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Abstract:

A practical system to check the correctness of array accesses automatically before actually

running programs has been implemented. The system does not require any modification to

input programs in the form of assertions or user interaction to guide proofs. That is, the

system generates assertions to prove, synthesizes loop invariants, and finally proves

verification conditions without interaction. A powerful proof strategy is invented which

makes the time to check programs almost linear to the size of programs, yet the system can

completely verify the correctness of array accesses of programs like tree sort and binary

search with processing speed of about fifty lines per ten seconds. A three hundred line

program example is also shown.

Keywords:

automatic program verification, semantic checker , array bound checker, induction iteration

method, automatic synthesis of loop invariants, linear solver, theorem prover, frame

problems.
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1. INTRODUCTION

This paper describes a system which checks correctness of array accesses

automatically without any inductive assertions or human interaction. For each array access

in the program a condition that the subbcript is greater than or equal to the lower bound

and a condition that the subscript is smaller than or equal to the upper bound are checked

arid the results indicating within the bound, out of bound, or undetermined are produced. It

can check ordinary programs at about fifty lines per ten seconds, and it shows linear time

complexity behavior.

It has been long discussed whether program verification will ever become

practical. The main argument against program verification is that it is very hard for a

programmer to write assertions about programs . Even if he can supply enough assertions,

he must have some knowledge about logic in order to prove the lemmas (or verification

conditions) obtained from the verifier.

However, there are some assertions about programs which must always be true

no matter what the programs do; and yet which cannot be checked for all cases. These

assertions include: integer values do not overflow , array subscripts are within range,

pointers do not fal l of I NIL, cells are not reclaimed if they are still pointed to, uninitialized

variables are not used.

Since these conditions cannot be completely checked, many compilers produce

dynamic checking code so that if the condition fails , then the program terminates with

proper diagnostics . These dynamic checking code sometimes take up much computation

time. It is better to have some checking so that unexpected overwriting of data will not

occur , but it is still very awkward that the computation stops because of error. Moreover ,

these errors can be traced back to some other errors in the program. If we can find out
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whether these conditions will be met or not before actually running the program, we can

benef it both by being able to generate efficient code and by being able to produce more

reliable programs by careful examination of errors in the programs. Similar techniques can

be used to detect semantically equivalent subexpressioris or redundant statements to do

more elaborate code movement optimization.

The system we have constructed runs fast enough to be used as a preprocessor

of a compiler. The system first creates logical assertions immediately before array

elements such that these assertions must be true whenever the control passes the

assertion in order for the access to be valid. These assertions are proved using similar

techniques as inductive assertion methods. If an array element lies inside a loop or after a

loop a loop invariant is synthesized. A theorem prover was created which has the decision

capabilities for a subset of arithmet ic formulas. We can use this prover to prove some valid

formu las , but we can also use it to generalize nonvalid formulas so tha t we can hypothesize

more general loop invariants.

Theoretical considerations on automatic synthesis of loop invariants have been

taken into account and a complete formula for loop invariants was obtained. We reduced

the problem of loop invariant synthesis to the computation of this formula. This new

approach of the synthesis of loop invariants will probab y give more firmer basis for the

automat ic generation of loop invariants in general purpose verifiers .

L A
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2. THEORETICAL BASIS.

The correctness of array accesses can be stated within the theoretical framework

of the weak correctness of programs. That is , we only have to show that the assertions

placed immediately before the array element stating that the subscript expressions are

within the defined bounds of the array hold, whenever control of the program comes to the

assertions.

The major problem for making an automatic verifier which does not require any

assertions by programmers is that the system must somehow invent loop invariants. Some

research has been conducted toward automating the generation of loop invariants(3,4,10]. 1

A common characteristic of all the research is that the method depends on heuristics. That

is the system proposes some assertion as the loop invariant arid let the prover decide if the

program is provable from the loop invariant. The difficulty is that if it does not work, it is

hard to see whether the program is not correct or the heuristics are wrong.

What we will do here instead is to obtain a complete formula for loop invariants.

Just like Taylor’s series expansion of functions will give a complete description of the

function even though they are not usually calculable and infinite chain of approximations

we obtain an infinite chain of approximations to the general loop invariants from this

formula.

Furthermore, if the assertion we want to prove is not a correct assertion we

cannot invent a loop invariant which is true at entry to the loop and which is always true

whenever control comes back to the top of the loop, and finally which implies the exit

condition.

So, what we can hope to obtain is a formula which is a loop invariant if and only

if the assertion is correct.

- . A ~~~~~~~~~~~ 

.
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This formula is similar to the weakest precondition of Dijkstra (2). What is

different here is that we are only concerned about weak correctness. The formula is

wlp( while C do S , Q ) — Yi,i~0~W(i,C,S,Q)
where

W(O,C,S,Q) - C ~ Q , and
W(i+1,C,S,Q) C ~ wlp(S,W(i,C,S,Q)) ,

for i~~0.

Wip stands for “weakest liberal precondition.” The definitions of the weakest

liberal precondition wlp(S , Q) is that if S is executed in the state satisfying wlp(S , Q) then

o is always true after termination of S, and no weaker condition satisfies such a condition.

Wi p for assignment and conditional statements are the same as those of the weakest

precondition.

It is easy to see that if wlp( while C do S , Q ) is true at entry to the program

then wlp( while C do S , Q ) is always true whenever control comes back to the beginning

of the loop. This is because

wlp( while C do S ,Q ) t~ C ~ wlp( S , wlp( while C do S , Q))
It is easy to see that

w lp( while C do S , Q ) A - C  ~ Q.

