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This is a final report on research carried out at Technology Service
Corporation under Contract No. A151 F44620-76-C-0069. The length of the
contract was one year. The purpose was to carry out résearch leading to
more effective methods of analyzing high dimensional data sets. The moti-
vation for the research came from our growing realization, in handling many
high dimensional data sets gathered in many different fields, that classical
methods were often inappropriate and when used, lead to misleading results.

Our main efforts over the year were in three areas:

First: Extensive reviéions of our work on variable kernel density estimates,
leading to a paper accepted for publication by Technometrics, to appear in
their May 1977 issue.

The following general comments by tiie final referee of the paper we
find particularly interesting as we believe they signify a beginning accep-
tance by the statistical community of the need for new methods to deal with

current problems.

REFEREE'S REPORT

GENERAL COMMENTS

This is an interesting paper, describing innovative and useful research
on estimating multivariate density functions in a computationally feasible
way. The mathematical presentation is reascnably clear, and the simulation

examples add a vital element of numerical insight.

A copy of the final version of this paper is included as an appendix.




Secondly: Under a previous AFOSR contract, a novel goodness-of-fit test
devised by Leo Breiman had been tested under numerous simulations. These
led to the conjecture that the test was asymptotically distribution free.
The first version of the paper was submitted to JASA aﬁd rejected on the
grounds that the main conjecture, while made plausible by the simulations,
was not proven. Towards the end of the contract period, Leo Breiman
working in collaboration with Professor Peter Bickel, chairman of the
Statistics Department at U. C. Berkeley, managed to find a proof that
established the asymptotically distribution free property of the test.
This is currently being written up for submission to the Annals of Sta-
tistics. We consider this to be a highly significant break through. It
provides the first computationally feasible consistent and asymptoticaliy

- distribution free goodness-of-fit test for dimensions higher than one.

Third: The most exciting research for us over the past year has been the
development of free-structured classification me?hods and the growing real-
ization of their potential in approaching a large variety of problems that
were untouchable by classical methods. The progress in this work was re-
ported on by Leo Breiman at a joint U. C. Berkeley-Stanford Statistical
Colloquim in October 1976 and generated a good deal of interest. Numerous
requests for written descriptions of the work have been received. However,
to date, we consider our work in an exciting but exploratory phase. We are
looking forward to further developments and applications. A write up of
our progress to date and directions we want to explore in the future are

contained in an appendix.
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; In summary, we feel that a significant amount of innovative and useful
research has been accomplished over the contractual period. Rather than
launch into a long discussion of why the results are important, we prefer
to let the contents speak for themselves. :
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APPENDIX A

Variable Kernel Estimates of Multivariate Densities and Their Calibration

Leo Breiman
William Meisel
Edward Purcell

1. Introduction and Summary

Given points XysenesXy selected independently from some unknown under-
lying density f(x) in M-dimensional Euclidean space, the problem is to
escimate f(x). To date, the most e*fective general method is the Parzen

approach: select a kernel function k(x)>0, with
[ k(x)dx = 1 (1)

Usually k(x) satisfies some additional conditions; unimodality with peak
at x=0, smoothness, symmetry, finite Tir-t and second moments, etc. In :
‘fact, in actual practice, the most frequeitiy used kernel is a Gaussian

density.

Having selected a kernel, then the estimate is given as

n X=X
~ & 1 L — "
MO =m ) F ("o' )
A o
As n increases the shape factor ¢ can be decreased_giving greater resolution
for larger sample sizes. The asymptotic mean square consistency of these
estimates is well known [1], and under smoothness conditions on f(x)

asymptotic rates of convergence of the mean squared error can be derived.

However, in terms of practicalities, the situation. is far from

satisfactory.
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First: It is obvious that a Parzen method of estimation cannot
respond appropriately to variations in the magnitude 6f f{x). ¥For
instance, if there is a region of low f(g) containing, say, only
one sample point Xy then the estimate will have a peak at x = Xy
and be too low over the rest of the region. In regions where f(x) is
large, the sample points are more densely packed together, and the
Parzen estimate will tend to spread out the high density region.

Thus, the problem is that the peakedness of fhe kernel is not data-
responsive. '

_ Second: None of the asymptotic recu]té give any generally helpful
leads on hew the shape factor o should be selected to give the "best"
estimate of unknown density. The computed rates of convergence depend
critically on f(x) and its derivatives. Even if one tried to vary o and
got a number of differént estimates, the question remains: which one is
"best"?

In this paper, solutions are proposed to both of these problems.

First: To make the sharpness of the kernel data-responsive, we use

the class of estimates

~( ) 1 § ( )-M X=X
f(x) = — a, d; ! e o
X n j='l k J,k Gk j,k

kth nearest neighbor,

where dj K is the distance from the point X5 to its
9

and ay js a constant multiplicative factor. The intuitive concept is
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clear: In low density regions; dj,k will be large and the kernel will be

spread out. In high density regions, the converse will occur.
Second: To select optimizing values of k and ak, a goodness-of-fit

statistic § for multivariate densities proposéd in [2] is used in a

procedure that searches for the variable kernel parameters that minimize

-

S.
The analytics of the variable kernel estimates situation arc a bit

difficult to handle, although asymptotic consistency for appropriate kernels
is easily proved under the condition k/n+0. To get a feeling for the finite
sample situation and also to get some measure of assurance that our proposed
“solutions" had some value, we ran some cxtensive simulations on two under-
lying data bases; the first was 400 puints selected from a bivariate normal
distribution, the second was the b{modai distribution consisting of a super-
position of two bivaria§§ normals, 3/4 of the bivariate normal used in gen-

erating the first data set plus 1/4 of a normal with a much sharper peak.
Three measures of error were computed: define the sample mean and

variance of f(x) by

1N
g = 5}: f(l‘.j)
1
2_17 "l
¢ FZI (f(iJ) 'Nf)

The error measures were:
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I. Percent of Variance Not Explained (PVNE)

¥ 13 e
PVNE = — - - ; (f(x;) _ f(x;))° x 100

ool
- ro|—

I1. Mean Absolute Error, Percent (MAE)

= —ln & P, 0
MAE nuf§ |F(x5) - flx5)] x 10

III. Mean Percent Error (MPE)

n |f(33) 5 f(lj)l ,

e '
HPE = - ; ) 100

A large number of runs were carried out with the two data bases to

(A) Find the beé; Parzen estimator and the best variable kernel
estimator, using a symmetric Gaussian kernel (natutal1y'the "best" values
of the kernel parameters depend on what measure of error is used).

(B) Compare the performances of the two types of estimators.

(C) To see whether the proposed search procedure could accurately
locate the "best fitting" estimates.

