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FOREWOR D

This report documents another of the perturbing terms appearing in the force
equations for satellite motion in the TERRA system of satellite geodesy computer
programs. A detailed algorithm is presented for the gravitational action which the
oceanic tide bulge exerts on a satellite. Two earlier reports described the necessary
equations for the air tides caused by sun and moon. Also, the manuscript has been
completed for a further report which will present an algorithm for the perturbing
force caused by the tidal deformation of the solid earth.

The following text was reviewed and approved by Mr. R. J. Anderle, Head
Astronautics and Geodesy Division.

Released by:

~~~~~~~~~ , . t ~~~~~~ V I V V V~~~~~~~~~~~~~~~~ V • ~~~~~~~~~~~~~~~~~~~~~

U R. A. N IEMANN , Head

V . - 
.
~ • • . - - - ‘.. Warfare Analysis Departmen t

~
5
.~ V A V 

~~~~~ •~~~• V 
~
‘ •

~

- 
V ~~~~~

‘ i

V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ b. s ’  ~~~~ - . ~~~ • ..V



-

~~~~~~~~

TABLE OF CONTENTS

FOREWORD 
INTRODUCTION .

TIDAL POINT MASSES 6
EXPANSION COEFFICIENTS FOR THE TIDE POTENTIAL 12
EIGENFUN~TIONS FOR THE TIDE POTENTIAL 15
A TIDE POTENTIAL COMPUTE R ROUTINE 16
PERTURBING ACCELERATION 17
OCEAN TIDES IN THE TERRA EQUATIONS OF MOTION 19
REFERENCES 21
APPEND IXES

A — NOTES ON THE TIDE POTENTIAL A-I
B - NOTES ON THE ALGORITHM FOR LUNAR POSITION B-I

DISTRIBUTION

11

V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~ , ~~~~~. -
V. - 

•~ ‘

~~~~~~~~ V _ —V  V ______



INTRODUCTION

TERRA ’ is a new system of computer programs for satellite geodesy.2 Like its
forerunners, it performs geodetic solutions for a variety of parameters such as the
constants of the gravity field model , the observing station coordinates , the orbital
parameters of the satellites involved and certain of the geophysical and astronomical
constants which determine the satellite orbits. To be able to take advantage of the
recent progress in instrumentation for data acquisition , TERRA is a collection of
algorithms some of which are rather more complex than the corresponding schemes
fro m its forerunners . In particular , the force equations for satellite motion now
contain terms which quite realistically indicate the effect of certain physical
phenomena which are formerly modelled in a crude fashion only or which were
discounted altogether.

Amongst the forces previously omitted but included in TERRA , those stand out
which reflect the gravitational action of the various types of earth tide on the
satellite orbits. They are the air tides caused by the moon and the sun , the ocean
tide , and the tide of the solid earth body. Equations for the two atmospheri c tides
were elaborated on recently.3 ~ Also , the solid earth tide is already a part of the
TERRA coding. It is the subject of a technical report .5

For the solid earth tide , we obtained a potential from the literature in a form
immediately applicable to our purpose. Only the gradient needed to be found. Tha t
involved a large computing effort which was in the end accomplished with the help
of an analytical computer language . For the two air tides , surface pressure functions
corresponding to the atmospheric tide bulge s were readily available in the
geophysical literature . From surface pressure , we managed to deri ve the disturbing
acceleration for each tide via Poisson integration followed by spatial diffe rentiation .

The present report on the ocean tide in TERRA is the third in a series of
four , each presenting one of the four individual tides. Actually, the ocean tide was
the last for which we succeeded in our effort to produce an adequate , yet
manageable , disturbing term . For this there are reasons inherent in the problem.
There appears to be a particular aspect to the ocean tides which sets them apart
from the remaining earth tides. To be specific, any effort to mathematicall y
formulate the shape of the tidal bulge for any of the four tides may be expected
to involve some kind of eigenfunction expansion. The same is true for any dL~ailed
description of items derived from the tidal bulge , such as Newtonian potentials
arising in connection with the tidal mass redistribution and the associated gradients.
For the solid earth tides and the air tides , these expansions are meaningful  on a
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domain which is the entire earth surface and/or the space above it. The dominant
boundary condit ion is simple , merely requiring continuity and periodicity in
longitude. This reflects the fact that there exists no sharply pronounced barrier to
tidal wave propagation in t h e  atmosphere ; neither is there such a barrier within the
solid earth. But , harriers of th is type do occur in the ocean. Th ey are the
coastlines. That fact gives rise to a good deal of mathematical unpleasantness. For
examp le, if one desires to represent the tidal ocean surface by the customary
surface harmonic expansion, one will have to decide whether the mathematica l
expression for that surface is to be valid for any possible pair of values for latitude
and longitude or if one wishes to produce an expression which is valid only for a
domain w hich coincides with the ocean. The former expression will inherently be
capable of yielding zero tidal deflection for any point located inland, w ithin a
specified threshold. But it obviously will have to contain a formidable number of
parameters. The latter expansion will be of the type which the physicist calls
“non-analytic.” It will be simpler than the first, but it will be valid only on the
ocean domain. Thus, we shall have to augment it by the familiar postulate that it
be disregarded on that domain which consists of land and that its value there be
iero by definition.