Also whenever the while statement terminates , Q is true at exit if and only if wlp(

while C do S ,Q ) is true at entry.

Thus, this is the desired formula.

Note that no heuristics are involved in writing out the loop invariant. The

problem is reduced to computing this formula, Yi.i~0~W(i,C,S,Q), and we can claim that

Vi,j�iaO~W(i,C,S,Q) is the j -tl, approximation in a sense that it may be a loop invariant and if

j- 1 st approximation is a loop invariant then j -th approximation is certainly a loop invariant.
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We will invent a procedure for checking whether j -th approximation is a loop

invariant or not. Let L(j ) stand for Vi.j�iaO~W(i,C,S,Q), the j -th approximation to the loop

invariant. Certainl y L(j) A — C D Q. In order to establish that L(j ) to be a loop invariant

we have to show that L(j) is true at entry and also

L(j) A C w{p(S , L(j)) .
But wlp(S,L(j)) = wlp(S , Yi.j~i�0~W(i,C,S,Q))

= Vi.j�i�ODwlp(S,W(i,C,S,Q)).
So C wlp(S , L(j))

= Yi.j �i�O~W(i+1,C,S,Q).
That is

L(j) A C ~ wtp(S,L(j))
is equivalent to

Vi.j�i�O~(W(i,C,S,Q) ~ W(i+1,C,S,Q)).

So all we have to prove is to prove these two equations. There is a nice thing

about this method and that is we can use all the results of computation up to j—i st

approxsmatson to compute the j -th approx,mation. The reason is it W(i,C,S,Q) was failed to

be proved then we can use this as an assumption for the next step and also we can back-

substitute this formula around the loop and we can obtain W(i+1,C,S,Q).

This fact suggests an iterative method of proving weak correctness of programs

without loop invariants. Because of this iterative nature we call it the “ induction iteration

method.” 

- - — — - - -— ~~~-~~~~ - --.~~~~~~~~~~ —— —~~~~~
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“Induction iteration method.”

Step 1) Create W(O,C,S,Q) — - C ~ Q.

Step 2) Try to prove W(i,C,S,Q) from
Vk.i-1�h�O.W(k,C,S,Q). If it
is true , the program is correct and
the proof is done.

Step 3) We have to see if W(IIC,S,Q) is true
at entry to the loop. Back-substitute
this W(i,C,S,Q) through the program
segment before the while statement.
If it can be shown to be false at entry,
the program is not correct and done.
If it cannot be shown to be true, the
algorithm halts indicating
undetermined.

Step 4) We will use W(i,C,S,Q) to prove the
next step . So we will create
Vk.i�tc�ODW(k,C,S,Q). Then we
will create W (i+1,C,S,Q) from
W(i,C,S,Q) by the formula
C ~ wlp(S,W(i,C,S,Q)).

Step 5) i ~~
- u -i. Go to step 2).

end of algorithm

This iteration may never terminate. Particularly if the program is not correct we

may very well not terminate. If we implement this algorithm, therefore , we have to put a

bound on the number of iterations which determines the limitation of the system. We have

to note here that the size of conditions , or the size of W(i,C,S,Q), grows more rapidl y than

linear to the size of the program S. The reason, more than anything else, is that because of

the rule

wlp(if B do SI else S2,R) — (B ~ wlp(S1,R)) A (‘ B ~ wlp(52,R)),

the condition more than doubles in the size each time it is back-substituted through 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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conditional statement. Since it is inevitable that the performance of a theorem prover is

exponential to the size of formula , it is very important to keep the size of the condition

WO,C,S,Q) to be constant if we want to make a system works in linear time. For this reason

we have developed a theorem prover which not only proves but also simplifies logical

expressions , and modified the semantic rules wlp. These practical considerations will be

discussed in the next two sections.
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3. Theorem Prover

The synthesis of loop invariants is on a firme r ground, but we need to create a

powerful theorem prover to make a practic al system. The domain we are particular l y

interested in is an integer domain and formu las we have to prove is inequality relations w ith

only universally quantified variables.

Before we prove these formulas all the arithmet ic expressions and relations are

converted to normal forms. Normal forms of arithmet ic expressions and relations have

been discusse d in many verification literature[5].

As we have discusse d in sec tio n 2, the main source of the exponential explosion

in mos t of the verifiers comes from the growth of conditions to be proved. The theoretical

limitations at least for the time being forbid us to create a theo rem prover which behaves

better than exponential time complexity. This suggests that instead of spending efforts in

creating clever algorithms to reduce the speed of theorem prover by a constant factor , we

should spend our efforts in creating simplification arid generalization methods which limit

the growth of conditions even though the size of the programs grow.

Since we are representing arithmetic expressions in normal forms , the size of

expressi ons do not grow very rapidly by substitution of assignment state ment. The

problems are created by conditional statements. The detail of algorithms are discussed in

the next section. In this sect ion we will discuss about powerful theorem prover which are

used to simplify conditions.

