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NUMERICAL SOLUTION OF THE NAVIER-STOKES
EQUATIONS FOR 2D HYDROFOILS

by

Joe F. Thompson, Samuel P. Shanks, and Ray L. Walker

Abstract

This report presents the results of an investigation of the appli-
cation of numerically-generated boundary-fitted curvilinear coordinate
systems in the finite-difference solution of the time-dependent, two-
dimensional Navier-Stokes equations for the laminar viscous flow about
hydrofoils moving either submerged at a finite depth or in a free surface
of a fluid of infinite depth. The hydrofoil may be of arbitrary shape,
and its motion may include pitching oscillation or oscillation normal or
parallel to the plane of the undisturbed free surface as well as trans-
lation parallel to this plane. A computer code has been developed that
is capable of predicting the flow field, pressure distributions, and
force coefficients for this configuration at low Reynolds numbers. The
finite-difference solution is implicit in time so that all the difference

equations are solved simultaneously by iteration at each time step.




I. INTRODUCTION

This report presents the results of an investigation of the appli-~
cation of numerically-generated boundary-fitted curvilinear coordinate
systems in the finite-difference solution of the time-dependent, two-
dimensional Navier-Stokes equations for the laminar viscous flow about
hydrofoils moving either submerged at a finite depth or in a free surface
of a fluid of infinite depth. The hydrofoil may be of arbitrary shape,
and its motion may include pitching oscillation or oscillation normal or
parallel to the plane of the undisturbed free surface as well as trans-
lation parallel to this plane. A computer code has been developed that
is capable of predicting the flow field, pressure distributions, and
force coefficients for this configuration at low Reynolds numbers. The
finite-difference solution is implicit in time so that all the difference
equations are solved simultaneously by iteration at each time step.

This investigation consisted essentially of three parts:

(1) Verification of the use of numerically-generated boundary-fitted
curvilinear coordinate systems in Navier-Stokes solutions by application of
the technique to the unbounded high Reynolds number flow past a semi-infinite
flat plate parallel to the undisturbed flow. The results from this solu-
tion gave excellent comparison with the Blasius boundary laver solution
in the region where the latter is applicable.

(2) Development of the numerical solution for a submerged hydrofoil
at a finite depth below the free surface.

(3) Development of the numerical solution for a hydrofoil in the
free surface.

The procedures and results of these three solutions are summarized herein.

The concomitant References 1, 2, and 3, produced by this investigation,




contain the details and more extensive presentations of results from the
above-ment ioned Parts (1), (2), and (3) of the study, respectively.
These three documents are available from Mississippi State University.
Results for the finite flat plate of Part (1) have also been reported

in References 4 and 5,while preliminary results from Parts (2) and (3)
were given in Reference 6.

The numerical solution of the Navier-Stokes equations for flow with
a free surface is complicated in particular by the fact that part of the
boundary of the calculation region, i.e., the free surface, is deforming.
This makes the accurate representation of boundary conditions on the
free surface difficult; yet this solution, as other partial differential
equation solutions, is most strongly influenced by the boundary conditions.
The most critical need for accuracy thus lies in precisely the region of
the most difficulty of attainment,

Numerical solutions for this free surface flow problem have generally
tracked the moving free surface through a fixed grid, using interpolation
among the fixed regularly spaced grid points to represent the surface
boundary conditions. Similarly, solid body shapes in the flow have either
been simple, so as to coincide with rectangular or cylindrical grids,
or have been represented also by interpolation among grid points. A
survey of such methods is given in the concomitant Reference (2).

The basis of the present numerical solution is the technique of
numerically-generated boundary-fitted curvilinear coordinate systems
reported earlier in Reference 7. This is a procedure for automatic

numerical generation of curvilinear coordinate systems with coordinate

lines coincident with all boundaries of a general multi-connected,

n
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two-dimensional region containing any number of arbitrarily shaped

bodies. The curvilinear coordinates are generated as the solution of

an elliptic partial differential system. No restrictions are placed on

the shape of the boundaries, which may even be time-dependent, and the
approach is not restricted in principle to two dimensions. With this
procedure the numerical solution of a partial differential system may be
done on a fixed rectangular field with a square mesh with no interpolation
required regardless of the shape of the physical boundaries, regardless

of the spacing of the curvilinear coordinate lines in the physical field,
and regardless of the movement of the coordinate system in the physical
plane. A number of examples of coordinate systems and application thereof
to the solution of partial differential equations is given in [8] and (9],
along with a discussion of the technique. This procedure essentially elimi-
nates the boundary geometry as a complicating factor in the numerical solu-
tion of partial differential equations. The use of boundary-fitted coordi-
nate systems for the solution of the incompressible Navier-Stokes equations
for the flow about two-dimensional airfoils has been reported by Thames,
et. al. [4] and by Hodge [10]. The latter reference uses the pressure-
velocity formulation used in the present work.

The use of boundary-fitted coordinate systems is particularly
attractive for free surface problems, since a coordinate line will remain
coincident with the free surface as it deforms under wave action. The
physical flow field is transformed to the curvilinear coordinate system
as discussed in more detail in Section I1. The field in the transformed
plane is rectangular with a fixed square grid regardless of the movement

of the physical boundaries. With the partial differential equations of

S—




motion and their associated boundary conditions transformed to the
curvilinear system, all computation can be done on the fixed square grid
in the transformed plane regardless of the motion of the free surface
or the hydrofoil. It is even possible to allow the hydrofoil to
oscillate without really complicating the problem, since a coordinate
line can also remain coincident with the hydrofoil surface as it oscillates.
The present solution is capable of treating the low Reynolds number
viscous flow about a translating hydrofoil in or below the free surface
of a fluid of infinite depth. The hydrofoil may also be in pitching,
plunging, or longitudinal oscillation as well as translation. The hydro-
foil starts from rest with a flat surface and accelerates to full speed
at any acceleration desired. The general solution procedure is discussed
in Sections II-IV, and facets peculiar to each of the three parts of the

study together with typical results are given in Sections V-VIII.




IT. BOUNDARY-FITTED COORDINATE SYSTEM

The basic idea of the boundary-fitted coordinate systems is to
numerically generate a curvilinear coordinate system having some coordi-
nate line coincident with each boundary of the physical region of inter-
est, regardless of the shape of these boundaries. This is done by taking
the curvilinear coordinates to be solutions of an elliptic partial dif-
ferential system ,with constant values of one of the curvilinear coordi-
nates specified as Dirichlet boundary conditions on each boundary. Values
of the other coordinate are either specified in a monotonic variation over
a boundary as Dirichlet boundary conditions, or are determined by Neumann
boundary conditions thereon. In the latter case, the curvilinear coordi-
nate lines can be made to intersect the boundary according to some speci-
fied condition, such as normalcy or parallel to some given direction. It
is also possible to exercise control over the spacing of the curvilinear
coordinate lines in the field in order to concentrate lines inregions of

expected high gradients.

