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1. INTRODUCTION

For a double pendulum subjected to a circulatory force applied
at its free end, Herrmann and Bungay [1] determined the dependence
of the critical loads of divergence and flutter upon a tangency
coefficient, a, which specified the orientation of the applied force
relative to the instantaneous deformed configuration of the system.
It was assumed in reference [1] that elastic hinges at the joints in
the double pendulum exerted linear restoring moments c¢] and c(¢2-¢]).
where c denotes the stiffness of the hinges and ¢] and ¢, are angles
that specify the configuration of the system. To study the influence
of support flexibility on the state of stability of this system,
Sugiyama, et al [2], assumed that the linear restoring moments
exerted by the hinges were represented as c]¢] and c2(¢2-¢]). They
then derived expressions for the critical loads as functions of the
ratio of stiffnesses, c;/c,.

The objective of the present investigation is to consider again
the effect of the characteristics of the support on the stability of
the system, but here it will be assumed that the support consists of
a platform of mass M that is attached to a horizontal elastic spring
of stiffness and that is constrained to move on a smooth horizontal
surface. As a result of the introduction of this additional mass and

degree of freedom, the system to be studied is, of necessity, one of

1. Herrmann, G., and Bungay, R. W., "On the Stability of Elastic Systems
Subjected to Nonconservative Forces," Journal of Applied Mechanics,
Vol 31, 1964, pp. 435-440.

2. Sugiyama, Y., Maeda, S., and Kawagoe, H., "Destabilizing Effect of
Elastic Constraint on the Stability of Nonconservative Elastic

Systems," Theoretical and Applied Mechanics, Vol 22, University of
Tokyo Press, Tokyo, 1974, pp. 33-45.
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three degrees of freedom. The frequency equation for the system is

derived, and equations for the critical loads of flutter and divergence |
are derived. Stability maps in the load-tangency plane reveal regions

of stability, divergence, and flutter, some of whose boundary curves

are strongly dependent upon the values of the mass and stiffness para-

meters M and k.

2. THE_EQUATIONS OF MOTION

Consider the system shown in Figure 1 that comprises a double
pendulum mounted on a platform of mass M that is constrained to move
on a smooth horizontal surface. The configuration of the system is
specified by the coordinate x](t), which lTocates the center of mass of
the platform relative to a fixed origin (Y and by the angles ¢](t).
¢2(t) formed between the vertical and each of the two bars in the
double pendulum. The double pendulum consists of two rigid, weightless
bars of equal length £ and carries concentrated masses m and m

2
located at distances a, and a_ from the hinges O and A, respectively.

The hinged joints at <; and Azexert linear elastic restoring moments
oy and c(¢2-¢]). where ¢ denotes a torsional spring constant, and the
horizontal motion of the platform is restrained by an extensible spring
of stiffness k, which is fastened to a rigid wall at C. A force of

-l magnitude P, which acts at an angle a¢2. relative to the vertical,
where a designates the tangency coefficient, is applied at the free
end B of the pendulum. This applied force is a circulatory force
when a # 0 and a conservative force only when a = 0. Moreover, it is

said to be tangential if a = 1, sub-tangential if O<a<l, super-
tangential if a>1, and anti-tangential if a<0.
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e Figure 1. A double pendulum mounted on a movable base
and subjected to a circulatory force.
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Under the assumption that the displacement x, and the angles

1
¢] and ¢2 remain small throughout the motion, one can show that the

expression for the kinetic energy T for this system is

T==(M+m, +m ) x2 + —'(m a1 +m 22) ¢] + (m 2t 2) X ¢]

¥
2 1 1

i
+ 5 mazdy + ma, 1¢2 b za2d> b, (1)

The potential energy V associated with the extensional spring and the

elastic joints is
V=T + 3 c (200 - 26,0, + 02 (2)
2"} 2 1 172 2

Furthermore, the generalized forces associated with the applied force

P are easily shown to be

Qx] Lt Ay Pa¢2’ Q] e PQ,(Q¢2 ¥ ¢~I)’ 02 it Pl((l'1)¢2- (3)