Our conclusions are:
i. In all cases the best variable kernel estimate was superior to the

best Parzen estimate. The best Parzen estimator had in both data sets about

twice as much mean percent error (MPE) and percent of variance not explained

(PVNE), and about 50% more mean absolute error than the best variable ker-

nel estimator.
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iji. The S minimization search procedure was successful in locating

the region of parameter values where the variable kernel estimates gave

approximately best fits to the actual density.

The best values of o for the Parzen estimates depended on which measure

L Rl B SUSOL, g SRR £ S e
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of error was used much more than the variable kernel method and hence would

i

be much more difficult to use in practice (when f is unknown). The S mini-

mization procedure applied to the Parzen estimates produced values of o

S o5 Uiy
&

that were larger than most of the "best" values and could not be called

% | successful in this context.
3 . During the course of the study, a number of interesting and useful

properties of variable kernel densities were uncovered. First of all, the

F

5, nearest neighbor distances that produced the best fits were surprisingly
L large, ranging from 40 in data set II tc 100 in data set I, (actually the
g ( fit was still improving at k=100). But good fits can be produced over a
i

very wide range of values of k, as long as ay satisfies the appro>imate re-

lation
2 3
o (d) o
= constan
oldkf
where 3; is the mean of the kth nearest neighbor distances and o(dk) is j

their standard deviation. Our tentative conclusion is therefore that ac-
tually one needs to find only the single parameter value [ak(HE)z/c(dk)]
to calibrate the variable kernel estimates. In our simulation this con-
stant was usually about 3-4 times larger than the best values of o for the
corresponding Parzen estimate,

The conclusion that the mean percent error is markedly different be-

tween the two types of estimators has important implications for classifica-

tion., The method giving the minimum expected misclassification probability l

sty -
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is based on comparing the densities of the different classes. One common

and effective method of getting "good" classification boundaries has been
to estimate the class densities using a set of points that have a1re§dy
been classified, and compare the estimates to make the classification de-
cision. Therefore, if this is the intended'application, then the mean
percent error is the appropriate error measufe since the tails of the dis-
tribution are important, and in this perspective the variable kernel es-
timates are decidely superior to the Parzen egtimates.

An important consideration is the variabi]ity of the underlying den-
sity. If it is more cr less uniformly smooth (as in the first data base),
the adaptive capability of the variable kernel method does not help us
much as ia s:tuatiohs where the density is more variable, i.e., has a
number of peaks of different sharpness (as in the second data bacc).

There is a large body of published literature regarding density

estimation and a number of good surveys are available [3], [4], [5].

The kth nearest neighbor estimator [6] is the-only method that is adaptive
to local sample density. If the distance from a point x to its kth nearest

neighbor is d, then the estimate is defined as

f(x) = %%fy

where n is the total number of samples, and V(d) is the volume of the M-

dimensional sphere of radius d. The drawback to this type of estimate is
that it is discontinuous and that it does not satisfy (1). The variable

kernel approach offers a combination of the desirable smoothness prop-

erties of the Parzen-type estimators with the data-adaptive character of

the k-nearest neighbor approach.




1 Furthermore, the variable kernel method carries very little computa-
3 ; tional penalty. The distance from a giVen point to the kth nearest point
is computed only once and stored for all the calibration runs. An algorithm

constructed by-Friedman, et al, [7] reduces the finding of all kth nearest

4 neighbors to n log n time instead of n2.

In Section 2 we will describe the simulations in more detail and

- give some tabular and graphical summaries of the results,
Section 3 will give a brief description of the goodness-of-fit sta-

: tistic and give tabular and graphical summaries of its performance.

In Sectioﬁ 4, the behavior of the estimates will be summarized, the
selection of k and o related to the interpoint distance distribution, and
a description given of some early and unsuccessful eff;rts at variable
kernel estimates.

The variable kernel method has. been described in short course notes
on pattern recognition_prepared by one ofmfhe authors and dating back to
1973. The work in this present study has been reported on in the Confer-
ence on the Interface Between Computer Science and Stafistics on February 14,
1975 [8]. In June, 1975 we learned that T. J. Wagner has submitted a paper
[9] to the IEEE Trans. Information Theory which is also concerned with the
variable kernel estimates. Since his paper is reportedly concerned with
conditions for asymptotic consistency, particularly in one dimension, there

does not seem to be any overlap.
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2. The Simulation and Its Results

The two data sets mentioned in the introduction were generated as
follows:
Set I: 400 points selected independently from the density f, a

bivariate normal with mean m = (0,0) and unit covariance matrix.

Set II: 400 points selected independently from the density g, where

§ g = .75f + .25f,

where f is as above, and f] is normal with parameters

1/9 0
m= (3,3), r=( \

] 0 1/97 ,
where I' is the covariance matrix.

9 The kernel for both types of estima ors was a zero mean bivariate normal

density with unit covariance matrix.

k| Figure 1 is a graph of the three error measures in'data set I

i i as a function of the shape parameter o of the Parzen estimators.

i’i Figure 2 is a graph of the three error measures for data set I, where

‘}é we selected k = 100 and varied the multiplicative parameter a.

4] Figures 3 and 4 are the analogous graphs for data set II, where we

}lj | have used k = 40 in the variable kernel graph.

'; | In all cases, we ran the simulations until the minimal values of the
1‘Jﬁ three measures of error were found, both for the Parzen and variable

kernel estimators. For the variable kernel estimators we ran the

T T Mg -
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Figure 1. Measures of Error for the Parzen
Estimator, Data Set I
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Figure 3. Measures of Error foé the Parzen
Estimator, Data Set II
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Figure 4. Measures of Error for the Variable
Kernel Estimator, k = 40, Data Set II
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simulations for k=10, 20, 30, 40, 50, and 60 in both data sets, and for
k=70, 80, 90, 100 in data set I. Table 1 below summarizes the comparison
between the methods,

To illustrate the resulting fits more visually, Qe plotted 3 di- ;
mensional graphs of. the best estimates. For data set I, we used o = .35 for
the Parzen estimator and k = 60, o« = .6 for the variable kernel estimator.
In data set 2, the choice of an "optimal" o was more problematical. We

settlea on .275 as a reasonable compromise. For the variable kernel we

took K = 40, a = .5. The results are shown in figures 5, 6, 7, and 8 (see end).

4 Minimum Percent of | Minimum Mean
3 Minimum Mean Variance Not Absolute Error,
4 Percent Error Explained Percent
p Parzen,
Data Set I 19.0 3 6.2 11.6
Variable Kernel, .
Parzen, :
Data Set II 34.7 13.4 - 24.2
E- Variable Kernel,
=aJ Data Set II 22.5 6.2 16.5
P | Table 1
?J Fortunately, the variable kernel results were surprisingly unsensitive

-q 7 to the choice of k. Table 2 below gives the minimum values of the measures

¥ . of errdr for the different values of k. Note that in both examples, values

of k over almost the entire range give quite comparable error measurements.
As k varies the fit behaves slightly different for the two data sets.