In any case, the numerical generation of the coordinate system is
done automatically for any shape boundaries, requiring only the input
of points on the boundary. The technique has been described in detail
in earlier reports [7-9], and the computer code, together with instructions
for and examples of its use in the numerical solution of partial
differential equations, is given in [9].

The technique is described in general in this section. Each of
the three parts of the present study used a different variation of the

basic procedure as is discussed for each configuration in Sections V-VII.




Consider transforming the two-dimensional, doubly-connected region D,

bounded by two, simple, closed, arbitrary contours, T, and F2, onto a rectan-

1

gular region, D*, as illustrated in Fig. 1. We require that Tl map onto F1$,

* * * ; *
rz onto Pz . P3 onto T3 , and Fa onto I‘4 . Note that Fl apd F2

to be constant n-lines, while the arbitrary cut between contours Fl and Fz (i.e.,

* are required

F3 and PA) becomes constant £-lines. The region D is the physical plane, D*

the transformed plane, T, the body contour, and Fz the remote boundary contour.

1
As discussed previously, the curvilinear coordinates are generated by
solving an elliptic system of suitable form. One such system is

Exx + Eyy = P(&,n) (1a)

+
I ny

v " Q(g,n) (1b)
with Dirichlet boundary conditions, one coordinate being specified to be equal
to a constant on the body and equal to another constant on the outer boundary,
with the other coordinate varying monotonically over the same range around
both the body and the outer boundary. This system was used for the finite
flat plate and the submerged hydrofoil in the present study.

Since it is desired to perform all numerical computations in the uni-

form rectangular transformed plane, the dependent and independent variables

must be interchanged in Eq. (1). This results in the coupled system

2
axXg e 28xgn * . J [ng(C.n) + an(C,n)] (2a)
2
oY 28y€n + W, J [YEP(E,n) k ynQ(E.n)] (2b)
where
a. 2 SO
a xn & yn L xE 3 yE
"= xexn & yeyn e xEyn o xnyE




The system described by Eq. (2) 1is a quasi-linear elliptic system for

the coordinate functions x(£,n) and y(£,n) in the transformed plane. This

set is considerably more complex than the linear system specified by Eq. (1),
but the boundary conditions are specified on straight bonndaries, and the coor-

dinate spacing in the transformed plane is uniform.

The &=constant lines may be spaced as desired around the boundaries, |

since the assignment of the £-values to the [x,y] boundary points is
arbitrary. (Numerically, the discrete boundary values [Xk’yk] are trans-
formed to equi-spaced discrete gk—points on both boundaries.) Control of
the radial spacing of the n=constant lines and of the incidence angle of
the £=constant lines at the boundaries is accomplished by varying the
functions P(g,n) and Q(&,n) in (2). All numerical computations, both to
generate the boundary-fitted coordinate system and subsequently to utilize
the coordinates for solving a set of partial differential equations, are

executed on a rectangular field with a uniform grid. !

The effect of changing the functions P(£,n) and Q(£,n) on the

p—

coordinate system is discussed in Ref. 9. One particularly effective pro-
cedure, used here for the finite flat plate and submerged hydrofoil solu-

tions, is to choose P and Q as exponential terms, so that the coordinates

are generated as the solutions of

n .
K * S ™ ;21 a, sgn(g - gy dexp(-c,|€ = A
- / . \ 2 )2
= jil bj sgn(§ - Ej)e)cp(-dj (¢ - EJ.) + (n - ny )
= P(g,n) (3a)




n
Nt > -151 a  sgn(n - n )exp(-c [n - n,|)
m
= - — - 4 = Z
jfl bj sgn(n nj)exp( dj/(i Ej) + (n nj) )
= Q(g,n) (3b)

where the positive amplitudes and decay factors are not necessarily the same
in the two equations. Here the first terms have the effect of attracting
the £ = constant lines to the § = Ei lines in Equation (3a), and attracting
n = constant lines to the n = ny lines in Equation (3b). The second terms

cause £ = constant lines to be attracted to the points (& ) in (3a),

3*"M
with similar effect on n = constant lines in (3b). Several examples of the
use of coordinate system control are given in Ref. 9.

The transformation technique developed above can be used to solve
time-dependent problems with moving boundaries by performing all numer-
ical calculations, without interpolation, on a fixed rectangular field
with a uniform square grid in the transformed plane.

As discussed previously, the physical plane grid system is gener-
ated by solving the set of elliptic partial differential equations,

(2), with one of the (£,n) coordinates specified to be constant on the
boundaries of the physical plane, and the other (£,n) coordinate dis-
tributed along the boundaries as desired. If the boundary values of x
and y are changed in the physical plane by the movement of the free sur-
face contours a new solution of the elliptic system with the changed

boundary values is obtained over the same range of values of £ and n in

the field. Thus, the transformed plane remains unchanged as the coordinate




g R A it — , 1

grid system moves in the physical plane. Only the values of the physical
coordinates (x,y) change with time at the fixed grid points in the trans-

formed plane.

The transformed time derivative is

Gi! . =BG ¢ MEmE)

9f A(x,y,f) A(x,y,t) _ (af
14
x’y g,ﬂ

_1 2f 3y _ 3f dy o
J 9t 9n  3n 3’ ‘ot

€,n
1 ,of 3x of 9x, 9y ]
+_. — ——— gy Sw—— —
£,n
All derivatives are expressed in the transformed variables (£,n);
thus eliminating the need for interpolation between points in the
physical plane. The movement of the physical plane grid points is
accounted for by the time rate of change of x and vy, (%%) and
€sN f
(%%) in the above expression.
Esn
‘l
1




III. EQUATIONS OF MOTION

The equations of motion are the complete time-dependent Navier-
Stokes equations with the gravity term included. The no-slip boundary
condition is applied on the hydrofoil, and the viscous stress condi-
tions are applied on the free surface. The free surface deforms in time
as waves are formed thereon.

