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TOPICS IN THE ANALYSIS AND OPTIMIZATION OF COMPLEX SYSTEMS

This is a final report on research carried out at Technology Service

Corporation under Contract No. A151 F44620- 76-C-0069. The length of the

contract was one year. The purpose wa s to carry out research leading to

more effective methods of analyzing high dimensional data sets. The moti-

vation for the research came from our growing realization , in handling many

high dimensional data sets gathered in many different fields , that classical

methods were often inappropriate and when used , lead to mislead ing results.

Our main efforts over the year were in three areas:
p

First: Extensive revisions of our work on variable kernel density estimates,

leading to a paper accepted for publication by Technometrics, to appear in

their May 1977 issue.
p

The following general comments by t~e f i n a l referee of the paper we

find particularly interesting as we bel ieve they signify a beginning accep-

tance by the statistical community of tiie need for new methods to deal with
p

current problems .

REFEREE1S REPORT
1•

P GENERAL COMMENTS

This Is an interesting paper, describing innovative and useful research

on estimating multivariate density functions in a computationally feasible

• way. The mathematical presentation is reasonably clear, and the simulation

examples add a vi tal element of numerical insight.

A copy of the final version of this paper is included as an appendix.

••
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Secondly: Under a previous AFOSR contract, a novel goodness-of—fit test

devised by Leo Breiman had been tested under numerous simulations. These

led to the conjecture that the test was asymptotically distribution free.

The first version of the paper was submitted to JASA and rejected on the

grounds that the main conjecture, while made plausible by the simulations ,

was not proven. Towards the end of the contraEt period , Leo Breiman

working in collaboration with Professor Peter Bickel , chairman of the

Statistics Department at U. C. Berkeley, managed to find a proof that

established the asymptotically distribution free property of the test.

This is currently being written up for submission to the Annals of Sta-

tistics. We consider this to be a highly significant break through. It

provides the first computationally feasible consistent and asymptoticali~

distribution free goodness-of-fit test for dimensions higher than onR.

Third: The most exciting research for us over the past year has been the

• development of free-structured classification methods and the growing real-

ization of their potential in approaching a large variety of problems that

were untouchable by classical methods. The progress in this work was re-

p ported on by Leo Breiman at a joint U. C. Berkeley-Stanford Statistical

Colloquim in October 1976 and generated a good deal of interest. Numerous

:~ requests for written descriptions of the work have been received. However,

I ~~ to date, we consider our work in an exciting but exploratory phase. We are

looking forward to further developments and applications. A write up of

our progress to date and directions we want to explore in the future are

contained In an appendix.

I
U . -._ 
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In su mmary , we feel that a significant amount of innovative and useful

research has been accomplished over the contractual period. Rather than

launch into a long discussion of why the results are important , we prefer

to let the contents speak for themselves.

I .
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APPENDIX A

Variable Kernel Estimates of Multivariate Densities and Their Calibration

Leo Bre iman
Will iam Meisel
Edward Purcell

1. Introduction and Summary

Given points x1,... ,~~~ selected independently from some unknown under-

• lying density f(x) in M-dimensional Euclidean space, the problem is to

esciuiate f (x). To date , the most effective general method is the Parzen

approach: select a kernel function k (x)>O , wi th

f k(~)d~y 1 (1)

Usuall y k(x~ satisfies some additional co-ditions ; unimodality with peak

at x=O, smoo thness , symmetry, finite fir..t and second moments, etc. In

fac t, in actual prac tice , the most freque itiy used kernel is a Gaussian

density.

Having selected a kernel , then the es timate is g iven as

As n increases the shape factor a can be decreased giving greater resolution

• for larger sample sizes. The asymptotic mean square consistency of these

estimates is well known [1], and under smoothness conditions on f(x)

asymptotic rates of convergence of the mean squared error can be derived.

However , in terms of practicalities , the situation. is far from
• 

~~~~~

satisfactory.
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First: It is obvious that a Parzen method of estimation cannot

respond appropriately to variations in the magnitude of f(x). For

ins tance , if there is a region of low f(x) containing , say, only

one sample point ~~~, then the estimate will have a peak at x =

and be too low over the rest of the region. In regions where f(x) is

large, the sample poin ts are more densel y pac ked to gether , and the

Parzeri estimate will tend to spread out the high density region .

• Thus, the problem is that the peakedness of the kernel is not data—

responsive. -

• Secend: None of the asymptotic results give any generally helpful

leads ~~n hi’.~i the shape factor a should be selected to give the “best”

estimate of unknown density. The computed rates of convergence depend

critically on f(x) and its derivatives. Even if one tried to vary a and

got a number of different es tima tes , the question rema ins: wh ich one is

“best”?

In this paper, solutions are proposed to both of these problems.

First: To make the sharpness of the kernel data-responsive, we use

the class of estimates

= 

~~ 
dJ k Y

’
~ K (d i )

where d. k Is the distance from the point 
x. to its kth neares t ne ighbor ,

:TT:I:::T::ltTI:IT1 ~

:

~~~:1~

: ~~
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clear: In low density regions , di k  
will be large and the kernel will be

spread out. In hi gh density regions, the convers e will occur.

Second: To se lect optimi zi ng values of k and 
~k’ a goodness-of-fi t

statisti c S for multivariate densities proposed in [2] is used in a

procedure that searches for the variable kernel parameters that minimize

The analyt ics of the variable kernel estimates situation arc a bit

difficult to handle, although asymptotic consistency for appropriate kernel s

Is easi ly proved under the condition k/n-~O. To get a feeling for the finite

sample situation and also to get some measure of assurance that our proposed

~solutions ” had some val ue, we ran some cxtensi ve simulations on two under-
• lying data bases; the first was 400 r~oi,.ts selected from a bivariate normal

dlstr~bution , the second was the bimoda t distri bution consisting of a super-

• position of two bivariate normals , 3/4 of the bivariate normal used in gen—

• erating the first data set plus 1/4 of a normal wi th a much sharper peak.

Three measures of error were computed: define the sample mean and

variance of f (x ) by

• n
Pf~~~5~ 

f(.~~)
1

~• I . n ...2 1 ç id 2a f —~~ - L

The error measures were:
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I. Percent of Variance Not Explained (PVNE~

n 2 
-

- 

- 

PVNE = —
~~
- •  

~~~ (f(~~) - f(~~)) x 100
af

II. Mean Absolute Error, Percent (MAE)

MAE = 
~~~ 

If(~
) - x 100 

-

III. Mean Percent Error (MPE)

- n If(x) -
1IPE = 1 ~ 

~fc~~ 
100

3

A large number of runs were carried out w4th the two data bases to

;~ (A) Find the best Parzen estimator and the best variable kernel

estimator, using a symmetric Gaussian kernel (naturally the “best” values

of the kernel parameters depend on what measure of error is used).

(B) Compare the performances of the two types of estimators.

