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This memorandum describes progress in the development of a set of computer
programs which solve the equations of gas/particle flow through an axisymmetric
nozzle. Two programs have been written to solve the equations in the transonic
throat region of the nozzle. The first treats the two-phase fluid as a heavy
perfect gas with modified isentropic exponent and molecular weight, and solves
the equations of isentropic transonic flow. An initial flow field configuration
is obtained for input to the second program, which incorporates non-equilibrium

effects of the gas/particle mixture.

The programs provide accurate initial line data for starting a supersomnic
calculation, and will be used as input to a third program, soon to be written,

for solving the two-phase flow equations in the supersonic region of the nozzle.
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Further copies of this report can be obtained from the Defence Research
Information Centre, Station Square House, St. Mary Cray, Orpington, Kent BR5 3RE.
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1 INTRODUCTION

Accurate prediction of the properties of a rocket exhaust plume necessi-
tates detailed analyses of the nozzle and plume flow fields. The Rocket Exhaust
Plume program (REP)! and the Base Flow program (BAFL)Z, which calculate the
structure of the exterral (plume) flow field, incorporate the latest develop-
ments in gas dynamics and chemical kinetics, and are the most advanced models
available. However, the accuracy of the predictions depends upon the accuracy
of the input nozzle exit parameters, and the programs currently used at the RPE
for calculating the flow from the combustion chamber to the nozzle exit plane3,
while able to take account of non-equilibrium chemical reactions, can treat only

one-dimensional, gas phase flow.

Many investigators (e.g. Ref. 5) have shown that the flow in a typical
rocket nozzle is far from one-dimensional, and it has also been shown (e.g.
Ref. 6) that condensed metal oxides in the rocket exhaust nozzle can signifi-
cantly affect the performance of the motor. These factors must be considered
when the nozzle calculations are performed, and the ultimate aim of current work
is to develop a set of computer programs to solve the equations governing the

flow of a gas/particle mixture through an axisymmetric rocket exhaust nozzle.

In the solving of the equations for flow through a convergent/divergent
nozzle, many mathematical difficulties are encountered in the region of transi-
tion from subsonic to supersonic flow. Although the transition is smooth the
properties in the two regions are quite different. In the subsonic region the
governing equations are elliptic, whereas in the supersonic region they are
hyperbolic. The supersonic flow field may be solved by the method of character-
istics, but accurate initial line data are needed to start the calculation.
Since the flow near the nozzle throat is far from one-dimensional, the sonic
velocity at the wall being reached well upstream of the throat, while that at
the axis is reached downstream of the throat, a method of solution which
describes the properties of both subsonic and supersonic flow segments must be
devised. This memorandum describes the method adopted for solving the flow in

this transonic throat region.

2 TRANSONIC TWO-PHASE FLOW IN AXISYMMETRIC NOZZLES

"To solve the equations governing the transonic flow of a gas-particle

mixture is an extremely formidable task" - KliegelS.

Of the many approaches which have been made to the solution of the two-

phase flow problem", the earliest was to treat the nozzle expansion processes as
P
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uncoupled - that is, the particle velocity and thermal lags were considered to
be independent of each other, and their effects on the gas properties were
ignored. More recently, Kliegel and Nickerson’ have developed the method of
constant fractional lag, in which the ratio of the gas to particle velocities
and the ratio of the temperatures are represented by constants. Their program
is the most widely used, but the method of solution is restricted to nozzles of

a particular shape, and is inapplicable to nozzles of sharp wall curvature.

It was decided to use the technique employed by Regan, Thompson and
Hoglund?®, as this leads to a fully coupled solution, and is valid for a much
wider range of nozzle shapes. The method proceeds in two stages, and a separate

computer program has been written for each.