We did indeed encounter the latter situation when we tried to adapt
Hendershott ’s expansion for the ocean tide surface6 to our problem. On a superficial
inspection, Hendershott ’s equation for the tidal surface appeared well-suited for
conversion to a tidal maSs layer, as done successfully for the air tides in
References 3 and 4. But , w hen we subsequently tried to actua lly formulate and
execute the Poisson integral to calculate the tide potential exterior to the earth as
we had done for the air tides, we immediately faced the task of spelling out the
integration boundary. This task looked difficult because I-lendershott ’s -equation
appeared to be of what we called the “non-analytical” type above. Consequentl y. we
had the option of trying to develop integration boundaries which would reflect the
continental coastlines. Or else , we might attempt to achieve very simple integration
boundaries by converting the formula for the tidal surface into one which would be
valid on the entire globe, yielding spurious values of negligible magnitude on land .
Because of the great complexity inherent in either approach, we abandoned the
Hendershott model. This decision was made easy by the circumstance that the
number of expansion coefficients listed in Reference 6 was clearly insufficient for
our purpose. Furt her , our reference indicated that an additional number of these
coeffic~~nts had actually been computed. But we were unable to obtain those from
the author.

I
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In fact , we abandoned not only the Hendershott model , but we resolved to
entirely stay clear of concepts like continuous surface densities and Po~ son integrals.
We were , of course , aware of the important work done in the field of earth tide
effects on sate llite motion which is being published under the nanies of K.
Lambeck , A. Cazenave, and C. Balmino.7 ’8 ’9 We hesitated to get involved with
these papers because they represent continuing research. They certainly identify
various significant components of the tide potential. We desired, however , to specify ,
for use with TERRA , a tide potential which would implicitly contain not only the
known tidal effects but, additionally, as many of those perturbations which might
be characteristic of any particular type of satellite orbit to which TERRA might be
applied.

Fortunately, an entirely different approach offered itself. A new theory for the
ocean tide was recently developed at the Naval Surface Weapons Center , Dahlgren
Laboratory (NSWC/DL) , by Dr. E. Schwiderski. This is an improved Zahel theory .~
A computer model which implements this theory has just begun to yield results
which are in excellent agreement with the observed data. At the present time, this
model reflects only the M2 component of the tide. The latter is thought to account
for a substantial portion (about 70 percent) of the oceanic mass dislocation due to
the tides. Also, it appears that it is not a technical problem but purely a question
of funding to generalize t his model to include any desired member of the tide
spectrum for which sufficient observations are available. As the present version
appears by itself to be the most accurate and detailed one amongst the quantitative
descriptions known for the ocean tide, we confidently based our work on it.

The Schwiderski model presents the tidal ocean surface as a listing of values,
for the tidal amplitudes and phase angles, at the center points of surface area
elements which form a grid covering most of the oceans. This permitted us to
spec ify two algorithms which, if used in sequence , should enable TERRA to account
for the orbital perturbations due to the tide bulge.

In detail, we regard the tidal height on each ocean surface element , as
computed by the Schwiderski model, as a measure for that portion of the mass of
the tidal bulge which is located within the particular area element. We postulate
that each tidal height value thus resembles a gravitating point mass which perturbs
the satellite by its presence . The gravitational potential for each point mass is then
expanded in terms of Legendre functions. Upon further summation , over all area
elements, the resulting perturbing potential is decomposed into products of terms
which contain the source point coordinates and other terms which are functions of

*For details on the Zahel theory, see References 10 and II.
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the field point (satellite position) and time only. The latter terms act the part of
eigenfunctions while the former are the expansion coefficients of the perturbing
potential.

The quantity actually needed is the perturbing acceleration which is the
gradient of the perturbing potential. This can be easily assembled from the just
mentioned expansion coefficients and eigenfunct ions because , as any reasonably
comp lete text on potential theory or related subjects will show , it is possible to
express the spatial derivatives of the solid harmonics occurring in our potential as
linear combinations of certain of the solid harmonics t h emselves.

The resulting scheme for computing the perturbing acceleration quite closely
resembles that used to evaluate the spherical harmonics occurring in that part of the
TERRA equations of motion which deals with the main part of the earth’ s
gravitational field. Every effort was made while constructing the two algorithms to
enable the programmer to utilize relevant procedures for which codings already exist
such as the recurrence relationships for the spherical harmonics. The latter are used
in a number of computer programs for satel lite geodesy ’ 2 because they greatly
facilitate the computation of the cigenfunctions occurring in the expressions for the
geodetic potentials , and thus, in the perturbing accelerations which act on the
satellites as a consequence of the presence of these potentials.

What might conveniently have been one single collection of equations for
coding was partitioned into two separate algorithms , for various reasons. Work done
in the past 1 2 had demonstrated the power and convenience of our recursive schemes
for the eigen functions of the potential. These codings require t hat the constituents
of the potential , namely the eigenfunctions and the expansion coefficients , be known
before the field gradient may be eva luated. Finding the expansion coefficients and
the eigenfunction values is the tedious part of the task. But , once they are known ,
the the corresponding gradient vector follows easily. This suggested that we relegate
the two just mentioned operations to a preprocessor algorithm which feeds data into
a second algorithm which is part of the main body of TERRA and which
constitutes the perturbing acceleration associated with the tide. Also, a second
motive for dividing the procedure was that we anticipated that we might wish to
study certa in aspects of the tide potential which are rather unrelated to satellite
motion in TERRA. One obvious application would be to find out how well the
original tide bulge can be resynthesized from the potential generated by the above
mentioned point masses. Investigations of this type would be greatly aided if it were
possible to isolate that coding which produces the ocean tide perturbing potential
from t he body of TERRA.
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As will be seen below , this separation was , by necessity, not a perfect one.
But , it provides for a preprocessor which contains most of t he individual features of
the tide model in use, such as the parameters of the tidal point masses. At the
same t ime it permits the actual perturbing term to appear in the equations of
motion in a form which is quite independent of the individual propert ies of the
tide model.