(C) To see whether the proposed search procedure could accurately

locate the “best fitting” estimates.
;- 

~~~~.

- ‘~) Our conclusions are :

• In a 1 cases the best variable kernel estimate was superior to the

best Parzen estimate. The best Parzen estimator had In both data sets about

twice as much mean percent error (MPE) and percent of variance not explained

50% more mean absolute error than the best variable ker-
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ii . The S minimi zation search procedure was succe�sful in locating

the region of parameter values: where the variable kernel estimates gave

• approxima tely best fits to the actual density.

The best values of a for the Parzen estimates depended on which measure

of error was used much more than the variable kernel method and hence would

be much more difficult to use in practice (when f is unknown). The S mi ni-

mization procedure applied to the Parzen estimates produced values of a

that were larger than most of the “best” values and could not b~ cal led

successful in this context.

During the course of the study , a number of interesting and useful

properties of variable kernel densi ties were uncovered . First of all , the

nearest nei phbor distances that produced the best fits were surprisingly

large, ranging from 40 in data set II tc 100 in data set I, (actually the

fit was still improving at k=lOO). But c~ oi fits can be produced over a

very wide range of values of k, as long as satisf4 es the appro>imate re-

lation -
.

Uk ()
~~______ = constant

where 
~~ 

is the mean of the kth nearest neig hbor dis tances and a(dk) is

their standard deviation. Our tentative conclusion is therefore that ac-

tually one needs to find only the single parameter value

to calibrate the variable kernel estimates. In our simulation this con-

stant was usually about 3—4 times larger than the best values of a for the

corresponding Parzen estimate.

The conclusion that the mean percent error is markedly different be-

tween the two types of estimators has important implications for classifica—

tion. The method giving the minimum expected misclassification probability

--
~~~~~~~--~~~~~- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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is based on comparing the densities of the different classes. One common

and effective method of getting “good” class ifi ca ti on boundar ies has been

to estima te the class densities using a set of points that have already

been class if ied , and compare the estimates to make the classification de—
-

• cision. Therefore, if this is the intended application , then the mean

percent error is the appropriate error measure since the tails of the dis-

tribution are important , and in this perspective the vari able kernel es-

timates are decidely superior to the Parzen estimates.

An important consideration is the variabilit y of the underlying den-

sity. If it is more cr l ess uniformly smooth (as in the first data base),

the adaptive capability of the variable kernel method does not help us

much as Ia s tuations where the density i~ more variable , i.e., has a

• number of peaks of different sharpness (as in the second data bacz).

• There is a large body of published literature regardi ng density

estimation and a number of good surveys are available [3], [4], [5].

The kth nearest neighbor estimator [6] is the only method that is adaptive

to loca l sample density. If the distance from a point x to its kth neares t

neighbor is d, then the estimate is defined as

• f ( ~~~ _ k/flXI V (d)

where n is the total number of sampl es , and V(d) is the volume of the M—

dimensional sphere of radius d. The drawback to this type of estimate is

that it Is discontinuous and that it does not satisfy (1). The variable

kernel approach offers a combination of the desirable smoothness prop-

•~~~ • erties of the Parzen-type estimators wi th the data—adaptive character of

• :...~~j the k-nearest neighbor approach.
- ~~~

• 

~~~~
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Furthermore, the variable kernel method carries very littl e computa—

tional penalty. The distance from a given point to the kth neares t point
is computed only once and stored for all the calibration runs. An algori thm

constructed by- Friedman , et al. [7] reduces the finding of all kth neares t
neighbors to n log n time instead of n2.

In Section 2 we will describe the simulations in more detail and

give some tabular and graphical summaries of the results .

Section 3 will give a brief description of the goodness-of-fit sta-

tistic and give tabular and graphical summaries of its performance.

In Section 4, the behavior of the estimates will be summarized , the

selection of k and a related to the interpoint distance distri bution , and

a descrip~ion given of some early and w~successful efforts at variable

kernel estima tes.

The var iable kernel method has been descr bed in short course notes

• . on pattern recognition prepared by One of the authors and dating back to

1973. The work In this present study has been reported on in the Confer—

ence on the Interface Between Computer Science and Statistics on February 14,

1975 [8]. In June , 1975 we learned that T. J. Wagner has submitted a paper

[9] to the IEEE Trans. Information Theory which is also concerned wi th the

variable kernel estimates. Since his paper is reportedly concerned with

condi tions for asymptotic consistency , particularly in one dimension , there

• does not seem to be any overlap.

• ‘
~

•
~i~ 

‘~•4~;~
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2. The Simulation and its Results

The two data sets mentioned in the introduction were ge1ierated as

follows:

Set I: 400 points selected independently from the density f, a

bivariate normal wi th mean rn = (0,0) and unit covariance matrix.

Set II: 400 points selected independently from the density g, where

g .75f + .25-f1

where f is as above, and f1 is normal with parameters

/1/9 0
• rn (3,3), r 

~f
• \0 1/9/ ,

where r is the covariance matrix.

The kernel for both types of est~ma :ors was a zero mean bivariate normal

density wi th unit covariance matrix.

Figure 1 is a graph of the three error measures in data set I

as a function of the shape parameter a of the Parzen estimators .

Figure 2 is a graph of the three error measures for data set I, where

we selected k 100 and varied the multi plica tive parameter a.

4 I Figures 3 and 4 are the analogous graphs for data set II, where we

• 
have used k = 40 in the variable kernel graph.

In all cases , we ran the simulations unti l the minimal values of the

three measures of error were found, both for the Parzen and variable

kernel estimators. For the variable kernel estimators .we ran the
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simulations for k=lO , 20, 30, 40, 50, and 60 in both data sets , and for

k=70, 80, 90, 100 in data set I. Table 1 below summarizes the comparison

between the methods,

• To illu strate the resul ting fi ts more visually , we plotted 3 di—

mensional graphs of the best estimates. For data set I, we used a = .35 for

the Parzen est imator and k 60, a = .6 for the variable kernel estimator.

In data set 2, the cho ice of an “optimal ” a was more problematical . We

settlea on .275 as a reasonable compromise. For the variable kerne l 
•we

• took K = 40, a = .5. The results are shown in figures 5, 6, 7, and 8 (see end).~
Minimum Percent of Minimum Mean

Minimum Mean Varianc e Not Absolu te Error ,
• Percent Error Explained Percent

Parzen,
Data Set I 19.0 - 6.2 11.6

Variable Kernel , 
-

Data Set I 10.8 3.~.. 8.0

Parzen, -

Data Set II 34 7  13.4 
- 
24.2

Variable Kernel , 
-

Data Set II 22.5 6.2 16.5

Table 1

Fortunately, the variable kernel results were surprising ly unsensitive

to the choice of k. Table 2 bel ow gives the minimum values of the measures

-~~~ ~~~~~~~~~ of error for the different values of k. Note that in both examples , values
~~

of k over almost the entire range give quite comparable error measurements

As k varies the fit behaves slightly different for the two data sets.

For the smooth density of the first example, the error measures are still
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decreasing at k=lOO and we would probably have gotten slightly better

results by goi ng on to larger k. For the second density the error measures

decrease up to k=40 and then increase at k=50 and 60, (except for the MPE).

F • 
Data Set l

k = 10 20 30 40 50 60 70 80 90 100

Minimum Mean
Percent Error 12.9 12.8 12.2 12.1 11.7 11.6 11.4 11.3 10.9 10.8

• Minimum rercent
of Var iance Not
Expla ined 9.3 6.8 6.3 5.9 5.1 4.8 4.6 4.1 4.0 3.6

Minimum Mean
Absolute Error,• Percent 11.7 11.2 10.7 10.3 9.7 9.3 9.3 8.6 8.5 8.5

- 
• Data Set II 

_________ _____

- = 10 20 30 40 50 50 
—

Min imum Mean Per’ent
Error 24.5 

• 23.8 23.0 22.6 22.5 22.8

• - Minimum Percent of 
- 

•

• Variance Not
Explained 9.4 7.6 6.8 6.2 6.4 6.5

.
. Minimum Mean

• Absolute Error,
Percent 19.1 17.9 17.1 - 16.5 17.2 16.9

Table 2

While the best fit for each value of k in a wide range has about the

~~~~~~~~ 
•
~~~. same error measures, the values of the multiplier a at which the minimum

errors occur vary considerably but systematically as k increases We wil l

explore this further in Section 4.

