
AD—A037 fl3 CARPCGIE—P~~LLOt4 LPIIV PITTSBURGH PA DEPT oc COMPUTER —ETC F/G 9/2
— P000UCTION SYSTEMS AS A PROGRAMMING LANGUAGE FOR ARTIFICIAL INT—€TCIW

D€C 76 N 0 RYCIENER FN;62o—73—c~ oo7,
I.RICLASSIF lED AFO SR —T R—77— O 330—VO L—i M.

Ut irnu
______F!1flflfl
I

jmfljj 4

I I . :~
IlIp~8 H~

2,5
I _ _

~~~~~~ 32 2.2

I . I 
I~~

Illh1~8

ll~V ‘ .25 flfl~
i.4 ~flfl~.o

MICROCOPY RESOLUTION T E S T  CHART



T~T I1~~~~T~~ Til_T7’~~~

AFOSR TR 77 033 0

(~I~Production System. a. a Programming Language

for Artificial Intelligence Applications

Volume I

Michael 0. Rychener

December 1976

Approved ror pub1i~c release .
dlstrj ~~ t~ r~-, 

~:‘~~~~~tod

DEPART MENT
of
COMPUTER SCIENCE

*~~~~~~~~~~

1
.

iii
Carnegie-Mellon University

~ ~~&... ~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~ _~~~. ~ - 

—

~~ 

- 
~~~~~~~~~~~~ ..~~~. - ~~~~~~~~~~~~~~~~~~~~ —~—-—---——-——



~~~~~—‘“ -
~~~~~~‘

--- —
— —

- — —
p -

L •:-
~

_
-

y

A I R FORCE OFiIc~ OF S CI E N T Ip I ~ RESEARC}1 (Affsc)NOTICE OF TRANSujTW~ TO DDC
This technical report has boe~ reviewed and isapproved f~p public re lease iaw AIR l9Q— 1~ (7b).Distrjbutjo~ La unliajt~~~A. D. BLOSE
Technical Infor.~tj on Ottiou’

--
~T~II~

-

Production Systems as a Programming Language

for Artificial Intelligence Applications

Volume I
1

Michael C). Rychener

December 1976

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa 15213 •1

V

H1.
FL

This report reproduces a dissertat ion submitted to the Department of Computer Science at
Carnegie-Mellon University in partial fu lf itiment of the requirements for the degree of -

Doctor of Philosophy. -

PTIS It

—

J S T ~t.CAT i~

This research was supported in part by the Defense Advanced Research Projects Agency Iv

under Contract no. F44620 -73--C-0074 and monitored by the Air Force Office of Scientific ~~~~~
Research. I~ji&~ !~“- ~~

;~
- :‘~

-
~

_ _ _ _ _ _ _ _ _ —--~~~~~

-

Abstract
• This t hesis develops a system architecture for artificial intelligence (Al), called

production systems (PSs) . Each production is a simple condition-action rule, with
conditions stated on a global Working Memory and actions consisting primarily of simple
modifications to that memory. Actions can also consist of forming new productions. PSs
have been applied to a limited extent in computer science and to a somewhat larger extent
to specialized studies in Al.) They are used in cognitive psychology to model human
intellectual capabilities at a d~1ailed level. With Al research tending toward larger systems
wit h greater flexibility r9.g~irements , PSS are promising as candidates for the primary
knowledge encoding 3e~ium, but certain ques tions and problems with PSs have been
raised. The que t~d~s rev olve around the practical feasibity of PSs for building large
systems in a~Ø~ ers ity of task domains , the preservation of desirable PS properties when
they ar3,f!~plIed to much larger systems than previously, and the specific advantages and
dis~~~~nt ages of PS architectural features.
/ This thesis seeks answers to such quest ions by constructing PSs to perform the

/foltowing tasks , all of which have been developed by past A l research: extracting
/ equations from typ ical high school algebra story problems (Bobrow ’s STUDENT); learning

/ lists of nonsense sy llable pairs (Feigenbaum’s EPAM); solving a variety of puzzle tasks
using a single set of general methods and processes (Newell, Shaw , Simon and Ernst’s
GPS)J play ing a simple class of chess endgarne~ (Perdue and Berliner); discoursing in
natural language about a toy blocks scene (Moran’s mini-linguistic system); and solving toy
blocks manipulation problems (Wi nograd’s SHROLU system). Each implementation is
anal yzed t o bring out PS characteristics.

Evaluations of PSs as a programming language are made according to the traits:
practical feasibility, st y le, degree of the ory-boundness , power and overhead of expression ,
productivit y, eff ic iency 1 architectural flexibility, and level.2 A taxon omy of control is
presented , and measures of frequencies of usages in the PSs ,~f various forms of control in
that taxonomy are used to support the discussion of powc~’ and overhead of expressi on.

• The actual PSs are able to effectively exp loit PS po*er in the particular areas of
selec tions and iterations. Specific features of the . part icular language design used here
are central to the capabilities discussed - A ta~0norny of rep resentati on is developed, to

provide a basis for adding openness t~ the PSs , rep lacing ad hoc internal naming
conventions, and to allow measuremént of the modularit y of PSs, making interdepender icies

:1 of various parts more examinable. The taxonomy of representation is applied to one of
the larger PS programs w ith the finding that the split between inter-module assumptions
and intra—module assumptions is roughly an order of magnitude, approx ima tely the form of
a ne~rly decomposab le syste m.

~~PSs are found t o be effect ive and advantageous for the programming constructs
typ ical of A l systems. ~ They have particular advantages in sty le , conciseness , and

archit ectu ra l flexibilit y. ~i~ijor successes can be expected in applying PSs to large -scale
understanding syste ms of t~ e sort currentl y being ex plored. They are particularl y useful
in domains where system \nowledge must grow dynamically through interaction with
humans and with a task environment , but without the expense of anal ysis of how each new
piece of knowledge must f it int o existing structure. Their d iversity of app licati on and their

•~ “ problem-solving capabilit ies , both of which are deemed esse ntial t o building understanding
sys tems , have been adequatel y demonstrated by th is thesis.

•

I

~ ~~

-- - -

p • • -— -
~~~~~~~~~~

--• • - — • --• -—
~~~~~~~

- • — -
~~~~

- • -— -
~~~ 

- • - • • • - - - - • - -

I

- Acknowledgments

This thesis grew out of a long series of discussions with Allen Newell, who also
contributed significantly through his writings. He inspired the topic of the research,
suggested methods, provided detailed criticism and encouragement of the work as it
developed, and helped with the style and organization of the presentation. If significant
gaps and errors remain, it is because I have not responded adequately to his objections.

• I The other members of the thesis committee have given valuable assistanc e in the form of

-
I reading and commenting on the work: Raj Reddy, David Klahr, and Victor Lesser. Donald

• Waterman commented on some early versions of parts of the thesis and helped indirectly
• through his writings and through organizing a number of seminars in which production

systems and representational issues were discussed. Crispin Perdue and Hans Berliner
• helped with Chapter V. Others who have made general contributions in ideas and in work

I along similar lines are Herbert Simon, Frederick Hayes-Roth, Charles Forgy, John
McDormott , Kamesh Ramakrishna , Donald McCracken, Pat Langley, Thomas Moran, Charles
l4edrick, Stuart Card, Lee Erman, James Gillogly, and Jack Buchanan (I apologize in advance
for omissions). John McCarthy introduced me to Al in courses at Stanford, and interested

• me in the study of representing knowledge as rules.

My wife Pat made many things possible that might otherwise not have been, with
emotional and financial support, and occasional typing and criticism. My mother and father
end my wife’s famil y have also been helpful in a number of ways.

Invaluable assistance has been rendered by the Computer Science Department at
CM&J as a whole, providing a rich educational and social environment, powerful computing
resources, and support of the PUB document compiler and the Xerox Graphics Printer
system.

• Preface to Volume I

I
• The technical report version of this thesis is split into three volumes, with Volume I

containing most of the material of general interest , and with Volumes II and Ill presenting
details of the specific studies from which the general conclusions are drawn. Thus, for all
except those with serious interest in production systems , Volume I should suffice. Volume
I has three chapters: the introduction, including background, motivation, and goals of the
thesis (Chapter 1); an introduction to production systems and to the particular language
used in the remainder (Chapter II), and the conclusion, including a summary of some of the

• results of the other chapters (Chapter VII).

The following page gives the table of contents for the entire thesis , of which the
Ij informati on on Chapters 1, II, and VII is pertinent to this volume. Volume II contains
I: Chapters III and IV , and Volume III, Chapters V and V I. Each chapter has a title page, an

abstract , and a detailed table of contents , which are placed directl y before the first page
of the chapter.

________________________ ________
-~~~~~ - • •

Table of Contents

For Thesis

Chapter Page

Abstract
Acknowledgments H

• I. Introduction: Background and Aims of Production System Research 1-1
V Last Page of Introduction 1-45

L II. Introduction to Psnlst Il—i
Sta rt of Append ices 11-30
End of Appendices 11-36

III. A Production System Implementation of EPAM Ill-i
Start of Appendices lII 27
End of A ppendices 111-40

IV. GPSR: A Production System Implementati on of GPS IV-1
Sta rt of Appendices IV 79
End of Appendices 1V 108

V. KPKEG: A Production System for King-Pawn-King Endgames . • . . . V-I
Start of Append ices . . • • . • . . . V-3 1
End of A ppendices V-53

VI. MiIiPS/W Blc x : A Nit ura l Language Input Toy Blocks Problem Solver V I- 1
Sta rt of Appendices V 1 69
End of Appendices V1 134

VI I. Conclusion: Programming w i th Production Syste ms V) I- 1
Start of Appendices VII-Si
End of Appendices V 11 63

• 1

I’,

•~ ~~~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _

• Chapter 1

Introduction

Background and Aims of Production System Research

Abstract. Production systems are a system arch itecture whose application to artif ic ia l
intelligence has recen t ly bec ome attract ive , due both to succe sses in limited domains and
to results of human problem solving studies. This chapter gives some general history of
the formalism and discusses some recent work that has a direct relation to the present
exp loration of production system s as a language for artif icial intelligence. As a language,
production systems are interesting, but their app lication to aut omated understanding
sys tems , where programming features for humans are of less importance , will pr ovide the
centra l evaluative riteria. A priori properties and properties useful to building
under~tanding system s are exp lored. General comparis ons to other artif icial intelligence
languages are mad~. There is a brief discussion of the desi gn possibilities f or a production
system architectur e , and the pecu l iarities of the language to be used here are explained.
Motivation is given for five tasks to be used to demonstrate and explore production
sys tem features.

—- —- — • - - .• • -- —•• - ----- --—---—-- -•—---- __ -•-•.---- -—— — • rn -


~~~~~~
--— -

~~
---
~~~ 

-
~ ~~~~~~~~~~~~~~~~~ TT’

Introduction

Table of Contents

For Chapter 1

SECTION PAGE

A Definition, History, and Approach I-i

r A.1 Defin.tion i_ i
A.2 History 12
Fig. A.1 A simple Markov A lgorithm for reversing a string 1-3
A.3 Approach and goais of this thes is 1-4
A.4 Overview of chapter

B The Context of This Research 1-7
B.1 Class if ication 1-7
8.2 Direct precursor to this research 1—10
8.3 Research strate gy 1—) 1

C The Production System Approach 1-13
• C.1 How production systems might encode common structures . . . 1—13

C.2 Inherent properties of production systems 1-15

0 General Comparisons to Other Al Languages 1-19
0.1 Some reactions to older problem-solvi ng issues 1—19
0.2 Features of the newer Al languages 1-2 1

E Direct Antecedent s arid Relatives of the Present App roach 1—25

F The Tasks to be Implerne;ited as Production Systems 1-33

G The Production Systerr Design Space and Psnlst 1-35

H To the Reader 1-39

I References 1-41

_ _ _ _ _ _

••• • • • -~~~~~~~-
.•-~~--•. • - --• - • . - •

~~~~•- - 

— 
-

I

Introduction .

A. Definition, History, and A pproach

• j
The endeavor at hand is to devise means to crea te powerful and general

• 
• 

mec hanisms , with intellectual capabilities w orthy of being desc rii cd as intelligent. The
current view in the fie ld of artif icial intelligence (Afl is that n~elligence will result when
information processes of an appropriate form arid content are constructed. The attempt at
construction of such processes is to be complemented in Al b~

. studying their actual and
• potential structure , and the structure of the inf ormat ion that t hey iricorporat~ or might

incorporate. This thesis proposes production syste nis as an e f f e c t i .’e tool for the tas k of
Al.

This section has several purposes: to def ine ~~~~ a proc ~ • c r i  sy s tem is and
describe abstractly how it wo rks; to give background on the cr ia i~. of t ne concept of
production system; to sketch some Ir portant propert ies cf the ?n~~r o, , : r i  to oe taken in
experimenting with productio n systems; to give the ~er - e r a ~ go~~s of the thesis; and to
describe the secti ons to foliow and the remaining chapter s of the t ies is .

A l .  Definition

A .production systeru~ is a set of condition-act ion rutes repr i~sent ing an algorithmic
pr ocedure on some domain. A rule , or production , app lies to an element of the domain
w henever its condition is true. The appl ication of the product io l results ri executing its

action , pr oducing anothe r domain ele ment. In using this simple v ic- w within Al, wc take the
• domain to be the space of models of situations , represented by sets of symbolic

structures. A product ion condition is a conjunction of sche matic patterns for symbol
structures , and its action is ar unconditio na l sequence of additions , modifica tions ,
rep lacements , and delehons of symbo l structures Seque nces of symbol ic changes ,
resul ting when product ions are applied to a mode’ , are ta ken to cor respond to the
modelled system ’s dynamic behavior.

The scherr e just sketched hardl y suffices to narrow th~ scope to a practical or
def in ite com putationa l tool . To do so requires the specif icat ion of a production system
architecture. Such an a rchitecture has four co rrpo nents : ~~cr~~rig Memory, Production
Memory, a recog nize-act  cyc le , arid a procedure for res~ tvi ’~ corW cts between competing

LI . productions. W~ rkinn~ ~~~~~~~ is the s~r u c t i~re cor tar i ln g lhe dynamIc knOwled ge s t a t e  of
the system , re fer red  to abovo as a m~~ e of a s i tuat ion.  A hs t r a c t &ns of Workin g Memory
elements are the pr im~iry ccns t it uri~~s of produ ct on cO ndi t iD rs , arid manipulations of
VJorlcing Memory eleme nts are ~i’o prima r y Co rs t i tL~ n s  of produ t on act ions. Specif ying
the Working Memory p i~iccr cori~, t r a - i t ~ o~ the at tr t:.utes of i t s elem ents arid on the
relationshi ps bet - 1vcen e~~~c~nts. Pr c ,d ij c t~~ri ~~~~~~ ccit~~ns a~l of the product ions , and
its spec if ic at io n defin es ~~owrh~o fo r,~ for ~rcdu ct ~.ns are thr?i r relationships w lth i r i  the
mem ory struct ure. Prcdu~~~ ’i ~. : t o ~s usual ’y icL1~ operato rs  (or modifying the
Production Memory. The r ’ ro’ r  -~ c t t i e  se ~ v~s to co n~~ut the app icat ion of
pr ociuc(ion~ The usual f o r m .~~ ;n~ t ~~~ a recc ~n t  -

~~ occ urs , in which a product ion or a
¶ set of productions is ~ und tc. hav~ It s  Con~~~ Or~ s - ~~~~~ ~~~~ rc -s pe ct to the present

Workin g ~.&m ory. The recc ~~~t .~~ usua ll y rye :  ~~ mat c h - .~ abstract  form s t o specif ic

fr~ 
. -

I-I A.l



_ _ _  _____ 
- — ~—— -~~---

__
—.-- ‘. -- 

- 
~~~~~~-~~~~~~~~~~~~~--~~~~-—-~ -,—-. -~~~~ .-.__--- ~~-

-1

A.1 Definition, History, and Approach Introduction

elements. Then a selection from the recognized set is chosen for action, and the
corresponding sequences of act ions are performed. Performing the actions results in a
new Wo rking Memory state , and the cycle starts over with another recognition. The

- • selection from the set of recognized productions is according to the conflict resolution
principles that compose the fourth component of the architecture. These principles are
usually based on the stat ic structure of Working Memory or Production Memory, or on
dynamic aspects of the system’s operation such as recency of addition.

•
- Several featu res of the behavior of a production system are essential. The

representa tion of system behavior as a sequence of changing model states becomes

~ I
concrete if we add the interpretation that certain of the symbol structures in the model
are processed by some autonomous mechanism to result in exte rnal behavior , f or instance

• moving a hand or making an utterance. Inputs from outside the system are somehow
translated into the appropriate symbol structures and appear in the Working Memory as if
they viere production action manipulations , which in some architectures results in bringing
them to the focus of the system’s attention (which is used to resolve conflicts). Since all
internal behavior is by production actions , it is through those that the overall behavior is

• given direction. In particular , dynamic behavior is controlled by adding Working Memory
items (signals, messages , encodings of knowledge, etc.) whose intention is interpretable by
other productions , often quite unrelated ones. A second means of control is by adding
more productions to the system , which tends in prac tice to be more difficult because of

E longer-term effects. This is because , for reasons of history that will become clearer
below, productions are considered less subject to change than Working Memory items , and
in particular are rarel y deleted.

Hereafter , “production system ” will be abbreviated “PS”, with plural f orm “PSs ”.
Also, “production” will be abbreviated simp ly “P”, w it h plural “Ps”. The condition of a P is
its left—hand side, abbreviated “LHS”. Its action is its right-hand side, “RHS”.

A.2. History

In this subsection, the history of PSs is used not only to provide a general basis for
our approach, but als o to serve as a contrast to aspects of Our view of PSs. The first PSs
wer e developed as abstract fo rmelisms for computatio n, by Post (1943) and Markov
(1954). Minsky’s descripti on (1967, chapter 12) is the most accessible introduction to that

• line of thought. Caller and Perlis (1970) start ed with that forma l basis and proceeded to
build up conventional Algolic control structures. Figure A.1 gives an example of a simple

• formal algorithm for reversing a string, using a PS similar to Markov ’s normal algorithms
(adapted from Caller and Pen is , 1970, page 9). The algorithm cons ists of six rules , of a

• simple condit ion-action form. The list is ordered from top to bottom , with a higher rule

• always taking precedence over a lower one. Program control symbols are m and n, and
program variables are x and y. The algorithm works on strings fr om some alphabet of
characters , augmented for purposes of the algorithm by the program cont rol symbols.
Thus if the alphabet is (a, b, c), a legal working st ring is “cbnmb”. Each rule cons ists of a

• string pattern (condition) followed by an arrow followed by a second string pattern
(action), with the intention being to find an occur rence of the condition pattern in the
working string and rep lace it by the action pattern. There are two special cases~ if the
condition pattern is empty, it always matches and the acti on pattern is simply appended to

A.2 1-2IL
_

7 ~~~~~~~~~~~~~~~~~~~~~~~~ _
~~~~~~~~~~~~T~~~~ - - 

~~~~~~~~

Introduction Definition, Hist ory, and Approach •A.2

~
j the left end of the working string; if the action pattern is empty, the algorithm halts.

Program variables are allowed to be assigned to any symbol in the alp habet at hand, but
not to the control symbols. Thus rule 4 says to find an occurrence of n (in particular , the
left-most one) followed by an alphabetic symbol, and switch their order. The algorithm
works by taking each character in a string and moving it across the string, placing it to the
left of a previously moved character . Then it sweeps acr oss the string removing all of the
program variables. A sample execution sequence is: abc (apply rule 6) mabc (I) bmac (1)
bcma (6) mbcma (1) cmbma (6) mcmbma (6) mnicmbma (2) ncmbma (4) cnmbma (3) cnbma (4)
cbnma (3) cbna (4) cban (5) cba.

1: mxy -> ymx
2: mm ->n
3: nni ->n

-: 4: nx -> xn
5: n ->
6:

Figure A.1 A simp le Mark ov Algori thm for reversing a string

The present approach to PSs differs in several ways from the above. First , we take
our rule sets to be unordered , for reasons of rule independence and the consequent gain
in program clarity and readability. (But there have been PS architectures that used
ordered rule sets.) This means that each rule must explicitly contai n all the conc~t ions on
w hich it depends, rather than allowing rule order to imp licitl y set up masking Conditions
for rules so that a rule depends on its own conditions plus all of the conditions in the rules
above it. Our PSs work with Lisp-based predicate-calculus-like assert ions rath r than
strings of characters , for more structure and manageab ilit y. Iri co ntrast to the Galler arid
Per lis appr oach, we make no eff ort to build ourselves into conventional co tro l struct ures ,
but rather leave the syste m open and simp le, in the hope that man ag ing control with
Working Memory items allows the flex ibility ,equired for max imum intelligence.

Two other efforts to appl y PS principles to conve nt iona i pr ogramming languages are
exemp lified by the definition of A l gol 60 and by Floyd-- Evans Ps for building c ompilers. As
Minsky (1967) points out , using PSs to define languages is rather d i f f erent from their use
in expressing al gorithms , in the sense that the former uses rules permissivel y and
nondetermir iictically. That is , a definit ion using a set of rules uses them generative l y,

• all owing generation of an indefinite rumber (usuall y) of grammat ical language strings , but
not aiming at any parhrular language string or subc lass of st ri rigs , The algo rithmic
application of PSs to compiling programs has a defini te processin g aim in mind, and
inc ludes control to direct the procc ~sing t o that aim . Floyd (1961) ard Evans (1 964) take

t
-

the algorithmic approach , and their PSs are tailored to the task ot parsing prograrr~iing
e - languages, incorporating, in our view , too much cont rol , allowing sj hroulir ies of Ps,

- • • accessible by specific labels that can be the target of expi cit branching commands.

PSs became part of Al researc h with Waterman ’s (1970) prog ram , which used them
to express poker heurist ics in a learning task. H~ t r~res hs use of PSs to both

A.2

• •• • . - - a~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ -- —--~~~~~ —-~~ -~ • • •~~~~•~~~~ • • •~~~~~~~ •~~~ • . •

A.2 Definition , History, amid Approach Introduction

programming language research (above) and human problem solving (below). Waterman
had a program struct ure that included other aspects besides PSs , arid in fact used the
conventional parts of the program to process and manipu late the Ps. His Ps were of fixed
format and were used only to represent rules of thumb for making betting decisions. His
program created new Ps and modified and genera lized existing Ps, to achieve adaptive

• . behavior. Our approach dii~ers in using Ps exclusively to express entire programs , and in
allowing general forms for them. The Heuristic Dendral project , with an appr oach similar
to Waterman ’s ri some ways , involves automatic learning of heuri stics for interpreting data
from chem ical instruments , in particular t o identif y chemical c ompounds on the basis of
occurrences of fract ion a l substructures in mass spectrograms. Buchanan et. al (1971,
1973) describe aspects of that work of interest to Al. Comments similar to those made on
Waterman apply here. Deimd ral is note -worthy in being a project carried out at the
fr ontiers of chemical research , and in achievi ng expert ise in its area surpassing that of
human experts. In conj unct ion w t t h chem ists , it has produced publishable new results.
These and other systems are d iscus sed further in Sechon E •

The body of vic~k on ‘ % r c h the present is most Cl - se ly based is represented in
papers by Newell (19 72, 1973) and in the book on h .~r a n prob lem solving by Newell and
Simon (1972). Newell f i rs t applied the PS apprc’ ;c ri to narrow problem-solving contexts ,

• extending it to perceiving and encoding processes , and in the latter succeeded in
-

• proposing models to accou nt very closel y (quantitativ el y) for sor e features of data from
experiments with human subjects. The book presents n ore s~ ppcH for the usefu lness of
PSs in modelling human irifo rmat ior~ processes , and incl udes a theo ry of human problem
solving in which PSs or PS-L ke properties play a p r o H r -.ent role. The present concern is
w ith PSs independentl y of the b I a s of their use ic r psycho log ica l models , but their
preliminary success in psychology provides imn po rt in t r rot iv at i on for examining them
seriously. Section C.2 and Section E will go into more detail on t~ ese and related top ics.