The basic algorithm of the theorem prover is King’s linear solver [ 5 3, which is

based on the Fourier-Motzkin method of linear programming. This class of prover is quite

suited for array bound checking since ar ray subscripts are in many cases linear 

~~~~~~~~~~~~~~~
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expressions. The prover generally proceeds to show unsatisfiabi lity of a set of linear

inequalities.

Suppose x+e l <= 0 , -x+e2 <= 0, 2*x+e3 <= 0 is the set we are going to show

unsatisfiable , that is x+e l <~~ 0 A —x+e2 <= 0 A 2*x+e3 <= 0 is false. The prover selects x

to be the variable eliminated from the set. Then we classify this set into three subsets

such that the coefficients of all the inequalities in the first set are positive, the coefficients

of all the inequalities in the second set are negative , arid each inequality in the third set

does not contai n x. We add each member of the first set and each member of the second

set such that terms of x will disappear. We may have to multiply each inequality by some

constant to adjust. If any one of them produces a contrad ictory formula the proof is

successful and the process terminates. Otherwise we replace the original set by the union

of the newly created set and the third subset of the original set. In this case el+e2 <= 0,

2*e 2+e3 <= 0 are the result of eliminating x. The procedure is iterated until we eliminate

all the variables and obtain false statement , in which case the set is unsatisfiable , and

ot herwise satisfiable. Suppose the set is satisfiable and the result of elimination is a linear

inequality e <= 0. Then - e + 1 <
~~ 0 is the equa tion which is just sufficient to give

unsa tis f iabi l ity. -e + 1 <= 0 is in a sense the most general assumption. At this moment the

sys tem proposes -e+1<=O to be the generalization of the lemma and tries to prove this

ins tead. If there are several inequalities then each of them is in turn chosen to be the

generalized lemma.

We will illustrate by an example how powerful these generalization techniques

are.

VAR A: ARRAY[l :100] OF T;
( 1 }

LOW ~- 1;
{ 2 }
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HIGH 4- 100 ;
{ 3 }

WHiLE LOW <= HIGH { 4 } DO
BEGIN
MIDDLE ~ 

( LOW + HIGH ) DIV 2 ;

~5 }
IF A[MIDDLE) <= K

THEN { 6 } HIGH 4- MIDDLE-I
ELSE { 7 ~ LOW ~ MIDDLE+1

END.

This is an essential part of a binary search algorithm which will be proved in

sec tion 5. One of the condition we have to show is here that 1 <~~ MIDDLE at { 5 }. Then

what we fi rst try to show is

W(O): LOW <= HIGH ~
1 <= (LOW+HIGH) DIV 2

or after simp lification

W(O): LOW < HIGH D 2 <= LOW+HIGH

at { 4 }.

Since this is not provable , we try to see if this is true when control first enters

the loop. We back-substitute W(0) through two stateme nts and we obtain true at ( 1 }

Now W(1) is formulated as

W( 1): LOW <.= HIGH ~(A [(LOW+HIGH) DIV 2) <= K ~
(LOW <= ((LOW+HIGH) DIV 2 -1) ~
2 <= LOW-1+(LOW+HIGH) DIV 2))A
(A[(LOW’HIGt-~

) DIV 2)’ K
((LOW+HIGH) DIV 2 +1 <= HIGH ~
2 <= (LOW iHIGH) DIV 2 +1+HIGH))

or W( 1): (LOW <= HIGH /~
A[(LOW+HIGH) DIV 2] <= 1< A

LOW ÷2 <= HIGH ~6 <= 3sLOW+HIGH) A

(LOW <~~ HIGH A
A[(LOW+HIGH) DIV 2 ]>  K A

LOW+1 <= HIGH

~ 2 <= LOW+3*HIGH)
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at { 4 } by back-subst ituting W(0) through the while body. W(Q) ~ W(1) is

( 2<— LOW+ HIGH A
LOW+2 <— HIGH A

A((LOW4HIGH) DIV 2) <= K ~6 <- 3*LOW+HIGH) A

( 2  <= LOW÷HIGH A

LOW+1 <= HIGH A
A[(LOW+HIGH) DIV 2] <= K ~2 <= LOW+3*HIGH )

The latter conjunct is valid, so W(O) ~ W (1) is simplified to

2 <= LOW+HIGH A
LOW+2 <= HIGH A

A[(LOW+HIGH) DIV 2] <= K D
6 <= 3*LOW+HIGH .

W (1) is eas ily shown to be true when control first enters the loop, but not itself provable.

Therefore , we compute W(2) by back-substituting W (1) around the loop. That will not be

provable again. This iteration many not terminate for some time. Now, let us look at the

same example using the generalization by the prover. W(0) is not valid when it is

computed. The computation is to show the unsatisfiab ility of

LOW <— HIGH and LOW+HIGH <— 1.

The elimination of HIGH generates

2*LOW- 1 < — 0

and if we have -LOW+1 <= 0 ,we can show the unsatisfiabi lity . We set up —LOW+1 < 0 as

the generalization of W(O) to be proved, This is shown to be true wI~wn control first enters

the loop. To see this is true when back-substituted around the loop we compute

wlp($,-LOWil <— 0) =

(A[MIDDLEJ <= K ‘
-LOW+ 1 <= 0)A

(A[MIODLE]>K ~-(LOW+HIGH) DIV 2 <- 0).

This is easily shown to be true from the assumptions

~ 

_ _
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-LOW4 1 <— 0 and LOW <= HIGH.

As you can see the generalization by the prover not only simplifies the problem

but also generalizes the approximations of loop invariants to enable proofs in many cases .

_ _ _  ~~~~~~~~~~~~~~
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4. SYSTEM CONFIGURATION

The system confi guration is straig ht forward closely following the implementation

suggested by the previous two sections. Only simplification not discussed is the treatment

of conditional statements.

4. 1. Extraction of Local Conditions

A program is scanned once in the order they are presented as a text. Whenever

an array element Afe ] is found , conditions lower _bound_of (A) <— e and e <

upper_bound_of(A) are created as the conditions of the innermost statement containing the

array element. We call these as bound assertions. If the statement is an assignment

statement or a conditional statement , the condition must be true immediately before the

statement. If the statement is a while statement , the condition must be true at entry and

for each subsequent iteration of the loop.

4. 2. Semantic Treatment of Statements.

Each bound assertion created for an array access is transformed as it is back—

substituted through the statements according to the semantic definitions of the statements.

These assertions are at the same time simplified using normalization and theorem prover.

The back-substitution process terminates either when there are no more statements in

front , the condition is proved to be true or false , or it hits a while statement. Since we

cannot iterate on a while statement indefinitely we return the result undetermined (U) if we

fail to prove or disprove within a certain number of iterations.

The semantic definitions of statements are in principle the weakest liberal

precondition rules, but we use some simplification as we transform conditions.

1) Statement lists,

L . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 14

If we have a statement list Si; S2 and suppose P is the assertion to prove after

S2, then we obtain precondition of P over S2, wlp(S2,P). If this precondition is true or false

or undetermined, we terminate the process and return the corresponding result. Otherwise

we compute the precondition of wlp(S2,P) over Si w lp(S1 , w(p(S2 , P)) and return that as

the result.

2) Assignment statement.

If we have an assignment to a simple var iable X ~- f(Y), then we return

Substitute(f(Y) , X , P) . Here Substitute( e , , P) is an expression obtained from P by

substituting all the occurrences of X by e. if the statement is an assignment to an array

element Afe) ~- f(Y), then Substitute(<A,e,f(Y)>,A,P) is returned, where <A,e,f(Y)> is an array

obtained from A by substituting e-th element by f(Y).

3) If statement.

In the case of the if-then-else statement

if C then 51 else S2, we compute both the precondition of P over Si , wlp(S1,P)

and the precondition of P over S2, wlp(S2,P). If any one of them is false or undetermined,

the process terminates immediately with the corresponding result as the result of back-

