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Abstract. This is an expository paper presenting various ways of transforming

dependent models into independent ones and displaying applications in a variety

of Contexts including reliability modelling, l i fe  testing , and nonparametric

estimation in the study of competing risks .

1. Introduction.

The central theme of this survey is the transformation of dependent models

into independent ones. By “dependent (independent) models” we mean multivariate

stochastic models whose joint probability distribution are distributions of

dependent (independent) random variables. Each of the transformations discussed

here can be used to convert the original dependent model into an independent

model which is equivalent (in a specified sense) to the original model. It is

the purpose of this paper to present:

(a) some key theorems upon which such transformations are based , and

(b) a variety of applications in reliability and bioinetry .

We do not give forma l proofs of the results presented; these may be found

in the original papers cited . Rather, we motivate the key ideas by examining

important special cases and several illustrative examples .

2. Distributions with exponential and proportional hazard minima.

In this section and the next we describe methods for converting dependent

models into independent ones based upon the assumption that the joint distri—

bution of the random variables in the original (dependent) model belongs to a

specified family of distributions.

We begin wi th some terminology and notation. A life length T is a

nonnegative random variable such that lim
~~~ 

P(T > t) — 0. Suppose that a

system consists of n components with random life lengths T1,..., T .  We

say that the system is a series (parallel) system if the failure of the system 

-•- -~~~ - - - - - - •—  —- —— - • - - • - •  — -—  -

• — — . • . —• •. - -~~~~ 
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coincides with the earliest (latest) component failure. Thus, the life length

of the corresponding series (parallel) system is given by min(Ti, 1 � i � n)

[max(Ti, 1 < i � n ) ] .  Series and parallel systems are examples of more general

systems in reliability known as coherent systems [see Birnbaum , Esary, and

Saunders (1961) or Barlow and Proschan (1975)).

A random vector (T1, . . . ,T )  has ~ cponential minima if min(T
1, i t I) is

exponentially distributed for every nonempty subset I of 11 ,...,n}. In

reliability terms, a random vector has exponential minima if the life length

• of every series subsystem (i .e. ,  every series system which may be formed by

using a subset of the n components) is exponentially distributed. In

particular , individual components (series systems of size one) have exponential

life lengths . The (n—dimensional) random vectors T and U are marginally

equivalent in minima (T ~ U , in symbols) if min(T1, i € I) and min (U i, ~- £ I)

have the same distribution for each nonempty I c {1, . . ., n ) .

A particularly important multivariate distribution with exponential minima

is the multivariate exponential (MVE) of Marshall and 01km (1967). The classic

paper of Marshall and 01km (1967) and the model derived therein have prompted

numerous investigations (see the annotated bibliography of ICotz (1974)1. The

following characterization of the MVE is a particularly useful one .

Theorem 2.1. A random vector (U1,...,U) has the (n—dimensional) lIVE

distribution if and only if there exists a collection {H3, J € J}, uJ —

of independent exponential random variables such that U~ — min (H~ , J € 3, i E J),

• i — l ,...,n.
A

Theorem 2.1 is an immediate extension of Theorem 3.2 of Marshall and

01km (1967). To simplify notation we shall adopt the following conventions

throughout the remainder of this paper. Let I denote the collection

of all nonempty subsets of (1, ... , n). Whenever an element

S
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of I appears as a subscript, as, for example, in 
~ 

we

shall often write instead H~ • We say that two random
1 m

stvariables X and Y are stochastically equal and write X — Y, if X and Y

have the same probability distribution. Unless otherwise indicated , all random

vectors are assumed to be n—dimensional.

Esary and Marshall (1974) prove the following:

Theorem 2.2. Suppose that a random vector T has exponential minima. Then

there exists a random vector U with the MVE distribution of Marshall and

01km such that T U.

Theorem 2.2 can be used to obtain a consistent estimator for system

reliability as the following example illustrates:

Example 2 .3. Suppose that an estimate of system reliability for an arbitrary

coherent system of n components is desired prior to manufacture of the system.

Suppose also that the only available failure data, however, is for n—component

parallel systems whose component life lengths have the same joint distribution

as those of the given system. If component life lengths have exponential

minima, then by Theorem 2.2 there is a random vector U with the lIVE distri-

bution such that T U. Consistent estimators for the parameters of the lIVE,

given the failure data from parallel systems as above, have been obtained by

Proschan and Sullo (1976). Since the reliability of the system can be expressed

as a continuous function of survival probabilities P[min(T~~ i e I) > t ] ,  I € I

[see Esary and Marshall (1970)], we can replace P[min(T , i e I) > t ]  by an

estimator for P[min(Ui, i ~ I) > t] given by Proschan and Sullo (1976) and

thus obtain a consistent estimator for system reliability.

In view of Theorem 2.1, we can state Theorem 2.2 in the following equivalent

form .

S