A.3. A pproach arid goals of this thes is

The main goal of t his thesis is to establish empiricall y t ha t PSs are an effective
language for Al app lications , To ea te in A l, their applicati on has been somewhat narrow:
in game-playing (bet t -~; he - is t ic s) , in cheniico l theory format i on, in learning simple

• linguistic rules , in rep’e ent i-i~ d~~ ros ~ic rules in medicine , and in a few others (see
3ection E). People ha -c seemingl y been re~u c t a r t to t ry to c a r r y over the advantages of
PSs ri representing s o a ~.u :ur ; t i cs w i t h n some cIt er p~c~ r am f ramework to the
construction of com plr~l~ r~ ’ t n ‘ -

~~ sur h as understanding yste ms or genera l problem—
solving sys t ’ ms . Jr I. t , tb~~ re ~avn bc e n claims that P~ s are i r rpp opri at e in a number of
ways (det~~i~ ir, S c c t c ~ 1) There is , of eo~-se , no quest on ttal PSs are forma ll y of
sufficient power to repre s ent ~ir hi ’ r m y a lgor t nr - :.. We would I k e to determine instead

• their practica l ad-~’mt~1L. s arid dis~ d~~~~~~es in exp r es s ’ n~ maj or Al systems. This
assumes that t i e task of bui ldng 7~i sys tem s is ¶ u c e n t l y d f l n ent from , say, writ ing
numerical al gorit hrr to w a r ra nt a spn al language sy s tem (wh ich a ~.umption Seems to be
w idespread withi n A l>. The ap~ r na c b to t h s de te r r nat or is to C~de a half~do2en or ~O
Al programs that have al ready been do .~~ lo unu ~~

-.u do c u n c -~ t ed and that ha. a been
• sufficiently prominent to be the nar s for other ~o n h u r ~g re~.ear h, w het her exp lici t or in

disguised or modified f orm The PS programs t t -~~- -reL ~ wi ll uppor t the feasib i i i t y of
using P~,s , and in addition v.’ i l l be a r e n ~iue u a rai y s s of w r~ere f l e power of PSs comes

• A.3 1-4

Introduction Definition, History, amid Approach A.3

fr om, of where overhead is incurred, and of where PSs offer a richness of arch itectural
alternatives for encoding, and of the position of PSs w ith respect to a few other general
traits of languages. Where program listings or deta iled descri ptions exi st for these subject

- • programs , direct comparisons might y ield valuable insights. A variety of techniques f or
using PSs in typical Al situations will be developed and demo nstrated. Such development
mig ht then be applied to subsequent new applications. The expression of typical AZ
methods as PSs may result iii their reformu lation in interesting ways. PS implementations
may have more powerful capabilities than their forebears as a d irect result of their being
PSs, w hich would point up PS characteristics in actual practice. Properties of the chosen
se t of Al programs might recommend them for the evaluat ion of other Al languages.

PSs are a remarkab ly simple system architecture. There are two sides to this coin.
On the one hand, the familiar control and data context environment has been discarded ,
leaving us with only the ability to rec ognize patterns in a global Working Memory and to
take an unconditional sequence of actions on the basis of what is recognized. Our concern
as pr ogrammers is thus perhaps to try to recover some semblance of contro l, but i t w il l be
the case that complete control as we are accustomed to will not be necessary. That

concern can also be relieved somewhat by the far goat that PS programs be writ ten and
augmented solely by automatic procedu res , probably themselves writ ten as PSs. On the
other hand, there is no language bias towa rds any of the classical weak methods of Al,
such as heur istic search (see Section D.2). Each task can be treated largel y acc ording to
its pecu lio rities , with the building of overly ing control structures as the need ar ises.
Without going into more detail at this point , it often seems in A l research that commitment
too early in a design to a part icular control organization car block progress later in the
design, and can in fact result ir a system whose behavior is sufficient for the orig inal aims
but is increasingly res istant to exte nsion. The present approach is to let the overl ying

control emerge from the structure of the task -specif ic knowledge , expressed as Ps, during
its expansion.

Viewing the thesis as a pr ogramming task must be taken relative to t w o d i f fe rent

interpretations. The f irst is the use of PSs by humans to encode tas k knowledge to forn’i
intelligent systems , which is the act iv i t y at hand. The second is the use by the intel !igent
sys tems themselves to augment their own capabilit ies , taking in, e.g., ra tur~ l angua ge f ro m
humans. These uses of PSs as simply another program ming language and as the target for
an aut omatic programming system undoubtedl y should be eva luated according t o dif fere nt
criteria. At present , the second view seems the n ore reasonable one (peop le te id to find
it diff i cult to program PSs) and the one more likel y to be t r ca t ed ade~iuate y by t c kinds
of experiments proposed

Aside from the pr imary goal ju st laid out , a number of spcond ,, r~’ goals are p’-n s e rf ,

arid are attained t o va - ying degrees accord ing to thei r L~ ’ f c u l ty arid to the directness of
their relation to the n-et hods used here. By er icoce~~ a numce r of A l tas ks in a un fo rm

V notation, we seek a rat ional basis for Al, in tern .- of con’mon prc~;ram fea tu res It may be
possible to build a model of the knu of knowlcug st ructuring that is most e f f e c ~ vely
programmed as a PS , so that f u r t l c ’ r e f fo r ts w i t h PSs could f t for m ulate their tasks
within that m odel , f aci l i ta t in g the d eta ls of the PS encoding. Such a model may or may not
indicate the opt imal ty of PSs .

Another secondary resu lt w ill he more insight into the det a i ls of encod og knowledge

1-5

~

_ _ _ _ _ _

p -
~~~~~ 

— _____

A.3 Definition, History, and Approach Introduction

as Ps. Some of the properties of PSs have already been elaborated, but in limited domains
(see Section E), so more evidence wilt be useful. This will be most useful if PSs do become
the target language for some automatic programming system or for an understanding
system that aims at automating the acquisition of new knowledge. We may understand
better what procedural knowledge is and how it is manipulated, if we study it within a
model that views behavior as a series of transitions between (non-procedural) knowledge
states, as ske tched above in introducing PSs.

Several other secondary goals can be mentioned briefly. This thesis will establish
methodological tools for making further studies al ong the same lines with other Al systems.
This wilt include a set of specific benchmarks against which others could be measured. A
list of desirable properties of systems will be developed, along with pr oper measures for
them. It wilt provide feedback to the process of designing new PS architectures , for
instance by analyzing the places where the e cprossion of knowledge in condition patterns
seems particularly clumsy. Stereoty ped forms of expression might thus be made more
convenient. Finally, regardless of the stated intention not to model within psychological
constraints , the PSs might provide valuable input to psychological model builders. This
might take the form, for instance , of pointing out places where constraints on Working
Memory size might be most difficult to meet. 

-

A.4. Overview of chapter

This chapter discusses the place of this thesis in relation t o Al in general and to
work on Al languages amid on PSs. Sect ion B discusses how the present work with PSs
derives from more general Al goals , and how it might be considered as developing means
toward those goats. Section C gives some a priori reasons why PSs took promising as an
Al language, emphasizing the peculiar PS approach to tong-sta nding Al problems and
discussing the psychological n-motivat i on of using PSs. Section D gives features of some of
the new Al languages , and develops corriparisons of those to PSs. Section E discusses
recent results from specific explorations with PSs. Section F lists the Al programs that
are the subject of the body of the thesis , and sketches s ome of the methodology. Section

• , G discusses sonic of the featu res of the particular PS architecture designed for this work,
arid makes comparisons to other PS architectures. Section H gives hints to the reader on
how to find various material in the thesis while avoiding unnecessary details.

t -

5.

p 1-6



_ _ _ _ _ _ _  - -

Introduction

• B. The Context of This Research

The goals of Al researchers belong to a diverse collection of categories , so it is
• - necessary before going too far to understand how the present work is related to Al’s

maj or subareas. Section B.! uses Nitsson’s (1 974) classif ication of Al areas to e~plain
the present emphas is. Sect ion 8.2 shows how this work derives from my previous

• research on PSs , that is , primarily to investi gate whether the scheme of anal ysis will carry
over to wider appl ications of PSs , and wh cther conclusions on how knowledge might be
auto mat icall y enc oded in PSs still hold. Section 8.3 exp lains how this thesis fits into a

- 

• general strategy of stud ying the content knowledge required for building understanding
systems.

B.1. Classification

F’Jilsson has divided the f m~ ld of A l into a number of mesearch areas , of which f our
are designa ted core areas , and the rest , first-level a~ p ’ cat c’n areas (Nilss on, 1974) . The
four core areas are: common-s ense reason ing, deducti on , and pr oble m-sOlv ilg; modeling
and representati on of knowled ge; heur ,s t :~ re ; rc h; and Al systems and languages. The

- • presen t thesis is in the fourth catego ry, but as a means to invesigat ing issues and
• ultimatel y advancing the state of the a rt  in thc first and second categor ies. The principal

approac h of interest to those is the building of unoersfa nd- ’ ig systems , by w hich I mean
systerri s that embody knowledge a .u i~ some ..b~nct are a , that  a re  ~~~~~ to manipula t e t ha t
knowledge, including problem-so lving , a-i d that a re able to f-~ n l t  comrnuni c a live behav ior
to derrionstrate the ir a b i l t i es  ar ~ d the conte nt of the ~,nov.~ed~ e. The fol lowi ng argues t hat
past research has not s at is f a c t o r i l y demo r .c tr a te d P-c usefu lr’n’s of var i ous proposals for
understanding syste ri s , due to the !~ ck of divers ity of b ,~ avi Or , and that the present
appr oach mi ght therefore be more appropriate for the init iat ion of a large systenm-bui ldir ig
effort.

A number of past ef for ts have dealt with various as pects of the problems
encountered in building uriderstai idir mg systems , hut have dea lt rnc.st l y w ith the form of the
design w i t h~ ut treating a body ot tas k-dom ain knowledge iii s u f f i c i e n t  qu an t i t y  to show

• e f fect ive ness for a large-scale system . Several lines of research that are releva nt to
vari ous c~ rrO one~ tr of understanding syste r s can be mer i iOnec:~ pr oblem-solving
techni ques , and so lv ng simple puzzles using n-cans-ends a na l ys is and heuristic sea rcn; the
use of pred icate-calculus notat ion and general uniform proof procedures; the ntegration of
the two preceding ar ea s fc r robotics prob lem-sotv’ng ssy~te n s; the representa tion and
subsequent use of s t ruc tu red  ~nowlenge in sema ntic netwo- f.s; and the use of ad hoc
procedures to represent knowledge , taking ad’,’ami tage of pecu l ia r i t ies of domains to as-oid
the costl y appticati on of uniform procedures cr weak sea rch methods. One pr nc ple tha t
has emcrged from these and ot hers , arid that will be ce nt ral  to the succe ss of the PS

L approach, is that it is very of ten beneficial to add domain- s pecif ic knowledge in sonic fo rm ;

L. ~ f or insta n e, “syntactic ” methods are ofte n considerabl y impr oved by using the “semantics ”

• The reader is ref r r - ~ to ~~ - .~~i’S survey ( 19 7 4>  for a broader arid more detailed
su:nnieiry of thes e h u e s  of wor k , a~ wo l!  as for specific refe rences.

1-7 B.!



8,1 The Context of This Research IntroductiOn

• of the domain. This is demonstrated in some natural language processing systems, in
theorem-proving systems , and in chess programs.

In addition to the deliberate (and usually necessary ) scope limitations of many of the
- resul ts of Al research in the past , there are some broader respects in which the res earch
• is inadequate for attacking the larger aim of building understanding systems. The
i effectiveness of any single approach over a diverse set of applications has not been
demonstrated. To aim at such an approach is desirable at least from the standpoint of
parsimony, though parsimony might turn out to be unachievable. Even within narrow
subject areas , there has been little attempt to prove comprehensiveness; for instance, in
dealing with representation, each system represents its own task domain without
attempting to address any of the typical examples of the others or to deal specifica lly with
problems (representational and processing) in other approaches. This results in a set of

- 
systems covering a number of task areas but whose interactions and overlaps are quite
unknown. As a result , it is difficul t to tell if particular research is a real advance. Very
few systems have a coherent approac h to one of the primary problems of the area, the
knowledge interaction problem: A particula r arrangement that has proved successful on

- 
some task may become unstable when fu rther knowledge is to be added, due to increased
comp lexit y of interaction between pieces of knowledge. This problem can be partiall y
appr oached by asking how knowledge is applied when appropriate , how its
appropriateness is recognized so that it can be brought to bear , and how it interac ts with
other knowledge in ensuring a correct result when single pieces of knowledge or single
knowledge sources are insufficient by themselves.

The present work with PSs shares the characteristic of limited domain with other Al
approac hes , in being an ntensive study of how knowledge can be expressed within the
constraints of the particularly promising PS form. The underlying aim is to go on to large-
scale comprehensive syste m building using exclusively that form. In order to make a
convincing case for proceeding with PSs, theref ore, we use them uniformly to achieve a

- w ide diversity of capabilities.

There are a number of essential properties , from a conceptual standpoint , of a
language or control structure , if it is to be used effect ively f or an understanding system.
Moore and Newell (1973) give a list of dimensions on wh ich understanding systems are to
be evaluated: representation , assimilati on, acc ommodation , act i on, directi onality, depth of
understanding, effic iency, and error. Wi thout elaborating on the definitions of these , it can
be seen tha t these are high-level properties of a system. For the present purposes ,

- 
I rather than using those trai ts directly , it is more useful t o focus on the representation , arid

• see how the various trai ts impl y desirable pr operties for it. So the following list of
pr imary properties of knowledge has emerged, though it is not to be put into direct
correspondence w ith the list of ei g t  dimensi ons. Knowledge within the structure should
have:

Encodability - knowledge should be easil y mapped from an exte rnal f orm
to the form in the understanding systen ; ultimately, the encoding
should be automat able.

Inspectabihity - conte nt of knowledge already encoded should be readil y
derivable; this is the converse of enc ociabi ity, and perhaps could also
be called extractab i l i ty .

Accessibility - knowledge should be accessible in some form for

4 ~: B.! 1-8 

~~~ --~~~~~~~~ -—-.• -~~~~~~ -- ~~~~~~~~~~~~~-- ----—--~~~~~~~~ -~~~~~~~~~~ •— -—~~~~~~~~~~~~~~~~



~~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~ 1
‘

P

I
Introduction The Context of This Research 8.1

application when it is appropriate; this need not be as complete an
operation as for inspection; when knowledge is accessed or applied,
its own nature is not as evident as is its effect.

Operability - knowledge must be amenable to such operations as
mapp ing, forming analog ies, generalizing, optimizing, re-f ormulating,
deducing, and inducing.

Flexibility - knowledge should have a number of alternate forms , for
instance along the procedura l—declarative aspect.

Organizabilit y - there should be a variety of potential control
organizations , ac cording to the demands of various kinds of content

• I knowledge.
Provability - there should be a way to guarantee correctness or perhaps

consistency of the encoding, in sonic (informal) sense ; this may
indude being able to jus t ify the presence of some knowledge by
knowing how it has been found necessary for some behavior .

These features can be seen to be reasonable if an understanding system is viewed as
something that is constantl y augrienting, inspecting, correcting, and app lying its knowledge.
They also have the property of being sor~ehow independent of particular systems
architectures , ideally being permanent and immutable properties rather than features of
systems that will undergo change as we advance scientificall y in their design. Thus, it is
useful to present a set of secondary properties , whic h are more tempora ry or state-of—
the—art dependent or even controvers ial , i.e., are perhaps th e cur rent set of properties
that we believe are the right means to achieve the primary properties above.

Modularity - organizable in modules , each of which can be augmented
independentl y, for the niost par t; in a modular o rganization , relations
between pieces of knowledge (relations such as dependency,
similarity, tak ing exception to, arid others) a uc mostl y within modules
ra ther than between knowledge in distinct modules.

Uniformity — knowledge of various sorts encoded in a similar form; gains
in effectiveness are expected when multi plicity of basic f orm is
avo;cJeci.

Transparency - the representation m nirnally interfering with pr operties
of what’s encoded; if in encoding some knowledge , more attention
must be paid to the medium or form than to the content , then

transparency is lost.
• Exp licitness - assumptions made by knowle- d~e should accompa ny it or be

otherwise direct l y available , rather than implicit or available only
af ter some involved com putation.

Openness — avoiding coding conventions that prevent scrut iny by general
- ; processes; also , open for interactio n wi th c t r e r knowledge , perhaps

in unexpected ways arid iri new contexts; also , read ly available w hen

• trying to diagnose errors , assign credit or blame , and other
debugg ing operations.

Conciseness and power - expressible briefl y, in manageable pieces ,
having si g nif icant cor putat onal ef fect .

Mixed procedural and dec larat ive - expressible in a var iety of ways
along the active -passive dimension.

- ‘
I Efficiency — readi ly acc es ,’b~o in terni~ of computat ion t in e .

These secondary properties probabl y do not cover comp lc t el y aspects of the primary

.
~j i-- • - -1

1-9 B.!
4 ~~~- -

-- ~~

-

.

B.~ The Context of This Research Introduction

ones, but such a list gives us something to focus on, ir, terms of possible measurement ,
• while our expertise in building understanding system s devclop~. Some examples of how

the two sets correspond are : modularity supports encodab ility, organizability,
inspectability, operability, arid provability; openness supports operab ility and accessibility;

• conciseness , transparency, and uniformity support encodabilit y; and mixed procedural and
declarative supports flexibil ity. As we shall see below , some of them are obtained almost

—

- immediatel y from the definiti on of PSs , while others require testing and deliberate
measurement , which ac tivities are centra l to the conclusions ultimately to be drawn about
PSs.

• B.2. Direct precursor to this resea rch

The present thesis will focus in part on some questions raised by recent work with
• a narr ower focus (Rychener , 1975). A PS imp lem entation , Studnt , of Bobrow ’s (1964)

Studg.nt program , f or solving high-school al gebra word pr oblems , wa s analy ’.ed in detail to
determine its knowledge conte nt arid to study how tha t knowledge co rresponds to the PS
rep resentation. Knowledge wa s expressed as natural language statements phrased as if
spoken to an (imaginary) understanding syster - , describ ing the ste ps to be followed and
the knowledge to be app lied t o perform the task. The knowledge , consisting of 218
statements in natural language , was found to mn~p onto the Ps in a many-many fash ion:
several pieces of knowledge per P, and severa l Ps using a knowledge state ment in
different ways. One way th is com c-s about is the ac ;d ng on of conditions to s ome p iece of

pr imary knowledge; the cases represe nted by the co nd it:o ns are represented as separate
Ps, w ith the principal piece of kno- •v~~c~ e interact ing in a number of ways , once with each
qualify ing condition. The mapp ing of knowledge to Ps was f a i r l y direct , involving only
minor amounts of prog ramming techniques: 702 of t h e knowledge state ments were task-
domain-related , 257. were programming technique s such as knowi edge about iteration and
tree—structured data , and onl y 5? were concerned w ith pecu~ar l es of PS control. For

• this kind of analysis , the exp licit and concise characte r (r.ma lt numbers of condition
elements and actions in each P) of PSs is essential and it is a ided considerabl y by the fact
that the Ps are an unstructured set , so that factors like lexica l locat ion do not a f fec t how a
P is to be interpreted arid how its knowlsdge is to be deter m~ned The Studnt program
supported the asse rtion that PSs -~d be appr opri~ite f or understand ing systems , as

- - : determined by the properties given at the end of Section 3.1.

On the basis of the Studnt anal ysis , it was possible to s ketc h how PS programming
might take place. First kno~-.l~ d~ e is for mu~ ted abst rac t l y ‘i~ a ~~~~~~~~~~ ~~~~~~~~ a
representation of the poss ible bel a~’iors on a problem , co nta ning a co llectiO n of

• knowledge eleme nts and operat ~~ pr od Lc ;~eW knowledge states fro m current
knowledge st ates o In Studnt , Ic r i r i r t anco , the ope: at o rs a re ac hcn s I ke scan ning a str ing

•

. of t ext , sp li t t ing a string , and idert f y~ng specia l ~ :yv-o rd s A prob~ern space may include
plans , which specif y common sequencr s of o~~:r~~or app ! c a t ~3ris I l- i t lead to sor e desired
resul t. li - i the case of Studnt , the r- ~~:r ~ plan w as to r c a n t he str i ng iron: left to right , and

—

at each point , to chcc k for dc t i o r ia ry t a gs , z~ eck a~-~l - - - c t c prec cd e nc es , detect delimiters ,
and some other things , in a part icul a r p r es ~ r k e d order The problem space with plans
corresponds to an abs t r a c t r r D hr-~ ~~~~ c i e s c r hes ~~ program more prec isely, and is a

ii

• The concep t of problem space is dkcu~s - ~i in ,o r & detail in Ch~~ t e r VII.

8.2 I-IC)

LL~• . ~~

_ _ _ _ _ _ _ _ _ TT~ _ _ _ _

Introduction The Context of This Research 8.2

more organized structuring of the problem space elements. The abstract model gives rise
to a number of pr incipal knowledge statements , which form the skeleton for the PS
program. Details expressed as knowledge statements enter into interactions with the
principal knowledge. An interaction can be excitator y, which results in addition of
cenditions to handle extra cases , inhibitory, which prevents conditions from applying, or

• • definitional; it can deal with knowledge about when specific dynamic information is no
longer necessary (i.e., about erasing it from Working Mem ory), about specific programming
techniques, or about PS control . Defects in behavior of the PS are seen as a lack of the

• appropriate knowledge interactions , which were perhaps t oo subtle to be considered in
the initial program formulation , or which are due to deta ils of knowledge stateme nts that
weren’t included in the initial set but which now are evident l y needed f or the problem
being solved. New knowledge is stated in terms consistent with the elements of the
problem space and then enters into the appropriate interactions to result in augmenting
the program. In all of this augri entation , the pr operties of PSs prove useful: knowledge
content must be extracted and examined , it must enter into interactions with other
knowledge, and then it must be encoded back into the program in the appropriate places.

Several questions raised by that anal ysis will be fo llowed throug h in this thesis , it
• will be determined whether the form of knowledge in Studnt is similar to its form in other
PSs, and whether the anal ysis and its conc lusions carry over. It must be investigated
whe ther PSs can be used for ccrta in kinds of knowled ge that were not cons idered within
the Sludnt scope. And the conclusions with respect to the properties of PSs that make
them appropriate for an automat ic understanding and acquisition system must be re-
eva luated in the light of broader evidence. The tasks chosen fo r this thesis were posed
w ith these and other questions in mind, as will be discussed in Section F.