substitution. if wlp(S1,P) and wlp(S2,P) are both true then return true. If w lp(S1,P) is true

then we compute - C ~ wlp(S2,P) by the theorem prover arid return the generalized

formula. If wlp(92,P) is true then we compute C ~ wlp(S 1,P) by the theorem prover and

return the generalized formula . Otherwise we compute (C ~ wlp(S1,P)) A (-C D wlp(S2,P))

by the theorem prover and return the conjunction of generalized formula.

Next, if the statement is if-then statement , namely, if it is of the form if C then S;

then we compute precondition of P over the statement S , wlp(S , P). if wlp(S , P) is false

L A ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~—.~~~~~-.—- —,.-. -.--.- .- -.
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or undetermined, we terminate the computation and return the w lp(S,P) as the value of

back-substitution.

If wlp(S , P) is true, we return the generalized value of -C ~ P. Otherwise we

return the generalized value of (C ~~ wlp(S , P)) A (-C ~ P).

4) While statement.

The semantic definition of a while statement while C do S

relative to a post condition P can be defined in two cases depending on where P comes

from. The first case is that P is created as the precondition of S. Then

C~~ P

is the first approximation of the loop invariant. If P is the precondition of the statement

immediately af ter the while statement in a statement list , then

- C~~ P

is the first approximation of the loop invariant . Let these first approximations to be W(O).

We compute W(O) and if W(O) is true then we return true as the result of the back-

substitution. Otherwise we first back-substitute W (O) through the statements preceding the

while statement. If the result is undetermined or false we return it as the result.

Otherwise we create W(1) by the formula

C ~ wlp(S , W(O)).

We generalize W (O) ~ W (i) by the thecrem prover and repeat the similar process.

4. 3. Creation of Assumptions.

Since there are a number of array accesses , we want to use the results of

previ ous proofs so that we do not have to do similar deductions over and over again. For

this purpose we have a mechan ism for inserting assumptions in the program. All the array

_ _
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accesses are scanned in the order they appear in the text. As soon as ti’~e array bound

assertions are proved they are inserted j ust in front of the statement in which the array

access occurs . These assumptions are used for proofs of other array bound assertions.

Since the rest of the bound assertions are always created afte r these assumpt ions , most of

the assumptions are effectively used to prove or to simplif y back -substituted assertions.

4. 4. Analysis of Loops.

For each while statement while C do S a set of variables of S which may be

changed in the course of execution of S is collected. If we want to prove W(i) to be the

invariant of this while statement , we firs t see if any of the variables of W (i) appear in this

list of the changed variables. if they do not occur in this list , W(i) will not change by back-

substi tution and it is an invariant of the loop if W(i) is true at entry. We can save the

computation to back -substitute in some cases .

4. 5. Preferential Elimination of Variables.

As we generalize and prove conditions, the choice of var iables to eliminate is

important for various resons. One strategy may be to try to choose a variable which has

only one member in the set of positive coefficient set or in the negative coefficient set.

This is because we do not want to explode the number of inequalities. In this system what

we do is to choose variables which might be changed in the course of the execution of the

while body. This strategy is useful for generalization because if we can eliminate variables

which may be changed totally fr om the condition, then we can use the strategy described in

4.4. and we no longer have to back-substitute the while body to determine the invariance

of the condition.

~ --,.--.—— --~~~~~~~~~~ .~~~~.



IMPLEMENTATION OF AN ARRAY BOUND CHECKER Page 17

5. EXAMPLES

The following binary search program has been proved that all the array accesses

are within bounds. The proof required 2 CPU seconds.

TYPE TABLEITARRAY[1:100) OF INTEGER;
PROCEDURE BINARYSEARCH(V~AR A:TABLE

;KEY:INTEGER;VAR MIDDLE:INTEGER);

VAR LOW,HIGH: iNTEGER;

BEGIN
{ 1 )

HIGH := 100;
( 2 )

LOW 1;
WHILE LOW � HIGH { 3 } DO

BEGIN
MIDDLE :— (LOW÷HJGH) DIV 2;
( 4 )

IF A(MIDDLE]=KEY
THEN { 5 J LOW:=+flGH+1

ELSE IF A[MIODLE] > KEY
THEN { 6 } HIGH := MIDDLE-i

ELSE { 7 LOW :— MIDDLE+i
END;
( 8 )

IF A(MIDDLE} ,’ KEY THEN MIDDLE := 0
END;

There are three accesses of A, two within the loop and one outside of the loop.

We are going to show how the system proves that the array accesses are within the

ranges. The proofs are not trivial , since MIDDLE does not change monotonically. Also there

is an integer division arid we have to make sure that the right truncation is performed when

we normalize expressions. We also have to prove that MIDDLE keeps within range even

after the end of the execution of while statement. The system searches an array element

textually from the beginning of the program. It first finds A[MIDDLE] in the statement IF

A[M1ODLE]—KEY THEN ... . It crea tes an asser tion

A ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -~~~~~~~~
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1 - MIDDLE <~~O

at location { 4 } to insure the correctness of the array access relative to the

lower bound of the array A. This assertion is back-subst ituted and becomes
1 -(HIGH + LOW ) D IV2 <~~0at location ( 3 }. This is normalized to
2 - HIGH - LOW <- 0.

Since the loop condition ( condition of the while statement ) is

-HIGH + LOW <— 0,
-HIGH + LOW <— 0 ~ 2 -HIGH -LOW <- 0

is proposed as the first approximation of the loop invariant. The theorem prover

generalizes it to

1 -LOW <— O.

To show that this condition is true when control first enters the while statement this

condition is back-substituted to { 2 }. At location ( 2 } it becomes

1- 1 < = O

and it is proved. For the proof of the inductive hypothesis,

1 - LOW <
~~ 0

is assumed to be true at ( 3 ) . This is back-substituted through the loop body. Since

there is a three way branch, three subproblems are created corresponding to each branch.

A path through branch { 5 ) creates

A[M1DDLE]~KEY D -HIGH < 0.

This has to be proved by the inductive hypothesis

1-LOW <— O

and the loop condition

- HIGH + LOW <— O

at loop entry (3  }. These two assumption s imply 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .-~~~~~~~~ ~~~~~~ , -.---.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~
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1 - H IGH s~~0

and clearly

- HIGH <~~O.

The second subgoal is created by the path through location { 6 } and, since no modification

is done, it is clearl y an invariant through this path. The final subgoal is created by the path

through { 7 ). It is

- MIDDLE <~~ 0.

at { 4 } and

- LOW - HIGH <= 0

at { 3 }. This is again proved from the inductive hypothesis and the loop invariant.

To prove that MIDDLE is smaller than the upper bound of the array A,

MIDDLE <= 100

is created and the first approximation to the loop invariant at { 3 } becomes

HIGH - 100 <= 0,

using the generalization.

The three subgoals are

1) HIGH - 100 <= 0
2) HIGH + LOW <~~ 203
3) HIGH - 100 <~~ 0.

1) and 3) are the same as by the inductive hypothesis. 2) can be shown to be true by the

inductive hypothesis and the loop invariant.

At this point two assumptions , 1 - MIDDLE <~~ 0 and -100 + MIDDLE <— 0 , are

created and stored at { 4 }.

The second array access is proved to be within the bounds using these

assumptions. 

