— e ——

[7AD=A038 191 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2
IMPLEMENTATION OF AN ARRAY BOUND CHECKER: (U)
NOV 76 N SUZUKI» K ISHIHATA F4l4620=-73-C=0074
UNCLASSIFIED AFOSR=TR=77-0329 NL

AFOSR - TR- ¥7 = 0829
: A==

s

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

Norihisa Suzuki

v Kiyoshi Ishihata

November 1976

Approved for public release’; -
distribution unlimited. :

DEPARTMENT
of

COMPUTER SCIENCE pDC

ADAO38191

e ———

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

by

Norihisa Suzuki
Department of Computer Science
Carnegie-Mellon University

and

Kiyoshi Ishihata
Department of Information Science
University of Tokyo
Tokyo,Japan

November 1976

This research was supported in part by the Defense Advanced

Research Projects Agency (Contracts: F44620-73-C-00 74, monitored Wl
by the Air Force Office of Scientific Research, and DAHC= §
0308) and in part by the University of Tokyo Computation Center.
The views expressed are those of the authors.

R

Abstract:

A practical system to check the correctness of array accesses automatically before actually
running programs has been implemented. The system does not require any modification to
input programs in the form of assertions or user interaction to guide proofs. That is, the
system generates assertions to prove, synthesizes loop invariants, and finally proves 3
verification conditions without interaction. A powerful proof strategy is invented which
makes the time to check programs almost linear to the size of programs, yet the system can 4
completely verify the correctness of array accesses of programs like tree sort and binary
search with processing speed of about fifty lines per ten seconds. A three hundred line

program example is also shown.

Keywords:

automatic program verification, semantic checker, array bound checker, induction iteration
method, automatic synthesis of loop invariants, linear solver, theorem prover, frame

problems. |4

ageson for /
NTIS White Sectian pJ

£e Suff Section [

UNA-CUICED I

JISTIFICATIONcooovvveevanmminssonas . 4
BY

STRITUTION /AVAILABILITY COUES

s AYAL aotoc SPEGIAL

LilM

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 1

18 INTRODUCTION

This paper describes a system which checks correctness of array accesses
automatically without any inductive assertions or human interaction. For each array access
in the program a condition that the subscript is greater than or equal to the lower bound
and a condition that the subscript is smaller than or equal to the upper bound are checked
and the results indicating within the bound, out of bound, or undetermined are produced. It
can check ordinary programs at about fifty lines per ten seconds, and it shows linear time
complexity behavior.

It has been long discussed whether program verification will ever become
practical. The main argument against program verification is that it is very hard for a
programmer to write assertions about programs. Even if he can supply enough assertions,
he must have some knowledge about logic in order to prove the lemmas (or verification
conditions) obtained from the verifier.

However, there are some assertions about programs which must always be true
no matter what the programs do; and yet which cannot be checked for all cases. These
assertions include: integer values do not overflow, array subscripts are within range,
pointers do not fall off NIL, cells are not reclaimed if they are still pointed to, uninitialized
variables are not used.

Since these conditions cannot be completely checked, many compilers produce
dynamic checking code so that if the condition fails, then the program terminates with
proper diagnostics. These dynamic checking code sometimes take up much computation
time. It is better to have some checking so that unexpected overwriting of data will not
occur, but it is still very awkward that the computation stops because of error. Moreover,

these errors can be traced back to some other errors in the program. If we can find out

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 2

whether these conditions will be met or not before actually running the program, we can
benefit both by being able to generate efficient code and by being able to produce more
reliable programs by careful examination of errors in the programs. Similar techniques can
be used to detect semantically equivalent subexpressions or redundant statements to do
more elaborate code movement optimization.

The system we have constructed runs fast enough to be used as a preprocessor
of a compiler. The system first creates logical assertions immediately before array
elements such that these assertions must be true whenever the control passes the
assertion in order for the access to be valid. These assertions are proved using similar
techniques as inductive assertion methods. If an array element lies inside a loop or after a
loop a loop invariant is synthesized. A theorem prover was created which has the decision
capabilities for a subset of arithmetic formulas. We can use this prover to prove some valid
formulas, but we can also use it to generalize nonvalid formulas so that we can hypothesize
more general loop invariants.

Theoretical considerations on automatic synthesis of loop invariants have been
taken into account and a complete formula for loop invariants was obtained. We reduced
the problem of loop invariant synthesis to the computation of this formula. This new
approach of the synthesis of loop invariants wili probably give more tirmer basis for the

automatic generation of loop invariants in general purpose verifiers.

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 3

2. THEORETICAL BASIS.

The correctness of array accesses can be stated within the theoretical framework
of the weak correctness of programs. That is , we only have to show that the assertions
placed immediately before the array element stating that the subscript expressions are
within the defined bounds of the array hold, whenever control ot the program comes to the
assertions.

The major problem for making an automatic verifier which does not require any
assertions by programmers is that the system must somehow invent loop invariants. Some
research has been conducted toward automating the generation of loop invariants[3,4,10].
A common characteristic of all the research is that the method depends on heuristics. That
is the system proposes some assertion as the loop invariant and let the prover decide if the
program is provable from the loop invariant. The difficulty is that if it does not work, it is
hard to see whether the program is nat correct or the heuristics are wrong.

What we will do here instead is to obtain a complete formula for loop invariants.
Just like Taylor’s series expansion of functions will give a complete description of the
function even though they are not usually calculable and infinite chain of approximations ,
we obtain an infinite chain of approximations to the general loop invariants from this
formula.

Furthermore, if the assertion we want to prove is not a correct assertion we
cannot invent a loop invariant which is true at entry to the loop and which is always true
whenever control comes back to the top of the loop, and finally which implies the exit
condition.

So, what we can hope to obtain is a formula which is a loop invariant if and only

if the assertion is correct.

