, and in 1941 (9) pub-
lished the derivation of this formula.

In 1939, Projects of Technical Conditions and Standards of Hydro-
technical Planning (20) were published with a section on hydrothermal
calculations and measures of combatting ice difficulties in hydraulic
power plants, compiled by Engineer M. M. Dasin, Professor G. K. Lotter
and Engineer B. V. Proskuryakov. Among a veritable number of questions,
recommendations are given there concerning the quantitative calculation
of internal icing of pipes. This work is the most extensive one on
the given question.

In 1941, engineers N. N. Petrunichev and engineer G. S. Shadrin
(18), followed by Candidate of Technical Sciences, G. S. Shadrin in
1947 (26), published works of a theoretical character concerning
thermal processes involved with the operation of a pipeline laid in
permafrost.

The results of many of these works will be cited below.

Besides works of a theoretical character, there are a number of
articles in Soviet journals about different ice phencmena that were
observed during the operation of pipelines, i.e., which illuminate
the practical aspect of this question.

In addition to the investigations listed above, carried out in
the USSR and directed toward clarifying the mechanism of internal
icing of the pipeline and mastering its regulation, only a few
recommendations of a '"recipe" character appeared abroad by 1929 on
the given questions. These linked the normal function of the pipe-
line first with the flow rate of water, then with its temperature
and gave results several times too high (23). By 1937, the situation
abroad regarding the investigation of the question of the ice regime
of pipelines had not improved, which is indicated by certain materials
of foreign consultation (10), where previous recommendations are cited
and new ones are given that differ little in their character and
essence from the former ones. Such a weak study of the given problem
abroad cannot be explained by the absence of requirements of practice.
« Cases of accidents and interference involving the internal icing of
E pipelines and turbines are known (2 and 12). Especially interesting
in this regard is the case of strong icing in the Winter of 1924/1925
on a 13 km stretch of wooden pipeline 71 cm in diameter forming a part
of §he water supply system of the city of Everett (Washington state,
USA).
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As the result of this icing, the city was without water for 5 days.
The warming that ensued caused separation of the layer of ice from the
walls and the formation of an ice-gang in the pipeline.

The achievements of Soviet engineers and scientists in investigating
the internal icing of pipelines is of certain value from the standpoint
of knowledge of this question and cannot be compared with the recommenda-
tions of the foreign literature referenced above.

However, despite these achievements, today a widely accepted method
and practical ways of planning the ice regime of pipelines are lacking.
This is particularly acutely perceived when planning pipelines of
hydroelectric stations located in regions with cold winters.

This work has the purpose, on the one hand, of making a certain
contribution to the investigation of internal icing of pipelines, and
on the other hand, of suggesting methods and practical ways of quanti-
tative calculations of icing that correspond to the modern level of
knowledge. Its pressing nature is determined by the decision of the
second All-Union Conference on the Operation of Hydroelectrlc Power
Stations referenced above.
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Chapter 1

The Heat Balance Equation

The thickness of the layer of ice that forms on the inside surfaces
of the walls of a pipe depends on different factors that determine the
thermal regime of the walls and the water running through the pipe.
These factors are calculated in the heat balance equations which include
the available reserves of heat as well as its intake and release. The
heat balance equations are formulated below both for the entire pipeline
as a whole (for the walls and the water), and for the frozen walls and
running water separately. These equations serve as the basic relation-
ships on whose basis all subsequent calculations are made.

In No. 1 of this chapter, the heat balance equations are formulated
only in schematic notations. In the next paragraph the quantitative
values of separate components of heat balance are determined. In No. 3
the substitution of these values in the heat balance equations is
carried out and therefore differential equations are formulated,to
whose solution the next chapters are devoted.

1. The Heat Balance Equations in the Schematic Notations

The heat balance equation shows that the intake, release and change
of the heat balance of a given heat that occurs over a certain period
of time is zero in the algebraic sum., Mathematically, this can be
written as follows:

[t
-

NEFTRY Y .,
ml@‘%»m_wm~fm:0

- i (1)

Sng )

where aj, az, a3z, ..., an represent the different components of the heat
balance.

The heat balance equation can be viewed as an expression
of conservation of energy for processes that are accompanied by thermal
phenomena (the first law of thermodynamics). In its form, the heat
balance equation is similar to the continuity equation in hydraulics.

The basic task in formulating the heat balance equation in schematic
notations is the calculation of all possible thermal changes.

Below, in many cases, after the schematic notations of the values
their dimensionality is given in the units of measurement accepted
for the subsequent calculations. This is done exclusively for the
clearer representation of the character of the given value. It is
entirely obvious that the general theoretical conclusions do not in
this case lose their significance with choice of another system of
units of measurement.

-




A. The General Heat Balance of a Pipeline with Ice on the Inside
Surfaces of the Walls and with Water Running Through the Pipeline

Figure 1 schematically shows the cross- and longitudinal sections
of a frozen pipe. In order to determine the positions of the cross-
sections, we conventionally considered the coordinate axis 0X as
coinciding with the axis of thz pipe and running in the direction of
the flow of water. The origin of the coordinate axis is assumed
to coincide with the beginning of the pipe, i.e., with the section
through which water enters the pipe.

Cross-section Longitudinal section
Wall Ice Wall ;g 1
» ICecf'"CE%=Fr’"'?=TfF?

Water[ T~ it o
R e b
eyl )

e 2 S

Figure 1. Diagram of components of the general heat balance
of a pipe.

We isolate two planes I - I and II - II normal to axis 0X, an
elementary stretch of pipe having a length dx (Figure 1), and for
this stretch of pipe formulate the heat balance equation that is the
general one for the walls of the pipe, ice on the walls, and water
running through the pipe. This balance pertains to an elementary span
of time dt.

Water, as the heat carrier, caries heat in the amount ¢ mgcal/day
through the cross-section I/I per unit of time. Over the elementary
period of time dt days, the water introduces an amount of heat ¢dt
mgcal into the examined stretch of pipe having a length dx m through
cross-section I - I, and over the same span of time carries away heat
through cross-section II - II in the amount ('94-3Q4tv\ mgcal. Hence,

X A /'

the examined elementary stretch of pipe receives an increment of heat
in the amount

Wt =100 == 0% dxdr mgcal,

/

which should enter the heat balance equation as a component.
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The movement of water through the pipe causes hydraulic friction.
The energy expended on friction is converted into heat. We designate
the amount of heat developed during friction per unit of length of the
pipe per unit of time as /"mgcal/m day. The examined elementary
stretch of pipe over the elementary span of time receives friction heat
in the amount v,/ mgcal , which should enter the heat balance
equation.

The layer of ice on the inside surface of the pipe walls is a
unique heat accumulator because of the latent heat of melting (the
heat of change of the aggregate state). We shall designate the
reserves of heat contained in the layer' of ice in the form of latent
heat as W mgcal/m. Calculation of the changes of these reserves of
heat in the layer of ice in the elementary stretch of pipe and over
the elementary span of time is narrled out in the heat balance equation
by the following component - dxdt mgcal . The minus sign is

placed there because the increase in the reserve of heat of the change
in the aggregate state that occurs during the melting of ice is
accompanied by the absorption of heat.

The walls of the pipe are either directly or through some additional
covering layer (thermal insulation, filler, etc.) in contact with the
air surrounding the pipe, which has a low temperature and imparts
a certain amount of heat to it that can be viewed as thermal losses of
the pipe. We shall designate the value of thermal losses that fall
per unit of length of the pipe per unit of time as ,dxdt mgcal.
Then it is necessary to take into account thermal losses in the amount
of ¢,dxd: mgcal in the heat balance equation for the elementary
stretch of pipe over the elementary period of time. The minus sign
shows that heat is lost.

As the result of the possible changes of temperatures, the reserves
of heat determined by the property of heat capacity of the bodies will
change. Losses of heat on the change in temperature per unit of time
per unit of length of pipeline are de31gnated as follow: for the walls
(and insulation, if there is any), as % mgcal/m day, as %sgt M3cal/m day
day for the layer of ice on the inside surface of the walls, and as
Yey for water in the pipe. Total losses of heat on the change in
temperature will be the following:
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?est:‘ ';el~'- Yoy mgcal/m day

Hence, the amount of heat spent over the elementary period of
time on the change in reserves of heat within the examined elementary
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stretch of pipe will be expressed in the following way as the result of
the property of heat capacity: ¢.dxd/mgcal ., The minus sign shows
that the increase in heat content involves the absorption of heat.

Finally, the heat that appears during the compression of water as
the result of the increase in pressure which it can experience in run-
ning through the pipe should be considered in the heat balance equation.
We shall designate the amount of this heat that arises per unit of
lenath of the pipe per unit of time as %4 mgcal/ m day . The component
% dxd! mgcal should enter the heat balance equation of the elementary
section of the pipeline over the elementary period of time. The list of
components of heat balance concludes with this. In Figure 1 the arrows
show the heat fluxes between the element of the pipe and the air
surrounding it, as well as the stretches of pipe to the left of cross-
section I - I, and to the right of cross-section II - II. The heat
balance components themselves that do not exceed the limits of the
examined stretch of pipe are not shown by arrows. Components Yemd? 4
are not noted in the diagram, since their role in the balance is
extremely slight, which will be shown subsequently.

In accordance with equation (1), we shall formulate the algebraic
sum of the listed elements and equate it to zero:

o
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By removing dxdt, we obtain:
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r ! This equation is the sought expression of the general heat balance
] of the pipeline with ice on the inner surface of the walls and with

running water. The equation has been formulated in the symbols that
determine the separate components of heat balance.

B. The Heat Balance of Water Running Through the Pipeline
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The heat balance equation for water running through the pipeline
is formulated in exactly the same way. This equation should include
the following components, calculated for brevity per unit of length
of the pipe and per unit of time:
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— ¢ Mgcal/m day - heat lost by a section of pipeline and defined

as the difference in heat introduced and carried away by the water;

?dMgcal/m day . heat of friction;

“m mgcal/m day - heat necessary as the result of the property

of heat capacity for changing the temperature of the water within the
examined section;

T%,M9cal/m day - heat that appears during pressure changes.

In eddition to these components already known, one must still
introduce the component - %y1Mgcal/m day into the heat balance of
water. This component defines the amount of heat exchanged from the
water to the layer of ice that forms on the inside surfaces of the walls.

According to the principle expressed in equation (1), the equation
of the heat balance for water moving through the pipeline is formulated:

o '
= o T —Yevi- 4 — oy F=0. (3)

C. The Heat Balance of the Frozen Walls of the Pipeline

The heat balance equation of the walls together with the layer of

ice that has formed on their inside surfaces is formulated from the
following components:

-  4,mgcal/m day - - heat losses;
s

‘,/acal/m day - change in reserves of heat in the

layer of ice due to the latent heat of change of the aggregate state;

- ‘SestMgcal/m day

- heat necessaiy as the result of the
property of heat capacity for a change in the temperature of the walls
of the pipeline;

- ?e1MIcel/m day - heat similar to the latter, required
for the layer of ice;

- “v1Mmgcal/m day

- heat exchanged from water to the layer
of ice.
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The heet balance equation of the walls and the ice on them has
the following appearance in the symbolic notations:
‘4

oy ' =
— =y —%est— %l yi=" (4)

The formulated heat balance equations are interrelated. Thus,
by means of addending the heat balance equations for water (3) and
the walls (4), one obtains the equation for the pipeline as a whole
(2). Therefore, from the three-component equations (2), (3), and

(4), only two are properly equations, and one will be an identity
deriving from the other two.

Having thereby formulated the heat balance equations in the
schematic notations, we proceed to determining the separate components.

2. The Separate Components of Heat Balance

The purpose of this section is to explain the relationships that
determine the separate elements of the heat balances formulated

earlier. Before proceeding to accomplish this task, we shall settle
certain general concepts. SN

All relationships will be derived with the assumption that the
pipeline has a circular section and is under identical conditions in
the sense of heat exchange from all directions. Under these conditions
one should anticipate that icing of the inside surfaces of the pipe
at any moment in time and in any section will be a ring bounded by
concentric circumferences. If one uses the cylindrical system of
coordinates with a system axis that coincides with the axis of the pipe,
then the degree of icing corresponding to each cross-section with a
coordinate x can be determined only by the single radius of cross-section

r without reference to the central angle of the cylindrical coordinate
system.

It is extremely simple to determine the thickness of the ice layer
that formed on the inside surface of the walls along the radius of the
cross-section of a frozen pipe:

e I\"in—'f M,

(5)

where § m - thickness of ice layer;
Rin m - inside radius of pipe;

r m - cross-section radius.
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We shall agree to consider that all bodies except the ice have no
heat reserve at a temperature of 00, that at a temperature higher than
00 they have a positive reserve as the result of properties of heat
capacity, and that at a temperature below 00 they have a negative
reserve (a reserve of "cold"). For ice the indicated condition is
compounded by the fact that ice always has a negative reserve of the
latent heat of change in the aggregate state.

Below values enter into the calculations which determine the
physical properties of the ice. These numerical values are taken
on the basis of data cited in the work of Professor B. P. Veynberg

(5).
A. Heat Carried by Water Through the Pipeline
As a heat carrier, water carries a certain amount of heat that

is in it due to the property of heat capacity during its movement.
By subtracting, as was agreed upon above, the reserves of heat of
water from the state at 00, we obtain the expression for the amount
of heat carried by the stream of water through a certain cross-section
in the following form:

th — K0 - 5 i

=80 100{.\)(wcw) mgcal/day
where

Q m3/sec - flow rate of water running through the pipeline;

1 t/m3 - volumetric weight of water;

Yw
C

5 1 kcal/kg degree = 1 mgcal/t degree - heat capacity of
water;

Y degree - temperature of water.

The factor 86400 is introduced for the conversion to days from
seconds that exists in the dimensionality of the flow rate.

A partial derivative with respect to length (along coordinate x)
from the heat flux carried by the water enters the equations of heat
balance. In order to calculate this derivative, it is vital to clari-
fy which values in the latter formula are variable with respect to x.
Actually, one should examine two values: Q - flow rate and % - water
temperature.

The flow rate of water Q running through the pipe, although it is

a variable as the result of melting or freezing of ice on the inside
surfaces of the walls of the pipeline, are such small changes that they
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@ e congider the value of the “low rate to be
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~r ank &k the length of the pipeline.
e lative o water tempersture o~ of the water running through the

pioe, one can captainly conclude that in the general case it will be

variaule value both with cegpect toc the length of the pipeline and

in time.

(n the hasiz af the concects aiven above, one finds the partisl
derivative of the hoat flux carried by water according to x:

T i o P {6
) =SNG 0Quen | wgeal/ t day (6)

oroasion will be sucstituted in the heat balance equations

#. The Heat of Friction

fasic relsticnstios. The movement of water along the pipeline
Ttain leesern o energy on hvdrodynamic friction. In this

oa an whe water, but not in the walls of the pipe-
div asproade Shroughout the free cross-section due to the
hulont mivang,  An oxeeption is the thin lavers of water
i s e wnlla of the pipeline, where mixing is limited. Con-
coqientiy, cne chovld expect that. the entire area of the free cross-

ce-tinn of Tlevi, with the excontion of the indicated thin layers of

water, ehsuld Bave an identical temperature Y degrees.

The enerqy lost on hydrodynamic losses is calculated according to
the ordinarv hydrauglic formulas. The amount of heat that arises in
tie pinnline as a cunseauenre of friction during the movement of water
e detarmined by the following telstiopship:

g =z ROACY o QU mecal/m day (7)
w e
‘ N e
= 427 ka m/lecal = 427 t m/mueal - mechanical equivaisnt cof heat:
Yoo = 1 5/m7 « vnlumetric weigkt of water;

W faec - Tlow cale of watar ir the pipeline;
J -~ hvdraulin gradient in fractions of a unit.

Havina uaed 'ha Yprown formulas
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one can formulate the following two relationships:

! S A 1ty
€ = 17 S m3/sec

and

2
Fom S,
(“r

In the last three formulas, the following symbols are used:

v m/sec - velocity of water in the pipeline;

R=T m- hydraulic radius;

2
r m - radius in the inside of a pipe frozen on the inside;
C - coefficient.

The known formula is used to calculate this coefficient:
1

C="'RI*=.

! r\n

L UL\iie
n u(')/‘ s
where n - coefiicient of roughness.

By introducing this formula into the two previous ones, we obtain
the following identical equations:

(;) . ‘1. f",.’/“ ;/7:: 0,613 I:: ")0"; J'ls m3/sec (8)
2
.,1“'. ,I'J(‘)u All"'(.):
= ".,_“. “—;'_‘:252 B B
w2r5'ls 2yt e -

By substituting the expressions for Q for J from the latter
formulas in equation (7), one can obtain the relationship of the
heat of friction and the flow rate of water or hydraulic gradient:
@m:::le-Nf“7ﬁ?{: mgcal/m day, (10)

Sl gl

or 2 . 2'/, \l"-
9,, ~=51600 -™- —-/:.,,J- - .mgcal/m day.

(11)

Both of these expressions deserve attention during the engineering
calculation, since the hydraulic regime of the pipeline can be given
both by the flow rate that must run through the pipeline and by the
hydraulic gradient, which cannot be exceeded (of course, there can be
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hydraulic conditions that are combinations of these two basic conditions).
Depending on any of the hydraulic conditions, it is necessary to choose
formula (10) or (11) to determine the amount of heat of friction.

b) Choice of the roughness coefficient. n - the roughness coefficient
of the ice surface - enters into both formulas (10) and (11) which de-
termine the heat of friction. Its value is extremely indeterminate.
Judging by the data cited by engineer P. N. Belokon' (3), the value of
roughness of the subice surface in rivers is significantly greater in
fresh ice at the beginning of the period of stable ice on open water
in comparison with that at the end of this period. This is because at
the beginning of Winter the lower surface of the ice can be extremely
uneven, since the ice cap forms from the material of the Fall ice-gang
and separate floes freeze together along inclined planes. Further-
nore, brash ice accumulates in the beginning of Winter under the ice
cover. This brash ice is very rough. The appearance of brash ice is
most probable at increased speeds; this circumstance is perhaps an
explanation of the fact that the high degrees of roughness correspond
to the high speeds.

Turning to the ice regime of the pipeline, one can assume that
the ice layer on the inside surfaces of the walls forms from the water
directly frozen. In the presence of brash ice the layer of ice on the
walls can be formed from water that freezes in place with the inclusion
of ice crystals brought in from outside (particles of brash ice) that
adhere to the layer. In any case, the participation of large chunks
of floating ice (material of the broken surface of the ice cover of
streams and reservoirs) in the formation of the ice layer is improbable.
Therefore, one can assume that in the period of growth of the ice layer
roughness of the ice surface in the pipeline will be less than in rivers
and canals and will not depend on the flow velocity of the water.

A decrease in thickness of the ice layer is due to its melting as the
result of the heat in the water. 1In this case a "polishing" of the surface
of the ice in contact with the water occurs. Under conditions of open
streams of water, polishing of the ice cover occurs at the end of winter
or in early spring, when the influx of heat from water prcves to be greater
than the heat losses of ice to the atmosphere. In a pipeline, melting of
the ice layer and the polishing of its internal surface can ensue much
earlier than in open streams of water, and arerepeated significantly more
often, for example, due to an increase in flow rate in the pipeline, i.e.,
smoothing of the ice surface in the pipeline will occur much more ener-
getically than in rivers and canals.

All of the above leads to the conclusion that the ice surface inside
pipelines changes its roughness depending on ice and temperature condi-
tions, However, for all cases here of change in icing (freezing), only the
coefficient of roughness has significance, since the introduction of certain
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values cf this coefficient without making significant refinements in the der-
ivations significantly complicates the process of calculations.

For pipelines, the value of the coefficient of roughness is taken
at n = 0,01, which is the minimum value for rivers and canals. This choice
has been made on the basis that processes of melting in the pipeline are
repeated more often than in a river, and smoothing of the surface of ice
washed by the water therefore occurs more energetically. 1In order to evalu=-
ate the chosen value of the coefficient of roughness, it is interesting to
report that a value of n = 0.012 is suggested in the Plan of the TUiN of
Hydrotechnical Design (L. 20).

It is vital to note that the value of the coefficient of roughness was
calculated by Engineer P, I. Belokon' (3) according to the formula given
below: r

C= '-, Ie‘u,

which justifies the use of this formula in this case as well.

Below it becomes necessary to calculate the temperature of water in
stretches of pipeline without internal icing of the walls. Formulas (10)
and (11), which determine the heat of friction are quite suitable for this
purpose, The value of the coefficient of roughness itself should be chosen
corresponding to the walls of the pipeline. 1In the first approximation, one
can accept n = 0,01C, which corresponds to rigid boards (n = 0,011 == new
cast iron and steel pipes well-laid and joined), i.e., a value that coincides
with the value of the coefficient of roughness selected for ice.

Here one can limit the discussion of the question of the quantitative
| estimate of the heat of friction that arises as the result of the flow of
! water through the pipeline.

C. LOSSES OF HEAT BY THE PIPELINE

a) The method of calculation, If water is in the pipeline (running or
standing) and the temperature of the air is negative, then a temperature drop
and the related flux of heat arise in the walls of the pipeline (including
freezing and insulation). The heat flux moves from the water to the atmos-
phere. The heat lost into the atmosphere from the pipeline should be cone
sidered lost from the latter. In the general case, calculation of the amount
of heat loss involves solving a problem of a non-steady state (time-variable)
temperature field in the walls of the pipeline because the thickness of the
layer of ice on the inside surfaces of the walls will change. This problem,
relating to the field of mathematical physics, can be stated in differential
equations, but the solution has not yet been found. Therefore, here one must
use approximate solutions. Significant simplifications are obtained if one
considers that the material of the pipeline walls and the ice layer do not
have thermal capacity. Having made such an assumption, one can consider that
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in any moment of time a steady state distribution of temperatures between
80 -~ temperature of melting of ice on the surface of the boundary between
water and ice and Ob ~=- temperature of the outside air surrounding the pipe-
line is established in the walls of the pipeline (in the layer of ice, prop-
erly, in the walls and insulation). The laws of the steady state distribu-
tion of temperatures in the walls of a cylinder are known, and therefore
calculation of the value of heat losses does not pose difficulties.

Since there is always a certain temperature &0 on the surface of the
boundary of water and ice, then the water temperature will have no effect on
the value of heat losses.

Having accepted a steady state distribution of temperatures in the walls,
one can calculate heat losses by the pipeline according to the formula known
in heat exchange (11), which, using our symbols, has the following form:

0024 n(ig = W)

BT i s 19
!?.n d 1 .‘".r_- W\;\ -]-“" ‘Qi"Q_,_r. “! ~v ( )
o Kiut i< T Pigut &fout
for alli ;

where *n mgcal/m day -- heat losses by one running meter of pipeline per
day;

JO -=- temperature of the air surrounding the pipeline;

ab degrees -- temperature of melting of ice; it is _so small with respect
to the absolute value (see Table 5) in comparison with Jb: that in many of
the subsequent calculations it can be ignored;

)\i = 2.0 kcal/m hr degree -~ coefficient of heat conductivity of the ice;

a, kcal/mé hr degree -~ coefficient of heat exchange between the outside
| surface of the pipeline walls and the air surrounding the pipeline;

Rijp m == inside radius of pipe;
Ry m =- outside radius of pipe (along the edge in contact with the air);
i (index) -- number of different layers comprising the wall of the pipe-
line (properly, the walls and the various types of insulation with which the
pipeline can be covered); each such layer is characterized by its own:
Ni keal/m hr degree -- coefficient of heat conductivity;

Ry i{n == internal radius and R y ,,4 == outside radius;

r m -- inside radius of icing (radius of the free cross-section of
the frozen pipeline).
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0.024 -- coefficient for converting the values of X and a from the di-
mensionality kcal/m hr degree and kcal/mZ hr degree into the dimensionality
mgcal/m day degree and mgcal/m2 day degree, i.,e., into the system of units
used in this presentation,

Values of the coefficients of heat conductivity of the material of the
walls entering into formula (12) should be taken according to the tabular
data. Certain data are given below regarding the value of the coefficient
of heat exchange from the inside surface of the pipeline walls to the air,

!

b) The coefficient of heat exchange from the outside surface of the

pipeline walls to the air. In order to calculate the coefficient of heat ex=-

change between the outside surface ¢of the wall and the air, the following
formula is given in the plans of TUiN of Hydrotechnical Design:

ln'7
“o==‘!zdu kecal/m2 hr degrees; (13)

where w m/sec == velocity of wind blowing pipeline;
d m =- outside diameter of pipe.

M. V. Kirpichev, M. A. Mikheyev and L. S, Eygenson (1l1) cite a formula
that generalizes the data of various experiments in the following form:

Nn==cRe": Pr™®*,
where ¢ and n == values that depend on the value of criterion
s s fl"l_/
Re = s
The other criteria have the value
Pr==".and\y - b\’e‘.{:,
a ’

where d m =- outside diameter of pipe;
A kcal/m hr degree -- coefficient of heat conductivity of the air;

) m2/sec -= kinematic coefficient of viscosity of the air;
W m/sec == velocity of wind;

ap keal/m2 hr degrees =-- coefficient of heat exchange between the out-
side surface of the walls and the air;

a m2/sec -- coefficient of heat conductivity of the air.
Under ordinary conditions, values of criterion Re for pipelines lie withe

- 2] -

O TR




W TR A

PRSP Y P e g

o i A TS,

CA T T e oIS R N e Y

in limits of 103 == 50:103 or somewhat exceed the upper limit., For this in-
terval of values, ¢ = 0,218 and n = 0,60 (11) are recommended.

The value of criterion Pr for the air with atmospheric pressure and tem=-
perature within limits of 0 ~- -20° changes little and has a value of Pr =
0.724 (11). By substituting these values in the formula which determines the
relationship between the criteria, we obtain:

4y 0197 .;'f“";. ¥ keal/m2 hr degrees.

o

With the pressure and temperature of the air indicated above, its coeffi-
cient of heat conductivity will be N = 0,02 kcal/m hr degrees and the coeffi=-
cient of kinematic viscosity 9 = 12.10~6 m/sec (see Table 1 below); by sub-
stituting these constants with consideration of dimensionality, we obtain:

0,6

G 3,55 }"’["T kcal/m2 hr degrees.