In the first stage, the gas/particle mixture is assumed to be in equili-
brium - that is, there are no particle heat or velocity lags, and the two-phase

fluid is treated as a heavy perfect gas with modified molecular weight
m o= m(l+¢) (2.1)
based on the particle-to-gas mass ratio ¢ , and effective isentropic exponent
Yo=Y (14 0)/ 4+ Y4 (2.2)

where

= Cp_/C .
de ¢ pp/ Py
The equations for isentropic transonic flow are solved, and initial flow
field data obtained for input to the second stage. The equilibrium program may
be used separately to provide starting values for a supersonic solution in the
absence of particles, or when the non-equilibrium particle effects can be

ignored.

In the second program, the non-equilibrium effects of the two-phase fluid
are incorporated. The partial differential equations governing the gas/particle
flow are rewritten as algebraic replacement equations and, using the results

from the initial stage as a first approximation, are solved iteratively.




3 STAGE 1: TRANSONIC EQUILIBRIUM PARTICLE/GAS MIXTURE PROGRAM (TEPGAS)

There are several recognised methods for solving the equations of transonic,
axisymmetric flow, but most are applicable only to nozzles of very restricted
geometry. One method is to reduce the problem to that of solving a set of
ordinary differential equations by expanding the flow variables in inverse
power series in the radius of curvature of the throat (Ref. 8 and Appendix A).
However, this method is limited to nozzles with a throat wall radius of curva-
ture, R , greater than twice the throat radius, r, (e.g. Fig. 1). This can
be overcome by using an inverse approach®, in which the boundary geometry is not
specified but is obtained from the solution of a prescribed velocity distribu-
tion along a suitable reference line. The velocity is then modified until a
streamline of the flow approximates to the shape of the nozzle. This method
depends on the ability to specify, a priori, the velocity distribution which
yields the desired nozzle boundary. It is useful for nozzles whose geometry can
be defined by the radius of curvature of the throat, but is unlikely to give

accurate results for nozzles of complicated geometry.

The method adopted was that described by Stow!®, which can be applied to a
nozzle of general geometry. It is based on the "streamline curvature' method

used for subsonic flows.

3.1 Governing equations

The equations governing the steady axisymmetric motion of an inviscid
compressible fluid are, in the coordinates of Fig. 1:
continuity

-g;(rpu)+g—r-(rr>V)=0 s (3.1)

conservation of momentum

Ju Ju 1 oP
—_— + — = - — — .
U o > ar p 90X g
IV v 1 0P
v’ Yoo o =

Equation (3.1) implies the existence of a stream function ¢ satisfying




. B ., RSN
o ropu . T rev
or
r
Y (x,xr) = J (r o u)x-const dr + const ’ (3.4)

By introducing the speed of sound, defined by c = (31’/2);))]'/2 , using the

relationship v = u tan 6 , and the identity

2 (
sec” 6 | dP _ .2 | 3 tan 6 tan 6 | 9P
sc 6 [3;])( g [ L2 ]w blamo | 2 ]w (3.5)

Eliminating (BP/ax)w between equations (3.5) and (3.6) gives the radial

equilibrium equation:

2 2
1-—-—sec26 1 = --u2 1--2- BB R
2 p or 2 ox
c c ]
+2t o 9 tan 6 + tanze (3.7)

relating the static pressure field to the streamline geometry. The term

[atme

= ] is referred to as the "curvature" of a streamline.
v

*Subscripts § , r , x refer to differentiation along a line of constant ¢ , r
or X .




3.2 Method of solution

Equation (3.7) is solved numerically in an iterative manner. The velocity
field and the shape of the streamlines are approximated from either a series or
a one-dimensional solution (see Appendix A). Since all other quantities are
known, equation (3.7) then becomes an ordinary differential equation in the
static pressure, and if an approximation is made to the mid-radial pressure, it
may be integrated to the wall and axis. The mass flux is determined from
equation (3.4) and the mid-radial pressure is changed until the calculated mass
flux agrees with the true mass flux (see Appendix B). All the axial stations
are solved in this way, and the other flow variables are evaluated from isen-
tropic relations. A new approximation to the streamline geometry is made and

the calculation is repeated until the solution converges.