8.3. Research str ate Ry

As mentioned in Section B.1, past ef for ts iri A l have been conce rned with exploring
various segments of the proi~ em of build~ng Lnderstari d r’ g system s , w ithout estab lishing

• . comprehens iveness of app lication or of knowledge content. The present e f for t is similar in

• scope , but has as its immed iatel y subsequent aim to push the con st ruction to a larger scale
and grapple with the problcrc s ex pected th~rc. This W i~4 require riot only es tablishing PSs
as an effect iv e underl y ing torn : , hut also exploring detai ls of knowledge content.
Ultimatel y, knowledge content probably must be explored wi th t he fo l!owing goals in mind:
to see what knowledge is actua ll y required f or sonic spec i f c behaviors , as opposed to
w hat is convenient or what occurred to the f i rs t person w no t r ied to get a running syste m
f or some task; to be able to prove that a c -,-~ tc- m that unne rs t a nJs some set of knowledge
wil l be capable of behaving a ppr o pri at e y in SO’ i C task dO~r a n , or in some wel l-described

1. - subdornain; to explore a number of a~ie rna t i c’~ and d~ r ion~ : r a te the ‘i~p e r i o - - t y of one

approach or another , either uncond iti onaI~)- or va ry ing ac c c ~ding to subdoma in; and to
assign credit or blame to ‘.‘a r ioj s p ieces of kno w~e~1~ e for various as pects of behavior.
Note that only rarel y will one ir - p le r - ent a t i on of some Al ~->‘s :em be suff icient to give
sat is factory aiis Inrs to th ns cc i t e r a Past Al s -,’~ t e n s have co ns is tent ly exhibited se riOus

I failures by these cr i ter ia , ‘s- MzCarth-j i-~~5 po- ntc d out in a brief review of the area ,
calling it the “look ma , no hands :t sc-a~e (Vc Car t h y, 1974~. Ex h n t n g the fi na l behavi or of

:1 a system , with Onl y a vague descr ipt ion of i ts inner ~ orl rgs and control princip les

- - completely obscu res the se a rch proce ss tha t proh~ by r e s u t e ~ in th a t system. Such a

- ~~~~~~~~~ . ~i• •~~i

_ _ _
_ _ _

_ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- ---

~~
- -

~~
—--~~~

B.3 The Context of This Research Introduction

search probably involved intermediate systems that failed in important ways, the discovery
of critical examples that forced redesign in particular directions, and the forming of key
conceptual distinctions and representational advances. Seeing only the result of the
search might cause a person who sets out to analyze the system’s knowledge more

• carefully to repeat many of the same errors simply because “unexplored” alternat ives
appear or because the presence of some featu re was not justif ied. The use of critical
ex amples arid lest cases is a common technique in the field of linguistics (although linguists
use it to debug proposals for models rather than to exercise complete working systems).

In order to systematize the study of knowledge content , it is also necessary, it
seems, to have a universal way of expressing systems and their content for the purpose
of comparison. PSs or a similar architecture seem, unsurprisingly, ideal for this. First ,
though, PSs must be demonstrated effective over a diversity of knowledge. Implementing
a variety of past systems is more appropriate for this than doing a smaller study in a new
task domain. At least , PSs must be shown effective for expressing knowledge, if not in
efficiency of performance. In addition to putting off efficiency concerns , the present
strategy also will postpone consideration of how knowledge might be automat ically
encoded into (learned by) a PS. If the present work eluc idates what the PS would look

- • like after acquiring certain capabilities , it will give a defin ite target program for a learning
system to attain.

To summarize , we are engage d in building understanding systems arid in exploring
bases for that goal. Past effo rts have elucidated disparate capabilities and tasks , but
without systematizing full y the resu lts arid without using similar or inter-translatable
architectural assumptions. We aim to establish PSs as a viable architecture for a number
of familiar tasks , postponing questions of perfor mance and automatic acquisition of
knowledge in order to focus on analysis and evaluation.

[ A

1-12



TIT~~ ~ii T~~ 
-

Introduction

C. The Production System Approach

This section discusses SOm e general characteristics of PSs and shows how those are
reflected in the PS representation for a variety of common procedure and data usages in
Al. A principal feature of PSs is that they are neutral with respect to many recent Al
language features (see Section D). There is no bias towards a particular method, e.g.
heuristic search, for formulating a task. Instead the encoding can be shaped to the
peculiar terms of the task. On the other hand, there are few helping f ea t ures e i th er , so
that various kinds of search , f or instance , have to be coded explicitly. Our far goal of
using PSs to automate the encoding makes this apparent deficiency more tolerable. PSs
simply encode knowledge as small , act ive, behavior-producing units. Knowledge is not
embedded in limiting control structure , so it is potentially open and available for
interaction in diverse ways. These general properties recommend PSs for use in analyzing
knowledge content and systematizing Al as discussed above.

C.1. How production systems might encode common structures

The following summarizes how PSs are ex pected to be used to encode a variety of
procedural structures:e

Ordinary control: ad hoc Wo rking Memory data as evocation signals;
symbolic goal structures or descriptions , to which P conditions can be
responsive.

Selection from a set of a lternatives in Working Memory: single P or set
of Ps arranged in a cascade; the LHS match narrows down the set
acc ording to constraint s .

Generator of possibilities to try: com putation by P or coordinated se t of
Ps fol lowed by sonic- record of the generator ’s status , either as Ps or
in Working k4~rnory.

Decisions on control and direct ion of processing: sets of Ps. A stream of
behavior is a sequence of such decisions made by suc h sets in
succession , often with a single P from each set firing to represent
the outcome of a decisio n.

Modular organizatio n of knov.’ledge: sets of Ps whose LHSs and RHSs
share elemen ts and that serve to elaborate various decision cases
w ithin the module.

Maintenance of local control: ordering on events (focus of attention)
within a PS arch itect ure , incorporated into the conflict resolution
principles.

Planner antecedent theorem s : Ps of the form eve nt  -> further action.
Planner consequent theore m s: Ps of the form goal -> means proposed to

achieve the goal.
Backtracking and backup in general: avoid it by making more intelligent

choices, when there are rea l alt er r i at .- c s  to cho.~~e from; when a
choice turns out to have been bad, t ry  to patch or update the

• ~~‘ “ie simi lar list given by Hew itt , 197 1.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~

-—

~~~~ 

_ _  _ _  ~~~~ - - - -~~~



~~~~~~~
.— ~~

- —r-~ :~~
—

-~~~~~~~ ~~~~~~~
-
~
. -

~~~~~~~ ~~~~~~~~~~

-7’

C.) The Production Syster i Approach Introduction

current state so that the process can continue from it rather than
restor ng some past state. (See “generator ”.) The global Working
Memory can be used to commun r 

~te ar bi t rary fo rms of error
message and other Ciag nost ics to c:r~ct search.

A couple of things above need further explanation. The A l language Planner will be
discussed further in Section 0. M3dular ty has been treated already in Section B.1.
Generation is intended fo r use when the elem ents of a set are to be examined in turn until
either the full set has been processed or an e~e r - o n t  with desired properties has been
found. This can be done in ~i variet y of ways: the Ps can generate the full set of
possibilities each time , with Dust tries ehr-i iri a t~ J (based on a record in Wor king Memory or
on a single P that accu mulates past tries , or on spec if ic Ps that record individually
prev ious tries , auto rnatic all -~ set up to exclude later uupl :c~’t es ) , and then a select ion made
from the remaining set , b r  ftc s pec i f ic  ele~~ert  t o be output; the ful l set of possibilities
can be computed once and sto red as a P RHS, which ~ then inserted into Wo rking Memory
eac h time the generato r is used , for ‘urth e ~ s€h - c t or• - ..- i tn  the RHS updated to remove the
se lected element; the ~.t set of p~ s~~u t it~es c a t ’ re —~erior , ~~d c c i  t ” ~c~, to be narrowed
down by previous t r e s  stor ed as a singie ~ PriS, w h c h  is uu-~ated w i th  each new try; or
some combination of the above, where , say pa rt of tne set is gene rated , processed
element by element , then some more ge rc rat ed , etc.

The following summ a rizes simi~ar in to r m at ion  ~or data s t ructures :
Objects (past knowledge st ates , dynam i c oro~~en~ situations , specific

known world objects , etc ): in rec ogni t - o n form ; when the Object or a
distinguishing p~~- t of s in Wor~ t o g  Memory, ci is recognized ,
perhaps g iving ci a un~o~ e name so th a t  f c r  t her information can be
had (if s t o ’ nd  ii’ o~hnr Ps) or fil l i ng in e- . er 1c i nc g  immediatel y.

Set of objects: Ps to r c c o ~ n- .e  n~~rrbers and g ive the set name, and Ps
to rccognize the cet nam e and give se ’ memb ers.

Semantic inter connect ’c n~ of kn o - .vte c i ge:  Ps that fire represen ting
traversal of the ~rc that is the ot e rco n . -.. tiori ; the firing of a P

• makes new knowledge ava 1~~~e.
Frames (~A -n ~ky, 1 9 75): Ps whose ‘~nstan t ~atio n ” is devel oped in Working

Memory; a f ra n~e’s default as~ -~~rpt iOns a re inser ted -,~bii n the frame
becomes a c t - - . e i~ W o r k r g  Meri cr~~ ‘3t er data ca n replace defau lts in
Wo rking Memory; a f r a : ~ is o t a U - ,’ evoked according t o an LHS or a
set of a l ternat ive LHSs; ~~~c : ~c~ ~s soc ia tr- d wi t h  a f rame are just
more Ps .

Specific isolated fa c t - - PHs c-f Fe ., f c -  instance of f o-m ~~ - t e x t  —> fact.
Open qucs t io ” c:  ~~ t ha t  re co~ riize poten f ia t  ,,ns~.e rs and react

appro pr ate ;
Trees of dat a co ” t t . it t  (Co nn i ver , Mc Dermott a ’ d  Sussma nt , 972): Ps that

I store path info’ ~ c i n n  so tha t ‘he curr .~rci st a te ca n be t ransformed
to s ome des irec: - -

~~~~ ~~ e n: Ps ft s t o i~ an ent i re  r t a t : .  for direct
restor a t ot c - c ’ ci by a ‘ a — ’~ f o r a C O- ’ t t ~t t hat is ~vailable fr om
another co u ce);~ c ’ . t : - comr ”:- t s en backu p abo ’~c- , thoug h, since
these are an r- t ”- .i ’ e ~- .,t, r ’ n’ t~ -~ cr . n’ ro o-[, n o ? a t i o n .

Updating past - n to r r ~ a b i o c’ (sto red - ‘- i t - c r-n~~ n [~~~~).
. Ps t~- .~t recog nize an

outdated fM t and rPp 3: it ri ~~~~~~~~~ ‘-.‘~-r Ci r -
,‘, hope~u iy r.- e f or e the

p rocess t h a t s u t; - ;clr. too zr ~t t h i t .

1

‘—~~~~ ‘~~~~—‘-~~~ -. ~~~~~~~~~~~~~ --‘ --- - •—~ --‘-~~ —-~~~~ .‘. ~~~~~ -

~~ T~ii T L’~~TT~~
T ,, ,,

~~~ 
. .

~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~- ~-— -~~~ - • • •~~~ .

Introduction The Production System Approach C.2

C.2. Inherent Dropert ies of production systems

There are a number of properties of PSs that follow directly fr om their definition
and from the spirit of the PS approach. Whethe r these can be fully exploited in large Al
systems remains to be demonstrated. That is, some of the points to be raised here should

• be considered speculative, to be verified in practice. This subsection discusses the
properties according to three different viewpoints: architectural definition, psychology, end
programming.

In discussing a priori properties of the architectu re , we foll ow a sequence of
successively larger units , fr om condition properties and act ion properties through
properties of the combination of Working Memory and Production Memory taken as a
whole. A P condition is a pattern on Working Memory. Thus a condition might be built up
by taking some set of elements f rom Working Memory and conjo ining them, or by
abstracti ng and generalizing on such conjunctions of elements. A condition can be seen as
a selection from Working Memory of the.most important features of the situation modelled
and thus represents concisely the result of filtering out irrelevancies . A P action mostly
performs simp le modif ications of Work ing Memory, with the most interes ting properties
resulting from its conventionally small size. Having unconditional sequences of actions be
smal l means a great deal of flexibility, all owing switch ing quickly fr om, say, one approach
to an alt ernat ive, and it means that processing is interruptable , since after a small number
of actions , the Working Memory is again examined and in particular interrupting conditions
recognized. Small size also means that the overall process can be built up incrementally,
which means that pieces of the program can be left unspecified until their need comes up
in actual behavior testing, by a user of a system , at which time the small number of actions
needed to compensate for a missing P can be filled in (PSs are of sufficient ly high level

that a small number of act ions accomplish a lot in terms of the overall process , but this
may be a consequence of the Working Memory representa tion rather than of PS
architectural features).

Considering condit ion and action together two properties are evident. First , they
are roughly equal in sire usually, w hic h is a high degree of selection fo r the action
involved, that is , a high ratio of condition-testing per action whe n compared to Other
control architectures (see Section 0). Second, the ensemble is st : l l rather small (say a total

-
of 10 to 15 condition arid action e !ements) , implying that the knowledge represented by

•
- the whole P is conceptuall y small , arid in fact can he ex pressed as a single statement in
- natural language along with a few qualify ing conditions (see Section 6.2).

Considering relations between Ps , we have only the b~ s c c inter-com munication
between them using exp licit data in the global Working M~mor/ . Ps are act ivated by
recognit ion of a condit ion in Working Memory as opposeo to d rect invocation, say by
name , of specific Ps by other Ps. Thus a P may co m muni cate w i th other Ps by making
specific changes to Vlorking Memory, but it does nct know which Ps will key on those
changes. This is es peciall y true when the PS is being augrnenteJ w ith new methods to
achieve old functions.

Focusing on featu res of the architecture as a whole , one pr operty is that the
dynamic tra nsitions of Wor king Mer-o ry f r o m one s -tate to the next are quite directl y
repr esented by condition-action Ps. This is intere st ing from the viewpoint of taking some

1-15 C.2

_ _ _

-
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~
-- ‘-

~~~~—-~~~~~
- - , -

~~~~
—--.-. 

_ _ _  ~~~~
—.- -‘-.——

~~~~ --

C.2 The Production System Approach Introduction

system’s basic behavior as a s~~Lence of trans it ons and then asking what parsim onious
mechanism might capture it. It is also interesting from the viewpoint of asking how new Ps
might arise from an existing system , the answer being that as Working Memory constantly
changes, new ass ociations between states and tneir s uccessors are established. This is
especially of use when the Working Memory has access to inputs from outside the system,
through which changes in son~e external environment can be monitored and eventually
described as Ps. An additional use might be to optimize exist ing processes by building Ps
to go from one state to another wt th fewer actions , say by eliminating temporary control
elements that are superfluous.

Overall, the complete (immediate) dynamic state of a PS is in the Work ing Memory,
and all procedural knowledge is encoded as Ps. The full dynamic state is globa l and
inspectable. No control context is maintained in the structure of procedures (Ps), so that
each P includes every thing, exp lici tly, that its cct ion depends on and comprises. Within Ps,
only a very sma ll amou nt of context is carried over from condition to action , as bindings to
pattern var iables , and that context only lasts as long as the exec utio n of the sequence of
act ions.

PSs can be interpreted as a model ~f humrin info rmation processin ç~ by identify ing
Production Memory with human long-term memory, and Working Memory with human
short—term memory. A P can be seen as a generalization of the notion of stimulus-
response pair , where stimulus has been general ized to include internal symb ol structu res
and patterns of structu res, and where response has become a sequence of internal
symbolic manipulations arid signals associated with motor com mands. The recognition par t
of the recognize-act cyc le is c onsidered to be accomplished very rapidl y as a resul t of
encoding P conditions in a network in which a large number of pattern-matching and
element-testing operations can be carried out in parallel. Sensory perception is seen as a
process that results , indirectl y or indirectl y, in building symbolic structu res in short—term
memory corresponding to perceived objec ts . The motor system maps short-term memory
elements into the corresponding external actions. Preliminary exp lorati ons of this model ,
w hich is based on the theory of Newell and Simon (1972) , indicate cycle times (full
recognize-act cycles) of around 100 milliseconds , with indiv idual act ions rang ing from 10
to 50 milliseconds. Add itions to long-term (P) memory are thoug ht to occur approximately

-

• every few seconds. Psycholog ical models tend to impose const raints on various features
of the arch itecture , such as small Working Memory (say, up to only 30 elements maximum),
Working Memory that degrades over time as elements are unused by Ps (a controve rsial
topic), limitations t o the kind of pat tern matching that can be done , inability to erase Ps or

ij Wo rking Mcriory t e n s , and other s . The Origin of the stud y of PSs for A l purposes was ri

psychology, but f a ctors like the c omputer hardware we work with has resulted in
expl orat ion of the PS design space in directions other than thoce d ictated by psycholog ical

considerations.

With respect to p r tnt n~~, the primary action in augmenting a PS is to simply add
Ps. Given the n odu la~ O rga niza ’ iOn sketched in Secti on C l , the major problem in
augrr~enti r’ g an ex i sting PS, ri additio n to forming cow Ps , is .~ ensure that new Ps do not
confl ict w ith othe r P~ in the r.am e k~cwled ge module. (Reminder: this thesis is devoted to
exploring whether the fo l low ir.c • can be real i~red in pract ice.) ~f a module is represented
by a set of P~, each of w hich mak es ex p l ic i t ore ca re of how the knowledge in the module
appl ies to a s i tuat ion , tb -en the idea ! augment~ t - O ri ~ c u d be that new Ps w ould simply give

C.2 1- 16

a -~~~-~~ -- — -.

-

~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~

—

~~

-

~~~

-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~~~~~~~

-
~~~

- 

~

— -

~~~~~~~~~

-

~~ _ _ _ _ “!

Introduction The Production System Approach C.2

more such cases. But often w hat is needed is to further discrimi nate one of the present
cases , f or instance splitting it into two cases according to conditions that weren ’t

— considered previously. Thus in general, it is necessa ry, at leas t locall y within a module of
Ps, to determine how new Ps are related to old ones. Since modules are determined by
shared condition elements , the expli citness of PSs is essential in this endeavor.

- Augmentation is also made easier by the conciseness , high level , and small P size.

By way of summary, we can compare the propert ies developed in this section to the
desira ble properties of understanding systems as developed in Sect ion B.1. The following
gives the properties in this sectio n that seem to provide support for the understanding
system requirements.

Encodability; small unit size , explicitness of interre lations of Ps.
Inspectability: explicitness of Ps, Working Mz~n ory global.
Accessibilit y of knowledge: knowledge is expressed actively, evoked

acc ording to a uniform recognit ion procedure.
Operability of knoveledge: main operations are adding Ps and elab orating

P conditions and act ions.
Flexibility: existence of P Memory and Working Memory as memory

structures.
• Organizability: P Memory nas no imposed structure.

Modularit y: co ndition- ac tion f oi n,at , explicitness.
Unifo rmity: Wo rr~irg Me irory and Ps are the only represe ntations; Ps are

dire ct encodings of VJorkirig Memory t ra risit i~ ns , suitably genera lized.
Conciseness: smaL r-~ ri - iber of c onditions and actions per P.
Similarit y of procedur es and data: condition patte rns are simple

— genera lizat ions of Work ing Memory elements , and actions specify
simp le changes to Worki ng Memory.

Some of these pro per t ies cannot be verif ied - , ith o ut actual l y building systems , the main
activity of this thes is. A better idea of PS capabilities with res pect to them will emerge as
the systems are built , and the finished systems will be amenable to corresponding
measures.

I

_ _ _ _ _ _

Introduction

0. General Compar is o ns to Other Al Languages

This section first presents some reactions to prominent features of a number of
problem—solving schemes that preceded the most recent wave of innovation. The specific
approach of PSs with respect to general theorem-proving systems , languages and sys tems
for robotics , and other modelling and reasoning schemes will be discussed. Then the
pr imary characteristics of the most recent new Al languages are reviewed arid the position
of PSs with respect to those character istics is sketched.

0.1. Some reactions to older problem-solving issues

One of the oldest and r~ost mathematically appealing approaches is to use predicate-
calcu lus axioms to represent real-world actions and then to use uniform deduct ive
procedures to solve problems by proving the associated mathematical the orems (see
Nilsson, 1971; historicall y, the approach dates from the late 1950s). One reaction to this is
that the uniform deductive pro edures developed to date are too undirected in their
search, and can ’t take advantage of heuristic guidance and specific shortcuts. In most
problem-solving situations , specific knowledge can be app lied to achieve a desirable result
or to move the search in exactly the right direct i o n , whereas a unif orm deductive
procedure applies more general knowled ge, and is forced to i te rate thr ough a number of
alternative general deduct ions to fine an appropriate general methoa. Another problem is
that the uniform deduct ive procedures tend to be unnecessaril y powerful: too much can be
proven, and this only servo-s to inundate a proble m-s olver with much irre levant
information and increase combin atoria l exp losion in ex p ioring proof possibilities. Theorem-
pr oving st rateg ies that address this problem arc an improvement , but rema in
compara t ively weak.

These three intertwined issues - too much gerera lity, too much combinatorial
branc hing in the search , and inability to use specif ic heuri s t ics e f fec t ive l y — have pushed
some Al workers towa rds a procedu ral representation of prob lem-domain-speci f ic proof
st ra tegies, f or examp le , the earl y Planner f ormal ism (Hewitt , 1969 and 1971). (A later
version of Planner ove rcar ~e so m e diff icult ies and will be covered by the discuss ion in
Section D.2.) The early Planner included language p~ imit ives t ha t allowed an ex haust ive
depth-f irst search to take place in order to ex plore a l te rn a t ives in choices from among
sets of elements and a lte rnatives ri niethods for solving some problem or subp roblern. An
objection to Planner ’s form of pre- prog ram reed proof procedures is that it is too pro-
programmed and inflexib le , and that it has too much a ct ~~n to r the amount of ~inte lligent ”
selection that it does An obj ection to PJanner~s se a rch prin t~ -es is that sti l l more
knowledge can be exp l~c i t l v appiied to cut down the rc~ rc n and to make search that is

- t necessary more so lcct i vr ~ Such add it ion a l knowledge ca n he expres sed in Planner to some
extent , but the language pred is p oses the use r to r~ !y too much on its blind search.
Rely ing on search where th~ e r i pha s is ~hculd be on t:~’d;ng e f f c ~t~ ’e c ontent knowled ge
f or a task , ~ seems , is an err or in research s t ra t s~ y As argue .1 ab ove (Section a3) , one

of the purposes for develoo in~ PSs is to esta b l is h a sim ple form so th~ t content
knowledge ca n be more f reely ex p !o~ed

Several other brief reac t i e ’ s to ot h~r~’ p~ sit orr ca n he presented bef ore

1-19 0.1
4 - .’ - -

~~
—
. — -

~ PREC~ p~~~
~~~~~~~~~~— —--~ - .

~~~4. 
~~~~~~~~~~~~ ~~~~~~~~~~~~~



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

- — i ~~~ ~~~~~~~~~~
~~~~~~~~~~~~~~~~

0.1 General Comparisons to Other Al Languages Introduction

summarizing how PSs may address these issues. Sim on (1972) has discussed a long—
— standing dichotomy of approach , namel y whe~re r to e.~press lo~~c ri a mOdel form or to

use a model approach. My reaction is tha t for con~ en e r c e  in e~ p; o r i n g  knowledge content
required for intelligent behavior on tasks , a model approach is more direct and convenien t ,
and tha t more (seeming ly) comp lcx reasoning involving bel iefs , modalit y, potential
achievahility, and other issues , can be added onto a model formuiation , perhaps as
“ep icycles ”. The STRIPS problem-solving system 01 F’kes and Nilsson (1971) uses a
theorem -provi ng approach to app l ying problem operators , with in a means-ends anal ysis
searching scheme. The theorem-provi ng techn ques , more spec ifi cally, are app lied to
determine whether the enabling c ond t ons fo r t re  app licat ion of prob~em operators are
fu lfilled. I question whether such a ~e r - e - a~ mec hanism appropr iate for such query ing of
the database of assertions , and ri pa r t i c ~~ar WC - L. O lean tow a rds e ther making things niore
explicit in the database (Working ~ or or :) or tc ~.-a ’ds hav ng them derivable or acces s ble
in ways that are not as general (and po t er t i aH y cost l y) as theorem-proving. On the f i rst
point, keeping the world of - -no ~v~ assertions exh~~i~~i.’e~y (extens ively ) in the Working
Memory seems more parsiruionious and ~ r o n  ate ~han to assume (apparently ) without
proof that the full ge ne ra : ty  of t .ecr om- pro ~~’-g is necessary in every pr ob er i . That is , I
assume that the comple~~t / 01 n-any don a i rs  pa r t i c .~~ rly the robot ics tasks considered for
STRIPS, do not warrant the gene ra l t r ea~rrent , a l t h o. c - ri t is uselui for purel y theoret ical
reasons to explore general ( o r r u~a ti0ris , espec aH - .~ i f  tnn re is a cn~nce that they ’ll prove
successful. On the second po n t , r~anagei — cn t at the d.i~a Has e (W: - -~~ng Memory) , I would
prefer the strategy of using tasv. -~.peci f ic st c-r ag e-~ra ndg~ n-en t ex pc -~ t ” procedures t o
dótermiric which facts should be stored ~~ which fa c t s  should be rec omputed Or
reder ived each time they ’re needed , in ~~Jer to kLcr the datai~ase f r c m becoming overl y
large. It mig ht be best to be a do  to .v~~te n~~ .t prog’  :i~ s as if e.— -i r y thirig w~ rc’ explicit in
the database , and then c ode a few special p roc ed u re s to mai~e the re c e ss a ~ ~ adjus ments.
(Af ter experience with wr !t i i ig  s peci a s t s , perna p more general routines co~dd be
constructed that would capture just the r - a h~ set o~ operat ions. )

The following sketch of the PS approach to t~-r- se issues tr crr to meet the above
objections. PSs aim to go fur ther  in being ex p i ic i t  about deduction procedures than did
Planner. But by using a rule 4 orrnat for knowled ge, i t  s ho~-eci that some favorable
features of the pure “declarat ive ’ predicate caicu ~Js fo im ulat ion car’ be re ia ~~ed. In
par ticular , perhaps there will be re ta nnd such fe~~ures as being ao~c to use a u~e in a
varie ty of situations , to r a int .-nn gener a! i t~ , and to i~c~ p tne processing open to adapt to
task demands and to take an- .’an t~ge of new inform ation , un~ nOv.-n w ren  some s t ra tegy  is
initiated. To ant ici pate son - -ri conclusions of the present study of PSs , i t may be possible
to perform n;~nj th ir.gs- direct l y in PSs t nat  w e re cior~ p~ ev ious l y w i t h  more powerful

4 language features , but f u t ~ ~-r  -
~ r a y  be pass n~c to a - -~ id such ~hr ~~s as heuristic search

by using PSs to encode n- nrc  rn e c t i i1 - . , as cieter ~~ reci by ~- nis of (he content of ta s ks.
When general t heor em—p ~s-.’- i —H ; i~.- ~r - s n — -r Ies ,~r r i  ~~‘c1ricJ , PSs w i -  ~e used ~r, , .v O ; i C- n f
there “interpretivel y and pot e—t iaU ,’ urn nt ~~ent~~ prir iaps a f te r  the fashi on of GPS
(Newell , Shaw , and Simon , 1963) r a t 5nr  th ~n rc~-Iin- g on bu i l— i r i  uniform ( no n—interpret ive)

F language features.  FinaH y, it  n OLi ld be roted h~it tn i i re h-’ v e — t e n  , - a~ i~~t >’ of prob lem—
solving approaches  to wh; h no s t ro r~ -~ r t i cn r  arc fc ’~ and whic r i ,i’ e thus not discussed

• 

• 

here. Many of the issues these ot i cr r~ ra - ~u are t ; r?pp~r’d w i th  d - r nc t l y in the body of the
thesis.