For the smooth density of the first example, the error measures are still




results by going on to larger k.

decreasing at k=100 and we would probably have gotten slightly better

For the second density the error measures

decrease up to k=40 and then increase at k=50 and 60, (except for the MPE).

Data Set I
k = 10 20 30 40 50 60 70 80 90 | 100
Minimum Mean
Percent Error 12.9) 12.8 12.2{112.1| 11.7( 11.6{ 11.4{ 11.3{ 10.91 10.8
Minimum rercent
of Variance Not
Explained 9.3{ 6.81 6.3] 5.9} 5.1| 4.8 4.6] 4.1] 4.0] 3.6
Minimum Mean
Absolute Error,
Percent 11.7] 11.2110.7] 10.3| 9.7} 9.3| 9.3} 8.6| 8.5| 8.5
Data Set I]
K= 10 20 30 40 50 60
Minimum Mean Perrent s
Error 24.5 | 23.8 23.0 22.6 22.5 22.8
Minimum Percent of
Variance Not '
Explained 9.4 7.6 6.8 6.2 6.4 6.5
Minimum Mean
Absolute Error, :
Percent 19.1 17.9 _17.1 . 16.5 17.2 16.9
Table 2

While the best fit for each value of k in a wide range has about the

same error measures, the values of the multiplier a at which the minimum

errors occur vary considerably but systematically as k increases.

explore this further in Section 4.

We will

3
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3. The Goodness-of-Fit Criterion

Since, in practice, the underlying f(x) is not known, the various error
measures cannot be computed. This brings us to the second question posed
in the introduction: How then do we go about selecting ¢ or oy and k.
(A1though we surmise that in actuality we need to estimate only the
optimal single parameter value A = ak(ﬁz)zlo(dk) in the variable kernel
estimates.) '

In [2] a goodness-of-fit criterion for a set of samples to a proposed
density f(x) was developed based on the fact that if f(x) is the true den-
sity, then the variables

-nf(x;)V(¢; ;)

wj = e s 9=ty s

where V(r) is the volume of an M-dimensional sphere of radius r, have a

univariate distribution that is approximately uniform. Thus, the test

statistic for an estimate %(5) is based on the variables

. =nf(xIV(ds §)
wj =e J 3,1 s JSlgeeash

Let &(])53..§Q(n) be the ordered permutation of. the Qj’ Then the test

statistic S is defined as
n
A= ~ -12.
=4 g )
One question of great interest to us in this study was whether we could

select "good" values of o or k and ay by searching for a minimum in S.

The results were affirmative (with one exception we will discuss later).
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Naturally, different error measures were generally minimized at different

values of the parameters. In Table 3 we list, for every value of k used,
the value of « that minimizes each error measure and the value of a
that minimizes S for that value of k.

For the unimodal case the absolute minimum of S occurs at k=100, a=.5.

At this point we have

12.5 (10.8)
4.2 ( 3.6)
8.8 ( 8.0) .

Mean Percent Error

Percent of Variance Unexplained

Mean Absolute Error, Percent

The figures in parentheses are the minimums of the corresponding measures
of error over all ranges and do not occur at a common value of k and o.
- In the bimodal case, the minimum of S occurred in the original runs

at k=60, .-=.4. The values at this point were fairly close to the minimums,

i.e.,

22.8 (22.5)
10.7 { 6.2}
18.8 (16.5) .

Mean Percent Error

]

Percent of Variance Unexplained

Mean Absolute Error, Percent

For the Parzen Estimator with data set I, the minimizing values of
o for the three error measures above were .40, .35 and .30 respectively.
The minimum value of § occurred at .60, For data set II, the minimums
occurred at .400, .175, .225 and the minimum of S at .375. For Parzen
estimators § indicates "optimal" values of o considerably higher than
the values of o that minimize the PVNE and the MAE. There is also
less consistency between the error measures as to the location of the

respective minimizing 0. The o that minimizes the mean percent error is
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Table 3

DATA SET I
k = 10 30 40 60 70 80 90
Mean Percent
Error 1.4 0.8 {0.7 0.5] 0.5{ 0.4} 0.4
Percent of .
Variance :
Unexplained 1.8 1.0 { 0.8 0.6 | 0.5| 0.5} 0.5
Mean Absolute (1.5
Error, Percent | or 0.9 | 0.7 0.6 0.5 0.5 0.4
1.6
S 1.7 0.9 {0.8 0.7 0.6] 0.6] 0.5
DATA SET II

k = 10 20 40 50 60
Mean Percent Error 1.4 0.9 0.6 0.5 0.4
Percent of Variance

Unexplained 1.0 0.6 0.4 0.3 0.3
Mean Absolute Error,

Percent 1.0 0.6 0.4 0.3 0.3
s 1.1 0.8 0.5 | 0.5 | 0.4
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the highest, and in the bivariate case, considerably higher than the
other two minimizing values of o. Probably this latter fact is due to
the behavior of the Parzen estimates at small values of f(x).

In both data sets, the S estimate of o gives a value of mean percent
error close to the minimum attainable for the data set. This is consistently
true for the variable kernel estimates also. For each value of k, the S

minimizing value ufakhas a mean percent error close to the minimum possible

for that value of k.
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4, Mean Interpoint Distance and the Choice of a«

In our various explorations of the variable kernel estimates, we made
the empirical discovery that over the range of k investigated, that for

both data sets e
2

“k(a-l:) = constant

(o} dk

where HZ'and °(dk) are the mean and standard deviation of the kth nearest

neighbor distances for the data set, and oy is the "optimal" o for that
value of k. To illustrate this, we use as the "optimal" value of Gps the
average of the first three minimizing values given in Table 3. Table 4
gives the values of uk(3;72/o(dk).

The constant decreases about 40% between the two data sets. A Zimi-
lar decrease occurs for those value of ¢ in the Parzen Estimates whic:
minimiz2 the Mean Absolute Error % and the Percent of Variance Not Ex-
plained. It seems clear that the increase in optimal kerha1 sharpness
occurs in order to deal with the increased variability in data set #2.