The latter formula is similar to the one described earlier (13). For
subsequent use, formula (13) is selected, This formula promises to yield
higher values of the coefficient of heat exchange at which more icing will
be obtained, which enters the reserve of calculation. When making calcula-
tions according to formula (13), one should bear in mind that the wind veloc=-
ity given ordinarily in the meteorological manuals pertains to a wind
sock placed on a column at a height of 5 == 20 meters above ground level,
The velocity of the wind blowing a pipeline laid a low height from the sur-
face of the ground will be less. The formulas that permit one to determine
the velocity of the wind at a low height according to the data of meteorologi-
cal observations made with a wind sock are given in the meteorology courses.

For a windless case, the Plans of TUiN of Hydrotechnical Design (20)
recommend the formula

QOEEL 0,468175 keal/m2 hr degrees (1)

where N\ kcal/m hr degress -- coefficient of heat conductivity of the air
vy (213 %, 2
B = K In D% Lo H
981 ud ( 273 - Jou

dcm degrees -- temperature of the surface of the pipeline;
Y kg/m3 -- volumetric weight of air;
P kg sec/ m?2 -- coefficient of viscosity of the air.

The values of the physical characteristics of the air are given in
Table 1.
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Table 1

Certain Physical Characteristics of the
__Air and A;pq;pheric Pressure

S——

it

i out
Paon -20* —-10 g
Characteristic™-.__
Volumetric weight 'l) 3 ot '—‘—-——-_ =
Coefficient of <&/M Yk, Lot T2

Kziscosity, N, kg sec/m2 150-107" 165107 170070
Kinematic coeffici '
viscosity y), m§9522t eg 1l - 10"
Coefficient of heat con-
ductivity of the ai 019 0107 20
' kcalym hr degﬁégs R e i

12307 13,0 107"

The practical use of formula (l4) is extremely limited, since a compari-
son of the values of agyt calculated according to it and according to formula
(13) leads to the conclusion that "absence" of wind should be understood to
mean a movement of air at velocities of less than 0.1 mm/sec, and such a
state of calm of the air surrounding the pipeline can only exist in rare cases.

The cited formulas for the coefficient of heat exchange do not take into
account the positions of the pipeline relative to objects surrounding it and
relative to the horizontal plane, while the indicated factors do play a sig-
nificant role. Therefore, these formulas are only approximate.

c¢) The corrected radius. For convenience of the subsequent calculations,
it is suggested to introduce the concept of the corrected radius R,.. The
actual pipe is replaced by a certain fictitious one whose walls consist of
ice. The internal radii of the fictitious pipe and the actual one are identi=-
cal, but the outside radius of the fictitious ice pipe Ry, (corrected radius)
is such that with it both pipes are equal from the viewpoint of heat loss
through the walls, i.e., the value fn for both pipes is identical. This con-
dition is described as follows:

0,024:2r (== )
I e
n
- : ‘||'“'r— ""—1-——“\ ]‘./‘i-n‘ —J--
g Wi .?J 4 Rip T oRe
L 00M2a(—=9)
z r 1 Rout

8,

i Ry g Rer
where the first expression for §n corresponds to the real pipe and the second

to the fictitious one. The expression for ¥, corresponding to the fictitious
pipe, is conveniently reduced to the form:
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B 7 7 mgeal/m day (15)

1 !

3 B

where Rgp m == corrected radius determined from the following equation:

-t.h,ﬂﬁhl___jg.f-,n Rign, _!_
‘i Rep , WU R ' R

or

o $ Rign
hel =i "itg ~-Wea)

16)

Rcr.-:: R me M,

The convenience of using the concept of the corrected radius is that it
expresses all of the heat conducting properties of the walls of the pipeline
in the hest conducting properties of ice. This makes it possible to reduce
the further complicated calculations of icing of the surfaces of walls of the
pipeline merely to a single material -- ice -- which significantly simplifies
the calculation formulas.

With the goal of easing the determination of the value of the corrected
radius in Fig. 2 graphs are given for steel and wooden open pipelines. In
order to plot these graphs, a value of the coefficient of heat conductive
ity of ice of \i = 2.0 kcal/m hr degrees was accepted. For steel pipelines
heat resistance and the thickness of the walls were not taken into account.
For wooden pipelines the value of the coefficient of heat conductivity of‘kcm
= 0,434 kcal/m hr degrees was accepted with the assumption that the walls,
being ina state of total moistness, are frozen. The thickness of walls of
Wwooden pipelines accepted in accordance with the data given by Professor,
Doctor of Technical Sciences A. A, Morozov (16) are given in Table 2,

Table 2
Thickness of Walls of Wooden Pipelines
Fin 8cm’ = Rin’ i scm' s
0.10 0.030 1,00 0.071
02 0.040 Loes 0.086
0% 35 0,040 150 0.086
0.50 0,041 Leil> 0.096
0.75 0.062 2.00 0.096
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If the indicated numerical values and the coefficient of heat exchange accord-
ing to (13) are substituted in formula (16), then as the result of simple
transforms one obtains the following expressions: for open steel pipelines

0,518

P O TP
cp— in' e u!f;
for open wooden pipelires
- 4,01 In I\’in = 0515 —
SUD I ’?in - &om wo,7 Ulﬂ'! 3_'")0,7
R =R _.e e
‘er gin

(ARPRERENRY 5704
Y] 'ré‘?‘ﬁéa" $“'*?7'{/////?//(/ 7
gl e “esr‘;;i"®+17f3”f" ¥

' ; , //,'//47; ‘}."_,_ R
1 o yaine

/g nr.

|

3# 'b) for wooden |
Mi"pipelines [~ i/

— et oy R S

e

[y e — i

'_;_..___,_-;_L_
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Fig. 2. Graphs of the corrected radii of open pipelines

The graphs in Fig. 2 have been plotted according to these two formulas.

The curvature of the lines for the wooden pipelines is due to the fact
that the thicknesses of the walls introduced into the calculation have an

- 55 -

oA TR e I AN P R e i




irregular relationship with the internal radius,

Turning to the estimate of the general thermal losses of the pipeline,
we employ formula (15) as the final one for the subsequent calculations in a
case when there is a layer of ice on the inside surface of the pipeline,

d) Heat losses in the absence of ice. Subsequently, during the deter-
mination of the heat loss by the pipeline under conditions of the absence of
icing in it, for uniformity of the calculations the use of the pipe radius
Rep corrected for ice is also preserved. However, one should recall that in
this case the temperature can be higher than the temperature of melting of
ice ‘o along the surface of contact of water and material of the walls. The
value of heat loss in this case will depend both on the temperature of the
outside air and on the temperature of the water inside the pipeline. Refer-
ring once again to the formulas of heat exchange (11), we write the amount of
heat lost by a stretch of pipeline having a length equal to a unit per unit
of time in the absence of internal icing in our symbols:

0,024 22 (3 = iy) Y
$a== " ] g keal/m day,

aofnz b0 " e

where Jdegrees -- temperature of water;

ay keal/m? hr degrees -- coefficient of heat exchange from the water to the
wall, whose values are taken according to the formula given below (33). By
substi‘uting the expression for ay in the cited formula, we obtain:

0,242z () = Ng) 1=
oy Hy L L S
I8\ 0N / . &
W\ 0D T

e) Losses of heat by a pipeline covered with dirt. For a pipeline
covered with dirt, the determination of heat loss is very complicated. 1In
the ground at the depths conventional for laying pipelines, constant changes
in temperatures occur with an annual periodicity. The exact solution of this
complex problem, which involves calculating freezing and thawing of moisture
in the ground, does not exist, Certain theoretical concepts on this subject
have been given by A, Ya, Popkov (19) and N, N, Petrunichev, and G. S. Shadrin
(18) and (26). The practical concepts relative to laying pipe in permafrost
have been given by N. A. Tsitovich and M. I. Sumgin (24),

The use of modeling can be useful in explaining the unsteady thermal and
ice regimes of buried pipelines (4) and (15).

For approximate calculations one can use the solution to a problem in
which all temperatures are assumed to be constant in time., Its solution (18)
in our symbols has the following form:

- 26 =

e




B A2 Rl s

|
|

B | /':,{i‘/‘f TR g keel/n ey, (18)
| R Vo y
. in ” 2 &n/ -
where A4y kcal/m hr degree -- coefficient of heat conductivity of the dirt,
d

h m -- depth of burial of axis of pipeline below surface of ground.
Cther symbols as before.

If the soil is covered by a layer of snow hg, then it can be taken into
account by the following method. One calculates the corrected value of burial
of the pipeline in the dirt:

; i v
h=h d -I- T;; hg M,

where the subscript d pertains to soil and subscript s to snow.

The heat conductivity of soil varies within wide limits depending on
its composition, density, moistness and state (melted or frozen). Therefore
the value of the heat conductivity coefficient of soil should be determined
predominantly by special experimental investigations, without which one can
only make extremely approximate calculations.

The heat conductivity of snow also varies within broad limits depending
on its density, For settled and moderately wind-packed snow, one can (5)
name a value g = 0.2 kcal/m hr degree.

The corrected depth of lie of the pipeline axis calculated according to
the last formula is used for calculating heat losses according to expression
(18). Thermal losses of a pipeline buried in soil are heterogeneous along its
perimeter, The higher portions of the walls lose more heat than the lower
ones. By averaging this process, we distribute losses uniformly over the en-
tire perimeter., This makes it possible to simplify the calculation, having
used the concept of corrected radius Rqp introduced earlier.

If one compares the formula (18) which determines the heat losses of a
pipeline free of ice with formula (15), where, for identity of conditions
(the absence of ice), r should be replaced by Rip, then one can obtain the
equation:

! h NS R
= |5—-FV (5=)—1|=—==-In A0
l.d I'Rin ! !/\Rin/ ] I\cr
thence
M
g .
ol _,",__!_ ’ lt_ e
Rcrw/\’m[,‘.,in , ‘/\"’in/\ ljl . (19)
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Hence, calculations of heat losses of the buried and frozen pipeline can
be made according to formula (15), by using expression (19) for determining
the corrected radius. However, a question arises of the choice of the value
of air temperature Jo in formula (15). It is entirely obvious that small di-
ameter pipes and little protected pipes will react more in the sense of freez-
ing to short-term low atmospheric temperatures, while such short-term, albeit
hard frosts will not have an effect on the ice regime of large diameter pipe-~
lines and well protected ones (for example, those enclosed in insulation),
Hence, for different pipelines one should introduce atmospheric temperatures
averaged over different periocds of time into the calculation, which will also
have an effect on the value of these temperatures,

f) The critical value of the outside dimensions of thermal insulation of
pipelines. It is known from the theory of heat exchange (11) that certain de=-
termined outside dimensions of heat insulation of the pipeline exist called
the critical dimensions, at which heat losses of the pipeline have the highest
value, One can find the explanation for this in the following. In formula
(12), which determines the heat losses of the pipeline, there are two members
in the denominator which determine the properties and effect of the thermal
insulation., We shall write these members of the denominator:

— .’v—!n !"hin.s' e

where Ajng kcal/m hr degrees -- coefficient of heat conductivity of insulation;
Rin ins m == inside radius of thermal insulation;

Ro m == outside radius of insulation and of entire structure in general;

ap kcal/m? hr degrees =- coefficient of heat exchange from the outside
surface of the structure to the air,

The outside radius R, increases proportional to the increase in the thick=-
ness of the insulating layer. Ry also properly determines the outside dimen-
sions of the insulation, This causes an increase in the first member and a
decrease in the second member of the sum written above. The smaller the value
of this sum, which consists of the members of the denominator of formula (12)
that contain Ry, the higher the value of thermal losses ¥, mgcal/m day. Con-
sequently, the critical value R, is then obtained when the sum of the indi-
cated two members has the smallest value., By substituting the expression of

the coefficient of heat exchange ay in this sum for the outside surface ac-
cording to formula (13), we obtain:

— ' inins :

s Mo AR

From the condition of the maximum of the sum described above, one can deter-
mine the value of the outside critical radius:
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Rocrg=0,112 102 <110 203, (20)
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As is apparent, the value of the critical outside radius of a pipeline
covered with thermal insulation does not depend on the thickness of this in=-
sulation and is only determined by the properties of heat conductivity of
the insulating layer and by the conditions of heat exchange on the outside
surface of pipeline, which is determined by the velocity of wind blowing the
pipeline.

If the existing outside radius of the pipeline is less than the outside
critical radius corresponding to the given thermal insulation and conditions
of heat exchange, i.e., R, € R, o.4, then placing a layer of insulation will
not decrease but will increase the heat losses so long as this inequality
exists, When Ry = Rgopriy heat losses will be highest. With a subsequent in-
crease in the thickness of the layer of insulation, inequality R, > Rycri will
be observed, and the value of heat losses will decrease. Hence, in order to
reduce heat losses one should apply a thickness of the insulating layer to
the pipeline such that in any case Ry 3™ Roeopi.

The value of the outside critical radius calculated according to the
formula (20) for insulations with low heat conductivity such as snow, wood,
Soil, cinders, etc. is extremely small, less than the ordinary radii of hy-
droelectric station pipelines. Only in rare cases of low values a, with a
well protected pipeline with respect to the wind Ryopji 18 a value obtained
that limits the dimensions of the thermal insulation, Therefore, usually any
thermal insulation with any of its dimensions reduces the thermal losses of
the pipeline., The question only pertains to ensuring that this insulation is
suitable for design and economic concepts. During its use as insulation, ice
A1 = 2.0 keal/m hr degrees), for example during external artificial freezing
of the pipeline, has values of the critical radius according to formula (20)
that are already practically significant dimensions.

g8) Radiant heat exchange of the pipeline with the atmosphere. Radiant

energy can participate in heat exchange between the pipeline and the atmos-
phere. The significance of radiant heat exchange depends upon a number of
factors, of which the conventional are the following: material, color, and
temperature of the pipeline surface, the temperature and state of the atmos-
phere, cloud cover, meridian, and the position of the pipeline relative to
the direction of the sun's rays, In order to calculate all of these circum-
stances, one must refer to the appropriate literature; here the general
characteristics of the effect of heat transferred by radiant energy on the
ice regime of pipelines are given.

We shall arbitrarily assume a positive direction of the heat flux ex=
changed by radiant energy and consider a direction from the atmosphere to the
outside surface of the pipeline, We shall assume that the average amount of
heat exchanged by radiant energy per unit of time per unit of length of the
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pipeline 's = mgecal/m day, is known., For the purpose of simplifying the cal-
culations, we assume that the flux of radiant energy over the surface of the
pipeline is uniform. Then thermal losses with the participation of radiant
heat exchange along the outside surface of the pipeline will be expressed by
the relationship:
l‘,"‘.’~l-‘.’:/?'\,-—i'&-;,”\.,-,_:‘ ”'\
% M 4

g R
Y= — L, keal/n/day  (21)

This is similar to relationship (15), only here the valueﬂ’o is con-
served., In this case,81;can have practical value. A comparison of formulas
(15) and (21) leads tc the conclusion that the influx of heat to the pipeline
by means of radiant energy can be view as a component of correction for the
outside temperature of the air. The correction is made in the form of a
comporient :

¥y degrees

u_n'_’l.;'-.loleo

If @5 is the influx of radiant energy to the pipeline (and not an efflux),
then the correction is taken as is explicit from formula (21), with a negative
value, and vice versa.

For winter conditions, the influx of radiant energy does not play a
significant role and is not considered in the further calculations. But in
spring this influx of heat can sharply complicate the operation of the pipe=-
line and is a cause of separation of the layer of ice from the inside surfaces
of the walls and the formation as a consequence of this of an ice-gang inside
the pipeline. Separation of ice from the walls can only occur if the
melting point of the ice ﬁb appears in the point of contact between the
wall and the ice. Since the same temperature also exist on the inside sur-
face of the ice layer, then the previous condition is equal to that in which

i the separation of ice from the walls is only possible when in the walls and

‘ in the ice a temperature everywhere will exist that is uniform and equal to
ib. In this case the temperature gradients disappear, and consequently, there
will be no loss of heat. Hence, if §, = 0 is placed in (21), then one can
find the intensity of radiant energy at which separation of ice from the walls
is possible:

9, =.(),.()‘_’-1-‘_’n1°/\’°(1",. — 1 ymgal/m day. (22)

TR N

As was stated above, ¢, is the mean amount of heat transferred by radiant
energy corrected to the entire surface of the pipeline, At the same time,
the heat of radiant energy is distributed over the surface of the jipeline
quite unequally. Some parts of the surface are irradiated (illuminated) more
intensively and receive much more heat than others. If one designates the
highest intensity of the influx of radiant energy per unit of time per unit
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of pipeline surface area as S mgcal/m? day, then one can find the value of
the S analogous to (22), at which the separation of ice from the wall will
be possible only at a point of surface of the pipeline exposed to the most
intensive radiation:

.ﬁr;n¢u4%)um-"nowscal/m2'daY» (23)

From the cited concepts it becomes obvious that melting of ice in con-
tact between the ice and the walls, and consequently, separation of the ice
layer are even possible with a frost (with negative values of the temperature
of the outside a1r<)b), if radiation of the pipeline by the sun occurs with
sufficient intensity. This is quite possible in mountainous conditions chare
acterized by an extremely intensive insulation due to low humidity, purity
and rarefaction of the air.

D. THE LATENT HEAT OF MELTING OF THE LAYER OF ICE THAT
COVERS THE INSIDE SURFACE OF THE PIPELINE WALLS

An adequately low temperatures of the air and temperatures of water near
the freezing point of ice, an ice layer forms on the inside surfaces of the
pipeline walls, This ice layer forms as the result of freezing of water.

In this case on the surface of the boundary between the water and the ice,
with the assumption of the absence of supercooling of the water, the temper=-
ature of the melting point of ice should be conserved. During thermal equi=-
librium, when the influx of heat from the water to the surface of the bound=-
ary between the water and the ice is equal to the efflux of heat from that
surface through the ice and thence through the walls to the atmosphere, no
chznge in the thickness of the ice layer occurs. But as scon as the influx
of heat from water to the indicated surface exceeds the efflux through the
ice, then melting of the ice layer will occur. Melting should occur along
the surface of the boundary between the water and the ice; the entire layer
of ice will have a temperature lower than the temperature of melting of ice,
This circumstance provides a basis to hypothesize that during melting of the
ice layer particles of ice will not separate from it even with significant flow
rates of water in the pipeline.

The heat in the layer of ice in the form of the latent heat of melting
§ will be the following per unit of pipeline length:

W ff: —_— T!‘{i L (/\’in—- r“) mscallm’ (21)
where Y; = 0,917 t/m3 -- volumetric weight of the ice;
L == 79.6 mgcal/t -- latent heat of melting of the ice;
Rip m =~ inside radius of pipe;
r m == radius of free cross=section of the frozen pipe.

The minus sign has been introduced because earlier it was decided
to subtract the reserves of heat from the liquid state of water at a tempera-
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ture of 0°,

The change of the reserve of latent heat in the layer of ice in time
will be: |

1'“' ()I' P I
s ), mgcal/m day (25)

Py Lr

where ‘x m/day -- rate of increase in radius of the free cross-section of

the piﬁe as the result of melting of the ice layer.
E. HEAT LINKED WITH PROPERTIES OF HEAT CAPACITY OF BODIES

In the course of the thermal processes, the temperature of both the im-
mobile part of the examined complex (the walls, the layer of ice, the insu=-
lation of the pipeline) and of the moving part (the water) changes. With a
variable temperature, the heat content of these parts also changes due to the
properties of the heat capacity of bodies.

Above, formula (15) was introduced with the assumption of the absence of

heat capacity in the walls of the pipeline (including the layer of ice and
the insulation), i.e,, the following was accepted:

hgr =0 g () (26)

Taking into account the heat in the water by virtue of heat capacity,
one should distinguish the volume of water running through the pipeline
through a certain cross-section of it and the volume of water in the pipeline.
The necessity of such a distinction becomes obvious from analysis of the com-
ponents of thermal balance. Thermal balance was formulated for a stretch of
pipeline between sections I == I and II -- II (Fig. 1). The heat entering
, the section through cross-section I =- I and leaving from a section through
| cross-section II == II was calculated. During the transfer of this heat,
1 water participates as the heat carrier. In this case the properties of heat
: capacity of the water should be taken into account, as was done in formula
(6). Now it remains to examine the heat linked with properties of heat capac-
ity of the volume of water in the section lying between cross-sections I -=-
I and II «- II. The amount of this heat can be estimated by means of compari-
son with the amount of latent heat in the layer of ice of internal icing of
the pipeline. We cite the following approximate calculations.

SR

We determine the thickness of the layer of ice which would be equivalent
to the amount of heat liberated or absorbed by water during a change in its
temperature by a value 4 , according to the amount of the latent heat of
melting within it., The calculations are made for a single running meter of
pipeline. The water located in this stretch contains an amount of heat
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The radial layer of ice having a thickness § that formed on the inside sur=-
face of the walls requires an amount of heat 2nriy;/. mgcal/m for melting.

From the equality of these amounts of heat, one determines the sought
layer of ice equivalent in heat content to a volume of water: :

a2 Ry
hTZ - e My
.H_L

after substitution of constants, we obtain:

petote N -
3==2.Qm74m6"090"A0”“

If the temperature of the water will also change by \)=1i", then one
should consider it an extremely high value in a large pipeline as well, for
example, when r = 3 m, and then the equivalent layer of ice proves to be a
comparatively small value § = 0.021 m, which can be ignored.

This calculation shows that changes resulting from the properties of
heat capacity of reserves of the heat of water in the pipeline (not to be
confused with the volume of water running through the pipeline) do not have
a significant value in the heat balance and can be ignored in the engineering
calculations, i.e., one can consider that

Va0,  (27)

Hence, all of the components of thermal balance which determine the
amounts of heat due to the heat capacity of the separate elements are accepted
to equal 0 in the given calculations:

%= e -y 1P = - (26)

F. HEAT TRANSFERRED FROM THE WATER TO THE ICE

a) The general relationship. On the surface of the boundary between the
water and the ice there should be a certain temperature corresponding to the
melting point of ice ¥3. Therefore, the amount of heat transferred from the
water to the ice depends only on the temperature of the water and in no way
depends on the temperature of the air surrounding the pipeline. The sought
amount of heat falling per unit of length of the pipeline per unit of time

will be:

%,i:-_«o',o:.; oo ) —1,) mgeal/m day, (29),

where a kecal/m2 hr degree -- coefficient of heat exchange between the water
and the surface of the ice; # degrees -- temperature of water;&x)degrees -
melting point of ice.
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We shall separately examine the values entering intoc formula (29).

b) The coefficient of heat exchange from water to the surface of the 3
ice. The coefficient of heat exchange a, from water to the surface of the
ice is a complex function of the dimensions of the cross-section and the
thermal and velocity regimes of the pipeline.

In order to determine the value of this coefficient, the following for-
mula is given in the Plan of TUiN of Hydrotechnical Design:

a 5= 13600/,7, -v"" keal/m2 nr degvees,(i0)

where v m/sec -- velocity of water; fp -- coefficient that depends on the di-
mensions of the free cross-section of the pipeline;

fq == coefficient that depends on the temperatures of water and the walls
of the pipeline,

The same source gives the values of both of these coefficients (Tables

3 and U4). 4
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Fig. 3. Relationship of the value of coefficient
fp and the radius of the free cross-section r

It is convenient to convert the expression for a, into a function of the
radius of the free cross-section r. There is a good step relationship between
fp and r which is apparent from the logarithmic anamorphosis shown in Fig. 3:
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The data for estimating the accuracy of the ottained formula are given
in Table 3.

Table 3
Estimate of the Accuracy,of the Formula
fp=0,325 p=%
faacqzd$ fp ac=-
d, %_ngtouhe = P cording Error,
able from to the 9
i fo0y F _ formula °
i ‘
0,03 0,815 0,025 251 A0L815 0,1
0,t0 0,589 0,03 L [0,686 | 0,1
0,30 (3,530 0,15 1,61 0,523 1,3
0,50 0,455 01,25 1,418 0,461 1 09
0,80 0,405 (0,40 1,258 5 0,403 | 1,6
1,0 ,08% 0,50 to190 0,387 0.5
) |
i,5 0,345 0,75 1,073 f,340; S g
2.0 0,320 F000 F L0800 1 0,825 | 1,6
v
9.5 ] 1,25 0,940 | 0,807 | 1,0

Note: Cqmmas should be readias‘decimals

It is apparént from Table 3 that calculation according to formula (31)

results in an error not in excess of 1.6% and therefore the formula can be
considered entirely suitable,

The values of the coefficient f, are given in Table 4,

Table U4

Values of the Coefficient 1§
~ . Temperature
Teme= the ]

perature ~~. Wall. 5 5
of water Tl
0° v 0184 | Bt80
Lk N L SR

From the cited data it is apparent that coefficient f§ depends little
on the temperature of the wall, and depends significantly on the temperature
of the water, changing for each degree of change in temperature of the latter
by 3.1% of its value at 0°, However, one can assume that in hydrotechnical
practice the temperature of water coming into the pipeline in winter will be
comparatively low (within limits of 0 == 30), and therefore coefficient fQ
can be considered constant and equal to the following:
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Ji=0,1% == const; (32)

By substituting the values of the coefficients (31) and (32) in formula
(30), and also having expressed the velocity value through flow rate, we
obtain the expression for the coefficient of heat exchange between water
and ice in a function of the radius of the free cross-section:

.
ahF:353({., kcal/m? hr degrees. (33)
r "

It is useful to compare the obtained formula with the existing general=-
ized formulas for heat exchange during the flow of different liquids (drop
and gaseous) in pipes of different sizes and at different temperatures. One
of these formulas, taken from the book by M, V, Kirpichev, M, A. Mikheyev,
and L. S. FEygenson (11) has the following form:

Ni=0,024 Re™pr*
ayd
where the criterion Nu=- -, -

wvd

criterion Re= _;

eriterion Pr:= ':‘ ;

ay kcal/m? hr degrees -- coefficient of heat exchange from the water to
the walls of the pipeline;

d m -~ inside diameter of pipeline;

Aw kcal/m hr degrees -~ coefficient of heat conductivity of water;

v m/sec -~ velocity of water;

R T e

| v m?/sec -= kinematic coefficient of viscosity of water;
a mé/sec -- coefficient of temperature conductivity of water.

For water at 0°, criterion Pr = 13,3, By substituting this value, and
the symbols for the other criteria, we obtain:

k
| 4 08
; W 00505 (%),
B " A
i thence the sought coefficient of heat exchange between the water and the in-
E : side surface of the pipeline walls will be:
| : ~(i~ }tl kb 2
I a ==00505 - . kecal/m® hr degrees.
4 w el
! \ N
P - 36 -
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Here we substitute the values of the constants for water at 0°:
580 kecal/m hr degrees

}w”_ (‘,-'
and v=1,700-10"" m2/sec.