~~~~~-~~~~- ~~~~~~-- -~~~~~~~~~~~~~ -~~~~~ 
-
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Theorem 2.3. Suppose that a random vector T has exponential minima. Then

there exists a collection J c J}, ILl — (l , . . . ,n}, of independent

exponential random variables such that for each I e I ,

min(T., I ~ 
]
~) 
S_tmin(R J € 3, J n I � 0) .

Consider, for example, a series system whose component life lengths

have exponential minima and are mutually dependent. If we view the

independent random variables {H
J
} of Theorem 2.3 as the component life lengths

in a new series system, then, in effect, Theorem 2.3 allows us to transform a

dependent model into an independent one, while preserving, the life distribution

of the original system. Under different conditions we shall see in Section 4

how to transform a dependent model into an independent one, while preserving

not only system life length, but also the probabilities of occurrence of certain

“failure patterns”. We shall also see that such transformations from dependent

to independent models are not only of interest in their own right, but also

have important statistical applications to the theory of competing risks and

to statistical life testing, in general.

Esary and Marshall (1974) establish existence only in their proof of

Theorem 2.3 by using the special nature of coherent systems In reliability

theory . The proof of Theorem 2.3 given by Langberg, Proschan, and Quinzi

(l977a) Is considerably more elementary and specifies explicitly the distri-

butions of the independent random variables {H~) as follows. Suppose that

P[min(T 1, I c I) > t )  — exp(—u1t), I c I, for some collection I € 1) of

positive constants. Then the random variable in Theorem 2.3 is exponentially

distributed with parameter A~ given by

— (_l)”3
~~
1
(u i...~_J~9.iT + 

i1
j
2eJ Ulh l21 

— ..• + (_ 1) # (J ) ~~ ) ,  (2.1)

- - - - ‘ -~~~~~ -~-~~~~-~~~~~~ _
~~~~~~~~LL_I . — - - * • •~~~~~•~ -~-- - -~. T ~~~~~~
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where #(J) is the cardinality of 3 and ~ is the complement of J in

(l ,...,n). Formula (2.1) provides an explicit solution for the parameters

fA~ } in terms of the known constants (u ] ) . Formula (2.1) also indicates

ways of testing the validity of the assumption of exponential minima as the

following examples illustrate.

First, suppose It is known a priori that, due to the structure of a

particular system , It is impossible for the components in some subset 3

(generally, some collection 
~~~~~~~~~~ 

of subsets) to fail simultaneously.

This is equivalent to assuming that the corresponding parameter A3 0. If

the corresponding linear combination of (known) constants ~~~~~ given by (2.1)

does not yield A3 
— 0, then the assumption of exponential minima must be

wrong. Similarly, if some combination of the {~~1
} yields a A~ which is

negative, then the assumption of exponential minima is likewise incorrect.

More generally , formula (2.1) indIcates a heuristic method for testing

the statistical hypothesis of exponential minima. For example, consider a

two—component system with component life lengths T1 and T2. If P(min(T1, i € I) > t]

— exp(—~1t), I € 1, then by (2.1),

X 1 — : A 12 1j 2 � 0

Consequently, we would expect that estimates for the ~i1
t s, together with an

allowance for random error , would satisfy a similar set of inequalities. If

not, we would tend to doubt the hypothesis of exponential minima.