At the beginning of this study, we used distances to the closest
neighbor, next closest neighbor, etc., up to the fifth nearest neighbor.
The results were disastrous. Examining the errofs, they came mainly from

a few points that were too close together. We tried a number of things:

it Selecting a lower bound D for the interpoint distances and using

'
d

j’k 5 maX(D,dj ’k)

in the kernel estimate of dj K’ D was selected as a percentile (usually

either the 52N or 10tM) of the dy po j=1,...,400.
2
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Table 4

oy (T)%/0(d,)
k = 10| 20| 30| 40| 50| 60| 70| 80| 90| 100
pata Set #1 [1.3 [1.3|1.5|1.5 1.5 1.5 1.5 |1.5] 1.5 1.5
Date 3et #2 | .83| .80 .e4| .8s| .79 .84 - | - | -| -
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ii. Using a weighted average of the first k nearest neighbor distances.

jii. Selecting a multiplicative constant oy and using o dj K or

1
% 45,k
None of these helped very much as long as we kept working with k small. The

averaging in (ii) was no help. Later we made a theoretical computation
in order to find values Oyse e e By with

k

aj_>_0, i=],..-,k s % Q,i =1

and such that the variance of
k
Loy 4,
is a minimum. Assuming that the density wcs "“locally constant" so that the

distribution of points is “locally Poisson,’ the answer is

S b g T ey

R SPeT

This result gave us some insight into the failure of the averaging process. {
In (iii) we found that trying to get more smoothing by increasing o

led to serious underestimates of the peaks of the densities. SA

Nothing really helped until we started exploring the larger values of
k and found that (iii) worked well when k was large enough. 4
In terms of what has been empirically learned in this study, we tenta-

tively propose the following method for calibrating a variable kernel den-

sity estimate.
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Step 1. Pick an initial k equal to some fraction of the sample size, say
10%, or by plotting a'; versus k and taking a value of k past the knee of

the curve (see figure 9).

Step 2. Do a search for the value of o that minimizes S.
Step 3. Using the minimizing value compute
uk(a]:)z
A= ) :
Step 4. Vary k in both directions, selecting «, so as to hold the above ratio
constant and search for a k value that minimizes g

Note that Step 3 may be dimension dependent.
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Variable kernel fit to BIMODAL
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Background

APPENDIX B
TREE STRUCTURED CLASSIFICATION METHODS

Technology Service Corporation has been performing research under a .
variety of projects involving classification or categorization.

For instance, one project has involved the recognition of ship classes
by means of their radar range profiles. In another algorithms weie developed
for the recognition of spoken words using different speakers. A third pro-

ject involved the classification of chemical compounds through their mass

spectra.
The nature of these problems is such that classical classification

techniques, such as the use of Fisher discriminants, etc., are virtually
useless. Even recently developed techniques such as the use of nonparametric
dencity estimates or nearest neighbor methods are 1arge1¥ non appiicable.
The common elements that make these problems different and difficult is
1. The measurement vector characterizing each object is very high- p
dimensional. : j
2. The number of classes is large.
3. The number of classified samples is small, relative to the dimen-
sionality and the number of classes.
To do effective decision making in these problems we have turned to
tree structured decision methods, The simplest type of decision tree works ;
this way: denote the measurement vector attached to an-object by x and let '
it take values in a space X. A node of the tree corresponds to a subset

EcX. If xeE then the decision is made to pass the object to the left hand

node. Otherwise it goes to the right.
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The branches of the trece end at terminal nodes. Each terminal node is
assigned to one of the classes. When an object passes down the tree and
hits a terminal- node, it is labeled as being in the assigned class.

This tree structure is in a way fairly simple. It is binary in the

sense that each node splits into two descendent nodes, and the decision

rules ar: noa-randomized. Still it is the prototype of tree structured
classification methods.and its successful -application in a number of prob-
lems has been the stimulus for our recent and proposed research into this
area. ‘

To understand why decision trees appear to us to hold great promise
in high~dimensional, numerous class problems, think of the simple problem
of constructing a Word dictionary, containing thousands of entries. In prac-
tice, we use a real dictionary very_easi]y and naturally, without realizing
what an effective tool it is. First, we look at the first letter of the
word. This separates all words into 26 disjoint subsets. Having located
which subset we are in, we now look at the 2nd letter of the word. This
splits the original subset into 26 2nd generation suBsets. We continue

until the word is located.
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The point-is that the decision is not made all at once. The large
amount of information carried by the succession of letters in the word
is not used at one gulp to decide which one of the thousands of possible
cases the word fits into.. Instead, a very interesting and practical strategy
js used. Starting with a very limited amount of information, namely, the
first letter of the word, a rough classification into a small (26) number
of groups is done. Then more information (the 2nd letter) is adjoined, and
a finer subdivision is made, and so on.

~ The point js that the high intrinsic complexity of the problem is
broken down intb a sequence of steps in which highly aggregated information
is used to separate a group of objects into § relatively small number of sub-
groups. ‘ ‘

We nave emphasized the above, at the risk of being overly simplistic, in
order to clarify the simple but powerful idea trat underlies decision trees.
We know of no other practical method for effectively solving problems char-
acterized by: :

o high-dimensionality

0 numerous classes

o small sample size.

By aggregating the information and aplitting each group into only a few sub-
groups at each stage, one deals with a sequence of problems having considerably

lower dimension and fewer subgroups. Thus, the sample size, relative to di-

mensionality and number of subgroups becomes much larger.
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One very important distinction between classical pattern recognition

methods and a decision tree structure is in the way that information is
utilized. In the usual pattern recognition approach, the dimensionally

is made reasonable by the selectién of an apriori mapping from measure-
ment space to "feature" space. That is, depending on certain physical

or heuristic principles, the large amounts of detailed information regard-
ing any one object are aggregated and summarized in a small number of
variables that comprize the feature vector. ‘

The reason for this mapping is usually very practica]:' Since the usual
pattern recognition algorithms give a one gu]p answer, a drastic reduction
in dimensionality is necessary both to make the sample size sufficiently
dense in the space to define the problem and to make it compatationally
feasible.

But having made the reduction in dimensionality, one is stuck with
it. The loss in information is irrevocable.

Even if the pattern ;ecognition phase of the prob]emireveals that
additional information would be useful in some regions of the space, it cannot
be made available without a reworking of the problem.

The trouble is that the attempt is made to work the problem in two
separable non-interacting pieces: one is the feature selection. The
second is the classification. |

However, in a tree decision structure, there is possible a sequential
interaction between classification and information. As one progresses
down the branches of the tree, more and more detailed information can be

called for by the tree construction algorithm. As a verbal analogy, is
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as though at each mode, the iree construction could call upstairs and say

"if you want me to do any more separation on these things, theh you've
got to give me some more information."

| However, the problem is not resolved simply by resolving to use a de-
cision tree structure. To a great extent, the problem has been shifted
into new ground. It now becomes: how does one determinec the most effec-

tive or an effective sequence of decision problems defining the tree? That

is, what question does one ask at each node of the tree?
. Put into a §tatistica1 context the problem, simplified to binary trees
| is this: given that the data vector x is drawn with probability P; from
the distributiun Pi(dﬁ) corresponding to the iFh class, find a sequence of
binary decis’on questions of the form, "is xeE?" that leads to a near
maximal proba.ility of correct classification. |
In practice, neither the a priori class probabilities p; or the class
distributions Pi(qi) are known. Instead, one has on hand a set of objects
and corresponding data vectors whose classification is knéwn. The hub of the
problem is to use these to construct an effective decision tree.
! Obviously, by using as many terminal nodes as there are objects in
the learning set, we can usually get perfect classification on the learning

set. Thus, unrestricted tree growing using the learning set alone will

T . Tl . B N o M

< lead to nonsensical results. Restrictions need to be placed on the com-

classified objects, chosen in some random way, put aside to act as an eval-

® uation. or "test set" for the tree.