Therefore, using Lagranges' equations in the form

a (BT y - X

dt O

BX] BX]

d (9T oT oV
LIS U

= » = ]’2'
dt Gaon’ " 26, ' agy  n* "

with equations (1) - (3), one obtains the cquations of motion

(M + m + mz)i] + kx] + (m]a.| + mza)é] + m2a2¢2 + Pu¢2 =0, (4)

taAA& *‘i&és__A, W Ny e - pren— -
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.. 2 2 .
(m]a] + mzl)x] + (m]a] + mzz )<$1 + (2¢ - P2)¢] +

+m 2a2$

Jagh, = (¢ - aP)e, = 0, (5)

2

.. ., oy 2- = s =
mzazx] + mzzazcﬁl cop + mzazcﬁ2 + [c - P2(1 a)]¢2 0. (6)

It is desirable to express equations (4) - (6) in dimensionless
form. This may be accomplished by making the changes of dependent
and independent variables x4(t) = ¢x(t) and t = Tz(m/c)]/z,
respectively, and by defining

o Q T M= my, My = Mip > 3 = gt . &= 7,2.

Hence, equations (4) - (6) can be written as

(uy * up + W)X + kx + (u,a1 t,)8) + 0,8, + aQd, = 0, (7)
(U]a] + Uz)x i (U]u% + U2)$] + (2 = Q)¢] + U202$2 % (]‘QQ)¢2=0 (8)
uzazii ik U2a2$] - ¢.| + pzaézﬁz + [] - (] - Q)Q]¢2 = 0, (9)

where now x = dx/dt, etc.

3. THE PURELY DYNAMICAL SYSTEM

Suppose next that the masses my and m, are located at the ends of
the two bars in the double pendulum, i.e., at the points A and B,
respectively, in Figure 1. This immediately implies that a]=a2=1,

so that equations (7) - (9) become

(u] oy 4 X + kx + (u] + u2)$] + u2$2 + o4, = 0, (10)

. T X - ~ e e —— T—
R ~ — -~
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(ug + )R+ (uy +1,)8; +.(2 - Qo + 0,8, - (1 - aQ)e, =0, (11)
pzi + u2$] - ¢] + U2$2 + [] - (] - a)Q]QZ = 0. (]2)

These differential equations with constant coefficients admit a
solution of the form

A iwt % it o = ]/2
X(T) = X]e s ¢n(T) = Xn+]e s D= 12, 1= ( ]) ’ (13)

where the Xj's are constants and w denotes the dimensionless frequency
parameter for the system. Substitution of equation (13) into equations

(10) - (12) yields the set of homogeneous algebraic equations

i[Amnw2 - Cmn - QDmn]Xn = 0, m = 1,2,3 (14)
.
where
App = Hpteghes Arp = Mtiigs Mg = My
Ay = Mty Ayy = Uit Ay3 = ups
Aj = g Agp = ¥ps Ay3 = Vs
C.” = K, C]Z =0, C3] = 0,
by = byp = & €30 = <1y (15)
O fag = e C33 = 1
0, = 0, D, = 0, Dy = @
Py = s Bag 2t U3 = %
0, = 0, D,, = 0 Dy = -(1-a).

It is now easily shown that the frequency equation associated with

equation (14) is

— o —— s — . .+ g A v

- . " & P
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P wS i pzw“.+ p4w2 > P5 = 09 (16)
where

po > U]UZUo

Py, = (2 + Juquy + ulyy + 5uy)-Qhup (uy + 20) + 1wy (1 - )],

Py = u1(1 + )+ u2(1 + 5¢) + p - Q[(u]K + 3u)(1 - a) + u](3 - 2a) +
tuy (34201 + Q% [(k + w)(1 - a) + ],
PG ="gfl « 31 -a) Q+ (1 - a)Q*]. (17)

It may be noted that the value of the determinant of the dimensionless

inertia matrix, 5 = (Amn), is det (A) = p_ = NI i.e., the product

0 2
of the three fundamental mass parameters associated with the system.
If none of these mass parameters is zero, then the inertia matrix is

non-singular, and the system is said to be a purely dynamic system [3].