0.1 1-20



-—-~~~~~~~~~~~~~~~~~~~~~ --~~ ---~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~ -~~~~~ -~~~~~- ~~~~~~~

introduction General Comparisons to Other Al Languages D.2

0.2. Features of the newer Al languages

This subsection discusses briefly the major features of the most recent Al
languages, draw ing heavily on the tutorial survey by Bobrow and Rap hael (1973). How
PSs stand with respect to these features is is discussed briefl y at the end of the
subsec tion, but much more information will be presented in the context of the particular
studies that are the bulk of the thesis. Features are gro uped into four categories : d ata

‘ t ypes, expanded control and data contexts , patterns for retrieval and invocation , and built-
• in indeterminate search. Each of these wi!I be considered in turn.

The new languages that are considered to be aimed at the same app lications as PSs

- 

- are Planner (Hewitt , 1972) , Conniver (McDerm ott and Sussrnan, 19 72), QA4 (Rulifson, et al .,
• 1972), and Popler (Davies and Jutian , 1973). These are all outgrowths or extens ions of

list—processing languages , so that the basic data s tructure is an arbitra ry list struc ture.
Some of the languages have a number of additional data types such as vectors , sets , and
sets with duplication. Data is stored in a common global database , and is retr ieved by
specif ying patterns or forms to which database elements are to be matched. Procedures
are evokablo as a direct result of storage , retriev al , or deletion of data eleme nts , so that
vari ous sorts of bookkeep ing of the database can be set up to be done automat ically. In
some of the languages, the data base is so arranged that only one occurre nce of a
canonical form of a data element is kept. This al low s the handling of certain properties at
the data base level rather than by using exp l icit inf erence rules , for instance , collapsing
expressions like (+ a b c) and (+ a c b) into a s ng te e ten~er,t , by c ommutativ ity. Finally,
programs in these languages are man ipuiable objects t a uropert - > inheri ted from the base
languages), so that there is the potential to build se ’-r~oo ’y - r g  programs.

A second set of features revolves around t~ e o rcept nf all owing a program to
maintain internally several versions of ifs data b~ ~ (wor d) , and to pass .,betweeri these
versions smoothl y. Th~ has undoubtedly grown out c ’ ‘b - r i  bes t • t i r s t  search reg ime, in
which a path is explored until it is no longer t re  most promic ng, at which point i t is
(temporarily ) abandoned for some other patr . A progra l tr~ t desires t o evaluate its
progress , diagnose how expectations have fa i led , and co n—pare a i tern at ive explorations has
a much easier time (accord ing to the proponents of lhuse angu~~es) if there IS an easy
way to enter into any number of conte x ts , exami ne data and c cri trol status there , and
resume executi on from wherever it chooses. The n,on t coherent and eff ic ient
implementation of this concept involves tho “sp agn nt t  s tack ” o r g rn z ~iti on (Bobro~v and
Wcgbreit , 19 73). Another motiv ation for separati ng so d i s t ; nc t ~ the various conte x ts  is to
al low the processing to be carr ic d out in a mutt - pro cess ng cr- ’ - - p i t e r  environment , in
which a number of alternative branches in a search t rue c.ou - d be r i* p lored in paral lel.

Patte rn- m atching provides the nucleus of a t h i rO set a~ f ’at ures It is possible to
specif y, for retr ieval purposes , reatc hes on corr~ iex &ymh ol structures , with new
structures built on the has’s of match success. The data-  base procedures mentioned
above are all based on sensit ivit y to patterns , t h a t  is , are kr- - e d  to c las s es of data
elements as specif ied by patterns Pa t t e r n - rna tc t .n~ prov ides a very powerful way to
‘-y o ke more general  p rocedures. A procedu~e can be rdexed . v c a r d ng  to the form of
.~.,ilt that it achieves , arid whe ne-,-er that result is des -ed by oth e r procedures , it is



~T I 1

0.2 General Comparisons to Other Al Languages Introduction

The fourth and final set of features deals with built-in search mechanisms and with
concise ways of expressing the non-determinism that gives rise to search. This concept is
closely related to the second set of features , in that a choice-point in a search gives rise

• to a subdivision in the current data and control context. Similarl y, it can be seen as a
device to exploit parallelism in computer hardware with a minimum burden on the user to
coordinate various processes. Often programs can be written as if no choices had been
made, that is , the search mechanics and the intricacies of a lternative data and control
contexts are essentially invisible. A variant on the invisibility exists in languages that
allow the user to mani pulate the possi bilities, with the faci l i ty of ordering the search
according to user-defined priorities.

How do PSs stand with respect to these features? The Working Memory of a PS
corresponds directly to a database , but currentl y no PSs have made the leap to the
var iety of data types that is available in sOme of these other languages , remaining in the
bas ic list structure domain. The current (conse nsus) PS approach is not to view Working
Memory as extendable to a tree of dynamic data co ntexts , in keeping with the PS approach
to search , which will be discussed immed iately below. Pattern-matching is an essent ial
par t of the recognition of P conditions , so PSs are in line with the above features in the
third category. -

With respect to search , especiall y built-in search mechan isms , PSs take a divergent
position. Search using a PS must exploit the extra power available in PSs ’ condition-
recognition capability. P a tter ns as ex pr essed in LHSS of Ps tend to be much more complex
than, say, evocation conditions for procedu res in the other languages. The PS app r oach i s
thus to use selectivity in choos ing a direction for search , so that ideall y search is avoided
al together and the right choice made initially. (In theory, there is noth:ng to prevent PSs
from being embedded wi lhin some scheme by which alte rnat ive data base contexts would
be kept , w i th a set of RHS primit ives provided for sw tc h ing between them. ) For doing
bas ic database bookkeeping, Ps themselves are probabl y ef fect ive without further
mec hanisms along the lines of the special database procedures described above. (A gain,
though , nothing prevents sucn add itions , if an applic ation should warra nt it.) For search -

- 
pr ocesses investigated in this thes is , the aim is to use PSs to encode what~s needed

- exp licitl y, and if that turns out to be burdensome or clum sy or too large a proportion of
the problem-solving, to then propose more specialized mechan isms - but the expectat ion is
that no such character ist ics wi ll he observed.

There should be no problems with in cu r r en t  PS mec hanisms in achieving the main
functions of trees of data and contro l cortc- ~ ts : co r - muHcation of suc cess and more
importantly of fai lure and reasons for fa i lure; access to suspended search states;
redire ction of the search to more pro rr- is in g a i te r ~’~ t ves ; and app lication of parallel

• pr ocessing. Commuruc~ t~or. is more a problem of rep resenta t ion thr1n of contro l s t ructure ,
though perhaps less cont rol context to nter !c re W i !  prove to be an advantage. With
respect to suspended search st a t e s , Ps can be used to store s ta te  info rmation or path
information from wh ich a state ca n be rec onstr ..c fo d , p~ t ing the infor mation Out of the
way of current process og unt i i rcq u r c- cn Ped ,rectio r. is more a problem of building a
symbolic description of th~ a t t e r n vc :- and c- ~r rin~ th~ ni than of control structur e .  The
recognition step in th~ reco~ nze -a c t  cyc~e can use p,n a: eli sm , w in~r it see ms best on the
basis of human problem solv ing ‘o t e ta  se r ia~ ty of the act ions of Ps. t4 thOug h tnose are

~~~~~~~~~~~


--
~~TTTTI~i~~~

-

Introduction General Comparisons to Other Al Languages 0.2

It should be pointed out that PSs tend to have a depth-first search orientation,
provided that the way of resolving conflicts between Ps favors those Ps that t reat more
recent Working Memory elements. As a PS is processing, current “goals ” give rise to new

- information which will temporarily take precedence over information associated with other
goals. Such a “pushing down in the stack ” can occur a number of times , until a point is

.
. reached where the most recent data has been processed full y, at which point control

would fall back according to the conflict resolution , to consider slightly older data . Further
-

- pushings and subsequent falling back would eventuall y get back to the goal that initiated
the sequence. The resulting behavior is easily seen to correspond to depth-first search.

Even though the basis of PSs is pattern-match ing similar in form to that in other Al
languages, the control and use of match results is distinctive. In PSs , short sequences of
unconditional actions are constantl y a l t e rna t i ng w ith matching that is generally more

comp lex than in the others. This Should bring more flexibility, make shifting directions
eas ier , and allow processing to be more easily interruptab le as new information appears.
PSs encode knowledge more uniformly, and PS languages tend to he much simp ler on the
surface than the others , but wit hout sacr if icing power or conciseness. The re is little stat ic

- ordering between dist inct P condition patterns , and chOices are made unif ormly on the
basis of the conflict reso lution princip les. Other lanct uages build rather rigid structures of
patterns, for instance putting them toget her in subrout ines or nesting them dynamically
w ith shared variable bindings and control primitives. The evocation of procedures as
patterns of data emerge in Wo rking M~mory seems more open in PSs because there is no
way to evoke procedures more dir ect l y, by name - the only recourse for a process t o
evoke others is through global cori-municati on, and a P that sets up a goal can make no
assumpti ons about which process will attempt to ach ieve it. The only local , hidden context
is in variable bindings within Ps , and that lasts only for the duration of the P’s act i on

sequence.

I ~~~~~

•

-

I
t

E. Direct Antecede nts and Relatives of th e Present Approach

This section discusses a variety of work that can be considered as directly related
to the present research. There is a rough grouping of research into work that has àeen
w ell—known for a few years , w ork that is current but whose approach differs somewhat

-

-
-

from the present one, and w ork that is along similar lines to the present. The first group
includes some of the bases for PSs in specialized programming languages that are not PSs
and a few pioneering efforts that brought PSs to the attention of current Al researchers.
The second group includes applications of PS principles in vary ing degrees to rule
induction, medical diagnosis , and speech understanding. The third group includes a number
of p9ychological models , enc ompassing problem-solvi ng, visual imagery, primitive
percep tual and quantitative processes , and computer programming. It also includes work
on serial pattern acquisit ion , simple association learning, and a detai led anal ysis of an
implementation of a classic Al program. The aim in presenting this survey is to raise a
number of issues, examine failings and open quest ions , and trea t the d ifferences of
approach that are represented.

The first programming language to incorporate PS ideas was Comit (Yngve , 1962).
Comit specialized in recognizing patterns of words withi n lists of wo rds , ass ociat ing with
eac h pattern a manipulation of the word list matched by the pattern - Rules consisting of a
pattern -followed by mani pulations were organized into named subroutines , wi thin which
rules were tes ted in a specific order . Data structures to which patterns were matched
were also named and were subject to reor ganiz ation by com mands within rules. Yngve

— sta ted quick programmability, with sat isfact ory eff ic iency, as propert ies of Cornit when
applied to information retrieval tasks. Bobrow (1964) app lied a variant of Comit , Pvfeteor ,
to good effect in building an Al system , Student , f~~r solving high school algebra word
problems. He pointed out that the language was easy to re .~d ano write prog rams in, arid
tha t the class of problems handled by the system co ~~d be easil y extended by adding
syntac tic rules to the program. (The actual linear e.~uat ions were solved by a Lisp
subpr ocedure.) Neither Yngve nor Bobrow apparentl y realized the architectu ral
possibilities that have come to li ght since then , as discussed in th is chapter .

-

-
Comit fell out of use , probabl y due to the appeara nce of the more versati le Snobol

language (Griswold , et al. 1 19 68), which is p r ese n t l y in w idespread use. Snobol uses many
of the same featu res as Co ni t , hut is less pure in PS te rms because of the inclus ion of a
number of featu res of more conventio nal pro~ r~ n r r : ~ g languages - r-ni a of the
statemen ts do pattern matchi ng to strings of c ha rac te r s , arid the use of program v,r r !b!~ s

• is less cumbe rsome than in Cornit. Snobol has a cha rac te r basis , as opp~ sed to ~ on- l’s
-

. word (Lisp atom) basis. The rece nt Lisp 7O progr~mr1;ng la nguag e res t er et al. 1973 , a~ d
Enea and Colby, 1973) revives the List- p ro ce ss rig b~~- s ~s in Com it but uses s tW more
powerful featu res for ove rat l control. Lisp7O has b a f r c Ur iS com posed of rules that match
to an input “stream ” and perform bas ic re~v r t i n~ act- o n s on u a t st rea~ . It has been
applied to finding pa ttrr -r.s in natural ar- c’~ a~e Ifl pi : iS on w h~th t o base res ponses in a

- dialog, and to planning t ar , i~s in robot ics. In ad di t i on to i - - -~ p a i i c - r n - - d rc -c t C d as pect , i isp7O
aims to include such mec hani sms as co rout i r i ing, bac ~.t ra ~~~~ use of long.~tc r ni data base
mem ory, and language exte ns ibi l i t y (t o be a c h c v c d eas y w i t h n t he rule s t r u c t u e).

To summarize on the PS-like char acter of son- c ~rog~amn:ng tanguages , it is c lear

r7

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

E. Direct Antecedents and Relatives of the Present Approach Introduction

that the power of the basic operation of matching followed by action has been realized in
a number of ways. The ment oned approaches , however , have sacrif iced a number of the
advantages of PSs for buihd ng understanding systen - s , by yielding to the tendency t o
embed the nechanism in a framework not unliKe more conventional languages (a tendency
that is generall y followed by special-purpose languages). Our approach is to try to

- 
maintain the pure PS architecture as a viable alternative.

-j - Turning to areas withi n Al where PS principles have been applied, Sildossy (1968)
used a rule format to express acquired ~cno~vled ge in a program for learning natural
language, in particular learning to generate language from language-independent funct ional
expressi ons. His P-like rules matched elements of the structured functional language using
only tests for set membership (as opposed to pat tern variables ) , arid performed a
translation and rearrangement of the matched elements to produce natural language
strings (Russian and German). The program initia !~zed its knowledge with a pa ir of
language strings that were chosen to be definitive in a particular way, and then proceeded
to- augment its set of Ps by attempting to extend the performance to other natural
language strings. Sik lossy observ ed sonic depende nce of program behavior on the
ordering of elements in its tra in~ng sequ ence. The program w a s able to use the PS
representa tion to allow newl y-added rules to incorporate intelli gent guesses and to av oid
err ors of certain types in advance, as opposed to necessitat ing a process of error
recovery. One PS-architectura l consider ..öti On he rais ed S that he started out thinking a
strictly—ordered list of Ps , with the most recentl y-added ones taking preredence over
older ones, would suff ice f or his task . r~c later re laxed t rat  order ing so that several rules
could be matched simultaneous l y, allowing the best r - a i ch tr o m the set to be used in
fur ther processing - the ‘best” is in ie’~ri’s of properl es of the translations produced by
the different rules. Sik lossy ’s pr ogram -.~as s uccessful on a limited set of utterances , and
he gave no discouragement to ext ei-din g it , but no one ra~- taken up the challenge.

For Siklossy, the P rules were a small , augmentable part of the system , with other
maj or mechanisms encoded direct l y in a l rs t - proce s s i ng language , and the same is true for
Waterman ’s ( 1970) program for learning bett i i - g h~ur st i~s for P-~r.ei . The Poker PS used
strict linear ordering fcr confl ict reso lution , ~ i o\v irig a new ru le to mask Out the action of a
previous rule. The patterns n~atch ed by the Ps wu re based on ‘~.a ues of a number of
heuristic dimensions , pre-def ined as ess er r: ia l  t o uct ;  “g, arid ftc ac t i on of each rule is a
single betting decision (ra ise , call , etc. ) . The poker program converged fair ly rapidl y t o a
level of skill above the average amateur.

A third program of research th a t  uses PSs as an a- .r ;n-c r.table subs istem is the
Dendral program of Buchanan , ct a 1 ( 197 ~ , 1973). t t  ~: ‘ onr o s  a much more ambitious t~-sk ,
and one whose applica ti on to ,n r a c t - d  sc i e-ic i5 im mec i ia t e :  the ar.aiyr. s of chemical
molecules and the building of a ~brio ’y of that  a nai - ,~s s  The cbem ;~ h~y ri~- -ol- .-es postu lat ing
processes of molecule f ragme nt a t ion that S now up e~ meas ,~ra ble qua nt i t ies of various
known simp ler molecul es , wh .c f — quan t it ies are then used for Inc a na’ ,s is . Deridral is really
two programs: Heuristic Dendra: uses a :.ei of r u e s  d ; r cc t l - ~ t o r  the anal ys is; k?-et ~ - Dendral ,
the more diff icult and d ev e lo pr e r ~t , pa rt , h t e  th eo ry  represent ing it as rules
usable by the heurist ic part , t rom r:Oi -e p’ ini it~~ t- , d. r~c l l y ~b~~r — .’ab e data. ML’~a- Dendra l

.4 must f irst search in a space of pos~.iblc proce s s r u e s , ~~- ‘~ r the behavior under
fragmentation of known rio  eci c’ c , e~ pres~- ed a - s ‘out -

~ i pa irs.  T t i e  rules from ftis
- 

, 
f irst step are then sub jected to pr ocesses of agg rc~ at ori ann ~ :-n e -  a i izat ion , to try to get

E. i-26

- - - -
-
- - -~.-~~—-~~~~~~~~~~~~~~ - --~~~~~~~~~ - .~~~~~~~~~~~~~ -~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~



— — —~—-——~1-.~
_ 

~~~~~~~~~~ 
-.

-. -~~~ - _ _ _ _ _ _ _

I

Introduction Direct Antecedents and Relatives of the Present Approach E.

a coherent and parsimonious set of rules. The aggregatio n of the rules is in two steps ,
one based on similarities in the processes involved (RHSs of rules) arid the other based on
trying to get more abstract descri ptions of classes of molecules (LHSs of rules). The
process that builds and manipulates the rule set is quite specia lized and tak~es advantage
of chemistry knowledge. Specific data on its computational behavior are not known (it
almost certainly is not forming new rules interact ively in rea l time), but its results are

- n publishable, on a par wi th those of human specialists in the area. The main emp has is on
current Dendral research is on construction of rules rather than on processi ng comparable

•
- to the focus of the present work. That is, rules seem not to be processed in an immediate ,

recognize-act cycle, but rather in an inductive~exp hanator y mode. The principal
contribution to PS research is in the basic representation of knowledge and in the
processing that automatically produces elements in that representation.

Now we turn to a discussion of more current wor k , consisting in part of theoretica l
des igns and in part of preliminary, promising results. Becker (1973) descr ibes a PS-like
model of what he calls intermediate-level cogn ition: sorr~ thing between h ow—level acts such
as moving a hand to a locat ion and high-level acts such as proving a theorem. This
intermediate level is meant to encompass most of the commonp lace acts that pr oceeo in
humans at a level just below what we are aware of , and in a non-intentional manner.
Becker ’s model , which is described as if largel y unve r if i 3d by exper iments , takes a stream
of sensory data and motor actions , and transfo rms that stream int O a set of s ituation-
action-result rules. The strea m is partit ioned , usually at salient features such as the
experience of a rewarding sensation or the fulf i l i ~ - ent of sonic goal. A set of such
approx imate rules , some of which will conta in irrele~~rit factors and erroneous (non—
general) ass ociations , is refined through fur :her expe r ience , which includes deliberate
attempts by the modelled system to ach ieve repc~i t i cns of rewarding states. The
refinement consists of adjusting numerica l weight ings assoc iated with rule elements , both

with respect t o individual elements ’ presence and overal l rule va l a ty. Rules are used
both in a recognize-act mode and in a goal-seeking mode , in which an attem pt is made to
fulfill an LHS corresponding to an RHS that contains a necessary element of a goal state.
The primary contribution of the model for present PS work is the idea that Ps may be
constructable directly f rom patterns of chang ing Work ing Memory states , certainl y a

scheme that would parsimoniously carry out a general sort of knowledge acquisitio n .

Hedrick (1974) uses PSs to try to synthes ize and ex tend wo rk in several diver se Al

-
j task areas. He exhibits a PS scheme that is app licable to learning to recognize nat :al

-

i language utterances , and produce a semantic representat ion for i t , arid to inducing serial
patterns such as are con- mon ri intell igence tests . (The system was designea to
encompass severa l othe r tasks as we ll.) Learning in both cases take s place as the sy ste n

- is presented with exa mples of input-output pairs. The ev st ng PS s app l~-~d to ea c h new
- -i example , and if its behavior is incorrect , ad~u~.tment procedures arc ’ appl ied to aiign cn ’ t n

PS and make changes to exis t r.g Ps, As more exam p les are seen , P~. are gene ra - - z e d by
making constants into pat tern var iables , ar- d by re fining ~eni~n t c relations that are te~ ted
in the rec ognition ste p. The program determines w h ch change s to rniike by a “dyriam’s
analysis ”, a search th roug h a space of poss b~e res ~. :t s . appl ying measures to reject
changes that are not the most parsim onious. If i t is dec - ded to add a new rule to the i-~~. a
“stat ic anal ysis ” is applied to dete rmine the kinds of - c i a t ons to include ii the P cOndt :on .

- The stat ic anal ysis and the P conditions t bc ’ .-esr ’ l- .’e’, rr~~~e use of a ~e n - cn - t i c network t hat
holds such information as “A NEXT B”, “B t~ i>~i C “~ Jl-3 N ISA ~~~~~~ , and ‘L~OG ISA

1-27 E.