N

0,%
Then :w::!IQU }W- kcal/m2 hr degrees,
O

By transferring from velocity to flow rate and from the diameter to the
radius of the fr2e cross-section, we obtain the following formula for the
value of the coefficient of heat exchange from the water to the inside surface
of the pipeline walls:

U

a,== 390 ,~'t“' kcal/m? hr degrees, (34)
where Q m3/sec -- flow rate of water through the pipeline;
r m =- radius of free cross-section.

The latter formula is comparable to the formula (33) given earlier,
Until conducting special investigations on this question, formula (33) is
used for the calculations because it gives smaller values of the coefficient
of heat exchange, i.e., provides for greater resistance to heat during its .
transfer from water to ice; in this case one should expect more icing of
the pipeline than enters into the reserve of the calculation. Here the ques-
tion of the change in values of the coefficient of heat exchange along the
pipeline is not examined as it is not a significant value.

In a case when a build-up or melting of the ice layer does not occur,
the hypothetical value of the coefficient of heat exchange is in no doubt.
However, when a change in the aggregate state occurs, the value of the coef=
ficient of heat exchange can deviate from that obtained according to formula ,
(33). There are no experimental data about such a deviation for cases of i
] freezing and thawing. One can assume that this deviation will be slight in
! both cases. Relative to the quality estimate of the effect of the change of |
the aggregate state on the value of the coefficient of heat exchange, one can
cite the following concepts.,

During melting the thermal resistance between water and ice can increase,

since water is constantly appearing on the surface that separates them,

This water is a product of melting of the ice with a temperature at the melt=-

ing point, Although this water is carried away by the common flow, in a cer=

tain small layer of it adjacent to the ice the temperature gradient is

either absent all together or is extremely small, which is also the cause

for the hypothetical elevated heat resistances (reductions in the value of

b ay). When the ice freezes, the ice seemingly advances into the water and
reduces the thickness of the laminar layer adjacent to the ice which exists
on the walls in the turbulent stream., This laminar layer creates the basic
resistance to the heat flux between the liquid and the wall., With a reduc-
tion in thickness in the laminar layer, one should anticipate decreases in
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the thermal resistance, i.e., increases in the coefficient of heat exchange
between the water and the ice.

In these calculations a value of a, independent of the character of
change in icing is used.

c¢) The melting point of the ice. The temperature at which a change in
the aggregate state occurs could be called both the melting point and the
freezing point., However, water has the property of supercooling, which
renders the concept of the freezing point indeterminate to a certain degree.
Ice itself cannot exist in the "superheated" state, and therefore the melt-
ing point of ice under the given conditions can only have one entirely dee
termined value. In view of such determinancy of the melting point of ice,
for the sake of simplicity the value of the temperature of change in the ag-
gregate state in general, of both melting and freezing is ascribed to the
latter,

In order to determine the melting point of ice 00 dependent upon pressure,
B, P. Veynberg (5) cites a relationship that is given below in the symbols
used here:
P == 129,00, — 1,521 9% kg/cm? (35)

where 4}0 degrees -- melting point of the ice;
p kg/cm2 -= pressure in excess of atmospheric pressure,

This relationship encompasses an extremely broad range of high pressures
(up to 2000 kg/cm2). In the pipelines usually used in hydrotechnical opera-
tions, pressure will be much less, This makes it possible to simplify the
relationship of the quadratic type given here and to reduce it to a linear
one without significantly reducing the accuracy of the new formula in the
narrower range of pressures. The following relationship gives the best re-

sults:
h, == —0,00784 n degree. (36)

For comparison of the original formula (35) and the simplified one (36),
Table 5 gives the melting points of ice for certain pressures calculated ac-
cording to them.,
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Table 5.

Comparison of the Results of Calculating the Melting Points
of Ice According to the Original and Simplified Formulas

P _“"_,-A_WVN,!Devigtionfof
kg/ rding toaccording toresults o
Py Kg/cm aocp%?ginas impl f‘i(%g) calc;lation,

) f
formula (35)formula

Q 0 0 ‘ 0

5 —0,01 —0,0392, 2,0
10 —0,08 . =0,0784 | 2,0
20 —0, 16 —0,150%, | 2.0
K{l] { —0), 10 —0,492 \ .5
100 =, 77 —0,784 M 2,0

Note: Commas should be read as decimals

It is apparent from Table 5 that the simplified formula (36) gives re=-
sults that differ extremely little from the results of the original formula.
This makes it possible to employ the simplified formula in our calculations,
For its subsequent use, it is conveniently converted into an expression of
pressure in heights of the water column in place of kg/cmZ2. Then, formula
(36) 'acquires the form:

- —0,000784 /1 degree (37)
P where H m -- pressure expressed in height of the water column,
In this form the ralationship in used in future.

Salts dissolved in the water (the hardness of water) can also have an
effect on the melting point of the ice, in addition to pressure. In hydro=-
technical operations, water is usually used with an extremely small salt con-
tent, and therefore the factor of the change in the melting point of the ice
as the result of water hardness can be ignored, considering Ob = 0° at atmos=-
pheric pressure., However, if it becomes necessary to take into account the
effect of salinity of water on the melting point of the ice, then in the first
approximation one can accept:

A Gt i N

BT

Uy=1,—0,000784 // degree,

=

SUWL e i L O,

where'abc degrees =- melting point of the ice at given salinity of water at
atmospheric pressure.

It is assumed in all subsequent calculations that the water contains ex-
tremely little dissolved impurities, and therefore formula (37) is used,
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Returning to the determination at the intensity of the heat flux from
water to the ice, we substitute in the general formula (29) the value of the
coefficient of heat exchange according to (33) and the value of the melting
point of ice according to (37). As the result, we obtain:

4= 17,20/ 917 (94, 0,000784 /)ngeal/m day.  (38)

This is also the final expression for the intensity of the thermal flux
moving from the water to the ice, formed on the inside surfaces of the pipe=-
line walls,

d) Water pressure in the pipeline, The value of water pressure in the
pipeline enters the formulas given above., It is calculated by conventional

methods of hydraulics. Here only the differential equation which determines
pressure is given:

all
o = Ja—/, (39)
where H m == pressure of water in the pipeline expressed in height of the

water column; in a general case this pressure changes along the length of the
pipeline and in time;

Jq == design gradient of pipeline; its values are considered positive
when the pipeline is sloped in the direction of the movement of water;

J == hydraulic gradient;

all
Jv == gradient of pressures along the pipeline,

Here forces of inertia and local hydraulic resistances in the pipeline
are not taken into account,

It the hydraulic gradient is expressed through flow rate according to
formula (9), then the latter equation acquires the form:

ﬁ/_l ::'-/d —952 n*Q* (40)

b © sV

Integration of equation (40) is extremely simple and can be carried out,
for example, in finite differentials., In all cases it is vital to have some
boundary conditions for determining the integration constant.

e) The reserve of heat that appears in the water with an increase in
pressure as the result of a change in the melting point of ice. Formula (29)

takes into account the reserve of heat in the latent form that appears in
the water as the result of a decrease in the melting point of the ice with
the increase in pressure. Formula (37) shows that with a positive pressure
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increment the melting point of ice &0 should have a negative value. Conse=
quently, even water can have a negative temperature in the range from 0° to
0b°. The heat liberated by water during cooling below 0 can be transferred
to the ice and thereby facilitate a decrease in icing, i.e., heat the pipe=-
line. With a negative increment in pressure (with a vacuum), the phenomenon
will be the reverse, We shall take up these circumstances in greater detail.

Formula (29) for the amount of heat transferred from water to ice can be
given in this form:

zpwiz(),()‘l-l-2r;rq,,‘-)—0,024~‘.erraw‘-‘o mgcal/m day,

from which it is explicit that the amount of this heat is a sum of two values:
of the value determined by water temperature & (the first member) and of the
value determined by the melting point of the ice (the second member). In
pr2ssurized pipelines of hydroelectric power stations, pressure increases in
the direction of motion of the water, and in connection with this, the melt=-
ing point of the ice drops, always having a negative value as formula (37)
shows. Hence, in moving along the pressurized pipeline, the water increases
its capacity to transfer heat to the ice as the result of a decrease in the
melting point of the ice (the second member in the last formula increases).

A unique heat reserve appears in the water, which can be transferred to
the ice and thereby warm the pipeline and prevent the development of icing.

If the water undergoes a drop in pressure and the second member of the
last equation decreases, then the reverse effect is obtained. The water's
capacity to transfer heat to the ice decreases and the reserve of heat from
pressure changes into a deficiency =~ a deficit.

In order to clarify the practical significance of the reserve or deficit
of heat that appears in the water during a change in pressure, the following
example is offered. We shall assume that a pipeline has a valve that is in
a position that somewhat constricts the flow of water, as the result of which
a drop in pressure 4H is created. We shall also assume that ahead of the
valve and beyond it the radius of the free cross-section of the pipeline r,
as well as the value of heat exchange a, entering into formula (29) are iden-
tical. The water passing through the cross-section constricted by the valve
undergoes a drop in pressure by a value 48 m and heating as the result of
friction heat., We shall explain how these changes are reflected in the ca-
pacity of the water to transfer heat to the ice. Heating of the water causes
an increase in water temperature by a value
LA
Y
Judging by formula (29), this increase in temperature will facilitate an in-
crease in the transfer of heat from water to the ice. On the other hand, the
drop in pressure will cause an increase in the melting point of the ice by a

value Al ==(,000781 Af/ degrees, which will facilitate a decrease in the

AN == ==(0,002344/1 degrees.
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wransfer of heat from water to the ice.

The change in the value of the amount of heat transferred by water to

the ice directly before the valve and beyond it is expressed via formula (29)
by the value

A',om.—.: 0,024+ 2mrg, (0,0023:4 AH —0,000784 AH) =
== 0,024 21ra (0,00156 AH) mgeal/m day.

An increase of this amount in the amount of heat transferred from water to
the ice occurs, If it is taken as a unit, then the role of the heat of fric-

tion in the creation of this increase will be f\?ﬂﬁL:=1,5 , and the role of
the melting point of ice preventing the #0050 creation of this
increase is correspondingly expressed by a fraction of 0#”“2&L5=._()5

0,00556 >

In this example the change in the reserve of heat created in the water
by pressure comprises one third of the heat of friction. This fraction can
increase still more where a significant change in pressures is accompanied by
small expenditures of energy on friction, for example, in pipelines with a
high design gradient and in turbines, Therefore, the thermal reserve of pres-
sure in the calculations cannot be ignored, i.e., the melting point of ice
can never be assumed unchangeable and equal to 06.

G. HEAT THAT ARISES DURING THE COMPRESSION OF WATER

With a change in pressure (load), the deformations of bodies occur which
depend on elastic properties., In this case the body either releases or ab=-
sorbs certain quantities of energy in the form of mechanical work and alters
its reserves of heat, which is expressed in a change in temperature of the
deformed body., With an increase in the pressure bodies heat and with a drop
in pressure -- cool., Below a quantitative evaluation of this effect is given
applicable to water running through a pressurized pipeline,

The compressibility of water can be expressed by the following formula:

where V em3 -- volume of water at atmospheric pressure;

AV cem3 == volume lost by water with increment in pressure;

€-- relative volumetric deformation;

p kg/cm2 -~ pressure increment that compresses water;

Ey = 2.10% kg/cm2 -= coefficient of compression of water at pressures
conventional for hydroelectric station pipelines,

This formula expresses Hooke's law for water, and coefficient Ew is anal-
ogous to Young's modulus,
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We shall calculate the amount of potential energy of deformation with
which a 1 cm3 volume of water is charged with an ircrease in pressure from 0
to p kg/cm?;

t Kgeem P '0‘!k§_!i_

pds = ‘I,’*‘ g et T 2y cat

et
-

Ce

If one assumes that all of this energy is converted into heat, then with
an increase in pressure from 0 to p kg/cm¢ water should increase its tempera-
- ture by the following value
A 10p2

Al == 50 =.p ;. o degrees,
EngC., .nwl%r:w
where E » 427 kgm/kcal -- mechanical equivalent of heat; !
Ty = 1 8/cm3 == volumetric weight of water;
Cy = 1 cal/g. degree -- specific heat capacity of water.

By substituting the physical characteristics, we obtain:
=:0,685-10°6p* == 0,05%5. 10~ H* degrees, (4!)
where H m -- pressure expressed in height of the water column,

Hence, a quantitative characterization of the heating of water with an
increase in pressure by a height of the water column H m has been obtained.

It is of interest to estimate the significance of such heating. With an
increase in pressure accompanying this heating, a drop in the melting point
of ice below 0° to a value expressed by formula (37) occurs. As a consequence
of the decrease in the melting point of ice, a reserve of heat appears in the
water which the water can yield, cooling below 0° , Without altering its ag-

| gregate state. The value of this heat reserve is determined by the decrease

! in the temperature of water from 0° to~30 . We shall compare the amounts of
heat acquired by water with an increase in pressure as the result of heating
and as the result of a decrease in the melting point of ice. The comparison
is conveniently made in temperatures of water expressed by the formulas (37)
and (41). We shall compare the relationship of these temperatures:

AN 0,0383.10=212 o by ‘
he == g, 000744 7 = —0,075-107°H. (42)

This relationship shows that the increase in the temperature of water
even with a significant increase in pressure is extremely small in comparison
with the drop in the melting point of ice. Since the reserves of heat ac=-
quired by water with an increase in pressure as the result of the drop in the
melting point of ice and as the result of heating of water are being compared
here, introduced by the components into the heat balance equation (2), then
the value of heating can be ignored and can be considered

BT N P
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3. THE HEAT BALANCE EQUATIONS IN THE DETAILED EXPRESSION
A. THE EQUATIONS

In the two previous sections, the equations of heat balance were formu-
lated and the values of their separate components were explained. 1In this
section, based on these data, the heat balance equations in the detailed ex-
pression are formulated.

In order to obtain the heat balance of a frozen pipeline as a whole with
water running in it in the detailed expression, one must substitute the values
of its components (6), (10), (15), (25), (28), and (43) in equation (2):

' diE o R ne) (,024-2x (—lg) 1
—806,400 QYWCW('.\' --21R. 10 7‘—,'.:1_},'.73 Ty : e
o — = i
A % “op
r
—2n11/.r dt:O' (44)

Subsequently, it is convenient to introduce into the equations the radii
of free cross-sections not in absolute values, but in relative ones. 1In this
case, the value of the corrected radius is selected as the value relative to
which the comparison is made. The ratio between the indicated radii is ex=-
pressed as follows:

¥

J PN
* RG"'

(45)
where r m == absolute radius of free cross=-sections;

Rer m == corrected radius;
By - relative radius of free cross-section of pipe.

The convenience of using the relative radius instead of the absolute one
is felt in the calculations., The heat balance equation (U44) includes complex
functions of r. Their calculation requires a great deal of work which could
be significantly eased by means of using corresponding tables. However, the
compilation of these tables is difficulty and they are obtained in vast num-
bers because of the fact that the values of radii of free cross-sections can
change depending on the size of the cross-sections of pipelines within broad
limits. The value of the relative radius can change within limits of
O<r «1l, These defined limits make the auxiliary table for calculating
funct!ons of r_ convenient and compact. Such a table is in the appendix at

*
the end of the book.

By introducing the relative radius into equation (44) instead of the
absolute radius, we obtain:
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s and —y,y,, encountered here, as well as those

The values of the functions :

of the other functions of P in the subsequent equations are given in tabular
form in the referenced appendix.

In order to obtain the heat balance of frozen walls of the pipeline (the
walls and the layer of ice) in the detailed expression, one must substitute
the values of its components according to (15), (25), (26), and (38) in equa=-
tion (4):

17,20 (975 (0 40,000784 1) — 2022 )
’ \ / )
y — N
L, Rep
)
—2mpylr =0 (47)
or, in the expression through the relative radius,
@ oy N, ! 0,024 9 (- ‘.o\
17,000 T (B -000078 Fy L - — e
\ I\Cr‘/ r. . e :. ey "’
[5) > l/r. ".l 3
% .Yi/./\‘é,.r‘ dt =10). I'.u\

A result of these two equations is an equation of the heat balance of
water running through the pipeline., The latter can bte obtained in the detailed
expression by means of substituting in (3) the values of the components accord-
ing to (6), (10), (27), (38), and (43). After substitution we obtain:

~86400QYCy 1218107 L7, —

; 17,207 (1-20,000784 H) =0 (19)
i

or, in the expression through the relative radius,

) " N SIR 505 ") 1
i — B0 100Q 4y 218107 e —
! tr I
] A0 (R it ! e
el !7|2 / Q \ /\,; s} (\|(\. )T K. [[) " =:0), (30\

\ Kar;

All of the equations formulated above pertain to a frozen pipeline whose
hydraulic regime is set by the value of the flow rate of water running in it,
If the hydraulic regime of the pipeline is determined by a drop in pressure,
and specifically,by the hydraulic gradient, then in all of the equations for=
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mulated above in this section it is vital to express flow rate Q via hydrau-
lic gradient J, which can be done according to formula (8). The following
equations are obtained as the result.

For a frozen pipeline with running water (on the whole):

— 86 40 ) s ) ls = ":. ‘J‘“
3400 ()H T 7l chwh_‘ 54 600 N
(1] (U.] 2;‘(——1‘0) ’
Wi 1_]”-’ .’nyil.r-u-i-:o (51)
o Rep
or, in the expression via relative radius,
—86400-0,633 = Rl Cr o
"Rd'. J‘” oy U,().) l')ﬂ('—“'o)
-1-51600 - el e = o S
" —_ .,‘iln r, (52)
r, L
19 -
1:‘{ Rcr‘ o =0.

For the iced walls:

o 0,021.2z (— 1
911 =/ J M (8-1-0,000784 H) — Ll oo )

= l'lunr
*1 " Rer
‘ ar
—~2nn/r{";-0 (53)
or, in the expression via relative radius,
; v, 0,024.-25(—0
O IRRIS I (D 4-0,000784 1) Pl — 2T
er o . !
— .. 'nr,
51
’ v nr. ¥R 54
— oy LR r -,y =0. (5+)
For the water running through the pipeline:
,/l
— Q0 400.0 022 T 0t ' mre /’J
86400-0,633 - r#" 142 w ~1-54600 -, = —
— OUtmA T (Y 212 0,00078 1 H), = 0, (55)

or, in the expression via relative radius,

apets 'l
oy :,“;.”\0.0,“.'; l) /./ ‘w n (? "--"\'] 500 f%:r‘/ T r?llr. i
n

- tr.'!n/\’él: - (‘.!4 f),(J“(,‘Th’-!//) g - (56)
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The equations of heat balance in the detailed expression for stretches
of a pipeline free of ice can be formulated in the same way. For brevity,
these equations are not given here. |

The obtained heat balance equations in the detailed expressions serve
as the basis for all subsequent calculations.

B, THE GENERAL CHARACTERIZATION OF THE EQUATIONS
AND THE EMPLOYED TERMINOLOGY

A pair of differential equations, for example, (44) and (47), and the
differential hydraulic equation (40) comprise a system of three equations
with the following five variables: r, 3, H, x, and t. By means of excluding
two variables, for example,\‘and H, one can obtain a single differential
equation with three variables r, x, and t. As the result of solving this
equation, one should try to obtain an expression of the function r = f (x, t),
which would determine the change in the radius of the free cross-section,
i,e., the degree of icing of the pipeline with respect to both to its length
and in time,

From the system of differential equations referenced above, one can also
find the differential form of functions &= f (x, t) and H = f (x, t), which i
determine temperature and pressure of water by means of exclusion.

As is apparent, the degree of icing of the pipeline in the general case
is a function of place and time r = f (x, t). It is entirely obvious that
partial cases can also exist.

Hence, there can be icing which does not change either according to length
of the pipeline or in time. Such icing ensues following quite prolonged func-
tioning of the pipeline under constant hydraulic and thermal conditions in

! an end stretch so remote from the beginning of the pipeline that the conditions
' of intake do not influence this stretch. We shall call such icing maximum and
the radius of the free cross-section that corresponds to it will be designated
Riime The radius of limit icing is a constant value r = Rjjn = const,
since it depends neither on x nor t,

There can be icing that changes with the course of time, but that does
F not change with respect to the length of the pipeline, Such a character of
: icing is obtained in an end stretch of a quite long pipeline where, due to
remoteness from the beginning of the pipeline, intake conditions have no ef=-
fect. We shall call such icing cylindrical because the inside surface of the
layer of ice that has formed on the walls inside the pipeline comprises a
cylindrical surface with a generatrix parallel to the axis of the pipeline.
The radius of the free cross- section of the pipeline in that case will only
be a function of time r = £ (t).

Finally, icing can be constant in time but variable with respect to the
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length of the pipeline. Such a state of icing ensues during quite prolonged
operation of the pipeline with constant conditions (constant flow rate and
constant atmospheric temperature), when all processes are steady-state, We
shall call such icing steady-state icing. The radii of the free cross-section
of the pipeline in that case will be a function only of the distance from its
beginning r = £ (x).

A similar classification of the processes also exists in hydraulics, |
where the following types of motion are distinguished: motion that is constant ‘
along the length of the flow of water and in time, called uniform motion;

i motion that varies in time, called unsteady motion, and motion constant in

‘ time but variable in length, called non-uniform motion., It does not seem pos-
sible to accept this terminology for determining the ice state of a pipeline

i because the definitions of hydraulics pertain to motion, but in this case one
3 needs a definition of state, Page 60 has a table of the accepted terminology

(Table 6).
Table 6
f Accepted Terms Defining the Character of Icing
: of the Inside Surfaces of Pipeline Walls
Terms Functional Relationship Definition
for r

; Limit Icing r = Rjjy = const Icing constant along the length
t of the pipeline and with the
[ passage of time
% Cylindrical r=f (t) Icing constant along the length

Icing of the pipeline but variable
| with the passage of time
|
| % Steady-State r=f (x)’ Icing variable along the length

{ Icing of the pipeline but constant
with the passage of time

£ General Case r= £ (%, t) Icing variable both with respect

of Icing to pipeline length and the pas-
| age of time.
|
k,
-

Analysis and solution of the differential equations of heat balance in
the succeeding chapters will be conducted in the order of gradual complication
E i of conditions. First,we shall examine limit icing, then cylindrical and
steady-state icing, and finally, a general case of icing.
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CHAPTER 2

LIMIT ICING OF THE PIPELINE

Above it was decided to call limit icing icing that does not change
either along the length of the pipeline or with the passage of time, If ic-
ing is variable with respect to length and time, i.e., r = f (x, t), then
with distance from the beginning of the pipeline, i.e., proportional to the
increase in x and with an increase in operating time t, with all other condi-
tions constant such icing would asymptotically approach limit icing. This
can be described mathematically as follows:

when ¢ —» 'r>and,( TN

) S AE i
!'.1111,:’\—_:0;11111‘ =0ad limr=R (57)

)¢ ftm «

The expression for the radius of the free cross-section with limit icing
can be obtained from the equations of thermal balance, one assumes the fol=-
lowing in them:

,(,.’.o'_ o U--'__ — Qandr — J'\',
o ot ¥

(%)

i ?

Hhare Rulim -= relative radius with limit icing.

Depending on what condition is set by the hydraulic operating regime of
the pipeline, the expressions for the radius with limit icing are obtained
variously.

In the subsequent sections, limit icing is examined both with a set flow
rate of water and with a set hydraulic gradient.

4, LIMIT ICING WITH A SET FLOW RATE OF WATER
A. DETERMINING THE RADIUS OF THE FREE CROSS-SECTION WITH LIMIT ICING

In order to determine the radius of the free cross-section with limit
icing under conditions of a set flow rate of water through the pipeline, it
is vital to use the heat balance equations (46) and (48) and the hydraulic
equation (L40), having inserted conditions (58) in them. For this purpose,
the time change for water temperature disappears and changes along the length
of the pipeline are conserved; therefore the partial derivative of water tem-

perature by length ?; should be replaced by the total derivative ﬂf, Similar
0, ax Ji
conditions will also exist for pressure, therefore %@ is replace with bx.

As the result of these substitutions and replacements, we obtain a sys=-
tem of the following three equations:
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This system of equations determines limit icing, however derivatives LVV'U
il p 5 P Gl -
and Jg»g:ﬂ enter into it. This shows that with limit icing the temperature

and pressure of water can change along the length of the pipeline.

The system of equations (59) includes five variables: R;lim’4” H, X,
and t. We exclude the variables ¥ and H in the following manner. From the
second equation we find:

12 (—- :b )I&: R Hm - AT
= S it 0 OOUTRANS (60
i g‘»)'i)/)'u —1n Ruy,, ’ degree,\ )

By differentiating according to x, we find the derivative:

i o dl]
0 =—0000784 ' © degree/m (61)

Having substituted the value of the gradient of pressure along the axis of
i the pipelinetf( according to the third equation of system (59) here, we find:
(X

n°0):

K:'\"l”

1 ;
“ 5% \ degree/m (/2)

*«mn/

M _ 0000784/ Jg— 2,52
dx \

Having substituted this expression in the first equation of system (59), we

obtain:
0 1 |
67,8Q%L [ a—252 | r e~ )+
‘h{w\ d ,.._/\ncrv R‘l-’m/
2y ¢ 0,024.2r (— H4)
| A-o18.100 ML Lo TR =g, (69)
{ I5"~""“ép‘ ,\'.'"”M e n Re iy

§ A

From this equation, for the given pipeline and for the given conditions
i of its operation, i.e., with known values R,., J4, Q, and-dé, one can deter=-
! mine the value of the relative radius with limit icing Ryjin. The determina-
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tion of the value R,yjin should be made by trialeand-error.

Having substituted the numerical values of the physical values in equa-
tion (63)

-&C :1;\mgcaln3 degreen 0,0 =427 Tm/mgecal
i g ==2/V keal/m hr degree,
we obtain 0780 000313 (T : h =
P e ©on R
__1\302(—-00) _M‘L”:’::O, (61

This equation can serve for direct calculations of the value of the ra=-
dius of the free cross-section with limit icing Ryjip.

The temperzture of the water in limit icing can be determined via Ryjip
according to formula (60).