All quantities are non-dimensionalized with respect to the trans-
lation velocity of the hydrofoil and the hydrofoil chord. The Reynolds
and Froude numbers are defined in terms of these reference values. The
physical coordinate system is taken to be fixed relative to the trans-

lational motion of the hydrofoil. In the physical plane the equations

of motion are

2 =it =
u, + (u )x + (uv)y P * (uxx + uyy)/R % (5a)
2 4 2
= - = F
v + (uv)  + (v )y by v * vyy)/R 1/ (5b)
p.+p . =-ul-2uv -vi-D (5¢)
XX yy b4 y X y t
Ve Vb
where R = — and F = —— are the Reynolds and Froude numbers, respec-
v Vg

tively, Vo being the magnitude of a reference hydrofoil translational
velocity, V the instantaneous velocity, c the chord, v the kinematic
viscosity, and g the acceleration of gravity. The third of these
equations is the Poisson equation for the pressure, derived by taking
the divergence of the Navier-Stokes equations and requiring that the
continuity equation (D = u, + vy = 0) be satisfied. The time derivative
of D, ideally zero, has been retained in this equation as a corrective

term in the manner of Hirt and Harlow [11].

10




The boundary conditions are as follows:

(a) On the hydrofoil (no-slip condition):

u = uB(x,y,t)

vV = VB(X,Y.C)
where (uB,vB) are the velocity components of the hydrofoil surface at
(x,y,t) relative to the coordinate system translating with the hydro-

foil. (These values are zero if the hydrofoil is not oscillating.)

(b) On the surface (viscous stress condition):

2 1 7 9

R Y"1 + R (uy + vx)n2 = (p po)n1 (6a)
2 e e s e = e e (6b)
R'y2 R Yy x 1 : 0f 2

where P, is the applied pressure from the atmosphere, and n, and n, are
the components of the unit normal to the surface in the x and y direc-
tions, respectively. These relations assume no wind stress on the sur-
face.

(c) On the remote boundary (undisturbed flow):

us=-YV
v=0

p=p,+ (v, - Y)/F?

(These conditions apply on the remote boundary strictly only until sur-
face waves reach it. At low R, sufficient viscous dissipation is pre-
sent to damp the waves before the remote boundary 10 chords distant is

reached.)

11




Using the derivative transformation relations given in the appen-
dices of either [2] or [9], these equations may be transformed to the
curvilinear coordinate system, so that the equations of motion in the

transformed plane are
u, - xt(ynug - yEun)/J - yt(xgun - xnug)/J
2 2 2 =
oy WA -y ) 1T+ [xp(wv) = x () /3

b (ynpz T yipn)/J 5 (ausi = ZB“En ¥ Yunn

+

L
oun + ‘rug)/RJ +V (7a)

v, - xt(ynvg - yivn)/J - yt(xgvn - xnvg)/J

+

2 2y 2
[yn(uV)E yg(uv)n]/J + [xg(v )n xn(v )E]/J

* (xgpn = xnpg)/J = (avgg = ZBVEn £k & A

+ ov, + TVE)IRJZ - 1/F2 (7b)
“Pre - 2BpEn + YP,

+ = - - 2
I (Vpltg = Yguy)

2ina, Xyl (Ve = Ygvn)

= = 2 o X2
(van anE) J Dt

+

X (DY = Dpydd = v (Dpx, = D x.)J Nex

where

D= (ynu€ - ygun + xEVn - xnvg)/J (74d)

12
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and

o =J%Q(g,n) , T = J2P(E,n) .

The coefficients a, B, Y, and J have been defined in the previous sec-

tion.

The time derivatives have also been transformed in these equations.

Thus, time derivatives in Eq. (7) are taken with £ and n fixed, while

those in Eq. (5) were taken with x and y fixed. This transformation of

time derivatives allows the computation to be done on a fixed grid in

the transformed plane even though the physical grid is in motion due to

the free surface and hydrofoil movement. The same procedure was used by

Shanks [2] and is discussed in more detail therein, as well as in [9].

The transformed boundary conditions are

(a) On the hydrofoil (no-slip conditions):

e
]

ug (€,t)

<
|

== VB(E’ t)

(b) on the free surface (viscous stress conditions):
1 RJa
= = ~-J + 2 + == =
ug 42 [(aB xnyn)"n (an)vn 5 yn(p P ]
1 3 2 RJa
== [(< + + - =2 -
ve " [( Jyn)un (aB anyn)vn 3 xn(p po)]
(c) On the remote boundary (undisturbed flow):
us=-1yY
v=20

= - 2
P=p, * O, y)/F

13
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(8b)




L=

The two free surface boundary conditions given above result from
transforming the two viscous stress equations (6) to the curvilinear
coordinate system and solving these two simultaneous equations for ug
and vg in terms of uy and vn, the free surface being a line of constant
£ in the configuration used. (See the appendix of [2] for this
development.)

On the hydrofoil contour and the free surface, the pressure is
determined by iteratively adjusting the pressure at each point on the
hydrofoil in proportion to the divergence of the velocity at the same
point, so that upon convergence the continuity equation is satisfied at
the hydrofoil surface. Thus on the hydrofoil surface, since u, = v, =0

3 &
by the no-slip condition, we have, using (7d),

p(k+1) = p(k) = l<(x£vn = ygun)/J (9a)

while on the free surface,

pHEl . 50wy (9b)

with D given by (7d). Here (k) is the iteration counter, and K is a

proportionality factor given by

2wJ2
(o + y)At

K =
on the hydrofoil and by

i
ol

on the free surface, w being an acceleration parameter. The different

form on the free surface results from the need to prevent positive

14
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feedback from the surface stress condition to the surface pressure

iteration. See Appendix D of [3] for the development of these relations.
The y coordinate on the free surface is determined at each time

from the movement of the free surface. Since the free surface can be

described by y = f(x,t) or f(x,t) - y = 0, the convective derivative

of the latter function must vanish:

d
v &, &g

d of
== [f(x,t) - y] = (‘é_t) ¢ -5; at

X

Then since y = f, and the surface is a line of constant £,

(QX) - 100y o Zﬂ

X't ox’ g X
n

and then

Y.

¥ L )|

(at)x % Ux

n

15




IV. NUMERICAL SOLUTION

All space derivatives in the field are approximated by second-
order, central difference expressions. (A and An are both unity by
construction, the actual values of £ and n being immaterial since

cancellation occurs after substitution in the transformed equations.):

ol
(Eedyy ® g (B 4 = B1g )
(£),, == (f b
atig 2 Y um T o
CFeekis ™ gm0 7 2fag T fiy
n'ed © frap T Py T e
1
(fgn ij ~ & (fi+l,j+1 - fi+l,j-1 e fi—l,j+1 il fi—-l,j-—l)

Derivatives along coordinate lines eﬁanating from the hydrofoil

surface or from the free surface are evaluated using second-order, one-

sided difference expressions of the form

1

Spiis T3 Whay Py s 9 )
1

(4,0 =3 (=fy 5+ 48 5= 3 o)

Finally all the time derivatives are approximated by first-order,
backward difference expressions, so that the solution is implicit in
time. The set of five simultaneous difference equations from (2) and

(7), three equations of motion and two coordinate system equations, with

16




the boundary conditions are solved at each time step by SOR iteration.