For the sake of being specific, suppose now that Hy = 2 and

u. = 1, so that equation (17) becomes

2
P, 2u, p, = 4 +2¢+ 7u-2Q1 + u(2 - a)l,
p4 =3+ 7c+pu-QL(4+2c+3u)(1 -a)+5+ 2]+
* QR * il ~ o) + 1),
Pg = k[1 - 3(1 - a)Q+ (1 - a)Q*]. . (18)

3. Ku, A. B., "On the Stability of a Linear Nongyroscopic Conservative
System," Zeitschrift fiir angewandte Mathematic und Physik, Vol 20,
1977, pp. 986-991.
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If the system becomes unstable by divergence, the critical
loads ij, J = 1,2, can be computed from the condition of vanishing
frequency. Putting w = 0 in equation (16), one obtains Pg = 0,

whence, by virtue of the last relationship in equation (18),
(1 - a)Q; - 301 - a)Qb +1=0, (19)

provided that x # 0. But equation (19) is identical to the expression
for the divergence loads of a double pendulum attached to an immovable
base, which has been discussed by Herrmann and Bungay [1]. Clearly,
the mass M of the platform on which the double pendulum is mounted and
the constraining extensional spring of stiffness k have no influence
whatsoever on the values of ij for the system of three degrees of
freedom under consideration here.

The flutter loads Qe for the system can be determined from the
condition of the merging of two natural frequencies of the system.
Because the frequency equation (16) may be considered a cubic

2

polynomial in w?®, the condition for the coalescence of two of its

roots is, according to reference [4],

2 3 Pl 22 3 =
PolAPgPg = PaPa + 27PgPe - 18PP,P,P + 4Pop ] = 0. (20)

If Po # 0, this condition becomes

3 o e En? ¥ 3 o
4p0p4 PoPy + 27p0p6 18p0§2p4p6 4p2p6 0._ (21)

1. Herrmann, G., and Bungay, R. W., "On the Stability of Elastic Systems
Subjected to Nonconservative Forces," Journal of Applied Mechanics,
Vol 31, 1964, pp. 435-440.

4, Walter, W. W. and Anderson, G. L., "Stability of a System of Three
vegrees of Freedom Subjected to a Circulatory Force," submitted for
publication.
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Substitution of equation (18) into equation (21) yields the
following sextic for the critical flutter load Qe:
'§ rqQ" =0, (22)
p=g N €
where the rn's, which will not be reproduced here, are lengthy
polynomials in the mass parameter u, the stiffness parameter k, and

the tangency coefficient a.

4. NUMERICAL RESULTS FOR THE PURELY DYNAMICAL SYSTEM

Equations (19) and (22) may be solved numerically for the
critical loads of divergence and flutter, respectively, for given
values of the parameters a, u, and k. The objective of these
numerical calculations consisted of the preparation of stability
maps, i.e., plots in the Qu-plane for selected values of u and k.

The curves in the Qu=plane obtained from equations (19) and (22) form
the boundaries of the various regions of stability, divergence,
flutter, and divergence-flutter. In order to identify the system's
behavior in a given region, it was necessary to examine several
eigencurves, i.e., plots in the Qu?-plane. Three typical examples of

are shown in Figure 2 for (a) a = 0.3, (b) o = 1.125, and (c) a = 1.175

with p = 1, « = 1/10. In these eigencurves, one can observe the
points of coalescence of various modes, which indicate either the
onset or cessation of a state of flutter, and the intersection of the
curves with the load axis, which indicates, in the cases depicted, the
transition of a frequency from an imaginary value to a real value.