Trees share the complex character of all sequential decision methods:

Y

1 : t! plexity of the tree relative to the sample size, and some of the already
g a decision made at a point affects all subsequent decisions. Thus, it is
‘




difficult to evaluate what is optimal at each node. With high-dimensional

data vectors, one faces an enormous amouﬁt of information and at each stage
of tree building what is wanted is to use some low dimensional aggregation
or ﬁaveraging" of the information. But what averaging or aggregation is
effective, and how the effectiveness should be measured are difficult ques-
tions to resolve.

Thus, there are important pfoh]emc that need further resolution in
order to sharpen the use of decision trees as a practical classification
tool. Technology Service Corporation has developed some methods for tree
growing and applied them, with very promising results, to problems as di-
verse as ship classification with the radar range profile as the measurement
vector and ciemical classification with the mass spectra as the measurementi
vector.

In the body of this report, we wiil outline our largely unpublished
recent research into decision tree construction and application. Then we
will discuss the directions where we believe that further research is needed.

The development of decision tree methodology has important implications
for implementation in actual on-line recognition and classification systems.
The tree is developed off-line using the given "training set." This is the
difficult and time-consuming effort.'.But the on-line tree consists of a
sequence of very simple questions, i.e., a sequence of yes-no questions for
a binary tree. Thus, on-line classification can be very rapid. Furthermore, !
as the more interesting and difficult recognition problems move toward
higher dimensions, with more information being extracted concerning each ' E ﬁ

object, tree structuring decision processes become increasingly appropriate : ¢

and useful.




At the beginning, much of our tree construction was based on heuristics
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and trial and error, with the resultant misclassification rate being our

¥

gauge of success. Over the last year, we have been experimenting with

Tr—

algorithms for the systematic generation of “g&od“ binary trees.

i 4

Our best performance to date has been based on the following al-

gorithm: At any node, suppose there are n objects of the learning set

S LS. S

b
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ff with associated measurement vectors Xyseees Xy Suppose that of these
: n objects, n, are in class #1, Ny in class #2,..., and ny in class #J.

4 ; Suppose that we. have defined some fami]y;! of potential splits at

this node. Each split sends a subset of the n objects to one node, and

the complementary subset to the other node. The splits are based on

S

the values oi the measurement vectors ,,,i=1,...,n. That is, each

split in » is based on a question of ihe form
Is x e E?

Hence, in general, the fami]y‘g/is constructed by Se]ecting a family {ES}

of subsets of X and looking at the potential splits generated By

Is x ¢ Eg?

Ty ”

At this point, one would like to select the "best" split in‘JE’ The pro-
blem is how to define "best".
A split at any node impacts all the nodes below it. Therefore, in
judging how good a split {s, oﬁe would thooretically have to trace the
! subsequent developments of all descendant nodes. A split that does the
;; ¢ best possible job in terms of the two immediate descendant nodes might : ]
not look very good when the tree is followed down for another generation.

Thus, there are levels of judging the goodness-of-split. ;b
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Analogously, a novice chess player might, at any given time, choose
the move that most improves his immediate position. But a good chess
player will think two, three or more moves ahead in considering the
implications of the correct move.

To date, we have concentrated on the finding of good criteria for

selecting the "best" split from a familygjﬂusing only ‘a one generation

analysis. This is by no means a trivial matter, because ihe choice

of a good "strategic" criteria can trade-off against a detailed multi-

generation analysis. In other words, using the chess game analogy, if
a player uses ;eaITy good criteria f&r judging his improvement in current
position, his criteria will embody a good deal of his past experience
gained frum learning the future consequences of current moves. :
Suppose there was a split that separated all of the objects in
class j into one node, and the other classes into the other nodes. For
a problem with a large number of classes, this is not a strategically
sound split. 'We would rather get a split such that a]j the objects in
a large subaroup of the classes went into 6pe node and the remaining
classes into the other nodes. Therefore, we want crfteria for goodness-
of-splii that rewards the latter type of split more than the former.
The most satisfactory criterion we have found so far is based on
the uncertainty measure. For any node N having nj objects in class J,
j=1,...,J define the uncertainty at that node as

U(N)=-] (ns/n) Tog(n./ ‘)
§ ns/n) log(n;/n

where n = z nj. Suppose that a split produces the left NL and right
J
NR nodes with n of the original n objects going left and nR = n-ng going
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right. Then define the decrease in uncertainty proddced by the split

as

AU = U(N) ~ (nL/n)U(NL) - (nR/n)U(NR)

This criterion generally rewards the best strategic split. For in-
stance, if there are J = 2M classes and if a node contains equal numbers

of objects in each class, then the splits producing the largest AU places

all objects in M of the classes in oic’ descendent node and the recmaining
objects in the other.

The algorithm then searches over all possible splits in S, and selects
the one giving the largest AU.

The algorithm needs one more piece to be complete. A stopping rule must
be specifieu. Otherwise, as many terminal nodes as there are objects in the

test set wii' be produced. We are current]y‘uti]izing the rule: Let N be

the original test set population and n, the node population. Set a threshold

a and declare the node terminal if there is no split in zysuch that

%AUza 5

The adoption of this rule and the threshold value of a used were set by
heuristics. That is, we generated trees that wentvdown to very small ter-
minal nodes and decided where on the branch it would have been reasonable to

stop. The rule was then constructed to more or less match our statistical

opinions.

The critical element in this tree growing procedure is the selection

of the family,f of potential splits at each node. In ship recognition, the

measurement vector consisted of the intensity of radar returns as measured -
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every two feet along ships ranging up to 500 feet inAlength. Thus, the

measurement vector x had a maximum dimensionality of 250. The class A for

all ﬁodes below the 1st generation was generated by questions of the form:
"Does the range profile have a local maximum in the interval [a,b]?"

The ends of the intervals a,b ranged along multiples of 1/100 of the ship's

length. Thus a and b were specified by giving two integers L,M

0 <L <M< 100, and consequently, the split was specified by L and M. Thus,

the family »/ contained :

L[ RN

potential splits at each node.