____________________ -•
~~~~~~~~~~~~~~~~~~~~~ 

—-- .----—- .-
~~~~~ — .-—-—-‘• -. -

~ — —---- —------ r’ -.——. --~~- --.-- —- ---—-——-- -— .—.-- -~~ —-- — — --—
_ _ _ - - - —-- -- ~~—- - -~~~

-
~~~~~~~~—~~~~~~~~~

-

I 
- i E. Direct Antecedents and Relatives of the Present Approach Introduction

ANIMAL”. Thus if two elements are suspected to be relevant to the condition of a P, the
• semantic net can be searched to find some rela!ion that holds between them. When found,

it can be added to make the P more exact and also to make it subject to being generalized
- into forms that retain some semantic content. The semantic network is kept as a long—term
memory in addition to, arid quite distinct f r ori- , P Men-Dry. As ri some of the systems
mentioned above, Hodrick ’s Ps are not applied to an input according to a recognize-act-
cycle, but are used in a bottom- u p parsing mode, involving a search among rule-appli cation
sequences. The entire system isn’t uniforml y encoded as Ps, but only the small

- 

i augmentable part of the system s , as has als o been encountered above. The primary
problems raised by his work are the challenge to re presen t and effect ivel y use semantic—
network—like knowledge , with out going beyond the has :c PS arch tectu re , and to augment a
PS without going through the expensive and comb inator ial searching involved in his
dynamic analysis. To be fair , he did propose some approaches to solving his combinatoria l
problems , but they are still not of all w ithin the bounds of the sp ir i t  of our approach (to
be summarized at the end o’ this section ) . His work has ra ise a , therefore , interesting
challenges, in addition to un i fy i ng  and exp loring the tas ~t doma,n.~

Erman and Lesse r (1975) present a syste m organization t b a~ has a number of traits
in common with a PS approach . The aim of their s -~- ste i r ,  is to ur, .c ’ r s tan ~ speech by
allowing a number of knowledge spec a~is t s to w ork on an ut t er ~ ’(e cco pe rat ive ly thr ough
a global “blackboard ”. Eaci ~ spec ai ~t corr~r : Nu-t e s onl y .v ere ts a rea rif expert ise is
applicable arid without knowing how that contr ibut or m:~ . - t i n t e r a c t  w - t h  t i r- workings of
the others. The blackboard conta ins ~a - t a wc r r  rig h,- o c t h - e ses encocied ri a form famil ia r
to all of the specia! i~ts . A foc us of at ’ent on is n a n ’ , - -cc  so t ra t  cOmpu t r~~ e~tor t  can he
allocated among the va rious knowledge source s , to d r ’ r e  t s - e ci oool process 1o~~ards an
acceptable complete hypothes is . It d i f fers  from a PS ri t n - ’t e r - -  - kro~.ledge source is a
relatively large pro g r d rn , w ith evocation c o ntr o - ed , c c ~~r d n i~ ‘0 t i e  result ~t c~.ecuting a
somewhat smaller pre-co nd it -or . program. Thus a: ion is in r uch b-~~ er pieces of
unconditional execution (at least , uncordi lonal wit r i rc-~oect fo  ~, or at e~ ”rt a llocation ) , arid
conflict resolution can i~now ess about t ‘e in tc r n a t  ~t r . c t ’e r! f e e  ~-~-c’~ edge s c u rces  in
making f r , decision about where to a llocate comout ni~ ‘

- ‘ ‘ f  - T n - s .. C r i . , (s he r p r o g r e s s )
can potentiall y c o n t r b u t e  tc  our Rrio\~ nd~ c- 01 PSs by c :e- . e o;i ”g t s r- indepe ndent
hei’ ristics for making dec isions ~~

-
~~-~ it how to dec:de bet - -.- - c n  c n - c t - n c  su~i’ ns , arid by

exp loring the conseq uences of using t iiri ~ otj a cO n .  - - . -~ c a ’ an r - ‘ i o r y

The MYCIN sys tem (S hor t l i f f e .  1974 , and Davis , IL- . h a n ; ”  a - - cl  Short l i f fe , 1 9~~
) is a

successful use of PSs to repr ecunt  Knov.-le: l~’e hir mcC cn I cc ar~r - s s. lt la~r 
~. advantage of

a fortuitous co rre ’ec ’ nden ce uc r t w , or. the e~~~r m s .  C’ c ’ - ’e1 of rc, and l ’ e  w~ y ph- ,’’~ic iari S
express (or can easi ly le~rr to c c i  e s s ) the ir o a~,r o n t i c  riow~r 

~~~ Ru es take the
general fo rm “premises - CO ricl u~ iDfl - ”, and are er- -J~ ly vr~ d to reason ond chain
backwards , rather tha n be ir-~ e xec ~ted n tCe f e r ~~ r . 0 , recc ~ ” ;n— ;.~ t a rner (t he lat ter is
used in a few ex cept io nal ca ’~e~) e-~ ihi~ n-- ear’ s lr.- - - ~~~,-n w~~i- t s to conc lude

• Hedrick’ s wOrk is also closely rp i ,i~?d to . cert ; ’- ou~ ~-r n - -e , rc~ ’ t - or - and concept—
formation approac hes to lea rn r’~ , w n c h a re - : i - ~ n : - - r ! o are .~s th:i f n~av soon benefit
PS research ; a recent pa per is i- ,iyt -~

_ Roth a r - - k’-c~~’ O t t (1 -~7~
).

•• Cf. consequent lheo ”ris ri in - - t t ’s ~Hri’~er (~~1 e~); O~ c:ir~ or and Gi l:c -~’.iy (1~~ 6) are

~r1 applying MYCIN— l ike ru 1es to thi ~~~~~~ c~ ~t ~c ’o - n t - . c ’e n users and comp lex
systems; also , backw ard cha n:riE, a ‘ --~~ e { O; ni l ~;m fo r reasoning in the
construction ef Al gol—like robot ics Drc ,~t ran c 3 C t c c r :~ by P . e 5 1 - i - a n (1 97- ~ -

H- E. 1-28

Introduction Direct Antecedents and Relatives of the Present Approach E.

something, it tries to find out what it can about the premises in the LHSs of rules that
- contain the desired conclusion in their RHSs. This “finding out ” can involve interactive ly

- gathering experimental data from a human informant , it can be done by further backwa rd
cha ining, using other Ps, or it can be computed by sonic internal function , Additional
re finement is obtained by using confidence ratings on the various Ps, essen tiall y stating
the confidence in the rule by the rule informant (an expert physician). (This domain is
characterized by few certainties.) These values can be thought of as probabilities ,
although they are not combined, when a conclusion is the result of a number of rule

• applications, ac cording to conventional formulas of probability theory. (One of Short l i f fe ’s
biggest problems was to determine , emp irically, an appr opriate combination mechanism.)

Davis et al. point out several features attributable to PSs that are essential to their
effort , and several problems that are obtained as undesirable accompaniment to posit ive—
seeming features. As alread y mentioned , PSs are close to how users want to express the ir
knowledge, so that the process of acquisition by the system is direct. Ps are found to be
eas ily read and easil y composed. Since PSs are so close to a natural expression of the

- user’s knowledge , of ten the program ’s behavior can be explained by display ing the rule or
rules it is working with. This is used when an error occurs or when the user is not sure
of the reasons behind a query fr om the system. The program can answer “why” questions
by giving the higher-up rules (supergoals) , which evokcd the rule being examined , arid can

-
answer “how” questi ons by indicating tower-down (subgoa l) rules , which are about to be
evoked in continuing processing. One of the main problems wi t h acquisition of new rules is
to ensure that they are not direct l y contradictory to e~ sting rules , a pr oblem exace rbated
by the tack of exact theory to eva~uate the meanings cf the conf idence levels assigned to
Ps. Another problem is to make sure t hat a new rule takes into account all of the
premises that other rules have used in similar circumstances , but this is alleviated by
taking advantages of rule similarities (withiri prograr — C tc’ rn~ined classes of rules), to allow

- the user to be reminded of possible omissions. In a s i r - l a r vein, it is sometimes the case
that updating some data structure , for instance a set of values that some parameter mig ht

take on, requires a number of related changes to other Ps, raising the questi on of whether
it might not be possible arid more useful to have such structures ex pres sed once , globally,
ra ther than distributed through the Ps as assum ptions about the premises being tes ted. A
final feature that was added to give the rule s-~stem more d irection in its backwa rd
chaining is the concept of meta-ru les , rules whose c ondit ions refer to the kinds of
conditions that other rules are testing. This allows ready expression of heurist ics that
prefer one set of rules to another , f or a particular problem. it gets around some of the

- - problc.ms of control that the MYCIN group have with their rules , and, since meta-ru les can
-
‘

be stated for meta- ru les themselves , opens up the p rocess for even higher st ra t eg ic
guidance. Full consequences of the use of these meta-ru les on the overall computat onal
characteristics have not yet been explored , though. To summa rize , the MYCIN resea rch
e lucidates some tech niques for using PSs in a goa I-cha ini ri~ fashion , makes bold adv ,~i e s
into the rea l- n, of using numcr~cai weig hts on rules , ~nci ra ises issues with respect to the
design of PSs to take advanta ge of possib le auto matic explanato ry capabilities. Care must
be taken , however , not t o expect the ef fects of the for tui t o us fit of the fo rmalism to the

•
domain to be present elsewh ere.

While other cur rent PS work raises a number of important ssues and makes the
tasks in a number of a reas m ore c lea rcut , the pre- :nnt t e esis aims to continue a u r i C of
work represented by a number of repor ;s to be drscus ~ed now . ~ewe li ’ s research on PSs

1-29 F.

iA1L
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



T~~~ t T : z T T
~~~ ~~~~

E. Direct Antecedents and Relatives of the Present Approach Introduction

(1967, 1972, 1973, and Newell and Simon, 1965, 1972) is the basis for most of the others.
He introduced PSs in the general domain of modeling problem solving, and extended it to a
number of other tasks. A PS for cryptari thmetic problems , involving finding di gits to be
subs tituted for letters in simple addition problems, emphasized the use of exp licit goals to
achieve control. In the process of develop ing that , there emerged a number of important
characteristics of PSs , many of which have been incorporated into the discussion in this
chapter . A PS for perceptual encoding was sketched in connection with a task of grouping
objects into describable categories. In the 1973 paper , he used a series of related PSs to
model tasks in the Sternberg paradigm, in which a human subject is given a set of digits in
rap id succession and then asked whether a particular digit is in that set. Ths Sternberg
task was used to illustrate the use of PSs for a very detailed fit of a model to actual timing
characteristics of humans. The particular theory of how PSs fit into human problem
solving, as sketched in Section C.2, is given in full in Newell and Simon (1972).

Several new points with respect to PSs that Newell makes in his explorations can be
brought up here. He notes that in many cases it is not easy to arrange the PS to produce
the desired behavior , a difficulty that seems unavoidably tied to the favorable
characteristics of PSs. In particular there is the problem of maintaining local control
(unexpected Ps fire) and of avoiding unwanted side effects (interference with others ’
global Working Memory assumptions). There is a certain freedom of programming in PSs,
in that it is possible to construct a wide range of them to achieve a single task with a
varie ty of execution characteristics. For instance , they can be readily used to represent
an evolutionary sequence of system behavior s. in modeling characterist ic memory
unrel iability in humans, Newell notes that PSs offer a mechanism of coupling, whic h can be
used to increase reliability. Coupling is increased by strengthening the interrelationship of
the outputs of one P with the inputs of another.

Klahr (1973> has also used PSs to achieve precise fits of a model to reaction-time
data taken in experiments with humans. He used smal l PSs to model aspects of counting
and addition. His evaluation of PSs is that they are much to be preferred over other
common techniques such as flow diagrams , both in their basis in theory and in their
precision, but that they are rather difficult to const ruct. In a more recent paper (t(lahr ,
1976), he discusses PSs f or seriat i on, conservation , and quantificati on in children, and
discusses general issues of cognitive development. Ho points out the usefulness of PSs as
models of specific performance within a developmental sequence , but leaves open whether
PSs or any known organization can plausibly model a complete sequence.

Young (1973) used PSs to build a flexible model of various stages of seriation
behavior in children. Hi~ seriation task involved having a child arrange a set of clearl y-
dist inguishable blocks in order of size , a task which children perform with vary ing degrees

• of proficiency at different ages. He demonstrated the f lexibi l i ty of composition of his PSs
by put ting together a “kit” of PSs , f r om which vary ing subsets c ould be chosen to result in
the various stages of perfo ri i’ance of the task. Five aspects of Young’s work are of
interest here. Hi~ Ps were locall y plausible , with each P taken by itself containing
something reasonable with respect to the tas k domain. He noted in dif ferent experimenta l
modes that the Ps were able to handle effectivel y the task variants. PSs are able to adapt

- to task demands without del iberate evocation of an “adaptive ” pr ocess , that is , by making
use of their inherent recognize-act natu re. Hi~ Ps most decidedl y represented skill (a
direct encoding of what a chi d does) rather than knowledge (what a child knows , a form

E. 1-30 - -

— -~~~~~~~ -~~
-—- .. .- --.

~~~~~~~~~~~~~~~~~~~

Introduction Direct Antecedents and Relatives of the Present Approach E.

that only weakly says what he does as a result), which position he contrasted with other
psychological models that represent knowledge rather than skill , and he expressed hope
for a synthesis or middle ground. Finally, he proposed a mechanism through which
development might take p ace: as a child repeatedl y executes various mani pulations in the
external wor ld, his cognitive system acquires Ps that anticipate the results of those actions
(making use of the time in which motor actions leave his cognitive system free of
processing demands), and that eventually begin to take part in planning and mistake-
avoiding thought.

Moran (1973) and Farley (1974) both used a similar PS architecture to model human
behavior on visual-imagery task~. Though the tasks were quite distinct , they bot h
involved using a PS to organize encoded visual inputs into known geometric shapes , and to
use the processed encodings further in the tasks , e.g., to anticipate more properties of the
visual environment. Moran made several points about PSs that contribute to this
discussion. He organized his Ps into subroutines , in which control could be localized, but
he realized this violated the spirit of PSs. He also admitted to using spec ial tags in
Working Memory to achieve obscure kinds of control and communication between Ps. His
control problems led him to conclude that means should be devised, to be expressable
within Ps, in order to make control more rationa l without losing other advantages of PSs.

Brooks (1975) used PSs to model sonic immediate l y observable processes in writing
code in a programming language. Hi~ PS started out with detailed plans of how a program
was to be written, and proceeded to fill ri the details and produce the program code. His
model is not a pure PS, but makes heavy use of operators coded in his base language,
Lisp. His Ps are very spec ific to pieces of the plans , and tend to represent fa irly large

pr ogram steps, much larger that Ps in most of the other models discussed hero - on the
order of seconds of human thinking time as opposed to tenths of seconds. This is
probably due to not coding the entire process as a PS and to weakne sses in his Ps ’
representational power and pattern -matching capabilit ies. That is , if his PS were forc cd to
grapple wit h a number of the more basic operations (rather than using Lisp) and if it were
able to express more general pattern matches (for instance , he has no pa ttern variab les
for comparing results from one element match to another ) , his Ps would tend to be broken
down into simpler units w ith more use made of intermed iate representational and control
elements. He found it ef fect ive to use PSs to express the gene ral coding strategy, used
by his experime ntal subject , of writing soi~e code and if necessary making patches to it
later (as opposed to, say, a backtracking search throug h possible pr ogram modifications ) .

Waterman (1974, 1975) focused on self-modify ing PSs for several tasks~ basic
arithmetic , verbal learning (Feigenbaum ’s 1963 [PAM), and series comp leti on. He achieved
some impressive behaviors from systems consisting of an ordered list of Ps by the simp le

• operation of adding Ps to the list at judicious locations. He f ound that PSs are conc ise and
powerfu l , and that there are advantages to using a urufo rm notation for the fixed and
growing parts of learning syste ms . The chall e nge he presents is to achieve similar resu lts
w ithout using the psycholo~ icaliy imp lausible ordered-P S arc h itectur e .e

We can now summarize the conclusions that can be drawn from the survey just

0 Actually, some conside r local (i.e. on a few Ps) order ing plausible , and a tota l mem ory
ordering implausible.

~r- 
1-3 1 E.



- - 1T 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~

E. Direct Antecedent s and Relatives of the Present Approach Introduction

presented , and re--em phasize a number of questions that have been raised by other PS
workers. First , it should be clear that while a number of systems have performed diff icult
tasks from an Al viewpoint , there has been no honest attempt to exp lore the
consequences of using PSs over a diversity of Al tashs . Such an endeavor is also
rec ommended by the prel imnary results from by study of the Studnt PS (Rycherier , 1975),
discussed above in Section B.2. As an additional challenge to such an attem pt , Davis and
King, in a survey of the uses and character ist ics of PSs (1975), say that a number of
domains are inappropriate for PSs: doni~iins involving a unified theory, as opposed t o being

-
a loose collection of diverse , independent fragments , domains t h i t require comp lex kinds of
control and coordination , as opposed to loosel y organized ones; and domains with
predetermined uses for knowledge , as opposed to hav ing fac t s sta table in app licati on-free
f orm. They don’t say using PSs in such ways is impossible , but j ust that it is likel y to be
very awkward and unenlightening to do so. The present approach is in opposition to that
view , and at least assumes that more evidence is required before dismissing a mechanism
that has other promising features.

On the whole, a number of issues raised by w ork that is not in the direct trad t i on of
this thesis will be beyond its scope: the problem of representing fr— c stat is t ical nature of
uncertainty, as in MYCIN and in Becker ’s model; issues of develop mc nt , as in Young and
Klahr and to a lesser ex tent , E3ccker; toe process cf acqu is it ion to any large extent , as
investi gated by the Dendra l research , the MYCIN research , Waterman , Siklossy, and
Hedrick; the use of Ps in a goa:-dr iven , backw a rds mode instead of the recognize-act
mode, as in the MYCIN system and in Bec k - e r ’s model ; and the use of si gnificant non-PS
pr ocessing in processing Ps other tha n ~~~ ~he recogni :~e- act cycle , cs in the Dendral work.
The works mentioned do raise some io tere s h r- g qi~’shons , other than those topics , tha t
might be central t o the ar~~j~~en1 of t i r - t b .e r.is and f te refor~ n-i ght be raised again later:
the level of Ps , espec~a l y w it h re~ pect to ftc cbser~—~~ion t hat ~~~~~ Ps are used directly
for explanatory purposes; and t f - o c ~y, also c~- s cu~sed n co nne ct ion with MYCIN, of
changing program structu res t h a t a~e e rr-hedded in a n~ -’- oc- r of rules and that might better
be represen ted as sor - -e c ’her k ind c-f ~loba ~~ ic~ ure - n gnnera l , it may be important to
observe the common kinds of m c f~ca~- nos ~o ~s hiat ar c done as s~ ~- t e n s are augmented.

To repeat the em phasis of t~~i, present ~nproa:n rs a cOn ’r as t : We w ant to ex press
entire systems as PSs , avo - d ~g a pp- ro aches t hat have a P~ as ~~~ a sn- .a !l augmentable
subsystem, subject to a nw -her of ~ rci s of p’ - : -~- s ng. T ns mea n -s that a PS represents
knowledge about i~sclf as Ps , or ~a- -~’ j c i ~now~ed~:o ~ c se r~ - -~~g e f f ec ts that occur in
t he g lobal Working Memory. he c-~ rcr clo~n :y - r e ~~ c -d PSs ma cc quesi ons cer ta in to be
touched on by the work -~~~ ~~e ~ 5: - n ~~~ i’ ~~~‘r a igme - ’ a ’ ons c an be o btan ed
w ithout using an ordered PS; ~c r - c the r ‘,, , ‘ o rc in the PS . , rc b ’ e c t w r e w i h make PSs
easier to program , aYc) d- : -g a i f i c u t i c r - r - ~ ri ’ ~i r i r g local c r - - t r ol and preventing
unwanted side e f f ~ c t ~ , a~ d more ~e rC &l~ a o - :~

-
~~~ ‘~-c ne ed ‘or addt iona l control

structu res such as s .o ’ - - - c~ . - 
-



!~ 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

- T
_ _ _

Introduction

F. - The Tasks to be Imp lemented as Pro duction Systems

This section gives a preview of the tasks to be used in the body of the thesis to
exp lore the issues of Al programming using PSs. The tasks include a simple verbal
learning task , a powerful and general problem solver , a restr icted chess program , a
program for conversing in a restr icted but natural-appearing language , and a program for
conversing and performing manipulations on a toy blocks model. The tasks are chosen to
be representative of observed variety in past , ‘ c las s cat” Al programs. There are
necessarily limitations in coverage , especia l l y of important recent work , due to limitations
in available effort. Without explori ng the Al f ie ld ex naust ive l y, t hese pr ograms exercis e
the capabilities of PSs as an expres s ive medium and provide a suff iciently broad basis for
extrapolati on to other task areas. At the end of the section , methodo log ies for i.~:ing data

- gathered from the implementatio ns will be discussed.

EPAM. The [PAM task involves having a program learn nonsense-syllable pairs
- under restrictions on the amount of material that can be acqui red for long-term storage
during the presentation of each pair (Feigenbaum , 1963). T~-e restrict ions are based on
observed human behavior , but beyond that have useful propert ies for our exp loration:
information that has already been acquired must be known in sonic way and cons istently
augmented; and tests must be made in order to determi ne what rninirnuni of inforn~~tion
must be stored in order to maintain progress while staying within the restrictions . For the
PS version, the informat ion learned is re presented as Ps , so that t h is is an example of a PS
augmenting itself. it also indicates a position that can be taken with respect to using Ps to
store objects more general than simp le sy llable pairs , n~ n e l y the encoding of objects
according to their distinguish ing propert ie s , in a discriminat i on network.

~~~~~~~~ The GPS (Genera l Problem Solver) prog ram (Newell and Simon , 1963) uses the
powerfu l means-ends analys is method 0f heurishc search to solve a va riet y of logic
puzzles and symbolic manipu lation problems. In add it:o n to ge t t i ng  PSs to do heuristic
search, with its attc ndant pr~ b!enis of expressing goa ls , mainta in ng goal-tree structure ,
and evaluating progress , GPS ir~~ ’ies a powerfu l match ing operat ion , which is able t o
express the dif fe rences between arbitrar i l y - s t r uc t u r ed  ob jec ts . GPS also m akes use of
discrimination networ hs to give canonical names to various symbol st ructures used in the
problem~solving process. Proherr -~ given to GPS are ex pressed independentl y of
knowledge of the interna l s t ructure of GPS i tse lf , so f hat us ing a PS representat ion for
that will bring up issues of c oordimi~ti on and corri mn unica t on-

Chess ~~~g~ n~es n~~~lv in~ On l y  -~p r ~~ and ~j . r - r  This t a sk  includes heur i s t ic  sea rch
of a sli ghtl y d i f fc reot  lc~~’ f ro m that in GPs. t e c t s  the a b - l i t y of P~ s to manipulate and
access ef fect ive ly re p rese r t M io ns much larger than tho se in GPS’s repert oire. The
rec ognition of complex patterns of eleme nts and the dcs cr -~:’ ion of various aspects of the
board representa t io n are also mequ red. ~s Berline r 4 1973> l ’~ s pointed out , conside rable
advan’ e over past tech n iq u-e c of chess probl ern - - so lv ng v. lj be necessary in order to
attain a computer program of a Y- - t e r  IC ’ c l  tu~ wh ich the use of PSr . may cont ’ i but u

Natura l la~g~ua~ç~ prC .~ ç n r ~~ Th Is tas k r’~ -~dv~~s a c c - ~r-hr’ g desc riptions , in a
re stricted subset of nat u ra i  a b~~-~ e , of a toy btoc i~s sc - ne. r roni he de s c rpt ~ons , an

- f ~
1-33 F.