_______ 0
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3. The Goodness-of-Fit Criterion

Since , in practice , the underlying f(x) is not known , the vari ous error

measures canno t be computed. This brings us to the second ques tion posed

in the introduction: How then do we go about selecting a or and k.

(Although we surmise that in actuality we need to estimate only the

optimal single parameter value X = ak(c) /a(dk) in the var iable kernel

estimates.) • -

In [2] a goodness-of-fit criterion for a set of samples to a proposed

• density f(x) was developed based on the fact that if f(x) is the true den-

• sity, then the variables

-nf(x.)V(d. 
~

- 
. 

w,~ = e ~ ~~‘ ,

where V(r) is the volume of an M-dimensional sphere of radius r, hav~’ a

unlvariate distribution that is approximately uniform . Thus , the test

statisti c for an estimate f(x) is based on the variables

-n~(x.)V(d. l~= e ~ , j=1,...,n .

Let W(1)<~• • <W(n) be the ordered permutation of. the w~. Then the test

statisti c S is defined as
- ~ n ~• 1’ ~- S = 

~~ (w ,.~ — IL)’ •
- 

~~~~~~~~~~~~~ T ~~
One question of great interest to us In this study was whether we could

select “good” values of a or k and ak by searching for a minimum in S.

The results were affirmative (with one exception we will discuss later)

- • 
- - -

~~~~

~~~~ :~~ . 
.

- - — ~~~~~~~_~~~~~~ L~~~~~~~~~~~~~ 
•~~~~ • ~~~~~~~ • • • ~~~~~~~~~~~~~~~ -
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Naturally, di fferent error measures were generally minimi zed at di fferent
-

• values of the parameters. In Table 3 we list , for every value of k used,

the value of a that minimi zes each error measure and the value of a

that minimi zes S for that value of k.

For the unimodal case the absolute minimum of S occurs at k=100, a .5.

At this point we have

Mean Percent Error = 12.5 (10.8)

Percent of Variance Unexplained = 4.2 ( 3.6)
Mean Absolute Error , Percent = 8.8 ( 8.0)

The figures in parentheses are the minimums of the corresponding measures

of error over all ranges and do not occur at a common value of k and a.

- In the bimodal case, the minimum of S occurred in the original runs

at k=60, .-= .4. The val ues at this point were fairly close to the minimums ,

i.e.,

Mean Percent Error = 22.8 (22.5) -

Percent of Variance Unexpla ined = 10.7 ( 6.2)
Mean Absolute Error, Percent = 18.8 (16.5)

For the Parzen Estimator with data set I~, the minimizing values of

a for the three error measures above were .40, .35 and .30 respectively.

The minimum value of S occurred at .60. For data set II, the minimums

occurred at .400, .175, .225 and the minimum of S at .375. For Parzen

• estimators S Indicates “optimal” values of a considerably higher than

-~ C the values of a that minim i ze the PVNE and the MAE. There is also •

less consistency between the error measures as to the location of the

respective minimi zi ng a. The a that minimi zes the mean percent error is

•-- ~~~~--~~- • •— • - •~~~~~•• ~~~-- 
.
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Table 3

Minim izing Va lues of ak.

- 
• - 

— 
DATA SET I_ 

_____ _____ _____ ______

f k = 10 20 30 40 50 60 70 80 90 100 •

Mean Percent
Error 1.4 1.0 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4

Percent of 
•Var iance •

Unexplai ned 1.8 1.2 1.0 0.8 0.7 0.6 0.5 0.5 0.5 0.4

- • Mean Absolute 1.5
Error, Percent or 1.0 0.9 0.7 0.7 0.6 0.5 0.5 0.4 0.4

• 1.6

S 1.7 1.2 0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.5

DA1~~SET II

k = 10 20 30 40 • 50 60

r Mean Percent Error 1.4 0.9 0.7 0.6 0.5 0.4

Percent of Var iance
Unexplai ned 1.0 0.6 0.5 0.4 0.3 0.3

Mean Absolu te Error ,
r ~ Percent 1.0 0.6 0.5 0.4 0.3 0.3

S 1.1 0.8 0.6 0.5 0.5 0.4

• ~_ ,_ •

-•— - -  ~~~~~~~~~~~~~~~~~~~~~~~~
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the highest, and in the bivariate case , cons iderably higher than the

other two minimizing values of a. Probably this latter fact is due to

- the behavior of the Parzen estimates at small values of f(x).

In both data sets, the S estimate of a gives a value of mean percent

error close to the minimum attainabl e for the data set. This is consis tently

true for the variable kernel estimates also. For each value of k, the S
• 

• miaFrizing value of ak haS a mean percent error close to the minimum possible

for that value of k.

0

0

I

S
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4. Mean Interpoint Distance and the Choice of a

In our various explorations of the variable kernel estimates, we• made

the empirical discovery that over the range of k investigated, that for

both data sets
~~~~~~~~ 2a k~ uk, constant

• a(d k) 
-

where and a(dk) are the nran and standard deviation of the k
th nearest

neighbor distances for the data set, and ak is the “optimal” a for that

value of k. To illustrate this , we use as the “optimal” value of ak, the

average of the first three minimizing values given i-n Table 3. Table 4

gives the values of ak(~~
)/a(dk).

The constant decreases about 40% between the two data sets. A :imi—

lar decrease occurs for those value of a In the Paracn Estimates whic.~

mininii~~ the Mean Absolute Error % and the Percent of Variance Not Ex-

plained. It seems clear that the increase in optimal kernal sharpness

occurs in order to deal with the increased variability in data set #2.

At the beginning of this study, we used distances to the closest

neighbor, next closest neighbor , etc., up to the fifth nearest neighbor.

The results were disastrous. Examining the errors, they came ma inly from

a few points that were too close together. We tried a number of things:

1. Selecting a lower bound D for the interpoint distances and using
- 4 -

dj,k max(D d
J ,k
)