In the chemical spectra study, the mecasurement vectors consisted of
peak intcisivies on a scale of 0 to 100 corresponding to every integer m/e
value from 1 up to 320. Thus, x was 320 dimensional. The intensities were
divided into Tive logarithmic ranges, sc that the coordinates of x could be
considered as taking valﬁes in the set {1.2,3,4,5}. The'famﬂy,ﬁ was gen-
erated by all questions of the forms

“Is the intensity at m/e = k greater than m?"
In other words, each question was characterized by the integers k and m with

1<kg¢32and 1 ¢<m< 4, Thus,,£~contained about 1200 splits at.each node.

New Concepts
The results of these above two studies were exciting, in that we could
see that the tree structure gave us a feasible way of solving problems that

had previou;ly seemed quite untractable. The algorithm used, for all of its
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crudeness and simplicity, produced reasonable classification results. As we
worked with it, the drawbacks and deficiencies became apparent, and we could

see directions where improvements could produce more powerful and flexible

 aalih 2

| methods. We have outlined some of these in the sections that follow.

1 Basically, we want to extend.and generalize the realm of possible tree
structures. One direction we very recently came across is the use of ran-

x domized decision rules at the nodes. This leads to structures we have called

| probability trees and has the promise of resolving two serious shortcomings

E_,
E

we have found in practical applications.

Another direction where basic work is needed is in information-adaptive

trees. The point here is to allow the class of allowable splits to change
as one progresses down the tree, so that near the top, coarse overall fea-
tures are used and more detailed information is added to discriminate at the
lower nodes. Here, possibilities are introduced "looking ahead" to check the
consequences of any given split. :

Another possibility is that of using other splitting criteria and
cleansing terminal nodes have too much of a mixture of classes. Finally,

we discuss our thinking in the direction of the "ultimate" decision tree

classification method, as applied to a truly numerous class problem.

B I e

L
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goundary Problems, Confidence Statements, and Probability Trees

Analyzing our approach using binary trees and splitting questions

of the form

Is x E?

we found that there was, at times, an undesirable sensitivity to the boundary,
That is, with many classes to discriminate between, the algorithm would care-
fully select the splitting set E to include most objects in the test set within
a certain set of classes and exclude thbse without. Often, a considerable num-
ber of measuremeﬁf vectors would fall near the boundary of E. Then when the
test set was run, a freqhent source of error w§s due to méasurement vectors
that just ri'ssed being on the right sidec of thé boundary ¢f E at some node and
were conscgue itly misc]as;ified.
; One reason for this behavior of the boundar ¢s was that our learning

set, although large by ord1nary one d1mens1ona1 standards (336 for ships)
was sparsely spread out in the high dimensional space. The boundaries
could then arrange themselves to do quite well on classifying the learning
set and not too well when another sparse set (the test set) was randomly
plunked down.

We improved the boundary behavior in ship recognition by taking each
learning set profile, adding random noise and in this wéy generated
randomly perturbed profiles from the original profile. But we considered
this an artificial baling wire and glue remedy.

The non-randomized character of the decision roles also gave us another

difficult problem to solve. When an unknown object goes down the decision
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tree and ends in a terminal none labelled as class #J, what confidence
we assign to the classification?

To begin with, the terminal node wa§ labelled as class #j if there
were more class #j objects in it than any other class. Some terminal nodes
have very mixed populations and are terminal because no further discrimina~-
tion is possible using the class Qf splits,z?and the given stopping role.
Other teiminal nodes have a very hign percentage of their population in one
class. This difference in terminal node distribution is complicated by the
fact that some unknown objects, in traversing the tree, come down through
nodes at which their measurement vectors are very close to the boundary.
Others stay away from the boundary at a]i nodes.

The prdb1em did not seem to have a really satisfactory formulatior of
binary decision trees. Although we conjured up some measures of confidence,
we had 1ictle confidence in them.

In July 1976 we have started thinking about a dif-
ferent type of tree structure that may solve both the boundary problem and
the problem of assigning confidence to the classification of an unknown

object.

These new structures are called probability trees and are described

as follows:

Start with a learning set consisting of n objects in J classes,

C]....,CJ. Number the objects 1,...,n. A node of the tree corresponds to

a vector p of probabilities (p],....pn). At each node, define
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and the class probabilities PJ

IR )
J ieCj P ,

where ich denotes the sum over all objects in class J.

We will set up a procedure for splitting this node. Instead of con-

sidering a set E and asking: is x E?, define a fami]ylggof functions

p(x) on X, such that each p(x) satisties

o 0p(x)

We will use a particular function § as fo]iows: for an object having

_ measuremen! vector x, put it into the lert node with probability @(x) and the

right no<: w th probability 1-§(x). Thus we get the picture

Prob. = P(x) ﬁrob. = 1-0(x)

Pl
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"we have that the decrease in uncertainty due to the node split is 1
s . :

15

If the ith object has measurement vector Xy and its :probaﬁility in the

present node is p., then its. probability in the left node is
‘Pi(L) = ﬂ(*i)pi
and in the right node is

'Pi(R) =A (]‘Q(Xi))pi .

Thus we gét the left and right node probability vectorsl-

n

B(L) = (pylLdsercp (L))

P(R) = (py(R}.....p,(R))

Note that : _
P +BR) =T

Also, the c]aﬁs probabilities PJ(L) and Pj(R) are defined as before, i.g.;

| |
P.(L) = (L
S s,

Defining uncertainty in a set of c]qss probabi]ities

ULP) = = § Py 1og P; : - 5
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Choose the § in 7 that maximizes aU (see remarks later).

Continuing this way, we arfive at M términa] nodes Tl""’TM with cor-
responding vectors of probabilities Eﬁ,...,ih‘and with the mth node having
class probabilities P§m),j=1,...,J.

Given a test object, we get'our results as fo]loﬁs: travérsing the
tree and using the selected function P(x) at eacH,node, wé end up with

probabilities Q0 m=1,...,M that the object is in terminal node Tm’ Define

the probabﬁ]ity that the object is in class j by

pe A (m)
?(obge-t is in Cj) g Pj a0

Identify the object as beihg in that class having the largest probability.
Then the probability of misclassification is | ' : §
1 - max P(object is in C,)
Jj Jd

A few remarks: The standard way of node division, i.e., asking'the

question is xcE? can be formulated as; let

1, if xeE
© P(x) =

0, otherwise

and sending the object left with probability @(x), right with probability
1-B(x). Thus, using a P(x), subject to 0<P(x)<1 is a generalization of

the above.

-
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-sets E. Ifdﬁ ié well within or outside of £ it is sent to one or the other

-natural solution to the confidence problem as expressed by the probab111ty
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Now, it is impossible and undesirable to maximize AU over too large
a class of functions @(x). The reasons are:
1. One does not want to allow too complicated a set of decision rules.

2. If the class of allowable functions Q(x) is too large, the minimi-

Thus, the essentia] ingredient for this method to work is the‘se]ection of an

appropriate family-?'of functions to maximize AU over. Probably reasonable

.

