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I. INTRODUCTION

This progress report concerns research completed to date under grant
AFOSR-75-2793. The personnel listed in Section II received at least partial
support from the grant during this period. Completed research is discussed
in Section III. Publications, including papers submitted for publication,

are listed in Section IV.

II. SUPPORTED PERSONNEL
Y. K. Chin, Besearch Assistant

W. H. Kwon, Research Associate

J. M. Mocenigo, Research Assistant 1
A. E. Pearson, Professor of Engineering

K. C. Wei, Research Assistant
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"methods for stabilizing a "time-varying' linear differential system. New

III. RESEARCH COMPLETED

(a) Control ef Linear Systems
Although the synthesis of feedback control laws for linear differential

systems has been actively researched for many years, there exist very few

results on this class of problems were obtained by Kwon and Pearson, [1-3],

relative to the linear time varying system

x(t)
y(t)

A(t)x(t) + B(t)u(t), x(to) =%
c(t)x(t)

o

where the matrices (A(t), B(t), C(t)) are assumed to be piecewise continucus
functions for all t 2 t,- The feedback control law synthesized for this sys-

tem is of the form
e -1 r =1
u(t,x) = -R “(t)B'(t)P ~(t,t+T)x

where the nonsingular symmetric matrix P(t,t+T) is obtained by integrating the

matrix Riccati equation

=3P(1,0) -

- -A(1)P(1,0) -P{(1,0)A' (1)

-P(x,0)C'(1)Q()C(1)P(1,0)

+B(T)R™I(1)B" (1) s t%0
backward in time from t=0 = t+T to 1= t, subject to the boundary condition
P(o,0) = 0. It is shown in [3] that the above feedback control law is optimal
for the moving cost function

t+T

J(u) = J [y’ (1)Q(1)y(1) + u'(1)R(1)ult)dr
t

subject to the moving terminal constraint x(t+T) = 0, where (Q(:), R(+)) are




VRN

»

B

By

nonnegative definite symmetric weighting matrices with R(t) > 0 for all

t, and T is a chosen positive scalar. More importantly, the above control
law has been shown to be uniformly asymptotically stable under some mild
technical conditions involving controllability and observability of the matrix
pairs (A(t), B(t)) and (A(t), C(t)) and the choice in the parameter T > 0.
A major advantage of the above control law in comparison with the standard
regulator problem is that the integration interval is finite for the Riccati
equation of this formulation, while it is infinite for the solution to the
standard regulator problem. Also, it is shown in [3] that the minimal values of
the cost functions for the above receding horizon problem and the standard
regulator problem are identical for T = =, thus providing a link between the
two types of linear state variable feedback control law solutions.

In the case of time invariant systems with constant weighting matrices,
i.e., (A, B, C, Q, R) all constant, the above control becomes a fixed gain
feedback control law and, as shown in [3], generalizes a well-known method for

&
stabilizing a linear fixed system given by Kleinman. In particular, Kleinman's

result is obtained as a special case by choosing Q = 0 for the weighting matrix
on the state.

The dual problem in filtering theory corresponding to the above control
problem is shown in [3] to yield an asymptotically stable Kalman-Bucy filter
for the case of completely unknown statistics involving the initial state
x(to) = X s i.e., the case in which the mean E{xo} = io = unknown and the
variance E{(x° - ;(o)(xo - io)'} = =,

Three technical notes pertaining to the control of linear systems have

also been completed during this period. The first, [4], extends a result due

*
Kleinman, D. L., "An Easy Way to Stabilize A Linear Constant System," IEEL
Trans. Auto. Contr., AC-15, 692, December, 1970.
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to Kleinman in the feedback stabilization of a discrete-itime constant

linear system, x(i+l) = Ax(i) + Bu(i), by a feedback control of the form

M
B'A'N[eI + J A'BR
k=m

1 1

Beid = 10 N+1_x

parky™t AL (4
where the choice in the integers (m,N) and the nonnegative scalar ¢ depend on the
multiplicities of the zero eigenvalue as a root of the characteristic and mini- J

1
mal polynomials of the matrix A. The main result of this note is the removal

of the nonsingularity condition on the A matrix and a weakening of the.controlla-‘
bility assumptions pertaining to the pair (A,B).

The second technical note, [5], derives new lower bounds on the solution
matrix K to the algebraic matrix Riccati equation, A'K + KA - KBB'K + Q = 0,
and shows how these bounds are sharper than those appearing previously in the
literature, as well as providing exact estimates in certain special cases. Ex-
tensions to the discrete algebraic matrix Riccati equation are also included
in (51.