in the kernel estimate of dj,k. D was selected as a percentile (usually

either the or 10th) of the dj,k~ j1 ,...,400.

~~~

• • 0

_ _  _  ~~~~~~~~~~~~~~~~ •~~~~~~~~~~~— •---
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• Table 4

- 

akfffk)/o(dk)

k = 
- 10 20 30 40 50 60 70 80 90 100

Data Set #1 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Data Set #2 .83 .80 .84 .85 .79 .84 - - - -

. 0

1

-i

:-~
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Ii. Using a weighted average of the first k nearest neighbor distances.

iii. Selecting a multiplicative constant and using ak djk or

c*.K djk . 
-

None of these helped very much as long as we kept working with k small. The

averaging in (ii) was no help. Later we made a theoretical computation

in order to find values xl,... ,ak with

i 1,...,k , ~~a1 l 
- 

-

and such that the var iance of 
- 

•

a~ ~~~ 
-
- -

Is a minimum . Assumin g that the density w~s “locally constant” so that the

distribution of points is “locally Poisson,’ the answer is

a2 
= ... = U~ 1 0, = 1

This result gave u~ some insight into the failure of the averag ing process.

In (iii) we found that trying to get more smoothing by increasing ak

led to serious underestimates of the peaks of the densities .

Nothing really helped until we started exploring the larger values of

k and found that (iii) worked well when k was large enough.

In terms of what has been empirically learned in this study, we tenta—

tively propose the followi ng method for calibrating a variable kernel den-

sity estimate. .

i •
_ _ ‘— --
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Step 1. Pick an initial k equal to some fraction of the sample size , say

‘• 10%, or by plotting ~~ versus k and taking a value of k past the knee of

the curve (see figure 9). -

Step 2. Do a search for the value of ak that minimi zes S.

- Step 3. Using the minimiz ing value compute

Uk ~°k
- 

~ a(d~) -

Step 4. Vary k in both directions , selecting Uk so as to hold the above ratio

constant and search for a k value that minimi zes S.

Note that Step 3 may be dimension dependent. -

;

i i-.-

r
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APPENDIX B 
-

TREE STRUCTURED CLASSIFICATION METHODS

Background -

Techno l ogy Serv i ce Corporation has been performing research under a -

variety of projects involving classification or categorization .

• For instance , one project has involved the recognition of ship classes
- by means of their radar range profiles. In another algorithms wei-e developed

for the recognition of spoken words using different speakers. A third pro—

• ject involved the classification of chemical compounds through their mass

spectra.

The nature of these problems is such that classical classification

techniques , such as the use of Fisher dis:riminants , etc., are virtually

useless. Even recently developed techr~iqLes such as the use of nonparametric

- 
density estima tes or nearest neig hbor methocs are largely non applicable.

The common elements that make these problems different and difficul t is

1. The measurement vector characterizing each object is very high-

dimensional.

•
~1 

2. The number of classes is large.

3. The number of classified samples is small , rela tive to the dimen-

sionali ty and the number of classes .

~
j ~• I To do effective decision making in these prob lems we have turned to

tree structured decision methods. The simplest type of decision tree works

this way: denote the measurement vector attached to an ~objcct by x and let 
- 

-

It take values In a space X. A node of the tree corresponds to a subset
t -

EcX. If xeE then the decision is made to pass the object to the left hand

node. Otherwise It goes to the right.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r~~~• ‘ - .~~~~~~~~~ T~~~~~’- _ -~~ r~~~ “ “~~~
—‘

~~~~~~~
---—

~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

2 
-

_ • _ _

-
• The branches of the tree end at terminal nodes. Each terminal node is

assi gned to one of the classes. When an object passes down the tree and

hits a termi nal node , it is labeled as being in the assigned class.

This tree structure is in a way -fairly simple. It is binary in the

sense tha~ each node splits into two descendent nodes , and the decision

• rules ar: n~.’i--random ized. Still it is the prototype of tree structured

classifi cati ’n methods.and its successful application in a number of prob—

lems has been the stimulus for our recent and proposed research into this

area. -
-

To understand why decision trees appear to us to hol d great promi se

in high-dimensional , numerous class problems , think of the s imple prob lem

of constructing a word dictionary , contain ing thousands of entries. In prac-

tice, we use a real dictionary very easily and naturally, wi thout realizing

- ~
• . 

what an effective tool it is. First , we look at the f irst letter of the

word. This separates all words into 26 disjoint subsets. Hav ing located

which subset we are In , we now look at the 2nd letter of the word. This
• •

- •~~~•+— -.

splits the original subset into 26 2nd generation subsets We continue

until the word Is located.

I
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The point -is that the decision is not made all at once . The large

amount of information carried by the succession of letters in the word

- 

• • 

is not used at one gulp to decide which one of the thousands of possible

cases the word fits into. Instead , a very interesting and practical strategy

is used. Starting wi th a very limi ted amount of information , namely, the

-

• first letter of the word, a rough classification into a small (26) number

• of groups is done. Then more information (the 2nd letter) is adjoined , and

a finer subdivis ion is made , and so on.

- The point is that the high intrinsic complexity of the problem is

• 
~

- broken down into a sequence of steps in which highly aggregated information

• Is used to separate a group of objects into a relatively small number of sub-

groups.

We iav emphas ized the above, at the risk of being overly simplis tic , in

order to cl ar ify the simpl e but power~u1 idea t~at underlies decision trees.

We know of no other practical method for effectively solving problems char-

acterized by:

o hjgh-dimensionality

o numerous classes

• small sample size.

By aggregating the information and áplitting each group Into only a few sub-

0 groups at each stage, one deals wi th a sequence of prob lems having considerably

lower dimens ion and fewer subgroups. Thus , the sample size , relative to di-

I mensionality and number of subgroups becomes much larger.
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One very important distinction between classical pattern recognition

methods and a decision tree structure is in the way that information -Is

utilized. In the usual pattern recognition approach , the dimens ionally

is made reasonable by the selection of an apriori mapping from measure-

ment space to “feature” space. That is , depending on certain phys ical

or heur istic princ ip les , the large amounts of detailed information regard-

ing any one object are aggregated and summarized in a small number of

variables that comprize the feature vector.

• The reason -for this mapping is usually very practical : Since the usual

pattern recognition algorithms give a one gulp answer, a drastic reduc tion

in dimensionality is necessary both to make the sample size sufficiently

dense in the space to def ine the problem ~nd to make it compatat ionall,y

feasible. -

But having made the reduction in dimensionality , one is stuck wi th

it. The loss in information is irrevocable. -

Even if the pattern recognition phase of the problem reveals that

addi tional information would be useful in some regions of the space, it cannot

• be made available without a reworking of the problem .

The trouble is that the attempt is made to work the problem in two

separable non-interacting pieces: one is the feature selection. The

second is the classification.

However, in a tree decision structure, there is poss ible a sequen tial

Interaction between classification and information. As one progresses •

c down the branches of the tree, more and more detailed information can be

called for by the tree construction algori thm. As a verbal analogy , is

• --~~~~~~~~~~~~~~~ -- ----- - 
t__ ~

_ ___ _
_
_ 

-

~~~~~~~ - • -rn •
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• as though at each mode, the ~ree construction could call upstairs and say

• “If you want me to do any more separati on on these things , then you ’ve

got to give me some more information .” 
• 

• 

• -•

However, the problem is not resolved simp ly by resolving to use a de-

cision tree structure. To a great extent , the problem has been shi fted

into new ground. It now becomes: how does one determine the most effec-

tive or an effective sequence of decision problems defining the tree? That

is, what question does one ask at each node of the tree?

Put into a statistical context the problem , simplified to binary trees

is this: given that the data vector x is drawn with probability p.~ from

the distributLin P1(dx) corresponding to the 1th class , find a sequence of

- 
binary dec is~on questi ons of the fo rm, “is xeE?” that leads to a near

maximal proba bility of correct classification .

In practice , nei ther the a priori ‘lass probabilities p.~ or the class

distributions P1(dx) are known. Instead, one has on hand a set of objects

and corresponding data vectors whose classifi cation is known. The hub of the

problem is to use these to construct an effective decision tree.

• Obviously, by using as many terminal nodes as there are objects in

- 
the learning set, we can usual ly get perfect classification on the learning

set. Thus, unrestricted tree growing using the learning set alone will

-~ :~‘ - i 
lead to nonsensical results. Restrictions need to be placed on the corn-

plexi ty of the tree relative to the sample size , and some of the already

classified objec ts , chosen In some random way, put aside to act as an eval-

~~~~~~~~~~~~~~ 
uatlon or “ test set” -for the tree.

Trees share the complex character of all sequential decision methods :

~~

-‘:
‘ 
~ a decision made at a point affects all subsequent decisions. Thus , it is

_ _ _ _  

•

• • —~--— • •- ~ -- -—-~~~~---• ••
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• difficul t to evaluate what is optimal at each node . With high—dimensional

data vectors , one faces an enormous amount of information and at each stage

of tree building what is wanted is to use some low dimensional aggregation

or “averaging” of the information. But what averaging or aggregation is

effective, and how the effectiveness should be measured are difficult ques-

tions to resolve.