More precisely , the first of our algorithms stands alone, by itself, outside the
body of computer programs w hich form TERRA. Its task is to find, from the tidal
distortion of the ocean surface , the numerical values of the tidal point masses as
well as their positions. From here, it calculates the expansion coefficients for the
perturbing potential. Also , it is capable of calculating values for the eigenfunctions
of the potential , for any given field point.

Along with items like the tidal frequency and related astronomical data
(spec ifying the position of the celestial body or bodies causing the tide), the just
mentioned expansion coefficients are the input for the second routine. The latter is
an integral part of the TERRA equations of motion. Like the first algorithm, it is
equipped to evaluate the eigenfunctions (which are now to be regarded
“eigenfunctions of the perturbing potential ”). The results of that procedure are
subsequently combined with the expansion coeff icients to form the spatial
components of the perturbing accelerat ion for the satellite motion. Note that the
separation of the two algorithms is imperfect because there appear certain multipliers
in both of them which reflect the time-dependent nature of the tide. In the form
in which they appear below , these multipliers are valid for the M2 tide only.
Caution will have to be exercised to adapt them to any different tide which may
be introduced later.

The first algorithm will be executed infrequently. As the Schwiderski model
specifies its results in term s of discrete values at grid points which are I degree
apart in longitude and latitude, our first algorithm utilizes about 45 000 tidal
amplitudes and phases to compute 45 000 complex numbers (number pairs)
represent ing point masses which are, in turn , converted to 45 000 pairs of complex
spherical harmonic coefficients. One or two dozen of these pairs of complex
spherical harmonic coefficients will be hand-selected for input to CELEST/TERRA
which will be modified to operate on these coefficients with the second algorithm.
Experiments will then be conducted to determine the minimum number of
coefficients needed to reflect the action of the ocean tides on the satellite orbits.

5
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TIDAL POINT MASSES

To lind the tidal point masses and their positions , divide that portion of the
globe which is ocean into area elements , according to the output format of the
Schw iderski Ocean Tide Program. For details , see Figures 1 and 2. Note that each
surface area element has sides the angular length of which is I degree. Exclude
from consideration all those area elements which the Ocean Tide Program discounts ,
especiall y those located over land and all those which are located below a certain
southern latitude. These area elements which contain the North pole are , of course ,
triangles. For the purpose of mass point location , assume that the area elements be
located on the reference ellipsoid. As far as area size is concerned, assume that the
area elements be located on a sphere of radius R. Most frequently, R will be
equated to the semimajor axis of the reference ellipsoid. Specify R in terms of
kilometers.

Now , place a point mass , m.~. into the center of all “valid” area elements , as
indicated in Figure 2. Number all surface area elements , point masses and associated
quantities either by a double subscript , ij, or index , v , as expedient. Generally,
regard ij and v as interchangeable indices. Figures 1 , 2, and 3 now suggest how to
form the expressions for the surface areas of the area elements ,

~~~ = 

(

~
j

~~~)2~~~2 sin (jj~i) 
(I)

j = 2,3,4, ” ‘~ r n x  < 180 .

and

= ~ (~
-
~

-)
3
~ 

2)

which is the surface area of the “polar” surface element.

Specify the positions of t he poi.it masses as follows.

= 
-jj~~i 

( 3 )
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180°
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Figure 1. Division of the Earth ’ s Surface into Area Elements
According to the Schw idersk i Ocean Tide Model

7

~ II1~~~ - - 
~~~~~~~~~~~~~~~~~ - ‘

~~~~~
:--‘

~~~~~~
‘ 

.-~~~~-. ~~~~i .

_

.._ J



_______________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~. 
- .

~ 
- .  

~
—

~
-,-- 

~~~~~~~

x j j ( i— f )

- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
7/

ARE A I ELEM ENT ii 7’

V

~~~~~~~ 
/

__ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ JL ~~~~~~~~~~~~~ ( J ~~~~~~~!)

///////////////////~ (/////////////////~/ ‘/

X :X ~
x~ ( i—I )

Figure 2. Position of Point Mass at the Geometrical Center of the
Surface Area Element , ij
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= M~

z ij

C.O.E.)L~ \ 6IJ

X~ ~(2)

~~;

- . 
Figure 3. P3si t ion of the Point Mass in the Earth-Fixed Cartesian

Coordinate Frame ~~ ~~, y(2 ~~, and y (3 ) [where y~
1 1 is in the

Direction of the Point where Greenwich Meridian and Equator Intersect and
~(2 )  is in the Equatorial Plane]
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the colatitudes associated with the area element , ij.

ir / l\
t,

ij 
= = 

~~~~~~~~ 
~
) (4)

colatitude associated with the point mass, ij.