Whenever a frequency for a particular mode is such that w’<0, it is
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Figure 2. Eigencurves for uy® 1, k = 0.1, and (a) a = 0.3, (b) a = 1.125,
and (¢) a = 1.175 (1 of 3).
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Figure 2. Eigencurves for u =1, « = 0.1, and (a) a = 0.3, (b) a = 1.125,

and (¢c) o = 1.175 (2 of 3).
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Figure 2. Eigencurves for u =1, « ='0.1, and (a) a = 0.3,‘ (b) @ = 1.125,
and (c) a = 1.175 (3 of 3).
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understood that this mode grows exponentially in time (divergence).
If, however, it happens that w? has a complex value for some mode, the
motion in this mode consists of an oscillation with an exponentially
growing amplitude (flutter). It may be observed from Figure 2c that
w:<0 and w; w; are complex numbers when Q>5.615. In this situation,
the various modes of the system simultaneously exhibit instability by
both flutter and divergence.

Stability maps for « = 1/10, 1, and 10 with y = 1 are shown in
Figures 3, 4, and 5, respectively. The various regions of stability
and instability are labeled as follows: stable region (SR), flutter
region (FR), divergence region (DR), and flutter-divergence region
¢ R (FDR). These figures reveal that the shape and extent of the primary
flutter region is strongly dependent upon the value of the spring
stiffness coefficient k. For relatively weakly supported bases, as in
the cases of Figures 3 and 4, the flutter region is fairly large and
3 extends beyond the range of the tangency coefficient, o, shown here.

However, as the spring stiffness is increased, say to « = 10 as in

Figure 5, the flutter region contracts significantly in size and is

-
=

& bounded by a closed curve. As the value of k¢ is raised still further,
-

f\ _ the shape and location of the flutter region in the Qu-plane approach
ﬁ: those reported by Herrmann and Bungay [1] for a double pendulum

ey mounted on a rigid base.
In Figures 6 and 7, the stability maps have been plotted for
' u =1/10 and pu = 10, respectively, with k held fixed at « = 1. Comparing

Figures 6, 4, and 7 one sees that the shape of the flutter region is

13
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significantly influenced by the value of the mass parameter yu.

5. NUMERICAL RESULTS FOR A QUASI-DYNAMIC SYSTEM

It is of some interest to examine the system of equations (10) -
(12) under the supposition that the mass of the base is negligibly
small. Since the determinant of the dimensionless inertia matrix 5
is det (5) = UpHol, it is obvious that det (5) = 0 when p = 0. There-
fore, in the case of a massless base, the system under consideration
becomes an example of a quasi-dynamic system [3], whose motion is

described by the differential equations

(uy + )% + kx + (uy + up)éy + upd, + aQép = 0, (23)
(U'I + ‘Jz).x ¥ (U] + Uz)‘ﬁ] + (2'0)4)] * Uz‘ﬁz kit (]'GQ)¢2 =0 (24)
sz * 1—12‘51 5 4’1 + 11262 + [] T “'Q)Q](i’z = 0, (25)

which are obtained from equations (10) - (12) upon setting u = 0.
Moreover, because 5 is singular, it follows, according to reference
[3], that an “internal constraint" must exist. This is easily
identified simply by subtracting equation (24) from equation (23), the

result being

KX = (2-Q)¢] - 0, - (26)

Using equation (26) to eliminate the X terms in equations (23) and (25),
one finds a pair of equations of the form

2
!

[Amn b * (Cmn + QDmn)¢n] =0, m=1,2, (27)
n=1

3. Ku, A. B., "On the Stability of a Linear Nongyroscopic Conservative
System,” Zeitschrift fiir angewandte Mathematic und Physik, Vol 20,
1977, pp. 986-991.
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where now

A]] - (U] + uz)(z Ll Q)s A]z g (K > ])Uz N U]-
AZI = u2(2 +x -0Q), A22 = 112(K - 1),
(28)
C]] = 2'(. C12 = =Ky D]] = =it 012 S K
Sk 2% Ty T i S L R

It should be noted here that the new dimensionless inertia matrix A,
some of whose elements Amn, which are defined in equation (28), depend
linearly upon Q, is not symmetric. In addition, the value of its
determinant is

det (A) = Kuluz(z +x-Q). (29) 1

Assuming a solution for equation (27) of the type given in
equation (13), one can verify that the frequency equation for the

quasi-dynamic system is simply

E pzw“ o p4w2 + P6 =0, (30)

where Pys Pg» and Pg are obtained from equation (17) upon setting

i u = 0. Equivalently, equation (30) can be expressed as
(A +QH)w"* + (D +8BQ + IQ%)w? + CQ2 + EQ + F =0, (31)

where

20
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A = U]uz (2 + <), e HiH2» D= [“ + "-)U-l + (T * SK)U2]9