Equation (3.7) has an indeterminacy at a sonic point. If the values of the
calculated streamline slope aﬁd curvature were exact the equation would have a
zero on both sides and the indeterminacy could be removed. However, since the
procedure is iterative, only approximate values of the slope and curvature are
known, and the equation has a singularity at such a point. This problem is
overcome by using equation (3.5) in the first few iterations to find the approx-
imate locations of the sonic points, the term (SP/ax)w being determined from
the solution in the previous iteration. Equation (3.5) is then used close to

the sonic points while equation (3.7) is used elsewhere.

In practice relaxed values of the calculated slope and curvature must be

used in certain cases to ensure convergence. For example,

n n-1 .
0 = tan 0 + a on factor x
(tan )used ( )used relaxati

n n=1
(tan “)found (tan ”)used ] *

The relaxation factor depends upon the nozzle geometry and the closeness of the
initial estimate to the final solution, as does the number of steps required,
convergence being assumed when the change in the flow parameters between

successive iterations is smaller than some desired degree of accuracy.




4 STAGE 2: TRANSONIC GAS/PARTICLE FLOW PROGRAM (TGPF)

4.1 Governing equations

The equations governing the flow of an ideal gas/particle mixture through

an axisymmetric nozzle are®:

gas phase and particle phase continuity equations*

1
u + —(r = 0 4o1)
(pg g)x - ( Ry vg)r (
(b,u) + =(rp v) =0 (4.2)
P PX r P PTIT X
mixture axial and radial momentum equations
u  + +P +F - = 0 4.3
°g ["g gl "gr] Uit i ik o
P u v +v v +P +Fp (v.-v) =0 (4.4)
8 [ g8 8 3,] e B TR z
mixture energy equation
u P v P -YRT [ll p *£ Y. 0 ]
S il BL &S " ae
-F_ (y =1 [(u -u)2+(v-v)2+(G/F)(T-T)] - SRR
P g P g P P g
gas phase equation of state
P = RT 4.6
g 08 g ’ ( )
particle drag equations
+v u = F -u 4.7
b S b b iy e
v ¥ v = F(v =-v 4.8
% TR B ¥ (vg = vp) 8 Sainic

*Subscripts x and r denote differentiation w.r.t x or r .
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particle heat transfer equation

where

and

T #v T = =@ (T =71)C 4.9
i o e TN T Ay o
Lo TV O
Fs—-S—P7 (4.10)
2m T
P
3u g Cp
G B el gl h (4.11)
2 Pr
m T
P P

The drag and heat transfer factors, fp and gp , vary with local flow

field properties in accordance with empirical relationships. The empirical

formulae used are discussed in Appendix C.

4.2 Basic assumptions

The following basic assumptions are made in deriving equations (4.1) to

(4.9) (Ref. 9):

1)

2)

3)

4)

5)

6)

7)

8)

there are no mass or energy losses from the system;

the gas is inviscid except for its interactions with the condensed

particles;
the volume occupied by the condensed particles is negligible;

the thermal (Brownian) motion of the particles does not contribute to

the pressure of the system;
the condensed particles do not interact directly;

the drag and heat transfer characteristics of an actual shape and
size distribution of particles can be represented by spherical

particles of a single size;
the internal temperature of the particles is uniform;

energy exchange between the gas and the particles is controlled only

by convection;

11




9) the only forces on the particles are viscous drag forces;

10) there is no mass transfer between the gas and the condensed phase

during the nozzle expansion;

11) the particles do not undergo a phase change in the region of the

calculation;

12) the gas phase is thermally and calorically perfect and the flow is

chemically frozen.

The possibility of eliminating some of these limitations is discussed in

Section 6.

