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1. INTRODUCTION

For a double pendul um subjected to a circulatory force applied

at its free end , Herrmann and Bungay [1) determined the dependence

of the critical loads of divergence and flutter upon a tangency

coefficient, a, which specified the orientation of the appl ied force

relative to the instantaneous deformed configuration of the system.

It was assumed in reference [1) that elastic hinges at the joints In

the doubl e pendulum exerted linear restoring moments c~1 and c(4i2-~1),

where c denotes the stiffness of the hinges and •l 
and •2 are angles

that specify the configuration of the system. To study the influence

of support flexibility on the state of stability of this system,

Suglyama, et al (2), assumed that the linear restoring moments

exerted by the hinges were represented as c141 and c2(412-$1). They

then derived expressions for the critical loads as functions of the

ratio of stiffnesses, c1/c2.

The objective of the present Investigation Is to consider again

the effect of the characteristics of the support on the stability of

the system, but here it will be assumed that the support consists of

a platform of mass 14 that is attached to a horizontal elastic spring

of stiffness and that is constrained to move on a smooth horizontal

surface. As a result of the introduction of this additional mass and

degree of freedom, the system to be studied is, of necessity , one of

1. Herrmann , G., and Bungay , R. W . ,  ‘On the Stability of Elastic Systems
Subjected to Nonconservati ve Forces,” Journal of Applied Mechanics ,
Vol 31 , 1964, pp. 435-440.

2. Sugiyama , Y., Maeda , S., and Kawagoe , IL , “Destabilizing Effect of
Elastic Constraint on the Stability of Nonconservative Elastic
Systems,” Theoretical and Applied Mechanics , Vol 22, University of
Tokyo Press, Tokyo, 1974, pp. 33-45.
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three degrees of freedom. The frequency equation for the system Is
derived , and equations for the critical loads of flutter and divergence

are derived. Stability maps in the load—tangency plane reveal regions

of stability , divergence , and flutter, some of whose boundary curves

are strongly dependent upon the values of the mass and stiffness para-

meters 14 and k.

2. THE EQUATIONS OF MOTION

Consider the system shown in Figure 1 that comprises a double

pendulum mounted on a platform of mass 14 that is constrained to move

on a smooth horizontal surface. The configuration of the system is

specified by the coordinate x1 (t), which locates the center of mass of

the platform relative to a fixed origin 
~
j  and by the angles •1(t),

formed between the vertical and each of the two bars in the

doubl e pendulum. The double pendulum consists of two rigid , weightless

bars of equal length t and carries concentrated masses m1 and m2
located at distances a

1 and a2 
from the hinges 0 and A , respectively.

The hinged joints at 0 and A exert linear elastic restoring moments

c~1 and c(~2-~1), where c denotes a torsional spring constant, and the

horizontal motion of the platform is restrained by an extensible spring

of stiffness k which is fastened to a rigid wall at C. A force of

-~~ magnitude P , which acts at an angle a$2, relative to the vertical ,

where a designates the tangency coefficient , is applied at the free

end B of the pendulum. This applied force Is a circulatory force

when a $ 0 and a conservative force only when a = 0. Moreover, it is

said to be tangential If a 1 , sub-tangentIal If 0<ci<l, super-

tangential If a’I, and anti-tangential if a<0.

• 2
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Figure 1. A double pendulum mounted on a movable base
and subjected to a ci rculatory force.
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Under the assumption that the displacement x1 and the angles