The problem of limit icing was solved by Professor A, M., Yestifeyev (&)
and (9); in this case an equation was obtained for determining the diameter
of the free cross-section during limit icing. In the symbols used by us,
this equation has the following appearance:

i =D (—g)
A s e e 19)
tw = JO/)O ; i tn L i I)o
where: Dyjp, m -- diameter of free cross-section with limit icing of pipeline;
a kcal/m? hr degree -- coefficient of heat exchange;
Akcal/m hr degrees -- coefficient of heat conductivity;
¥, degrees -- temperature of the outside air;
0 == subscript indicating that the given value pertains to the outside
surface of the pipeline;
in and w -- suvscripts that show that the given value pertains to the
inside surface of the pipeline;
d == coefficient in the Darsy formula for determining the hydraulic
gradient in the pipeline;

J d v*
- /).Ilv g !

where v m/sec == velocity of water along the pipeline,

Formula (65) has been derived without consideration of the reserve of
heat that appears in the water with an increase in pressure as the result of
the drop in the melting point of ice. Therefore, the practical use of this
formula pertains only to a partial case in which the hydraulic gradient in
the pipeline is equal to its design gradient, i.e., when J = Jg.

- 5] -
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Furthermore, calculation of formula (65) of heat resistance between
water and an ice surface determined by member gb and the denominator of its
right hand side is disputable. During derivation of formula (65), apparently,
it was assumed that the melting point of ice is O°, and this temperature is
ascribed to water flowing through the pipeline, Calculation of the thermal
resistance between water and the surface of the ice in formula (65) is the
same as recognizing that the temperature on the surface of the boundary be=-
tween the water and the ice is below 0° , i.e., lower than the melting point
of the ice. The presence of water supercooled by a value determined by the
conditions of heat transfer should be considered doubtful.

B. THE VALUE OF THE DESIGN GRADIENT OF THE
PIPELINE ENSURING A SET LIMIT ICING

The problem of the radius of limit icing Ry;, can be posed somewhat dif-
ferently than was done above. If cne assigns a value R,yjp, then one can de-
termine the value of Jq == the design gradient of the pipeline at which such
icing is obtained. Practically, this problem can be encountered during the
design of a pressure derivation realized by the pipeline,

From equation (63), we find:

- 3220 " 1
Jg= (252~ 2 N
\ W J'Ibr Reifn
0,024-27 (= 1) .
o e s (66)
W \
67,5()1"’!.“ : =t Iy )

The very same expression in the numerical coefficients can be obtained via
equation (64):

= ——0() [ 17
g Aol ;( YRS
cr

_5_4 ]d 10~ t(:,! ) W -1 — (07)

Q ~ln R‘Hm

To illustrate this relationship, we cite the example of a calculation. We
shall assume that there is a metal pipe with Rj, = 0.60 m blown by the wind
at a velocity w = 4,96 m/sec. We do not take the thickness of the wall into
account, i.e., in the calculations we accept Ry = Rin. The coefficient of
heat exchange from the outside surface of the wall to the air according to
(13) will have a value a, = 11.58 kcal/m? hr degrees. The value of the cor-
rected radius according to (16) will be Ry, = 0.80m. Determination of the
value of Ryp can be carried out according to the graphs in Fig. 2 as well,
We shall further assume that the pipeline passes a flow rate Q = 2.0 m3/sec
and that atmospheric temperature . = ~10°, By substituting the known values
in (67), we obtain:
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[ = 0,667-1073 L 1-0,0222

R —1n ,‘,‘!-{'.—" :

by assigning a value of the relative limit radius of icing Ry, One can
determine the value of the design gradient Jy at which this limit icing is
ensured, The results of calculations for certain values of the limit radius
of icing and the design gradient are given in Table 7.

Table 7

Values of the Limit Radius of Icing and the Corresponding
Values of the Design Gradient for a_Pipeline with

= = . 3 = =100
Rin = 0.60 m, Rcr = 0.80 m when Q = 2.0 m°/sec and'v‘o = =10
R.,. ¢ M 0.60 0.50 0.40 0.39 0.30 0.20
lim
Rulim 0.750 0.625 0.500 0.487 0.375 0.250
Jd 0,0740 0.0389 0.0051 0 -0,103 -1.069

It is apparent from Table 7 that the value of the limit radius of icing
depends to a greater extent on the value of the design gradient. Thus, the
design gradient with a value Jyq = 0,0740 = 7.4% does not yield entirely limit
icing, since at this gradient Ryjp, = Rip = 0.60 m, With a horizontal pipe=-
line Jq = 0, the limit radius of icing proves to be Ryjn = 0.39, i.e., thick-
ness of the ice layer Oy, = Ryp = Ryqym = 0.21 m.

Stronger limit icings already appear at negative design gradients of the
pipeline, i.e., under the conditions at which the route of the pipeline rises
in the direction of flow of the water. Negative design gradients are charac=-
teristic of pipelines of hydrostorage electric power stations and of pumping
stations in general.

. The examined numerical example specifically shows that pressurized pipe=-
k lines which run with a positive gradient are under the better conditions in
the sense of icing than pipelines that run with a negative gradient.
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5. Limit and Critical Icing with an Assigned Hydraulic Gradient
in the Pipeline

During limit icing a state of thermal equilibrium ensues that is
expressed in the fact that the influx of heat from the water to the ice
is equal to heat losses. During the operation of a pipeline with a
certain constant hydraulic gradient there can be two states of icing
that differ from each other in which thermal equilibrium is observed.

One state with a greater radius of the free cross-section will be
characterized by the same qualitative properties as limit icing ob-
tained with a constant flow rate (examined in the preceding section).

A pipeline tends toward such a state of icing with the passage of time.
Therefore, the indicated state of icing can be called limit icing and
the radius of the free cross-section during it can be symbolized by

Rlim-

Another state of thermal equilibrium with a smaller radius will
have an unsteady character and the following are ascribed to it: the
name critical icing and a radius of free cross-section during it is
symbolized through Ropi -

These two types of icing are described in greater detail below.

The ice regime of the pipeline with an assigned hydraulic gradient
is determined by the heat balance equations (52) and (54) and by the
hydraulic equation (39). for obtaining the relationships that corre- |
spond to limit and critical icing, one should introduce conditions
(58) into the equations indicated above. In this case these conditions
are complicated by the fact that instead of r the symbol Rjjm,cpj 18
introduced which shows that the formulated equations determine goth the
limit and critical icing. Furthermore, in view of the absence of changes

’ in time of temperature and water pressure, their partial derivatives

along the length of the pipeline Ju and 0H change into total
5 Jx “ox
/3
derivatives b;andzg_ . After all of these substitutions, we obtain

a system consisting of three equations:

—86400.0.6 T phogh s R
100.0,633 n r‘)t:r s YWCWR.""'CI‘iII.\‘ ko
' ﬂRLC'/I‘J",. N 0,021 2z (—
--51 600 In Ief |’|'..|.Cri* T E _‘__0)_‘_ :()i (68)
; ~ g M Remneri
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| O11m RIS -1-0,000784H) R
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This system of equations is similar to the system examined earlier
(59). Therefore, by using the exclusion of variables = and H used
earlier in the same way, from the second equation of the system we find
the expression for water temperature :

02414 (= %) 1
4 ey 1\ Q... - - . (g
4xu%;‘f‘ =R terit R aeri (69)

—0,000784/ degrees
from which we determine the derivative of water temperature according
to x:

di . il
== == (Y MM)T78:
0000781 " degree/m,

W

i.e., an expression identical to the one obtained earlier.

We substitute the expression for the pressure gradient from the
third equation of system (68) here:
Il 00784 () .~ m
f,‘_;:"o'o”\')’m{f:d J) degree/m, (70)
Having substituted this value of the derivative in the first
equation of system (68), we obtain:

LTI .3 Ve ﬂ-'é‘é' J!|"' 3
¢ i ="l aap [ D=0 7 . Jabyd = s O —
‘|—‘.0 ’; /%r J AIV{'VI\. 1 ”"cx(id_ j) D C\()(‘ I'n R.,;”,' Cori

0,02:4: 20 (=1 ) (71)

o e,

— =] ¥ .
11”'”vwncr1

In fact, this equation acquires the following form if the values
of the physical characteristics are substituted in it

RERS™ (135000 ¢ 26 600N RS ¢ g
) (72)

e (B0 o L iy Fis
1,302 ( 0) ~w R . ori

From the equation for the given pipeline, characterized by Ry =
corrected radius and Jy - design gradient, and for the given condlglons
of its operation which are determined by J - hydraulic gradient and
JB - air temperature, one can by selection find the value R¥jjm - of
relative radius of limit icing and Rx.pj - relative radius of critical
icing. Values Rx)jp and Rx.pj are two roots of equation (72).

Critical icing is similar to limit icing because during critical
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icing there are no changes in relative radius of the cross-section Ry ol
either with respect to length or its time. In both cases icing of tﬁe
pipeline will be in thermal equilibrium, i.e., the amount of heat
proceeding from water to the ice will be equal to the amount of heat
lost to the atmosphere by the pipeline. However, when Rx1im has a
steady thermal equilibrium, then when Rxcpj thermal equilibrium is
unstable, and that will be shown during the discussion of the non-
steady state processes, icing with Rxcpj can change to icing with Rejjnm
or complete freezing of the entire cross-section. Usually, Rxjjnp >
Rxcris but it can happen that Rxjjn = Recpj, and finally, formula (72)
may not yield the actual solutions at all. In both of the latter cases,
the pipeline is doomed to freezing of the entire free cross-section.

During planning one can also encounter another problem : to de-
termine J - hydraulic gradient or Rop @and Jg - the parameters that
determine the design elements of the pipeline according to a sign
R¥1im or Rxcri. One can also use equation (72) to solve this problém.

Water temperature with limit and critical icing with a known value

?*lim or, respectively, Rxcri can be determined according to formula
69).

Chapter Three
CYLINDRICAL ICING OF THE PIPELINE

Cylindrical icing has already been decided to be the partial
case of total freezing, when the free cross-section changes with the
passage of time but remains constant along the length of the pipeline.
Cylindrical icing ensues over quite a distant from the beginning of the
pipeline where intake conditions no longer have an effect. The effect
of the latter falls off gradually along the length of the pipeline and
a cylindrical layer of ice is created at the limit. This circumstance
can be described in the following way. In the general case of freezing
determined by radius of the free cross-section, freezing is a function
of place and time r = f (x, t); but 0w and therefore, when
X —s00 X+ ocdx

pef (xy £)s (73)

In the limit expression, r m is the radius of the free cross-section
during cylindrical icing.

In order to obtain the relationships that describe cylindrical
icing from the equations of heat balance, it is vital to introduce the
following condition in them:

ar
as = (74)
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Below ,cases will be examined when the operation of the pipeline is
set by the flow rate or the hydraulic gradient. Furthermore, a case
will be examined that corresponds to a variable atmospheric temperature
and changing flow rate of water.

6. Cylindrical Icing with a Set Flow Rate of Water
A. The Basic Equations

The heat balance equations (46) and (48) and the hydraulic equation
(40) serve as the basic relationships originally. Entering condition
(74) in them, which defines cylindrical icing, does not seem possible
directly, since they do not contain the partial derivative or,

Jx
in the explicit form. However, by virtue of con%ition (73), in these ]
equations one should replace partial derivative °’- with total derivative
dr« , We shall write these equations with the ifidicated replacement
dt

and we shall view them as a system of equations:

ah

" !
|-218 . 10—
‘s

—86.1000) - el
da UQ"wcw dx 1R e
0,024 2% (—«'io) Omy LI = J!r‘ fjeey *
S 1 P _—ﬁYi- \cr’Q —(’t _0‘
=t iln r,
& FQ N o !
172w ‘.\[‘)c":'r> (') “aic 0,000784['/) ';a‘.“—-— (75) h
0,024-2z (—g) o dr
R sl R LR VR = (s
._ﬂyi/./%crr‘ = =0;
SStE Inr
l .
! n*Q? 1
bt NN N e s L e
1 o8 "d 2,52 ,;:jé'fn it

This system of equations has five independent variables, ry,
m}, H, x, and t. We exclude the variables J and H. For this purpose,
we find from the second equation of system (75):

; A Ll LA Ly A S g
8,600 =lr, U RO L
—0,00078H =20 degree,
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From this one can find the partial derivative of water temperature
according to x.

By using condition (74) in this case, we obtain:

") —=—0,000784 9" degree/m.

e T

(77)

Here, we substitute the expression for the pressure gradient according
to the third equation of system (75):

dn

Uy

ne)R

wRO
cr

— ) ar: 1
= —0,000784 (./¢— gho ",sn;)degree ia: (78)

We substitute this value of the partial derivative in the first
equation of system (75). As the result of simple transforms, we obtain:

dr 67,804 C_J 218101 oL 1020
I/; s ‘) g - d S ‘LJI_ ("“ B ol “ IU“',> DR )p7"'l
Iy LR - re : 2 ri I.l\cr
. CFogng-vg (79)
M . LR ~rnr, day °
£ T1 cr Y

This equation is the basic relationship which makes it possible to
analyze the cylindrical ice regime of the pressurized pipeline. With
respect to its mathematical form it is a quite complex differential
equation of the first order which cannot be analytically solved.

The final goal of solving this equation is to explain the regime
of the change in r - radius of the free cross-section of the pipeline
in time -, i.e., to solve it one must determine the function r = f(t).

In this case it is assumed that values: Q - flow rate of water;
u}o - temperature of the air around the pipeline; R.. - corrected radius,
and Jy - design gradient of the pipeline - are known and constant.

In preparing equation (79) for the future calculations, we substitute
the numerical values of the physical characteristics:

Yw l@ =1 mgcal/m} degree - specific heat capacity of water with
respect to volume;

n = 0.01 - coefficient of roughness of the ice;

Ai = 2.0 kcal/m hr degrees - coefficient of heat conductivity of ice;
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yiL = 0.917 « 79.6 = 73.0 mgcal/n’ - latent heat of change in the
aggregate state of ice expressed with respect to volume;

E = 427 tm/mgcal - mechanical equivalent of heat.

After substitution, equation (79) acquires the following form:

'{r. =) v.vﬁ_(‘)"/d S 739,100 _Q:._. ....-3.—.‘ s
=\, i« o i ot i R "
ot Rer ' foxt 6 (80)
.. h 1 \
—0,660.10 ¢ {“’-.. 0)_ e
"‘:-cr e l.,lll. day

The solution of this differential equation is conducted in the sub-
sequent divisions of this section.

During planning, it may prove necessary to know the temperature of
the water during cylindrical icing. The formula for calculating this
temperature is obtained from (76), if one substitutes the value dr.

de

according to (79) there. Conducffﬁg the necessary operations, we obtain :

(“T-HQH' I'\'l‘" 4 a0 o, 2=/

P e W gl - (20 g g M@

172q f}. ¢ 2 170,)) 17,7:"I§¥u X (Bl)
X = joj;—0,000784F/ =0 degree.

r

Having substituted the numerical values of the physical characteristics,
we obtain:
« [ L | ‘jl. iy a" 1 T -2 .‘;l;' ’
o 1254Q M R e 0,0836-10 . M I

1)"‘1I|| r" i

{ .
? ~- 0000784/ gegree. = (82)

The pressure value H is determined by solving the third equation
of system (75).

At this, one can conclude preparation of the necessary relation-
ships for the further analysis of cylindrical icing of the pipeline
in the case of an assigned flow rate of water.

B. Icing of a Pipeline Filled with Standing Water

We shall examine a partial case of the problem of icing of a
pipeline with an assigned flow rate when the flow rate equals zero:
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Q = 0; in this case water is in the pipeline.

With standing water in the pipeline and an atmospheric temperature
below the melting point of ice, a gradual increase in the thickness of
the layer of ice on the inside surfaces of the pipeline walls will occur.
Hence, the pipeline is doomed to unavoidable freezing of the water through-
out the entire cross-section. The question only pertains to the duration
of the period of time over which freezing occurs.

a) Derivation of the formula. With standing water, the thermal
balance of the pipeline is formulated from only two components: from
heat losses and from changes in reserves of the latent heat of change
in aggregate state locked in the layer of ice. The heat of the change
in tke aggregate state is expended by means of thermal losses. Reserves
of the latent heat of aggregate state are dissipated by the time of
complete freezing of the pipeline.

In order to reduce the basic equation of this chapter (79) to a
case of standing water, it is necessary to consider Q@ = 0 in it. Then
this equation acquires the form:

¢Ir_ = (D‘U‘_)-l/i( = “0) | ' (8})

dt 1. LR —r Inr day
1 ¢r

After factoring the variables, this equation will appear as
follows:

4 1
Ad!=_rnrdr,,

where
0,024 )¢ — ) == \
A= —-21 0 ~.0,000658§~—Jd —_— i
f R _ day
cr Cr
«Q

After integration, we obtain:

| |
Af=x y rinr,—-, i

If one accepts that t = 0 when r = 1, then the arbitrary integration
constant will be ¢ = 1/4 and the equation acquires the form:

I -4 3
A=, rilnr,— i

L e (85)
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This can be considered the basic expression for the gradusl decrease
in radius of the free cross-section during freezing of a pipeline filled
with standing water. In Figure 4, the equation (85) is graphically

depicted. It is apparent from the graph that near rx = 1, icing develops
extremely intensively.

! S | i
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Figure 4. Increase in the thickness of the ice layer with standing water.

Then thickening of the ice layer occurs almost uniformly, but near the
axis of the pipeline the intensity of freezing once again increases,
reaching infinity when ry = 0. Formula (85) was published by Professor
L. S. Leybenzon (14) and V. S. Yablonskiy, P. P, Shumilov and V. M.
Pokrovskiy (27) in 1931. The very same relationship is given a slightly
different form in the plans of TUiN of Hydrotechnical Design (20) and
in the article by Professor A. M. Yestifeyav (9). Applicable to the
symbols used here, it has the following form:

e il (7 o
’““"01M+H(—4. I g -}

o L lip
o oo L Tl 2 Nepe o] (86)
Tl Then e e Py @) | daye,

where d m - internal diameter of free cross-section of the ice ring;
Djp m - inside diameter of the pipeline;
Dg m - outside diameter of the pipeline;

Acm kcal/m hr degrees - coefficient of heat conductivity of the
pipeline wall;

aq kcal/m2 hr degrees - coefficient of heat exchange between the
outside surface of the pipeline and the air.

If one accepts value yjL = 72.0 mgcal/m}, then the numerator of the
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member before the quadratic brackets is equal to 72.0: 0.024 = 3000.
This number is given in the literature sources (9) and (20) referenced

above.

Formula (86) differs from formula (85) by the fact that it does not
take into account possible thermal insulation and by the fact that
the calculation of time begins with the moment of appearance of ice on
the walls of the pipe, while in formula (85) the calculation of time
begins with a certain fictitious moment of formation of ice along a
surface having a radius R ;.

b) The estimate of accuracy of the formulas. Below an estimate
of the value of error of the formula (85) as the result of simplification
and linked with failure to consider heat capacity of the ice is given.
Professor L. S. Leybenzon (14) approaches this problem by means of
determining the error of an approximate formula with a similar assumption
(failure to consider heat capacity of the ice) for a linear problem
(the ice freezes along a plane), for which there is an accurate solution
from the viewpoint of mathematical physics.

Supporting this method, we shall make the necessary calculations.

For a case of constant temperatures of a thick layer of water and
ice on its upper surface, the exact solution has the following appearance:

E==Rt @7)

where 6§ m - thickness of the ice;
t day - time of accretion;

km/dayl/2 - coefficient of proportionality determined from the tran-
scendent equation:

A* i

- 4.1."' du
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\=j/ i

0,024 ) g0 e
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where )0 degrees - temperature of the upper surface of the ice;

}o degrees - temperature of water at a significant depth;
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0,024X
"::Z/r 1 ‘m/d:ayl/2 - coefficient of temperature conductivity;
i - subscript designating the relationship of any value for ice;
’

o - subscript designating the relationship of any value to water;

W)= 2 (o= a2

- the Gaussian integral, whose numerical values are taken according to
the appropriate tables.

If one ignores the heat capacity of the ice, i.e., considers that
at any moment the ice has a linear temperature distribution as with a

steady-state thermal flux, then the following approximate relationship
is obtained:

‘ 00_,_.;_‘-_l i S5
/ (— o)t = KV T, -

where § m - thickness of the flat ice layer.

The expression for the proportionality coefficient has the follow-

ing form:
f= ?/0'("‘";'.")?'_@ (esith m/dﬁ)’l/z .
'ri/. o

Hence, the general form of the relationship of the thickness of
the ice and the time of its accretion in the precise (87) and approximate
(88) formulas proves to be identical. However, the value of the co-

efficients of proportionality k varies.

If one assumes

)\1 s Q’U kcal/m hr deg. Ci:()vSQ mg/Cal/trdeg.
Y.==(L9!7 t/m3,

o / 0,02 "1“-0 394 m/dayl/z’

L==7 f’,’)mgcal/.t and o=0’,
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then the formulas for calculating the proportionality coefficient k
has the form:
the accurate formula

0,00228 (— i}J)e =R iy (1,5410);

and the approximate formula

k=0,0362 )/ (— )0 W m/dayl/ 2.

Below, in Table 8, the values of coefficient k are given according -
to both formulas for certain temperatures and the relative error in
calculating the thickness of the ice layer due to the assumption of the
absence of heat capacity of the ice is also given.

Table 8

A Comparison of the Values of Proportionality Coefficients Calculated
According to the Precise and Approximate Formulas

Y , degrees N -10°]  -20° | -40°
o
Precise Formula | 0.036 0.0805 | 0.113 0.158 0.221 |
1/2
k, m/day
Approximate
‘ Formula 0.0362 )0.0810 | 0.115 0.162 0.229
Error in determining thick-
ness of the ice layer
according to the approximate
formula, % 0 il 2 3 4

As is apparent, the error in calculating the thickness of a flat ice
layer according to the approximate formula is slight and is quite per-
missible during engineering calculations. One can assume that error will
be just as small for a case of a cylindrical layer of ice that forms in
the pipeline.
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The existing solution to the problem of freezing of the pipeline
containing standing water [35) has been simplified. Thus, in the article
by V. S. Yablonskiy, P, P. Shurilov and V. M. Pokrovskiy referenced
above (27), relationship (85) is replaced with a quadratic parabola:

(.‘CI': /\’C!,-- re= /\’Cr?' 2t m,

where Gcr-m - corrected thickness of the ice layer;

A _L _ coefficient determined according to formula (84).

day

This formula is identical to formula (83), which determines the
accretion of a flat layer of ice.

In order to compare the intensity of accretion of a cylindrical and
a flat layer of ice, we shall proceed in the latter equation to the
relative values:

»

L Py 1 ) A1
N(Q.E: ".Cr= == :V?A!. (89)

Here, and in equation (85), values are figured identically for a
cylindrical layer, and therefore it is convenient to compare these
equations. Such a comparison is graphically carried out in Figure 4.
On the left-hand side of this graph is a scale of relative radii r«
and on the right a scale of relative thicknesses of the ice layer
S%cp, calculated with a cylindrical layer from the inside surface of
a fictitious ice pipe with an outside radius Rer and a flat layer
from surface contact with cold air moving at very high velocity.

It is apparent from Figure 4 that with small thicknesses of the
corrected ice layer the accretion curves of the layers lie near each
other, but that with thickening of the ice they significantly diverge.
Thus, with all other conditions being equal the period of time required
for complete freezing of a pipe is twice as short as the period of time
necessary for the formation of a flat layer of ice having a thickness
equal to the radius of the pipe. Therefore, the replacement of formula
(85) with formula (89) should be considered undesirable.

c) The time of complete freezing of the pipeline. Having relationship
(85), one can calculate the time required for complete freezing of all
water in the pipeline. If one substitutes rx = 0, then we obtain t
the corrected freezing time, i.e., the time required for freezing o
fictitious (between Ry, and Rin) and the real (between R;n and the axis)
parts of the pipeline cross-section. If however one substitutes rx =
= Rxjn, then we obtain t¢ day - freezing time only of the fictitious part
of the pipeline cross-section between the end having radii R,y and Rjn.

day -
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The period of time required for the freezing of water along the entire
free cross-section of the pipeline is expressed by the following relation-
ship

LRI s ;
[ top—le= ), /\‘CIL__, —In /‘)-'in day. (90)

C. The Method of Graphic Solution

In the partial case of freezing of a pipeline with standing water
discussed above, an analytical solution of the problem was obtained.
Attempts have also been made to find an analytical solution for the
general case when Q # 0. The differential equation (79), although
permitting separation of variables, in this instance only enables one
to obtain such a complicated function that one cannot directly integrate
it. Attempts have been made to expand this function into a series. In
this case, the solution of an extremely complicated type was obtained
which is practically unsuitable for engineering use. This solution was
still more complicated by the fact that in each partial case one had to
estimate the convergence of the series and choose the necessary number
of its members for the calculations.

Another attempt at the analytical solution consisted that in complex
functions of the differential equation (79) were replaced by simpler ones.
However, this method also failed to yield the simple solutions and the
picture of the ice processes themselves were strongly distorted in this
case. Finally, in the Plans of TUiN of Hydrotechnical Design (20), an
analytical solution is offered whose idea consists in that analytical
relationships that determine the growth or decrease in the thickness of
a plane layer of ice are introduced into the calculation. For the transition
to the cylindrical layer of ice that forms inside the pipeline a correction
coefficient is introduced. Such a simplification, of course, leads to
large deviations from the correct solution. The calculations made accord-
ing to the recommendations of the Plans of TUiN of Hydrotechnical Design
lead to incorrect results. Since no analytical solution to the problem
of the changes in pipeline icing in time has been found as yet, then below
the following method of graphic solution is offered.

The original equation is a differential equation with numerical
coefficients (80), in which time t and relative radius rx are variables
and all other values are constant. In this case we shall consider t
to be an independent variable and ry a function of it. This differential
equation has the following structure:

arg

) !
i =) gay (91)
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Figure 5. Diagram of graphic integration.

For any value rx, one can calculate the value f(rx). The value f(rx) =
= const used in a certain short interval of changes in r* can be used for
integration. All of these operations are conveniently conducted graphically.