The result from the previous time step serves as the initial guess for

the iteration at the next. The solution starts from rest with a flat

free surface and proceeds with a specified acceleration to full speed.
The body force components are obtained from the integration of the

pressure and shear forces around the wetted portion of the hydrofoil

surface:

e}
L}

2
x =" 29 Py e+ ¢ 6 ouxde (11a)

o)
[

2

with vorticity, w, given by

w = (ynvE - ygvn - XU + xnuE)/J (12)

Here the n-derivatives are evaluated by the second-order, one-sided dif-
ference expfessions given above, while the second-order central expres-
sions are used for the £-derivatives.
Finally, the lift and drag coefficients are given by
CL = chose “ Fxsine (13a)

C, = Fysine + Fxcose (13b)

where 6 is the angle of attack.

L7

= PEVRRF R SRREIPI S S pRpE g A0SV S,



V. SEMI-INFINITE FLAT PLATE SOLUTION (Ref. [1])

This solution was developed in the stream function-vorticity formu-
lation of the Navier-Stokes equations following Thames [12], and has also
been reported in [5].

The stream function-vorticity formulation of the two-dimensional,
incompressible viscous flow equations is given by

w, + wymx - wxmy = (wxx + wyy)/R (14a)

e * wyy = : (14b)
where Yy is the nop-dimensional stream function, w the non-dimensional
vorticity, and R is the Reynolds number based on the characteristic velocity
(free stream value) and body length. The set (14) is in the non-conservative
formulation. Eqs. (l4) may be transformed utilizing the operations given
in [9] yielding the set applicable in the rectangular transformed plane.

The transformed equations are:

w, + (&nwc - wewn)/J = (awEE - Zngn + ymnn)/Jzn + (an + PwE)/R

2
(Gweg - 28y " Ywnn)/J + e, B * =0

13

with boundary conditions

¥ = y = constant, /;_Wn/J =0, [E,nll € Pl*

v = y(i.nz)cose - x(€,n,)sin0, w = 0, [g,nZ] € T,*

18




where O is the angle of attack. The second of (15¢) guarantees that the no-

slip condition is satisfied on the body surface. The satisfaction of this
condition is accomplished by iteratively adjusting the value of the vorticity ;
on the body surface, utilizing a false-position procedure, until the second-

order forward difference approximation to the velocity component tangential to

the body surface, V. = /;_wn/J, is below some tolerance. The iterative algorithm
~n
is given by
w(k) - w(k-l)
wikIl) - wiki - i,1 141 (VI )iki (16)
’ . (V )(k) . (v )(k"l) n 2
B, Hal T, Lsl 1

where k denotes iteration count, § an adjustable parameter, and (i,1l) refers to
some point on the body surface. This method is an extension of an approach

suggested by Israeli [13].

The transformation from the physical to the transformed field is
indicated schematically in Fig. 2. The coordinate system was generated

as the solution of (2) with boundary conditions as follows:

on a'b' (plate surface): x = specified as desired, y = 0.

L3

on a'c’' (upper boundary): x = specified as desired, y = 10(%) "
on b'c' (downstream boundary): x = constant, y = specified as desired.

on a'a' (leading edge): x =y = 0,

19




The condition on y on the upper boundary, a'c', places this boundary at twice
the Blasius boundary layer thickness [14]. The downstream boundary was located

at multiples of the distance at which the slope of the Blasuis boundary layer

is 0.01.

The boundary conditions for the Navier-Stokes equations in the transformed

plane are as follows: :

on a'b' (plate surface): Y = wn =0 (v=u= 0, no-slip condition).

on a'c' (upper boundary); ¢y = —L-(J +x¢,), w=0 (u=1, w=0,
n x6 neg

free stream conditions).

on b'c' (downstream boundary):

. y

E
V=2 (—t*) 2\r erf n dn,

R

0
L 2
- _ Ry SO

w = (ﬂt) exp ( —ZFO (infinite plate

solution, Schlichting

[14))

on a'a' (leading edge): ¢ = w = 0.

The condition on the downstream boundary, b'c', is the exact solution of the
Navier-Stokes equations for a suddenly accelerated fully infinite flat plate.
The numerical quadrature was done by trapezoidal 1ntegr$tion. The condition on
wn on the upper boundary cxpresses u = 1, the free stream velocity. All these
boundary conditions were implcmented directly except the wn = 0 condition on the
plate, a'b', which was satisfied by adjusting the value of the vorticity at each
point on the body by the false-position iteration procedure discussed above.

The coordinate system used for the semi-infinite plate, shown in Fig. 3,

has a curved boundary located at twice the Blasuis boundary layer thickness
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above the plate, with coordinate lines coming to a point at the leading edge.
This form was chosen in preference to systems with rectangular boundaries in
order to concentrate the coordinate lines near the plate to a greater degree
as the Reynolds number increases and also to ensure a test of a representa-
tive non-orthogonal curvilinear system.

Velocity profiles obtained using this coordinate system are shown in
Fig. 4 and compared therein with the Blasius boundary layer solution
(Schlichting [14]). (Positions are given in fractions of the distance to the
downstream boundary.) Since the downstream boundary condition was the time-
dependent solution for the completely infinite plate, for which the boundary
layer thickness increases without bound as time increases, the agreement with
the Blasius solution deteriorates as expected as this boundary is approached
(position 1.0 in these figures). The loss of flow in the lower portion of
the boundary layer that results from this continual thickening of the
boundary layer on the downstream boundary causes the over-shoot of the Blasius
profile that occurs upstream of this boundary. The agreement with the
Blasius profile in regions farther removed from the downstream boundary is
good. Note that the profiles upstream cling to the Blasius as the down-
stream profile moves away.

Coordinate system control was used to cause the system to expand down
the plate. The agreement with the Blasius solution extends very near the
leading edge, since the coordinate lines are more closely spaced near the
leading edge. With the Blasius boundary layer solution as the downstream
boundary condition the problem becomes a steady-state problem, and the
agreement with the boundary layer solution is excellent,/ except at the first

few steps near the leading edge [1], [5].
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VI. SUBMERGED HYDROFOIL SOLUTION (Ref. ([2])

Figure 5 shows the basic doubly-connected transformation with a free
surface. This type of configuration has been used successfully for air-
foils in previous studies [4]. For a free surface problem Cl would be the

arbitrary hydrofoil, ¢, would be the "infinity'" boundary, and C. would be

5]
the free surface. Since the "infinity" boundary is chosen to be ten chords
from the hydrofoil in the present research, the contour C5 would be approxi-
mately twenty chords long. Thus, fewer points would be on C5 to cover 20
chord lengths than would be on Cl to cover approximately 2 chord lengths.
Unless many £-points were used the wide grid spacing on the free surface
would cause large truncation error.