Employing the same technique of proof used to prove Theorem 2.3, Langberg,

Proschan, and Quinzi (1977a) [hereafter referred to as LPQ (l977a)] obtain a

generalization of Theorem 2.3. First we introduce some terminology . The

~~z i ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~ -- -—~~~~~~~
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hazard function R associated with the distribution function F of a nonnegative

random variable is the function R(t) — —log[l — F(t)], t � 0. The (multivariate

distr:bution of the) nonnegative random vector T has proportional hazard

minima if there exists a collection ~~~ I e I) of positive constants such

that P[min(T1, I € I) > t] — exp[—~1R(t)], I e I, where R(~ ) is a hazard

function, i.e., a nonnegative, nondecreasing function satisfying R(0) 0

and R(oD) — ~~~. LPQ (1977a) prove the following:

Theorem 2.4. Suppose that a random vector T has proportional hazard minima

with hazard function R. Suppose further that R is continuous at

sup{t: R(t) = 01. Then there exists a collection {H
3, 

3 e 3), u 3 —

of independent random variables with hazard functions proportional to R()

such that for each I € I ,

min(T1, 1€  I)~~~min(H3, J € 3 , J ri I � 0).

Fur thermore, the constants of proportionality (A3, J e J} are given by (2.1).

Remark 2.5. Note that in the special case R(t) — t, t � 0, the conclusion

of Theorem 2.4 holds by Theorem 2.3.

The assumption of proportional hazard minima holds, for example, when the

random vector T has minima with the Weibull distribution having a fixed scale

parameter .

3. Additive families of distributions.

Again using the same technique of proof as in the proof of Theorem 2.3,

LPQ (l977a) obtain a result for additive families of distributions which is

analogous to Theorem 2.3 except that “sum” plays the role of “minimum”.