it it in l \o ij = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j~~1~

j —
~~ ) 

( 5 )

(geocentric) latitude of m1~.

in / i \
= .i-

~~~~~~~~~~~

- 

~
-) (6)

longitude (east) of m1~.

= p~, = R(l — .
~

_ sin2 o~) (7)

the geocentric distance of m1~.

According to Figure 3, the earth-fixed Cartesian coordinates of m1~ are

= cos cos (8)
= cos sin (9)

z1~ = p
11 

sin ( 10 )

Above , e2 is the square of eccentricity of the reference ellipsoid. In case it is
desired to start from the flattening, f, of the ellipsoid, find ~2 from

= (2 flf (II)
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Furt her . p is the density of sea water and G is Newton ’s constant of mass
attraction . Assume

p = 1 (12)

for a sea water density of I g/cm 3 . If one wishes to employ a different density
value, scale p accordingly. Also,

G = (6.67 E— 20) km3 7kg sec2 ( 13)

Now , let 
~ 

be the tidal amplitude, in meters , on area element , ii. fr,, is the
associated tidal phase angle. Both constitute printout from the Ocean Tide Program.

t” is Universal time , in seconds (reference zero is midnight UT). a is the circular
frequency associated with the M2 component of the ocean tide (two cycles per
lunar mean day).

x is the mean mean longitude of the moon, in degrees, at the beginning of the
particular day UT. A routine is indicated for x~ below. And

= !~~ (l.405l9E_ 04) sec~~ (14)

Then, define the “gravitational charge ” (capable of assuming positive as well as
negative values) of the point mass:

= ~~[a~~cos (at* + x ) + 1~~sin (ut* + X ) J ( 1 5 )

a = l0~ p G  ~~~ ~ 
cos ( 16)

= l0~ p G  
~~~ ~ sin ( 17)

The latter two quantities are expecte d to result in terms of km 3 /sec 2 . Thus , the
unit for m~ will be kilograms.

I I
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Let N be the number of’ point masses. We expect N to roughly equal 45 000.

To find x~ execute the following routine. Let J be the number of the calendar
year ( 1975 or 1976 or 1977; generalization to other years is obvious), M be the
number of the individual month in the calendar year , and 1) be t he number of the
particular day in the month. Also, let

( I n m

~(n,m) = if (18)
tO n~~~m

Then

N1 = D+3l~(M,2 ) + 5 96(M ,3)+90~(M ,4)+ l 20&(M,5)+ l5l~ (M,6)
+ l8l~(M,7) + 2 l2~(M ,8) + 243~(M ,9) + 273~ (M,I0)
+ 304~(M,l I)+334~(M,l2) ( 19)

N2 = D + 31ö(M ,2) + 60~(M,3) + 9l~ (M ,4) + I 2 l~ (M ,5) + I52~(M,6)
+ 18Th(M,7) + 2 13~(M,8) + 244&(M,9) + 274&(M ,lO)
+30 5~l(M,l l)+335 b(M ,l2) (20)

N. = N1 &(J ,l975)+(36 5 + N 2 )~(J ,l976) + (73 l+N 1 )W , l977) (21)

= (5.28E - 4) + (3.56E - 8)N ~ (22)

d0 = 27392.5 +N~ +~~T (23)

d0
T = (24)

° 36525

x = 270.434358+48l 267.883l4l37T0 - 0.00l133 T~~+ 0.00000l9T~ (25)

EXPANSION COEFFICIENTS FOR THE TIDE POTENTIAL

We shall now indicate how the expansion coefficients can L ‘ calculated for the
disturbing potential exterior to the earth, produced by the combined action of the
tidal point masses. This potential has the general form

12

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~-~~~~- -~~~~~~~ -
~~~~~~ ~~~ _________  ~~



F 
- - -

~~~~~~~~~

-

~~~~~~~~~

-.

n
It1 .t \ fl

0 = ~ (F,, rn U,, ni + ~~~ ,,, ( 26
fl :() m

~~~ and are the expansion coefficients. U~~ and V n m  are the
eigenfunctions.* Note that the coefficients of the expansion can be expected to
depend on time, because t he point masses from which they result oscillate with the
tide. The eigenfunctions are solid harmonics which in turn are functions of the field
point coordinates (satellite position vector ).

Obtain the necessary input data from the previous chapter. Note that p is the
earth’s gravitational constant. Select for it a value compatible with the rest of the
TERRA program. Express p in terms of kilometers and seconds. Find now

Fn ar cos(ot* +X)+~~~~~sin (ot*+X) (27)

U = a11 cos (ot* + X)+IJfl sill (ut~~+~~) (28)

(2_ 

~
) ~ ;j;-;;- ,

~~~
, 
p

2 fl+ I 

~~
‘
~m 

(29)

/ \ ( n — m)! I N
&nm I~

2 -  

~
) (n+m)! i~ 

p
2fl +l 

~~~~~~~~ 
(30)

( n - n i ) !  I N
~,‘ 2n+ i (31a11 nm (n + m)! pR 2hl v ’
l 

f3~~ a,, 1nm

(n - m)~ I N
13H ( n+ m ) ! 

p2 f l+ i  i3~h~~ (3 2)

R”
f~~ = — -j- P~~(sin O~) cos mX (33)