~~~~~~~~~~~ ~~~~~~~~~~~ 
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The third array access is immediately after the loop. All we have to do is to

show that

- (-HIGH+LOW <= 0) D 0 <= MIDDLE <= 100

is true at the loop head every time control passes this location. This can be proved

similarly.

The following is the output from the system. The structure of the program is essentially

maintained, and the array elements have modified outputs indicating the results of checking.

The format is

<array name> ( <check result> $
<subscript expression> S <check result> ]

where <check result> is any one of 1, 0, U. I means the subscript is within range, 0 means

the subscript is out of range, and U means that the system cannot determine either way.

Typical output looks like

A(I$eSU] + B[1$e+f$O]

which means e is greater than or equal to the lower bound of A, but it is not clear whether

e is less than or equal to the upper bound of A. e+f is greater than or equal to the lower

bound of B, but it is greater than the upper bound of B.

*5*5*

TYPE TABLE=ARRAY( 1:100] OF INTEGER;

PROCEDURE BINARYSEARCH( VAR A:TABLE
;KEY:INTEGER;VAR MIDDLE:INTEGER);

VA R LOW,HIGH:INTEGER;
BEGIN

HIGH := 100;
LOW :~~ 1;
WHILE -HIGI-f+LOW<= 0 00

BEGIN
MIDDLE := HIGH+LOW DIV 2;
IF A(I$MIDDLE$I]~KEY

THEN LOW := 1+HIGH 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _  _ _ _ _ _ _ _
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ELSE
IF 1+KEY-A(ISMIDDLE8I]<~0

THEN HIGH :— -1+MIDDLE .