4.3 Method of solution

An initial flow field is computed from the TEPGAS program using a modified
molecular weight (see equation (2.1)) and a modified isentropic exponent (see
equation (2.2)). The gas and particle velocities and temperatures are then
equated to the TEPGAS values, and the gas and particle densities are determined
from knowledge of the mixture density and particle loading. It is assumed that
the static pressure field and the locations of the gas streamlines remain
constant at the TEPGAS values, and that the gas velocity and density gradients

do not vary from their initial values.

The partial differential equations (4.3) to (4.9), which are quasi-linear
and of first order, are rewritten in finite difference form as linear algebraic
equations, and used to derive a set of algebraic replacement equations in which
a dependent variable is isolated on the left hand side of the equation and its

value determined numerically from the right.

The equations are then solved iteratively by performing the following

sequence of operations.

1) By rewriting equations (4.7) and (4.8), the particle velocities are

F [}1 (F+v )=-v_u ]
2 Py g P,

calculated from

P (F+u ) F+v )=-u v
[ Py Py Py Py ]
F [:v (F+u )-u v ‘]
4 Py g Py
Vp = .
(F+u )(F+v )=-u v
Dkl e A
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2)

3)

4)

5)

6)

7)

8)

The quantities on the right of the equations are evaluated from the

initial flow field values.

The particle trajectories are integrated through the particle velocity

field via the equation

tan 6 = v /u
p p

and the new particle streamlines determined. The outermost particle
streamline constitutes a boundary between the two-phase and particle-
free regions. Interpolation is carried out to find the particle

properties at the new particle grid points.

The particle density is calculated from equation (4.2) to ensure

continuity.

The gas properties at the particle grid points are found by inter-
polation and the particle temperature is calculated from equation
(4.9).

Steps 1 to 4 are repeated.

The gas velocity components and the gas temperature and density at
the gas phase coordinate system grid points are calculated.
The gas phase total pressure pg and total temperature Tg are

o o
calculated for each gas streamline at its intersection with the

limiting particle streamline. These quantities remain constant along
the gas streamlines in the particle-free region, in which the gas is
assumed to be strictly adiabatic, and this permits computation of the

gas velocities, temperature and density from isentropic relationships.

This terminates one iteration of the relaxation process, and the
solution is tested for convergence. Generally, absolute convergence
is not possible, and a decrease in the change in all variables
between successive iterations is considered equivalent to convergence.
If this has not been reached, the gas properties are found at the
particle coordinate system grid points and the sequence of operations

is repeated.

13
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5 RESULTS OF COMPUTATIONS

The equilibrium particle/gas mixture program (TEPGAS) and the non-
equilibrium gas/particle program (TGPF) were run with the input data shown in
Tables 1 and 2. The nozzle chosen (Fig. 1) has a relatively large normalised
throat wall radius of curvature (>5), but even so the results from TEPGAS
(Fig. 2 and Table 3) show significant variation in the flow variables across the
nozzle, which becomes more pronounced as the calculation proceeds downstream.
This two-dimensional effect produces the bent sonic line shown in Fig. 3,

Curve I, which corresponds to a fairly large transonic region. When account is
taken of the two-phase effects, the particle properties change very little from
the equilibrium values (Table 4). There is a slight increase in the particle
temperatures over the TEPGAS values, and the particle axial velocities are
marginally lower. There is also very little change in the gas properties away
from the nozzle wall, the gas temperatures falling slightly frou the equilibrium
values, and the axial velocities increasing slightly. However, there is a very
marked change in the gas properties close to the nozzle wall. Fig. 3 compares
the gas sonic line predicted by the TEPGAS program (Curve II), and that given
after three iterations of TGPF (Curve III). The equilibrium assumption gives
the sonic line location on the axis quite well, but provides a very poor estim-
ate near the wall. This is because the particles depart from the gas stream-
lines, leaving a particle-free region adjacent to the wall. This departure is
only slight close to the axis, but becomes more significant where the curvature
of the gas streamlines is greater. Figs 4 and 5 show the effect of the isen-
tropic nature of the gas expansion in the particle-free region, the gas tempera-
ture and axial velocity differing by up to 15 per cent from the values calculated

with the equilibrium assumption.