& Figure 5 shows a diagram of graphic integration. Figure 5, a is a curve

—~*= f(g) that can be plotted according to formula (80). It is entirely
dt

obvious that where the curve intersects the axis orx, the value of the
derivative is 9T* = 0, i.e., in this case the relative radius of the free
dt

cross-section acquires a limit value Rx1im. The curve in Figure 5, a

is the original one for the subsequent graphic integratéon. Figure 5, b
depicts the radial scale of the same original function 9T*= f(rx). The

dt
value of derivative EE: is determined by the gradient of the corresponding
dt

ray. Values of r, to which the rays, and consequently, the determined values
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of derivative dr* belong, are drawn on the vertical scale. The pole of

dt
the radial scale lies on a perpendicular drawn from a point on the vertical
axis with a value of the relative radius of the free cross-section Rx j; .
Hence, the horizontal line corresponds to a value of the derivative
dr= 0, The radial scale is plotted on the basis of the following concepts.
dt
During the separation of variables in the original equation (80), or
its schematic representation (91), a function appears that is the reverse
with respect to f(r«):

It is entirely obvious that one can calculate this reverse function
for any value rx, and subsequently operate from it. However, the operation
of dividing the unit into values of the function f(rx) can be carried out
graphically, having designated the axis on which the values of derivative
dr* are plotted for construction of the radial scale normal for the axis

dat
dr* on the original graph 9T* = f(r ).
dt dt

In the original graph of Figure 5, a, this axis is taken to be
horizontal, but in the radial scale of Figure 5, b, it is plotted in the
vertical. The idea of the perpendicularity of axis SE: in the original

dt
graph and on the radial scale in both drawings consists in the following.
The value of the derivative is determined by the tangent of the angle of
inclination of the ray in the radial scale.

If the axes were parallel, then Ef: - tga, where a - angle of in-
| dt
clination of the ray. With perpendicular axes, the angle changes by
90°, 1In this case one obtains a value for the tangent of the new angle
of inclination:

1 el 1
tg(@ =90 =clga =7 (=5 775 -

By i Eeone o

Hence, the perpendicularity of the axes leads to functions reverse
with respect to f(rx), which is required for integration. The sign in {
i the given case does not have significant value, since it can be changed by 1
selecting a position of the pole from the right or left sides of the
I vertical axis of the radial scale.

Raiadni s

An arbitrary point corresponding to dry . 0 is chosen on the vertical
dt
axis of the radial scale and near it one inscribes the corresponding
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numerical value of the relative radius of the free cross-section of limit
icing Rxjjm. From this point downward, one plots the positive values dr«
dt
for certain values of r«x. This operation is carried out by simple transfer
(with a measuring device) from the original drawing of Figure 5, a, of
segments of a line determined in a certain scale of positive values 9T*,
dt
Opposite each point obtained by such plotting on the vertical axis of the
radial scale one places a numerical value rx to which the point corresponds.
In exactly the same way, from a point Rx)j, upward along the axis of the
radial scale one plots the segments that determine the negative values
dr*, and inscribes the corresponding numerical values of rx. Figure 5, b,
dt
shows the plotting of only two points, one with a negative value (9T*) and
(dt )1
the other with a positive value (drx) .
(dt )2

Having thereby plotted the scale rx on the vertical axis, one chooses
a value of the polar distance h cm and plots the pole on a horizontal line
that intersects the vertical axis at a point Rejjp- By connecting the
points of the vertical axis with the pole, we s%all obtain rays whose
angles of inclination determine the values of derivatives °T* | This

dt

completes plotting of the radial scale, which is an auxiliary graph.
Now one can proceed properly to graphic integration and to plotting the
resulting graph rx = f1(t), shown in Figure 5, c. We shall assume that
at an initial moment of time t = 0, the relative radius of the free
cross-section has a value rx = rej,j. This radius is plotted from the
origin of the coordinates of Figure 5, ¢, along axis orx and a point a
is obtained. If the radii will increase, then one chooses a radius r* gp,
somewhat greater than r«jnj, and, on the contrary, if the radii will de-
crease, then one chooses a somewhat smaller radius than rxjpi. A ray
corresponding to r*ab is sought in the radial scale, and from a point a
a segment of line ab is drawn parallel to this ray. Segment ab should
encompass the range of values rx for which the value of the selected
radius r*ab would be the mean. Then one chooses a new radius rxpg, finds
the new ray and the segment of line bc running from point b parallel to
it, etc. From the segments of lines a broken line is formed giving at
the limit a curve rx = f)(t). This curve determines the sought function

. of the change in relative radius in time. It is entirely obvious that the

shorter the segments comprising the broken line, the more accurate will
be the result of integration.

This curve should have an asymptotic horizontal line that corresponds
to relative radius Re1im With limit icing. The value of the initial radius
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of the free cross-section r«j,j can be both greater and lesser than R«yjp
(the latter case is also shown in Figure 5, c). Therefore, curve ryx = %l(t)
can have two branches. One branch will correspond to pipeline icing in-
creasing with time, and consequently, to a decreasing r,, and the other,

to icing decreasing with time and increasing ry. Both branches have a
common asymptote mxjjm.

During graphic integration, the question of the interrelationship of
scales acquires pressing significance. We shall arbitrarily consider
some value a number of units making up 1 cm to be a scale. We shall |
designate the scale of this value mg, and

m, = content of a certain number of units of a value
a, in 1 cm. (92)

For the graphs depicted in Figure 5, one should designate the follow-
ing scales: |

mp* - scale of the relative radius;

myrx - scale of the derivative of the relative radius with respect to
T time;

my - time scale.

These scales can be selected arbitrarily with respect to value.
During their selection one should try to have the graphs which depict
the functions 9T* = f(r,) and ryx = f(t) to be clear, suitable for use,

dt
and corresponding to the accuracy demanded of the calculation.

Choice of the value of the indicated three scales determines the
! value of polar distance h cm, which is calculated according to the
following formula:

(93)

. The information above is entirely adequate for finding the relation-
: ship of the change in time of the radius of the free cross-section of the
frozen pipeline determined by differential equation (80).

D. Example of a Calculation
Below, the following example of graphic integration according to the

presented method is offered. It is necessary to investigate cylindrical
icing in a metal pipe with an inside radius Rjn = 0.60 m with a gradient
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Jg = 0.0150. The pipe has a constant flow rate Q@ = 2.0 m}/sec running
through it. The temperature of the outside air J = -10°. Wind
velocity w = 4.95 m/sec. According to the graphs of Figure 2, the
corrected radius is determined by the value R.p = 0.80 m. Thence, the
relative internal radius of the pipe will be ﬁ*in = Rint Rgp = 0.75.
Consequently, relative radii of free cross-sections within the interval
from 0.75 > r+ > 0 are subject to investigation. The region of 1.0 >r«x>
> 0.75 is a fictitious one as the result of replacing the actual walls
of the pipe with arbitrary ice walls of a fictitious pipe having an
outside radius Rop. For the indicated conditions, formula (80) acquires

the form:
dre _o006o4 103001078 L —
at L 5 # Py 2 b8
0,0103 -_ ’ i
IR T
Table 9
Calculation of the values of derivative 9T* with different values of r#

dt
for a pipeline with Rjnh = 0.60 m, R = 0.80 m, Jq = 0.0150 when
Q = 2.0 m?/sec and ¥4 = -10°.
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According to this formula we calculate the value of derivative
dr+ for different values of r, within the interval indicated above.
dt
During the calculations it is convenient to use the table of values of
different functions of r* given in the appendix. The calculations are
given in Table 9.

By using the data of this table, in Figure 6, a a graph ff: = fies).

The scales on the drawings of Figure 6 are chosen as follow dt

m, =0, m,,. ‘—‘(‘,Ulandn, =1,0.
d!

Since the drawing in Figure 6 is given in reduced size, as opposed to
its actual dimensions, then for the purpose of convenience of orienta-
tion a scale of the drawing is given on it. According to formula (93),
polar distance h - 10 cm is determined. According to the intersection
of the curve in Figure 6, a with axis orx one determines the relative
limit radius Re1im = 0.53 (one can of course obtain the same number
according to the ?ormula (64) as well). In Figure 6, b, a radial scale
is-plotted. Figure 6, c, depicts the sought value rx = fj(t), plotted
for the two extreme initial conditions:

T

<.
“in

These initial conditions produce the origin of the two branches of curve
r# = f1(t). Curve 1 shows how the relative radius of the free cross-
section will increase. Curve 2 shows how it will decrease. Both curves
have a common asymptot with Rxjjm = 0.53.

’ For more convenient use of the resulting drawing, in Figure 6, c,
next to the scale of relative radii, a scale of r - absolute radii is
plotted - and on the right-hand side of the drawing a scale of &§ - the
absolute thicknesses of the ice layer - is plotted. When plotting the
scale of &, formula (5) was used.
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Figure 6. Graphic calculation of changes in time of cylindrical icing in

a pipeline with an inside radius Rjn = 0.60 m, corrected radius Rer= 0.80 m,
and a design gradient Jq = 0.0150 with a flow rate Q = 2.0 m /sec and a
temperature of the outside air 4 = -100,

1 - branch of curve rx = f; (t) with an increase in the relative
radius from O to Rx]jm; 2 - branch of curve rx = f] (t) with a decrease
in relative radius from R*in to R*lim'

The general aspects of the character of change in time of the radius
of the free cross-section (curves 1 and 2) pertain to the fact that initially
the strongly iced pipeline rapidly undergoes an increase in its free cross-
section. This process occurs much more rapidly than the formation of an
ice layer in the pipeline initially free of ice. Thus, in the given
examples the pipeline even with the strongest initial icing comes to a
state near the limit in 5 - 7 days, and from a state free of ice this
occurs in 10 - 15 days.

7. Cylindrical Icing with a Set Hydraulic Gradient
A. The Basic Equations
For cylindrical icing with a set hydraulic qradient, the heat
balance equations (52) and (54) anc the hydraulic equation (39) are
used as the initial relationships. As in the previous section, here

it does not seem possible directly to use condition (74), which de-
termines cylindrical icing. We shall write these equations with the
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replacement of partial derivatives dr,  for the total derivative 9T*
dt dt

on the basis of the property of cylindrical icing (73):

" <3 ' v 9 b
—86.400-0,633" K" Sy € rith o4
n W W dx

‘ i K‘,'.‘-,-, 1y ), (.'v.;);.:n(_:)o)
""5‘1()00“%&“*' g e
o nr, 1
p |
u dr, )
—2ny; /./(crr. e =0 (95) :
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This system of three equations with variables rx, ¥, H, x, and t
is entirely analogous to system (75) in the preceding section. Here
the same method of solution as before is selected. Variables ¥ and H
are excluded. Variable & is determined from the second equation of
system (95):

00245 (— By |
;):VAV.—.I ll, !0 . '-b‘l __‘!-
A R J =t nr, (96)
Sy LR 1 dry, -
| ml".f— .t Tar —0,000781H degree
@

from which the partial derivative of water temperature along the length
of the pipeline, remembering condition (74) and using the third equation
of system (95), will be:

g de —

(it ()Il____ g, _nd .
—0,000784 0,000131(./d J)degree/m (97)

After substitution of this expression in the first equation of
system (95) and simple transforms, we obtain:
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After substitution of values of the physical characteristics, this
equation acquires the form:

dr,

s = R 0095 ) o581 J) Pt —
t ;

dt T Jd
i RIS ) (99)
—OiB50. 1Y O o BRI LA oy
865310 i —r,lar, day-*
cr

The differential equation (98) or the differential equation (99)
identical to it serves for determining changes in relative radius of the
free cross-section during cylindrical icing with a set hydraulic gradient.

The methods of solving this differential equation will be given somewhat
later.

The expression for water temperature during cylindrical icing can be
ottained from formula (96), if in it one substitutes the value of the

derivative of the relative radius in time (99). After substitution and
simple transforms, we obtain:

'Y‘ 13 lr‘
0=0,001000 " e _ %
n
%429y C g 4PN nape N gl e
L wwd i\ ~ ww o o
e
—0,000784 /7 degree.

(100)

Upon introducing the numerical values of the physical characteristics,
the same equation has the form:

n:o,mewe‘;; S ~1‘_‘,(|./d~'<3.;,7./f Fln
—--(‘,Uf)”?.‘ﬁ-] // degree; (101)

The value of water temperature can be calculated according to these
formulas for each cross-section, having first determined pressure H
according to the third equation of system (95).

N
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B. Example of the Calculation

The differential equation (99), which is the key to determining
relationship rx = f(t), cannot be solved analytically. Therefore it must
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be solved graphically. The course of this solution is shown below in a
specific example.

As before, a pipeline with Rj, = 0.60 m and R = 0.80 m laid with
a design gradient Jd = 0.0150 and operating with a constant hydraulic
gradient J = 0.0150 with é}o = -10° is examined. The assigned conditions
are characteristic for a derivational pipeline.

By substituting these numerical values in (99), we obtain:

dr, 3 14 ’ 1 !
)&—:=0J387r *—0,0103 g ———
. —r; nur, day (102)
Calculations of the value of derivative dry for different values of 1
dt
ry are given in Table 10 according to this formula. The table given in
the appendix was used during the calculations.
Table 10
Calculation of Values of Derivative 9T* for Different Values r« for a ;
dt
Pipeline with Rjp = 0.9 m, R, = 0.80 m, and Jqy = 0.0150 when J =
- 0.0150 ‘and F= -100
T SR TR e T Ty e
re i e 0,187 1,1/, Sl e N =
Q) (4 i (B} ) 5 ( !.
o0 1,000 L o 0, 1387 —o -
0,95 0,918 20,2 0,1273 —0,208 -,
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0,70 0,628 4,63 0,087 —0,047% "y
n“/.) ()'5‘,1 ‘l 0! n.u](,t, __H.u.‘,' § L5
0,05 0,488 J_:? 0,0677 | —0,0308 0,040
0,600 0,420 3,20 0,0501 ! —0,04:40 0,023
0,57 0,560 3,00 10,0519 —0,0:314 0,010
(95770 ST 8 5 2,44 0,036 | — 0,028 0,010
|)|.|', ll.zuq L) 75 (l,{);;m, ! —0,028 U Y
(3511 SR (7 . '_"73$ 0,001 ! —(0), 0281 10,0020
vy 0,174 L 0,024 —0,0250 -0, 00059
0,0 0, L i 0,0180 | —0, 0254 —{, 0 4
0,25 10,0901 | 2,88 1 0,01872 1 —0,0907 —U, 006 ]
0,20 0,0684 ¥, 1 CO,00048 | —0,0419 -,0224 4
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Using Table 10, in Figure 7, a a graph of the relationship Sfj = f(rs)
dt
is plotted. The curve of this graph intersects axis Or¢ at two points
that determine the values Rxjip = 0.91 and Rxopj = 0.38. In this case

it happens that R* > Rxin = 0.75. Therefore, with a constant and quite
prolonged passage o% water the pipeline will be free of internal icing.
The calculation could have been made within limits of 0 < rx < Reip,

but for demonstration of all of the theoretically possible changes in
icing the calculation was made within limits of 0 < rx < 1,0. A radial
scale is plotted in Figure 7, b. A double scale of r, has been entered
on its vertical axis, since two values of rx correspond to each of its
rays. The scale of rx beginning at the top, drops downward a ng the
right-hand side of the axis and at a value r, = 0.75 crosses over to the
left-hand side of the axis in order to rise.
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Figure 7. Calculation of changes in time of cylindrical icing of a pipe-

line with an inside radius Rj, = 0.60 m, a corrected radius Rer = 0.80 m,
and a design gradient Jj = 0.0150 with water running through the pipeline

g}th a h%draulic gradient J = 0.0150 and a temperature of the outside air
b = -10°.

1 - branch of curve rx= f2(t), corresponding to an increasing radius
of the free cross-section from Rx ..j to Rxj1jp; 2 - branch of curve rs=
= f] § -0 correspondlng to a decre851ng radius of the free cross-section
from R#cor to Rs - branch of curve rx= f;(t), corresponding to the
process of tota} free21ng of the pipeline when rx<R¥]im.
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It is entirely obvious that Rxjjm and Ry  ; determine the common point

on the scale. To the right along lhe horizontal line passing through
this point, at a distance h = 10 cm from the vertical axis, a pole is
marked. The polar distance of value h = 10 cm is determined according

to formula (93) with the following values of scales used in the drawings
of Figure 7: value of the scale of relative radius mex = 0.1 (i cees,

0.1 r% is in 1 cm of drawing), value of the derivative scale m qp% = 0.01

and value of the time scale my = 1. The drawings in Figure 7 a?g reduced
in size; a scale of dimensions is given for orientation in these drawings.

By using the radial scale in Figure 7, c, a graph of the sought value
rx = f1(t) is plotted. Curve rx = fj(t) has three branches. If at an
initial moment in time t = 0 the value of the radius of the free cross-
section lies within limits of Recri < r'x < Rxpjp, then the free cross-
section of the pipeline increases and at the limit has a value ryx =

t9 =
= Rx 1im = 0.91. These changes in the radius of the free cross-section
for the given specific case are depicted by curve 1.

Curve 2 shows a reduction in radius of the free cross-section when
1 > r%xini > Rx1im- This curve has a common asymptotewith curve 1, i.e.,
1lim L'x= R*lim = 0.91.
tP?»

Curve 3 shows the process of a decrease in radius of a free cross-
section leading to freezing of the entire free cross-section of the
pipeline, totally. Such an emergency state of the pipeline appears
when R*cri > r#jni > 0 and with the passage of time the intensity of its
freezing increases. One can remove the pipeline from such a dangerous
state by means of increasing the hydraulic gradient (increasing flow
rate) such that the value of the new Rxopj is less than a value r«
existing at the given moment. If one cannot take this or some other
measure to prevent pipeline freezing, then it is vital as rapidly as
poscible to terminate operation of the pipeline and to remove the
water from it, having taken measures so that even a small quantity of
water does not go inside and form ice.

From the physical point of view, the tendency of the radius of the
free cross-section when Rxcri < r* < 1 to take a value Rx1im is ex-
plained by the fact that the pipeline has a property to enter into
thermal equilibrium independently, during which the amount of heat
passing from the water to the layer of ice is equal to the amount of
heat passing through the ice and the walls of the pipeline into the
atmosphere. In this case the layer of ice is an automatic regulator.
When there is a reduction for any reason in the amount of heat coming
from water, the layer of ice increases; this reduces thermal losses
and thermal equilibrium is restored. If however the influx of heat
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from the water to the ice increases, then the thickness of the layer of
ice decreases, losses increase, and thermal equilibrium again ensues.
Hence, the state of thermal equilibrium is stable when R*lim.

There is another state of thermal equilibrium when Rk pj exists -
unstable. It is sufficient for the free cross-section of the pipeline
to increase somewhat for the flow rate of water to increase and with
it the influx of heat from water to the ice. The ice begins to melt,
thence the influx of heat from the water to the ice dominates over
losses. Melting of the ice occurs so long as rx does not reach another
state of thermal equilibrium with R«jjn. If the free cross-section
somewhat constricts in comparison with the critical (ry becomes less than
Rx ri)' then as the result of a reduction in the flow rate of water the
in?lux of heat from water to the ice decreases. In this case heat
losses begin to dominate over the heat influx, as the result of which
the thickness of the layer of ice increases up to the point of complete
freezing of the entire cross-section of the pipeline.

Returning once again to the resulting graph ry = fl(t) depicted
in Figure 7, c, we note that for transition from relative values of
the radii of free cross-section rx to absolute r, a scale r has been
plotted next to the scale rx. To the right of the graph, a scale of
absolute thickness of the ice layer § has been plotted.

Above, cases of icing of pipelines whose hydraulic regime was set
either by flow rate or by hydraulic gradient were examined. On the
basis of the imparted information one can calculate the icing of a
pipeline whose hydraulic regime is set by the combined method; for
example, a pipeline must handle a certain flow rate Q. But with strong
icing, when hydraulic losses increase and the hydraulic gradient reaches
a certain determined value J which cannot be overcome, the pipeline
regime changes. It begins to function with a constant hydraulic gradient
J that handles flow rates which vary depending on the degree of icing
that are less than flow rate Q.

8. Cylindrical Icing with a Variable Flow Rate and
Variable Atmospheric Temperature

Practically speaking, the pipelines of hydroelectric power stations
operate non-uniformly (especially during daily regulation), handling
different flow rates of water. Furthermore, they are under conditions
of fluctuating atmospheric temperature. These circumstances of course
have an influence on the ice regime of pipelines.

Below is a specific example which shows the methods of calculating

the ice regime of a pipeline taking into account daily regulation and
fluctuations in atmospheric temperature.
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We shall assume that there is a pipeline with a corrected radius
Rep = 0.50 m and a design gradient Jq = 0.0150.

The temperature course of the air surrounding the pipeline in the
Winter period is shown in Figure 9, b. It is necessary to estimate
inside icing of the lower stretch of pipeline where the intake con-
ditions already have no effect. Value Rjn in the given case is not
provided, since it does not have principal significance in the cal-
culations cited below.

The hydraulic regime of the pipeline is assigned for comparison
in the following three variations: with a constant flow rate having
a value of 2.0 m3/sec, with a constant flow rate having a value of
0.5 m3/sec, and a mean daily flow rate having a value of 0.5 m3/sec
distributed over the length of the day such that for three-fourths
of the day the flow of water is absent in the pipeline and for one-
fourth of the day a flow rate having a value of 2.0 m3/sec exists.

The basic calculations are preceded by certain preliminary cal-
culations and constructions.

In Figure 8 the graphs of time changes of cylindrical icing
r = f(t) are plotted with different hydraulic regimes of the pipe-
line.

In Figure 8, a, according to formula (85), a family of curves has
been plotted which determine the course of freezing of a pipeline
filled with water but handling ng flow rate (Q = 0), at different
temperatures of the outside air %, degrees. The graph of Figure 4 can
also be used for this construction. Figure 8, b, gives a family of
curves of stabilization of cylindrical icing in the pipeline with a
flow rate Q = 0.5 m3/sec, also for different atmospheric temperature

o+ This family of curves was plotted according to the methods
presented in Section 6. Each curve of this family consists of two
branches which determine the increase or decrease in the radius of
free cross-section r. In Figure 8, c, the same family of curves is
given for a flow rate Q = 2.0 m3/sec. All of the auxiliary graphs
in Figure 8 pertain to absolute values of the radii of free cross-
section r.

During calculation of the pipeline under time-variable conditions
of its operation, one proceeds from the assumption that for a certain
short period of time these conditions are constant.

Thus, it is considered that over the course of the day an identical
(mean daily) atmospheric temperature holds, and the flow rate of water

during daily regulation sharply changes from 0 to 2.0 m’/sec (the
latter can quite closely correspond to reality).
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Ta) when Q = 0

Figure 8. Graphs of changes in time of cylindrical icing r = f(t)
at different atmospheric temperatures and with different hydraulic
regimes of a pipeline with RCr = 0:50 m.

The calculation is made in tabular form. Below, in Table 11,
a calculation for one month (November) is given as an example. The
first two columns of the table are occupied by dates and mean daily
temperatures of the air in accordance with the graph in Figure 9, b.
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The third and fourth columns give limit radii of icing R,. for flow
rates of Q = 2.0 m3/sec and Q = 0.5 m3/sec calculated according to
formula (64).

The next column contains values of r that are set at the end of
the day with a flow rate of Q = 2.0 m3/sec. In this case it is
assumed that on 3 November the pipeline was free of ice. The column
was filled-in according to the graph in Figure 8, c. Use of the
graph pertains to the fact that interpolation between curves enables
one to find an intermediate curve corresponding to the temperature of
the given days. Then, on the found curve one finds the point that
corresponds to the radius of icing of the previous day. This radius
plays the role of rjnj (see Figure 5). On the same curve, from this
3 point through a stretch of time equal to one day, one reads the value
| of the new radius of ice that is set at the end of the calculation day.
| Thus, by proceeding from day to day, the fifth column is filled-in.

Table 11
Calculation of the ice state of a pipeline with Ropr = 0.50 m with
consideration of fluctuations in atmospheric temperature during
different hydraulic regimes. Month of November.
R ' dithecon-'r when @ = 0.5 n3/
R“‘“‘I .V"V p%tghghfi W sec i‘ﬁglgHrlﬂg gally

g ates, m regu 7
(] NS [r=s
~ M N NG o | (@]
o € M M M Ve E O« A
® (%} = = £L0H O
-~ © o ' =} Wy -+ + ©
@ i Q 5 © (@] s 0O B~ o8 =0 e = A=
(] 0 2@ .o o . 0L C T LPLCOCO
= <0 > | < om C N O <L A
———— — e —— e @
1 i 2 3 1 5 6 | 7 &
4 0 0,50 0,50 0,50 0,50 0,50
] 1 —4,5 0,40 0,24 0,44 0,43 0,44
{ 5 ==4.0 0,40 0,28 0,42 0,40 0,49
6 | —7,0 QoaBi 0, 0,08 0,50 0,87 &
7 —1,4 0,42 0,5 0,40 0,45 0,30
b 1.0 0,4 B2F ey (4 L )
Q Y B (U 0,20 (1,08 0,40
b 10 L1000 (0,016 0,20 0,487 0,27
11 ) O Tl (0,20 0,36 0,24
12 —4,5 0,40 0,24 (A 0,24
13 ~5H,0 0,50 5o (1,490 0,24 |
14 —7,8 0,48 0,21 0,18 0,23 | '
| 15 —4,0 0,50 0,22 0,38 0,23
16 —=i ) 0,40 0,248 0,30 0,23
17 —2,0 0,42 0,26 0,4! (),24 !
18 — 1,50 0,47 0,18 0,37 0,21 |
19 ~—it,0 (40 (), 20 0,30 ), 20 |
§ 20 —15,0 Oudd | 0,18 0,34 0,19
£ 2% —I18,20 0,44 0,18 0,34 0,18 |
i 22 —1H,3; 0,4 0,!'8 0,44 0,18
’ 2 —15,0] 0,34 0,18 0,34 0,18
3 24 — 13,0 0,4 0,19 11,35 0,18
26 —=15,9, 0,84 § 0,18 0, 0,8
{ 20 — 3,00 0,135 0,19 1,40 ), 18
27 —0,0 0,37 (1,22 0,30 0,19
28 L =18,00 0,44 | 0,08 | 0,85 | 0,18
DIs) - 16,51 0,254 0,18 0,84 ' 0,18
R —12,0( 0,30 0,20 1 D85 0,19
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Figure 9. Change in pipeline icing with Rop = 0.50 m over the course
of a winter.

a - icing of pipeline with different hydraulic regimes; b - atmospheric
temperature.

In the next (sixth) column, values of the time-variable radii of
icing with a flow rate of water in the pipeline of Q = 0.5 m>/sec are
given. In this case, Figure 8, b is used as an auxiliary graph.