Several modified coordinate systems were investigated in order to

provide more points on the free surface [2].

Figure 6 shows the transformation that was used in this research.
This coordinate transformation was chosen because the number of free
sur face (C7 and C8) grid points is independent of the number of points
on the body (Cl)' Also, no points with zero Jacobians occur on the free
surface.

The transformed plane of Figure 6 forms a T-shaped region. The
lower part of the coordinate system is the same as the basic transforma-
tion of Figure 5. The cut C* is taken at Il - % (12 + %), thus creating

1

the two common reentrant boundaries C§ and Cz. The upper part of the

transformed plane bounded by the constant n-line (JM - %) C8, (& C

7 T2
is added to the basic transformed plane to provide free surface and
"infinity" boundaries. The two common reentrant boundaries Ce and Cg

are created to provide more points on the infinity boundary than are on

i
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the body (Cf). The cuts are taken at half indices because the point
1 1
(11 - 5 IM - 5) has a zero Jacobian. By taking the cut at half

indices, the zero Jacobilan point is eliminated from the field calcula-

tions.

The system of finite difference equations is solved simultaneously
by the successive-over-relaxation (SOR) iterative method. The number
of simultaneous equations to be solved is (JMAX - JM + 1) (IMAX - 1) +
(JM - 1)(I2 - I1 + 1). Boundary values are specified on J = JMAX for

all ie[1l, IMAX]. Also, boundary values are specified on j - JMAX for

[}

all ie[I1, I2]. Boundary values or the Neumann boundary condition xE
0 (normal n-lines to free surface) may be expressed on the free surface

contours, i = 1 and i = IMAX. At the branch cut for the constant n-line

J =JM and iec[1, I1 - 1], we have

(i, j-1) = (IMAX - i + 1, JM)
Also, at the branch cut for the constant n-line J = JM and ie[I2 + 1,

IMAX], we have

(i, j - 1) = (IMAX - i + 1, IM)

At the branch cut for the constant £-line i I1 and je[l, JM - 1], we

have

At the branch cut for the constant £-line i = I2 and jell, IM - 1], we

have

i+1=11

23




The basic hydrofoil geometry and coordinates are shown in Figure 7.
L is the chord length of the hydrofoil used, h is the depth of the
water from the bottom to the undisturbed free surface, d is the depth
of the hydrofoil below the free surface. U_ is the reference velocity
for the problem (usually the steady-state free stream velocitv), v is
the kinematic viscocsity, p is the density, D is the incompressible

continuity equation, and g 1is the local gravitational constant.

The equations of motion are those given in Section III except
that the non-conservative form of the convective terms in the Navier-
Stokes equations was used for this solution.

Typical results of the numerical solution are given in Figures
8-18 for a Karman-Trefftz hydrofoil (Figure 8) and in Figures 19-20
for a circular cylinder hydrofoil. The airfoil is defined by 37
coordinate points and is located one chord below the free surface.

The field sizes of the coordinate grid are 54 x 30 and 54 x 60. The

54 x 60 field has its "outer" boundary located 20 chords from the air-
foil, and the 54 x 30 field has its "outer" boundary located 10 chords
from the airfoil. Using Figure 6, JM = 6, I1 = 10 and I2 = 45. Six n-
lines were attracted to the airfoil with an amplitude of 1000 and a
decay factor of 1.0.

Figure 9 shows the effect of Froude number on the free surface
movement. Three Froude numbers of 0.5, 1.0 and 2.0 are shown for a
constant Reynolds number of 20 and at a time of 8.0. All three cases

were accelerated gradually over a time of 4.0. Also, the same time

step size (At = .01) was used in all three cases. At a time of 8.0 the
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airfoil had moved 4 chords at the free stream velocity of one. By com-

paring Figures 9a, b, and c, the effect of the airfoil on the free sur-
face increases as the Froude number increases. This result is to be
expected since the Froude number is the ratio of inertial forces to
gravitational forces. Therefore, as the Froude number increases the
inertial forces increase.

Figures 10, 11, and 12 demonstrate the effect of Froude number on
the drag, 1ift, and pressure. The time histories (Figure 10) of drag
for the three Froude numbers of 0.5, 1.0 and 2.0 are presented for Re =
20 and t = 8.0. Referring to the peak drag for each figure, the drag is
reduced as the Froude number is increased, because as the Froude number
increases the free surface rises over the airfoil which changes the
local angle of attack. From Figure 11, the 1lift changes drastically
because as the Froude number decreases the buoyancy forces become more
dominant. From Figure 12 the effect of Froude number on the pressure

distribution can be seen. Buoyancy forces are dominant at a Froude

number of 0.5 (Figure 12b), and inertial forces are dominant at a Froude
number of 2.0 (Figure 124).

Figure 13 shows three time slices of a coordinate system. The air-
foil is accelerated to the free stream velocity over a time period of 4.
The flow parameters are F = 1.0 and Re = 20, and the airfoil is loc4tod
one chord below the free surface. At t = 2.0, the airfoil has achieved
half its free stream velocity. The airfoil movement has caused the free
surface to rise slightly in front of the airfoil, and to sink slightly
behind the airfoil. At t = 4.0, the airfoil has achieved the free

stream velocity of 1.0. The free surface peak has moved to about the
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quarter chord of the airfoil, and the lowest point on the free surface
has moved one chord behind the airfoil. At t = 6.0, the airfoil has
moved 2 chords at a constant velocity of 1.0. The first peak has
remained at the quarter-chord, and the lowest peak has moved to about
two chords behind the airfoil. Also, a second peak has begun to form
downstream.

Figure 14 shows the velocity vector field at the three times of the
previous figure. The figure shows the change in the angle of attack on
the airfoil, due to the free surface movement, as time increases. The
velocity at the trailing edge shows that the fluid leaves the trailing
edge smoothly creating a wake behind the airfoil. The value of conti-
nuity at the trailing edge was the largest value in the field. Due to
the low Reynolds number, the boundary layer is very thick.

Figure 15, shows the pressure distribution at three time steps.
The figure shows the dominance of the inertial forces increasing over

the buoyancy forces as time increases from 2 to 6.