(o]
"
+

(2 +6) [(0 - aduy + 1] + uy + (14 Ky 1= (a - 1)u] - Mys

o
]

]
Za

k(1 - a), E=-3( -a), F (32)

It may be remarked at this point that, if the H and I terms were
deleted from equation (31), the resulting frequency-load relationship
would be such that the eigencurves would be conic sections in the
Quw?-plane, as reported in reference [1]. However, in the present
investigation, the values of H and I are generally different from
zero and, therefore, the eigencurves are not conic sections. It may be
anticipated, then, that the present system may possess some flutter
characteristics that are unusual relative to those described in
reference [1].

The critical divergence loads can be obtained once again from the
condition pg = 0, i.e., from equation (19), that results when w = 0
is substituted into equation (30). On the other hand, for the flutter
Toads, the condition for the coalescence of the frequencies obtained

from equation (30) is p?

4" 4p2p6 = 0, whence

12Q"+ 2(IB - 2HC)Q® + (B2 + 2ID - 4HE - 4AC)Q? +

+ 2(BD - 2HF - 2AE)Q + D% - 4AF = 0, (33)
which is a quartic polynomial in Q.

In the case of My = 2 and Hy * 1, equation (32) becomes

1. Herrmann, G., and Bungay, R. W., "On the Stability of Elastic Systems
Subjected to Nonconservative Forces," Journal of Applied Mechanics,
vol 31, 1964, pp. 435-440.

—— i r— e e —————— e e




-

.

A=2(2+«x), H=-2, D=-(3+ 7),
B=9+4k-2a(2+«), I=2x-3,
C=x(1-a), E=-3(1-a), F=«x.

Consequently, equations (31) and (33) can be expressed as

202+ k- Qu* - 3+ 7+ [2(2+xk)-9-4]Q+ (3-21)Q%}u? +
+ k(1 - a)Q? - 3(1 ~a)Q+xk=0 (34)
and
(200 - 3)2Q" - 2[4(2 + x)(1 - a)2 + 2(7 +x)() - a) +5 + 2<]Q® +
+ [4(2 + k)31 - )2+ 4013 + 6)(1 - ) + 31 + 34k + 4¢%]Q% -
- 2[2(c + 2)(k + 3)(1 - a) + (2c + 1)(7c + 15)]Q + 9 + 26k + 412 = 0,
respectively. (35)
Solving the frequency equation (34) for w? as a function of Q for
given values of a and «, one can construct eigencurves. Two such
curves, plotted for a = 1.05 and a = 1.25 with « = 1, are shown in
Figure 8. In Figure 8a, the frequencies of the two modes of vibration
coalesce in the first quadrant of the Qw?-plane at Q = 1.01. Conse-
quently, the system becomes unstable initially by flutter. As the
value of Q is raised even higher, flutter eventually gives way to
divergence which persists over the remainder of the range of Q shown.
In the case of a = 1.25 (Figure 8b), the onset of flutter occurs at
Q = 1.02. Flutter persists for 1.02<Q<2.78, and in the interval
2.78<Q<4.01 the system is divergent. However, for 4.01<Q<5.02 the
system is stable once more, although flutter now occurs a second time,
in this instance at Q = 5.02, as the result of a second coalescence of

frequencies.
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Figure 8. Eigencurves for k = 1 and (a) a = 1.05, (b) a = 1.25 (1 of 2).
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Figure 8. Eigencurves for x = 1 and (a) a = 1.05, (b) a = 1.25 (2 of 2).
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Performing computations with equation (35) for the critical
flutter loads and using the data obtained earlier from equation (19)
for the critical divergence loads, one can plot stability maps in the
Qu-plane. In Figures 9, 10, and 11, some results are shown for
« =1/10, 1, and 2. Although these figures resemble the stability maps
in Figures 3, 4, and 5 for the purely dynamic system, it may be
observed that the flutter-divergence region in a stability map for the
purely dynamical system becomes a flutter region in the corresponding
stability map for the quasi-dynamic system. In addition, the divergence
region in the upper right corner in each of the Figures 9-11 is

replaced by a stable region in the quasi-dynamic case.