and 4 2 remain small throughout the motion , one can show that the

expression for the kinetic energy T for this system is

I ~~- (M + m1 + m2) ~~~~ + ~~~ (m~a~ + m
2

L2)  ~ 2 + (m
1
a1 + m

2
L) 

~~~ 
+

+ ~~ m~a~3~ + m
2a~~~ 2 

+ m~~a2c~1
i~2 (1)

The potential energy V associated with the extensional spring and the

elastic joints is

V = ~-kx~ + c (2~~ - 2~l$2 + (2)

Furthermore, the generalized forces associated with the applied force

P are easi ly shown to be

Qx1 = - Pc&4 2
, Q1 = - P2~(ctq 2 

- •l~ ’ 
Q2 = - Pt (a-l)4

2
. (3)

Therefore , using Lagranges ’ equations in the form

~4..(.~t )-!I. +~Y- Qxdt ax1 ax1 ax1 1 ’

d ai 3T aV
— (—I-

) 
- + —  Q n = l  2

dt a~n a~, aq~ n’ ‘

with equations (1) — (3), one obtains the cquations of motion

(M + m1 + m2 )5~1 + kx 1 + (m1a1 + m
2L)~1 

+ m2a2 c~2 + Pa~2 = 0, (4)

4

• — . — 1, ¶~- - -
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(m1a1 + m2t)5~1 + (m 1a~ + m2~.2)
~1 + (2c - PR.)4 1 +

+ m
2
La2~2 

- (c - aP~~~2 
= 0, (5)

m2
a x

1 
+ m2~,a2~1 

- C4
1 

+ m2a~~2 + Cc - P2.(l - a)]4 2 
= 0 . (6)

It is desirable to express equations (4) - (6) in dimensionless

fo rm . Th is may be accomplished by making the changes of dependent

and independent variables x4(t) = Lx(t) and t =

respectively, and by defining
kL2 PL

K = —s-- Q = — , M = np, in~ = mpr, an 
= ct~2, , n = 1 ,2.

Hence , equations (4) - (6) can be written as

(p 1 + + p)S
~ 

+ KX + (p
1
a
1 
+ p~ )~~ + p2a2~2 + aQq 2 = 0, (7)

(p 1a1 + p
2

)X + 
~~~~ 

+ 

~2)
~ i + (2 - Q)

~~1 
+ - (l-aQ)~2 O (8)

i12a2x + - + + Cl - (1 - ct)Q]4 2 0, (9)

where now dx /dT , etc .

3. THE PURELY DYNAMICAL SYSTEM

Suppose next that the masses m1 and m2 are located at the ends of

the two bars in the double pendulum, i.e., at the points A and B,

respectively, in Fi gure 1. This immediately implies that

so that equations (7) - (9) become

(p
1 
+ 

~
‘2 + p)5~ + KX ~ + P2~~l + + ciQ4 2 = 0, (10)

5
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(p
1 
+ p

2
)3~ + (p1 

+ p
2
)~ 1 

+ .(2 - Q)i~ + p
2~ 2 

- (1 - aQ)~2 0, (11)

+ - + p~~ + (1 - (1 - a)Q)42 
= 0. (12)

These differential equations with constant coefficients admi t a

solution of the form

x(t) = X1e~~
t
, q~~(t )  = X e ~~T , n = 1,2, 1 = (_l )~~

2
, (13)

where the X .’s are constants and w denotes the dimensionless frequency

parameter for the system. Substitution of equation (13) into equations

(10) — (12) yields the set of homogeneous algebraic equations

3
~ fAmn w

2 - Cmn - QDmnJXn = 0, m = 1,2,3 (14)
n=l

where

A 11 = p1+i~2
+p, A12 

= A 13 
= p

2
,

A21 
= p1+~i2, A

22 
= p1+p2, A23 

=

A31 
= p~, A32 

= A
33 

=

• C11 = K , C12 = 0, C31 = 0,

C =0, C = 2 , C =-1 ,21 22 32 (15)
C31 

= 0, C32 
= -1 , C

33 
= 1 ,

= 0, 012 0, D13 a,

3 D21 0, D22 = —1 , 0
23 

= a,

0
31 

0, 0
32 

= 0, D33 
= -(1—a).

It Is now easily shown that the frequency equation associated with

equation (14) is

6

•
5 
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- + P~~ 
- p6 = 0, (16)

where

p
0 

=

p2 = (2 + K)p
1
p
2 
+ p (p

1 
+ 5p

2
)-Q [p2(p1 

+ 2p) + pp 1 (1 - a)],

= + K) + p( l + 5K) + p — Q[(p
1
K + 3p)(l - a) + p

1
(3 - 2a) +

+ p2 (3 + 2K)] + Q2[(p + ~~) ( l  - a) +

p
6 

= K[1 — 3(1 - a) Q + (1 - ct)Q2]. (17)

It may be noted that the value of the determinant of the dimensionless

inertia matrix, A = (Amn), is det (A) = p
0 

= p
1
p
2
p, i.e., the product

of the three fundamental mass parameters associated with the system.

If none of these mass parameters is zero, then the inertia matrix is

non-singular , and the system is said to be a pure1y~ dynamic system [3].