The programs were also run for a range of nozzle shapes and particle sizes,
and for different particle loadings. A decrease in the normalised throat wall
radius of curvature of the nozzle leads to increased variation in the properties
across the nozzle, and results in a larger particle-free region close to the
nozzle wall. The particle-free region is also extended if bigger particles are
introduced (Fig. 6). With 1 pym diameter particles, the flow is very close to
gas/particle equilibrium, but as the particle size is increased, the limiting
particle streamline departs from the nozzle wall further upstream, changing the
local stagnation conditions in the isentropic region, and resulting in the gas
sonic velocity close to the wall being reached much sooner. This leads to

greater differences between the gas properties predicted with the equilibrium

14
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assumption and those calculated taking into account the particle velocity and
thermal lags (Fig. 7). Changing the particle-to-gas mass ratio alters the

position of the gas sonic line. If the number of particles is reduced the gas
sonic line moves closer to the mixture sonic line, but if it is increased the
gas sonic line, in the two-phase region, is displaced further downstream, thus

extending the transonic region.
6 CONCLUSIONS

Two computer programs to solve the two-dimensional, two-phase flow equations
in the transonic throat region of a rocket exhaust nozzle have been developed.
The first treats the gas/particle mixture as a heavy perfect gas with modified
isentropic exponent and molecular weight, and solves the equations of isentropic
transonic flow through an axisymmetric nozzle. An initial flow field estimate
is obtained for input to the second program, which incorporates the non-
equilibrium effectsof the two-phase fluid. The equations governing the transonic,
two-dimensional flow of a gas/particle mixture are expressed as finite difference
replacement equations and are solved by a numerical relaxation technique. The
method is limited by the use of finite difference approximations, and by the
assumptions listed in Section 4.2. Future work will be concerned with lifting
some of these restrictions. The assumptions that the particles do not undergo a
phase change and are of a single size will be studied first as these are of some
importance and may be dealt with relatively easily. The next, and most difficult,
step will be to remove the restriction of a frozen gas composition. Equilibrium
chemistry (infinite reaction rates) will be assumed in the transonic throat
region of the nozzle. When account has been taken of the chemical reactions,
the possibility of allowing for particle interactions, and for the transfer of

mass between the gas and the condensed phase, will be considered.

The programs have been used in exemplary calculations of the flow through
an axisymmetric nozzle for a variety of wall shapes, particle sizes and particle-
to-gas mass ratios. The results show that if accurate initial line data for the
start of a supersonic calculation are to be obtained, the radial variations, and
the non-equilibrium effects of all but the smallest particles (<1 um), must be
included. When the modifications discussed above have been implemented, the
final stage of the work will be undertaken. This is to write a computer program
to solve the two-phase flow equations in the supersonic region of the nozzle,

taking into account the finite, non-zero rates of chemical reactions.

15
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APPENDIX A

Approximate solution of isentropic transonic flow by series solution method

This method, developed by Kliegel and Quanl0®, depends upon the nozzle wall
shape being expressed in terms of R , the nozzle throat wall radius of curva-
ture, normalised with respect of the nozzle throat radius r, - Thus, an R
is chosen such that the nozzle wall may be approximated by the hyperbola

y2 Siedh z2
where z=,’l X and y--r—
R r, r,
The axial and radial velocity components, u and v , may be expressed

in inverse powers of R by the expansions

ul (y’z) u2 (sz)

u = u (y,z) + R + 5 B s
R
and
’ v, (y,z) v, (y,2z)
1 1 2
v = % (y,z) + R + 3 e
R
It may be shown that
uy (y,z2) = a6 (z)
v (y,2z) = a, (z).y
where ;
A B
1 Yy dz
and
da a dy
s o s hmeb g | ok ik =
a % ) a8 2 [ 1 Yy +1 % ] Yw dz °