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 4

This formula is similar to the weakest precondition of Dijkstra [2). What is

different here is that we are only concerned about weak correctness. The formula is

wip(while Cdo S, Q) = Yi.i20oW(i,C,5,Q)
where

W(O0,C,5Q)=-C>Q, and

W(i+1,C,5,Q) = C > wip(S,W(i,C,5,Q) ,

for i 2 0.
WIp stands for "weakest liberal precondition." The definitions of the weakest

'liberal precondition wip(S , Q) is that if S is executed in the state satisfying wip(S , Q) then
TQ is always true after termination of S, and no weaker condition satisfies such a condition.
WIp for assignment and conditional statements are the same as those of the weakest
precondition.

It is easy to see that if wip(while C do S, Q) is true at entry to the program
then wip(while C do S, Q) is always true whenever control comes back to the beginning
of the lc;op. This is because

wip(while Cdo S, Q) A C o wip(S, wip(while C do §,Q))

It is easy to see that
wip(whileCdo S,Q)A-~C o Q.

Also whenever the while statement terminates, Q is true at exit if and only if wip(
while C do S, Q) is true at entry.

Thus, this is the desired formula.

Note that no heuristics are involved in writing out the loop invariant. The
problem is reduced to computing this formula, Vi.i20oW(i,C,S,Q), and we can claim that

Vi.j2i20oW(i,C,5,Q) is the j-th approximation in a sense that it may be a loop invariant and if

j-1 st approximation is a loop invariant then j-th approximation is certainly a loop invariant.

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 5

We will invent a procedure for checking whether j-th approximation is a loop
invariant or not. Let L(j) stand for Vi.j2i20oW(i,C,5,Q), the j-th approximation to the loop
invariant. Certainly L(j) A~ C > Q In order to establish that L(j) to be a loop invariant
we have to show that L(j) is true at entry and also

L() A C 2 wip(S, L(j)) .
But wip(S,L(j)) = wip(S , Vi.j2i20oW(i,C,5,Q)
= Vi.j2i20>wlip(S,W(i,C,5,Q).
So C o wip(S, L(j)
= Vi.j2i20oW(i+1,C,5,Q).
That is
L(j) A C 2 wip(S,L(j)
is equivalent to
Vi.j2i202(W(i,C,5,Q) = W(i+1,C,5,Q).

So all we have to prove is to prove these two equations. There is a nice thing
about this method and that is we can use all the results of computation up to j-1 st
approximation to compute the j-th approximation. The reason is if W(i,C,5,Q) was failed to
be proved then we can use this as an assumption for the next step and also we can back-
substitute this formula around the loop and we can obtain W(i+1,C,S,Q).

This fact suggests an iterative method of proving weak correctness of programs

without loop invariants. Because of this iterative nature we call it the " induction iteration

method."

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 6

| “Induction iteration method.”
Step 1) Create W(0,C,5,Q) =~-C> Q.

Step 2) Try to prove W(i,C,5,Q) from
Vk.i-12k20.W(k,C,5,Q). If it
is true , the program is correct and
the proof is done.

Step 3) We have to see if W(i,C,5,Q) is true
at entry to the loop. Back-substitute
this W(i,C,5,Q) through the program
segment before the while statement.

If it can be shown to be false at entry,
the program is not correct and done.
If it cannot be shown to be true, the
algorithm halts indicating
undetermined.

Step 4) We will use W(i,C,5,Q) to prove the
next step. So we will create
Vk.i2k20oW(k,C,5,0). Then we
will create W(i+1,C,5,Q) from
W(i,C,5,Q) by the formula
C o wip(S,W(i,C,5,Q).

Step 5)i « i+l. Go to step 2).

end of algorithm

This iteration may never terminate. Particularly if the program is not correct we
may very well not terminate. If we implement this algorithm, therefore, we have to put a
bound on the number of iterations which determines the limitation of the system. We have
to note here that the size of conditions , or the size of W(i,C,5,Q), grows more rapidly than
linear to the size of the program S. The reason, more than anything else, is that because of
the rule
wip(if B do Sl else S2,R) = (B o wip(S1,R) A (- B > wip(S2,RD),

the condition more than doubles in the size each time it is back-substituted through

' IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 7

t‘.conditional statement. Since it is inevitable that the performance of a theorem prover is
' exponential to the size of formula, it is very important to keep the size of the condition
W(i,C,5,Q) to be constant if we want to make a system works in linear time. For this reason
we have developed a theorem prover which not only proves but also simplifies logical

expressions, and modified the semantic rules wip. These practical considerations will be

discussed in the next two sections.

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 8

3. Theorem Prover

The synthesis of loop invariants is on a firmer ground, but we need to create a
powerful theorem prover to make a practical system. The domain we are particularly
interested in is an integer domain and formulas we have to prove is inequality relations with
only universally quantified variables.

Before we prove these formulas all the arithmetic expressions and relations are
converted to normal forms. Normal forms of arithmetic expressions and relations have
been discussed in many verification literature[5].

As we have discussed in section 2, the main source of the exponential explosion
in most of the verifiers comes from the growth of conditions to be proved. The theoretical
limitations at least for the time being forbid us to create a theorem prover which behaves
better than exponential time complexity. This suggests that instead of spending efforts in
creating clever algorithms to reduce the speed of theorem prover by a constant factor, we
should spend our efforts in creating simplification and generalization methods which limit
the growth of conditions even though the size of the programs grow.

Since we are representing arithmetic expressions in normal forms, the size of
expressions do not grow very rapidly by substitution of assignment statement. The
problems are created by conditional statements. The detail of algorithms are discussed in
the next section. In this section we will discuss about powerful theorem prover which are
used to simplify conditions.

The basic algorithm of the theorem prover is King’s linear solver [5], which is
based on the Fourier-Motzkin method of linear programming. This class of prover is quite

suited for array bound checking since array subscripts are in many cases linear

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 9

expressions. The prover generally proceeds to show unsatisfiability of a set of linear
inequalities.