Figures 16 and 17 show the effect of Reynolds number on the free
surface at a constant Froude number and constant time. Figure 16 shows
two coordinate systems, one at a Reynolds number of 20 and the other
at a Reynolds number of 100. The Re = 100 case has less effect on the
free surface than does the Re = 20 case. The effect of the Reynolds
number on the free surface is due to the smaller boundary layer on the
airfoil for a Reynolds number of 100 than for a Reynolds number of 20.

Figure 17 shows the pressure distributions about a Karman-Trefftz
airfoil for two Reynolds numbers, Re = 20 and Re = 100. The constant

parameters are F = 0.5 and t = 6. The pressure coefficients for Re =
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20 are larger than the pressure coefficients for Re = 100. The lift
coefficient for both cases is due mainly to the buoyancy forces. Figure
18 shows a velocity vector field for a Karman-Trefftz airfoil, Re = 100,
F=0.5, and t = 6. The boundary layer is shown to be smaller on the
airfoil than in the Re = 20 case. The trailing edge wake is well
defined.

Figures 19 and 20 show the versatility of the coordinate transfor-
mation. Figure 19 shows the coordinate system for a circular cylinder
located one chord below the free surface. Three times are shown. The
flow parameters are Re = 20 and F = 0.5 at a time of 6. Two wave peaks
are shown on the free surface. The circular cylinder affects the free
surface more than the airfoil, which should be expected. Figure 20 shows
the velocity vectors for the circular cylinder of Figure 19. At a time
of 6, the stagnation point started to move up the front of the cylinder.

Results are presented in Figures 21-23 for a hydrofoil in pitching,
plunging, and longitudinal oscillation. All solutions are presented in
the free stream-fixed coordinate reference frame. Also all solutions were
run using the flow parameters, Re = 20 and F = 1.0. The same coordinate
system was used for all solutions. A Karman-Trefftz airfoil was placed
at one chord below the free surface. The infinity boundary was located
10 chords from the airfoil.

In Figure 21, the airfoil is moving in the negative x-direction. This
solution is equivalent to the other solutions of previous sections. How-
ever, the hydrofoil is moving relative to the "outer" boundary. The coor-
dinate lines close to the body are moving with the airfoil. The free stream-

fixed reference frame clearly shows the fluid being pushed by the airfoil.
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Also, fluid is moving in at the trailing edge to fill the space evacuated
by the airfoil.

In Figure 22, the airfoil is moving toward the free surface. As the
airfoil moves toward the free surface, fluid is pushed up and to the sides.
Vortices are created at the leading edge and at the trailing edge of the
airfoil because the fluid is moving from the upper side to the lower side.
The fluid that is moved up by the airfoil disturbs the free surfaces by
pushing up the free surface above the airfoil.

In Figure 23, the airfoil is pitching 5° about its center chord.
Three times (t = 1, 5, 8) are shown. The airfoil takes a time of 10 to
pitch from 0° to 5° and back to 0°. The vortices can be seen forming as

the airfoil pitches.

9
Some of the solutions were generated on the UNIVAC 1106 single pro-
cessor and the latest solutions were generated on the upgraded UNIVAC ’
1106 dual processor. There are many factors which determine the com-

puter time required for a solution, for example, the way the object pro-

gram is loaded in the computer code. Several examples of time required

to solve the coordinate system and Navier-Stokes equations are pre-
sented.

The uncontracted coordinate system requires from 3 to 6 minutes to
converge depending on the field size and convergence criteria. Depend-
ing on the type of attraction required, the contracted coordinate sys-

tem takes up to 30 minutes.




Two similar solutions were generated with field sizes of 54 x 30

and 54 x 60. The acceleration parameter for pressure was 1.8 and the

acceleration parameter for velocity was .8. The constant of .l was
used in the pressure iteration on the body. The flow parameters were

Re = 20 and F = 1. The 54 x 30 solution took 239 minutes to generate 600

time steps and the 54 x 60 solution took 452 minutes to generate 600 time
steps. The maximum number of iterations for a time step to converge was
11 at time step 313 for the 54 x 30 field. For the 54 x 60 field the

maximum number of iterations was 12 at time step 304.




VII. HYDROFOIL IN FREE SURFACE SOLUTION (Ref. [3])

The physical and transformed planes used in this solution are shown
in Figure 24. Since the hydrofoil is in the free surface, rather than
submerged, the physical region is simply-connected, its boundaries being
the wetted portion of the hydrofoil contour,(:) = (:l the free surface
fore,@ - @, and aft,@ - @, and a remote semi~circular boundary,@ -

(:L located at a sufficient distance from the hydrofoil to be undisturbed
by the flow. The transformed plane is a rectangle, with the wetted portion
of the hydrofoil contour transforming to the upper horizontal side, the
free surface fore and aft transforming to the left and right vertical sides,
respectively, and the semi-circular remote boundary transforming to the
lower horizontal side as indicated in Figure 24. This configuration differs
from that used for the submerged hydrofoil in that the physical region was
doubly-connected with the submerged body.

As noted above, the curvilinear coordinates ({,n) are taken as the
solution of two elliptic partial differential equations. The particular
equations used in the present solution are those of [15], which differ from
the original system of [9], used for the submerged hydrofoil, only in the
form of the coordinate system control terms (the terms involving the func-
tions P and Q below and in Eq. (2) above.) Thus £ and n are determined by

the solution of

[l
+

[aal
[}

2 2
(CX X Ey ) P(&,n) (17a)

=
+

=
]

e * My = 00"+ 1 2y QREN) (17b)

With reference again to Figure 24, the boundary conditions for these

equations are as follows:
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(a) on tue wetted portion of the hydrofoil contour,(Z) -3

n = nz = constant, § varying monotonically from 51 to

€y (52 > El) from(:>to<:)

(b) on the free surface,@ - @, and@ - @'
£ - £, = constant °“<:) - (:) £ =&, = constant > £ on(:) = (:)

n varying monotonically from nl to N,y

(n2 > nl) from(:)to(:>and from(:)to(:)

(c) on the remote boundary,(:) - (:)

n = n; = constant<n,. £ varying monotonically from

El to 62 from@ to@

The coordinate control functions, P(§,n) and Q(£,n) serve to concen-

trate coordinate lines as desired to resolve expected large gradients.
The theory and use of such control has been discussed in some detail in
[9]. In the present application, these functions are determined from the
specified spacing of points on the hydrofoil contour and free surface,
those on the body being concentrated near the free surface and those on
the surface being concentrated near the hydrofoil as in Figure 25. The
details of this determination of P and Q are given in Reference 3. The
resultant concentration of coordinate lines near the body and free surface
is evident in Figure 25.