Let F — {F 8, 0 € e} be a family of distributions parameterized by 0,

and let g be a binary operation on the set of real numbers. The collection

— 

~~~~~~
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F is said to form an additive family with respect to g if for every

~1’ ~~ 
c 0: and X2 are independent random variables with respective

distributions F
9 

and F
9 implies that g(X1,X2) has distribution F

9 ~~1 2 1 2
In Theorem 2.3, the family of interest is the additive family of exponential

distributions, F9(x) — 1 — exp(—Ox), with respect to g(x1,x2) = min(x1,x2
).

The following result applies to additive families [F9, 0 € 0) with respect

to g(x~,x~) — x1 + x2, where fxdF9
(x) = 9 .

Theorem 3.1. For each I E I, let the random. variable T1 have distribution

F € F (F , c Ml, where F is an additive family of distributions with

~
.1I

respect to g(x1,x2) — x
1 + x2 satisfying fxdF

~
(x) — i .  Then there exists

a collection {s~. J E .1) of independent random variables such that the

distribution of S~ belongs to F , 3 ~ J , and for each I e I ,

~ S~ .
J€J : JnI~O

Furthermore, the mean A3 of the random variable S~ is given by (2.1).

Examples of families satisfying the hypothesis of Theorem 3.1 are the

Poisson family with mean ‘~i and the gamma family with mean ~ and unit scale

parameter. A sample application in reliability follows.

Example 3.2. Suppose that an n—component system is exposed to shocks which

are not necessarily fatal. For each I E I, a shock of type I simultaneously

affects all components exclusively in subset I. For example, the shock pattern

for a two—component system might be exhibited as in Figure 3.1 below: 

--- - -- - - -  - -

t% ‘i .
~‘!‘~~~~~~~~‘t - ‘~- - ~~~~~~~~~~~~~~~~~~ 

.— —- -
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Component l K

Component 2 : ~
Distinct shocks cE— )
to system I

F Time

Figure 3.1.

Figure 3.1 indicates that a total of 5 distinct shocks occurred in the interval

[0, t]: 2 shocks affected component 1 alone, 1 shock affected component 2

alone, and 2 shocks affected both components simultaneously. Let N
1
(t) be

the number of shocks in the interval [0, t) which are simultaneously received

by the components exclusively in subset I. In Figure 3.1, N1
(t) 2, N2(t) — 1,

N12(t) — 2. Let K
1(t) be the number of distinct (in time) shocks in the

interval [0, t] which are received by the components in subset I. In Figure

3.1, K1(t) — 4, K2(t) — 3, K12(t) — 5. Note that, in general,

I(
1(t) — ~

JnI�O

so that the processes (I(
1
(t), t � 0), I € 1, are generally dependent. If

t � 0) is a Poisson process with intensity i~ > o, I € 1, then we

conclude from Theorem 3.1 that there exists a collection ( {N~ (t ) ,  t � 0), 3 e 3)

of independent Poisson processes such that for every I € 1,

N~(t).
J€J :JnI~O
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Furthermore, the intensity A
1 

of the process {N1(t), t � 0) is given by

(2.1).

4. Preserving system life length and failure patterns.

It Is desirable to have methods for converting dependent models into

independent ones which preserve essential features of the original (dependent)

model. For example, in the case of a series system whose component life lengths

have exponential minima, Theorem 2.3 allows us to convert a dependent model

into an independent one, while preserving the system life length , i.e., the

minimum of the component life lengths. In this section we show how, under

more general conditions , it is possible to convert a dependent model into an

independent one, while preserving features of the original model in addition

to system life length.

Consider an arbitrary series system of n components. In many practical

applications we are able to observe:

(1) the time at which the system fails, and

(2) the identity of the component or set of components which fails.

Note that although we use the language of reliability theory (series system ,

component, etc.), the general model has application in a variety of contexts .

For example, in population mortality studies, the data on each subject includes
4

(1) the age at death and (2) the cause of death. Suppose that an individual

dies due to one of n possible causes. An individual, in this context, can

be viewed as an n—component series system who dies due to the occurrence of
I

one or more of the n possible causes . As another example , suppose a personnel

study is undertaken to determine the departure patterns of employees in a large

company . The data on each employee might consist of (1) the length of stay,

i.e., the time from arrival to termination and (2) the reason for termination .

In general, one could imagine any model where observations include (1) the time

S
V - - . -  - - - - —— . .——- - ..—-.---——--—- — ----

~~~
-—- , :- - -

L ~~ - - 
-‘

~~ 
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at which a particular event occurs and (2) the identity of the cause or set of

causes (among a finite number) which results in the occurrence of the event .

Moreover, one or more of the “causes” might be identified with the withdrawal

of a unit from observation, resulting in censored or truncated data. For

convenience we continue to employ the language applicable in many other situations .

In this section we show how it is possible to replace a series system of

dependent components by a series system of independent components while

simultaneously preserving

(1) ’  the distribution of the time to system failure, and

(2~ ’ the probability of occurrence of each failure pattern .

By “failure pattern” we mean, in the case of a series system, the failure of a

set of components whose simultaneous failure causes (i.e., coincides with)

the failure of the system.

We begin with some terminology and notation. If T is the vector of

component life lengths in an n— component system , we say that failure pattern I

occurs, and write ~(T) I , If the simultaneous failures of the components

exclusively in subset I coincide with the failure of the system . Let S and

T be the vectors of component life lengths of two systems with respective life

lengths S and T. We say that the systems are equivalent in life lengths and

U’patterns (S T, in symbols) if

P(S > t , c(S) — I) — P(T > t , 
~.
(I) — I)

4%,

for every t � 0 and every I £ I.

Miller (1977) proves the following existence result:

Theorem 4.1. Let Ti be the life length of component i, I — l,...,n, and

let T be the life length of the corresponding series system. Assume that the

functions

S
.. _ ___

~~ \ . _ 
.‘-. -~~~~~

-- --.- — - .- - -- —-—---——
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F(t, I) — P(T � t , ~ (T) — I) ,  I € 1 (4.1)

have no common discoatinuities and that P(T
1 

— T~ ) — 0 for I � j. Then there

exists a vector S of independent random variables such that T 1
~
è’S, and

at least one of the S
1 

is a life length . The distributions of S1,...,S

are uniquely determined on it: F(t) > 0), where ~ (t) — P(T > t) , t � 0.