Suppose x+el <= 0, -x+e2 <= 0, 2*x+e3 <= 0 is the set we are going to show
unsatisfiable, that is x+el <= 0 A -x+e2 <= 0 A 2#x+e3 <= 0 is false. The prover selects x
to be the variable eliminated from the set. Then we classify this set into three subsets
such that the coefficients of all the inequalities in the first set are positive, the coefficients
of all the inequalities in the second set are negative, and each inequality in the third set
does not contain x. We add each member of the first set and each member of the second
set such that terms of x will disappear. We may have to multiply each inequality by some
constant to adjust. If any one of them produces a contradictory formula the proof is
successful and the process terminates. Otherwise we replace the original set by the union
of the newly created set and the third subset of the original set. In this case el+e2 <= 0,
2xe2+e3 <= 0 are the result of eliminating x. The procedure is iterated until we eliminate
all the variables and obtain false statement, in which case the set is unsatisfiable, and
otherwise satisfiable. Suppose the set is satisfiable and the result of elimination is a linear
inequality e <= 0. Then - e + | <= 0 is the equation which is just sufficient to give
unsatisfiability. -e + 1 <= 0 is in a sense the most general assumption. At this moment the
system proposes -e+1<=0 to be the generalization of the lemma and tries to prove this
instead. If there are several inequalities then each of them is in turn chosen to be the
generalized lemma.

We will illustrate by an example how powerful these generalization techniques
are.

W{\R l;: ARRAY[1:100] OF T;
L

LOW « 1 ;
{2}

RIS

I————E

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 10

HIGH « 100 ;
- {3} '
WHILE LOW <= HIGH { 4 } DO
BEGIN
MIDDLE « (LOW + HIGH) DIV 25
{5}
IF A[MIODLE] <= K
THEN { 6 } HIGH « MIDDLE-1
ELSE { 7 } LOW « MIDDLE+]
END.

This is an essential part of a binary search algorithm which will be proved in

section 5. One of the condition we have to show is here that 1 <= MIDDLE at { 5 }. Then

what we first try to show is

W(Q): LOW <= HIGH >
1 <= (LOW+HIGH) DIV 2

or after simplification
W(0): LOW <= HIGH > 2 <= LOW+HIGH

at {4}

Since this is not provable, we try to see if this is true when control first enters
the loop. We back-substitute W(0) through two statements and we obtain true at { 1 }.

Now W(1) is formulated as

W(1): LOW <= HIGH =
(A[(LOW+HIGH) DIV 2] <= K 2
(LOW <= ((LOW+HIGH) DIV 2 -1) 2
; 2 <= LOW-1+(LOW+HIGH) DIV 2)A
(A[{(LOW+HIGH) DIV 2] > K 2
: ((LOW+HIGH) DIV 2 +1 <= HIGH 2
2 <= (LOW+HIGH) DIV 2 +1+HIGH))
or W(1): (LOW <= HIGH A
A[(LOW+HIGH) DIV 2] <= K A
LOW+2 <= HIGH >
6 <= 3*LOW+HIGH) A
(LOW <= HIGH A
A[(LOW+HIGH) DIV 2] > K A
LOW+1 <= HIGH
5 2 <= LOW+3*HIGH)

e s S

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 11

at { 4 } by back-substituting W(0) through the while body. W(0) > W(1) is

(2<= LOW+HIGH A

LOW+2 <= HIGH A

A[(LOW+HIGH) DIV 2] <= K 2
6 <= 3*LOW+HIGH) A

(2 <= LOW+HIGH A

LOW+1 <= HIGH A

A[(LOW+HIGH) DIV 2] <= K 2
2 <= LOW+3#HIGH)

The latter conjunct is valid, so W(0) > W(1) is simplified to
2 <= LOW+HIGH A
LOW+2 <= HIGH A
A[(LOW+HIGH) DIV 2] <=K o
6 <= 3+LOW+HIGH .
W(1) is easily shown to be true when control first enters the loop, but not itself provable.
Therefore, we compute W(2) by back-substituting W(1) around the loop. That will not be

provable again. This iteration many not terminate for some time. Now, let us look at the

same example using the generalization by the prover. W(0) is not valid when it is

computed. The computation is to show the unsatisfiability of

LOW <= HIGH and LOW+HIGH <= 1.
The elimination of HIGH generates
2xLOW-1 <=0
and if we have -LOW+1 <= 0, we can show the unsatisfiability . We set up -LOW+1 <=0 as
the generalization of W(0) to be proved. This is shown to be true when control first enters
the loop. To see this is true when back-substituted around the loop we compute
wip(S,-LOW+1 <= 0) =
(A[MIDDLE] <= K o
-LOW+1 <= 0)A
(A[MIDDLEPK >
-(LOW+HIGH) DIV 2 <= 0).

This is easily shown to be true from the assumptions

Page 12

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

-LOW+1 <=0 and LOW <= HIGH.

As you can see the generalization by the prover not only simplifies the problem

but also generalizes the approximations of loop invariants to enable proofs in many cases.

it D e S S U e e

-

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 13

4, SYSTEM CONFIGURATION

The system configuration is straight forward closely following the implementation
suggested by the previous two sections. Only simplification not discussed is the treatment
of conditional statements.

4. 1. Extraction of Local Conditions

A program is scanned once in the order they are presented as a text. Whenever
an array element Afe] is found , conditions lower_bound_of (A) <= e and e <=
upper_bound_of(A) are created as the conditions of the innermost statement containing the
array element. We call these as bound assertions. If the statement is an assignment
statement or a conditional statement , the condition must be true immediately before the
statement. If the statement is a while statement, the condition must be true at entry and
for each subsequent iteration of the loop.

4, 2. Semantic Treatment of Statements.

Each bound assertion created for an array access is transformed as it is back-
substituted through the statements according to the semantic definitions of the statements.
These assertions are at the same time simplified using normalization and theorem prover.
The back-substitution process terminates either when there are no more statements in
front, the condition is proved to be true or false, or it hits a while statement. Since we
cannot iterate on a while statement indefinitely we return the result undetermined (U) if we
fail to prove or disprove within a certain number of iterations.