Thus, there are important prohlemc that need further resol’ition in

order to sharpen the use of decision trees as a practical classifi cation

• • tool . Technology Service Corporation has developed some methods for tree

growing and applied them, with very promising results , to problems as di—

• verse as ship :lassifi cat ion wi th the radar range profile as the measurement

vector and c emical classification w ith the mass spectra as the measurement

vector. -

In the body of this report, we wi i l outline our largely unpublished
• 

recent research into decision tree construction and application. Then we

will discuss the directions where we believe that further research is needed.

The development of decision tree methodology has important implicati ons

for implementati on in actual on—line recognition and classification systems.

The tree is developed off-line using the given “training set.” This is the

difficul t and time-consuming effort. - But the on-line tree consists of a

•1 sequence of very s imp le questions , i.e., a sequence of yes-no questions for

a binary tree. Thus, on-line classifi cation can be very rapid. Furthermore,

as the more interesting and difficul t recognition problems move toward

higher dimens ions , wi th more information being extracted concerning each

object , tree structuring decision processes become increasingly appropriate •

and useful .

-
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At the beginning , much of our tree cons truction was based on heur isti cs

and trial and error, with the resultant misclassification rate being our

gauge of success. Over the last year, we have been experimenting with

al gorithms for the systematic generation of “good” binary trees.

Our best performance to date has been based on the following al-

gor i thm: At any node, suppose there are n objects of the learning set

with associated measurement vectors x-1,...,~~. Suppose that of these

n objects , n1 are in class #1, n2 in class #2,..., and flj  in class #J.

Suppose that we . have defi ned some family] of potential splits at

thi s node. Eac h spl it sends a subse t of the n objects to one node , and

the complementary subse t to the other node. The spl its are based on

the val ues oi’ the measurement vectors ;~,1=1 ,... ,n. That i s , each

• 
spl it in is based on a question of Uie form

Isx cE?

Hen~_e , in general, the family ,/is constructed by selecting a fa’~i-ly {E5}

of subsets of X and looking at the potential spl i ts generated by

I S x ~~ E5 ? - 

-

At this point , one woul d l ike to select the “best” split in ,1 The pro-

blem is how to define “best” . -

A split at any node impacts all the nodes below it. Therefore, in

judgi ng how good a split Is, one woul d th2oretically have to trace the

subsequent developments of all descendant nodes. A split that does the

- 

C best possible job in terms of the two immediate descendant nodes might

not look very good when the tree is -followed down -for another generation.

Thus, there are levels of judg i ng the goodness-of—split.
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Analogously, a novice chess player might , at any given time , choose
the move that most improves his imnediate position. But a good chess

-
• 

~
• pl ayer will think two, three or more moves ahead in considering the

impl i cations of the correct move.

To date, we have concentrated on the finding of good criteria for

selecting the “best” split from a family j using only~a one generation
• analysis. This is by no means a trivial matter , because the choice

of a good “strategic” cri teria can trade-off against a detailed mul ti-

• generation analysis. In other words , using the chess game analogy , if

a player uses really good cri teria for judging his improvement in current

position , his crite ria will embody a good deal of his past experi ence

• gained frt~-n learning the future consequences of current moves .

Suppose there was a split that separated all of the objects in

class j  into one node, and the other classes i~to the other nodes. For

a problem with a large number of classes , this is not a strategically

sound split. We would rather get a split such that all the objects in

a large subQroup of the classes went into one node and the remaining

classes nto the other nodes. Therefore, we want criteria for goodness-

of-spl~~. t~iat rewards the latter type of split more than the former.

The most satisfactory criterion we have found so far is based on

the uncertainty measure. For any node N having n,~ objects in class j,

j=l ,...,J define the uncertainty at that node as

U(N) -~ (n./n) log(n./n)3 3 3

where n ~ flj. Suppose that a split produces the left NL and right

nodes with of the origina l n objects going left and nR = 

~~~ 
going 

~~~~~-~~~~~~—•- - - “- - -—- - - - -
~~~~~~~~ 

- •----
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right. Then define the decrease in uncertainty produced by the split

as
= 0(N) - (n L/n)U(NL ) - (nR/n)U(N R) -

This criterion generally rewards the best strategic split. For in-

stance, if there are J 2M classes and if a node conta ins equa l numbers

of objects in each class , then the splits producing the largest ~J p laces

all objects in M of the classes in or.c descendent node and the rcmaining

objects in the other.

• The algorithm then searches over all possible splits in S, and se lec ts

the one giving the largest t~U.

The algcrithm needs one more piece to be • complete. A stopping rule must

be specifie~. Otherwise, as many terminal nodes as there are objects in the

test set wiF be produced. We are currently utilizing the rule: Let N be

the origina l test set population and n, the node populati on. Set a threshold

a and declare the node terminal if there is no split in Jsuch that

The adoption of this rule and the threshold value of ~ used were set by

-
- 

- heuristics. That is , we genera ted trees that went down to very small ter—

minal nodes and decided where on the branch it would have been reasonable to

stop. The rule was then constructed to more or less match our statistical

opinions.

The critical element in this tree growing procedure is the selection

~~~ ~~~~~~~~~ 
of the familyj of potential splits at each node. In sh ip reco gni tion , the

measuremen t vector consisted of the intensity of radar returns as measui ed
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every two feet along ships ranging up to 500 feet in length . Thus , the

measurement vector x had a maximum dimensional ity of 250. The class Jfor

all nodes below the 1st generation was generated by questions of the form: 
-

“Does the range profile have a local maximum in the interval [a ,b]?”

The ends of the intervals a ,b ranged along mul tiples of 1/100 of the ship ’s

length . Thus a and b were specified by giving two integers L,t-1

- 0 ~ I ~ M ~ 100, and consequen tly, the split was specified by L and M. Thus ,

the family J contained 
-

- 

lOO 99
~~~5O0O

potential spl its at each node. -

- In the chemical spectra study , the ~2asurement vectors consisted of

peak int~~si ies on a scale of 0 to 100 corresponding to every integer nile

value from 1 ~ to 320. Thus , x was 320 dimensional. The intens iti es were

divided into five logarithmic ranges , sc that the coordinates of x cou!d be

considered as taking values in the set (1 :2,3,4,5). The familyi was gen-

erated by all questions of the form:

-. “Is the intensity at m/e = k greater than m?”

-
~~~ I In other words, each question was characterized by the integers k and m with

1 ~ k ~ 320 and 1 ~ in ~ 4. Thus ,,1- contained about 1200 spl i ts at each node.

New Conceits

The results of these above two studies were exciti ng , in that we t~ould
see that the tree structure gave us a feasible way of solving problems that

- 

-

~~ 

- - 
. had previously seemed quite untractable. The al gori thm used , for all of its

~

---4
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crudeness and simpl ici ty, produced reasonable classificati on results. As we

worked wi th it , the drawbacks and deficiencies became a~parent, and we could .

see directions where improvements could produce more powerful and flexible

methods. We have outlined some of these in the sections that follow.

Basicall y, we want to extend and generalize the realm of possible tree

structures. One direction we very recently came across is the use of ran-

domized decision rules at the nodes. This leads to structures we have called

L probability trees and has the promise of resolving two serious shortcomings

we have found in practical applications.

Another direction where basic work is needed is in information—adaptive

trees. The point here is to allow the class of allowable spl i ts to change

as one progresses down the tree, so that near the top, coarse overall -fea-

• tures are used and more detailed informatica is added to discriminate at the

— lower nodes. Here, possibiliti es are intr&uced “looking ahead” to check the

consequences of any given split. 
-

Another possibilit y -is that of using other splitting criteria and

cleans ing terminal nodes have too much of a mixture of classes. Finally,

we discuss our think ing in the di rec tion of the “ultimate ” decision tree

class ification method, as applied to a truly numerous class problem.