R”
h~ = 

~~7j P
~
’(sin O

~
) sin mX

~ 
(34)

(1 n m

~~~
‘ ={  if (35)

n * m

*Ior details on the cigenfunetiont. tee the next chapte r.
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Find the f” and h~
’ as follows. Noting thatnrn nfl,

= — (36)

and that

(37)

for all valu es of n, calculate now, separately for each v, the requir~i ~~ and h
~~m

from the following recurrence relations. To advance in n, evaluate

,m 
= 

+ [(2n + l . sin O
~

f
~ 11, — (n + m)p~f~

’ 
In ]  (38)

hV + i m  = [(2n+ l)sin O h” — +m)1
~v~~~i,n,]

To advance m, use

,~ + 
= (2n + I )p~ [,

cos 0,, cos ~~~~~ — cos 0 ,, sin ~~~ ~j 
(40)

= (2n + l )P~[cos O
~ 

cos X~h~~ + c os O~ sin X
~
f
~~] 

(41 )

Start these recurrences from

f~ 0 
= — (42)

pi,
sin O

f r 0 = R  2 
(
~~

)
p,,

h~~0 = h~~0 
= 0 (44)
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EIGENFUNCTIONS FOR THE TIDE POTENTIAL

The eigenfunctions for the tidal potential are

K”
Unm = ~~~ 

P~’(si n0)cos mX (45 )

K”V ,,~, = —
~~~~

-
~ P~’ (sin 0) sin mX (46)

Let y~u, y 1 2 1 , and y13 -1 be the earth-fixed Cartesian coordinates (see Figure 3) of
the general point (“field point ”). Note that

r + {(y ( I )
)

2 
+ (y ( 2 ) ) 2 

+ (y( 3 ) )2 1 / 2  (47)

Also observ e

p =  — (48)
r

y(3 )
sin ~i = — (49)

r

and

v~0 = o (50)

for all values of n. Now calculate (numerically) the required Unm and Vnn i from
the following recurrence relations.

To advance in n, evaluate

~~n+I  ,m n - + 1 
[(2n + I) sin OUn m  

- (n + m)pU~ ~ 
1 (51 )
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Vn + i m = 

n -  i n +  1 
[(2n + l ) s in  qjV n,n1 - (n +m)p V n i m l (52)

To advance m, use

r ( 1)  y(2 )  1
U,,+1~~.,.1 

= (2n+ l)PV—_ ~~~ 
- — V , , ,~j (53)

r~( 1) y( 2 )  1
~~~~~~~ = (2n+ 

~L~’— V,,,~ + — U~~~j 
(54)

Start from

U0 0  = ( 55 )

R”~ ~U1 0 = p  ~ (56)
r

V0 0  = V 1 0  
= 0 (57)

A TIDE POTENTIAL COMPUTER ROUTINE

This is the first of the two algorithms mentioned in the introduction. It is
intended to be a multipurpose computer program. capable of ca lculating the
Newtonian potential associated with the ocean tide. We propose that it be named
Ocean Tide Potential Routine. This routine has three segments , each indicated by
one of the preceding three chapters.

The first program segment is supposed to be coded from Equations I through

25. As already explained , it converts the tidal heights into point masses , complete
with expressions for the “gravitational charge” m1~ and associated position vector.
Observ e that the rn,~ oscillate with the tide (Equation 15). It must never be
forgotten that severa l of the equations apply strictly to the (sernidiurnal lunar)
tide. A ffected are those equations w hich contain a and x. Also . of course, t he tidal
amplitudes , 

~~~~~
, and the are valid for the M2 tide only. Should it be desired to

16
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calculate the disturbing potential associated wit h a different ocean tide , a suitable
tab le will have to be obtained from a theory t’or that tide for the 

~~~~ 
and 

~~~~~

. Also ,
the new tide frequency and a new algorithm for the position of the tide generating
ce lestial body will have to be substituted for our present a and x.

The second program segment is t o be assembled from Equations 26 through 44.
It calculates the expansion parameters for the potential. Note that this invo ves
certain vast summations over the individual point masses. Independent of the nature
of the application contemplated for t he Tide Potential Routine , these summations
must be extended over all sur face area elements. Neither physical nor mathematical
criteria exist which would permit us to mak e any exceptions. The number N of
mass points is equal to the number of area elements (eac h of’ t he latter being
1 degree square in size) necessary to cover the globe except for the land areas and
also excluding a substantial cap centered upon the South pole (as specified by the
Ocean Tide Program). N is about equal to 45 000. However , only four summat ions
are involved and these need to be done only once, because neither the tide
amplitudes nor t he phases depend on time.

The third algorithm segment consists of Equations 45 through 57. This is for
the calculation of the eigenfunctions. To avoid a misunderstanding. we emphasize
that it is strictl y a numerica l scheme. No analytical expressions are being generated
for tile eigenfunctions. Rather, this portion of the Tide Potential Routine starts
from values for the field point coordinates and proceeds by numerically evaluating
the individual eigent’unctior~s. Because this )~. done recursively, all cigenfunctions m ust
actua lly be evaluated for any particular position vector , up to a limit Ofl the

order and the rank of the functions, irrespective of the nature of the app lication.
Note that n1, ~ 

is the upper summation limit in E quation 26 . It depends . of
course , on the particular application.