The semantic definitions of statements are in principle the weakest liberal
precondition rules, but we use some simplification as we transform conditions.

1) Statement lists.

T

' IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 14

If we have a statement list Sl; S2 and suppose P is the assertion to prove after

j S2, then we obtain precondition of P over 52, wip(S2,P). If this precondition is true or false

or undetermined, we terminate the process and return the corresponding result. Otherwise
we compute the precondition of wip(S2,P) over S1 wip(S1 , wip(S2 , P)) and return that as
the resuit.

2) Assignment statement.

If we have an assignment to a simple variable X « f(Y), then we return
Substitute(f(Y) , X , P) . . Here Substitute(e , X , P) is an expression obtained from P by
substituting all the occurrences of X by e. If the statement is an assignment to an array
element Ale] « f(Y), then Substitute(<Ae,f(Y)>,A,P) is returned, where <A,e,f(Y)> is an array
obtained from A by substituting e-th element by f(Y).

3) Ifh statement.

In the case of the if-then-else statement

if C then Sl else S2, we compute both the precondition of P over S1, wip(S1,P) ,
and the precondition of P over 52, wip(S2,P). If any one of them is false or undetermined,
the process terminates immediately with the corresponding result as the result of back-
substitution. If wip(S1,P) and wip(S2,P) are both true then return true. If wip(S1,P) is true
then we compute -~ C > wip(S2,P) by the theorem prover and return the generalized
formula. If wip(S2,P) is true then we compute C o wip(S1,P) by the theorem prover and
return the generalized formula. Otherwise we compute (C > wip(S1,P)) A (-C 2 wip(S2,P))
by the theorem prover and return the conjunction of generalized formula.

Next, if the statement is if-then statement, namely, if it is of the form if C then S;

then we compute precondition of P over the statement S, wip(S , P). If wip(S, P) is false

o o g

S e

———

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 15

or undetermined, we terminate the computation and return the wlp(S,P) as the value of
back-substitution.

If wip(S , P) is true, we return the generalized value of -C 2 P. Otherwise we
return the generalized value of (C 2 wip(S, P)) A (-C 2 P).

4) While statement.

The semantic definition of a while statement while C do S
relative to a post condition P can be defined in two cases depending on where P comes
from. The first case is that P is created as the precondition of S. Then
CoP
is the first approximation of the loop invariant. If P is the precondition of the statement
immediately after the while statement in a statement list, then
~CoP
is the first approximation of the loop invariant. Let these first approximations to be W(0).
We compute W(0) and if W(Q) is true then we return true as the result of the back-
substitution. Otherwise we first back-substitute W(0) through the statements preceding the
while statement. If the result is undetermined or false we return it as the result.
Otherwise we create W(1) by the formula
C > wip(S , W(0)).
We generalize W(0) > W(1) by the thecrem prover and repeat the similar process.
4. 3. Creation of Assumptions.
Since there are a number of array accesses, we want to use the results of
previous proofs so that we do not have to do similar deductions over and over again. For

this purpose we have a mechanism for inserting assumptions in the program. All the array

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 16

accesses are scanned in the order they appear in the text. As soon as the array bound
assertions are proved they are inserted just in front of the statement in which the array
access occurs. These assumptions are used for proofs of other array bound assertions.
Since the rest of the bound assertions are always created after these assumptions, most of
the assumptions are effectively used to prove or to simplify back-substituted assertions.

4. 4. Analysis of Loops.

For each while statement while C do S a set of variables of S which may be
changed in the course of execution of S is collected. If we want to prove W(i) to be the
invariant of this while statement, we first see if any of the variables of W(i) appear in this
list of the changed variables. If they do not occur in this list, W(i) will not change by back-
substitution and it is an invariant of the loop if W(i) is true at entry. We can save the
computation to back-substitute in some cases.

4. 5. Preferential Elimination of Variables.

As we generalize and prove conditions, the choice of variables to eliminate is
important for various resons. One strategy may be to try to choose a variable which has
only one member in the set of positive coefficient set or in the negative coefficient set.
This is because we do not want to explode the number of inequalities. In this system what
we do is to choose variables which might be changed in the course of the execution of the
while body. This strategy is useful for generalization because if we can eliminate variables
which may be changed totally from the condition, then we can use the strategy described in
4.4. and we no longer have to back-substitute the while body to determine the invariance

of the zondition.

T TR W T Y

T R g T Y T T T

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 17

S. EXAMPLES

The following binary search program has been proved that all the array accesses
are within bounds. The proof required 2 CPU seconds.

TYPE TABLE=ARRAY[1:100] OF INTEGER;
PROCEDURE BINARYSEARCH(VAR A:TABLE
;KEY:INTEGER;VAR MIDDLE:INTEGER);

VAR LOW,HIGH: INTEGER;

BEGIN
{1}
HIGH := 100;
{2}
LOW ::= 1;
WHILE LOW < HIGH { 3} DO
BEGIN
MIDDLE := (LOW+HIGH) DIV 2;
{4}
IF A[MIDDLE]=KEY
THEN { 5] LOW:=HIGH+!
ELSE IF A[MIDDLE] > KEY
THEN { 6 } HIGH := MIDDLE-1
ELSE { 7 } LOW := MIDDLE+1
END;
{8}
IF A[MIDDLE] # KEY THEN MIODLE := 0
END;

There are three accesses of A, two within the loop and one outside of the loop.
We are going to show how the system proves that the array accesses are within the
ranges. The proofs are not trivial, since MIDDLE does not change monotonically. Also there
is an integer division and we have to make sure that the right truncation is performed when
we normalize expressions. We also have to prove that MIDDLE keeps within range even
after the end of the execution of while statement. The system searches an array element
textually from the beginning of the program. It first finds A[MIDDLE] in the statement IF