. A1l of the functions B in be reasonably smooth

oY Rty

i Thevfanﬁlylézdepends only on a small number of parameiers. , ! e

Note that, in a sense, a probability tree makes use of fuzzy decision

node with prebability close to zero on one. But if it is close to the

et

boundary the decision becomes blurry.
| Interestingly enough, although tiie impedus for probability trees was
to get rid of the boundary problem, as an unforeseen by- product we got a :

that the unknown object was misclassified.

. Information-Adaptive Trees

A decision tree structure that uses the same set of potential splits
at every node has some serious disadvantages. It is generally using too
much information during the early part of the tree construction and not e

enough during the later part.

For instance, in the chemical spectra data base, we used the 1600-

dimensional feature vector consisting of all peaks at m/e locations between




e S TR T Al R SR

2 ot B S

ask more detailed questions about it.

- some small nodes is its restriction to a single stage optimization proce-
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1 and 320 and a separation of the intensities into five ranges. That gave

the 1280 potential splits: Is the intensity (coded) of the peak at m/e = k

greater than j, j=1,2,3,4 and k = 1,2,...,320. In general, only a small
fraction of the spectra in the data base had a peak of ahy given m/e value whose
intensity was greatér than j,j=1,...,4. i
Thus, at the early stages of the tree we had too much splintering with
small nodes being split off. In the later part of the tree construction,
the spectra at any node have been filtered down by their common responses
to a number of questions. They exhibit more and more similarity the lower

down in the tree the node is. Therefore, to effectively split a small node,

we may need to include more detailed information about the spectra, or to

i

In both of our studies, many of the lov-confidence small nodes cou'd
not be eivfectively split by one of the avai]ab]é splitting questions. This
may have been due to the fact that the set of potential splits was not able
to get at the level of detail needed further down the tree.

Another possible cause for the program's difficulty in separating

dure. It always selects the split which gives the-greatest decrease in
uncertainty. This is a "one-step optimal procedure." But usually, the
succession of two "one-step" optimal splits will not be the "two-step"

optimal split. Instead of judging the merit of a split on how much the
split reduces the uncertainty, we could use the following procedure:

For each allowable split of the node in question into two nodes, find
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the optimal split of each of thé‘two nodes. Now compute the decrease in
uncertainty as we go from the original node to the four "descendant" nodes
and use this decrease to judge the merit of the originé] split. This gives

a "one-step look ahead" evaluation of the split. As an analogy, this cor-

responds in a chess game to a chess player who is capable of looking ahead
one move into the future as contrasted to a chess player that plays the

move taat yields him the most immediate gain.

The point is that, without a look-ahead potential, especially in the
later stages, we may be selecting "blind alley” splits; that is, splits

that look good as immediate prospects, but that do not eventually lead

to high-confidence nodes.

We believe that a substantial improveient in decision tree classifi-
cation procedures can be made by using an iifcrmation-adaptive structure.

By this we mean a decision tree that

a. in thé early stages uses less detail, aggregates %he infor-
mation, and splits the objects into a few large general
categories

b. 1in the later stages, adds more detailed information,

"~ examines a larger class of splits, and, if necessary,
goes into a look-ahead mode of operation.

This type of tree structure also lends itself to greater efficiency

in construction. At the early stages, with a large data base, each node
contains many items. With the chemical spectra base, the. first few nodes ﬂ

contained thousands of compounds. If one used the same degree of detail
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at this stage that is desirable later, then the number of potential splits
will number in the thousands. The search through all potential splits
over a large number of items is very time-consuming and the rewards at
this level are not commensurate with the effort expended;

When the nodes are small, then the search over a larger number of
allowable splits is not as burdensome computationally. '

O1.c way an information-adaptive structure couid be implemented is as
follows: A number of different classes B ,...,AB of splitting questions
will be defined. At the top level is a relatively small classsj; of
questions that uses highly aggregated information about the objects. At

* the bottom level is a large class JG of spliiting questions that uses the
most detailed information about the object . The tree growing will proceed
as follows:

1. At any node, depending on its size relative to the original
total.population, fix a threshold value T(s), sta}t with
c]asng where,l% is determined by T{s), and .find the best
split generated by this class.

2. If the decrease in uncertainty associated with the best
split in é% is not greater than the threshold value T(s),

then examine, in a similar way, all the allowable splits

in 4?

i+’
3. Continue in this way until-ds is exhausted. If no allowable

split exceeds the threshold value, then

i. either call the node terminal,
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or
ii. go into a one-step look-ahead decision mode.

Which alternative we choose in 3 above will depend on the size and confi-
dence level of the node in question. |

The usefulness of highly aggregated information at the beginning of
the decision structure is vividly illustrated in chemical spectra study.
If w2 Lad used the set of 320 splitting question, "Is the molecular weight
equal to k, k=1,2,...,320?," none of these splits would have caused an
appreciable decrease in uncertainty. The reason is that only a small pro-

portion of the compounds have a given molecular weight. _The definition

of uncertainty is such that when a node is split and one of the two

. descendent nodes has a very small fraction of the parent's popu)aticn,-

then the decrease in uncertainty is small. Thus, if we had used the fu'l
detail available in the molecular weight information, the probability

is that it would have caused very little, if any, alteration in the

tree structure and in the misclassification réte.

However, aggregating the molecular weight information by dividing
it into the two subsets--even weights and odd weights--and adding only
the single question as to which subset the weight was in, led to a dif-
ferent initial split and a drastic reduction in misclassification rate.

In our thinking about the chemical spectra problem, we could see the
following possibilities of different levels of aggregation.

The first level of questions could include questions‘of the form:

Are there two or more main peaks in the M/e sequence k,k+14,k+28,k+42,...
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for k an integer between 0 and 13? Or, more generally, one could ask

}-; questions of the form: Are there j or more main peaks in the subset of m/e

values (C]’CZ""’CN)?

Notice that on this level we would be ignoring the intensities of the !

peaks and using only their locations.

At the next 1eve1~3£ of questions, the intensities might be intro-

duced. For instance, a possible set ¢f questions at this level might be:
Are there j peaks with intensities i in the subset of m/e values
{C],Cz,...,CN}? Going down the levels, the questions become more de-
tailed. For instance, we may want to go;to the level of questioning
of the form: 1Is there a peak at m/e e C, with intensity i, and a
peak at m/e ¢ C2 with intensity iz?

At a cer ain level down the tree, the isofopic information should be
added to tnhe main peak information. With this added information, ques-

tions concerning the ratio of intensities of main peaks and nearby

isotope peaks may aid in the separation of classes at the nodes.