In the last two columns (the seventh and eighth), values of the
radii of icing r are given for the mean daily flow rate Qave = 0.5
m3/sec during daily regulation, with the provision that the first
three quarters of the day has no flow of water through the pipeline,
but that the pipeline remains full of water, and that in the last
quarter of the day a flow rate having a value G = 2.0 m3/sec is
handled by the pipeline. The penultimate (seventh) column of the
table is filled-in by using the graph in Figure 8, a. In it, by
interpolation, one notes a curve corresponding to atmospheric tempera-
ture on the given day; on this curve one notes the point corresponding
to the value rjn; (this value r corresponds to the end of the previous
period), and from that point through an interval of time of 0.75 days
on the same curve, one finds the new radius that appears in the pipeline
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at the end of the downtime of the day.

This value of r is entered in the seventh column of the table.
The last, eighth column is filled-in according to the very same
principle by the aid of the graph in Figure 8, c, but with a time
interval of 0.25 days. Of course, the last two columns are filled-
in jointly.

The calculations made in tabular form according to the example
of Table 11 served as the basis for plotting the graphs of icing of
i a pipeline with Rop = 0.50 m in Figure 9 for different hydraulic
' regimes with consideration of fluctuations in atmospheric temperature.

it . catmibididie

The values of Rlim are plotted in the form of a step graph, while
the radii of icing calculated with consideration of the time change
(third and fourth columns of the table) - in the form of segments of |
sloping lines. The values of the radius of icing during operation of
the pipeline with diurnal regulation (last two columns of Table 11)
are plotted in the form of two curves between which the value of the
radius of icing changes daily (the space between the curves in Figure
9 is shaded).

From the graphs of changes in the radius of icing in time with
different hydraulic regimes (Figure 9), one can draw the following
conclusion.

The temperature regime of the air does not have such important
significance for the degree of icing of the pipeline as the regime
of flow rates of water within it.

Values of Rjjm (step graphs) are extremely close to values of r

? (graph with slanted lines) calculated with consideration of the time

' change. (The greatest deviation between the values of Ryj, and r is
obtained at atmospheric temperatures near zero). The closeness of
these values makes it possible with preliminary planning to characterize
the icing of the pipeline constantly passing the same flow rate, and
with a value of the radius of limit icing Rjjn. In this case the at-
mospheric temperature can be introduced into the calculation averaged
over a certain prolonged interval of time (over 10 days or even over
a month).

. The regime of daily regulation of flow rates has a great effect
{ on the ice regime of the pipeline. Briefly running large flow rates
through the pipeline can significantly reduce the layer of ice on the
inner surfaces of the pipeline walls. The latter is extremely impor-
tant for practical use in the Spring during preparation for the thaws,
for the purpose of preventing an ice-gang which is possible in the
pipeline at this time. The calculation of the limit ice state with

P
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daily regulation according to the average daily flow rate has no real
meaning.

Chapter Four

STEADY-STATE ICINC OF THE PIPELINE

It was decided to call icing that is constant in time but variable
along the length of the pipeline steady-state icing of the inside surface
of the pipeline walls.

Steady-state icing ensues after a quite prolcnged continuous operation
of the pipeline with constant hydraulic and thermal conditions. It is
the 1limit that icing tends toward with the passage of time.

Mathematically, it can circumstantially be described in the following
way: r = f(x, t), where r m - radius of the free cross-section, which
determines the degree of pipeline icing. But ;% .., Therefore, when

e dE g

{—

r = Fix), (103)

where r m is already the radius of the free cross-section during steady-
state icing. This meaning for r is preserved in all subsequent formulas
of this chapter.

Thus, the radius of the free cross-section during steady-state
icing is only a function of x m - the distance along the axis of the
pipeline from its entry.

Steady-state icing in the initial cross-section of the pipeline
is determined by the temperature of the water entering the pipeline.
Then along the pipeline icing changes and at a sufficient distance from
the beginning acquires a limit value invariable with respect to length.

Hence, the investigation of steady-state icing is of interest only
for a certain stretch of the pipeline lying adjacent to its beginning.

9. The Basic Relationships

The mathematical relationships for all cases of intake conditions
(for different values of intake temperatures) are obtained from the heat
balance equations (46) and (48) and the hydraulic equation (40), if the
condition indicated above, that ‘t -—q is for steady-state icing, is
o
inserted in them. In this case, according to (103), the partial deriva-
tives according to x become total. After considering these circumstances,
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we obtain a system of three equations:

lll. ’l'./)‘ ‘.
A LR =T
f it s T T

0,02:1. 2= (—1

==
. -IA': nry
i ] (104)
172x( @\ (9-1-0,000784H) - | - —
\Rex ' ol
0,024 2% (— i)
;-2 =0

——1nr
' In ry

= ek Al W " ‘“ - ’
dy d ' :'-'I\fn‘ rf k8 J

This system of equations includes the basic relationships on which all
further investigations of this chapter are based.

A. The Temperature of Water During Steady-State Icing

In any cross-section of pipeline during steady-state icing there is
a certain quantitative relationship between F degree - water temperature,
H m - pressure above atmospheric pressure, r m - radius of the free cross-
section. This relationship is determined by the second equation of
system (104), which can be presented in the following form:
02454 (— o) R 7 ]
Mooianic e L r‘, —0,000784H degrees. (105)

3 & in
8,000 — 1 Py

Having substituted the numerical values of the physical characteristics
here, we obtain:

v Y
e
\

R rle
= RAC . { ‘(:r e 1 A N ~u
y—-()'()()g)i)[) (— do ) ,\‘ Sk _U,{\(1(),s{_lf] .dEQI‘eeS. (106)

/o =lury

where Rop, @, and ) are, according to the conditions of the problem,
constant values, while ¥, H, and rx can change. Therefore, the relation-
ship determined by formula (106) can be schematically represented in

the form J= f(rx, H). This functional relationship will be widely used
below.

Formula (106) can give different results for the value of the

relative radius of the free cross-section within limits of 0 < rx < 1
during the calculations. If r»> Rx;., then thismeans that in the

O
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given cross-section there is no inside icing. Icing only exists where
r* < Rej,. If it proves that r«x = Rxj,, then although icing is
possible the thickness of the ice layer is extremely small.

8. Types of Steady-State Icing

Steady-state icing can develop with extreme variation under the
effect of intake conditions.

The conditions of intake of water intc the pipeline from the view-
point of the thermal calculations are determined by J}int degrees -
temperature of water at the point of intake. If this temperature is high,
then the thickness of the layer of ice along the length of the pipeline
will increase to dimensions which correspond to limit icing. In this
case there may be a stretch entirely free of ice at the beginning of the
pipeline. If however the water temp=srature at the intake is low, then
a thick layer of ice appears at the intake which will decrease along the |
length of the pipeline, also to the dimensions that characterize limit

Cne can determine which of these types of steady-state icing will
develop in the pipeline in the following way.

There is a completely determined water pressure Hj,¢ at the intake
to the pipeline. Having substituted the value of this pressure in formula ]
(106), we obtain the following relationship between water temperature
and the relative radius of the free cross-section, which can simultan-
eously exist in the intake cross-section of the pipeline during steady-

state icing:

R e ! 3
? ;inf:(LUOSSO(——?>&{T7$r "1ntnE-OJMMWB4i11nt degrees. (107)

—lnr i

This relationship makes it possible to determine which of the types
of steady-state icing develops in the pipeline.

For this purpose it is necessary to make a comparison among the
following characteristic values of temperatures of the water or their
corresponding values of relative radii:

A

d&nt Or Txjnt - temperature or relative radius of the free cross-

i section corresponding to it calculated according

g to formula (107);

h Jint 1im OF Rx1inm - temperature corresponding to limit icing in the
1= lim p -

I intake cross-section, or the limit relative radius

of the free cross-section;

PN T

= BT =

TR TRIN - o R A

- ““‘w.:'«l.»‘\rva"t\r BN e & | I P




20\ o roDaSid

e A

é
|
|
¥
!

int pl OT R«in - temperature corresponding to the appearance of
an extremely thin layer of ice in the intake
cross-section or the inside relative radius of
the pipeline.

The following relationships can exist among these three values of
characteristic temperatures for relative radii of free cross-sections.
These values determine the character of steady-state icing.

If inequality ylnt >Jint 1im exists, or the corresponding in-
equallty Txg > Rxqjme then at the beginning of the pipeline less
icing 1is establlsheé than the limit and the thickness of the ice layer
will increase proportional to pipeline length.

Moreover, if ﬁint >'ﬁnt pl OTs Tyjnt > t» then a stretch
exists at the beginning of the pipeline that is Pree of ice.
If however 3’ < 3' ntlim or r*xint < Rxyjp, then there wil be

more icing at the beglnnlng of the pipeline than limit icing and the
thickness of the layer of ice will decrease proportional to pipeline
length.

It is entirely obvious that when Sint = ﬁ'int lim @nd Tyt =
= R*1im a limit icing is established at the beginning of the pipeline
that is unchangeable with respect to pipeline length, but when Jint =
= %*int pl @d rxjnt = Rxip in the intake cross-section of it a thin
layer o? ice appears which increases to the limit dimensions propor-
tional to distance from intake.

Thus, the general aspects of steady-state icing, whose knowledge
is vital in these subsequent calculations, are determined.

In all cases when ‘}1nt < 31nt pl OF Twjnt © Rxin, relative radius
in the intake cross-section of the p1pe11ne 1s determined by a value
C¥jnt. This value is subsequently used as the boundai; cond15&on during
the calculation of steady-state icing. In a case of Jj¢
or r*int > Rxjn in the presence of a stretch free of ice, the éoundary
conditions become complicated and it becomes necessary to determine the
length of the stretch that is free of ice. This question is examined
in the next section.

C. The Length of a Stretch at the Beginning of the Pipeline Free
of Ice As the Result of High Water Temperature
It was reported above that‘hith adequately high temperatures of the

water entering the pipeline, a stretch can exist at the beginning of the
pipeline that is free of ice. In order to determine the length of that
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stretch, we use the first equation of system (104), somewhat modifying it
applicable to this case. The last member of this equation determines
thermal losses of the frozen pipeline according to (15). This member
should be taken from the equation and replaced by expression (17) which
determines thermal losses of the pipeline without inside icing. More-

over, it is vital to make a substitution =" Rin 1in the equation.

*¥1in F Rcr
After the indicated operation, the first equation of system (104) acquires
the form:

— 86 ‘1(7\0(3.‘. = di 918 108 Qs
Y

wiln /;’,-_:/‘;i‘ﬁ T
0,024- 2z (i1 — 0 ) (108)
ik =il T _)V-RJ‘lb_A»-I‘_.».. -:0'
0,00280 (/‘ 1n\ == 1n Rin
SRR l‘i [\'cr

After separation of variables, we obtain :

3

R il . i)
dl““lr~(xﬂ-~hd di,
ki A==86400Q7L '
: WW
a0 Al n=( )3
B==2{8.10% - ~--“)“-»—;
L=2pelt
in
UL 300 B0 s
it bt e
(R N ) R
000280 10} — o— m in
B i Gl

Integration of this differential equation is conducted within limits
from x to zero to x ,i.e., from the beginning of the pipeline to a certain
cross-section of the pipeline at a distance x from the beginning, and for
& within limits from Oint to #, where §:n degrees - temperature of water

entering the pipeline, and Jdegrees - témperature of water in the pipeline
at a distance x from its beginning.

After integration, we obtain:

4 - (s {
gy Vi)

fy el = M.

o) (109)

If one ignores the heat of friction and the thermal reserve that
arises in the pipeline as the result of a change in the melting point
of ice with a change in pressure, i.e., if one enters B = 0, then from
(109) one obtains the formula for cooling of water running through a
pipe (28) known in heat exchange.

Formula (109) can serve for calculating the temperature of the water
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in any cross-section of the pipeline in a stretch free of ice.

In order to determine the length of a stretch of pipeline free of
ice, it is vital first to clarify the significance of water temperature
' degrees, at which icing of the inside surfaces of the walls appears.
In order to determine this temperature, we substitute rx = R*in in formula
(106). As the result, we obtain:
‘R 1 3Tl
’bl::(xDOBSQ(—Jb) }?F A°ln""0im“784 !l degree.

-In /\' 1
#5h (110)

where (with a constant design gradient of the pipeline and small local
hydraulic resistances), pressure can be expressed by using the third
equation of system (104) in the following form:

: e
H=1 Jq— 2,52 Sl R

\ - ¥R/ (111)

By substituting the value1}=«}b1 in (109) according to (110), and by
using (111), we obtain:

A Bi—€ (.. ~Mm

X =gl ——— inf
pl P ‘ / \"}:,\)Cr\“ Ri
B —C |0,00559 N i} o Tl & -_1”]75'}—— —
L 0 . *in (112)
1
ST S s e ~;Ir'.'(‘)_'v ¥ T L —)_-1-— M.
— 0000784\ J, =252 — - o=k — g
\d RS Il

In this transcendent equation, xy] m is the sought value of the dis-
tance from the beginning of the pipeline to the cross-section in which
icing of the inside surfaces of the walls appears.

If the atmospheric temperature is so low that in comparison with its
absolute value (without consideraticn of sign) the value of water tempera-
ture can be ignored, then the differsntial equation from which formula
(112) was obtained is simplified and acquires the form:

A .
o A oty

Following integration within the same limits as in the previous case,
we obtain:

Al = &

X C(hl,‘:)t'.w, (113)
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From this expression, just as in the previous case, through (110)
and (111), one can obtain a formula for calculating xy] m - the length
of the stretch free of ice:

S /.'. ]
A{LIODSSO(—-i' )/’égn\ —1n A
. B R ¥ -1&( “h
? 2
pl B—C ('"‘"O\ 0,000781 1// — 959 L
\d 2R 5/
‘ /]e . ,\)"’c (lla)
0 { cr 3 )
86 AOOQ‘W lmu ,f:(- i ) ) ._“: Rr; — n‘
P = ———— - -— »_—A!
(213 pos - .\ nQr nnz; 2‘(“_ 0 )
TEeeE opfls g L S p
o5 Rin nno'h'.\',lln ——1n \m-f—d?,SQ.I.
: : G )1 Ray

This formula is a simplified expression for Xpl, in comparison with
formula (112).

10. The Calculation of Steady-State Icing
A. The Basic Differential Equation of Steady-State Icing
From the system of three equations (104) thiﬁ contain five variables
n*,d* H, x, and t, we exclude the two variables v and H. For this purpose,

from equatlon (106), identical to the second equation of system (104),
we find:

dh_ "”1‘1(—"’0)/ ‘“4‘" '(—-In re) dry
T T Ph(=Tnnye dx T
—0,000784 '/ degree/m. (115)

We substitute here the expression for the pressure gradient according
to the third equation of system (104) :

J
iy __ 0,024) (-.coynerl = 4(—1n;u)dr
dx— &uwQ g o “,- (—-‘n r,,.) ‘dx T
(116)
—0,000784 /J pag )
neR ' ,-",3
' cr

After substitution of this expression in the first equation of
system (104), we obtain:

= 9 &
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0,024% (— B Ry 1 (—=1n ry) .
— -8B ,“\(\(‘)‘Q‘(“v{l 1( 'Q) er 1 dar

2600 g Pty K

( w0? 1
-.-n_(n(mmk J =252 e ,"r'-.-z) +
“‘er B

'-‘2‘%. 10:’ . Iluf:?“l. ._ll____ 0.021:2? (—___“Q):O; (117)
LR s S 1
cr . - '.’"—ln T
i
from which one can determine the derivative of the relative radius of the
free cross-section according to x :

i B 5 2,52-8,60n2Q ¢
=l —0,000784 Lf""’“"i T X
SO D .1 oo  8,60.2¢ R T
Lo T N i e A e
r*sle'!‘a(—‘"’*)] e Rcr 1'1":_(—Inr*) s
| 11

. 0,000784.8,60Q"" J rl—1nry)?

T 024n s (VR 3 .
0,02 Ml( ‘o)’? er ot A;' (_1" '.‘)

After substitution of the numerical values of the physical characteristics,
the same equation acquires the form:

ol = O o — 1)
I,. '“.00/ 1; . !0“‘ fl) [,“I:“. e (I :(*) _]—
iy (—') 'er. r"."i R e LESY ]

—0,625.10-" .,’R,. . _,c';s'{‘:_";f'i_ e

TRex 14y =y
2 : (119)
o070 Aok MY
©oo'er 7«-':.-(-—111 re)

Calculation of steady-state icing of the pipeline is based on the
integration of this differential equation.

B. An Example of the Calculation

a) The original data. The law of change in the size of the radius of
the free cross-section along the axis of the pipeline during steady-
state icing is determined by the differential equation (119). This
equation cannot be solved analytically. Therefore, below methods of its
graphic solution are employed similar to the methods already employed in
the preceding chapter during the analysis of non-steady-state ice processes.
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The structure of differential equation (119) can be depicted in the
form:

g =) (120)
dx

As the result of the calculations, it is necessary to find the re-
lationship

Ty = fl(X). (121)

All of the arguments, methods and plots for solving the assigned
problem are identical to those given in the previous chapter. The only
difference is that in the previous chapter the independent variable
was t - time (91), but here is x - the coordinate of the length along
the axis of the pipeline. In view of the indicated analogy, all of
the necessary information about methods of integration will be taken
from the previous chapter, and here we shall proceed to explaining the
solution to equation (119) based on the following specific example.

It is necessary to calculate steady-state icing of a pipeline
having an inside radius R;, = 0.60 m, a corrected radius R.. = 0.80 m,
and a design gradient J, = 0.0150 when running water at a Fiow'rate
Q = 2.0 m3/sec through ghe pipeline and with temperature of the outside
air Jp = -109. Atmospheric pressure exists at the intake to the pipe-

~ine, i.e., Hjny = 0. Calculations are made for two values of intake
temperatures, J'jpt = 0.100 and Jjn¢ = 0°.

For the sake of simplicity, Rjn, Rer and Jy in this example are
accepted to be constant along the iength of the pipeline. Under actual
conditions, the values of these characteristics can be different in
geparate stretches of the pipeline. In this case, every stretch is
subject to independent calculation, and terminal ice and temperature

conditions of the previous section will serve as the intake conditions
for the next one.

After substituting the numerical values of the magnitudes of -the
examined example in equation (119), we obtain:

e=001867. 10~ (=Wl
: ’.5'/.. [1_{_4_ (__'n r‘)J
—0619.108 — "I
14 ; (=In rq)
Yer )
0,417,107 Ty (122)
Lk (—1Inry)
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The radii will be introduced within limits of the possible change in
corrected radius of the free cross-section 0 < ri< R*in = 0,7%.

We calculate the value of derivative drs for different values of
dx

relative radius rx (Table 12).

According to this table, a graph 22:
dx
below) in Figure 10, a, in which a curve intersects axis orx at a point
that determines the value of the relative radius of limit icing Rxjjp =
= 0.53.

= f(rx) has been plotted (see

Table 1

drx with pifferent Values of ry for a

dx
Pipeline with Rj, = 0.60 m, Roy = 0.80 m, and Jy = 0.0150 when
Q = 2.0 m3/sec and \}0 = -100.

|
i

Calculation of the Values of

b g r‘_‘( -In rq) r".‘( —In re)? | i
' N TR Y e ,01867.30°3 (4) | —0,619-30-2 (3) | €,417-70-% (4) dx =
; o oo ;.[z —’-4(-1nr.\] 8 Cinralt & e 0,018 ® @ ( ;=
1
ay ! ) { 3 [ ) I 5] (n i ) ©
1 | |
0,75 | 0,294 7,220 0,053¢ | 0,00549-1073 | —0,1361-10°%  0,0205- 10—sl_-0,1049-10-s
0,70 | 0,018 0,238 0.0221  10.01153-10-3 i 0, 17861075 | 0.0384-10-8 —0,1087-10-%
0,65 1,257 0,293 01252 | 0.0234.10-8 | —0.1813-10 3‘ 0,0527-10-8 —0,1052-10-%
0,60 2,53 0324 | 0,165 | 0,0372:10=3 | —0,200-16-3 [0,0691-10-% —0,0837-10-%
0,35 5,16 0.3% | 0,212 1 0,094-10-3 --0,220.10-3  0,0885-10-3 —0,0351-1-3
‘ 0,50 10,70 0,382 0.265 | 0.1997-10-3 | —0,236.10-3 |0,1103-10-3} 40,1465-10"3
1 0,45 23,2 0,409 | 0.32 | 0,433-10-3 —0.253-10-3 10,136 -10-%' ' 0,316-10-3
0,40 52,6 0,432 | 0.39%6 | 0,982.10-3 —0.267-10-8 |0,1652-10-8 0,880-10-3
i 0,35 128,1 0,452 | 0,473 0,00239 —0.980-10-8 | 0,198-10-8 0,00231
: 0,30 347 0,468 | 0,554 0,00048 | —0,200.10-3 1 0,235.10-3 0,00043
3 0,25 1,085-108 0.481 | 0,667 | 0,0202 | 0.208.10-% |0,278.10-8 0,0202
0,20 4,47.108 0.488 | 0,836 | (,0834 L 0.502.10-3 ;0 349.10-8 0,0834
; 0,15 ! 22,9-10 0,487 | 0,922 | 0,427 -0.501.10~* | 0,384-10-3 0,427
0,10 | 0,236 108 0,475 1,093 | 4,40 ~0,934.10-% | 0,456-10-8 4,40
0,05 11,49- 106 0.436 | 1,308 | 212 —0,270-10-3 30,146 10-3 212
0 [o'0) | 0 kv | (S e) 0 i foe)
| | i i {

O e .

g
i

(Note:

commas should be read as decimal points.)

It should be noted that the values of the relative radius of limit
icing Rx1im determined here and in the example of the preceding chapter
during the investigation of changes in icing in time, are equal.
is because both examples pertain to the same pipeline and the limit

radius of icing Rejjm
and with respect to length.

R

*1im

- Ol -

This

is a common limit with a change in r, both in time
can also be calculated according to
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Figure 10. Graphic calculation of steady-state icing of a pipeline with
an inside radius Rjn = 0.60 m, a corrected radius Rep = 0.80 m and
a dESlgn grad1ent Jg = 0.0150 during passage of a flow rate of water
= 2.0 m?/sec through the pipeline with a water temperature at the
p01nt of intake into the pipeline of Jint = 0.100 and a temperature of
the outside air g = -10°.

b) Determination of the forms of icing. Before proceeding to the
graphic integration of the differential equation (122), it is vital to
determine the forms of steady-state icing that should develop with the
given values of intake temperatures. For this purpose, in accordance
with Section B, No. 9 of this chapter, it is vital to find the values
of the characteristic temperatures of water and radii of the free cross-
sections characteristic for the intake cross-section. Each pair of
values of the temperature and relative radius at the intake cross-section
with steady-state icing are linked by the relationship (107). After sub-
stitution of the numerical values of magnitudes of the examined example
in it, we obtain:

0, = 0,0282 lnt degree.
mid —"int (123)
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This formula determines the following characteristic values of water
temperatures in the intake cross-section. If limit icing with Rejjp =
= (.53 has been established from the very beginning of the pipeline,
then the temperature of water in the intake cross-section should have
a value Jﬁnt 1im = 0.02759. 1If only slight icing had appeared in thek
intake cross-section with a thin layer with which one can consider that

T = Rxj,, then water temperature at the intake should have had a value
Yint p1 = 0.07890.

Formula (123) also determines the values of the relative radii of
free cross-sections during intake into the pipeline of water correspond-
ing to the assigned intake temperatures. With an intake temperature
dnt = 0.100, the value of relative radius rxjnt = 0.79 is obtained.

With an intake temperature Jﬁnt = 09 rxjnt = O should exist.

The obtained values of the temperature characteristics and radii
are quite adequate for explaining the type of steady-state icing. We

shall make the necessary comparisons for two cases of intake tempera-
tures, 0.10 and 0°.

When Jins‘z 0.109, because 31nt > jint 1im = 0.9275°, and fgrther-
more,\9-nt > ¥nt p1 = 0.07890, there must be a section free of ice at
the beginning oP tRe pipeline. A certain distance away from the intake
one should anticipate the appearance of a thin layer of ice which, in-
creasing along the length of the pipeline, tends to reach a value that
corresponds to limit icing. It is quite obvious that one could come to
the same conclusion by comparing the characteristic radii of free cross-
sections between which the following inequalities have been established:
0.79 = rxint > Re1jy = 0.53, and, moreover, rxjnt >Rxjnt = 0.75.

When ﬁint = 09, because 91nt < ~9in§ lim = 0.02750, or, which is
the same thing, O = r* < Rx]jm = 0.53, significant icing should appear
at the intake into the pipeline. Such icing should decrease along the
length of the pipeline, tending to reach the limit state.

c) The length of the stretch free of ice. Having explained the
character of steady-state icing with two assigned values of intake
temperatures, one can turn to the calculation of these states of icing.

We shall determine the length of a stretch of pipeline free of ice

when JEn = 0.100 according to formula (112). The values of constants
in this Formula are the following for our example:
A=86400-20-1,0-1,0=173.10%
B—=918. __0,012-2,0 I ;
8100 oo = 00297,
O A | =1,0402,
0,00280 \ ‘.,’,O f ~a20 In 0,75
G




After substitutions of these values formula (112) acquires the form:

17107 0,4297 = 10102 (O,10-1-10)

P1= ) oqe “‘mmm7—1whvvuﬁw“~“ﬁW54U“bl"
A )

- M,

i =

.- 0,876
2083 T 001000 10

== 1062 10 I

from which, by selection, one finds the value xpl = 453 m,

For comparison, we make the same calculations according to the
simplified formula (114):

Sad 174 140,078 — 0,101 2
"p]_““ 00207 L0102 10 1 17 !""-').“'105‘--(\-—":400 M.

Both answers are so close that for our example one can use the
simplified formula (114) instead of the complex formula (112).

d) Calculation of icing when ¥ int = 0.10°. Having thereby explained
the value x,, which determines the location of the cross-section in which
icing appeags, we graphically integrate equation (122) in Figure 10 for

a case of Jj; = 0.10°.