A[MIDDLE]=KEY THEN It creates an assertion

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 18

1 - MIDDLE <=0
at location { 4 } to insure the correctness of the array access relative to the
lower bound of the array A. This assertion is back-substituted and becomes
1 -(HIGH +LOW)DIV2<=0
at location { 3 }. This is normalized to

2 - HIGH - LOW <= 0.
Since the loop condition (condition of the while statement) is

-HIGH + LOW <=0,
-HIGH + LOW <=0 > 2 -HIGH -LOW <=0
is proposed as the first approximation of the loop invariant. The theorem prover

generalizes it to

1 -LOW <= 0.
To show that this condition is true when control first enters the while statement this
condition is back-substituted to { 2 }. At l.ocation { 2 } it becomes

1-1<=0
and it is proved. For the proof of the inductive hypothesis,

1-LOW<=0
is assumed to be true at { 3 }. This is back-substituted through the loop body. Since
there is a three way branch, three subproblems are created corresponding to each branch.
A path through branch { 5 } creates

A[MIDDLE]=KEY > -HIGH <= 0 .
This has to be proved by the inductive hypothesis

1 -LOW<=0
and the loop condition

- HIGH + LOW <=0

at loop entry { 3 }. These two assumptions imply

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 19

1 - HIGH == 0
and clearly
- HIGH <= 0.
The second subgoal is created by the path through location { 6 } and, since no modification
is done, it is clearly an invariant through this path. The final subgoal is created by the path
through { 7 }. Itis
- MIDDLE <= 0.
at { 4 } and
- LOW - HIGH <=0
at { 3} This is again proved from the inductive hypothesis and the loop invariant.
To prove that MIDDLE is smaller than the upper bound of the array A,
MIDDLE <= 100
is created and the first approximation to the loop invariant at { 3 } becomes
HIGH - 100 <= 0,
using the generalization.
The three subgoals are
1) HIGH - 100 <=0
2) HIGH + LOW <= 203
;3) HIGH - 100 <= 0.
1) and 3) are the same as by the inductive hypothesis. 2) can be shown to be true by the
| inductive hypothesis and the loop invariant.
At this point two assumptions, 1 - MIDDLE <= 0 and -100 + MIDDLE <= 0, are
created and stored at { 4 }.
The second array access is proved to be within the bounds using these

assumptions,

o

T n—

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 20

The third array access is immediately after the loop. All we have to do is to

show that
~ (~HIGH+LOW <= 0) > 0 <= MIDDLE <= 100

is true at the loop head every time control passes this location. This can be proved
similarly.
The following is the output from the system. The structure of the program is essentially
maintained, and the array elements have modified outputs indicating the results of checking.
The format is

<array name> [<check result> §
<subscript expression> § <check result>]

where <check result> is any one of I, 0, U. [means the subscript is within range, O means
the subscript is out of range, and U means that the system cannot determine either way.
Typical output looks like

A[18e8U] + B[18e+{$0)
which means e is greater than or equal to the lower bound of A, but it is not clear whether
e is less than or equal to the upper bound of A, e+f is greater than or equal to the lower
bound of B, but it is greater than the upper bound of B.
FXEER
TYPE TABLE=ARRAY[1:100] OF INTEGER;

PROCEDURE BINARYSEARCH(VAR A:TABLE
;KEY:INTEGER;VAR MIDDLE:INTEGER);
VAR LOW,HIGH:INTEGER;
BEGIN
HIGH := 100;
LOW := 1;
WHILE -HIGH+LOW<= 0 DO
BEGIN
MIDDLE := HIGH+LOW DIV 2;
IF A[ISMIDDLESI]=KEY
THEN LOW := 1 +HIGH

l IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 21

ELSE

' IF 1+KEY-A[ISMIDDLESI]<=0
4 THEN HIGH := -1+MIDDLE
5 ELSE LOW := 1 +MIDDLE

END;

IF -A[ISMIDDLESI]=KEY
THEN MIDDLE := 0
END;

FTTTY

TIME: 2 CPU SECS

The next example is the tree sort. This is to show that some of the more difficult
'arithmetic operations like multiplication by a constant can be handled properly. It is not
very difficult for a person to observe that all the array accesses by the subscript J are
done correctly, since in the inner most loop J is increasing monotonically and the loop
condition is J <= N. However, among the array accesses with subscript [the second and
the third array accesses are not trivial. Even for a human it needs a clear understanding of
how this program works and how I and J are used. Once we know that J = 2x] at the loop
head, we Rﬁﬁw that since J is monotonically increasing so is I. I <= 100 is maintained
because at the loop head the value of | is either the same as the value of J (or 1 greater
than J if J < N and A[J] < A[J+1]) of the previous iteration and at that time J is less than or
equal to N. This is informal human reasoning. The array bound checker does not use
similar reasoning, but it manages to prove this by systematic inductive iteration and
generalization by the prover. Another thing that needs mentioning is that this program was
checked with 16 CPU seconds, which is within the usable range, especially considering that
the system is written in LISP 1.6.
AREER

VAR A:ARRAY([1:100] OF T;
K,L,J,N:INTEGER;

ey

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

COPY,WORK:T;
BEGIN

K = 100 DIV 2;

WHILE 2-K<= 0 DO

BEGIN
I = K;j
N := 100;
COPY := A[ISISI]};
J = 2%}
WHILE J-N<= 0 DO
BEGIN
IF 14J-N<=0
THEN IF 1+A[18J81]-A[1$1+J8[]<=0
THEN J := 1+J;
IF 1+COPY-A[18J81]<= 0
THEN BEGIN
A[I8181] := A[18J8I];
=
J = 2%
END ELSE J := N+1
END;
A[18181] := COPY;
K :=-1+K
END;
K := 100;
WHILE 2-K<= 0 DO
BEGIN
1:=1;
N = K;
COPY := A[I8I81];
J 1= 2x];
WHILE J-N<= 0 DO
BEGIN
IF 1+4J-N<= 0
THEN IF 1+A[I8J81]-A[181+J81]<=0
THEN J := 1+J;
IF 1+COPY-A[18J8[]<= 0
THEN BEGIN
A[18181] := A[I18J81];
1:=J;.
J 1= 2%]
END ELSE J := N+1
END;

A[18181] := COPY;
WORK := A[18181]);
A[18181] := A[ISKSI];
A[I$K8I] := WORK;
K= -1+4K

Page 22

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 23

END
END
ETTEL

TIME: 16 CPU SECS

This next example is almost identical to the previous program except the

conditional statement has now been changed from

IF J<N THEN IF A[JJ<A[J+1] THEN J:= J+1 to
IF J<N A A[JJCA[J+1] THEN J := J+1.