ELSE LOW :~ 1+MIDDLE
END;

IF ~‘A(I$MIDDLE$I)—KEY
THEN MIDDLE :— 0

END;

TIME: 2 CPU SECS

The next example is the tree sort. This is to show that some of the more difficult

arithmetic operations like multiplication by a constant can be handled proper ly. It is not

very difficult for a person to observe that all the array accesses by the subscript J are

done correctly, since in the inner most loop J is increasing monotonically and the loop

condition is J <. N. However , among the array accesses with subscript I the second and

the third array accesses are not trivial. Even for a human it needs a clear understanding of

how this program works arid how 1 and J are used. Once we know that J — 2*1 at the loop

head, we knew that since J is moriotonically increasing so is I. I <— 100 is maintained

because at the loop head the value of I is either the same as the value of J ( or 1 greater

than J if J < N end A[JJ < A(J+1] ) of the previous iteration and .t that time J is less than or

equal to N. This is informal human reasoning. The array bound checker does not use

similar reasoning, but It manages to prove this by systematic Inductive iteration and

generalization by the prover. Another thing that needs mentioning is that this program was

checked with 16 CPU seconds , which is within the usable range, especially considering that

the system is written in LISP 1.6.

VAR A:ARRAY(l:100] OF 1;
K,I,J,N:LNTEGER;

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~ _
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COPY ,WORK:T;
BEGIN

K := 100 DLV 2;
WHILE 2-K<= 0 DO

BEGIN
I :~ K;
N :~ 100;
COPY := A(I$ISI];
J : 2*1;
WHILE J-N<= 0 DO

BEGIN
IF 1+J-N<=~O

THEN IF 1+A[ISJ$I]-A(I$1+J$L]<~0
THEN J :~ 1+J;

IF 1+COPY -A[I$J8I]<~ 0THEN BEGIN
A(ISI$I] :~ A[ISJSI);
I :=
J :~ 2*1

END ELSE J :~ N+1
END;

A~1SISI] := COPY;
K : - 1+K

END;
K :~ 100;
WHILE 2-K<~ 0 DO

BEGIN
I ;= 1;
N :~ K;
COPY A(I$I8l];
J := 2*1;
WHiLE J-N<~ 0 DO

BEGIN
IF 1+J-N<~~O

THEN IF 1+A[I$J$I]-A(I$1+J$I)< 0
THEN J :— 1+J;

IF 1+COPY-A[I$J$I]< 0
THEN BEGIN

A~I$I$I3 : A~l$JSIj;
I :~ J;.
J := 2*1

END ELSE J : N+1
END;

A[ISI8I] :~ COPY;
WORK :~ A(I$1$I];
A(18181] := A(I$K$I];
A(I$K$I] :— WORK;
K : -1+1<

_________ --.--———.——— .—.--—..- —~—.. - - -..—- —-—- ... -.-— .— .~~~ -~~~~ . ,——.——. —-— ——.- .--.———-- - .... -.,..— .-
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ENI)
END

TIME: 16 CPU SECS

This next example is almost identical to the previous program except the

conditional stateme nt has now been changed from

IF J<N THEN IF A[J J <A[ J + 1]  THEN J J+1 to
IF J<N A A[J]<A[J+1] THEN J := J+L

PASCAL eva luates logical expression in parallel so J+ 1 may become greater than N. Thus ,

the error has been cor rt~.t~,’ detected and th s  is a va luable information to the programmer.

VA R A:A RPAYjI : IOO ] cr T:

K, I ,J,N INTL GE P
COPY,WORK:T ;

BEGIN
K :~~ 100 DIV 2;
WHILE 2-~K~= 0 DO

BEGIN
I := K;
N := 100;
COPY ~[ISI~fl];
J 2*1;
WHILE i N.: 0 DO

BEGIN
IF 1 ÷J~ N• .~ 0 ‘~ ~;4 lSJSI]-A [I$1+J~U)<= 0

T~-U1N j  :~ I ~~.;

IF 1 .,CO1’Y •/ ~[lSi8!1~= 0
TI~l I 1J  ~

/4~SI8I] := A~ISJ8I];

(NI) (~ SF I : N+ I
F. I J [) ;

A[ ISI8I] : COPY ,
K :~~

ENI);
K :~~ 100;
WHILE 2- K<’~ 0 DO

~ ~~_- - - —-
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BEGIN
I :~~ 1;

COPY := A~I81SI);
J := 2*I;
WHILE J-N<= 0 DO

BEGIN
IF 1+J-N~ = 0 A 1+A[ISJSI]-A[IS1+JSU]< = 0

THEN J := 1+J;
IF 1+COPY-AflSJ$I]<= 0

THEN BEGIN
A[ISISI) := A[ISJSI];
1 : J;
J :~ 2*1

ENI) ELSE J :~ N+1
END;

A[ISISI] :~ COPY;
WORK A[ISI8I];
A[IS 181] := A[ISKSI];
A~ISKSI] :~ WORK;
K:= -1+K

END
END

TiME: 20 CPU SEU’S

This final example is taken from lex ical anal yzer of PASCAL compiler . The

program has been modified from the original program by taking out several repea t

sta tements , so it is not a correct program fr om the standpoint of lexical analyzer

correctness . However , we have been able to put this program through the checker without

any intermediate assistance. The input is 300 linns of code including some comments . It

takes 45 seconds to process . The system actuall y found an error at location ( 1 }.