As was indicated above, in Figure 10, a, according to Table 12, a
. graph 9T* = f(r«) was plotted; in this case, one pays attention to
E | dx
? depicting the negative values of the derivative. In order to make the
f plots3 the following scales were seiected: my4 = 0.10; m Sﬁ: = 0.05 -
+ 1072 and my = 200. The dimensions of the drawings in dx
Figure 10 have been reduced in size, and therefore a graphic scale of
’ dimensions is given there. Formula (93) for determining the value of
P polar distance in this case acquires the form:

m
h=—--"™ car.
My, - M, (124)

y

By substituting the values of the scales here, we obtain the value
of polar distance h = 10 cm.

DBl -

A radial scale has been plotted in Figure 10, b. Its axis has
been chosen transverse to the vertical. The pole has been placed to
the right of the axis on a horizontal line which intersects the axis
in a point corresponding to R«jj,. Along the axis, moving upward,
are plotted the segments that correspond to negative values of EE:,

dx
and the values of rx that correspond to them are inscribed.
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In Figure 10, c, using the radial scale, the sought graph ry = fj(x)
has been plotted.

Plotting it begins from a point x = Xpl = 460 and r*= R#jn = 0.75.

Calculation of the steady-state ice regime of a pipeline when Jlnt =
= 0.109 could conclude here. However, in certain cases it is necessary
to determine hydraulic losses and the temperatures of water in the pipe-
line during steady-state icing. The calculation of these values is con-
ducted in the following way.

e) Hydraulic calculation when &in{- = 0.100. Hydraulic losses in the
pipeline are calculated through the hydraulic gradient, which is deter-
mined to formula (9). In this case it is assumed that losses during in-
take into the pipeline and the velocity head are slight. Formula (9)
can be presented in the form of a differential equation:

dH) _geo 0 1

d==p ?vu P (125)

After substitution of the numerical values of the constant values,
this equation acquires the form:

d (AH)

D —0,336-10-2 ﬁ”-. (126)

The integration of this differential equation is also carried out
by the method described in the previous chapter. According to equation
(126), which has the following structure

1(AH
: flfc"):f(,’*)’

one plots a curve which serves for plotting the radial scale. The radial
scale is plotted from tn? vertical scale, on which segments are laid
which correspond to d and the values of rx are inscribed. The

; . Tdx d(aH)
inclination of the rays determines the hydraulic gradient J =

dx
in a certain scale, with the given free cross-section of the frozen
pipeline characterized by a relative radius r«.

By using relationship rx = fj(x), depicted in the form of a graph
1n F1gure 10, ¢, by the aid of this radial scale, one plots curve

= f3(x)m. Hence, the value of ry is excluded and the value of the
total hydraulic losses AH becomes a function of x.
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Calculation of polar distance, depending on the selected scales, is
carried out according to the following formula:

el ”I_\/l ¥
m, (.\/l)'”l"' ¢, (127)

dy

Integration begins from a point corresponding to the static level.

A AH) £
a %i!-= (1)
e ¢ W ) radial scale
T 1 ey For. du
- £ ‘ —los | dx
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Figure 11. Graphic construction of the piezometric 1line during steady-state
icing of a pipeline with an inside radius Rj, = 0.60 m, a corrected radius
Rer = 0.80 m and a design gradient Jy = 0.0150 with a flow rate in the pipe-
line of Q = 2.0 m?/sec and water temperature at the point of intake into

the pipeline Jij,t = 0.100 and a temperature of the outside air o = -100,

Calculation of hydraulic losses, i.e., plotting of the piezometric
line for the examined numerical example when int = 0/10° is carried out

in Figure 11. The scales for the graphic plots are accepted to be the
following:

)’ y — . pmo—y ; |
H..I'|)/1-\ = 0,001 y M= ‘(\Oand,"k\” — 2'0.

'
W
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The values of J =

(126) in Table 13,

Calculation of the values of the hydraulic gradient with different values
of relative radius of the free cross-section for a pipeline with R; =
= 0.60 m and Ry = 0.80 m with a flow rate of Q = 2.0 m3sec in the pipe-

d(aH) - f
dx

o{ry) are determined according to formulas

Table 13

line.
I [ R e S
! otk d(AH) N et e L
. R L e B TR I M A
L =0,336-10-9 (2) | =0,236.10-3 (2)
b o PR TR hos
m | @ ) ) © | IE)
| TR S |
0,75 ‘ 4,64 0,005 | 0,35 2710 | 10,0007
0,70 | 6,70 | 0,00225 00 L 615 0,205
0,66 | 9,9 0,00335 0,25 1,628-103 | 0,547
0,60 15,28 ¢ 0,00514 0,20 B,80- 108 1 15996
0,85 | 24,3 | 000816 0,15 24,8103 k833
0,50 | 4a0.4 | 0,0130 010 0,216-108 79,6
0.45 | 71.0 0028 0,05 | 8,70.108 | 2920
0,40 | 132,% 0,0446 i 0 @ | 0
| 1
(Note: commas should be read as decimal points.)

this table.

It is

The graph of d(aH) _ fo(rx) is plotted in Figure 11, a, according to

dx

A radial scale with a polar distance h = 10 cm is plotted in Figure
11, b, in accordance with formula (127) and the selected scale values.

By using the radial scale in Figure 11, c, the sought graph of the
piezometric 1line AH = f3(x) m has been plotted. Here too, for compari-
son, a piezometric line is plotted for the case of the absence of ice.
Plotting of the latter line is extremely simple. On the radial scale
one chooses a ray that corresponds to rx = R¥jn = 0.75, and parallel to
it, from the origin of the coordinates of the graph, one draws a line
the entire length of the pipeline. The piezometric line for a frozen
pipeline in a stretch from x = 0 to x = x5; = 460 m is plotted in the

further assumed that in a stretch 460 m < x <1150 m

there is a constant relative radius having a value rx = 0.70 (see Figure
A new ray on the radial scale is selected for this value of the
relative radius and, parallel to it, line AH = f3(x) on stretch 460 m <
< x < 1150 m is continued.

- 100 -




(*sjutod Tewrdep se peal aq PTNOYs sewwo) :330N)

| | | | | i
i i e ‘ | _ | i
A O— | | vaLioto ovo'o— st |« R 00 ¥
086700 ! | Feeioto | TI'0—!  8Rz0‘0 . j _,.% | mwm i %._J =
O8600°0 1 REROT0— GOBOCO [Ohr S BT S - o
: aaps’o - d..?u.c“:l. mmxo“: ! ¢'g ! JARN) ez =
g | 0 | 00— OIR0'0 | ;o ke L ooag ! owa
T _ ; i £OLIOT0—:  PUE0T0 _ , e I LX) 005 1
oUR0i0'0— | 1Pi00t0  § 9Llin'o—  SL50°0 Bt L6920 L omi
ORVON0— GHLON0'0 | TFE00'0—,  GRLY'G | ' I VAT TR B
0 = ! g o _ S I S | o
i 4 S My R | : i
M ' « (Al i el ) :M *) | @« i (&) T
' ] : _ TR »ll.“ ;
6 | -bap | | eopicel ~awele | Wz « |
ifwwﬂs .S+?7Mwl=m L I S LI 00 | Y m ” v m : m wa
i IS i e L i i i

*00T°0 = ucma. pue o0T- = oh.wmw\ns 0°Z = b uaym
0sT0°0 = um pue ‘w pg°0 = I% ‘w 09'0 = " Y YITM BuTTadrd B UT ST 4O
aanjeiadwaj - %o pue 1338BM jo ainjeradwsl aje}s-Apeais - 4 340 UoT3ETNOTE]

v

%1 31gel

= o e e e e g S R SIS T S s i SR AP S SR




Thus, a broken line which at the limit yields the piezometric line of
pipeline icing is gradually plotted.

f) Calculation of water temperatures when ant¥5 0.10°%. The next
partial problem is determining the steady-state temperature of water
in any cross-section of the pipeline, i.e., determining function J=
= fgu(x).

Formula (106) determines the steady-state temperature of water
depending on rx of the relative radius and H m - pressure at the

height of the water column. For our example, this formula acquires
the form:

P A
it==0,0282 ;_*]”r* — 0,00078- 7/ degrees,

(128)

where the pressure value can be determined by the relationship:

H=Jgc—AH &

By substituting the last expression for H in formula (128), we
obtain:

§ . r .”‘ - -
th= (),0.’82 _r’““-r; | —-0,01 176-107%- x —;- 0,000784 -'_\l‘ldegrees. (129)

By using the graphs of rx = fj(x) and AH = f3(x) in Figure 10, c,
and 11, c, one can find the sought relationship J= f4(x) according to
(129). The calculations for determining this relationship haves been
made in Table 14. In the same table calculations have been made of
the temperature of the melting points of ice according to the formula:

¥, = - 0.000784H = - 0.01176 - 10~> x + 0.000784aH degrees. (130)

Using this table, a graph of water temperatures has been plotted
in Figure 12 in different cross-sections of a pipeline = f4(x) degrees
as has a graph of the melting points of ice ¥, = f5(x) degrees.

It is evident from this drawing that water can exist in the pipeline

at a negative temperature, but at a higher temperature than the melting
point of ice.

Data concerning the temperature of water in the pipeline make it
possible to judge the ice processes that must occur in the turbine during
the supply of water to it from the pipeline. We shall assume that water
entering the turbine can have a lower temperature than the melting point
of ice under the pressure that exists in the turbine. In this case,
water is in the supercooled state when coming into the turbine, i.e.,
conditions appear that are favorable for crystallization.
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Part of the ice formed in this place can be carried along by the
flow of water through the turbine, while part of it can settle primarily
on the metal parts of the controlling apparatus.

Returning to the example under examination, we shall calculate the
amount of ice that should form in a turbine if the length of the pipeline

1 = 4000 m and if the vacuum in the turbine comprises 4 m of the water
column.

1AV
“int’ A

| |
ﬂemperature
tof water f/*)f(r/

degregs[

| =
|
|
|
|

-0.05°

Figure 12. The temperature of water and the melting point of ice inside
a pipeline having an inside radius Rj, = 0.60 m, a corrected radius
Rer = 0.80 m, and a design gradient Jq = 0.0150 with a flow rate

Q =.2.0 m3/sec and temperature of water coming into the pipeline

int = 0.100 and a temperature of the outside air Jp = -100,

With a such vacuum, i.e., when pressure H = -4 m, the melting
point of ice according to formula (37) should be ¥, = 0.00310, The
pipeline supplies water to the turbine, judging according to the graph
in Figure 12 or according to Table 14, at a temperature J = -0.00230,
Hence, upon entering the turbine the water is supercooled by a value
J0 -¥ = 0.0031 + 0.0023 = 0.0054°. In order that the water can take
on the melting temperature of ice 30 = 0.00319, the following amount of
ice should form in it for each cubic meter of water:

g g Ul — )

e __ 00051, o
Vi= -_u__hl’_;l~ Ay 0,074 107" ar,

Since a flow rate Q = 2.0 m3/sec through the turbine, then the
amount of ice that appears in the turbine each second will be
1 C (hy—1) S
Qq= w %iL - Q m"/sec. (131)
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By substituting the numerical values, we obtain: Q. = 0.148 - 10"3 -

m3/sec = 0.148 i/sec. Although this is only a small quantity of ice,
by gradually accumulating on the vanes controlling the apparatus, it
can cause a decrease in turbirde power followed by a complete stop.
Breaks of both the controlling apparatus by forces of the servomotor,
which attempts to change the position of the frozen vanes, and of
vanes of the operating wheels, which can become siezed on the ice
accumulations and protruberances formed on the guiding apparatus can
occur.

At this one could conclude the examination of the example of the
ice and temperature calculation with a temperature of water entering the
pipeline of ¢ = 0.100.

g) Calculation of icing and the hydraulic calculation whenz%int =0

0

We shall now turn to a different case of intake conditions. We shall
make a calculation for a value of intake temperature &jnt = 0°. The
graphic calculations have been made in Figure 13. The scales for cal-
culating icing have been chosen as follow: mpx = 0.1; Wy = 0.5 - 10'3;
m, = 20, d_x*

Since the dimensions of the drawings are given in a reduced size,
a scale of dimensions is depicted graphically in Figure 13. Polar
distance in accordance with (124) has a value h = 10 cm. By using the
data of Table 12, in Figure 13, a, as in the previous case, a graph
drx = f(r«x) has been plotted, bui. here special attention has been paid
dx
to demonstrating the positive values of the derivative. In Figure 13,
b, a radial scale has been plotted and in Figure 13, c, integration has
been properly carried out, and the initial point of plotting the curve
was taken to be the origin of the coordinates, since when ¥int = 00 and
Hint = 0, the relative radius in the intake cross-section, as was ex-
plained earlier, is r*jnt = 0. The sought graph of the change in the
value of the relative radii of icing along the length of a pipeline rx =
= fl(x) was obtained in Figure 13, c. This graph shows that greastest
icing exists at the intake to the pipeline. Theoretically, when x = O,
r«ijnt = 0, i.e., the cross-section totally freezes. However, under
practical conditions, complete freezing at the intake can hardly cecur.
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Figure 13. Graphic calculation of steady-state icing of a pipeline with an
inside radius Rjn = 0.60 m, a corrected radius R,y = 0.80 m, and a design
inclination Jq = 0.0150 when running a flow rate Q = 2.0 m3/sec through
the pipeline, with water temperature at the point of intake into the pipe-
line ¢jnt = 0, and with temperature of the outside air ¥, = -10°.

The graphs of Figure 14, a, b, c serve for calculating hydraulic
losses. A graph d(aH) - fz(r*) has been plotted according to Table 13

. Tdx d(aH)
and Figure 14, a. The chosen scales mpx = 0.10; m = 0.01; my =
dx
= 20 and m ,, = 2.0; polar distance is determined according to (127)
and has a value h = 10 ecm. In Figure ]4, b, the radial scale has been
plotted for a hydraulic gradient J = d{4H) , depending on the value of
dx
the relative radius of the free cross-section. A piezometric line has
been drawn in Figure 14, c by the aid of the rad1al scale. The piezo-
metric line shows that w1th an intake temperature ¢ =0, extremely
significant hydraulic losses appear as the result o* strong icing at
the beginning of the pipeline. These losses can be the cause of vacuum
formation in certain cases.
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Figure 14. Graphic plotting of the piezometric line during steady-state
icing of a pipeline with an inside radius R;j, = 0.60 m, a corrected

radius R, = 0.80 m, and a design gradient Jy = 0.0150 with a flow rate
] =2.0 mB/sec, water temperature entering the pipeline oint = 00, and

a temperature of the outside air J, = -10.00,

Under practical conditions, the value of the intake temperature
extremely often proves to be equal to the melting point of ice, which
entails strong constriction of the free cross-section at the beginning
of the pipeline by the layer of ice that formed on the inside surfaces
of the walls. An increase in thermal insulation, i.e., an increase in
Rer reduces the length of a stretch with strong icing, but does not re-
duce icing in the intake cross-section, and judging by formula (107),
the intake cross-section should be completely closed by ice since rx = O.

Even if continuous icing does not occur, then there will still be
strong icing which causes higher hydraulic resistances. Therefore, one -
cannot agree with the existing opinion that burying a pipeline under a
layer 1 m thick in Winter prevents freezing (12).

Good thermal insulation retards the growth of ice and the formation
of the steady-state forms of icing, but the presence in the water of
slush can significantly accelerate these processes.

In order to prevent strong icing at the beginning of the pipeline,
one should artificially make the walls of the pipeline a higher tempera-
ture than the melting point of ice. This temperature, being even

- 106 -

“ 22 T TER R Ty Ak

-

TR T




slightly higher than the melting point of ice, prevents the formation of an
ice layer in the inside surface of the pipeline on such a warmed stretch.
One can practically heat the pipeline by building a heated shelter over it.
On the heated stretch of the pipeline it is desirable to give the line as
high a design gradient as possible in order to obtain a pressure in the
pipeline which, having lowered the melting point of the ice, would create

a certain differential between the intake temperature and the melting point
of ice. The required value of this differential is determined by the
suitable value of the relative radius in the cross-section directly follow-
ing the heater and having the greatest amount of icing. We shall explain
this by the use of an example.

We shall assume that in the case examined above with an intake
temperature of Jjn¢ = 0, the relative radius in the cross-section with
greatest icing is rx = 0.39. In order to obtain this value of the radius
of icing, one should have a pressure different than zero. The value of
this pressure can be determined according to formula (106).

Having substituted the values of the example under discussion in it,

we obtain: : }
e . 08" 0,394
0= 0'005")“ -10 .(‘;_)'a_{) '_'_'!" 0"{9 -— 0,000784 H )

from which the value of required pressure will be H = 18.8 m. It is ex-
tremely desirable to obtain this value of pressure on a short stretch
with a large design gradient and to cover this stretch with a heated shel-
ter. This measure protects the pipeline against strong icing of its in-
take segment. There will be no icing at all under the heated shelter, and
in the cross-section immediately after the heated shelter icing will have
a relative radius r* = 0.39. Further icing will decrease, as shown in
Figure 13, ¢, beginning with x = 50 m, where r« = 0.39. The operating
expenditures involved with heating the shelter will be comparatively small,
since temperature in the shelter should only be slightly above the melting
point of ice. It is unnecessary to heat water in this case.

Heating water with electricity for the purpose of combatting icing
cannot be recommended under ordinary conditions, since more expenditures
of energy are required than losses of energy as the result of increased
icing of the pipeline are possible.

In certain cases, heating water with electricity can be permitted,
for example, on derivation pipelines when they are not in a condition to
allow the required flow rate of water to pass as the result of strong
icing. With the presence of uses of heat on any industrial enterprise
next to the hydroelectric power station, the use of these heat wastes
for increasing the effectiveness of Winter operation of the hydroelectric
power station is extremely desirable. The use of warm ground waters for
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the same purpose is also extremely desirable.

11. Certain Concepts Relative to the Thermal Condition of Water
Intake to the Pipeline

A. Evaluation of the Role of Local Hydraulic Resistance and the
Drop in Pressure During Intake into the Pipeline

Above, during the calculations of icing, the heat of friction that
arises during the movement of water along the pipeline was taken into
account. .The heat of friction of local hydraulic resistances was not
introduced into the calculation however. Since when Eint = 0° one obtains
very strong icing of the intake cross-section, then it seems of practical
interest to estimate the role of the heat of friction of local hydraulic
resistances, as well as other thermal phenomena that accompany the intake
of water into the pipeline. Below an approximate qualitative evaluation
of these thermal phenomena is given.

As is kriown, hydraulic resistances during the intake of water into
the pipeline are expresseg by the drop in pressure of a water column
having a height AH, = ¢ V% m, where the coefficient of resistance of

g9
intake into the pipeline ¢z = 0.05 - 0.5 and XZ m - the velocity head.
2g
However, thg actual drop in pressure during intake has a value AH =
= (1 + ) Y m as the result of the formation of a reserve of kinetic
energy . 2g

The hydraulic resistances cause the appearance of heat which warms
the water and thereby facilitates a reduction in icing, while the actual
drop in pressure causes an increase in the melting point of the ice, which
facilitates, as was shown in No. 2, and increase in icing. In the same
No. 2 it was explained that if the value of the heat of friction, de-
termined by a certain drop in pressure, ia taken as 1, then the decrease
in the reserve of heat as the result of an increase in the melting point
of ice with the same drop in pressure is one-third. This makes it possible
to qualitatively evaluate the thermal processes during intake. The heat
of friction during intake into the pipeline is proportional to AHy, while
the decrease in the reserve of heat as the result of a drop in pressure is
proportional to AH. If the heat of friction is equal to a decrease in the
thermal reserve, then aHy = 1 AH or = 1 (1 + 7). Hence, the value of

3

the Tydraulic coefficient of local resistance during intake should be

£ = _ . At this value thermal equilibrium ensues; the heat of friction
2

is totally covered by the losses of the thermal reserve that appears as

the result of an increase in the melting point of the ice with the drop

in pressure. If ¢ < - , then this thermal equilibrium is disrupted.
2
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Losses of the thermal reserve begin to dominate over the heat of friction.
This creates conditions that strengthen icing. Since the coefficient of
intake resistance usually has a value ¢ < 0.5 in pipelines, then during
intake into the pipeline conditions are created that are unfaveorable in
the sense of icing.

B. The Required Accuracy of the Measurements of Water Temperatures
During Hydroenergetic Research

The value of water temperature of the water entering the pipeline has
great practical significance. Therefore, the investigation of the tempera-
ture regime of the source of water supply of the hydroelectric power
station (river, lake, reservoir) and the water-carrying facilities (canal,
adit, trough, pipeline) should be given serious attention both during
field research and investigations and during planning. Specifically, it
should be noted that during research and during the hydrological in-
vestigations one should study the temperature and ice regime of the
source of water in greater detail than is usually done. It should be
recognized that usually the thermometers that are employed during investi-
gations (spring and tippable) do not satisfy the planning demands if
only because their scales, having a division value of 0.29 or 0.10,
do not give the required precision. The numerical examples given above
showed that the characters of icing of a pipeline differ totally with
temperatures of water entering the pipeline of ‘yint = 0.100 and &int =
= 0o (see Figures 10 c, and 13, ¢). During planning of the ice regime
of pipelines one should know temperature with an accuracy of at least
up to 0.0019, One should orient one's self toward this precision, as
to a minimum, during the development of the design of a thermometer
which should be adopted in wide practice of hydroenergetic field in-
vestigations.

The necessary calculations of water temperature in reservoirs ,rivers,
and canals can be made according to the methods of S. N. Kritskiy,
M. F. Menkel', and K. I. Rossinskiy (13). Some information about the
calculation of water temperature in troughs and tunnels can be found in
the Plans of TUiN of Hydrotechnical Planning (20).

C. Estimating the Amount of Heat in the Stream of Water

The content of heat in a stream of water, and specifically, in the
water entering the pipeline, is determined by its temperature. The
heat content of a stream of water can be viewed as thermal energy. It
is of practical interest to compare the value of this thermal energy with
the energy of the hydroelectric station, since in certain cases the
question arises of heating the water coming into the pipeline with
electricity generated by the hydroelectric power station.
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If one considers the reserves of thermal energy of water above 0°,
then the power of tke stream of water in the form of thermal energy
carried by it through a certain free cross-section per unit of time will
be:

P = 4190 3Q kw, (132)

where J’degress - temperature of water and
Q m3/sec - flow rate of water.

If one calculates this thermal power of the stream entering the
pipeling under the conditions of the example examined above when Q =
= 2.0 m’/sec and &Znt = 0/10°, then it proves that P = 838 kw. This
comprises about hal% the power of a hydroelectric power station opera-
ting on the indicated flow rate with a pressure head of about 100 m.
Hence, heating water even by 0.1° under the conditions of the cited
example involve the relatively high energy expenditure. It is en-
tirely obvious that the greater the flow rate of water and the smaller
the pressure head at which the hydroelectric power station operates,
the greater the relative expenditures of energy required to heat the
water.

12, Steady-State Icing with an Assigned Pressure Differential at the
Intake and at the End of the Pipeline

All of the formulas and constructions given above pertained to

the hydraulic regime of a pipeline assigned a constant flow rate. But
in practice, another case can also be encountered when the operation of
a pipeline is assigned a differential of pressures at its beginning and
end, or, in other words, when a mean hydraulic gradient is set for the
pipeline. Calculation of steady-state icing under these conditions is
complicated and can be carried out by trial-and-error. In this case the
following order of the calculation is suitable.

One begins with a certain flow rate of water and for it calculates
icing and then hydraulic losses. These losses are compared with the
assigned differential of pressures with respect to the ends of the
pipeline. If the losses proved smaller than the assigned pressure
differential, then the flow rate is increased, but if losses are greater,
then flow rate is decreased. For a new flow rate one once again repeats
the cycle of calculation, as the result of which the value of the new
hydraulic losses becomes clear, which is once again compared with the
set pressure differential.

Such trial calculations are repeated until an adequate correspondence
of the value of hydraulic losses and the set value of the pressure differ-
ential on the ends of the pipeline is obtained. The value of flow rate
and steady-state icing of the pipeline obtained in this case are the
solution of the assigned problem.
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Chapter Five
A GENERAL CASE OF PIPELINE ICING

A case in which icing changes along the pipeline and proportional
to the passage of time has been defined as the general case of pipeline
icing. Hence, such icing is unsteady and non-cylindrical. If the
hydraulic operation of the pipeline is assigned a value of flow rate,
then this general case of icing is expressed by the heat balance equations

(46) and (50) and by the hydraulic equation (40). The indicated equations
create the following system of equations :

17,209V (5-1.0,000784 11
\ ‘Cr"
0,0249.2g (=1 ) dr
== s syl =Dy R, - 20
s 1‘ nry, 1 A
i

) = —

.o 133
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|
— 17,202V (4 0,000784 1) =i f
!
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—86400QqC )¢ --218:10°
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cr .II
M nd egsp BE L
oy d L 2R g ~
cr ¢

This system of three equations includes five variables: r*,3’, H,
x, and t. In order to reach the equation which determines the relationship
between rx, x, and t, one can take the following path for excluding
variables. From the third equation after integration, one finds the
pressure value H. It is substituted in the first and second equations
and thereby completed excluded from the system. Then, from the first
equation of the system one finds the value of water temperature and
its partial derivative with respect to length ?l. Both of these values

ux

are substituted in the second equation. As the result of these sub-
etitutions, the second equation acquires the form:

dr., Ory o’_# ar, £3e Ory |y - -
AJF+BBFTCMFUr‘Dm@f~E‘Q

where A, B, C, D and E are functions of ry. This equation with the par-

tial derivatives is the sought function ry = f(x, t) in the differential

form. It does not seem possible to integrate such a differential equation,
13, The Simplified Calculation

One can use a method of calculation whose general idea consists in the
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following as the first approximation during planning. For the intake
cross~-section of the pipeline and for a cross-section in which icing
acquires practically cylindrical forms, one can obtain an accurate
solution to the problem of the change in icing in time. Between these
cross-sections icing is known for an initial moment, as the assigned
condition of the problem, and by means of calculation the limit icing
can be determined. Hence, the following data should be prepared for
calculating the general case of icing:

r = f(xjnt, t) - change of icing in the intake cross-section;

r = f(xq, t) - change of the cylindrical icing in time;

r = f(x, tg) - distribution of icing at an initial moment of time;
r = f(x, t ) - steady-state icing.