25




oL/L =

X Joj dew A3L[Lqe3s

mﬁL
v T -

‘6 @4nb4

-

e L

- e

N 2 ..mimm.<ow. =
—_— Hd 1! “
a
4z v
% J
ua -1€
-¥
:
S 4c .
-9
Jb
A -8
Ha -6
0_8 w
. o P ¥ LTS ="y




“Lo= X Joy dew A31[1qe3s *Q aunb L4 _

- :
i 5
qa g T
= I
bo, ) ¥ T i : M ) — I . lm-
3 g s _

48 !
us ua S 4
y
/ g m

g T4
lw ..

N\
N—ud -6

©-or




*2 = X 40y dew A3L|1qeys *|| a4nbL4

lvc
-6~
Ha (e
l.ﬂl
 § 0 i~
6- — LA -‘ v 1 | v v . | T m—
€ 4 gS
-1
Ha
-3
H4d - 8
-1€
ya b
us 1S
-9
Hd 14
-8
-6
Hda
401
!
- pz e -r,F.ﬂ irw. -ﬁbu. &




REFERENCES

1. Herrmann, G., and Bungay, R. W., "On the Stability of Elastic Systems
Subjected to Nonconservative Forces", Journal of Applied Mechanics,
Vol. 31, 1964, pp. 435-440.

2. Sugiyama, Y., Maeda, S., and Kawagoe, H., "Destabilizing Effect of
Elastic Constraint on the Stability of Nonconservative Elastic

Systems", Theoretical and Applied Mechanics, Vol. 22, University

of Tokyo Press, Tokyo, 1974, pp. 33-45.
3. Ku, A. B., "On the Stability of a Linear Nongyroscopic Conservative

System", Zeitschrift fir angewandte Mathematik und Physik, Vol. 20,

1977, pp. 986-991.
4. Walter, W. W. and Anderson, G. L., "Stability of a System of Three
Degrees of Freedom Subjected to a Circulatory Force", submitted for

publication.

-l

h’. 29




WATERVLIET ARSENAL INTERNAL DISTRIBUTION LIST
May 1976

No. of Copies

COMMANDER 1
DIRECTOR, BENET WEAPONS LABORATORY 1

DIRECTOR, DEVELOPMENT ENGINEERING DIRECTORATE 1

ATTN: RD-AT 1

RD-MR 1

RD-PE 1

RD-RM 1

RD-SE 1

RD-SP 1

DIRECTOR, ENGINEERING SUPPORT DIRECTORATE 1

DIRECTOR, RESEARCH DIRECTORATE 2

ATTN: RR-AM 1

RR-C 1

RR-ME 1

RR-PS 1

TECHNICAL LIBRARY 5

TECHNICAL PUBLICATIONS § EDITING BRANCH 2

DIRECTOR, OPERATIONS DIRECTORATE 1

! DIRECTOR, PROCUREMENT DIRECTORATE 1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1

| PATENT ADVISORS 1

- .
’ 't“"ﬂw . e e s ~ .'.“: ‘v-:w""_,j;;?,,t;.vvrk?% TRETS - g orilh N M»"N -
" - - e S i s, —