Whenever buflen exceeds 256, the system prints out error messages , but it does not reset

buf ten. Therefore , the following array element BUFI~buflen) will be out of bound. The

system cannot check the array access at location { 2 ) , because butiridex is a global

variab le. This is the kind of examples we need some ass istance from the programmer

stating the behavior of global variables and paramete rs .
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TYPE STnode=RECORD ctindex:INTEGER;
length:subnamelen END;

TYPE Trnenode=RECORD ctindex:INTEGER;
sti ridex: INTEGER;
left:t lreenode;
right:tTreenode END;

TYPE Tree=Ilreenode;

TYPE word~rrinteger;
I

TYPE CTnode=word;

TYPE pwords=ARPAY[ l:3] OF word;

VA R SI:A RRAY [ i:50) OF STnode;
CT:A PRAY [1:5O] OF CTnode;
To pt r ee :T ree;
P:Tree;
curnamc:A RRAY~i :15) OF CHAR;
cur ie n:subnamelen;
Cl4:CH Af?;
BUF:ARRAY[ I :255] OF CHAR;
LEIT CPs ,LETTERsORDIG[TS:SETOFCHAR;
f irs t ,eofinput:1300LEAN;
i :subnamelen;
a:pwords;

FUNCT ION ROUNDUP(CONST num:integer;denom:iriteger)
:iriteger;

VAR q:integer;
BEGIN

g :~= rium DiV deriom;
IF slum MOD denom=O

THEN ROUNDUP :~ q
ELSE ROUNDUP := 1+q;

END;

PROCE DUPE COPYL INE(CONST DUMMY:ghost);
VAR :CHAR;
BEGIN
IF NOT(EOF(INPUT))

THEN BEGIN
but len := 0;
Wl 1ILE NOT(EOLN(INPUT)) DO

BEGIN
READ(c);

_ _ _  ~~~~~~~~~~~~~
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buflen := 1+buflen;
IF 256-buflen<= 0

THEN WRITELN(TTY , ERRORI);
{ 1 }

BUF[ISbuflenSU) :=
END;

READLN(DUMMY);
WR ITELN(TTY);
huf index :~ 0;

ENI)
ELSE eofinput := TRUE;

ENI);

PROCEDURE NEXTCH(CONST DUMMY:ghost);
BEGIN

buf index := 1+ buf index;
IF 1—but incIex~bufIen<= 0

THEN IF bufirsdex-buflen= 1
THEN CH := BLANK

ELSE BEGIN
COPYLINE(DUMMY);
buhndex := 1;
CH : BUF(I$18I];

ENI)
{ 2 }

ELSE CH := BUF[U8bufindex$U];
END;

PROCEDURE GETNAME(CONST DUMMY:ghost);
BEGIN

curlen :=~ 1;
curname{ISISI] := CH;
NCXTCH(DUMMY)~WHILE INSET(CH,LETTERSORDIGITS) DO

BEGIN
IF -14+cur len<= 0

THI N BEGIN
curlen := 1+curfen;
curname[IScurlen$I] := CH

END;
NEXTCH(DUMMY);

ENI);
END;

PROCEDURE PACKSTRING( VAR a:pwords; VAR len:subnarnelen);
VAR k,shift:integer;
BEGIN
i :~ 0; 

—~~~~~~ --. -,~~~~.- ~~~~ -— ~———~~~—.~~
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wordindex := 0;
shift := 0;
WHILE 1+i-curlen~~ 0 00

BEGIN
IF shift~O

THEN BEGIN
wordir idex := 1+wordindex;
a[ISwordindex8U) := 0;
shif t := 1;

END;
i := 1+i;
IF shif t~ B1OOOOOOOOOO

THEN BEGIN
k : .-BI000000000*B40+

B I 000000000*ORD(curname[I$i$U]);
k := 2*k;

END
ELSE k := -B~iO*shift+

shif t*ORD(curname[ISi$U]);
a[U8wordindex8U] := k+a[U8wordindex8U];
shift B100*shift;

END;
len : curlen;

END;

PROCEDURE FINI)I’LACE( VAR a:pwords;len:subnamelen;
VAR first :booiean;Top:Tree;VAR pintotree:Tree);

VAR P:Tree;
L:subnamelen;
ct lessa ,ct lessO ,eq:boolean;
wordinddnteger;

BEGIN
IF Top=NIL

THEN BEGIN
first : TRUE;

ENI)
ELSE BEGIN

BEGIN
L := ST(USTop T.stindex8Uj.length;
IF L=len

THEN BEGIN
eq :~ TRUE;
k := ROUNDUP(L,6);
wordind :~ 1;
WHILE wordind-k< Oneq—TRUE DO

BEGIN
IF ‘CT(U$-l+wordind+

Topt.ctindox8U]”