PERTURBING ACCELERATION

The perturbing acceleration to be inserted ir~to the Tl- .R RA equations of motion
is the positive gradient of t he ocean tide pot~ iit i~t l. Execute now the following
procedure , separatel y for each t ime line in the orbit integration.

For each time line, x ’ ~~( 2 1 , arid ~ are the Cartesian components of the
satellite position vector ill inertial space. Assume that the xt ~ are given iii terms of

17
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kilometers. Part of the TERRA/CELEST equations of motion is an algorithm which

performs the necessary transfo rmat ions’ between the inertial frame,* x ’° , and the

earth-fixed frame, yW . Now apply this algorithm to rotate the inertial position

vector , ~~ into the corresponding eart h-fixed position vector , y
(
~

) . Find

, 1/2
r = +~ (x

(H )2 +(x~’~ )’ +(x~
3
~r~} 

(58)

or

I 1 / 2
r = + J~(~~( i ) )2 + ( y t 2 3 )2 ±(y(3))2~ (47)

as convenient. Calculate the values, associated with the satellite position vector, y
( ‘1 ,

of the eigenfunctions Unm and Vn m~

Evaluate now the Cartesian components of the perturbing acceleration, in the

earth-fixed frame:

“m ax n / at..’ av
= 

n 0  m~~0 V ~~m ay~”~ 
+ H  

ay~~~
) 

(59)

~ I au 
____

ayt2
~ 

= 
n 0  m 0  ~

Fnm ay~’~ 
+ Hnm 

~y( 2 ))  
(60)

n -ma x n / a av ~
= ~~ 

(F ~~~~~ + H  (61)
ay ( 3 ) f l = Q  m 0  \ ,(I) nm ay~

3) /

where

aU — I f !  1
___  — 

~~~
•
~‘Amn Un+ i m _ i

_
~~~

Un + i m +i ) 
(62)

‘Refe rcflces for this transformation arc unavailable at present. But the tran sformation is already part of the T 1’RRA
coding and will appear in the fo rmal TERRA documentation .

“That is the frame in which the orbit integration is performed.
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(- ~~~~~~~~~~~~ 

- 
~~V 1 1,, + 1~~ (63)

au I F  1
ay~T = 

~ L~~
_
~~

+ uU
~ Lm i (64)