A one- or multiple-step Took ahead procedure is costly in its initial

Pl

construction. For example, if there are N splitting questions at the
level being used, then for a one—step.1ook—ahead optimization, 2N2 splits

have to be examined. This number comes from observing that for such allow-
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able split of the original node, all allowable splits of the two descendant
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nodes are examined. If there are, as in our study, about 1000 allow-

s AT

able splits, then a one-step look-ahead optimization would have to examine

Y

TURL S LA UBMI N AN R im0

gk o e
i i

2 106 splits. Hence, the one-step look-ahead procedure would have to be

planned in a modified form in order to be feasible.
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. dther Splitting Criteria and Iterative Cleansing

As we mentioned before, the uncertainty has the property that if a
split results in one node much smaller than the other, then there is not
much decrease in uncertainty. This may be undesirab]e in some situations.
For example, suppose there are 5000 objects in a node, and a certain
split resuli: in a node containing 100 objects and another with the 4900
remaining objects. Even if the node with 100 is absoldte]y pure, that is,
consists entirely of one class, the split will not produce much of a
reduction in uncertainty and will almost surely not be the optimal choice.

It is possible that we want to choose our criteria for goodness-of-

split so that it gives a higher weight to snlits that produce fairly

pure nodes that are above some minimal siz2.

For instance, at one extreme, we cculc adopt this strategy: Find
the split that produces the largest node having more than QO.DGPCGRL
purity (i.e., such that more than 90 percent of its popu]at%on is in one
class). Having split off this node, repeat the procedure on the other

node until no 90-percent pure node greater than some minimum size can be

. found. Now that we have chipped away all the above 90-percent pure nodes,

we lower our level to 80 percent and search for thé largest node having
at least 80 percent purity. Having found an 80-percent node, we then try
to extract an above 90 percent chip off of it by splitting.

This chipping away of small pure nodes procedure does not seem

desirable near the early stages of tree structure. At this initial phase,

the best thing to do is to get the population roughly sorted into large
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subsets such that eaéh contains éignificant numbers of one or more classes,
but excludes most of the members of one or more of the remaining classes.
At the advanced levels, when we try to split nodes containing only two or
three classes, the "pure chip" strategy itself or in combination with the
uncertainty criteria may produce more accurate-classification.

Thus, we may want to adapt our splitting criteria to the depth of
the part of the tree we are working cn.

There are an infinity of other criteria for-judging goodness-of-split.
But in a sense, the “pufe chip" and reduction of uncertainty criteria
stand at opposite ends of this continuum of possibilities.

Even with improved tree-growing procedures, it is inevitable that

. some of the terminal nodes will have low-cunfidence levels, where the

confidence level is defined as the percentaje of the largest class in the
total population of the node. A simple iterative procedure for cleanéing
the low-confidence terminal nodes is to pool the,popu]atioﬁs of all
terminal nodes with a confidence Tevel below a pre-set level (say, for

instance, 80 percent) and using this pooled population as the initial

- population, rerun the tree construction program. Now that the fairly

pure terminal node populations have been pulled out, the tree structure
for classifying the remaining population should be entirely different
than the original tree.

This iteration can, of course, be repeated over and over, but we
strongly suspect that the point of diminishing returns will appear after
one or two iterations. Still, we anticipate that a substantial improve-

ment can be produced by this iterative cleansing.
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Further Moves Toward a Humercus Class High Dimensional Tree Classifier

| The problem we want to ultimately be able to solve is something like
| 2 spoken word recognition with a large possible vocabu]ary, say 1000 words.
We want to be able to recognize an individual word, no matter who speaks

it. Now attached to each spoken word is the high dimensional measurement

vector consisting of the digitized recording of the word.

Ous planned strategy, in attacking this problem, will be to first use
highly aggregated information to separate the words into a few subgroups.
For instance; is it a multisyllable word? Does a peak appear near the
beginning of the word in this frequency range?
The tree structure will be information adaptive, at each node, the
; ~ .subgroup of word classes present w111 be broken down in smaller subgroﬂps.
‘ Obviously, this is a sensible approach. The question is how to
3 implement it? We will describe a general framework and then look at some
specific exampfes. '
Step I: Select a family {Tg 1, 6 € 6 , which maps the measurement
vectors of the learning set into a low dimensional space (feature space).
Step II: Using the values y = Te(i) corresponding to the feature vectors
of the job class, estimate the density fy (y). If the apriori

probabilities of class J are pj then the probability that an unknown

&N
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item with feature map y belongs to class J is defined to be
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Step I1I. For all items in the ith class, let C; be the set of feature

vectors. Define

n.. = & P(jly)
1J y‘eci

Step IV. Take the “confusion" matrix Ilnijll and cluster the classes

into similar groups. Define a measure of misclassification between

groups. After the clustering, let this measure be M(o).

Step V. Select o to minimize M(0).

Step VI. Repeat the above 5 steps on each of the subgroup of classes

defined in the 4th & 5th steps above, using another family of feature maps.

This general framework gives rise to ¢ decision tree structure,
although it is not necessarily binary. It can be made binary by ciustering
the classes info two groups at each stage, but this is unnécessari]y
refrictive. A better alternative that a binary grouping on any fixed number
of dissimilar groups is to allow the existence of a group of "dubious"
classes. So, for example, a good ternary clustering world consists of
two extremely dissimilar groups of classes and a "dubious” group between
them.

This approach is a combination of a number of methodologies, including
clustering. One problem we face in implementing an algorithm of the above
type is to find an effective way of clustering the classes into subgroups

:
at each stage. We have developed one such algorithm which is described in f.
§

\
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L

S
y




27

Other Related Research

In his extensive 1974 review [1] of pattern recognition methods, Laveen
kanal states "For the multiclass case, most of the work'has either cast the
M-class problem as M(M-1)/2 two-class p}obléms or employed multidimensional
scatter ratios popular in classical multiple discriminant analysis." Thus,
the use of tree structured decision methods in multiclass problems (M large)
is relatively novel in the area of classification or pattern recognition.
However, there is some scattered work in the literature that is relevant
to our proposed research. One of the earliest works in the field proposing
the use of tree étructured classification is due to W. Meisel [2], the pro-
posed co-principal investigator. Some reTateq but very séecia]ized results
_regard "treo grammars." These are feferenced in Kanal's work [1].

We aie certainly not the first to propose the use of the unceirtain'ly
measure ¢s a splitting criteria, and the idea has appeared sporadically (3,4].
Tree structured decision methods appear very prominently in clustering theory.
Rartigan's recent and excellent survey book [5], contains’'a full discussion
and description of their use.

One of the most successful use of tree structured decision methods is
the nonlinear regression program AID and its successors developed at the
University of Michigan and widely used in the social sciences, [4,6]. In
this algorithm a search is made for sucéessive splits over the independent
variable space. The splitting criterion is the reduction in mean square
error in predicting the dependent variable. The result is a tree structure

of binary splits of the data points.
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i Another use of decision tree structures is in file search procedures.
A good account appears in [7].
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