with boundary conditions

18




since at the throat

Similarly, the first order velocity components are defined by

u, (y,2z) = bo (z) + b2 (z) y2
v, (y,2) = by (z) y + b, (2) y3

where b - b
o 3

similar to those relating a and a, . These equations are algebraic at the

throat and can be solved directly to find the throat boundary conditions. The

are found by solving four ordinary differential equations

second order velocity components are defined by

u, 0,2) = C () +C, (@ y:+c, (5
v, (¥52) = C; (2) y + Cq (2) y> + Cs (2) y>

where C, -~ C5 are related by six ordinary differential equations which can

also be solved algebraically to determine the throat boundary conditions.

For a nozzle whose shape may be approximated by a hyperbola with a normal-
ised radius of curvature greater than three, the second order series solution
yields a very good first approximation. However, for nozzles of sharp wall
curvature the estimates are not so reasonable, particularly if R 1is less than
two. For a normalised throat wall radius of curvature of less than one, the
second order solution predicts that the throat axis velocity is supersonic,
which is physically impossible. The third and higher order equations may be
obtained, but the mathematics involved becomes extremely cumbersome. Thus, for
nozzles where the second order solution is not feasible, a one-dimensional

approximation is used.
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APPENDIX B

Determination of the mass fluy

The mass flux @ is calculated at the throat in each iteration by choosing
the mid-radial static pressure which maximises the mass flux through the throat.
This is equivalent, in one-dimensional flow, to finding the point where the Mach

number becomes unity.

At the throat

1
m = 27 L (r o u)x it dr é (B.1)
By writing
* Uy 1/y i
P o (P/Po) by 2 where z P/l’o

and

u = Mc cos 6

2y R T 1/2
W e Mool T . |
Y_]_cosel:l z YJ

equation (B.1) may be converted into

1 -1 11/2
ﬁ-ZnK[ 3rcolezlh[1-z17—1] :dr ’
[

where )
P 2y Po Po
Y=1 g

For m to be a maximum, z is such that

1 -1/2
;r cos 6 [}2/Y % z];_l:l [2/7 g2/Y"1 _ ];_1 zllv]f dr = 0 .

dm
E-ZHKI
[+

20




When the required mass flux has been found, the other axial stations are

solved by determining the mid-radial pressure which satisfies

Tw 1/2
f (z) = 2nK I ; r cos O [--zz/y -z 151 ] s dr -m = O . (B.2)
o

Since equation (B.2) has a turning point at the throat, at axial stations
upstream and downstream of the throat two possible solutions exist. These
correspond to the subsonic and supersonic solutions of one-dimensional flow,
although two-dimensional flow can be mixed in the radial direction. The problem
of which solution to choose arises only at stations downstream of the throat,
since upstream the equivalent of the one-dimensional subsonic solution occurs.
Physically there is continuouse change in the mid-stream Mach number for isen-
tropic flows which serves as a basis for choosing the solution downstream of

the throat.

21




APPENDIX C

Particle drag and heat transfer factors

Definitions

The empirical relationships used to calculate the particle drag and heat

transfer factors are the same as those used by the TRW program7 and by Regang.

They are
fp = k0 *2520/0 +3.78C)
and
-, 1/2
& = KD/(I + 3.42 Ky C/y Pr)
where
= 1/2
C = RT
ug/og rp ( g)
and

K = S/ Chgrokes

where CD is the particle drag coefficient.