_ _ _  -~~~~~~~~~~ .-~~~~. - -—~~~~~~-. --- .
~~~ 
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a[I$wordind~U)
THEN eq :~ FALSE

ELSE wordind := 1+wordind;
END;

IF eq~TRUE
THEN BEGIN

first := FALSE;
pintotree :~ lop;

END
ELSE BEGIN

ctlessa:=1—a[U8wordind$U]+
CT[US-1+wordind+
Top1.ctindex8U]<~ 0;

ct lessO :~ 1+CT[U8-1+
wordind+Topt.ctindex8U]<~O;
IF ‘ctless0~ 1+

a(U8wordindSU]<~ 0THEN ct less a := ctless0;
IF ctlessa

THEN BEGIN
P := Topt.right;
FJNDPLACE(a,ten,

f irst ,P,pintotree);
IF Topt.right~ NIL

THEN Topt.right:”~pintotree;
END

ELSE BEGIN
p := TopI.left;
FINDPLACE(a,len,

first ,P,pintotree);
IF Topl.left=NIL

THEN Toptleft
:~pintotree;

END;
END;

END
ELSE IF I -Ien+L<~ 0THEN BEGIN

P :~ Topt.right;
FINDF’LACE(a ,len,firs t ,

P,pintotree);
IF Topt.right=NIL

THEN Topt .right:~pintotree;
END

ELSE BEGIN
P : Topt.lef I;
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FINDPLACE(a,len,first ,P,
pintotree);

IF TopI.left=NIL
THEN Topt.left :~pintotree;

END;
END;

END;
END;

PROCEDURE INITNODES( VAR a:pwords;len:subnamelen;pnode:Tree);
BEGIN

BEGIN
IF 51-availCT~= 0

THEN WRITELN4TTY , ERROR2);
IF 51•availST<= 0

THEN WRITELN(TTY , ERROR3);
pnoclet.ctindex :~ availCT;
pnodel.ctindex := availSl;
pnodelieft :~ NIL;
pnodei.right := NIL;

END;
k :— ROUNDUP(len,6);
BEGIN

ST[U8avaiISTSU].length := len;
ST [U8availST$UJ.ctindex :~ availCT;

END;
avai lST := 1+availST;
avai lCT :~ avai lCT+k;

END;

BEGIN
availSl := 1;
avai lCT := 1;
Toptree := NIL;
eof input := FALSE;
WRITELN~TTY , TITLE);
W RITELN(TTY);
C0PYLINE(DUMMY);
GETNAk4E( DUMMY);
WHILE NOT(eof input) DO

BEGIN
PACKSTRING(a , curlen);
FINDPLACE(a , curlen , first , Toptree
IF Toptree.~NIL

THEN Toptree :— P;
IF first

THEN BEGIN
INITNODES(a , curlen , 
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WRITE(TTY ,FIRSTUSE);
END

ELSE WRITE(TTY , REPEATED);
WRITELN(TTV);
GETNAME(DUMMY)

END;
END

TIME: 45 CPU SECS

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6. CONCLUSION.

There are several limitations to what the system can do.

One class of problems which this system cannot do is to check the correctness of

array accesses in a loop if the correctness depends on some data whose values are set

before the execution of the loop. One good example is a very widely used class of

techniques to speed up the sequential search by storing some exceptional data at the end

of the array so that the comparison loop always terminates. The program is

VAR A:ARRAY [1:100) OF T;
BEGIN
A(100) ~

- KEY;
1 ~- 1;
WI-IILE A[I] > KEY DO

14- 1÷1;
END.

The while loop terminates because A(100] is the same as KEY and that will make the while

condition false. Using our methods we will not be able to prove this , since what we have to

prove as the induction step is

I < 100 A A[I] > KEY ~ I <= 99.

Conventional program verifiers using Floyd-Hoare logic system have the similar problem.

That is even though a ioop does not modif y some portion of the data we have to declare

these properties as the loop invariant . The first author noticed this problem [7] and has

generally called it a “ frame problem of inductive assertion method “, borrowing terminology

from similar problems in artificial intelligence [6]. The solution to this problem is to extend

the rules for loops so that properties of data can influence the proofs inside the while

statements and after the while statements. Using Hoare’s notation the new rule is

_______________________________ -.~~ -~~~~~ —-— —~~ 
_ _
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P(x;v) ~ I(x;v),
P(x;v) A I(x ;v’) A C(x;v ’) { S(x; v ’) } I(x;v ’) ,
P(x;v) A I(x;v ’) A -C(x;v’) ~ Q(x;v ’)

P(x;v) ~ while C(x;v) do S(x;v) } Q(x;v)

where x is a set of variables which do not change their values within S(x;v) , v is a set of

variables which may change their values within S(x;v) , and v’ is a set of totally new

variables corresponding to v. The correctness and implementation of this and other frame

problem tree rules f or various syntax constructs are discussed in (7] and (8).

We can use this technique to prove the previousl y unsuccessful problem of linear

search . We failed to prove

I <= 100 A A[I] > KEY ~ I <~~ 99

at the loop head, but if we replace I by 1’ and back-substitute further to the front, we

obtain

I’<=lOO n <A ,100,KEY>[I’]> KEY ~ I’<=99

and which is now a valid statement for which we can show the correctness . Here

<A ,100,KEY> denotes an array obtained from A by replacing 4(100) by KEY.

The second problem is that the generalization capabilities of the system are not

good enough for many problems. Ultimately we must ask the user to give sonic assertions

or on failure the system ought to indicate the reason for the failure and ask the guidance of

the user .

We can say about the same thing for procedure and function calls and their

definitions. When we are checking procedure definitions, conditions are back -subst ituted in

the program just as we treat main programs. However , if we come to the beginning of the

procedure body we can do two thin gs. Either we say that the conditions cannot be
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determined and report to the programmer the reason of failure , or try to check that these

conditions are true at each ca lling occurrence. We can also use induction iteration method

to synt hesize entry conditions for recursive programs. Currently we take the former

approach but eventually we either have to ask programmers to put in a modest number of

entry and exit assertions and also try to check all calling occurrences to see if the

conditions are right.

The development and the availability of this kind of system will change

programming language design just as verification and formal semantics have created a great

effects on the programming language design. We think we wi ll see a great number of

features which enhance security and reliability wi ll be put into programming systems , so

that these properties can be checked at compile time and create more reliable programs

without losing the run-time efficiency

Because the time complexity is good and the size of a program it can handle is

quite substantial , we believe that the production version of this system soon will be

avai lable to the public and verification will be directly benefi tting the computing community.
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