•1
I - -.-,

~ ~ 
-

:-
~ ~~~~~

- 
-; - 

---- - —-
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i3ounda~y Problems , Confidence Statements, 
and Probability Trees

Analyzing our approach using binary trees and spl itting questions

of the form 
— -

Is x E?

we found that there was, at times , an undes irable sensitivity to the boundary.

That is, with many classes to discriminate between , the algorithm would care-

fully select the splittin g set E to include most objects in the test set within

a certain set of classes and exclude those without. Often, a considerable num-

ber of measurement vectors would fall near the boundary of E. Then when the

test set was run, a frequent source of error was due to measurement vectors

that just m ssed being on the right sidc ~ the boundary of E at some node and

were con~.~uE tiy misclassified .

- - 

One reaso n for this behav ior of the boundar~c~s was that our learning

set, al though large by ordinary one dimensional standards (336 for ships)

was sparsely spread out in the high dimensional space. The boundaries

could then arrange themselves to do quite well on classifying the learning

set and not too well when another sparse set (the test set) was randomly

plunked down .

We improved the boundary behavior in ship recognition by taking each

lo learn ing se t profile , adding random noise and in this way generated

randomly perturbed profiles from the original profile. But we considered

this an artificial baling wire and glue remedy. -

The non-random ized character of the decision roles also gave us another

diffi cult probl em to solve When an unknown object goes down the dec~ s ~ on
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tree and ends in a terminal none labelled as class #J, what conf idence

we assign to the classifi cation? • -

To begin with, the terminal node was labelled as class #j if there

were more class #j objects in it than any other class. Some terminal nodes

have very mi xed populations and are terminal because no further discrimina-

tion is possible using the class of splits land the given stopping role.

Other t~~ninal nodes have a very high percentage of their population in one

class. This difference in terminal node distribution is complicated by the

fact that some un) nown objects , in traversing the tree, come down through

nodes at which their measurement vectors are very close to the boundary.

Others stay away from the boundary at all nodes. -

• The problem did not seem to have a really satisfactory formulati’m of

binary decision trees. Al though we conjured up some measures of confidence ,

we had l i ctle confidence in them.

In July 1976 we have-started thinking about a di-f—

- 
- 

ferent type of tree structure that may solve both the boundary problem and

the prob lem of as signing confidence to the classif ication of an unknown

• 
- object. - 

-

These new structures are called probability trees and are described

as fol lows : - 
-

Start with a learning set consisting of n objects in 3 classes,

C1, .. ., C3. Number the objects 1 ,... ,n. A node of the tree corresponds to

a vector~~ of probabilities 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

At each node, define

• n = I p.

_ _ _  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ ---~~~ - - 
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- 
• 

- 
- 

- 

- 
- .

and the class probabilities P~ by • 
- - 

-

- 
-
~~~~ • = 

- 

p-/ I~i 
- 

- 

-

3 icC
i .

3 
-

-

~ where icC,~ denotes the sum over all objects in class j .  - - 

-

-
- 

— 
- - 

We will set up a procedure for splitt ing this node. Instead of con—

- 
- - 

- 

- sidering a set E and asking: is x E?, def ine a family~~~of functions

- - ø(~
) on X , such that each 0(x) satisfies - - - 

- 

~~
- - - -  -

- 

- - - 
- 

-

0<0 (~)<l

We will use a particular function 0 a~ follows : for an object having

- 

-

~ measuremen~ vector x, put it into the le~~ node wi th probabilit y 0(x) and the 
- 

-

- - 

- 

right nc~ -; ~ th probability l—~(x). Thus we get the picture

Prob ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= 1-0(x)

b- s - 
- - -

i :

‘U - 

- 

-
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-

If the 1 th object has measurement vector and its probability in the

present node is p ., then i ts: probability in the left node is

- 

-

- 
- 

- p1
(L) = Ø(x 1 )p

1 - - 

-

- 
- - 

- 

-
- 

J

and in the right node -is

- -

p (R) = (l-0(x1 ))p

Thus we get the left and right node probability vectors

- 
_

: 
- - 

- 
- - - - - 

- - 

- ~(L) = (p1(L),.. . ,p~(L)) 
- 

- 
- 

- 

-

- 

- 
- ~ (R) = cP1(n:~...~P~c R)) 

— - 

- 

:- - 
-

-

- Note that 
- 

- 
-

- 

- - 
- - 

-
- 

- 
-

-

:~ 
-

- - - Also , the class probabiliti es P~(L) and P~(R) are defined as before, i.e.,

- - - .4 - - - - - - 
1 

- 
-

~ 
j 

- 
- - - - P.(L) 

— 

‘ )‘ p . ( L) - 

-

- 
-. - 

- 

Jp (L)~ icC~ - 
- 

- 
- - 

- 
- -

- 
- 

- Defining uncertainty m a  ~et of class probabili ties 
- 

-
-

~~~ I - - 
- 

-

- 
- -

- 

- - 

- 

U (P)=- zP~~1og P~

- 

- we have that the decrease in uncertainty due to the node split is

)
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- 
-
~ 

- 

- 

- -
~U = U(P .) - U(P(L)) - 1

~~~~~U(P(R)) 
-

H 

-~~~~~~ - 
-

Choose the 0 in ~ that maximizes i~tJ (see remarks later). 
-

- 

Continuing this way , we arrive at M terminal nodes Tl,...,TM with cor-

- 
responding vectors of probabilit ies 

~~~ 
and with the m~1 node havin g

class probabilities

— -

- 
- Gi ven a test object, we get our results as follows: traversing the

— tree and using the selected function 0(x) at each node, we end up with -

- 
- - 

- 

- probabilities q
~
, m=l ,. .. ,M that the object i s in terminal node Tm~ Define

F - - - the probability that the objec t i s in class j  by 
- 

-

P(object is in C1) 
= z p~in) q

Identify the object as being in that class having the largest probabi lity .

Then the probabili ty of rinsclassif cation is

- - 

- - - 
- 1 — max P(object is in C.) - 

- 
- - - 

- 
- 

- 
- - 

- -

- 
—

- - - - - - j  
3 

- -
-

- A few remarks: The standard way of node division , i.e., askin g the

- 
question is XcE? can be formulated as; let 

-
. .

- - 
- - Ii , if xc E - 

- 

- - 

- 
-

- 

- 

-

(0 , otherwise -

and sending the object left with probability 0(x), right with probability

1-0(x). Thus, using a 0(x), subject to O<Ø(x)d is a generalization of

the above. - - - - -

~~~~~~~ ~ --~~~~
--- - --. 

~

-- 
-

~~~~~

- - - ---  —

~~

- 

-



~~~~~~~~

- ---

~~

--
~~~~~~~~

—

~~~

-— - —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
_ _

-

• - 
17 - -

Now, it is impossible and undesirable to maximize iMJ over too large

a class of functions 0(x). The reasons are: -

1. One does not want to allow too complica ted a set of dec ision rules.

- 
- 

- 

- - 2. If the class of allowa ble func tions Ø (
~~

) is too large, the mini m i—

zation search will take too long. - - - 
- 

- 

-

- 
-

- 
- 

- Thus, the essential ingredient for this method to work is the selection of an

appropriate family -
~~~