- - -



F. The Tasks to be Implemented as Product ion Systems Introduction

internal mode! is constructed which is used to disamb iguate fu rther inputs and to produce
answers t o queries. The PS prograirl significantl y extends the capab ilit ies of its direct
ancestor , the MILISY (mini-Iinguist~c system ) program of Moran (1972). The PS
implementation is a fairl y direct translator from externa l strings of wo rds to an internal
semantic representation , with out recourse to conventional phrase-structure parsing or to
generation of alternatives among which a search is done for the best interpretation.

~~~ 
blccks manipulations. This task is based d irect l y on Winograd ’s (1972) program

ror solving problems in connection w ith simple rearran goni ents of objects in a toy blocks
scene. Subproblems include finding space to put unneeded objects , building stacks of
objects , packing obj ects com pactl y into a space , and rerno. ’ing obstruct ions. The language
capabilities of W inograd’s 3ysten i are only partial ly cc ed in this ta s k, given t~ie focus on
the blocks manipulations. Instead , use s made of the language system just discussed. The

PS implementation il lustrates simp le mec han sms for a bac ktrac k .ng search strategy, and
easil y enc odes a number of task-s pecif ic heurist ics , some of which can be adjusted to
avoid backtracking to a large extent.

-

Now we turn to issues of methodology. The process of constructi ng these PSs and
the PSs the m selves provide a var ie ty of data to be anal yzed. There are some c iirect l y
observable character ist ics: space arid time eff ic iency; programm ing time , as an indicat or of
productivity when using PSs; conciseness and directness of ex p: ess ion (obtained by noting
any con~ent of Ps that s not tas k-ori e nted so much as PS-control-o riented) ; features of
the representation of data and procedures; aspects of how co ntrol is achieved; apparent
fail ings or limitations of PSs; promising f eatures of the repres e ntat ion as PSs with respect
to extensions beyond the initial tas k ; features that point to sign if ica nt advances that might
resu lt from architectural changes with in the general PS f ra mework; features of
organization of Ps , e.g., into modules; arid features of the changes made to an initial desi gn

or model of the program in order to form it into a reasonab le PS.

One thing to do with such t ra i ts is to use them in com parisons to other
implementa tions. The [PAM task provides a compar ;

~ n to another PS imp leme ntation ,
w hich uses a distinctly df lo ront PS arc h i tecture. The chess endgame task is current l y
being carried out directly in Lisp, providing a bas is for a number of cpmparisOnS.
Comparisons to the Planner approach to problem —so lv ing arc provided by the blocks

ma nipulation task. Where ver the PS approach in gene ra! d~f fe r~ w~dcl y from the appr oach
taken by the predecessor , close comp aris on is not poss ele or meaning ful , but somet hing

- should be gained w ilh regard to general advantages C r d sadvantage s of PSs

A couple of other met hodolog ical devices p-ove usef ul Tax onor i ies of the features
observed, e.g. of methods of co ntrol in PSs , prOv ide a g e - o r a l means towards comparisons
to broad classes of other language proposa ls Th~- t c a taxon omy could be applied to
other cor ’-ol s tructures in ~ der to ex pose re la t ive s t re ng t hs arid ~-c a k ne ss e S . V~c’cre
control devices dif fer sharp ly for two contr o l s t ruc tu res , taxo no r~ es show the kinds of

• issues that each is most su ited to grapp le with e f fec t i~ el y, and a iso the k.nds of issues
tha t are likel y t o arise as obstac les to encod ing. In add- l ion to tax on O m~es that ar Ise from
observed character is t ics , there are deve ln~ cd measu res of such t ra i ts as modularity, laid
out in Sect ion B.1 as cr i t i ca l for bu d ng understonc ~~g syste ms. Such measures give
support for pro pert ies of PSs such as ex p l i c t o e ss and i~~ ~pc ncence of individual Ps.

1-34

- - -. -~~~ - - ~~

-~~~~

Introduction

G. The Production System Des ign Space and Psnlst

This section gives a roug h sketch of the range of design that is possible within the
def inition of PS architecture. Some desi gn alternatives are suggested and implemented in
Newell’s PSG (Newell and McDerniott , 1975). The features of Psn!st , “PS analys t ”, which is
the architecture used for the present investig ation , are introduced and placed in
perspective. (Chapter II is devoted entirely to detai ls of the Psnlst language.) It will
become evident as a result of the discussion th at PSs offer a considerable degree of
freedom in design, and a discussi on of the adva ntages and disadvantages of this is
included. The issues of how representative the Psn~st desi gn is arid of how the design is
oriented to the goals of analysis of Al programs are also discussed.

The four main components of a PS architecture are its P Memory, its Working
Memory, its Recognize-Act CY C l e , and its Conflict Resolution Princi ples. Since each P is
restricted to a “cond t ion => action ’ 4 orrn, the primary at t r ib ute s of P Memory have t o do
w ith how the Ps are related to each othe r (forms of condition and action elements are
discussed with Working Memory, below) . PSs have been used w Ith a variet y of P Memory
structurings: Ps in a sing le linearl y-ordered list; Ps subdivided int o small subroutines ,
per haps in hierarchies , onl y one of which is ac. t i .e at any time; and Ps in a s ingle
unstructured set. Ps in Psnlst are considered to be or- c- -uns t ruc tur e d set , largel y in order
to avoid the problem of st ructura l c o ntex t, that is , cond itions in Ps imp licit due to their
place in some larger organizing s t ru~ t i r e rather th~n full y explic it . Because Psnlst’ s
condi tions are thus required to be expl ic i t , language const ructs are added to al low a P to
express conditions such as whether patterns amou nt ing to en t I re LHSs of other Ps are
satisfied or not. If any relations do hold between Ps , they are in th is way guaranteed to
be exp licit. Exp licitness is an advanta ge als o with respect to readabi l i t y, or determinatio n
pf knowledge content , althoug h in pract ice it mig ht become cumbersome to have to specify
everything in this way. One side ef fect of coding a nc nber of A! pro~;rams in PSs will be
to dc- ide such quest ions. Another advantage of keep ing the P ~et unordercu is to al low
the program that interprets or otherwise executes a PS pro~ rar ~ to app ly pro;rd n’ —

spec ific heL’ s t iCS to allow it to achieve the recognit ion ‘ar. ter. For n’- ta nce , ce r~ a!ri
spec ific P—firing sequences rright be recognized a-s c o cn - o n Co nd it ion-te st ing cou ld be
re ordered to take advantage of that without being res t r i c t ed by some st r~~t ural orderi ng
on the Ps. Finally, it seems imp lau sibl e psy chc ~r igca y, base d on the speed of hum ~n
rec ognition and on est imates of memory size in the mil l io ns of Ps , t h a t there is a - ~
complete linear ordering on Ps (io rg-te rrn memory), al t eoug h otnor kinds of s t ruc t u r ng
cannot be ruled out.

Forms of Wor king Venn rv range f ro m l inoac iy orde red to pa r t ~~il y o rde-ed to
unordered , as regards in te r-e le me nt re lat ions; fr o m ordered to part a l! y ordered to
unordered within ele ments; f rom f la t s r;gle - - l c vc l l i s ts or s e t . to a rb i t ra r ly nested
structures; and from pure palt -~rn co nstants and va riables to e- .’oc a - t rim of a rb i t rary
functi ons in order to eva c a?e a part icular pat te r ’~ m at ch. k~o~ t of t he f e at ~ ros of Psnlst ’s
Working Memory arc just i f ied by consider at onr n~ ef i ic -~ ’-~y a - r d ~- m pi i c i t y. The Wor king
Memory itself is considered to be a ; unorc ~~r e c 1 rc of te n - , C ,t5 1; rif wh ch has one of a
set of distinguished fo Rce s ca Re d pr ed ~ ler - ~- :~ ~- -s~ ele~ i-n t , with an Ordered , unif or m—

- , sized list of argument s fo iiov • - r ; , ~ e pree ca t ~ ri~ me. Lac k of ri der on the set ari d
theC

G. The Production System Design Space and Psnlst Introduction

presence of a predicate are considered to be efficiency and programming advantages.
Working Memory elements also have status with respect to the event history of execution
of the PS, as w ill be discussed with conflict resolution below . Working Memory is al lowed
to grow , in number of elements , indefinitely, a sharp contras t to psychological models ,
which place severe limits on size because of the correspondence with human short-term

- . memory. (Psychologists place the limi ts anywhere from around 7 up to several dozens of
elements; som e of the limits• are overcome by allowing elements to be deeply structured
ra ther than spreading out informati on as a number of elements.) Element arguments may
be structured ~ists , but they are treated simply as atomic tokens in the recogni tion
process.

Condition and action elements tend to vary in much the same way as memory
elements, since they are constrained in operating on those elements. Condition elements
of Ps in Psnlst are sin-pIe abstractions of memory elements , with a require d predicate
constant at the head of the condition element , followed by a list of variable arguments
corresp onding to constant tokens in actual memory items. (Not allowing a variable at the

-
predicate location is aimed at eff iciency, and it may give some insight into the practical
limitations of first—order systems (cf. f i rst—order predicate logic).) Once a variable is - -

bound by matching it with the corresponding token from a memory item , arbitrary Lisp
predica tes can be app lied to test its value , rang ing from equalit y to a constant , whic h is

— very common , to testing complex numerical relations between variables and beyond. This
evaluation and testing mechanism is quite contrary - to any psychological operations —
humans are not considered to have such power at that low level , but must carry out
ar ithmetic by more deliberate means - and is even controversial among pure Al
re searchers , Psnlst t~as it because it is read ily ava ilable from the underlying machine
structure , and I feel full advantage should be taken of it , sinc e in other ways , such as
parallelism of recognition , current com puter architectures place constraints on PS

- efficiency and power. Not allowing nested list structures to have an effect on the match
of conditions to memory elements is included for possible eff ic iency reasons and to make
all of the essential elements more explicit , f orcing their occurrence at the top level of lists
in LHSs.

Act ion elements , althoug h constrained like c ondit ions by the f orm of Working
Memory elements , do have a few added aspects , including: commands to stop the
recognize-act cycle; operators to add to and modif y P Memory; and operators to act on,

- - and receive inputs from , the external (user) environment. Action elements of Ps in Psnlst
are similar in form to condition elements , specif ying simple additi ons and deletions of
e lements to and from Working Memory. The Onl y excepti on to this is the set of P Memory
modif ying commands , which are expressed in form sin; lar to other action elements , but
have spec ific operator names in place of predic at es. Other operat ions such as input and
output are programmed as side ef fects: arguments to ac t ion e lem cr - ts can be Lisp functio n

-
~~~ calls , which can be programmed t o do any thing external l y or t o compute any functi on on

values of variab les bound during the match to condition elem .~nts - access to other
Working Memory elements is not provided for . Such functions must return values which
are then incorporated into Workin g Memory elements. Psnlst doesn ’t enf orce rest r ict ions
on acti on functior,s (because of the obvious dif f icul t ies involved as soon as any thing at all
is permi tted), but in pract ice , anything beyond sm p le ar i thmet ic , s imple list pr ocessing, and
input-output are considered to violate the Spirit of PS programm ing. Keep ing the act i ons
basically in the same form as c ondti o ns , or at lc as t in a re ldt i v e l y simp le form , mig ht

C. 1-36 

-~~~~~~~~- - - -~~~ -~~~~~~~~~ -- -- ~ --~~~~~-~~~~ ---~~~-~~~~~~~~~~~ - - - - _



~~~~~~~~~~~ - -~~~~~~~~~~~ 

_

~~
‘ _ i

_

~~ ~~~

Introduction The Production System Desi gn Space and Psnlst G.

• eventually lead to the possibility of using the Ps in backward or “act ion-driven” mode, in
w hich a chain of P firings is sought that will achieve some memory state (cf. Buchanan ,
1974, or Davis et al., 1975).

The basic recognize-act component of PS architectures has been subject to the
least amount of variation historicall y. Underly ing serial hardware has predisposed systems
to consist of a discrete act of recognition followed by conflict resolution followc- d by a
sequence of serial actions , comp leting one cycle. Conceivabl y a single system could

-
-

encompass a number of such cycles executing in parallel , with the same P Memory and
Working Memory, either synchronized (e.g. all recogniti ons starting at the same t ime and

~ I
delaying the start of the next cyc le until all actions have a chance to execute), t o t a l l y
asynchronous, or some mixture. Considerable variation , however , does occur with in the
conflict resolution part of the cycle.

Conflict resolution must generally decide among a number of Ps whose conditions
have been recognized as being sat isf ied , usuall y narrowing the set down to a unique
choice of a P whose actions are to be executed. There are a number of system
c haracteristics on which to base the process: the structure of Working Memory (e.g. wh ich
bindings use elements closer to the front of a linearl y- ordered memory), the structure of P
Memory (e.g. where the sat isf ied Pc stand in relat ion to eac h other in a linear ordering) ,
the specific kind of bindings that ta ke part ri the competing recognitions (e.g., whether one
is a special case of another) , the history of the system (e.g. the recency of addition of
Working Memory elements or Ps.), the nature of the acti ons to be performed on the basis
of the bindings (e.g. those that are indicated by the majorit y of bindings), random or
arbitrary selection , arid conceivabl y a number of other variations. Several principles can
be combined, app lied in sequence until the confl ict set is nar rowed down. The system can
be more or less stringent on how many sequences of act ions , ass ociated w ith bindings
f ound by the recognition , are allowed to he executed af te r the conflict resolution has been
applied: uniqueness may be desired , multip le bindings to the same P may be allowed , or
mul t i ple bindings to a number of Ps may be a llowed. Considerations of eff iciency of
implementat ion and of psycholog ical plausibil ity are factors that influence the ult imate
design of the process. Psnlst makes use pr i ma- r i ly of the hist ory of execution of the
sys t em, al lowing those Ps to f ire f i rs t that make use of the most recent Working Memory
elements. Once a P has fired using some particular set of e leme nts , it cannot f i re again
using the same ones (and perfoi ming the same actions) , unless in the meantime one of the
elements has been re-asserted into the Wor king M~rnory, ef fect ively mak ing it recent
again. This concept is imp lemented using a s tack , so th at recent eleme nts temporari l y
passed Over in making a sel ect ion are pushed down on the stack , but event ua - -, are
allowed to rise back to the top, becoming candidates for s&ect ion again. Loosel y speakin g ,
elements that are most recent can be considered as e \ -e i - t s , making the system ~‘~ e m t —
or iented, and giving it a f oLu~ ~ f at lc-nt ion on recent events , and at the same time mak mg
it rather compulsive in exp loring the conseque nces of all events , even when the re have
been numerous dist racting events t h a - t have pushed them out of the immed iate focus.

-

- 4 Using the history in this v laj to resolve co nf l ic ts does ~ot determ ine a unique P in
every situa t ion , so Psnlst sirriply arbi t rar i l y chooses or- c over the others. Some e f f i c ’ enc y
is gained by not even fu:- l y br -m g u ’g these ot nn rs into co ns ideration: the f r ~~t successful
recogniti on found , sub ject to am orcerir. g t~- a t ers .~.res t~’a~ it will be w ithi r i the p cper
recency constrai nts , is executed .-~it ho-ut ~i. rt he r ado. A rotn er i r , por t a nt feature , in ter ms

2-37 C.

_ _ _ _

-~~ .~~~~ -~--~~~~~~

G The Production System Design Space and Psnlst Introduction

of system behavior , is that if the successful rec ognit ion is able to come up with a number
of possible bindings for a P, all of them are executed immed iatel y, rather than choosing
only one from the set; they are executed in arbitrary order.

We must conclude from the above considerations that the design space for PSs
contains a large number of significant variations. It is difficult to know in advance how to
make a decision on a number of the dimensions. W ith such a range of possibilities, it is
even hard to sharply distinguish a PS from a non-PS, alth ough given a particular example ,
there is likely to be a consensus among PS “experts ’. But on the other hand, this situation
may not present a barrier to progress. PSs are easily implemented , so it’s feasible to go
through a number of design iterations fairly quickl y. Als o the flexibility means that PSs
may be adaptable to a wide range of tasks.

To summarize how the design of Psnlst is acce ptable f~r the overall aims of this
t hesis, it should first be pointed out that there are few strong assu mptions made. For
inst ance, keeping the P Memory unordered rather than having it s tr ict l y ordered as in
some other PS architectu res , is a weak assumption (in provid~ng less mechanism t o the
user), and conclusions made fro m Psnlst will carry over to syste m s that add structure.
That is, Psnlst PSs wi ll produce similar behavior if executed in an architecture whose
essential difference is in P k4~ mory structure (we would expect secondary behavior
changes such as in timing characteristic s) . Thus by keep ing the cosign simple , conclusions

may be more widely representa t ive of PSs. Psn lst’ s desi gn also makes few assum pti ons in
order to be able to gather data on just which assum ptions it should make. If it turns out
that certain cumbersome construc t io ns or patterns of cond ition cl~ ments are c ommon ,
t here will be strong just i f icat ion for higher-levc-~ language fe d tur e s that make their
expression easier. If we take as our aim to find ways of automating the encoding of
knowledge as Ps, whe ther one form or another is lc~s clumsy Irran t~ie forms adopted for
the present study diminishes in importance , to be replaced by considerations of openness
and flexibility.

‘
- I

1-38

- ~~~~~~~~~~~~~

-—
~~

•• - •• --- - -
~~~~~

-.- ----•-
~~ 

.‘ 

~~~~~~~~~~ ~T E~:~”T T  
-

Introduction

H. To the Reader

The overall structure of the thesis is general things in the outside chapters , I and
VII, and detail in the others , I! through VI. Chapter 1 introduces PSs, gives some history
and a survey of other PS work , gives a priori features of PSs and their relation to
research in understanding systems , and motivates the choice of tasks and the PS design
used in the rest of the thesis. Chapter VII draws conclusions on the basis of the PSs

- - constructed, reviews all of the issues covered in fragmentary fashion in the detailed
chapters , and summarize s the streng th s , weaknesses , and promising applicati ons of PSs.
Chapters 1 and VII should stand together as a unit apart from the rest of the thesis , in
terms of genera l interest and in being free fr om dependence on material that is presented

- -
-

only in the detailed chapter s . A thorough understanding of PSs cannot be effectively
gained, th oug h, wi t hout study ing at least one of the inner chapter s , III throug h V I. in detail.
That study should include contact with the actual PS and its workings. Chapter 11 is a pre-

- requisite to 111 through VI, since it intr oduces the Psnlst language and arch itecture. Note
that each inner chapter covers a sing le task , except Chapter VI, which conthines the two
tasks dealing with toy blocks.

-

Each chapter has an abstract , a det ailed table of contents (including figure tit les and
locations), an intr oduction , and usuall y a summary, so that it is feasib le for the reader to
get a general idea of the chapter ’s content qu ckl y. I~ additi on, most individual sections of
chapters start with an overview and include a sui. i ir ury or have summar ies at the ends of
several subsecti ons. Sections within chap ters are labelled with capital letters , e.g., B, I-I,
white subsections are Arabic numerals attached to sectio n let ters , e.g. B.3, Hi. Pages are
numbered sequentially within chapter s , arid a sectio n or subsection identifier is printed in
the upper and lower corners of most pages. Appendices are also given cap ital letter
identifiers, and are marked sim ilarly to sections.

The structure of detailed chapters is su perficial ly sim ilar to the overall thesis
structure: details sandwiched between more general introductions and conclusions. Each
chapter gives: an Overview of the task to be pursued , desi gn issues with respec t to the
PS , an overview of the PS program structure and representation , examples of wha t the PS
does in general terms , c omparisons to other implementations , deta ils , PS issues brought out
by the implementation , task domain (PS-independent) issues , and c onclusions. Those
ingredients are not necessarily all present in every chapter , or in that order , but the
reader should expect content along those lines and thus be able to be se lective in what to
read. The details are usuall y confined to one sect ion , which usually contains: more detail
on the overall PS st ructure and organization , more details on program behavior on an
example te st , a discussi on of how tests were chosen for the program so that a full range
of behavior could be i l lustrated , meanin gs of the pred ic ote ~ used in c onstructing the PS,
and pointers to and explan ations of notations in the appendices. The appendices contain
program listings , a cross-reference of the Ps, and detailed program output. Each chapter
has its own list of references to the Al l iterature. Chap ter 1 has general PS references ,

-
- while the other chapte rs have only the specif ic task-related refe rences that are relevant

-
- local background.

Details of PSs are o ften presented at a general level through the use of very

1-39 H
- -1~ I

i--
s

_
- - •~~~~~~~~

_ _ _ _ _ _ _

H. To the Reader Introduction

abstract Ps (VAPs) or abstract Ps (APs). These are an ad hoc notation that aims at
- describing the content of Ps without specificying all details of control, and especially

neglecting local variable assi gnments. VAPs and APs are used to avoid such deficient
-

- - devices as flowcharts , and at the same time manage to convey some of the PS spsrit of the
actual programs. (A similar usage appears in a few places in Newell and Simon, 1972.)

- VAPs generally are more abstract , corresponding to more of the actual PS per VAP than
do APs. Details on the abstract notation are given in Chapter IV.

I- .4

I-40

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Introduction

I. References

Anderson, R. H. and Gillogly, J. J., 1976. “Rand intelligent terminal agent (RITA): design
philosophy”, R-1809-ARPA. Santa Monica, CA: The Rand Corporation.

Becker , J. D., 1973. ‘A model for the encoding of experiential information ”, in Schank, R. C.
and Colby, t(. h4., Eds., Computer ModeLs of Thought and Language, pp. 396-434. San
Francisco, CA: W. H Freeman and Co..

Berliner , H. J., 1973. “Some nece ssary conditions for a master chess program ”, Proc. Third
Ir&ternati.on.o.L J 0LM Conference on Artif ict.aL IntcWgcnce, pp. 77-85.

Bobrow , 0. G., 1964. “A question-answeri ng system for high-scho ol algebra word
proble m s ”, Proc. of AF7PS F aLL J eiri .t Computer Confcrenc e. 1964, pp. 591-614.

Bobrow , D. G. and Raphael , B. R., 1974. “New programming languages for artificia l
intelligence research”, Computing Surveys, Vol. 6: 3, pp. 153-1 74.

Bobrow , 0. G. and Wcgbreit , B., 1973. TMA model and stack implementation of multiple
environments ”, Comm . ACM , Vol. 16: 10, pp. 591-603.

r Brooks , R., 1975. “A model of human cognitive behavior in writ ing code for computer
program s”, Pittsburgh, PA: Carneg ie-Mell on University, Department of Computer
Science.

Buchanan, B. G., Feigenbaum , E. A. and Lederberg, J., 1971. “A heuristic programming study
of theory formation in science ”, Proc. Second International Join.m Conferenc e on
ArtificiAL I ntelligenc e, pp. 40-50. Also Stanford Al Memo 145 , Stanford University
Computer Science Department.

Buchanan, B. C. and Sridharan , N. S., 1973. “Anal ysis of behavior of chemical molecules:
Rule formation on non-homogeneous classes of objects ”, Proc. Third Inrersi.ati.o ao.L
Joint Conferenc e on Arr~ficio.L fnteW ~enc e, pp. 67-76. Also Stanford Al Memo 215,
Stanford Universit y Computer Science Department.

4 i Buchanan, J. R., 1974. “A study in automatic programming ”, Pittsburgh , PA: Carnegie-Mellon
University, Department of Computer Science. -

Davies, D. and Julian, M., 1973. “PapIer 1.5 reference manual”, TPU Report No. 1. Edinburgh,
- . UK: University of Edinburgh.

- - Davis, R., Buchanan, B. and Short liffe , E., 1975. “Production rules as a representation f or a
knowledge-based consultation program ”, Report STAN-CS -75- 519 , Memo AIM-266.
Stanford , CA: Stanford University, Computer Science Departm ent.

Davis , P. and King, J., 1975. “An Overview of production systems ”, Report
$TAN-CS-75-524 , Memo AIM-271. Stanford , CA: Stanford University, Computer
Science Department.

~~~~~~~~~~~~~~~~~~~~~~~~~~


— ~

—

~~~~~

—-—-.--— 

~~
—-- _ _ _  

— -.- -

~~~~

- — - r - ~~~~ - .
-

_ _ _

• I. References Introduction

i Enea , H. J. and Colby, K. M., 1973. “ Idi o loctic language anal ysis for understanding
doctor-patient dialogues”, Proc. Third International J oins Confer enc e on Artif icial
Intelligence, pp. 2 78-284.

- Eri’nan, L. D. and Lesser , V. R., 1975. “A multi-level organization for problem-solving using
many, diverse, cooperating sources of knowledge ”, Proc. Fourth Interna tional Join t
Conference on Artificial InteW gence, pp. 483-490.

Evans , A., 1964. “An ALGOL 60 comp ilc-r ”, in Goodman, R., Ed., Annual Review of Au.toniati-c
Prograninurig, Vol. 4, pp. 87-124. New York , NY: Pergamon Press.

Fan cy, A., 1974 . “V IPS: A visual imagery and percept ion system; the result of a protocol
analysis ” , Pittsburgh , PA: Carnegie-Mellon University, Department of Computer
Science. Ph, D. Thesis.

Feigenbaum, E. A., 1963. “The simulation of verbal learning behavior ”, in Feigeribaum, E. A.
and Feldman, J., Eds., Computers and Thoug ht , pp. 297-309. New York, NY:
McGraw-Hill.

FiRes, R. and Nilsson, N., 1971. “STRIPS: A new approach to the application of
theorem-proving to problem—solving ”, Proc. Second Intcr:u~sti.ono.L Joint Conference on
Ar tificial InteWgenc e, pp. 608-620.

Floyd, R., 196 1. “A desc riptive language for symbol manipulation”, J. ACM, Vol. 8,, pp.
579-584.

Caller , B. and Perlis , A., 1970. A View of Programming Languages , Reading, MA:
Addison-Wesley. Especially chapters 1 and 2.

Griswold, P. E., Poage , J. F. and Polonsky, I. P., 1968. The SNOBOL4 Programming
Language, Englowood Cliffs , NJ: Prent ce -Hall. Second edition.

Hayes-Roth, F. and McDermott , J., 1976. “Knowledge acqu isition from structural
descriptions ”, Pittsburgh , PA: Carneg ie- Mellon University, Department of Computer
Science.

Hedrick, C. L., 1974. “A computer program t~ learn pr oduction syste ms using a semantic
net”, Pittsburg h, PA; Carneg ie-Mellon University, Graduat e School of Industrial

‘-l Admin istration. A shortened form is in Ar tij ~c ial Intelligence , 7: 1, pp. 21-49, Spring,
1976.

I-
Hewitt , C., 1969. “Planner: A language for pro- .’ u~ the orem s in robots ”, in Wa lk er , 0. E. and

Norton, L. M., Eds- , Proc . F i rs t Interi i c tt i onc l Joins Conferenc e on Artifecia l IntcLt&genc e,
pp. 167-301. Boston, MA: The Mitre Corp..

Hewitt , C., 1971. Procedural embeddi ng of knowledge in Planner ”, Proc. Second
Internati.oreat Joint Conference on Artif ic ia l Int ell ige nc e, pp. 167-182.

1. 1-42

. - ~~~~~~~~~~~~~~~~~ -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

-

- - -

Introduction References I.

Hewitt , C., 1972. “Descri ption and theoretical anal ys is (using schemata ) of Planner: A
language for proving theorems and manipulat ing models in robots ”, TR-258.
Cambr idge , MA: MIT Al Lab.. Ph. D. Thesis.

Klahr , D., 1973. “A production system for counting, subit i zing, and adding”, in Chase , W. C.,
Ed., Vi.sua.l Informateon Processing, pp. 527-546. New York , NY: Academic Press.

- Klahr , D., 1976. “Steps toward the simulation of intellectua l development ”, in Resnick , L. B.,
Ed., The No.ture of InteWgcrsc e, pp. 99-133. H~llsdale , NJ: Lawrence Enlbaum
Assoc iates .

Markov , A. A. , 1954. The Theory of Al goret hrre.s, US Dept. of Comme rce , Off ice of Technical
Services. Translated by J. J. Shorr-kon, from Teor iya A lgor ifn:ov , USSR Academy of
Sciences , Moscow.

McCarthy, J., 1974. “Review of Sir J. Lighth ~ll, Art i f ic ia l  intelligence: A general survey ”,
Artificial InteLl.igence, 5, 3. pp. 3 17-322.

McDermott , D. V. and Sussinan, G. .3., 1 972. “The CONMVER reference manual”, Memo 259.
Cambridge , MA: MIT Artif icial Intelligence Laboratory.

Minsky, M., 1967. Com putation: Fini te and Infi n ite Machine s , Englewood Cliffs , NJ:
Prentice-Hall. Chapter 12.

Minsky, M., 1975. “A framewor k f or representing knowledge ”, in W ins ton, P. H., Ed., The
Psychokigy of Computer Visi.o n, pp. 277-211. New York , NY: McGraw-Hill.

Moore, J. and Newell , A., 1973. “How can Merlin understand?” , Pittsburgh , PA:
Carnegie-Mellon Un vers ity, Depar tment of Computer Science.

- Moran, 1. P., 1972. “MILISY: The mini-lingu istic system ’ , in Newell , A., Reddy, R., et . at., Edo.,
CSD Artificial Intelligence Study Guide 72, pp. 3.23-3.45. Pittsburgh , PA:

• Carnegie-Mellon Universit y, Department of Computer Science.

Moran, T. P., 1973. “The symbolic imagery hypothesis: An emp irical investi gat ion via a
- production system simulation of human behavior in a visualization task ”, Pittsburgh ,

PA: Carneg ie-Mellon Univers it y, Department of Computer Scie nce. Ph. 0. Thesis; short
f orm is in Proc. Third Inccrncteonal Joint Conference on Art i f icial Inte ll igence, pp.
472-477.

Newell , A., 1967. “Studies in probleri solving: Subject 3 on the cryptari th mctic task
DONALD + GERALD ROBERT”, Pittsburg h, PA: Carneg ie Institute of Technology.

Newell , A., 1972. “A theoretical exploration of mechanis ms for coding the stimulus ”, in
Melton, A. W. and Martin , E., Eds., Coding Processes in Hi.invin Memory, pp. 373-434.
Washingt on, DC: Winsto n and Sons.

Newell , A., 1973. “Production sys te n- c : Modek of contro l st ’u~tu ’ es ’ , in Chase , W. C., Ed.,
Visual Information Pro cess eng, pp. 4G3-526. ~ew Yor k , ~Y . /~‘~ deniic Press.

1-43 1.



.~ - - -~
-

~
--— —--_~ - —.-

~~~~~~~~~

-

~~~~~~~~ ~~~~~~~~~

-

~~
-—--

~~

- —

~~~

_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

-
-
.