0 For the sake of being specific , suppose now that p
2 

= 2 and

= 1, so that equation (17) becomes

p
0

= 2p, p
2
= 4 + 2 K +7p - 2Q[1 + p (2 - a)],

p = 3 + 7K + u - Q[(4 + 2K 4- 3p)(l - a) + 5 + 2K] +

+ Q2[(2 + p)(l - a) + 1],

p6 K[l — 3(1 — a)Q + (1 — a)Q2]. (18)

3. Ku , A. B., “On the Stability of a Linear Nongyroscopic Conservative
System ,” Zeltschrift für anpewandte Mathematic und Physik , Vol 20,
1977 , pp. 986—991 .

7
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If the system becomes unstabl e by divergence , the critical

loads 
~b~’ ~ = 1,2 , can be computed from the condition of vanishing

frequency . Putting w = 0 in equation (16), one obtains p6 
= 0,

whence , by virtue of the last relationship in equation (18),

(1 - a)Q2 — 3(1 — a)Qb 
+ 1 0, (19)

provided that K ~ 0. But equation (19) is identical to the expression

for the divergence loads of a double pendulum attached to an immovable

base , which has been discussed by Herrmann and Bungay [1]. Clearly,

the mass M of the platform on which the double pendulum is mounted and

the constraining extensional spring of stiffness k have no infl uence

whatsoever on the values of 
~bJ 

for the System of three degrees of

freedom under consideration here.

The flutter l oads 
~e 

for the system can be determined from the

condition of the merging of two natural frequencies of the system.

Because the frequency equation (16) may be considered a cubic

polynomial in w2 , the condition for the coalescence of two of its

roots is , according to reference [4],

p~[4p0p~ 
- p

~
p
~ 

+ 27p~p~ - l8p
0
p
2
p
4
p
6 

+ 4p~p6
] = 0. (20)