‘ of functions to maximize t~U over. Probably reasonable

reqt’u’ements are

All of the functions 0 in ~~be reasonably smooth
- 

- . The family 4~depends only on a small number of parameters. 
- 

- 

- -
-

Note that, in a sense , a probability tree makes use of fuzzy decision

- sets E. If A is well within or outside of [ it is sent to one or the other

- node wi th prdabi lity close to zero on one . But if it is close to the

boundary the lecision becomes blurry. - 

- - 
- - -

- 

lnteres tin9ly enough, although the impedus for probabilit y tree! was

- - to get rid of the boundary prob lem, as an unforeseen by-product we got a -

- 
- - natural solut ion to the conf idence problem as expresse d by the proba bility

that the unknown object was misclassified. 
- -

-
. Information-Adaptive Trees - - - 

- 

- 

- - 

- 
- -

• A decision tree structure that uses the same set of potential splits

at every node has some seri ous disadvantages. It is generally using too

much in formation during the early part of the tree construction and not

enough during the later part. - 
- -

For instance , in the chemical spec tra data base , we used the 1600-

dimensional feature vector consisting of all peaks at nile locations between
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1 and 320 and a separation of the intensities into five ranges. That gave

the 1280 potential splits : Is the intensity (coded) of the peak at m/e = k

greater than j, j l,2,3,4 and k 1,2,...,320. In general , only a small

fraction of the spectra in the data base had a peak of any given ni/e val ue whose

intensity was greater than j,j=l ,...,4.

Thus , at the early stages of the tree we had too much splintering with

— 
• s~nal l nodes being split off. Tn the later part of the tree construction , - 

-

the spectra at any node have been filtered down by thei r common responses

to a number of ques tions. They exh ibit more and more simi larity the lower —

down in the tree the node is. Therefore, to effect ively spl it a small node,

we may need to incl ude more detailed information about the spectra, or to

•
ask more detailed questions about it.

In both of our studies, many of the lo-~g-confidence small nodes cou ’d

not be ei’fectively split by one of the available splitting questions . This

may have been due to the fact that the set of potential splits was not able 
-

to get at the level of detail needed further down the tree. -

Another possible cause for the program ’s difficulty in separating

some small nodes is its restriction to a single stage optimization proce—

dure. It always selects the split which gives the greatest decrease in

uncertainty. This is a “one—step optimal procedure.” But usually, the

success ion of two “one-step” optimal splits will not be the “two—step”

optimal spli t. Instead of judging the merit of a split on how much the

split reduces the uncertainty , we coul d use the following procedure:

For each allowable spl it of the node in question into two nodes, find

- - 
_ _ _ _ _  _ _
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• the optimal split of each of the two nodes. Now compute the decrease in

uncertainty as we go from the original node to the four “descendant” nodes
- 

. and use this decrease to judge the meri t of - the ori ginal split. This gives

a “one-step look ahead” evaluation of the split. As an analogy , this cor-

( - responds in a chess game to a chess player who is capable of looking ahead j
one move into the future as contrasted to a chess player that plays the

• irove t~iat yields him the most immediate gain. 
—

The point is that , without a look-ahead potential , especially in the

later stages , we may be selec ting “bl ind alley” splits ; that is ,- splits

that look good as immed iate prospects , but that do not eventually lead

to high-confidence nodes. -

We bel ieve that a substantial impr~ve~ent in decision tree classifi-

cation procedures can be made by using an nfcrmation-adaptive structure.

By this we mean a decision tree that

a. -in the early stages uses less detail , aggregates the infor-

j - mation , and sp l its the objects into a few large general

categories

I b. in the later stages, adds more deta i led informa tion,
- examines a larger class of spl its, and, if necessary,

goes into a look-ahead mode of operation. - -

This type of tree structure also lends itself to greater efficiency

‘ - In construction . At the early stages, with a large data base, each node

~‘ ~ -~~~~~~
‘
~~~~

- 
- 

contains many items. Wi th the chemical spectra base, the: first few nodes

contained thousands of compounds . If one used the same degree of detail

_ _ _  
U
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at this stage that is desirable later , then the number of potential spl i ts

will number in the thousands. The search through all potential spl its

over a large number of items is very time-consuming and the rewards at

this level are not commensurate with the effort expended.

When the nodes are small , then the search over a larger number of

allowable spl its is not as burdensome computationally. 
-

O~~ way an information-adaptive structure could be implemented is as

follows : A number of di fferent cl asses J- 1, ...,i3 of splittjng questions
will be defined. At the top l evel is a relatively small classJ) of

ques tions that uses highly aggregated information about the objects. At

- - 
- the bottom level is a large class of spli~ting questions that uses the

most detailed information about the object . The tree growing will proceed

as follows : - 
- 

-

1. At any node, depending on its size relative to the origina l

total populat ion, fix a threshold value i(s), start wi th

c1ass .J~ where~~ is determined by T(s), and find the best -

spl it generated by this class.
3 . .

2.- If the decrease in uncertainty associated with the best

-
~~~ spl it tnJ~ is not greater than the threshold value i(s),

then examine , in a similar way, all the allowabl e splits
91n .~i+l.

- - 3. Continue in this way until ..J~ is exhausted. If no allowabl e

split exceeds the threshold value , then

1. either call the node terminal ,

_
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or - - 
-

ii. go in to a one-step look-ahead decision mode . -

Which alternative we choose in 3 above will depend on the size and confi-

dence level of the node in question.

The usefulness 0-f highly aggregated information at the beginning of

the decision structure is vividly illustrated in chemical spectra study .

If w-~ ~~ used the set of 320 spi tting question , “Is the molecul ar we ight

equal to k, k=1 ,2,...,320?,” none of these splits would have caused an - -

appreciabl e decrease in uncertainty. The reason is that only a small pro-

portion of the compounds have a given molecular weight. The definition

of uncertainty is such that when a node is s7lit and one of the two

. descendent nodes has a very small fraction of the parent’s popul aticn~
then the decrease in uncertainty is small. Thus , if we had used the f~~l

detail available in the molecular weight information , the probability

is that i t woul d have caused very little , if any, alteration in the

- 
- tree structure and in the miscla ssification rate. -

However, aggregating the molecular weight information by dividing

it into the two subsets--even weights and odd weights--and adding only

the sin gle question as to which subset the weight was in , led to a di f-

-

~~~ ~ 

ferent initial split and a drastic reduction in misclassification rate.

In our thinking about the chemical spectra problem, we could see the

following possibilities of di fferent levels of aggregation.

The first level of questions could include questions of the form:

Are there two or more main peaks in the M/e sequence k,k+14 ,k+28,k+42,...
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- 

-

for k an integer between 0 and 13? Or, more generally, one could ask

questions of the form: Are there j or more main peaks in the subset of m/e

values (C1,C2,. . .,C~)? - 
- -

Notice that on this l evel we would be ignoring the intensities of the

peaks and using only their locations.

At the next level 4 of questions , the intensities might be intro-

duced. For instance, a possible set ~ questions at this le’vel nii~jht be:

Are there j  peaks wi th intensities i in the subset of m/e values

{C1,C2,.. . ,C~)? i3oing down the l evel s, the questions become more de-

tailed. For instance , we may want to go to the level of questioning

of the form: is there a peak at rn/e E C1 with intensity i 1 and a

peak at rn/ C c C2 wi th intensity i2?

At a cer am level down the tree, the isotopic information should be

added to the main peak information. With this added information , ques—

tions concerning the ratio 0-f intensities of main peaks and nearby

- 
. isotope peaks may aid in the separation of classes at the nodes .

A one- or mult iple-step look ahead procedure is costly in its initial

construction. For example , if there are N spl i tting questions at the