I. References Intr oduction

Newell, A. and McDermott , .3., 1975. “PSG manual”, Pittsburgh, PA: Carnegie-Mellon
University, Department of Computer Science.

Newell, A. and Simon, H. A., 1963. “GPS, a program that simulates human thought”, in
Feigerthaum, E. A. and Feldman , J., Eds., Computers and Thought, pp. 279-293. New
York, NY: McGraw-Hill.

Newell, A. and Simon , H A., 1965. “An example of human chess play in the light of chess
play ing programs ” , in Wiener , N. and Schade , .3. P., Edo., Progress in Biocy bernetics,
Vol. 2. pp. 19-75. -

Newell , A. arid Simon, H A., 1972. Hum an Proble m Sok’sng, Englewood Cliffs , NJ:
Prentice—Hall.

Nitsson , N. J., 1971. Problem-Solving Methods in Artefeci.at Intelligence , New York, NY:
McGraw-Hill.

Nilsson, N. J., 1974. “Artificial intelligence ”, Technical Note 89. Menlo Park , CA: Stanford
Research Institute , Artif icial Intelligence Center. Invited paper , IFIP Congress 74,

• Stockholm, Sweden. -

Post , E., 1943. “Formal reductions of the general combinatoria l decision problem”, Ameri -can
J. Ma.therrzo.ti.c s, Vol . 65, pp. 197- 268.

- Rulifson, J. F., Dcrksen , J. A. and Waldinger , R. J., 1972. “QA4: A procedural calculus for
intuitive reasoning ”, Al Group Tech nical Note 73. Menlo Park , CA: Stanford Research
Institute.

- 

Rychener , M. D., 1975. “The Studrit production system: A study of encoding knowledge in
production systems ”, Pittsburgh , PA: Carnegie-Mellon University, Department of
Computer Science.

Shortliffe , 1974. “MYCIN: A rule based computer program for advising physicians regarding

• antimicr obial therapy select ion”, Ph.D. Thesis. Stanford , CA: Stanford University,
Computer Science Department.

SikIossy, 1., 1972. “Natural language learning by computer ”, in Simon, H. A. and Siklossy, L.,
Edo., Representation and Mec~.nirtg, pp. 288-328. Eng lew ood Cliffs , NJ: Prentice-Hall .
also Ph. 0. Thesis , Carneg ie- Mellon University, 1968.

Simon, H. A., 1972. “On ieasoning about actions ”, in Simon , H A. arid Sik ossy, L., Edo.,
Representation and Moaning, pp. 4 14-430. Englewood C I f f s , NJ: Prentice-Hall.

Sussman, G. J. and McDermott , D. V., 1972. ‘From PLANNI.R to CONNIVER - A genetic
appr oach”, Fall Joent Computer Conferenc e, pp. 1171-1179. Montvale , NJ: AFIPS
Press.

Tesler , L. G., Enea , H .3. and Sm ith , D. C., 1973. “The Lisp7O p~~tern matching system ”, Proc.
Third Internationa l Joint Conference on Ar :if tci.o.t Intelligence , pp. 67 1-676.

1-44



_ _ _  ~— --w~~

Introduct ion References I.

Waterman , D. A., 1970. “Generalization learning techniques for automating the learning of
heuristics”, A!, Vol. 1, pp. 121—170.

Waterman, D~ A., 1974. NAdaptive production systems ”, Complex Information Processing
Working Paper 285. Pittsburgh, PA: Carnegie-Mellon University, Department Of
Psychology. Also in Proc. Fourth International Josat Confere nce on Artificial
InteUigonce, pp. 296-303.

Waterman, D. A., 1975. “Serial pattern acquisition: A production system approach”, Comptex
Information Processing VJo rkir t g Paper 286. Pittsburgh , PA: Carneg ie-Mellon
University, Department of Psychology.

Winograd, 1., 1972. Understanding No.tura-l Language, New York , NY: Academic Press.

Yngve, V., 1962. “COM IT as an information retrieval language ” , Comm~ ACM, Vol. 5, pp.
19-28.

Young, R. W., 1973. “Children’s seriation behavior: A production-system analysis ”, Complex
Information Processing No. 245. Pittsburgh, PA: Department of Psychology. Also
availablo from Department of Computer Science.

.~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter II

Introd uct ion to Psnlst

Abstract. Psnlst is a product ion system architecture desi gned for building subst antial
arti f ic ia intelligence systems. Th is chapter starts by giving an introduction to Psnlst wh ich
requires no previous exper ience with production systems. There is discussion of the
recognize-act cycle , of the syntax of productions , arid of special featu res. A short

-
- production system for a version of the Monkey and Bananas problem is given as an

example. -

~

-
, I
I
4

_ _ TT ii ~~~~~~iiT~~~~~~~~

Psntet -

Table of Contents -

For Chapter 11

SECTION PAGE

A Introduction . •
.

.
-

t I_i

B The Recognize-Act Cycle 11-3

C Extended Example 117
C.i Discussion of trace and productions 11—7
C.2 Concluding comments on the example 11-20

-

- C.3 A note on reading product ions 11-21
C.4 Program listing 11-22
C.5 Cross-reference and meanings for predicates 11-23

D Grammar for Psnlst 11-25

APPENDIX PAGE

A Short Summary 11 30
A.1 System architecture and production format of Psn lst 11-30
A.2 Features of Psnlst pro grams 11—3 1
A.3 Features of the trace out put 11-33

B System File Pointers 11-35
C Tasks to Date 11-36

/‘p

1

_ _ _ _ _ _ _ _ _ _ _ _ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _

I~~~~~~~~~~~~~~

Psnt et

A. Introdu ction

A producti on ~~ t em ~~~~ ~t~’r~ PS) is a program consisting of a set of
productions (abbrev iated Ps, singular P) of t t - e f~irm ,

• - c~ n ’rc~ v~ condit ion on Workiri g~ Aemory —> seque nce of act ions
4 -

where the W ort~~g -
~~

-
~~

r ; is ‘ ‘r~ o c model of a situat on, arid where the actions

• 1 cons ist of addit ions aid delet ions of ~~~~~ r-~ ~~~r- - r y elements . e action or berievior of
the program r~~~.~ ts as the rules in so’ -e subset c~’ the PS operate successive l y on some
init~a~ mem ory c~ n~ g n~ion to prod~ ce a -~er ~ :er’,ce of - - - t ~~ med ate memory states and a

-
- final state in A h C h rio ~~

- ~~i 3ns iii ~~~~~ PS are ~t s ~ e i ~ch r ’ s c , in ~ t.i~ h a behavior
sequence co ns kt s c.~ a reccgn i t ’ ~n of Y~ri ~ s ’a~ ’on O~ ~0r” e P’s cond tiort followed by
e~ecJ ~c~’. t~f ~t5 ~~‘ ioris , c~ ..np, ~-y ~ to the . r~- - -

~~~~~~~~~~~ ~~~~~ Psritst , pronounced
“PS anel yst , is ‘ PS a rch ite : r ~--e -~~

- ‘.-~i :h~ .~ P5 is - •~p’essed as an unordered set of Ps;
th- ‘~Iorl~rig p - - - . i5 ;-~~ Jri,)rn~ rea 5e ~.

‘ ,_ .--
~ r j - :t~r r d  s t s of symbols; and the

reeo~~ ac t c-yc e is 0- ~“ted ~o v’e~ -
~~~ 

-
~~~

-
~~~~‘ to ~ e .‘~‘~~ “c~ Memory as attention—

focus - - -
~~ ~.& .- ‘~r ’k Ea~~ ten, of .%c~ - ~ • ~~~~ o~ s ‘ s of an r.~eri~ent of a set of

dist ngi~’ished co nsta ’ i t - - c~ “rf ~j~ d~~~’es , ‘o o~~~ • it - —‘• - i.~ list of arguments , which
are usua l~

t o~eri~ for ~~~ s i3~’ ~— aio ~~ ~~~~ i C te ’~ ‘-~oft~ y, a Wor~~r~~ Memory
u, r~”erred to as an ~~~~~ ~‘ -N r e a ca ’e ~ ~

.-- -
~~~~~~ ~s an instance.

An examp le of ~
. Ps~

,’ st ~ is

(
~ : ~~— & IS~.-. t - - ‘L. -~~.

-
~
‘- :. ~~~~~~~ ~~~ & L~ Ci~3,X ,1,I-i.~

—> ~,C: j’ i Y  & R EA ~~-~ - ‘P-M ,Bi

The p o - t i o ~ be~— - the ‘ — - ‘ is the cor -~~ t - ~~ or r~ t -ha ~~ - c~~~ (Li-i S~, the portion after , the
acti on or rig ht—h~ -~ -s:de 1Pi-~~~. ~he c~ nt’f ie r~ k1, ~ , X . Y, ar~a 1-4 are variab les that take on
tokens as v i ’ 1I~”~ -3~ r~--~ the mafrh t~ - ‘~i -’ ccr’d~~’or’; t r € ~ ‘t be’ cie -~t~fier s are predicates.
The LI-I3 is s~~~c~~’~rt -

~ .~ model -, -~ b-c h ther - ~ a to~e- . sa y MNK— l, fo r which the

• predicates “kUt- i(~RY~ a -  d “iSk~’~ rJV -~’ are s-~. l c ~~e i  e • ~~ ‘1a~ e (~S N 1- TY MNK— ) end
(HUNGRY MNK-1), arid in .ihch - - r ’  ~‘-~~

• toI~er-s, s~ ~4~ N- 1, I-i , i-i, and K- -i , ~~- c~ that
- -  (ISBA AN4 ~ 8AN~- 1) mnd (L OC ~~~ I-I J~ k~-1) ~~i - ~ ‘ r u i  (argument positions 2, 3, and 4

of LOC are v~ tues a T ong X ‘-~~ cci - o rd ’ - a : n  -~ 
- - --c Af 4 n’ recog r ih~ - of , t~ e ( - ) 7- ~ Itiori , the

model ~ charige~ hS~ ~~ e ~~~ ~. ‘ n~ -:~ C~~ ~~ 
— - 1 i_ I  J-1) and (REACHFQR 1-—~~ - I iY~N- 1).

This P ~‘r ’~ —~-:~ s the r cile -~~ t a ri~~~~ ry  ~.c ~~~~~~~ ~~~ ihi~ ~~cr’~~y of so— ’~, bananas t ’  ~ to go
to where t ’ - -~’ 

- -~~~~ ria~ ar~ arid t r e ~ tO -~~~~ hands on them , (This model of monkey and
bananas is !iimp~~~’d for dar t ; of c~~rusi t :o n .)

- I ~~~~~ 1h.~t t~ - 7  resu ’t n’ ¶~~ -“  ;~ p r a t - n , or “4 r ~~ , f l bs  - u c  does riot remove l~ e
condition ‘~. ch p d lo -~~~~ ~D O - i C ~

. ’ R T - r ~ ‘~ rid - : i ~i t e  ~-in ~-.dl rent oc:L r . hecause the
Psnlst ~~r -  ‘-~ ture — -‘~~-e~ ~ d~~t~~c t i r , r i  - -~- i’f’ fl new data , - - - -- - -~ t~ to the o~oO~~ . ~il

old data , that part ~ f t~~’ ~~~~~~ ~or w h r ’~ ruie a r , r i ca t i O n s  h . -~ ~:reac l v been tr ied. lr~ our
ex8r~ - e m~ d-~ , t l - ie ~~~~~~~ ~

‘- ‘r - ‘
~~~

- - 1) ‘~~r~ S . -~~~~
- ; “ ‘ ~ ~~~ 1) ar:’ riot ~~~~~~~~ 0 be ~~

‘
~~ ‘

da t a 1 wh.~r’ :~ ~~~ ~7?Y - ‘~~K — j) r a 0~ rl ~f r~Ode ~~-h d t - S
t ?$t ~’~y to c ’~ :g” . i.’’-~—ig

ex~~n1r~~’ rim of the above P .ind ~~~c - , 51-~ oth ~~n

: ‘ A.

- L ~ r

_ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—
—- - - --—



;

—-.

~~

-

~~~

__
~~~~~~~~~~

- -  

~~~~

_ ‘
I _ _

-,—— -

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

& Introduction Psntst

Section 8 of th~ chapter di~ru~-ses r1 detail the processing assumptions Imposed by
the Psnlst architecture. The f i rs t  few paragraphs s’~ouI

~ be suffic ient to convey the
centra l ideas , for a cursory -~din~ Sect~on C goes througn ~n detail a~ example of a PS

- arid its execution. Sect ion D gives a semi-f ormal description of Psrifst s , -ta~~, and gives
semantics of specia l system f eatures. The reade r may want to refer to Sect ori D whi e
reading Section C, and vice versa.

F

.1

I . 
- .

~h-~



Psnlst

-

~ B. The Recogni ze-Act Cycle

Psnlst Is an event —oriented system: it starts with events from the “external world ”
and continues to act on the basis of internal events until no new events are evoked.
Events are compulsively stacked up so that attention is brought to bear on each one , if not
Immediately, then at least eventually. Focusing on events serves two functions: it
prevents repetitious looping in many cases and it resolves conflicts between LHSs that are
simultaneousl y true but that do riot respond to the same events. Other conflicts are
resolve d arbitrarily , arid are taken to be either programming errors , where one of the
conflicting Ps doesn’t have specific enough conditions , or “don’t-care ” situati ons, where it
ultimate ly is not supposed to matter whether one is selected before the others. This
section describes the recognize-act cycle , in which a sing le recognition (match to an LHS)
Is followed by a sequence of actions (changes specif -ed by the corresponding RHS), arid
whose repeated execut ion captures the intuitive notions just discussed.

Initially, :SMPX (stack memory for production examinations ) is empty, end the system
prompts the user fo - starting events , which are either addi tions or deletions of instances
In Working Memory. The Ps associated with those changes are placed in :SMPX, and the
basic cycle starts :

1. Try to match the LHS of the P on the top of :SMPX to instances in
the Working Memory; remove that entry ~rorn :SMPX.

2. If the match fai ls , do nothing (i e., skip this step), otherwise , change
the Working Memory by making the insertions and deletions specified
by the RHS of the P, using ass ignments to LHS variables made by the
match. For each insertion or deletion, add associated Ps to :SMPX;
this association is determined by the possibility of usage of the - -

change in forming a match to the LHS of the P.
3. If there is anything in ~SMPX , go to 1. and repeat the cycle , else

prompt the user for more instances i f  the user types NIL, exit the
control cycle , ‘ lse toad up :SMPX as before and repeat the cycle
starting at I.

The preceding desc ’ iption outlines the basic operation of Psnlst , but leaves out
several details. In order to elaborate , the following intr oduces some terminology and

- - sketches briefl y the necessary sy ntax  An LHS or RHS of a P ~ a conjunction , the
sequence of cor ijuncts being sepa rated by “ &“ . Each conjunct consists of a predicate name
and a sequence of argum ents , except that in LHSs t here is also a special construction
consisting of a negated conju ncti on (details later ) . Except for specia l syst em predicates
for evaluating Lisp predi cates , con;unds ri LHSs have as argume nts var iab 1es that take on
Working Memory constants (tokens ) as values during the match process. In RHSs,

‘ co rij uncts specify how changes (additions of new :ri r,tances or deletions of old ones) are to
be made to the Working Memory, arid a’guments ca n be va riables , quoted c onstants , or
Lisp expressions. Conjunct s may be preceded by ‘ NOT”, v~hich means “absence of” for LHS
forms (used in the matc h), arid “delete ’ fo~ RHS for ms. Conjuncts preceded by ‘NOT” are
referred to as negative con ; unct s , while others are ref r r red to as positive.

The match perfor med -ii step 1 above is not exhaus tive relative to Wo’ king Memory

-- ---~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~ ~_T__ 
-~~~~~~~~~~~~~~~~~~~~ ~

_
~

_
~_ 1_~ ~~~~~~~ AA



Ii I~~~~~T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TiI~~~~~~~~

a The Recognize-Act C- .c:e Psrilst

content , but rather is keyed to spec:f ic changes in the W -~ri’ ng ~~~~~~~ T - ~. L ’~ariges
used in any particular match are ht~~ned ‘e r r ’ an :SMPX entry which ass oc- at es lt’e name
of the P to b~ •“‘atc ’-~ed ~ - r i  a lis t of & !~‘e ~~~~~~~

—
~~~~~

-
- r - i r - - :~ t~ that have oce t~-ed since

the previous r’i a~ci was acne On 1 ~~ise r”a r~ge~ ‘ i -a ’ ara stil l true w 1th resp ect tr . the
current Working Memory are used to ma~ø a set of “ fia t tissignments to subsets of LHS

-: v ariables. An initial assign’-~ ”~ s made every pos t ;- ie c onjunct ri the LHS that has the
same predi cate as a newl y-added ‘~~ta ’ i & a n - ~- -~~ *~eied ‘~~ ar ~ causes assignments to
be made to variables in corre~~- ..’- - -~ ‘,- ne~ at ~ cOnju r.cts . “e ~‘‘~ ‘Ch proceeds quite

• straight—forwar d l y, extendi ng tni~ nulia l assignments , trying to find -~st ar ices in the
Working Memory of ~he LHS predicates ri suc ri a ~. ~ t hat a~ of ‘r e variables n LHS
conjunct s are ass ig ned in a mutu alt y ‘is ~~~p ’ I way anai~~~.s ‘o ire urr ” cat i c - r- a~gori thm
of resolution theorem-proving . tri fact , there may be ‘r~~r~y such ass ignments that can be
made , and the match retu ’rus a iist of the”; tb~~’ i~-e al used ‘i - ,~~ p r u-es ~.-nç of p 2
for ma~ ng Working Mn -’- -~ ’ y cr anges. but the .ruer ci ure is irideter ,-~r-~ le (it re~~’- -dS on
the way the match sear - . -ies the Wor ic ing V~~-- 0 ’y and on ~~~~~ ~iay ie~u~~ are ~~rr’ -’~d arid
returned). Another ‘r~ or t a nt prc ~~.e r l-y of the r’~~ch is “~~‘- t~’-~~r” Is r.,~iiy matc hing at the
top list level of Work ing Memory iric.ta’~~es Any cor ;~~nuty Ot -‘i~’~ —- ~e~ be ’ ow t h s top
level is Invisible c the ~-at c h , a structure being treated simply a~ ri ~r~e r - ~ ue

Several details of the process -i step 2 ab~ - --e ~re i~~pc rt ~ ri* . ~~ rcr l eri’ of e nt r’es
In :SMPX has elread~ been des~r beu. a P name and a li st c- e adde-i or —øe$eted
ins tances. The RHS of a P that f i ’ es is cc. rve ’ted ~ a ist i~ changes to the ~~~~ rig
Memory, by making variable asc r~~n1n- n~s specif ied by t~-~ LkS i - --~~ ?i arid C’i e..- 4 - u ~ t rr g ally
Lisp exp ressions that are arguments. Each . f ftese -:~ i~ ~ ~s-~o - ~ed w t h i’ a -

~t of
Ps which may be relevant to the change. Each of t l ~e P5 - r the st is ‘rain ‘- -to a~i ~~ 4~~’
entry by form ing a list of ~~ name and the change. The :SMPX ~r r a es ~‘ ‘ ~ s~?~~ed In

:SMPX in suc h a way that the top of the stack i— a s entries associated with the le f t - mos t
change spec ified in t~ie IT~H~ , and the res t are below it elt~ ’g nt orde r. -

- - .~ is ~~
qua l if ication to that: .ihe-~ a” entry is stacked , if .~ ‘~ - -er :~~i~ X eri~y ~~is ts to’ ‘l - -~ P pa rt
of the entry, the two entries a— ” merged , the old or-~ d~s~ , — : - ~a s , ‘n~ the ru~~-w eri !’ - j on
top now contains the P name ai d the combined list c~ c laruges f~~ r~- ~~~~~ nw ~‘d ~!d

entries. So , the approximate c- ’ i e - ri’~~SMPX ent-ir- - is t -~r — ed h-~ ~r;e ~~“ -
~~ -~ ht 3r - j e ~

of conju ncts in the RI-45

-
~ The sole use of the order in ~A~- i~n c hanges occur -ic-- -~ ri~.t ‘~- r - — -

~~~~
. a t~r’iq c~ top

entry in :SMPX f ’~r the c mr i~’ re~ ’-’’ i  ~ri~ t rr~ riv ~s ~~~~~~ 
hr. a~~- - c ’ a ’p~ .. t ~ eac h -

~~ 
- -,

~ e. j~
more than c’i~’ P it-i such ar- associated group should ~r u a v h~ ’-~’ s~l.st e-~ LH~~, t r - P e  5 a
confl :c~. A~ n-~ n~ inn~’J above , - -~~h conflic ts ar~ ~ dn~ e~ ;;~‘ c - - - r. -~’p. e - - -j r 5  or iori’t—
care ” , but nevc’ rth r’es~ Psril’ - t  at te m pts ~o 5~ r~~ - c c r t ~~Is ~-CLir *C Ii~y (

~ --e w ithout
actuall y doi ng t~ r ex ’r ~ co m putat -c i  riece~-.~’ - . to -Ie ’~ 

- —‘e he ~oi’l~:~ o ‘h~
running mode). The heuris tic to be described now may hr --ee~ as t~~k r ~ ‘r tc- -

- 

~~c~unt the
rela tive recercy of events other It-ian the one that is co-~1-i ’~n to the enl~ rn’ s ri’-~~r the top

- I of :SMPX , althoug h for the user i t is i nc i k :nd~t ’ r r ’  -iate . [verb -’ ti”' the ~.t of Ps

~ esso c ated with a change s ar-~e~r-~ ’ it is re- or ri” rer ~ t~~/ ~ one- pass sr) -~~r.~ c gc ’ ithm t 1 at
simp ly moves some of the Ps to the e- -i o t the I d .  Hew !r.ey ~

-
~~~‘ ii-o’~~ is based on a

heuristic value associated ~ ft each P Lt is the PVAL p~~per iy of P). :his value is
incr nrr r r ft ’ every time the P is used to form an : ‘ -~~i~~ entry, au d is J’~ nniented -ir
reduced n~ ’~ry time a r”~ t c h ~ pe’ f~~rm~~d on the P. Th -

~~ ‘ ~ ~etated to l’~e nL’m~~er of
changes associated w ith the P r ‘ts :SMPX en tr y- . ~t s r-~~’ ~ s tr ict ;el~ t -on b~’r-ause ‘

~~~~~

a 11-4

. 
~~~~~~~~~ —~~~~~~~~ - ~~~~~~~~ - -~~~~~~~~~~~~~ -- -- -~~~~~~~~


r~
‘~~~~T ~~~~~~~T~~~~~T lIT ~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

Psnlst

B. The Recognize-Act Cycle

Psnlst is an event-oriented system: it starts with events from the “external world”
and continues to act on the basis of internal events until no new events are evoked.
Events are compulsively stacked up so that attention is brought to bear on each one, if not
immediately, then at least eventually. Focusing on events serves two functions: it
prevents repetitious looping in many cases and it resolves conflicts between LHSs that are
simultaneously true but that do not respond to the same events. Other conflicts are
resolved arbitrarily, and are taken to be either programming errors , where one of the
conflicting Ps doesn’t have specific enough conditions , or “don’t -care ” situations, where it
ultimately is not supposed to matter whether one is selec ted before the others. This
section describes the recognize-act cycle , in which a single recognition (match to an LHS)
is followed by a sequence of actions (changes specified by the corresponding RHS), and
whose repeated execution captures the intuitive notions just discussed.