= 
~~~(~~

Ar n n Vn+ i n~~~i 
- 

~~
V l m + i ~ 

(65)

aV i / i  I
ay~T = j~ (,~

T A m n Un+ I m~~I ÷ ~~U~+ 1 1 1 ~+ 1 )  (66 )

~~ 
= -

~ 

(n- m+ l)V~+ 1 1 ~
] 

(67)

and where

Am = (n - m + I )(n - m + 2) (68)

= - (69)
( n +  I)!  n ,1

(n— 1)!
V + V (70)n ,— 1  (mi + I)!  n ,l

To find the Cartesian components of the perturbing acceleration in the inertial
frame, rotate the vector a~ fay~ 

t )  ( i  = 1, 2, 3) back into the ~~ frame.

OCEAN TIDES IN THE TERRA EQUATIONS OF MOTION

The Equations 58 through 70 listed in the preceding chapter constitute the
second of the two algorithms mentioned in the introduction, It might suitab ly he
named Ocean Tide Disturbing Acceleration.
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formula 26 for the tide potential involves a summation over the index n, to
be ex t en ded to the summation limit ~~ a in case the Ocean Tide Potential
Routitie is employed to conduct the previously mentioned experiment of
resynthesizing the tidal bulge, a large number of terms will have to he included in
the potential. To be specific, the number of terms will have to be about equal to
the number of point masses. The latter number is N. 

~ m a ~ can be expected to be
a number near to the square root of N. However, when applying the Ocean Tide
Potential Routine to the computation of the perturbing acceleration due to the
ocean tide , in TERRA , a com paratively small number of terms should be sufficient.
Only those terms should then be included in the potential which are significant for
the purpose of the orbit computation (short arcs and long arcs of the satellite
trajectory each suffer perturbations which may arise from different members of the
perturbing potential expansion). We shall not try to identify the useful terms now ,
a priori. Instead , we have chosen to proceed empirically. As far as their application
to TERRA is concerned , we are hereby submitting both algorithms for coding, as
they stand , preserving full generality as far as the retention or deletion of any terms
is concerned. We are proposing that this latter question be resolved , later on, by
exploratory TERRA or CELEST runs.

The reader may have noticed that , directl y following Equation 47 in the
preceding chapter , we specified that the eigenfunctions be evaluated for the
earth-fixed satellite position. It was implied that this should be done by using the
recursive schem e for the eigenfunctions outlined in the Ocean Tide Potential
Routine. We now propose that the programmer decide whether he wishes to call
upon the Ocean Tide Potential Routine every time its use is needed during the
execution of the Ocean Tide Disturbing Acceleration routine. Remember that the
Ocean Tide Potential Routine is external to TERRA while the Ocean Tide
Disturbing Acceleration is part of’ t1~e TERRA coding. We imagine that the
programmer may prefer to duplicate the scheme for calculating the eigenfunctions
and make it a part of the coding of the Ocean Tide Disturbing Acceleration. That
would make the ocean tide term an entirely self-contained part of TER RA.
anal yticall y. Of course, the expansion coefficients would still have to be obtained
from the Ocean Tide Potential Routine preprocessor.

Finally, one more item remains to be discusse-d which is related to
computational economy. This concerns the time dependent factors

cos
(at* + x)

sin

20
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0.. ,urring in the expansion coefficients for the tide potential. Because these terms
are present in the tide potential , they will also appear in the perturbtng accelerat ion
associated with the ocean tide. (‘onseqitently. it will be necessary to cope ~ ith them
during each Step of the (numerical ) orbit integration. In turn , the freq uent need to

evaluate these trigoaometric expressions can he expected to very adversely affect the

time required to perform tile orbit integration. We thus propose that it be avoided

to calculate these factors separately for each time line. Instead , the following scheme

muay be followed.

Let t’! amid t.~ 1 be th~ values of Universal time for which subsequent

integration steps (time lines) are to he performed. Update the trigonometric time
factors as follows.

cos (u t ~ + x )  = cos~~(ut ~~+ X) +U~~t *~ = cos (ut~~+X ) cos uL~t *
_ si n(at~~+X ) sin cj~~t * (71 )

sill (Ut~ + x) = sin (o t ’~ + x cos o~~t * + cos (ot’~ + x) sin o~~t* (7 2)

= t~~1 
— t ’

~ 
(73)

Using the algorithm for x (Ecluatiomis 18 through 25), update x whe never t ” enters
the following day.
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NOTES ON THE TIDE POTENTIAL

Two additional comments may be useful in connection with the tide potential.
The t’irst concerns some details of the derivation. The second deals with the
frequently mentioned recurrence relations for the expansion coefficients and
eigenfunctions.

When deriving the tide potential, we started from the potential function for the
individual point mass ,

Gm,,
- — (74)
r- p,,l

where F is the position vector of the general point; ~~,, indicates the position of the
point mass. Let

p = Gm ,, ( 7 5)

Let r, 0. and A be the geocentric distance, geocentric latitude, and longitude
associated with ‘F. Let p ,  0,,, and A,, be the geocentric distance , geocentric latitude .
and longitude of m .  Further, let ‘y be the angle between ‘F and p.,,. Now,

= +~~ r2 +p
~ 

— 2rp,, cos ’y,, (76)

cos = sin 0 sin 0 + cos 0 cos 0,, cos (A — A ,,) (77)

From Page 386 of Refe rence 13,

- — = 
~ —~ f rP~(cos~~ ) (78)

Ir— p,,I ,1=o r

A-I

1
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and from Page 11 5 of Reference 14,

P~(cos 7,,) = P~(sin O)P~(sin O,,)

n (n — rn) ’
+ 2 ~ P”~ (sin O)Pm (sin 0 ) cos m(X - A ) (79)

m ” I (n+m)! ~ “

Now .

= ~~ 
fl =

~~ ~ TT {Pn (Sifl 0)Pn (sin 0,,)

+ 2 ~ L(n 

- m)! Ptm (sin O)Pm (sin 0 ) cos m(A - A )] 
} 

(80)
m~~l (n + m ) !  “

At t his point , we separated the potent ial tide into products of terms which depend
on i only and terms which contain the point mass coordinates only:

P (sin O)
= 

n 0  
p~ P~(s in 0,,) + 

~~ n=O m~~I 
x 

~~~~~~~~~~~ 
(81)

terms which depend terms which contain
oniy on source point only coordinates of the
coordina tes: — general poin t :

From here results the following sequence of definitions and equations.

= 
~~~v l  

+
~~~~~~ 2 

+4 3 (82)

“ P (sin 0)  (83 )
= i.z,, 

~ 
p~ P~(sin O ,, ) n

n (n — m)! Ptm (sin 0) ‘I
= 

~~~ 

~~ m 1  (n+m)! 
nO ,,)cos mX,, (84)

= 2p,, 
~ =~~ ~~ (n + rn)! 

p
~ 

P~ (sin 0,,) sin mA,, ~ 
+ 

sin mA (85)

v I  
= 

-O ~~“n 
(86)

A-2

I

- “
—

~~ 
- ‘
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= 
~~ ~~~m Unmn = O  n i — I

= 

,~ 
?~ ~~~ I ~~ 

V
fl fl5 

(88)

E~ 
= ~~ -

~ 
P,1(sin 0,, ) (89)

= 2-~-~ 
(n- m) ! 

~~ 
Ptm (sin 0 ) cos mA (90 )

lUll P (n + m)! R” ~l i’ P

p, (n - m)! P~II~ = 2 —i- — Ptm (sin 0 ) sin mA (9 1)
f l i t s 

~(J (n+m) ! ~~ ~ “ I’

Wn = P~(sin0 ) 
(92)

V = —
~
-;-j. P~ (sin 0)  cos mA (93 )

R~
~~~j 

P~ (sin 0) sin mA (94)
r

ii ii

= ~. 1 W  + ~ ~~ F’ F + ~. ~ H’ V (95)
n = o ~ ‘ I I  111 = 

11 111 fl. tm 
fl =0 ~n = I ~~~~ fl iti

Now . because

V~0 0 (96)

as

(sin mA) ,,, ~ 0 (97)

A-3
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there results

fl n
� II” V ~ H~ V (98)

= ~ 
= ~ iii “‘° 

~ 
= 

~ Fi~ 
= 

~~ 
~~~~ ~

No~v . redefine

F” —‘ F” = ( 2  ~O ~~ 
( n — r n ) !  