In the initial stages of this study, the control functions, P and
Q, were taken as sums of decaying exponentials that cause attraction of
coordinate lines to specified lines and/or points as used for the submerged
hydrofoil. Some of the results given below were obtained on coordinate

systems using this type of control as will be noted. The new control
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procedure has the advantage of automating the control and eliminating the

need for judgmental estimation of the attraction amplitudes and decay

factors necessary to achieve a desired degree of line concentration. |
With the current modification in the control functions, Eq. 2 in

the transformed plane are replaced by

ax., - 28x€n + yx o+ anE + 19x = 0 (18a)

avgg - ZBygn + vy + aPyE + YQyn =0 (18b)

nn

The boundary conditions for x and y are as follows:

(a) On the hydrofoil:
x and y specified by the chosen spacing of points around the hydrofoil
contour. These points move on the contour with time as a result of
motion of the hydrofoil and also because of movement of the free

surface-body contact points on the contour.

(b) On the free surface:
X = 0 initially, fixed thereafter, y from the surface movement,
Eq. (10). (The first of these allows the points to slide along the
free surface so that the coordinate lines are initially vertical at
the free surface.)
(c) On the remote boundary:
x and y fixed and specified by the chosen spacing of points along
the remote boundary.
This point distribution on the body and remote boundary was taken
according to equi-angular spacing over the body and remote boundary arcs

in the earlier stages of the present investigation. Later an unequal
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spacing was used, with the angular separation of points varying on a
sine curve, so that the closest spacing occurs adjacent to the free sur-
face.

Since the free surface deforms in time,with consequent motion of
its intersections with the hydrofoil contour, only the relative dis-
tribution of points on the hydrofoil contour is kept fixed. The points

thus slide along the wetted portion of the hydrofoil while maintaining

the same relative spacing from adjacent points as time progresses. This
is accomplished by locating the points on the contour at fixed percent-
ages of the angle subtended by the arc between the two intersections
with the free surface. This subtended angle, of course, changes in
time. When the hydrofoil oscillates, the movement follows the

oscillating motion of the body as well.

The points on the free surface are initially determined by a Neumann
boundary condition that requires the coordinate lines to be vertical at
the moving surface. The local elevation of the surface is determined by
the equations of motion for the free surface as discussed in Section III.
The points thus slide along the free surface as the surface deforms in time.
Results of the numerical solution are presented for a cir. ilar
cylinder hydrofoil in two flow configurations:

(a) Accelerating translational motion parallel to the plane of
the initially undisturbed flat free surface.

(b) Oscillatory plunging motion normal to the plane of the
initially undisturbed flat free surface.

In each case the axis of the cylinder is in the plane of the initially
undistrubed flat free surface. The fluid is physically unbounded except

by the free surface, with no disturbance remote from the hydrofoil.

33




In the translational case (a) the acceleration is linear, with

the Reynolds and Froude numbers given by

R = 20t F = 2t

these numbers being based on the cylinder diameter and current velocity.

For the plunging case the motion of the hydrofoil is sinusoidal

with the elevation of the cylinder axis relative to the plane of the

initially undisturbed free surface given by
y = A sin(g%g)
where A and P are the amplitude and period, respectively, of the motion.

The velocity of the cylinder is thus

. _ 2TA OS,Znt
P P

)

and the Reynolds and Froude numbers are then given by R = 20y and F = 2y,

respectively.

In each case the coordinate system is of the form shown in Figure 25
and discussed above in this section, with 37 points on the body and
30 points on the free surface on each side of the body. The remote
boundary where the fluid is undisturbed is located at a radius of 10
cylinder diameters. The convergence acceleration parameters used were
1.0 for the momentum equations (7a-b), 1.8 for the Poisson equation (7c¢),
0.45 for the surface pressure equation (9), and 1.85 for the coordinate
5

system equations (18). The iterative convergence criteria used were 10

for the coordinate system and 10—4 for the velocity and pressure.
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The initial point distribution on the cylinder was determined by
a sine curve, with points distributed symmetrically and concentrated near
each free surface contact point. The initial distribution on the free
surface was determined by an exponential curve, with points concentrated
near the body. It was found necessary to have the points adjacent to
the free surface-body contact point approximately equidistant from the
contact point =21se stability problems arose with the surface. The points
move on both the hydrofoil and free surface as time passes, but the same
relative distributions are maintained as discussed in the previous sec-

tion.

As noted in the discussions above, the curvilinear coordinate system

continually deforms as time progresses, always keeping a coordinate line
coincident with the deforming free surface. This behavior is evident in
Figure 25 which shows the coordinate system at four times for the trans-
lating hydrofoil. The free surface rises in front of the hydrofoil, and
the fore contact point slides up along the hydrofoil contour. At the rear
of the hydrofoil, the surface falls, and the aft contact point moves down-
ward.

Velocity vectors and the hydrofoil pressure distribution for this
solution are shown at one time in Figure 26. The vectors clearly show
the fore and aft stagnation points to be well below the corresponding sur-
face contact points on the hydrofoil. The pressure distribution shows
a positive pressure spike adjacent to both contact points, but : smooth
distribution elsewhere on the hydrofoil. This spike is due to numerical

error resulting probably from the modeling of the contact point movement.

35




— — < " o P . ——— R i

Figures 27 and 28 give the surface elevation and pressure distributicn
in the vicinity of the hydrofoil for three times. There is a smooth rise
of the surface in front of the hydrofoil and a smooth depression behind.
The low Reynolds number for this sclution causes distributions to dissi-~
pate downstream so that no surface waves occur. The surface pressure
distribution in Figure 28 shows some jaggedness just upstream of the hydro-
foil. This is probably due to the numerical phenomenum of wiggles (two-~
cell wavelength oscillations), introduced in the present case by the
modeling of the contact point where the pressure is fixed at zero.

The initially undeformed coordinate system used in the oscillatory
solution is shown in Figure 29. A stronger concentration of lines near the
free surface and hydrofoil contour was used in view of the results dis-
cussed above. Figure 30 shows the temporal oscillation of the lift coef-
ficient. The curve is seen to be deformed from a pure sinusodial oscilla-
tion. After an initial rise, the force remains upward throughout the cycle.

Figure 31 shows a series of plots of velocity vectors at several
times during the cycle, while Figure 32 shows the same thing but in detail
of the region around the right surface-body contact point. As the body
rises initially, the fluid moves downward from the surface and inward
toward the void being left by the rising body (cf. T = 0.01 in Figure 31).
Since the fluid adjacent to the body must rise with the body, however, due
to the viscous no-slip boundary condition, a vortex is created near the
contact point (T = 0.01 in Figure 32). (A similar vortex, but of the
opposite rotation is, of course, created off the left contact point.)