A third technical note, [6], provides new sufficient conditions for the

linear constant differential-difference system
x(t) = Ax(t) + A x(t-h) + Bu(t)
to be memoryless stabilizable by a feedback c;ntrol law of the form
u(t) = F x(t). ;

More importantly, the results in [6] are constructive in that the gain matrix
F can be easily computed if it is determined that the various derived sets of
sufficient conditions for stabilizability are upheld. One such set of suffi-

cient conditions is the existence of a positive definite matrix Q and a

&

Kleinman, D. L., "Stabilizing a Discrete, Constant, Linear System With Appli- %
cation to Iterative Methods for Solving the Riccati Fquation," IEEE Trans. on
Auto, Contr.,, AC-19, pp. 252-254, June 1974,
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positive scalar T such that the matrix inequality
uAhQ-lAﬁ < 2BB' + P(T)QP(T)

is upheld, where P(T) is the solution (at a fixed time T) of the matrix Riccati

differential equation
P(t) = -AP(t) - P(t)A' - P(t)QP(t) + BB', P(o) = O.

In this case, the stabilizing gain matrix F is given by F =-B'P—1(T). Another
(simpler) set of sufficient conditions is given by the selection of the matrix

Q according to the inequality
]
Q222 (HH')I

where H is a matrix such that Ah = BH. This case applies to that special situ-
ation in which the columns of Ah are linear combinations of the columns of B.
The gain matrix F is defined the same as in the first case after defining Q

so as to satisfy the above inequality. This special case is not devoid of
representation since it is shown by way of example in [6] that such a Q can

be constructed for the linear constant differential difference system

T (i) e (i)
) a; y () + b B, v " (t-h) = u(t)
i=o i=o

(1) 4 izh-derivative of y.

where y
Results have been obtained during this period concerning a minimum energy
regulator problem for linear time-invariant systems in which the control vari-

able is subject to an "average-power' constraint on the response time interval

[7]. The optimization problem considered is that of minimizing the control energy
cost function,

T
J(u) = J u'(t)u(t)dt
t

o

for the linear system x = Ax + Bu, while regulating the state of the system from

.
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the given initial state x(to) = x to the origin x(T) = 0 in a fixed time

T-t . After solving this problem (the solution of which is well-known), the
response time (T—to) is chosen so that the optimal control signal @ satisfies
the average-power constraint

G0
I u(t)u(t)dt = 1.

t
()

o

1

T-t
()

This is an optimal controller with transient response characteristics comparable

to a time optimal "bang-bang" controller in which each control signal is subject

g

to the hard constraint Iui(t)| € 1 on the response time interval t s ts By

and T* is the minimum time solution to reach the origin. The above average-power
constraint is also satisfied (coincidentally) by the bang-bang controller, which
accounts for the similarity in their transient response characteristics. However
the minimum energy average-power contrained regulator is easier to obtain in
feedback form due to the softer constraint on the control variable.

Although also implicitlv defined, the main advantage of this

control law over the time optimal control is that a suboptimal, explicitly de-

fined, feedback control can be constructed, as shown in [7], with whatever degree
of accuracy is desired for a general nzh-order system, while this is practically
impossible for the time optimal bang-bang controller when n 2 3. It is noted
that the control law for the minimum energy average power constrained regulator
is nonlinear, and that the asymptotic stabilization of this nonlinear control

law has been established in [7]. Simulation results for second and fourth

order examples are also summarized in [7] which illustrate the restraining

effect of the average power constraint on the control signal while regulating

* the state of the system over a wide range of initial conditions in the state

space. This is the major advantage of this nonlinear controller over a linear
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feedback controller designed to achieve the same settling time.
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(b) Control of Nonlinear Systems
Sufficient conditicns for the controllability of the class of nonlinear

systems described by

x(t) = A(t,x(t),u(t))x(t) + B(t)u(t) + S0 0(t)ulE)),t S L,

have been obtained by Wei [8] during this period. These conditions involve the
nonsingularness of the controllability Gramian associated with the parametrized
matrix pair {A(t, z(t),v(t)),B(t)}, where z(t) and v(t) are regarded as

elements (parameters) in a product space, Cnm[to,tl], of vector valued continu-
ous function pairs, (z (t),¥(t)), on the time interval to <t g tl. Using the
Schauder's fixed point theorem in Cnm[to,tl], sufficient conditions for both
local and global controllability are derived involving the boundedness and

continuity of the quantities (A(t,x,u), B(t), f(t,x,u)) and their partial

derivatives, in addition to the nonsingularness of the aforementiéned controllabi-
lity Gramian. These results remove some assumptions previously needed in earlier
publications on this problem and, generally, extend these earlier results to
a broader class of nonlinear systems.