PASCAL evaluates logical expression in parallel so J+1 may become greater than N. Thus,
the error has been correctly detected and this is a valuable information to the programmer.

E3 2333

VAR A:ARRAY[1:100] OF T;
K,1,J,N:INTEGER;
COPY,WORK:T;
BEGIN
K := 100 DIV 2;
WHILE 2-K<= 0 DO
BEGIN
I:=K;
N := 100;
COPY := A[ISISI];
J = 2%];
WHILE J-N<= 0 DO
BEGIN
IF 1+J-Nes= O n L+A[18J81]-A[I81+J8U)<= 0
THEN J := 1+J;
IF 1+COPY-A[1$481]<= 0
THEN BEGIN
A[181817 := A[18J81];
[o= Js

J = 2%]
END ELSE J = N+1
END;
A[18181] := COPY; |
K = -14K (
END; |
K := 100 {

WHILE 2-K<= 0 DO ‘

bt o o neds o

A p— —

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 24

BEGIN

I:=1;

N := K;

COPY := A[I818I);

J = 2x];

WHILE J-N<= 0 DO

BEGIN
IF 1+J-N<=0 A 1+A[18J81]-A[I$1+J8U}= 0
THEN J := 1+J;
IF 1+COPY-A[18J81]<= 0
THEN BEGIN
A[ISI81] := A[I8J81];
=0
J = 2%l
END ELSE J := N+1
END;

A[1SI81] := COPY;

WORK := A[I$181];

A(18181] := A[ISKSI];

A[I8K8I] := WORK;

K := -1+K

END
END
*ERKK

TIME: 20 CPU SECS

This final example is taken from lexical analyzer of PASCAL compiler. The
program has been modified from the original program by taking out several repeat
statements, so it is not a correct program from the standpoint of lexical analyzer
correctness. However, we have been able to put this program through the checker without
any intermediate assistance. The input is 300 lines of code including some comments. It
takes 45 seconds to process. The system actually found an error at location { 1 }.
Whenever buflen exceeds 256, the system prints out error messages, but it does not reset
buflen. Therefore, the following array element BUF(buflen] will be out of bound. The
syster cannot check the array access at location { 2 } , because bufindex is a global
variable. This is the kind of examples we need some assistance from the programmer

stating the behavior of global variables and parameters.

e

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

TYPE STnode=RECORD ctindex:INTEGER;
lenglh:subnamelen END;

TYPE Treenode=RECORD ctindex:INTEGER;
stindex:INTEGER;
left:TTreenode;
right:TTreenode END;

TYPE Tree=1Treenode;

TYPE word=integer;

TYPE CTnode=word;

TYPE pwords=ARRAY[1:3] OF word;

VAR ST:ARRAY[1:50] OF STnode;
CT:ARRAY[1:50] OF CTnode;
Toptree:Tree;

P:Tree;
curname:ARRAY[1:15] OF CHAR;
curien:subnamelien;
CH:CHAR;
BUF:ARRAY[1:255] OF CHAR;
LETTERS,LETTERSORDIGITS:SETOFCHAR;
first,eofinput:BOOLEAN;
i:subnamelen;
a:pwords;
FUNCTION ROUNDUP(CONST num:integer;denom:integer)
iinteger;
VAR ¢iinteger;
BEGIN
q := num DIV denom;
IF num MOD denom=0
THEN ROUNDUP := q
ELSE ROUNDUP := 1+q;
END;

PROCEDURE COPYLINE(CONST DUMMY:ghost);
VAR ¢:.CHAR;
BEGIN
IF NOT(EOF(INPUT))
THEN BEGIN
bufien := 0;
WHILE NOT(EOLN(INPUT)) DO
BEGIN
READ(c);

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

buflen := 1+buflen;
IF 256-buflen<= 0
THEN WRITELN(TTY , ERRORIL);
i1
BUF(ISbuflen8U] := ¢;
END;
READLN(DUMMY);
WRITELN(TTY);
bufindex := 0;
END
ELSE eofinput := TRUE;
END;

PROCEDURE NEXTCH(CONST DUMMY:ghost);
BEGIN
bufindex := 1+bufindex;
IF 1-bufindex+buflen<= 0
THEN IF bufindex-buflen=1
THEN CH := BLANK
ELSE BEGIN
COPYLINE(DUMMY);
bufindex := 1;
CH := BUF(I8181];
END
{2]
ELSE CH := BUF[U$bufindex8UJ;
END;

PROCEQURE GETNAME(CONST DUMMY:ghost);
BEGIN
curlen = 1
curname[I$181] := CH;
NEXTCHDUMMY);
WHILE INSET(CH,l.ETTERSORDIGITS) DO
BEGIN
IF -14+curlen<= 0
THEN BEGIN
curien := l+curlen;
curname[I8curlen$l] := CH
END;
NEXTCH(DUMMY);
ENID;
END;

PROCEDURE PACKSTRING(VAR a:pwords; VAR len:subnamelen);
VAR k,shift:integer;
BEGIN
i =0