We can paraphrase Theorem 4.1 as follows. Under the given hypothesis,

the original (dependent) system with life length T — min(T.., 1 � I � n) can

be replaced by a system with life length S min(S~~ 1 � I � n), where the S1
1 s

are independent random variables in such a way that S~~
’T. Tsiatis (1975)

proves a similar result in the context of competing risk theory by assuming

that the joint distribution of ~~~~~~~~ has continuous partial derivatives.

It is noteworthy that the nature of the dependence in the original model is

unspecified in Theorem 4.1, i.e., the original components might be dependent

in any way whatsoever . LPQ (l977b) show that the assumption of no common

discontinuitjes in Theorem 4.1 is a necesaary as well as a sufficient condition

for the replacement of a dependent model by an independent one. Moreover, we

provide explicit expressions for the appropriate distributions in the

independent model . -

Before presenting the LPQ (1977b) result, we motivate the theorem as

follows. Let T min(T., 1 � i � n), where T1,...,T are the (dependent)

component life lengths. Let ~(t, I) be the joint probability that the system

survives beyond t ime t and failure pattern I occurs. For example, if n — 3,

~ (t , fl ,2}) — P(T > t , T1 — T2 < T
3) so that ties are possible. The problem

as posed in LPQ (1977b) can be stated as follows. Given the vector T of

(dependent) life lengths, determine a random vector S such that S 11T, where

Si~ •••~
Sn are expressible in terms of independent random variables. By

“expressible” we mean that the S~ are either themselves independent random

variables or else can be expressed as functions of independent random variables.

- .— - -—— - — ------—-- —-, - -- ---— -

~~ _ .- . —~*..,. ..
-.. — - ~~~~~~~~~~ -
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The solution is found by letting S1,...,S be the life lengths of components

in a theoretical n—component series system, where the components are exposed

to shocks according to the following shock model. Each component fails if

it receives a shock. Independent sources of shock are present in the environment-

one source for each I E I. A shock from source I simultaneously kills the

components exclusively in subset I. Let H
1 

denote the time (measured from

the origin) until a shock from source I occurs. Then S~ mIa(H
1, 

I c 1, i € I ) ,

1 � I � n, and S = H, where S — min(S1, 1 � I s n) and H — min(H1, I ~ 1).

Define

* 
I , if H1 < H

3 
for each 3 ~ I

~ Qi.) —

0 otherwise.

To allow for simultaneous failures among the components in the original system ,

we permit the dimension of the vector H to be greater than or equal -
~~ that

-
. 

of T. Generally, if T has dimension a, then the vector H of -times until

shock has dimension (at most) 2~ — 1. The subscripts on the components of H

are understood to be ordered lexicographically. It follows that

P(S > t , c(S) — I) — P( T > t , F ( T) — I) if and only if

P(H > t , ~~ (H) — I) — P(T > t , ~ (T) — I) (4.1)

for each t � 0 and each I £ 1. If (4.1) holds for every subset I of

(1,... ,n}, we write H~JT. The problem will be solved if we determine

independent random variables H1, I € 1, such that (4.1) holds for every t � 0

and every subset I of {l,...,n). LPQ (l977b) prove the following:

Theorem 4.2. Let T — min(T~~ 1 < I � n) be the life length of an n—component

series system, where T1 is the life length of component i, i — l,...,n. Define

I,

~~~~~~~P-i Iffl - ~~~~~ _ _ _ _
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~ (t , I)  — P(T > t , ~ (T) — I) and F(t, I) — P(T ~ t , ~ (T) — I ) ,  I £ 1. Let

~ ( t )  — P(T > t)  and n (F) — sup{x: 
~(x) > 0). Then the following statements

hold:

(1) A necessary and sufficient condition for the existence of a set of

independent random variables {H1, I £ 1) which satisfy H 1
~
’T, where

H a min(H1, I E I), is that the functions F(•, I), I € 1, have no common

discontinuities in the interval [0, c*(F)).

(ii) The random variables {H
1
, I € TI in (i) have corresponding survival

probabilities {G1
(•), I € TI  which are uniquely determined on the interval

[0, n(F)) as follows:

exp{_f [dF
C(., I)/~ ]) • fl ~~~~~~~~~~~~~~~~~~~ 0 � t < a(F), (4.2)

0 a~(I)�t

where FC(., I) is the continuous part of F(•, I), ~a1
(l)} ,,1 Is the set

of discontinuities of F(’, I), I £ 1, and the product over an empty set is

defined as unity .

The following generalization of Theorem 4.2 for arbitrary (not necessarily

coherent) systems also holds:

Theorem 4.3. Let T. denote the life length of component i, i — 1,. ..,n, in

an arbitrary a—component system with life length T. Define F(, I) and

cz(F) as in Theorem 4.2. Then (1) and (ii) of Theorem 4.2 hold .
‘4

Example 4 .4. Suppose that the vector (T1, T2) has a bivariate distribution

4 with survival probability:

P(t1, t2) — (1 + t
1 + t2Y~

’, t 1� 0, t2 � 0.

Note that T1 and T2 are mutually dependent. If T1 and T2 are the

component life lengths in a two—component series system, we may conclude

from (4 .2) of Theorem 4.2 that the original system is equivalent in life

- . -~~— --— - .  - -.----— ——— -——- —,~~ 
~~~~~~~~~ 

-
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length and failure patterns to a system involving independent times H1 and

H2 until shock, where

- P(H
1 

> t) - (1 + 2t)~~ , i - l,2,t � 0.

5. Applications to the theory of coinpeting risks, life testing, and censored

data problems.

The reader will note that in every model thus far considered, we have

obtained explicit expressions for the appropriate distributions in the

independent model, whereas existence alone is proven in other approaches.

Thus, our results are not only more general but also more readily applicable ,

especially when explicit solutions are called for. The probabilistic results

obtained are, of course, of interest in their own right since they facilitate

the analysis of various dependent models. However, a significant statistical

payoff is also derived from our approach. In this section we show how our

probabilistic solution to the conversion problem of Theorem 4.2 can be used to

unify the nonparametric approach to estimation problems in competing risk theory,

life testing, and certain incomplete data problems .

The theory of competing risks derives its name from the fact that, during

a person’s lifetime, he is exposed to several risks of death (various fatal

diseases, accidents, etc.) which can be viewed as “competing” for his life.

A series system of r dependent components with life length T — min(T
1, 

1 � i � r)

such that failure pattern I occurs [~ (T) — I] becomes, in the terminology of

-
~~~~ - 

competing risks , an individual with life length T — min(T 1, 1 � I � r) exposed

to r dependent risks of death, where T1 is the age at death if risk I

were the only risk present in the environment, 1 � i � r, and ~ is the cause

of death, i.e., the subset I of {l,...,r} such that T — T
1 for each I € I

and T � T
1 

for each I ~ I. When death results from a single cause, then ~ is

the index I for which T — T1. [In an incomplete or censored data problem,

I.. 
__________________________ — — —

~~~~~~~~~~~~ ~~~~~ ~
- _ ‘~... . — - — 

- —



15 

-

one of the random variables T~ represents the time at which an individual

becomes “unobservable” for a reason other than death, while the remaining

variables typically represent various causes of death.) The biomedical

researcher is interested in making inferences about unobservable quantities

(viz., the random variables T
i~ •••~

Tr) by using data from observable

quantities — in this case, the lifetime T and cause ~~~. In showing how

Theorem 4.2 may be applied, we focus on the following question: How can we

estimate the marginal survival probabilities corresponding to a given risk

(or combination of risks) operating alone without competition from the other

risks? That is, how can we estimate the — 1 survival probabilities (so—

called “net probabilities”) ~3(t) P[min(T~~ j € 3) > t], J c {l ,...,r}?