A number of results have been obtained during this period concerning the ?

bilinear regulator problem for the class of nonlinear systems described by :

m
x(t) = (A + ) Bou (£))x(t) *
i=1

vhere u = (ul,"um)' is the control variable and (A,B . Bm) are given nxn

1s
matrices, [9-10]. First, existence of an optimal control has been established
for the minimization of the quadratic cost
T
J(u) = x"(T)Qx(T) + ] [x'(£)W(t)x(t) + u'(t)R(t)u(t)Ildt

t
o

where (Q,W(t),R{t)) are symmetric nonnegative definite wéighting function matrices




d

with R(t) > 0 for all t c[to,T]. Next, the regulator problem for the special
class of commutative bilinear systems has been considered in sorme detail. This

is the class for which every pair of matrices in the set {A,B "Bm} comnmute

1°
with each other. Within the context of this class, it has been shown that

the optimal control which minimizes the above quadratic cost, without any
terminal constraint on the state, is in the form of a constant vector which
satisfies a certain nonlinear algebraic equation. Furthermore, for a single
input commutative bilinear system (m=1), it is shown in [10] that this optimal
control is unique if (as a sufficient condition) the matrix BiQ + BiQBl is non-
negative definite. Also, sufficient conditions have been obtained in the multi-

input case which involve the nonnegative definiteness for all ved of the mxm

matrix Z(v) defined by .

Zioe = v'(BéBiQ + BEQBj)v, i,3 = 1, = m.

1]
The implication of these results for the regulator problem associated with a
commutative bilinear system is that the optimal control can be computed by
well-known iterative methods in finite dimensional (R™) spaces, and that this
control vector is unique if certain additional cocnditions involving the system
matrices are upheld.

Concerning the same class of regulator problems for commutative bilinear
systems, but with a fixed terminal state constraint, i.e., x(T) = x, = a

1

given terminal vector, it has also been shown in [10] that if x. belongs to

1

the reachable set, then there exists a constant optimal contrcl which does
the job, and that this optimal control vector satisfies a certain nonlinear
algebraic equation which depends on the given boundary conditions: x(to) = x

and x(T) = x In the terminal constraint problem such optimal controls are

1
not generally unique and a simple example is given in [10] to illustrate this

fact.

v e TG . VR T




Application of the above theory for the regulator problem of a commu-
tative bilinear system has been obtained in the companion paber [11]. Here
it is shown how the two dimensional missile intercept problem for a maneuver-
able target and a pursuing missile can be formulated in the present context
through the introduction of some auxiliary states. The kinematic equations

are

ilm -vsin x,(t) + x2(t)up(t)

iQ(t) = v,cos xa(t) - xl(t)up(t) - vp(t)
u, - up(t)

where (VT,Vp) are the line speeds of the target and pursuer, (xl,x2) are the

ia(t)

: rosition coordinates of the target relative to the pursuer, x, is the relative

3

angle between the headings of the two missiles, and (uT,up) are the angular

rates of the target and pursuer. Introducing auxiliary states %, = sinx

; 4 S T

§ cosxy and Xe = 1, and making the crucial assumption that the line speed vp of

E $
the pursuer can be modeled proportional to up, i.e., vp(t) = yu_(t), it is ;

first shown in [11] that the resulting equations of motion are in the bilinear

form, x = (A + Bup)x, and that the ©6x6 matrices (A,B) commute. This implies
f that the optimal control for the quadratic cost problem is a constant vector
satisfying a certain nonlinear algebraic equation. Furthermore, it is pessible
to solve these nonlinear equations explicitly, i.e., in closed-form, for the

terminal constraint case: xl(T) = x2(T) = 0, i.e., zero missed distance, given

B P R R CEO T T .

A o SUEAEEL

that the intercept angle 8 = xs(T) is allowed to be selected with some degree

of latitude. Specifically, it has been shown that there exists a triple

TR

F (y,8,T) for every set of initial data (xl(to), x2(to), xs(to)) such that the

desired zero missed distance terminal constraint can be upheld, and that the
%

optimal control up which minimizes the quadratic cost

3 T
J(u) = I uQ(t)dt

{ t
(o]
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subject to xl(T) = xQ(T) = 0, is a constant given by

A . xq (t )-8
P uT T-t
o

Inasmuch as this solution has been obtained in closed-form, it is potentially
feasible that the result might be used on-line for obtaining a closed-loop
control law for the missile intercept problem assuming that the target speed,
acceleration and initial heading, (vT,uT,x3(t°)), can be estimated from the
given measurements. A least squares estimate of the pair of quantities
(vT,xs(to))'has been derived, and the entire step-by-step estimation and control
sequence, which defines the closed-loop control law, has been simulated under
a variety of initial conditions. A summary of these simulation runs is given
in [11].