Page 26

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

wordindex := 0;
shift := 0;
WHILE 1+i-curlen<= 0 DO
BEGIN
IF shift=0
THEN BEGIN
wordindex := 1+wordindex;
a[l18wordindex$U] := 0;
shift := 1;
ENI;
1= L+
IF shift=B10000000000
THEN BEGIN
k := -B1000000000%B40+
B1000000000*ORD{curname[18i$U]);
k i= 2%k;
END
ELSE k := -B40sshift+
shift*ORD(curname[18iSU]);
a[USwordindex8U] := k+a[USwordindex8UJ;
shift := B100#shift;
END;
len := curlen;
END;

PROCEDURE FINDPLACE(VAR a:pwords;len:subnamelen;
VAR first:boolean;Top:Tree;VAR pintotree:Tree);
VAR P:Tree;
L:subnamelen;
ctlessa,ctlessO,eq:boolean;
wordind:integer;
BEGIN
IF Top=NIL
THEN BEGIN
first := TRUE;
END
ELSE BEGIN
BEGIN
L = ST[U8TopT.stindex8U]length;
IF L=len
THEN BEGIN
eq := TRUE;
k := ROUNDUP(L,6);
wordind := 1;
WHILE wordind-k<= 0Aeq=TRUE DO
BEGIN
IF ~CT[U$8-1+wordind+
TopT.ctindex8U]=

Page 27

| IMPLEMENTATION OF AN ARRAY BOUND CHECKER

a[I$wordind$U]
THEN eq := FALSE
ELSE wordind := 1+wordind;
END;
IF eq=TRUE
THEN BEGIN
first := FALSE;
pintotree := Top;
END
ELSE BEGIN
ctlessa:=1-a[Uwordind§UJ+
CT[U$-1+wordind+
Top1.ctindex§UJ<= 0;
ctlessO := 1+CT[US-1+
wordind+TopT.ctindex8U]<=0;
IF ~ctlessO=1+
a[USwordind8UJ<= 0
THEN ctlessa := ctlessO;
IF ctlessa
THEN BEGIN
P := Topt.right;
FINDPLACE(a,len,
first,P,pintotree);
IF TopT.right=NIL
THEN TopT.right:=
pintotree;
END
ELSE BEGIN
p := TopT.left;
FINDPLACE(a,len,
tirst,P,pintotree);
IF Top1.left=NIL
THEN TopT.left
:=pintotree;
END;
END;
END
ELSE IF 1-len+L<= 0
THEN BEGIN
P := TopT.right;
FINDPLACE(a,len,first,
P,pintotree);
IF Topt.right=NIL
THEN Top?t.right:=
pintotree;
END
ELSE BEGIN
P := TopT.left;

Page 28

IMPLEMENTATION OF AN ARRAY BOUND CHECKER

FINDPLACE(a,len,first,P,
pintotree);

IF Topt.left=NIL
THEN TopT.left:=pintotree;

END;
END;
END;
END;

PROCEDURE INITNODES(VAR a:pwords;len:subnamelen;pnode:Tree);
BEGIN

BEGIN

IF 51-availCT<=0
THEN WRITELN(TTY , ERROR2);
IF 51-availST<= 0
THEN WRITELN(TTY , ERROR3I);

pnodet.ctindex := availCT;
pnodeT.stindex := availST;
pnodeT.left := NIL;
pnodeT.right := NIL;

END;

k := ROUNDUP(len,6);

BEGIN
ST[USavailST8U]length := len;
ST[U8availST8U].ctindex := availCT;

END;

availST := l+availST;

availCT := availCT+k;

END;

BEGIN
availlST := |;
availCT = [;
Toptree := NIL;
eofinput := FALSE;
WRITELN(TTY , TITLE);
WRITELN(TTY);
COPYLINECDUMMY);
GETNAME(DUMMY);
WHILE NOT(eofinput) DO
BEGIN
PACKSTRING(a , curlen);
FINDPLACE(a , curlen , first , Toptree , P);
IF Toptree=NIL
THEN Toptree := P;
IF first
THEN BEGIN
INITNODES(a , curlen , P)

Page 29

k| IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 30

WRITE(TTY , FIRSTUSE);
END

ELSE WRITE(TTY , REPEATED);
WRITELN(TTY);
1 GETNAME(DUMMY)
3 END;
END
EEE%%

TIME: 45 CPU SECS

i
i

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 31

6. CONCLUSION.

There are several limitations to what the system can do.

One class of problems which this system cannot do is to check the correctness of
array accesses in a loop if the correctness depends on some data whose values are set
before the execution of the loop. One good example is a very widely used class of
techniques to speed up the sequential search by storing some exceptional data at the end
of the array so that the comparison loop always terminates. The program is

VAR A:ARRAY [1:100] OF T;

BEGIN

A[100] « KEY;

[« 1;

WHILE A[I] > KEY DO

I « I+

END.
The while loop terminates because A[100] is the same as KEY and that will make the while
condition false. Using our methods we will not be able to prove this, since what we have to
prove as the induction step is

I <= 100 A A[l] > KEY o [<= 99.
Conventional program verifiers using Floyd-Hoare logic system have the similar problem.
That is even though a loop does not modify some portion of the data we have to declare
these properties as the loop invariant. The first author noticed this problem (7] and has
generally called it a " frame problem of inductive assertion method ", borrowing terminology
from similar problems in artificial intelligence [6]. The solution to this problem is to extend

the rules for loops so that properties of data can influence the proofs inside the while

statements and after the while statements. Using Hoare’s notation the new rule is

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 32

P(x;v) 2 I(x;v),
P{x;v) A I(x;v°) A C(x;v) { S(xv°) 1 1(x3v7),
P(x;v) A 1(x;v*) A ~C(x;v°) 2 Q(x;v°)

P(x;v) { while C(x;v) do S(x;v) } Q(x;v)
where x is a set of variables which do not change their values within S(x;v) , v is a set of
variables which may change their values within S(xjv) , and Vv’ is a set of totally new
variables corresponding to v. The correctness and implementation of this and other frame
problem free rules for various syntax constructs are discussed in [7] and [8].