If p0 $ 0, this condition becomes

4p
0
p
~ 

- p
~
p
~ 

+ 27p~p~ - l8p
0p,,

p
4
p
6 

+ 4
~~~p6 

0. (21)

1. Herrmann , G., and Bungay , R. W., “On the Stability of Elastic Systems
Subjected to Nonconservative Forces ,” Journal of Applied Mechanics ,
Vol 31 , 1964, pp. 435-440.

4. Wa l ter , W . W. and Anderson , G. L., “Stability of a System of Three
i)egrees of Freedom Subjected to a Circulatory Force ,” submitted for

• publication .

8
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I

Substitution of equation (18) into equation (21) yields the

following sextic for the critical flutter load Qe:

6

~ r Q ~~= 0 , (22)
n=o n e

where the rn
’s
~ 

which will not be reproduced here, are lengthy

polynomials in the mass parameter p. the stiffness parameter K, and

the tangency coefficient a.

4. NUMERI CAL RESULTS FOR THE PURELY DYNAMICAL SYSTEM

Equations (19) and (22) may be solved numerically for the

critical loads of divergence and flutter, respectively, for given

values of the parameters a, p, and K. The objective of these

numerical calculations consisted of the preparation of stability

maps , i.e., plots in the Qa-plane for selected values of p and K.

The curves in the Qcz=plane obtained from equations (19) and (22) form

the boundaries of the various regions of stability , divergence ,

flutter, and divergence-fl utter. In order to identify the system’s

behavior in a gi ven region , it was necessary to examine several

eigencurves , i.e., plots in the Qw2-plane. Three typical examples of

are shown in Fi gure 2 for (a) a = 0.3, (b) a = 1.125 , and (c) a = 1.175

with p = 1 , K = 1/10. In these eigencurves , one can observe the

points of coalescence of various modes, which indicate either the

onset or cessation of a state of flutter , and the intersection of the

curves with the load axis , which Indicates , in the cases depicted , the

transition of a frequency from an imaginary value to a real value .

Whenever a frequency for a particular mode is such that w’<O, It i~

9
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• Figure 2. Eigencurves for ~i • 1 , K 0.1 , and (a) a • 0.3, (b) a • 1.125 ,
and (c) a 1.175 (1 of 3).
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- Figure 2. Eigencurves for p • 1 , K = 0.1 , and (a) a 0.3, (b) ~ 1.125 ,
and (c) a = 1.175 (2 of 3).
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Figure 2. Elgencurves for p 1 , K = 0.1 , and (a) ~ 0.3, (b) a • 1.125 ,
and Cc) a = 1.175 (3 of 3).
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understood that this mode grows exponentially in time (divergence).

I f , however, it happens that w~ has a compl ex val ue f or  some mode, the

motion in this mode consists of an oscillation with an exponentially

growing amplitude (flutter). It may be observed from Figure 2c that

w~<0 and w~ are complex numbers when Q>5.6l5. In this situation ,

the various modes of the system simultaneously exhibit instability by

both flutter and divergence.

Stability maps for K = 1/10, 1 , and 10 with p = 1 are shown in

Figures 3, 4, an d 5, respectively. The various regions of stability

and instability are label ed as follows: stable region (SR), flutter

region (FR), divergence region (OR), and flutter—divergence region

_—~~~ (FOR). These figures reveal that the shape and extent of the primary

flutter region i s stron gly de penden t upon the value of the spr ing

stiffness coefficient K. For relatively weakly supported bases, as in

the cases of Figures 3 and 4, the flutter region is fairly large and

extends beyond the range of the tangency coefficient, a, shown here.

However , as the spring stiffness is increased , say to K = 10 as in

Figure 5, the flutter region contracts sign i ficantly in size and is

bounded by a closed curve. As the value of K is raised still further,

the shape and location of the flutter region in the Qa-plane approach

those reported by Herrmann and Bun gay [1] for a double pendulum

mounted on a rigid base.

In Figures 6 and 7, the stability maps have been plo tted for

p = 1/10 and p = 10, respectively, with K held fixed at K = 1. Comparing

Fi gures 6, 4, and 7 one sees that the shape of the flutter region is

13
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si gnificantly infl uenced by the va l ue of the mass parameter p.

5. NUMERICAL RESULTS FOR A QUASI-DYNAMIC SYSTEM

It is of some interest to examine the system of equations (10) —

(12) under the supposition that the mass of the base is negli gibly

small. Since the determinant of the dimensionless inertia matrix A

is det (A) = p1p2p, it is obvious that det (A) = 0 when p = 0. There-

fore, in the case of a massless base, the system under consideration

becomes an example of a quasi-dynamic system [3], whose motion is

described by the differential equations

(p 1 + 11
2
)X + KX + (p1 + p2)~1 + p2~2 

+ aQ42 = 0, (23)

# + + p2)~1 + (2-Q)q~ + p2~ 2 - (1-aQ)~2 
= 0(24)

+ 

~2~l 
- 

~l 
+ + [1 - (l-a)Q]q 2 

= 0, (25)

which are obtained from equations (10) — (12) upon setting p = 0.

Mor eover , because A is singular , it follows , according to reference

{3], that an “internal constraint” must exist. This is easily

identified simply by subtracting equation (24) from equation (23), the

result being

= (2-Q)~1 
- 

~2 
- (26)

Using equation (26) to eliminate the ~ terms in equations (23) and (25),

one finds a pair of equations of the form

2
~ [Amn 

~n 
+ (Cmn + QDmn)q ) = 0, m = 1 ,2, (27)

n=l n

3. Ku , A. B., “On the Stability of a Linear Nongyroscopic Conservative
System ,” Zei tschri ft für angewandte Mathematic und Physik, Vol 20,
1977 , pp. 986-991.
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where now

A
11 

= + 

~2
) ( 2  + K - Q), A 12 

= (K - 1)p2 - p1,

A
21 

= ~~(2 + K - Q), A
22 

= p
2
(c - 1),

(28)
C11 

= 2K,  C12 = K, Oil 
= -K , 0

12 
=

C21 
= -K , C22 

= K , D21 = 0, D
22 

= (K — 1 ) .

It should be noted here that the new dimensionless inertia matrix A,

some of whose el ements Amn , which are defined in equation (28), depend

linearly upon Q, is not symmetric. In addition , the value of its

determinant is

det (A) = Kp
1
p
2

(2 + K - Q) . (29)

Assuming a solution for equation (27) of the type given in

equation (13), one can verify that the frequency equation for the

quasi-dynami c system is simply

P2W 
- p4u)

2 
+ p

6 
= 0, (30)

where p2, p4, and p6 are obtained from equation (17) upon setting

p = 0. Equivalently, equation (30) can be expressed as

(A + QH)W’+ (D+ B Q + IQ 2 )~
2 + CQ2 + E Q + F = O , (31)

* where

20
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A = 
~~~~~~~ 