As the result of the calculation, one should determine icing in any
cross-section and at any moment of time r = f(x, t). However, the in-
terval for distances x from xjnt = 0 to xo is of practical interest; when
x > xo there will be cylindrical icing. For a time t there is also
a period that is of practical interest from ty to tw, where t, should
be viewed as a certain determined moment of time at which icing ex-
tremely closely approaches the steady state that is obtained when t » =,
Consequently, explanation of the sought function r = f(x, t) in the
following intervals of independent variables 0 = xjnt < x < x¢ and
t, <t < t, is of practical interest. Ffor the extreme limit values of
tge independent variables Xjnt, Xcs to and t, , icing is known and is
determined by the four functions described above.

The sought icing will be determined by means of interpolation among
these extreme known values. This is also properly the idea of the sim-
plified calculation., Its details are given below.

The change of icing in time in the intake cross-section of the
pipeline can be explained extremely simply. We employ the first
equation of system (133) applicable to the intake cross-sectiona We
make the following substitutions in it: & = 3int; H = Hint and °°% =

X
= drs . The latter substitution is possible because in this case the
dx
radius of the free cross-section pertains to a certain value x = Xxjpt =
=0.

After these substitutions, the indicated equation can be given the
form:
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Ti ‘)Cl‘ [ (7 day

The solution to this differential equation is difficult analytically.
Graphically, however, it is solved the same as equation (80) of cylindrical
icing. Therefore, its solution is not given here. In any case, for the
intake cross-section one can find the change of the radius of the free
cross-section in time rx = f(xjnt, t).

A similar relationship can be obtained for a cross-section in which
steady-state icing is quite near the limit. The position of this cross-
section theoretically recedes to infinity, since steady-state icing
approaches the limit asymptotically. However, one can practically
always note a cross-section with a length coordinate x, with some degree
of accuracy in which steady-state icing approaches quite close to the
limit. The selection of this cross-section should be made according to
the graph of steady-state icing ry = f(x, tw). As an example of graphs
of steady-state icing, one can point out Figures 10, ¢, in Figure 13, c.
The change of icing in time in a cross-section with the coordinate
Xgy, i.e., function rx = f(xc, t), should be considered the same as
during cylindrical icing. An example of the calculation and graphic
representation of this function can be Figure 6, c. Thus does one pre-
pare the three extreme values of the function of icing: r = f(xjn¢, t),
r = f(xg, t), and r = f(x, t,). The fourth extreme function r = f{x, tsds
as was indicated above, should be assigned as a condition of the problem.

Interpolation among these extreme values can be carried out in the
following way. For any cross-section with a length coordinate within
limits of 0 = xjpt < x < Xxg, one can accept the law of change of icing
in time analogous to the corresponding laws in the extreme cross-sections
with coordinates xjnt and xc. The transfer from one law to another is
made according to a linear relationship.

We have decided to determine the width of the ice layer in a certain

determined cross-section at any moment in time with the following linear
equation:

(135)

where § m - thickness of the ice layer at any moment of time for the
determined cross-section;

8o m - thickness of the layer in this cross-section at an initial
moment of time;

8gt m - thickness of the ice layer in that cross-section during
steady-state icing;
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AS m - increment in ice layer that occurred in this cross-section
by a moment of time t, reckoning from the initial moment ]
of time;

k - coefficient of porportionality variable in length and in
time, which is determined by the following formula:

TR ; (136)
Gst - 50

The change in the coefficient of porportionality along the pipeline
for a certain determined moment of time is also assumed to occur
according to the linear relationship:

k= (k —/a“%x 1nt‘ e (137)

where k - coefficient of proportionality for a cross-section with a
length coordinate x m in a certain determined moment of time;

kint - coefficient of proportionality for the intake cross-section
with xjnt = 0 for the same determined moment of time;

k . - coefficient of proportionality at the same moment of time and
for a cross-section in which changes of steady-state icing
have practically ceased along the length of the pipeline and
where icing can be considered cylindrical; the length coor-
dinate of this cross-section is x..

As an example of the described approximate method, calculation is
made for a general case of pipeline icing with an inside radius Rj, = 0.60 m,
a corrected radius R,y = 0.80 m, a design gradient Jq = 0.0150, with a
flow rate Q = 2.0 m3?sec, an air temperature 3 = -109, and temperature
of water in the pipeline 31nt = 0o, and pressure at the point of intake
Hint = 0. It is assumed that the pipeline is free of ice at an initial
moment of time.

Under these conditions, the solution of equation (134), which de-
termines the change of icing in time in the intake cross-section, leads
to the results in Table 15. The same table gives data about the state
of icing at different moments of time during cylindrical icing. The
latter data are cited according to the graph in Figure 6, c.
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Table 15

Build-up of Ice Layer in the Intake Cross-Section and During Cylindrical
Icing for a Plpelxne Rin = 0.60 m, Ror = 0.80 m, Jgq = 0.0150

= ¥ . = o =
when Q = 2.0 m3/sec, &, = -100, ¥4 = 09, and Hint = 0.
' Intake cross-section IC: ag;ﬁﬁ}ogcygg X=
days.r_.w—xin{ % g
) . |
‘ re l r, M !6""in"-" re " :'l"/in-’ol
il } e F o) S "'— ' R
0! 075 | 0,600 3 0 0,75 | 0,600 |~ 0
10,708 ¢ 0,566 | 0,034 0,713, 0,67! | 0,029 i
3 i 0,625 | 0,500 ! 0,100 000, 0,528 0,072 i
§ 10,560 | 0,448 Poo0,132  0nIS| 0,490 1 0,106 i
10 1 0,400 | 0,320 ,  0,2%0 0,504 0,451 . 0,149
20 1 0,245 | 0,195 | 0,404 o 5300 0,424 | 0,176 !
@ 0 0 [

0,600 JU' 0,424 0,176

(Note: commas should be read as decimal points.)
The steady-state icing condition is given in Table 16 according to

calculations made earlier as an example. The results of these calcula-
tions are presented graphically in Figure 13, c.

Table 16

Steady-State Icing of the P1pe11ne with Ry, = 0.60 m, Rep = 0.80 m,
J4 = 0.0150 when Q = 2.0 m3/sec, ¥y = ~109, J; ¢ = 00 and

H, = 0.
int
| l -R. — 7,
f‘ re : :; {%tﬁn
!
l PI 305 aen b
0 i 0- ‘ 0 | 0,600
)| ! 0,170 0,136 I 0,464
5 i 052800 0,224 i 0,470
10 l 0,310 | 0,248 | 0,352
40 @d6h - 0,292 ! 0,308
50 i 0,388 0,410 0 290
100 0427 g 0842 0,238
200 {0,400 | 0,308 | 0,232
300 | 0,480 | 0,384 ! 0, 216
400 | 0,488 | 0,390

O
M
—
<

(Note: commas should be read as decimal points.)
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The last two tables contain all of the necessary data for calculating
the coefficient of proportionality k, which determines the thickness of
the ice layer at any moment of time in any cross-section. For the given
example in all cross-sections at an initial moment of time, there is no
layer of ice: &5 = 0 and xjnt = 0. Therefore, the formulas (135), (136),
and (137) acquire the form:

8 =Ab=rhig M,

)
=5
6st

e g
k~(kc kir)tvc‘ Bnt -

Calculation of the values of coefficient the proportionality of k
and thicknesses of the ice layer for certain cross-sections and certain
moments of time are given in Table 17 and were made according to these
formulas.

In this table, the second and fourth columns are completed according
to Table 15. The formulation of the formula for calculating the co-
efficient of proportionality is so simple that it does not require and
explanation. This formula corresponds to every moment in time. The
formulas are written in the sixth column. The following columns are
paired. Each pair gorresponds to a certain value of x and 854 - the
steady-state thickness of the ice layer. These thicknesses have been
taken from Table 16. The first column of each pair belongs to k,
calculated according to the formula from the sixth column that corres-
ponds to a given moment of time. The second column belongs to the
sought value of thickness of the ice layer & m.

By using the data of this table, a graph is plotted in Figure 15, c,
’ of a general case of the change in icing in the pipeline. The scale of
§ thicknesses of the ice layer is placed on the right-hand side of the graph.
1 On the left-hand side is the scale of radii of the free cross-section.
On the axis of the pipeline ox is plotted the scale of distances from the
intake cross-section. Each curve of the graph represents a division line
between water and ice at a certain moment in time.

] Having thereby obtained the distribution of icing with respect to

j length and in time, i.e., having obtained function r = f(x, t), one can
find the changes in pressure and temperature of water with respect to

length and time, i.e., find the functions H = f(x, t) and J= t(x, t).

These functions are determined in the following way. For a given moment

of time, the relative radius of the free cross-section is a certain

function of length.
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Figure 15. The general case of change in icing with respect to length and

in time in a p1pe11ne with Rln = 0.60 m, R, = 0.80 m, and Jg = 0.0150

when Q - 2.0 m?/sec and 8‘ = -10°. At the 1initial moment of time the
plpellne is free of ice.

By using this function, one can integrate the third equation of system (133)
by the method of finite differentials, i.e., in the fipal analysis find the
function H = f(x, t). By exactly the same method of finite differentials
one can integrate the second equation of system (133) and find the relation-
ship of water temperature with time and place, i.e., function ¥= fix, t).

Figure 15, a, also shows the graph of a general case of pipeline
icing at water temperature entering the pipeline of J'int = 0.100,

This case differs from the previous one because icing here appears
only in the cross-section at a distance xp] = 460 m. In this cross-section
in any moment of time, the thickness of tﬁe ice layer will be 6 = 0. As
the first approximation for this case, it is suggested instead of formula
(137) to assume that in a given moment of time for all cross-sections the
coefficient of proportionality k is the same. However the value of co-
efficient k is taken as for cylindrical icing. Calculation of the thick-
ness of the ice layer in this case is made in Table 18.

The columns of this table, exactly as the preceding Table 17,
correspond to certain moments of time. The second and third lines serve
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for calculating k according to cylindrical icing. The second line is
filled-in according to Table 15. Lines 4 - 12 correspond to different
crogs-sections determined by coordinate x. The value of thickness of
the layer with steady-state icing 6gt, which corresponds to the data of
x taken according to the greph in Figure 10, c.

The data of Table 18 served as a bagis for plotting the graph in
Figure 15, a, which showed the general case of icing for the given
initial conditions.

14. The Method of Solution in Finite Differentials

The system of equations (133) determining the general case of icing
can be solved in finite differentials more accurately than was offered
above. The method of this solution is the following. For an initial
moment of time t], icing should be assigned a certain function r« = f(x, tj).
The pipeline should be divided into stretches having lengths 4;x, A2x,
b3Xy ...y A x. On each of these stretches a value of the relative radius
of the free cross-section r«;, rxp, r*3, ..., r#n invariable with respect
to length is accepted. For each such stretch one can find the drop in
pressure AjH, ApH, A3H, ..., ApH according to the third equation of system
(133), and knowing the hydraulic conditions of intake, find relationship
H = f(x, t1). This relationship will correspond to a moment of time
t;.

Table 18
Approximate Calculation of a General Case of Icing of a Pipeline with
'Ry, = 0.60 m, R, = 0.80 m, J, = 0.0150 when Q = 2.0 m’/sec, ¥, = -10.0°,
diint = 0.109; &t the Initial°Moment of Time when t = 0, the Pipeline
is Free of Ice.

0 5 0 o
L t, days ‘ : ’ ' ! e
) Bg§§§§1§ ignfgg ]a,x l 0 0,029 0,02 | 0,106 0,149 0,176
'
y rical icing | & 2 TRPTARS R °
@ l1im = 0.176 m  *=ar 0 0,165 .409 l 6 0,86 | 1,
] | {
Fee) '
(4).0’ | x=0; ¢ =0 0 Y 0 0 0 0
4 G)'8 | =460 G0 0 0 0 0 0 0
4 o~ i !
g ®) @ | x= 1000 x; 3 0048 0 0,008 0,020 | 0,02 | 0,041 0,048
f M e | x=1500 & %g=0,087 x 0 0,014 0,036 0,02 | 0,074 0,087
i wﬁijznwx;%EQWMc 0 0,020 0,050 0,073 0,103 0,122
s OF |y = 2500 4; 30,145 0 0,024 0,059 0,087 . 0,122 0,145
; (10,3 ‘ix=3000.u; 30,160k | 0 0,02 0,085 | 0,09 0,135 0,160
: (11)"§ !,-_—‘3500,.,; as-fzo_ng,u 0 0,028 : 0,070 0,104 0,145 0,172
- S e ) 0,029 0,072 0,106 0,149 0,176
“2)10 ‘x_4000.u, dgg 0,176 u : I :
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For this same moment of time one can find the function which determines
the distribution of water temperatures along the pipeline = f(x, t]) from
the second equation of the system (133). There are no obstacles to such
determination, since the second eqigﬁion of the system is extremely simply
interpolated according to variable ¢“. By knowing the temperature of the
water in any cross-section of the pipeline, by using the first equation of
system (133) one can find 3T* = f(x, t;), i.e., the distribution of

ot
rates of change in radius of the free cross-section along the pipeline.
We shall set a certain period of time which will be viewed as the increment
of time At, such that t; = t; + At. Over this period of time the relative
radii of the free cross-section obtain an increment Arx = EE: At and at
at
a moment of time t2 the new relative radii of the free cross-section will
have a value r¥ = r*] + Arx, where rx] designates the value of relative
radii at the preceding moment of time t;. Hence, for a moment of time t2
one can obtain a new distribution of icingwith respect to length rx = f(x, tg).
However, this distribution should be viewed as the first approximation.
Actually, according to the first equation of system (133) a function
33: = f(x, tj) was determined with values of Jand H that correspond to a
ot
moment of time tj, i.e., the beginning of the elementary period of time
At. However the results of calculations are distributed over the entire
period At. In order to obtain the values of H and ¢ that are average
for the period At, one should determine H according to the third equation
of the system (133), and (}according to the second equation of the system
according to the function obtained in the first approximation for t2, rx =
= f(x, t2), according to the method described above, and take the average
values H and for moments t; and ty, i.e., take their average values for
theaperiod AT. With these average values one should repeat the calculations
of °I* = f(x, tz) according to the first equation of the system (133),
ot
and then obtain the function rx = f(x, t2) for t2, already in the second
approximation. Such repeated calculations should be made until one
obtains the suitable approximation of values of the functions rx = f(x, t2)
in the adjacent calculations.

Having thereby calculated the distribution of relative radii of free
cross-sections for a moment of time t2, one can proceed to calculations
of the distribution of ice for the next moment of time t3, etc.

These calculations are extremely laborious. They can more readily
be used in research work than during engineering planning.

Chapter Six

FRAZIL ICE IN THE PRESSURE TRACTS OF THE HYDROELECTRIC POWER STATIONS
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15. The Effect of Slush on the Ice Regime of Pipelines

All of the concepts and quantitative estimates cited above pertain
to a case of running water free of ice crystals through a pipeline. How-
ever, during the operation of hydroelectric power stations the entry of
slush into the pipeline together with water is extremely possible, and
therefore an analysis of running slush through the pipeline is of practical
interest. Unfortunately, up to now information about slush has been so
sparse that there is no possibility to make even an approximate quantita-
tive analysis. Therefore, below only the qualitative characteristics of
the processes and phenomena that accompany running water with a slush
content through the pipeline are given.

If water enters the pipeline together with slush, then one can con-
sider that this mixture has a temperature near the melting point of ice.
This assumption introduces determinancy into the estimate of the intake
conditions.

The movement of a mixture of water and slush is accompanied by losses
of energy on friction different from losses during the motion of water
alone. With a high content of slush these losses should significantly
increase. In any case, during the movement of the mixture inside the
pipeline a heat of friction arises which prevents the complete freezing
of the entire cross-section. Another factor that prevents freezing is,
as was shown earlier, the increase in pressure experienced by water in
moving through the pipeline. This circumstance has great significance
for pressure pipelines of hydroelectric power stations in which the
pressure gradients are great with respect to length. In the derivation
pipelines this factor is more weakly involved and in those stretches
where the gradient has a negative value, i.e., where the moving water
experiences a decrease in pressure, it causes the opposite effect,
facilitating freezing. The heat of friction and the thermal reserve
that arise with the increase in pressure are expended in two directions:
on heating the immobile ice layer that has formed on the inside surface
of the walls, and on melting the slush that is moving along with the
water.

The fraction of heat proceeding from the water to the ice layer
prevents the development of pipeline icing. Another fraction of heat
transferred from water to the slush is expended on melting it. If
the first fraction of heat is of entirely obvious use, then the second
is expended without bringing practically any use. Reserves of heat of
the water are so small that they cannot melt slush in noticeable quan-
tities. Therefore, one cannot count on having slight melting of the
slush that occurs in the initial stretch of the pipeline improve the
ice regime in its end stretch.
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It does not seem possible to identify from the total amount of
thermal energy expended by the water that fraction which is transferred
to the immobile ice layer on the walls of the pipeline and to the moving
slush with the modern state of knowledge.

It is entirely obvious that the more slush there is in the water,
the more heat the slush will take upon itself and the less heat reaches
the immobile layer of ice, and this will cause greater constriction of
the free cross-section of the pipeline, i.e., its greater icing. If
the slush consisting of separate ice crystals merges into chunks, then
this reduces its capacity to carry-off heat from the water.

It is clear from the above that the presence of slush in water
increases inside icing of the pipeline.

The presence of slush causing large hydraulic losses can lead to
such a state in a derivational pipeline that with the existing pressure
head it will be in no state to handle the required flow rate. In that
case the derivational pipeline transfers from the operating regime with
the given flow rate to an operating regime with a given drop in pressure,
or, which is the same thing, with a given hydraulic gradient. Such a
hydraulic regime is dangerous in the sense that during it critical icing
and complete freezing of the entire cross-section are possible.

If the layer of ice on the inside surface of the walls is in the
process of increasing its thickness, then adhesion and freezing together
of separate crystals of slush ice in contact with this layer are probable.
One can assume that as the result of this adhesion of the slush, the in-
crease in thickness of the ice layer will occur rapidly, because this is
observed in litter screens. However, if the area of the free cross-section
of the trash screens is completely blocked by ice, then in pipelines
that handle a certain constant flow rate of water, this cannot occur,
since with a decrease in the free cross-section the heat of friction
increases, which slows and then terminates the increase in thickness of
the ice layer. In a case when the layer of ice is in the process of
reducing its thickness, the adhesion of crystals of slush ice to it is
hardly possible, since in that case there are no conditions for the
supercooling of water at the inside surface of the ice layer.

Above, mention was made of ice crystals in the form of slush entering
the pipeline with the water.

The possibility of formation of ice crystals inside the pipeline in
the layer of water moving along it is not excluded either. Such free
ice crystals can only arise if the water at the melting point of ice
has a tendency to receive a still lower temperature, i.e., to become
supercooled. In the pipeline, supercooling of moving water can occur
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with a drop in pressure. If the drop in pressure along the direction of
the water flow is so great that it will raise the melting point of ice

to a greater value than that of heat that can be produced during friction,
conditions are created that are favorable for the supercooling of water
and the appearance of ice crystals,

If the temperature of the water was near the melting point of ice
ahead of a stretch with such a sharp drop in pressure, then crystallization
of the water occurs.

16. The Ice Regime of Turbines 3

In certain cases, favorable conditions for the precipitation of
ice are created in turbines. Water is fed to the turbine under pressure
along a pressurized pipeline, which corresponds to a certain melting
point of ice that is lower than the melting point of ice in the vacuum
which exists in the turbine. Thus, over the comparatively short path
covered by water and determined by the dimensions of the blades of the
controlling apparatus and the operating wheel, a sharp change in the
conditions of the thermodynamic state of water occurs as the result of
which crystallization of the water is made possible in certain conditions.
We shall assume that in moving along the pressurized pipeline water has
dropped to a temperature near the melting point of ice corresponding to
pressure at the end of the pressurized pipeline. In this case, at the
intake to the turbine and in moving between its blades, the water can
be in a supercooled state as a consequence of the high drop in pressure,
which entials crystallization. In this case some of the ice crystals
can form inside the water, and be carried through the turbine and out-
take pipe into the tail bay. Another fraction of the crystals will form
on the surfaces of components of the turbine, blocking the flow of water:
on walls, on vanes of the controlling apparatus, and on the working
wheel of the turbine. Turbine icing is obtained. In this case, the
stream has no possibility of preventing such icing, since the heat of
hydrodynamic friction that arises in this process is inadequate. There-
fore, the icing that has begun in the turbines should usually lead to
their complete occupation by ice. Cases of ice stoppage of controlling
apparatus and breaks of the vanes of the working wheels are known in
this case. In all probability, these emergencies are caused by a super-
cooled state of water during its movement through the turbine. The ice
that forms on the control vanes first interferes with their rotation,
i.e., disrupts regulation, and then, by constricting the free cross-
section between them, totally blocks the access of the water to the
turbine. Buildups of ice on the controlling apparatus and the unmoving
walls, which form the cavity in which the working wheel rotates, as
well as icing of the vanes of the working wheel itself can cause impacts
during rotation of the turbine and damage it. The basic role of slush
in these emergencies consists in the fact that it facilitates cooling
of water during movement along the pipeline and thereby brings the
temperature of the water closer to the temperature of the melting point -
of ice before intake into the turbine.
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Furthermore, separate crystals of slush carried in by water from
outside, can adhere to the surfaces bounding the streams, and this
accelerates the ice blockage of the turbine. However, blockage of the
turbine by ice is also possible without the entry of slugh into the
pipeline ~ith the water. It is also quite probable that intake of
slush stone can be a cause of breakage of vanes of the working wheel.

It is known that in handling the very same water pipelines are sub ject

to the significant effect of frost but remain capable of handling the
operating flow rate of water, but turbines, being under the solid thermal
protection of the station building, ice on the inside such that one is }
forced to employ special measures to remove ice from the internal cavities.
These ice formations in turbines make the complications comprehensible
from the thermodynamic situation cited above and which occur in the
turbines comprehensible.

On the basis of the explanation of turbine icing given above, one
can first foresee during planning the possibility of ice difficulties
(see, for example, a calculation of steady-state icing in Chapter Four,
No. 10), and second, to plan measures of combatting turbine icing. The
latter pertalns to the uptake of heat to surfaces in contact with the
water of parts of the turbine approximately as is done for trash-re-
taining screens.

The amount of transferred heat can be small in comparison with the
total heat deficit caused by turbine icing. Experiments of such heating ]
have been carried out and produced positive results.

Hence, with respect to the pressure regime in regard to internal
icing, the pressurized pipeline and the intake pipe at the hydroelectric
power station are under better conditions than the turbine. At the
pumping station the situation changes; the intake and pressurized pipe-
line are under worse conditions in the sense of possible icing, since

| along them pressure drops and the pump in which pressure is sharply
P changed is under better conditions. Therefore, it is no chance that in
: operation practice of pumping stations ice difficulties are known in the
intake pipelines but are unknown in the pumps (confirmation of this can
be the reports of V. Ya. Al'tberg about the operation of the Leningrad
pumping station (1) ).

For the possibility of a quantitative estimate of the role of slush
in the ice regime of pipelines as well as in hydraulic machinery, one
should conduct special research, and primarily clarify the conditions
f of heat exchange between water and slush.

BRSNS,

Conclusion

In order to conduct an effective struggle with internal icing of
pipelines, a correct understanding of the processes of icing and the
development of a method of its quantitative evaluation are vital. As
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the result of conducting theoretical investigations, the following basic
circumstances became clear.

1. Icing of the inside surfaces of the walls changes both with res-
pect to the length of the pipeline and with the passage of time. With
constant operating conditions of the pipeline, internal icing tends
gradually to take on steady-state forms that are also invariable in time.
Steady-state icing is characterized by the fact that proportional to its dis-
tance from the beginning of the pipeline it more and more approaches a
certain state constant with respect to length called limit icing. The
ice layer during limit icing is bounded on the inside by a cylindrical
surface.

2. In by-pass pipelines where the value of the handled flow rate is
limited by the difference in pressures at its end, besides limit icing
critical icing can also exist. Critical icing is characterized by
greater thickness of the ice layer than limit icing. If for some reasons
the icing of the pipeline is more than critical, then subsequently the
layer of ice increases up to complete freezing of water throughout the
entire cross-section.

3. An increase in thickness of the layer of ice in the walls of the
pipeline with standing water occurs more rapidly than the increase of a
flat layer of ice (for example, the ice cover of water surfaces) placed
under the same conditions.

4. A great role in the ice regime of the pipeline is played by the
character of the longitudinal profile of the pipeline route. The greater
the gradient of the pipeline toward the movement of water, the less icing
should be anticipated in the pipeline. Stretches of by-pass pipelines
running with a reverse gradient are under disadvantageous conditions in
the sense of icing.

During sharp pressure drops without significant energy losses
on friction (for example, in turbines), water can be in the supercooled
state, which causes crystallization of a certain volume of the water and
ice obstruction of the water lines.

By appropriate choice of the pipeline route one can limit the value
of its inside icing.

5. The basic factor that determinates the character of steady-state
icing is the temperature of the water entering the pipeline. Depending
on the value of this temperature, icing at *== beginning of the pipeline
can be either extremely significant or totally absent. At a sufficient
distance from the beginning of the pipeline, icing acquires a limit state
which does not depend on water temperature at intake.
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6. Ii:ing increases proportional to the drop in outside atmospheric
temperature. With all other conditions equal, icing increases more if
there were not especially low &tmospheric temperatures before cooling;
a drop of an already quite low temperature of the atmosphere does not
cause a significant increase in icing.

7. With the same mean daily flow rate, but different regimes of
running it through the pipelire in time, thicknesses of the ice layer
on the inside surfaces of walls vary. This circumstance makes it possible
to regulate the degree of icing, which is extremely important when pre-
paring the pipeline for the anticipated Spring thaws.

8. Direct solar radiation of the frozen pipeline is a basic cause of
a possible ice-gang inside the pipeline as the result of separation of
the layer of ice from the walls. Therefore, at the beginning of Spring
and especially in mountainous regions, the appearance of such an ice-gang
is most probeble.

9. With the presence of slush in the water entering the pipeline,
internal icing becomes greater than in the absence of slush. Individual
ice crystals of slush can participate in the formation of the ice layer
and thereby hasten the process of its growth. The slush melts during
movement along the pipeline, but this melting is so slight that the
flow rate of slush does not practically change. Slush facilitates in
maintaining water temperature in the pipeline near the melting point of
ice. The indicated circumstance prepares conditions for supercooling
of water in turbines.

10. In the investigated ice processes of pipelines one perceives
a shortage of experimental data, especially of full-scale observations.
Setting up such investigations will make it possible to check and refine
the theoretical conclusions and to develop reliable planning methods.
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