We can use this technique to prove the previously unsuccessful problem of linear

search. We failed to prove

[<=100 A A[I]> KEY o I <= 99
at the loop head, but if we replace | by I' and back-substitute further to the front, we
obtain

I’<=100 A <A,100,KEY>[I'] > KEY > [I'<=99
and which is now a valid statement for which we can show lthe correctness. Here
<A,100,KEY> denotes an array obtained from A by replacing A[100] by KEY.

The second problem is that the generalization capabilities of the system are not
good enough for many problems. Ultimately we must ask the user to give some assertions
or on failure the system ought to indicate the reason for the failure and ask the guidance of
the user.

We can say about the same thing for procedure and function calls and their
definitions. When we are checking procedure definitions, conditions are back-substituted in
the program just as we treat main programs. However, if we come to the beginning of the

procedure body we can do two things. Either we say that the conditions cannot be

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 33

determined and report to the programmer the reason of failure , or try to check that these
conditions are true at each calling occurrence. We can also use induction iteration method
to synthesize entry conditions for recursive programs. Currently we take the former
approach but eventually we either have to ask programmers to put in a modest number of
entry and exit assertions and also try to check all calling occurrences to see if the
conditions are right.

The development and the availability of this kind of system will change
programming language design just as verification and formal semantics have created a great
effects on the programming language design. We think we will see a great number of
features which enhance security and reliability will be put into programming systems, so
that these properties can be checked at compile time and create more reliable programs
without losing the run-time efficiency .

Because the time complexity is good and the size of a program it can handle is
quite substantial, we believe that the production version of this system soon will be

available to the public and verification will be directly benefitting the computing community.

ACKNOWLEDGEMENT
The first author is thankful for the discussions with Eiiti Goto, Paul Hilfinger, Jim

Morris, Ben Wegbreit, and Bill Wulf.

IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 34

REFERENCES.

[1] Cousot, P. & R. Cousot,
Static verification of dynamic type properties of variables,
Research Report # 25, Laboratoire d’Informatique,U.5.M.G.,Grenoble.

[2] Dijkstra, E. W,
Guarded commands, nondeterminacy and formal derivation of programs,
Comm. ACM 18, 8, August, 1975, pp. 453-457.

[3] German, S.M. & B. Wegbreit,
A synthesizer of inductive assertions,
IEEE Trans. of Software Engineering, Vol. SE-1, No.1, March 1975, pp.68-75.

[4] Katz, SSM. & Z. Manna,
A logical analysis of programs,
Comm. ACM 19, 4, April, 1976, pp. 188-206.

[5] King, J.C.
A program verifier,
Ph.D. thesis, Dept. of Comp. Sci.,
Carnegie-Mellon University, September 1969.

[6] McCarthy, J. & P. J. Hayes,
Some philosophical problems from the standpoint of artificial intelligence,
Machine Intelligence 4, American-Elsevier , pp. 463-502.

[7] Suzuki, N,
Automatic verification of programs with complex data structures,
Ph.D. thesis, Dept. of Comp. Sci., Stanford University,
STAN-C5-76-552, February, 1976.

[8] Suzuki, N.,
Iteration induction method,
In preparation.

[9] Suzuki, N.,
Frame problems in Floyd-Hoare logic,
In preparation.

[10] Wegbreit, B,
The synthesis of loop predicates,
Comm. ACM 17, 2, Feb. 1974, pp. 102-112.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When-Data Entered)

| . REPORT DREUMENTATION PAGE BEFORE COMPLETING FORM

i / /T‘ L WBER; 'C{' s Lff GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
| (&) A0Sk | TR - A< g2 S

i. _TIFLE (and Subtittey " = 5. TYPE OF REPORT & PERIOD COVERED

| L~ e ———

MPLEMENTATION OF AN ARRAY BOUND CHECKER, Interim
s = -) 6. PERFORMING ORG. REPORT NUMBER
[[T -7 ——— e — 18 _CONTRACT OR GRANT NUMBER(4)
{ /b) Norihisaﬁxzuki Kiyoshi/Ishihata | ¢) F44620-73-C-0074 |
I A o A,....A._,}V
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Carnegie-Mellon University : AREAR SORKIMMIT HUMPERS
i Computer Science Dept. 61102F

Pittsburgh, PA 15213 ' 2304 /A2

LL

11. CONTROLLING OFFICE NAME AND ADDRESS
Air Force Office of Sciencific Research (NM)

Bolling AFB, DC 20332

T4. MONITORING AGENCY NAME & ADODRESS(if diffetent from Controlling Ottice)

\)_(0 \ 2.3 Z | Lf_) UNCLASSIFIED |

ey TSa. DECLASSIFICATION/ DOWNGRADING E
('7 A Q\ SCHEDULE
4
.~ DISTRIBUTION sm‘rsmenf‘rm—"mﬂ’fﬁ,-—-—J 1

Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

\ © HO30X |

20. ABSTRACT (Continue on reverse eide {f necessary and identily by dlock numberyy PracrtlcC system
the correctness of array accesses automatically before actuallly running pro-

grams has been implemented. The system does not require any modification to in-
put programs in the form of assertions or user interaction to guide proofs.
That is, the system generates assertions to prove, synthesizes loop 1nvariants,é’

and finally proves verification conditions without interation. A powerful proo
strategy is invented which makes the time to check programs almost linear to the
size of programs, yet the system can completely verify the correctness of array

f rams like tr rt and bina earch with processin eed o
Sﬁgﬁgs%i’fgy i’iﬁ%s g‘er ten seggngg. R three Kngreg line prggram exag’\pig i a{sq

DD ‘:2:",, 1473 €0iTION OF 1 NOV 68 18 OBSOLETE UNCLASSIFIED

S/N 0102-014-6601 | R —
| | SECURITY CLASSIFICATION OF THIS PAGE (When Date
. n— — . - i — - . ’ " ol ’