(2 + K ) ,  H = - 
~1p2, 0 = [(1 # ~)p1 

4- (1 4- 5K)p
2
],

B = (2 + K) [(1 - cz)p 1 + p2] + p1 
+ ( 1 + K)ji 2, I = (a - l)p 1 

—

C = K(l — a), E = -3K(l - a), F = K - (32)

It may be remarked at this point that, if the H and I terms were

deleted from equation (31), the resulting frequency-load relationship

would be such that the eigencurves would be conic sections in the

• Q~
2-p1ane , as reported in reference [1]. However, in the present

investi gation , the values of H and I are generally different from

zero and , therefore, the eigencurves are not conic sections. It may be

anticipated , then , that the present system may possess some flutter

characteristics that are unusual relative to those described in

reference [1].

The critical divergence loads can be obtained once again from the

condition p6 = 0, i.e., from equation (19), that results when c~ = 0

is substituted into equation (30). On the other hand , for the flutter

loads, the condition for the coalescence of the frequencies obtained

from equation (30) is p
~ 

- 4p2p6 0, whence

1
2
Q
k+ 2(IB - 2HC)Q3 + (B2 + 21D - 4HE - 4AC)Q2 +

+ 2(80 — 21IF - 2AE)Q + 02 - 4AF = 0, (33)

which is a quartic polynomial in Q.

In the case of p~ = 2 and p~ = 1 , equation (32) becomes

1. Herrrnann , G., and Bungay , R. W ., “On the Stability of Elastic Systems
Subjected to Nonconservative Forces ,” Journal of Applied Mechanics ,
Vol 31 , 1964, pp. 435-440.
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A = 2(2 + K), H = -2, 0 = -(3 + 7 K ) ,

B = 9 + 4K — 2a (2 + K), I = 2a — 3,

C = K(l — a), E -3 K( l  — a) ,  F = K -

Consequently, equations (31) and (33) can be expressed as

2(2 + K - Q)w~ - {3 + 7K + [2 (2 + K) - 9 -  4~]Q+ (3- 2a)Q
2)w2 +

+ K(l - 

~
)Q2 - 3K (l - a)Q + K 0 (34)

and

(2cr - 3)2Q” — 2[4(2 + K)(l - a)2 + 2(7 + K)(l - a) + 5 + 2K]Q3 +

+ [4(2 + K)2(l - a)2 + 4(13 + 6K)(l - cx) + 31 + 34K + 4K 2]Q2 -

- ?[2(K + 2)(K + 3)(l - a) + (2K + 1)(7K + l5)]Q + 9 + 26K + 41K2 = 0,

respectively. (35)

Solving the frequency equation (34) for w2 as a function of Q for

given values of a and K , one can construct eigencurves. Two such

curves , plotted for a = 1.05 and a = 1.25 with K = 1 , are shown in

Fi gure 8. In Figure 8a, the frequencies of the two modes of vibration

coalesce in the first quadrant of the Qw2-plane at Q 1.01 . Conse-

quently, the system becomes unstable initially by flutter. As the

value of Q is raised even hi gher , flutter eventually gives way to

• divergence which persists over the remainder of the range of Q shown .

In the case of a = 1.25 (Figure 8b), the onset of flutter occurs at

Q = 1.02. Flutter persists for l.02<Q<2.78, and in the interva l

: 2.7~’-Q~4.01 the system is divergent. However, for 4 01<Q<5.02 the

system is stable once more, although flutter now occurs a second time ,

in this instance at Q 5.02, as the result of a second coalescence of

fu~quencies.
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FIgure 8. Elgencurves for K = 1 and (a) a = 1.05, (b) a 1.25 (1 of 2).
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Figure 8. Elgencurves for K 1 and (a) a = 1 .05, (b) a = 1.25 (2 of 2).
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Performing computations with equation (35) for the critical

flutter loads and using the data obtained earlier from equation (19)

for the critical divergence loads , one can plot stability maps in the

Qcz-plane. In Figures 9, 10, and 11 , some results are s hown for

K = 1/10, 1 , and 2. Although these figures resemble the stability maps

in Fi gures 3, 4, and 5 for the purely dynamic system, i t may be
observed that the flutter-divergence region in a stability map for the

purely dynamical system becomes a flutter region in the corresponding

stabili ty map for the quasi-dynamic system. In addition , the divergence

region in the upper right corner in each of the Fi gures 9— 11 is

replaced by a stable region in the quasi-dynamic case.

I
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