The gas viscosity is a function of temperature

0067

and the Prandtl number is computed from Euken's relationship

Pr = 4y/(9y - 5) *

Drag coefficient

Because the condensed particles are assumed to be spherical the drag
coefficient for a sphere is used to estimate the particle drag coefficient.
Experimental work to establish the magnitude of the drag forces on spheres has
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been going on since Newton began his experiments in 1710, but until recently there
were no experimental data to give the drag coefficient of a sphere in the flow
regime of interest. In 1850 Stokes solved the Navier-Stokes equation by
neglecting the inertial terms (Re + 0) and obtained the simple drag law

(c 24 [Re (c.1)

D)Stokes

where Re 1is the particle Reynolds number based on the speed of the particle

relative to the gas and is defined by

R w 2 W - W - .2
e T, ( s P) Dg/ug (c.2)

However, it has been shown" that the Stokes drag law has only limited
applicability to gas/particle nozzle flows since it is restricted to continuum,
incompressible flow and particle Reynolds numbers less than 1. The flow regimes
encountered by the micron-sized particles extend from continuum to free-molecule
flow, and particle Reynolds numbers of up to 100 and particle Mach numbers
exceeding 1. It was therefore necessary to derive expressions which agreed with
the available data, conformed with theoretically predicted trends, and provided

reasonably smooth variations with Mach and Reynolds numbers.

More recently, drag coefficient data have become available, and Crowe!l3
compares the equations devised by Kliegell", Carlson!! and Crowel? with an
empirical expression which he developed to fit the new data. He concludes that
the differences between nozzle performance predictions made with each devised
drag law, and those made using the law validated by experiment, are negligible.
Thus, since the choice of drag law has little effect on the predicted results,
it was decided to use the relationship derived by Carlson!!l as this is the
simplest expression. It is based on the Stokes drag law, equation (C.1), and

includes terms to correct for rarefaction, inertial effects and compressibility

effects:
2 [ %015 Ry [ 1+ exp (-0.627/m"% - 3/Re%%%) ]
C . e
D Re

1+ (M/Re) [ 3.82 + 1.28 exp (-1.25 Re/M) ]

where Re is the particle Reynolds number and M is the particle Mach number
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Tableﬂl

Input data for TEPGAS*

Throat radius, r 0.4328 cm
Radius of curvature of circular arc section, R 2.54 cm
Distance from nozzle throat to start of conic section 0.6574 cm
Angle of conic section 15°
Modified isentropic exponent, Y 1.157
Chamber pressure, Po 3.507 E 06 Nm-2
Chamber temperature, To 2472 K
Modified gas constant, R/m 239.0 Nm gt kg-1
No. of streamlines 16
No. of axial stations 40
Axial step length 0.04 cm
Table 2
Input data for TGPF*
Gas isentropic exponent, g 1.232
Ll

Gas reference viscosity, u
o

Gas reference temperature, Tg
o

Gas specific heat, Cpg

Particle radius, rp

8.0 E-05 kg m = s
2500 K

1500 J kg =~ K

1.0 E-06 m

1= =1

Particle density, mp

Particle specific heat, Cpp

Particle-to-gas mass flow ratio,

¢

3.97 E 03 kg m >
-1

1355 J kg ! K

3/7

*1.0 E 06 =

1.0 x 10
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T

Nomenclature

(s speed of sound

Cph particle drag coefficient

Cp specific heat at constant pressure

F, fp particle drag factors

G, gp particle heat transfer factors

KD CD/(CD)Stokes

m molecular weight

m molecular weight of gas particle mixture

mp density per unit volume of particle

m mass flow rate

M gas Mach number

p pressure

Pr Prandtl number

T radial coordinate measured from nozzle axis

rp particle radius

R gas constant; nozzle throat wall radius of curvature, normalised with
respect to throat radius r,

Re Reynolds number

T temperature

u axial velocity component
radial velocity component

W speed

X axial coordinate measured from nozzle throat

Y isentropic exponent

Y isentropic exponent of gas/particle mixture

6 streamline angle with respect to nozzle axis

u viscosity coefficient

pg gas density

pp particle density in the gas (based on the gas volume)

v stream function

¢ particle-to-gas mass flow rate

Subscripts

gas property
total condition
particle property

nozzle wall condition

m £ © 0 M,

throat condition
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