-
~~~ 

- level being used, then for a one-step look-ahead optimization , 2N2 splits

have to be examined. This number conies -from observing that for such allow-0
able spl it of the original node, al l allowa ble splits of the two descendant

nodes are exami ned. If there are, as in our study , about 1000 allow-

able spli ts, then a one-step look-ahead optimization would have to examine
. 1 -

~~~~~~~~ 62 10 spl i ts. Hence, the one-step look-ahead procedure would have to be

planned in a modi fied form in order to be feasible. 

.-
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Jther Splitting Criteria and Iterative Cleansin g

— As we mentioned before , the uncertainty has the property that if a.

-~ 

- split results in one node much smaller than the other, then there is not

much decrease in uncertainty . This may be undes irable in some situations.

For example , suppose there are 5000 objects irt a node, and a certain

split resul -s in a node containing 100 objects and another with the 4900

rema in nq objects. Even i-f the node with 100 is absolutely pure , that is ,

consists entirely of one class , the split will not produce much of a

reduction in uncertainty and will almost surely not be the opti mal choice.

It is possible that we want to choose our criteri a for goodness-of—

split so that it gives a higher weight to cplits that produce fairly

pure nodes that are above some minimal siz~.

For instance , at one extreme, we coulo adopt this strategy: Find

the split that produces the largest node having more than 90 percer’i

purity (i.e., such that more than 90 percent of its population is in one

class). Having split off this node, repeat the procedure on the other
- 

-
~~ node unti l no 90-percent pure node greater than some minimum size can be 

- 

-

- found. Now that we have chipped away all the above 90-percent pure nodes,

we lower our level to 80 percent and search for the largest node having

at least 80 percent puri ty. Having found an 80-percent node , we then try

to extract an above 90 percent chip off of it by splitting.

k This ch ipp ing away of small pure nodes procedure does not seem

desirable near the early stages of tree structure. At thjs initial phase,

the best thing to do is to get the population roughly sorted into large

-I- ~~‘ ~ , 
- 

-
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-

subsets such that each conta i ns signi ficant numbers of one or mo re classes ,

but excludes most of the members of one or more of the remaining classes.

At the advanced levels , when we try to split nodes containing only two or

three classes , the “pure chip ” strategy itself or in combination w i t h  the

uncertainty criteria may produce more accurate--classifi cation.

Thus , we may want to adapt our splitting criteria to the depth of

the part of the tree we are working cn. - 
-

There are an infinity of other criteria for -judging goodness-of-split.

But in a sense , the “pure chip” and reducti on of uncertainty cri teri a

stand at opposite ends of this continuum of possibiliti es.

Even with improved tree-growing procedires , it is inevitable that

- some of the terminal nodes will have 1ow- c~nfidencc level s, w here the
r confidence level is defined as the percenta ie of the largest class in the-

total population of the node. A simple iterative procedure for ch-~~sing

the low-confidence terminal nodes is to pool the populations of all

terminal nodes with a confidence level below a pre-set level (say, for

instance , 80 percent) and using this pooled population as the initial
- population , rerun the tree construction program. Now that the fairly

pure terminal node populations have been pulled out, the tree structure

for classifying the remaining population should be enti rely different

— than the original tree.

This i teration can , of course , be repeated over and over, but we

strongly suspect that the point of diminishing returns wi.ll appear after

one or two iterations. Still , we anticipate that a substantial improve-

ment can be produced by this iterative cleansing.

H
- 

J
_ _  --- - - - -
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Further Moves Toward a Uunerous Class t-iiih Dimensional Tree Classifier

The problem we want to ultimately be able to solve is something like

spoken word recognition wi th a large possible vocabul ary, say 1000 words.

We want to be able to recognize an individual word , no matter who spea ks

it. Now attached to each spoken word is the hi gh dimens ional measurement

vector consisting of the digitized recording of the word.

Ou.- planned strategy, in attacking this problem , will be to first use

highly aggregated informa tion to separate the wo rds into a few subgroups.

For instance; is it a multisyl lab le word? Does a peak appear near the

beginning of the word in this frequency range?

- -The tree structure will be information adaptive , at each node, the

.subgroup of word classes present will be btoken down in smaller subgro~-ps.

Obviously, this is a sensible approach. The question is how to

implemen t it? We will describe a general framework and then look at ~ome

specifi c examples. - - 
.

H -

Step I: Select a family ~T6 1, 0 c 0 , which maps the measurement

vectors of the learning set into a low dimensional space (feature space).

Step II: Using the values ~ = T0(x) corresponding to the feature vectors

of the job class , estimate the density f~ (y). If the apriori

- 

probabil it ies of class J are p
~ 

then the probab ility that an unknown

Item wi th feature map ~ belongs to class J is defi ned to be —

:~ 
~ p(jfy*) Pj f.(y*) 

.

0 ~ P~f~ (Y *)

1 

_— —-- —- - —- - -~~-__ - - -—_ -~~ —_ -- -~~~~ mm— j
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~~
p III. For all items in the 1th class , let C1 be the set of feature

vectors. Define

n1~ 
= 

~~ P(j~y) 
-

Step IV. Take the “confusion ” matrix I I n -~~H and cluster the classes

i.- to similar groups. Define a measure of misclassification between

groups . After the clus tering, let this measure be M(o).

Step V. Select 0 to minimi ze 11(0). 
-

Step VI. Repeat the above 5 steps or, v~ch of the subgroup of classes

defined in the 4th & 5th steps above , using another fami ly of feature maps .

This general framework gives rise to ~ dec i sion tree structure,

al though it is not necessarily binary. It can be made binary by ci~stering

the classes in to two groups at each stage, but thi s is unnecessar ily

refrictive. A better alternati ve that a binary grouping on any fixed number

of dissimilar groups is to allow the existence of a group of “dubious ”

• classes. So, for example, a good ternary clustering worl d consists of

two extremely dissimilar groups of classes and a “dub ious ” group between

them. F
This approach is a combination of a number of methodologies , includ ing

clustering. One problem we -face in implementing an algorithm of the above 
-

- I -~
type Is to find an effective way of clustering the cIasse~ into subgroups

at each stage. We have developed one such algorithm which is described In 4
Appendi x D. 

---- ~~ - —
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Other Rela ted Research

In his extensive 1974 review [1] of pattern recognition methods , Laveen

Kanal states “For the mul ticl ass case , most of the work has either cas t the

14-class problem as M (M-l)/2 two-class problems or employed multidimensional

scatter ratios popular in classical multiple discriminant analysis.” Thus ,

the use of tree structured decision methods in multiclass problems (11 large)

is relatively novel in the area of classifi cation or pattern recognition.

However , there is some scattered work in the literature that is relevant

to our proposed research. One of the earliest works in the field proposing

the use of tree structured classification is due to W. Meisel [2], the pro-

posed co-principal investigator. Some related but very specialized results

regard “tre~’ grammars.” These are referenced in Kanal ’s work [1].

We a~~ c2rtainly not the first to propose the use of the uncert.~in~y

measure ~s a splitting cr i teria , and the idea has appeared sporadically [3,4].

Tree structured decision methods appear very prominently in clustering theory.

Hartigan ’s recent and excellent survey book [5], contains a full di scuss ion

and description of their use.

One of the mos t successful use of tree struc tured deci s ion methods is

the nonlinear regression program AID and its successors developed at the

University of Michigan and widely used in the social sciences , [4 ,6). In

0 this algorithm a search is made for successive spl its over the independent

variable space. The spli tting criterion is the reduction in mean square

error in predicting the dependent variable. The result is a tree structure

of binary spli ts of the data points .
4. 

~~~ b.- ,
- -
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Another use of decision tree structures is in file search procedures.

A good account appears in [7]. 
-

- 
.r

-

- 

-
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