Throughout the remainder of this paper let (T11,. . .,T 1
) ,  i — 1,. ..,n,

represent a random sample of size n from the joint distribution of the

nonnegative random variables 
~~~~~~~~~ 

To conform to the usual notation,

we reserve ‘n’ for sample size. Thus, let I now denote the collection of

all nonempty subsets of the set Cl,...,r} of risks. We adopt all of the

previous notation subject to the substitution of ‘r’ for ‘a’. For each

distribution F, let ~(: 1 — F) be the corresponding survival function. For

each I € 1, let M
1
(t) — P(T

1 
� t), where T

1 
— min(T1, i € I ) .  In the

competing risk model , only the following are observed :

— min(T1j~ ...,Tri), 1 � I � a,

i and

l �  i � n ,

where — I if and only T — T
i 

for each i € I and T � T
i for each i I I.

Let 0 T’ � T’ ~ � T’ T denote the ordered values of the00 01 On max

1,
S

~~~~~~~~~~~~~~~~~~~ 
-,~~~~ - - - -----

— 

-

--



observations T ,...,T01 On
Consider now the following assumptions:

(Al) The risks (i.e., the random variables 
~~~~~~~~~ 

are mutually independent.

(A2) No ties are possible, i.e., P(T
1 

— T~) — 0 for each i x j, j,j 1,. ..,r.

(A3) The distributIons of Ti5•~~~
Tr have no co on discontinuities.

(A4) The random variables 
~~~~~~~~ 

have a joint distribution which is

absolutely continuous.

Note that Assumptions (A2) and (A3) together imply that death results

from a single cause.

Assuming (Al) , (A2) , and (A3), Peterson (1975) examines the following

estimator for N3:

A

f13(t) fl [(a — R)/(n — R + 1)], (4.3)
R

where the product is over the ranks R of those observations T6i, 1. � i � a,

• such that T’ � t < T and T’ corresponds to a death from at least oneQi max Di

cause in subset 3. If Tmax — T~ 1 for some j 
€ 3 and some I, 1 � j  � a, then

is defined to be ze;o for t > ~~~~~ Otherwise , M3(t) is undefined for

wax

The estimator (4.3) Is a generalization of the well—known product—limit

estimator for a survival probability proposed by Kaplan and Meier (1958). If

— T~1 
for each 1, 1 � I � a, and some fixed j, 1 � j � r, then (4.3)

reduces to a step function with jumps of height 1/n at each Tc~~ 
thus yielding

the usual empirical estimate of ~~(t). Assuming (Al), (A2), and (A3) ,

Peterson (1975) shows that the estimator (4.3) is maximum likelihood, (weakly)

consistent, and, regarded as a process in t, converges to a normal process.

In the remainder of this section we drop the assumption (Al) of independent

risks. How then can we estimate the functions ~~ (t) , I c 1? Note that

------ -~~~~~~~--~ - -
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formula (4.2) of Theorem 4.2 exhibits a relationship between distributions

of observable quantities [viz., the survival probability P(t) and the

functions F(t, i), 1 � I � ri and distributions associated with the theoretical

random variables H
1, I £ I, which are unobservable. Replacing P(t) and

~ (t, i) in (4.2) by their empirical counterparts thus allows us to estimate

the distributions G., 1 � i � r , associated with the unobservable random
1

variables H1, 1 � I � r. Unfortunately, the distributions G1, 1 � I � r,

are, in general, different from the marginal distributions M
1, 

1 � I � r,

which we seek to estimate. The natural question then is how to relate the

unobservable (but estimable) functions ~~ 1 � I � r , to the marginal distri-

butions N1, 1 � I � r. More generally, how can we relate the functions M1

to the survival probabilities G
1 given by (4.2)?