~~~~~ 
~~~~~~~~~~ )cos mA (99)

# (n + m)! R~ 
n

we have

n n

~ E” W + ~ ~ F” U � F” U (100)
n 0  ~ ~ n 0  r n= l nm nm n =O m 0  nm nm

Finally, remember that

N
~ (101)

P — I

and also consider the fact that whenever we extended the summation over n to
infinity, we actually thought in terms of a fi nite sum , extended to a finite number ,

a There results now the following collect ion of equations , for the tidal
potential :

“ m a x  n
= 

n=O m~~0
W

~ m U
~ m + H n m Vn m

) (102)

N
F = Z F” (103)

“= I

H = ,,~~~~ 
H” ,~ (104 )
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P,, (n — ml! p’~I - ’ = (~~~ 
~~~~ ) I l’~ (sin 0 ) L ( t S  l i lA  105)

l u l l  p ( n + m )! R’1 °

11,, (n — m)! p~I I’ = — _____________ — P” (s in 0 1 sin mA (1 06)
p (n + m)! R~ 

‘

p IU5
V ,, ,,

~ 
= 

~~~ 
P~’ (sin 0) cos mA ( 107)

pR0 
,~,= —

~~~~

—

~ 
I’ (sin 0) sin mA ( 108)

Two things are obvious w hen contemplating Equations 105 and 106. Firstly.
according to the Equations 1 5. 16. 1 7, and 75 , it appears that F~ ~, 

and l1~’,,, can
he writt en as sums of two terms eac h of which is a cosine or sine f’unction ol’ a
time-depende nt argument. multiplied by an expression which depends on point mass
position. The same is tnle for F~ ~ 

and lIe, ,,~ 
. Secondly, F~, ,~ 

and H~ ,~, contain the
point mass coordinates in a form whic h suggests that from each a solid harmonic of
the latter coordinates should be factored out. This will enable us to apply the
recurrence relations which will greatly facilitate the task of evaluating the F~,,1 and

Both aspects of the matter were reflected when formulati ng the computer
algorithm for the tide potential as listed in the main body of the report.

As far as the recurrence relat onships are concerned which we j ust mentioned
and which are also invoked on severa l occasions in the main hod v of the report .
these re flect the familiar property ol the solid harmonics. They have iti the lost
found lrc(luent use in our computer programs for satellite geodesy , in particu lar on
those occasions when we faced t ile task of evaluating the complicated e\p r~ssiot is
associated with the earth’ s gravi ty, field. As they are not novel, they exist in the
form of working notes only and were never formally documented.
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NOTES ON THE ALGORITHM FOR LUNAR POSITION

Included in the chapter on the tidal point masses is an a lgorithm for the meat i
longitude of ’ the moon . This consists of Equations 18 through 25. It specifies values
of ’ lunar mean longitude , at 00,00h UF , for each day (luring the calendar years
1975 , 1976, and 1977 . A similar algorithm appears in Refer ence 4 (see chapter THE
MEAN LONGITUDES OF SUN ANI) MOON and Appendix B). It differs from our
present mean longitude routine insofar as it represents the mean longitudes for the
sun as well as for the moon, at arbitrary instants of ’ Universal t ime. Both algorithms
are special cases of a more general computer routine which concerns the mean
longitudes of sun, moon , and lunar perigee and which was formulated by one of
the authors (Groeger) for use with the Schw idersk i Ocean Tide Program. No formal
documentation is available for the latter routine. But , we expect to publish it
sometime in the future in a suitable context.

It m a y  be desirable to state the precise meaning of the term “lunar mean
longitude.” s (t his symbol does not appear elsewhere in this report ) is the mean
mean longitude of the moon. This is the angle, from the mean equinox of’ date ,
measured along the mean ecliptic of date , to the mean ascending node. plus the
angle measured from t hat latter point , along the mean orbit , to the mean pengee.
plus the instantaneous value of the mean mean anomaly corresponding to the
position of the moon. s is one of the mean elements occurring in the theory of the
perturbed motion , relative to the earth, of the moon. As such, it is the secular and
the very long periodic portion of the lunar longitude. The latter is also an orbital
element in lunar theory. x as resulting from the present version of the lunar mean
longitude algorithm is, as already said above , equal to s. the latter being evaluated
at midnight UT.

Our References 15, 16 (especially Pages 537-540), and 17 (Pages 98 and 107)
refer to s as a “mean” longitude. This is astronomical usage , adopted for the sake
of brevity. According to the above definition of s, the physical item associated with
s ts actual ly a mean mean longitude.

Further elaborations related to the mean longitude algorithm may be found in
Append ix B of Reference 4. In addition, severa l figures will be found there which
illustrate the concept of ’ the Jufian day, for the benefi t of ’ those who only
occasionall y encounter that unit of time.
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Finally, our Equation 25 for x has an accuracy potential of several hundred
meters , in the position of the lunar sub point on the earth’s surfa ce. We are aware
that this is excessively precise for the purposes of present tide models. It was,
however , decided to render the polynomial exactly as obtained from Refer ence 16 ,
because this will anticipate possible further req uir ements. We do not expect tha t any
worthwhile economies in computer time would result if a truncated polynomial was
used.
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