EXTERNAL DISTRIBUTION LIST

December 1976
1 copy to each

OFC OF THE DIR. OF DEFENSE R&E
ATTN: ASST DIRECTOR MATERIALS
THE PENTAGON

WASHINGTON, D.C. 20315
CDR

US ARMY TANK-AUTMV COMD
ATTN:  AMDTA-UL

AMSTA-RKM MAT LAB
WARREN, MICHIGAN 48090

CDR
PICATINNY ARSENAL
ATTN: SARPA-TS-S

SARPA-VP3 (PLASTICS
TECH EVAL CEN)
DOVER, NJ 07801

CDR

FRANKFORD ARSENAL
ATTN: SARFA
PHILADELPHIA, PA 19137

DIRECTOR

US ARMY BALLISTIC RSCH LABS
ATTN: AMXBR-LB

ABERDEEN PROVING GROUND
MARYLAND 21005

CDR

US ARMY RSCH OFC (DURHAM)
BOX CM, DUKE STATION
ATTN: RDRD-IPL

DURHAM, NC 27706

CDR

WEST POINT MIL ACADEMY
ATTN: CHMN, MECH ENGR DEPT
WEST POINT, NY 10996

CDR

HQ, US ARMY AVN SCH

ATTN: OFC OF THE LIBRARIAN
FT RUCKER, ALABAMA 36362

.

CDR

US ARMY ARMT COMD

ATTN: AMSAR-PPW-IR
AMSAR-RD
AMSAR-RDG

ROCK ISLAND, IL 61201

CDR

US ARMY ARMT COMD
FLD SVC DIV

ARMCOM ARMT SYS OFC
ATTN: AMSAR-ASF

ROCK ISLAND, IL 61201

CDR
US ARMY ELCT COMD
FT MONMOUTH, NJ 07703

CDR

REDSTONE ARSENAL

ATTN: AMSMI-RRS
AMSMI -RSM

ALABAMA 35809

CDR

ROCK ISLAND ARSENAL

ATTN: SARRI-RDD

ROCK ISLAND, IL 61202

CDR

US ARMY FGN SCIENCE & TECH CEN
ATTN: AMXST-SD

220 7TH STREET N.E.
CHARLOTTESVILLE, VA 22901

DIRECTOR

US ARMY PDN EQ. AGENCY
ATTN: AMXPE-MT

ROCK ISLAND, IL 61201




L J
‘m\‘
LR -

EXTERNAL DISTRIBUTION LIST (Cont)

| copy to each

CDR

US NAVAL WPNS LAB
CHIEF, MAT SCIENCE DIV
ATTN: MR. D. MALYEVAC
DAHLGREN, VA 22448

DIRECTOR
NAVAL RSCH LAB
ATTN: DIR. MECH DIV

WASHINGTON, D.C. 20375

DIRECTOR

NAVAL RSCH LAB

CODE 26-27 (DOCU LIB.)
WASHINGTON, D.C. 20375

NASA SCIENTIFIC & TECH INFO FAC
PO BOX 8757, ATTN: ACQ BR
BALTIMORE /WASHINGTON INTL AIRPORT
MARYLAND 21240

DEFENSE METALS INFO CEN
BATTELLE INSTITUTE

505 KING AVE

COLUMBUS, OHIO 43201

MANUEL E. PRADO / G. STISSER
LAWRENCE LIVERMORE LAB

PO BOX 808

LIVERMORE, CA 94550

DR. ROBERT QUATTRONE
CHIEF, MAT BR

US ARMY R&S GROUP, EUR
BOX 65, FPO N.Y. 09510

NOTE:

2 copies to each

CDR

US ARMY MOB EQUIP RSCH & DEV COMD
ATTN: TECH DOCU CEN

FT BELVOIR, VA 22060

CDR
US ARMY MAT RSCH AGCY

ATTN: AMXMR - TECH INFO CEN
WATERTOWN, MASS 02172

CDR

WRIGHT-PATTERSON AFB

ATTN: AFML/MXA

OHIO 45433

CDR

REDSTONE ARSENAL
ATTN: DOCU & TECH INFO BR
ALABAMA 35809

12 coBies

CDR

DEFENSE DOCU CEN
ATTN: DDC-TCA
CAMERON STATION
ALEXANDRIA, VA 22314

PLEASE NOTIFY CDR, WATERVLIET ARSENAL, ATTN: SARWV-RT-TP,

WATERVLIET, N.Y. 12189, IF ANY CHANGE IS REQUIRED TO THE ABOVE.

- T N -