These vortices move away from the body and decrease in intensity as the

quarter-cycle is approached (cf. T = 0.11 in Figure 32).
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At the quarter-cycle (0.157), the body reaches its highest point and
then reverses its motion to move downward. This forces the fluid beneath
the body to the sides. The beginning of this sideward motion can be seen
at T = 0.17 in Figure 31 just beneath the body. At this time, inertia
causes most of the fluid to still reflect the previous upward movement of
the body. This inertial effect is evident also in the corresponding
detail plot in Figure 32, where the fluid adjacent to the body has
reversed its motion and is moving downward with the body while the rest of
the fluid motion is qualitatively similar to that at T = 0.15 before the
quarter-cycle.

As time passes, the influence of the downward motion of the body
spreads progressively throughout the fluid so that more and more of the
fluid acquires downward and sideward motion beneath the body, with con-
sequent upward motion toward the surface (cf. T = 0.21 and 0.31 in Figure
31). This annihilates the vortices, and new vortices of opposite rotation
to the original form just off each surface-body contact point (cf. T =
0.21 in Figure 32.) These vortices also move away from the body and
decrease 1in intensity as the body moves toward its lowest point at the
three-quarter cycle time (T = 0.471).

At this time the motion of the body again reverses, and the body
starts back upward. This causes inward motion to begin just beneath the
body (T = 0.49 in Figure 31) with upward motion adjacent to the body
(T = 0.49 in Figure 32). This new pattern of motion then spireads out into
the remainder of the fluid, competing initially with the inertially per-
sisting motion from before the last body reversal. As at the quartev-

cycle, the existing vortices are annihilated, and new ones of opposite
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rotation again form off the contact points (cf. T = 0.53 in Figure 32).

The general fluid motion is again downward from the surface, with inward

| and upward motion beneath the rising body (cf. T = 0.61 in Figure 31) as

at the beginning of the cycle.
The movement of the hydrofoil free surface contact points along the

hydrofoil contour is modeled by a condition of continuity as discussed in

detail in Ref. 3. Essentially this model causes the contact points to slide
along the hydrofoil contour in response to a net inbalance of flow into the
cell at the contact point. Net inflow will thus cause that contact point

to slide upward along the contour. Another model based on a condition of
zero stress at the contact point was also investigated but was found to be
unsatisfactory as also discussed in Ref. 3.

Figures 33 and 34 show the surface elevation and pressure at approxi-
mately the quarter, half, three-quarter, and full cycle times. The ele-
vation curves show that the mean surface position is not flat, but is
depressed in the vicinity of the body. This result is in qualitative agree-
ment with a periodic boundary layer solution and experimental flow visuali-
zaticn results given in Schlichting [14] for a circular cylinder oscillating
in an unbounded fluid. There it is shown that a mean secondary motion exists
in which fluid moves from the sides toward the body (normal to the direction
of oscillation) and then away from the body parallel to the oscillation
direction (cf. Figure 11.7 of [14]). 1In the present case this type of mean
flow would be toward the body, parallel to the free surface, and then away
from the surface beneath the body. This then would result in a mean surface

depression.
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VIII. CONCLUSION

The excellent comparison of the numerical results based on the techni-
que of numerically-generated boundary-fitted coordinate systems with the
Blasius boundary layer solution for the semi-infinite flat plate demon-
strates that this technique can be quite useful in the numerical solution
of the Navier-Stokes equations.

The technique of numerically generated boundary-fitted coordinate
systems is clearly an effective aid in treating flow problems involving
both free surfaces and solid boundaries. With this technique the complica-
tion of the boundary shape is essentially removed from the problem. It is
possible to obtain numerical solutions for viscous flow, with viscous
boundary conditions on the free surface as well as on the solid body.

The research results presented in this report leave several problems
unresolved. Regarding the submerged hydrofoil solution, the coordinate
configuration used had a zero Jacobian between grid points in the field of
calculation. This zero Jacobian made it difficult to contract coordinate
lines near the branch. Also, an ambiguity in the finite difference expres-
sions for the cross derivatives at the point of zero Jacobian led to
ambiguous results in the coordinate solutions. Thirdly, the coordinate con-
trol functions were found to be inadequate in controlling coordinate lines
in the field. An arbitrary change in the coordinate control often led to
unpredictable results for the physical coordinates. Some progress was made
in this area during the latter stages concerning the hydrofoil in the free
surface with the incorporation of an automated control. Finally, at pro-
ject termination, the solution could not be run successfully for
Reynolds numbers greater than 100 for the submerged hydrofoil. The combina-

tion of the coordinate contraction functions and the field point with a zero

39




Jacobian is believed to be the cause of a pressure source that occurred at
the trailing edge of hydrofoils for Re > 100. Finally, since higher
Reynolds numbers were not obtained, the method could not be verified with
the experimental data available for submerged hydrofoils.

The presence of a zero Jacobian in the field is not a universal fea-
ture in the boundary-fitted coordinate systems, but is peculiar to the
type of configuration adopted for the transformed plane in the submerged
hydrofoil solution. This configuration did have certain advantages as
noted in spite of the presence of the zero Jacobian. The configurations
used for the hydrofoil in the free surface and for the semi-infinite flat
plate (and for the external flow about airfoils in other studies) do not

have any zeros of the Jacobian in the field. Further study would be

necessary to develop better configurations for the submerged hydrofoil case.

Concerning the hydrofoil in the surface, the coordinate configuration
was less of a problem, and no zeros of the Jacobian occurred in the field.

The results given in the present work are all at very low Reynolds number,

but the solution can in principle be run at any Reynolds number by increasing

the attraction of the coordinate lines to the body and free surface at
higher Reynolds numbers in order to maintain a sufficient number of lines
in the viscous layers. Such a procedure is currently under investigation
in connection with the flow about airfoils. The problem is made more
difficult, however, with increasing Reynolds number. More investigation
of the control of the coordinate system so that sufficiently close spacing
is maintained near the free surface as it deforms is necessary, as is
further study of the modeling of the hydrofoil-free surface contact point

movement.
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The inclusion of a bottom of arbitrary shape in the current solution
is not difficult, nor would be the addition of a second hydrofoil in tandem.
(The inclusion of a solid bottom was accomplished in an extension of the
present work as reported in [16].) Similarly the hydrofoil and/or bottom
could be allowed to deform in time without complicating the problem
unduly. This is because all of the computation is done on the fixed
rectangular transformed grid regardless of the shape or movement of the
physical boundaries. Wind shear on the free surface could also be added
by a change in surface boundary conditions to include applied external

shear as well as pressure.
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