Assuming no ties (A2) and no common discontinuities among the marginal

distributions (A3), Peterson (1975) finds necessary and sufficient conditions

for a relationship to exist between the functions C1 and N1. Dropping

the assumption (A2) of no ties and weakening the assumption (A3) of no common

discontinuities, LPQ (l977c) prove the following:

Theorem 4.4. Assume that the functions F(., I) ,  I £ 1, in Theorem 4.2 have

no common discontinuities. Let I € 1. Then for each t e [0, a(F)) ,

~
.i
~(t) — ri ~3

(t) (4.4)
JnI~a

if and only if the following two conditions hold:

— ~(a)/~ (a ) ,  a € D(F( • , li))
M1

(a)/M 1(a ) — (4.5a)
1 , otherwise ,

and

P(T
1

� ttT1 — t)—P(T1
> tIT1

> t), (4.5b)

- -~~~~~~~~~~~~~~~ — - - _______ - — -  - --~~~~~ - - - — - - -  - -  - - -~~~~~ — — “  — - ,— -

tt~k ! L~~~ - ~~~.. - - - - —~~~~~~~~~~~~ --— - -  — - - --— - - — - - - - -- - -
~
-
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where ~~~(t )  Is given by (4.2) and D(F(~ , ‘I~~ 
is the set of discontinuities

of the function F(t, I
~
) — P(T > t, ~(T) € 3, 3 n I � 0).

Desu and Narula (1977) arrive at a condition similar to (4.5b) when the

assumption of absolute continuity (A4) and hence also the assumption of no ties

(A2) hold . We remark that the assumption of no ties (A2) does not hold ,

e.g., in models where failures or deaths from simultaneous causes can occur.

An important family of multivariate distributions for which assumption (A2)

fails is the family of multivariate exponential distributions of Marshall and

01km (1967). We illustrate with an example.

Example 4.5. For simplicity, suppose that the random vector (T1, T2 ) has

the Marshall—Olkin bivariate exponential distribution with survival probability :

P(T
1 

> t1, T2 > t
2
) — exp[—A 1t1 

— X
2t2 

— A 12 max(t1, t2
) ) ,

for t1, t2 � 0 and ~~ ~~ ~~ > 0. Since the marginal distributions N1

and N2 are continuous, condition (4.5a) of Theorem 4.4 holds trivally.

Condition (4.5b ) with I — {l} states that

P(T 2 t I T 1 — t) — P(T2 > t~T1 
> t).

An easy computation shows that P(T
7 

� tjT1 — t) — P(T 2 
> t~T~ > t)  — exp(—A 2t).

Thus, Theorem 4.4 may be applied when the joint distribution belongs to the

family of Marshall—Olkin MVE distributions, whereas other approaches to the

estimation problem do not apply here since the assumption of no ties (A2)

fails to hold.

Formula (4.2), via Theorem 4.4, can now be used to suggest estimators

for the functions N1, I € I , in the important practical cases when

independence fails to hold and when ties are allowed. Suppose that the joint

distribution of Tlt~~ •~
Tr satisfies (4.5 a,

b). For each I — l,...,n, only

the following are observed :

cl,

. 

~~~ ~~~~~ 

,
- - -. 

—

~

--- - - - - -

~~~~~ - ~~~~

- 
-

~~~~~
-
—

~~~~~

- 
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T01

and

F;1,

where 3 If and only if T0. T~1 for each j € J and T
01 

� T~~ for

each j I J. In accordance with Theorem 4.4, we estimate N1(t) for t � T by

~L~(t) 
a fl

Jr~I�O

where C
3 

is the function resulting from (4.2) by replacing F and F(•, I)

by their empirical counterparts, I € I. In analogy with (4.3), the resulting

statistic can be expressed as follows:

— II [(n — R)/(n — R + 1)), (4.6)
R

where the product is over the ranks R of those observations T
~~R

, 1 � R S n,

such that T’ � t � T and T ’ corresponds to a death from the0,R max 0,R

simultaneous causes j £ 3 such that 3 n I � 0. If for some I, T — T
max ji

for each j € 3 with 3 n I � 0, then ~~(t) is defined to be zero for t > T~~~.

Otherwise M1(t) is undefined for t > T~~~~•

Optimality properties of the estimator (4.6) readily suggest themselves

because of its resemblance to the (generalized) Kaplan—Meier estimator (4.3)

and its reliance upon empirical distributions. Moreover, there is evidence

that formula (4.2) can be used in a similar way to estimate other quantities

of interest to the biomedical researcher.

• 1.

S
V — — 
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