A singular perturbation problem has also been considered in [11] relating
to the practical situation in which the missile turn rate is furnished by a
motor with actuator dynamics. First order dynamics were assumed for the analy-
sis and simulation studies, but the results actually apply to higher order
actuator dynamics are well. An interesting feature of these results is that
a closed-form solution can be obtained for the higher order singularly per--

turbed system of this paper in contrast with the approximate solutions for

general nonlinear systems.

(c) Parameter Identification

A deterministic least squares identification of the coefficient matrices

in the differential operator model

P(D)y(t) = Q(D)u(t), D =

g,
dt

5




T

CTe

11

where

n-1 n
P(D) = D" + [ Pn_iDi, Q(D) =
i=o i

2 i
o .0b,
(o]

nes-11

has been developed in [12,13] which differs from more traditicnal uses of
least squares theory in the following respects: (i) input-output data

[u(t),y(t)] is assumed to be given on a finite time interval, 0 £ t € t., of

o |
arbitrarily short (but non-zero) duration, (ii) unknown disturbance inputs and
measurement noises on 0 € t < tl, are modeléd implicitly in ‘the above model by
arbitrary solutions to a homogenecus linear differential equation of assumed
order, but with no assumptions about the characteristic modes of this equation,
(iii) no attempt is made to estimate either the initial state cf the system or
the initial conditions giving rise to the disturbance inputs on 0 ¢ t ¢ tl.
One advantage of this approach, which might be termed parameter identifica-
tion without initial state estimation, is that the potential exists for obtain-
ing very accurate estimates of the system parameters, based on input-output
data observed over a relatively short time interval, even for very small signal-
to-noise ratios, eg. -20db. or less. The main reason for this lies in the
technique developed in [12,13] for circumventing the need to estimate the
unknown initial conditions, which reduces this aspect of the computational
burden associated with other approaches. Another reason is that the distur-
bances are modeled deterministically as uncontrollable modes, and the frequencies

associated with these modes on 0 € t € t, are identified along with the system

1l
parameters.

Theoretical conditions for the uniqueness of solutions to the above least
squares estimation problem have also been obtained in [13]. These conditions

involve the linear independence of the given input-output data, together with

a certain number of their derivatives on [O,tll. Simulation results are




12

reported in [13] which illustrate that highly accurate estimates for the
parameters of a fourth order system can be obtained on a time interval com-
parable to the time constants in the system even in the presence of very large
disturbance signals.

Subsequent to the results reported in [12,13], important extensions have
been obtained which enlarge the class of systems and provide for computational
advantages in a variety of situations [14]. These extensions arise principally
by viewing the identification problem in terms of finding a parameter vector 6

which satisfies a differential operator equation cf the form
P(D)v(t) + Q(DIV(t)f(6) = 0, O <t st

where (P(D),Q(D)) are given pclynomial matrices in the differential operator

Ba (v(t),V(t)) are vector and matrix valued functions of the given input-

dt’

output data, f(8) fs a given vector valued function (possibly nonlinear) of

the parameter vector 6, and the observation time interval, 0 < t < tl, is
again of arbitrarily short duration. Some attributes of this formulation in

relation to the results reported in [12,13] are the following: (i) the para-

meters 0 may enter nonlinearly into the basic model, i.e., the function f(-)
may be a nonlinear function of 6, (ii) the disturbances on 0 € t ¢ t, are

modeled exactly the same as in [12,13], i.e., by arbitrary soluticns to a

R

homogeneous differential equation of assumed order, but with no assumptions
about the characteristic modes of this equation; however, the parameters
associated with the disturbances are modeled explicitly in the formulation in
{1u4], in contrast with the implicit modeling of disturbances in {12,133, (iii)

Y the coefficent matrix of the highest derivative on the input-output data is
allowed to be singular for the formulation in [14], while this condition was
previously ruled out due to the particular state variable representation used in

(12,13].

B A
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The computational aspects of the formulation in [14] involve minimizing

an explicitly defined function J(8) of the form
J(6) = £'(8)ef(0) + 2¢'f(0) + a

where the nonnegative definite matrix ¢, the vectorr and the scalarc are deter-

"

mined by integrating a certain set of differential equations driven by the in-

I put-output data on 0 € t ¢ tl. Moreover, this minimum is known to correspond to
' * #*

the sought value of 6=6 if J(6 ) = 0 and some other nondegeneracy conditions

are upheld involving the input-output data (see the Assertion on p. 846 of [14]).
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