Initially, :SMPX (stack memor y for prod uction examinatio ns) is empty, arid the system
prompts the user for starting events , which are either additi ons or deletions of instances
In Working Memory. The Ps associated with those changes are placed in :SMPX, and the
basic cycle starts:

1. Try to match the LHS of the P on the top of :SMPX to instances in
the Working Memory; remove that entry fi om :SMPX.

2. If the match fai ls , do nothing (i e., skip this step), otherwise , change
the Working Memory by making the insertions and deletions specified
by the RI4S of t he P, using assi gnments to LHS variables made by the
match. For each insertion or deletion, add assoc iated Ps to :SMPX;
this association is determined by the possibility of usage of the
change in forming a match to the LHS of the P.

3. If there is anything in :SMPX, go to 1. and repeat the cycle, else
prompt the user for more instances; it the user types NIL, exit the
control cycle , else load up :SMPX as before and repeat the cycle
starting at 1.

The preceding description outlines the basic operation of Psnlst, but leaves out
several details. In order to elaborate , the following introduces some terminology arid
ske tches briefly the necessa ry syntax - An LHS or RHS of a P is a conjunction, the

sequence of conjuncts being separated by “&“ . Each conjunct consists of a pred icate name
and a sequence of argu ments , except that in LHSs there is also a specia l construction
consisting of a negated conjunction (details later) . Except fpr specia l system predicates
for evaluating Lis p predicates , con j uncts it, LHSs have as arguments va r iab$ es tha t t ake on

Working Memo ry constants (tokens) as values during the ma tch process. In RHSs,
conjuncts specif y how changes (additions of new instances or deletions of old ones) are to
be made to the Worki ng Memory, and arg~~rients can be va riables , quoted constants , or

Lisp expressions . Conjuricts may be preceded by “NOT”, s~hich means “absence of” for LI4S
f orms (used in the match) , and “delete ” for RHS forms. Coniuricts preceded by ‘NOT” are
referred to as negative conj uncts , while others are ref r rred to as posit ive.

The match performed in step 1 above is not exhaust ive relative to Wo rking Memory

Ili I~~~~~~~~~~~~~ ~~~

a -

--
-

Psnlst The Recogn ize-Act Cycle a

value may not be set to 0 whe n there is no :SMPX entry (after a match). The values are
riot made use of in an exact form anywa y, since the sorting procedure used on the list of
Ps is (for efficiency reasons) very approximate. One positive result of this heur istic is that
significantl y less match effort is spent find ing the next matchi ng P than is the case for
random re-o rdering of the P li4t (the “semi-sort ” used is not significantly different in this
regard from a strict sort on the PVAL value). An incidental effect of the re-ordering is
that the ordering of the P lists quickly loses its relation to the order of Ps in the static
program listing.

How the heuristic ordering works out in an ac tual example can be seen In the first P
firing given in Section C.1. The reader may examine that arid the contents of Section
C.4 and Section C.5. In Section C.5, the part of the cross —reference t hat is used in
the :SMPX processing is labelled “ LHSUSES” ; how that is computed should be evident from
the form of the Ps in Section C.4.

The following summarizes the full detail of the Psrilst control cycle.
1. Match step

a. Remove the top entry of :SMPX.
b. For all of the changes noted by that entry that are stilt

presen t in the Working Memory, perform a match on the
entry ’s P.
I. Form a set of initial assignments for each of the

• - changes.
- II. Try to extend each of the initial assignments , using

any instances from Working Memory.
Ill. If the extension attem pt succeeds , add the assignmen t

to the list of results , if it’s not a r eady there.
c . Reduce the PVAL value for the entry ’s ~~ .

2. Action step. If it-i “debug” mode , check for conflicts by per forming
matches for the set of Ps on :SMPX that have the same first change
as for the P that just matched successfu ll y (if a conf lic t exists , an
interactive break occu rs)
For each assignment retu rned b-i the match ,
a. Make the specified assignme nts , evaluate expressi ons, and

form the list of changes.
b. Reverse the list of changes , arid process eac h of the changes

as follows:
I. For eac h P ri the st essoc a $”d w ith ‘he change ,

increment the PVAL va- - ie b, 1.
ii. Semi-so rt the as soc iated -st of Ps by PVAL , moving t o

the end c ’ the st I’- ‘-cc ~~th b~~hcr values. This
newl y-so r ted lIs t r e c aces the old value of the list , for

• use with future changes
ill. For eac h P in ¶ be l ist , ICr ’” ?~ri ~~~~~~~~~ entry (adding on

any changes fron’ previous :SMPX entry, which is
removed) , arid st ac k the e - t r y on -~~,QX .

iv. A c t ua ’I y make the c” a”t~e in the Working Memory.
3~ If there is any thing in :SMPX , ~o o 1. and repeat the cycle , else

- -

prompt the user for more instances ; 1 the user types NIL, exi t the

:1! . 11-5 a

L--
- - — - - - - — - —~~~~~~~~~~~~~~ - - —~~~~~~ -~~ - - —------~~~~~~~~--_ — -

_ _ _ ~~~~~~~~~~~~~~~~~~ T~’~~ J ~~~~~~~~~~- —
,,

8. The Recognize-Act Cyc e Psnl~t

- control cycle , else load up :SMPX as before and repe at the cycle
-

-
- starting at 1.

- i

- 4

Il-S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —- - - -
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- ‘r -
~~

- -
~~~~-~~~ 

— - -

r~~~~ 
—- - --

~~~ 
-
~~~~~ ~~~~~~~~~~~ 

- — -  -

Psnlst
I’-

C. Extended Example

- This section presents a detailed run of Psnlst on a PS version of the Monkey and
Bananas problem. The deta il should be sufficient to provide an examp le of the workings of

. 
the control structure discussed in Section 8, as well as presenting instances of the entities
defined in the grammar of Section 0. There is a full listing of the Ps in Section C.4, as
well as a cross—reference of predicate uses, Section C.5.

• Cl. Discussion ot trace and productions

F - The Monkey and Bananas problem as modeled here has the monkey in a room w ith
F the bananas at an unreachable height. Three boxes are in the roo m , and the boxes may be

stacked on to p of each other to build a climbable structu re for the monkey. In order to
I. get the bananas the monkey pushes two boxes to a point under the bananas , stacks one

on top of the other , climbs up, and gets the bananas The Ps presente d here represent
the result of past earning on the part of the monkey. his actions are directly connected to
getting the bananas , with no mistakes or sea rch ng. How these Ps get learne d would be an
interesting project , but is beyond the present scope. Many features of the situat ion that
mi ght be modeled are not such as how the monkey knows the boxes and bananas are
there (he does no looking or seeing or remembe ring), whether he has to avoid objects in

going from one place to anothe r and in pushing the bodes around , whe ther in the end it is
really worthwhi le for the monkey to do all this , con~,dering the costs , risks , and benefits , - 

-

and so on~ Even ~iithiri the specific model presented there are alternative Implementations.

In what follows , the t race generated by P~ritst arid the Ps of the system are
intermixed with the body of text; the generated ‘nes arid the Ps are in upper case.

The first thing that must be done is to ini t ialize the model, loading up the Work ing
- Memory with the sta rting situation . This is done by f iring a P:

II; “INIT 1 : :  INIT(Pl
.~ EX ISTS(MNK,BAN .BX I .8X2. BX3) & IOC(MNKJ I.l) & 1OC ( BAN 5.~ . 3I

& 1 0C(BX 1,7 , R ?~ & IOC(8X2 ,7 P P  & UPO~4 X 1 ,BXZ) & ~O’C1B Y-~
& 1SMONKEY(MP~K) & ISBA~ANAS(8AN & ISBOX (€3X1 ) & ~SB~

)
~ 8X2 ’ a IS8OX(8X3)

a HVAL (BX I ,3) & HVAL (8X2 ,4) & HVAL tBX 3,5)
-

-

1~1. 
The P is named II, ~~tb t ’~e comnier~t “(NIT 1”. The L~ S is INIT(P), and the t erna nder

is the RHS. Ii is f ired by assert ing an insta ’ ice of J~1T , as the follow ng initial sc~grner’ l of
the trace shows.

-
.

TRACED RUN OF MONKEY FOR OOC

TOP LEVEL ASSE RT fINl T P3
- IN SER TIN G ( INI T  PB-I )

EXAMINING II (INIT P B- J ) I I / T RV

- 
11-7 C.) 

- 

_ _ _ _ _ _ _ _ _  _ _  ~~~~~~~~~~~~~~~ - -~~~~~~~-~~~~~~~~~~~ - - -- - - --



- 

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---_~~~~~ - .

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C.l Eitended Example Psnlst

I. I l — I “;~~ r ~~
—

USING (~ * t PB- i ’
((P PB—I))
INSE R T IN G (LOC -

~~ - ~ (‘ ~~ 8~ ’3-~ ~ 53 ’ ~ OC ~~~~ 7 q 2)
.1 (LOC $X2-l 78 Z)~~.’~C)~,

~~ ‘ -~~ ~k2- :-)~LOC 8~3-I 4 6 l)CISMONKEV MP4K-I)
(ISBANAt~A3 BAR-i) ~IS3~~i BXz-1) (ISBOX 6X2- i ’ (1SBOX BX3-1) (HVAI. BXl - l 3)
(HVAL BX2-T 4) (HVAL B(3— I 5)

The (TWIT PB) is typed by t’ e user I~ s r~ade into the instance (INtl PB-i), inserted Into
the Worki ng Memory, and processi ng ‘ -ar The ma tch t o the LHS of Ii Is performed (as
noted by Ii .‘ ‘PY) wi th es~ t~ t ~c ha ’ —~~,nce. The matc - i succeeds (the two lines

~ I - start ing at !), making use c~ (lN~ hE-i), ~~~~~ gn rig the variable P to the object P8— i (the
two lines start ing at JSIhIL~. i’~c- e’~- .~ is I r e list of instances starting at INSERTING. The
EXISTS in the Rt-4S of fl ca~j~ i’~ - rea t -i- -* ol the - o ,—c t s MNK—i , BAN-I , BXI—I , BX2 1, and
BX3-1, w hich are then ~iced to - ; r~r,ct~uct the ; rs ta i es shown, after the variables of the
EXISTS are assigned them as values. The p”edicate LOC gives the three-coordinate
location (X— ax is , V —a x is , Z --a , ; s or ~~~~~~~~~~ IJPON indicates that two of the boxes are
stacked up already, w t h EX~ -~ on t c~ cf ~\ 2 - L ISMONKEY, ISBOX, and ISBANANAS give
the c iasses of the objects. Finally, ~~~~ 5 a pre -s pec i (ied heuristic value that determines
the order j r wh :h the bo x es are ~~~~~~ t~’v the r’~orikev (details later). (The usa of this

• HVAI allows us to ignore hc- ~’ ‘1~’ ‘r3nkey ~~~ -‘ the c hoine~.)

(Sl.4PX

~ CI (b C MMK- I 1 I l~ (LOC BA’ ~ I 5 5 3 ~cOC 8X~-1 71, 2) (IOC BX2- 1 7 I I)
(UPON BXI -t 8X2-1) (LOC 6X3- l 4 6 1) 3 - ’ ~(-~ Y MHK-i) Ci~ G3X B X I - I)
(ISBOX 8X 2—1) (ISBOX 81(3 - I))

(C2 (LOC MNK- 1 I ~~~~~~~~~~~~~~~~~~~~ 7 & 2) ~ L C ~C B X 2-- I 7 9 1)
(LOC 6X3— I 4 8 1) C ~4t-hr ~E~ ‘-,~r- -~ I 3a~h(BX I - t) (ISBOX ~~~~~~~ t ; ~TSBOX BX3 -I)

(N) (b c MNK-~ 1 t fl (LOC GAN-~ 5 5 3 ‘~~~ 9-~ i- t ~ hOC 3~ ?- i 7 8 I C
(LOC 0X3— : 4 8) &A~-~”3~~ 8At~-n !S~ O~ ‘ 3 X : - I) Cr ~d-~~ ~~2 - ; . iISBO* ~X~~1)
(I4VAL BX I- I 3) (H’ . ~~ 8X2- I ~((HV4L 3x3- i

~(P 1 C ; o : uN~~ l 1 1 1) C~~f~ ~~~~~~~~~ 3) ~~~~~~ g X I . I 7 2) ~~ I)
(LOC flx ~- 4 5 1) ~-~ 9 - -~ 8 1(1—11 C - ~~~: t~~: ‘(~ ttGX ~~~ C

~ HI ftOC 4~~~- - ! I I I) CL ‘
~~~~~. I ~ 5 3) (IOC ~‘ X - ?  7 c 2 !O~ ~~ ‘-l 7 8 1)

~~~~ BX3— I 46 - ~~~~~~~~~ ~ ‘h~
’. - ~) ~~~~~

• ~ P3 (b C PV4NX - 1 1 1) (LOC F -~~- 5 c ~ ;oc 3Xi .~ i s L i~X i!~ 2- i a ~)(tjl~OP., BX~ — I :‘~~~.-‘
. - — - c ~:- S)’ T I n s 1)j

(P2 (LOC 1a bC - i I I 1) et. OC ~ -~- 3-.) 5 5 1> ~i;C Bi(t—l 8 2> CL ~X 8X2- 1 7 8 1)
(LOC ~~~‘-~ I ~ I)(R 2 (1OC M~ K - - I 1 (l) F i - 1 5 5 3) (tOC~~~~~~7 8 2) li.)C 3X . i 7 8 I)

~ r~
- :~-.i--_ 4 ~ ~l

t R I if
~~Y’~X) ~~) ‘~ (~ ry~ ‘

C li’C 01(3-I -, 8 i ’]
(G2 (LOC ’~

4
~~

t I 1 l~~-J~C - ‘ I 553) ’! 4 x 2 _ i 7 8 2 ~C~~BX2- 1 7~~l~(LOC BX3— 1 48 i~
(CI (t-)C ’-~~’- I I l) ’OC 8A’~-.1 ~ 53) (LOC~~X I- I 7 9 ~~’ (LOC BX2- 1 7 1 1)

• (tOC P Y; 1 4 8 •~
)

:SMPX no~.’ ‘o’—s s’s of t”~ s r I ot pnt r ~~s shown, -~- h ’ - t l c’n. to i’~c ’ude an entry for
every P r~ - c~nt 11, ~~c I m nfl ’ ’ i ‘ - s ri sou- ~ r- b’ ac k ets f j , arid ~ is evident that the order of
entries ‘;“‘ ~- ro-~g h y cor respond~ to the ~ tr-her ef - ~-i’~~ r P- (- .~I1t o the P of the entry,
for exan~~i~, P Cl is a c~ ’-o r~~~’- to ’ iurthe r ac~to l with respect to 10 changes , 02 , 9

N-1. . - c.1 Il-s

—~~~~~~~~~~ ~~- -~~~~~~ -~~~~ -- ~~~--.-~~~~ ---

-. -
~

-- •— -
~

--- ---- -—-
- - - - -----

~~~

- - -

~~ 

- -

Psnlst Extended Examp le C.l

changes, Ni , 12, P1, 8, Hi , 7, and so on in non-increasing order. How these releva nci es
are determined should not be clear , because the Ps have not been presented, but from
this we can at least see some of the indeterminacy.

The system then goes through the process of testing each of the Ps in :SMPX for
possible matches , and finds that none is ready to fire.

E)(AMINING Cl (LOC MNK- I l I t )  (LOC BAN- I 5 5 3) (LOC BXI-I 7 8 2)
(tOC 8X2- 1 7 8 1) (UPON OX )-) 81(2-1) (LOC BX3.- 1 4 6 1) (ISMONKEV MNK-1)
(ISBOX 81(1-1) (IS BOX 81(2- I) (ISBOX 81(3-1)6 1

EXAMINING C2 ( b C  MHK- I 1 1 1) ( b C  BAN- I 5 5 3) (LOC 81(1-I 7 8 2)
(LOC 8X2- 1 7 8 1) (IOC 81(3-1 4 6  I) (ISMON~EY MNK-i ) (ISBOX BX I-1)
(1SBOX 81(2-1) (ISBOX BX3-I)C2

EXAMINING NI (LOC MNX-I 1 1 1) ( b C  BAN-I 5 5 3) (LOC BXI-i 7 8 2)
(LOC 8X2-1 7 8 1) (LOC 81(3-1 4 6 1) (ISBANANAS RA N-i) (ISBOX BXI- i)
(ISBOX 8X2-I) (ISBOX 8X3.I) (HVAL BXI-1 3) (HVAL 81(2-1 4) (HVAL 81(3-I 5)Ni

EXAMINING P1 (LOC MNK-I 1 1  1) (LOC BAN- i 5 5 3) (LOC 81(1-I 7 8 2)
( b C  81(2-1 7 8 1) (IOC 8X3- 1 4 6  1 (ISBOX BXI-1) (ISBOX BX2-I) (ISBOX BX3-1)
P1

EXAMINING 1-4 1 (LOC MNK- I I I 1) (LX BAN- i 55  3) (106 8X I-I ‘ 8 2)
(LOC 81(2-1 7 8 1) ( b C  81(3-! 4 6 I) (ISMONKEV MNK-l) (ISBANANAS 8AN-I)HI

EXAMINING P3 (LOC MN~-I 1 I 1) (LOC BAN-i 5 5 3) (106 81(1-1 7 8 2)
(LOC 81(2-1 7 8 1) (UPON 81(1-1 81(2- 1) ((OC 81(3-1 4 6 1)P3

EXAMINING P2 (LOC MNK-1 1 I 1) (LOC BAN-I 5 5 3) (106 RX I- i 7 8 2)
(t.OC 9X2- 1 7 8 1) (IOC 81(3-I 4 6  I)P2

EXAMINING R2 (LOC MNK-I 1 1 1) ( b C  BAN- I 55 3) (LOC 61(1-I 7 8 2)
(LOC 81(2-1 7 8 1) (106 BX3- I 4 6  i)Q2

EXAMINING Ri (LOC MNK-1 1 I) ftOC BAN- i 5 5 3) (LOC BX I-I 7 8 2)
(LOC 81(2-1 7 8  1) ( b C  8X3- I 4 6  1) RJ

EXAMINING 62 (106 MNK- I I I 1) (LOC BAN— I 5 5 3) (LX 81(1-1 7 8 2)
(LOC 81(2-1 7 8 1) (IOC 81(3-1 4 6 1)62

EXAMINING CI (106 MNK•1 I I 1) (LOC BAN- i 5 5 3) (LOC BX 1-I 7 8 2)
(LOC 8X2- I 7 8 I) (LOC 8X3- I 4 6  1)61 -;

The lack of any tLrther ac tion causes the system to display the Working Memory
and go back to interact ive mode , and this time the user types (I-4UNGRV ‘MNK-l), which wi l l

start the monkey (MNK-1) moving.

HVAL (DX I- I 3) (81(2-I 41 (81(3-1 5)
INIT (Pf3- I)
ISBANANAS (BA N- -I )
ISBOX (81(1-I) (8X2-1 ) (81(3-I)
ISMONKEV (MNK-l)
LOC (BAN- I 5 5 3 C (81 ( 1-I 7 8 2 1 (81(2-1 7 8  I) (8X3— : 4 6  I) (MNK- 1 I 11)
UPON (BX~~ I 8X2- I)

ISMONKEY (MNK-l)
TOP L EVEL ASSE RT (HUNGRY (QUOTE MP4K-I))

• - INSERTING (HUNGRY MHK-I)

When the monkey is hungry, he goes to where the bananas are and reaches for them:

11-9 C_ i



--
~
------ - -—-- ----—- --- — -- —

~
—--

~ ~
- ---

~p - ---- - -_ _ _ _ _  - - -
~~~~~~

-
~~~~~~~~~~~~

- - —

Ci Ext ended Example Psitist

NI; WUNGP~~ I4UNGR’~~-i S ‘~~ n”~~V( M) I ISBA1 ANAS(S) I LOC(8,X,Y,H)
-, GOTO(M,X,V) a REACHFOR(M,8),

EXAMINING 91 (HUNGRY i~’H. 1)91
EXAMINING $1 (HUNGRY MNK-1)l-11/TRY

2. Hi-i HUNGRV
USING (HUNGRY MNX-1) (JSMONKEY MNK-1) (ISBANANAS BAN-I) (LOC BAN- i 5 5 3)
((8. BAN-i) (H 3) CM MNK-I) CX 5) (V 5))
INSERTING (GOTO MNK- 1 5 5) (REACHFOR ~ “K- I SAN- i)

• Hi fires making use of the instances on the USING line, assigning variables as specified on
the line after the USING, and inserting the Instances Ofl the INSERTING fine. The GOTO and
REACHFOR Instances a’: asserted as commends whose execution is demanded of the
monkey. They ~ r’ be thought of as goats , in the sense that their achievement is not
immediate, but r -J tr ,~s fur~ ie r  processing. They are a simple sequence of commands, and
sequencing is handled by the ordering n :SMPX, with REACHFOR being pushed down below
the GOTO, for proc~ sr~~~ after the GOTO has been achieved or attempted.

-SMPX -

f G 2 (GOTO MNK- 1 55 ) )
( Cl (0010 MNK- I S
( 92 (REAC’ FOP MNK- i SA~ - i ) )
(91 (PEACHFOR MNK-1 B A N - i , ) )  

-

For the GOTO ;-j ctor- , we i~ 5~ a P such as ,

Cls; GOTO FIRST C’~4C~- - C3TO(M ..-., ’) & LOC(M.X2,VZH)
—> LOC(M,X V ,H) & ~~~~~ A~ C -

This says t~-~ t the LOC is simp ly - -~-a~~ -~d, arId he NEGATE(AIL) erases the GOTO Instance
and the old LOC. b-~wev€ ~- , the poss- -Di iit~ ~~~~~ that the monkey is on a box so t hat he
must climb dcwn before the change of location. To introduce that requires that Gla is
split into two Ps.

• DI; 6010 OK’ ~O~O’~’X ”  5 ~C~A .X~ ’,’2,i4) S SA T1~ IIS(k.P EQ 1)
C •> LOC(M.X,Y,4-$ ) & ~1lTGA r ’ C~ Lt - -

~~~‘, C010 c).:’~~
- -

~OC~C” - ’ & ~‘-C~ -~,X2.Y2 H) & SAT 1SFIES(H,4 ‘.GREAT 1)
CIIMBDOWMM S

If the height is I, ~rn~~-v Tig on the floor , the r nC~rC . goes ~-r ~~~~~~~ as stated ii Gi .
• Otherw ise , as 62 specif ies , a C: u i •~YrX W N is required , f&lowed by a repetition of the 6010

command. The --e p~ tit ion is i~- - ~sa ry to add the ~Ot(; ch7- ’ge to :SMPX again, since i t
may have been removed in !~~- p - : ~~r og, I f Cl ~- a ~ ooked at bef ore 62. P splitting as
j ust iI’~j t ~~~ is one of the m,s ’ common nperatbns n ~he evolution of a PS. 62 will not
fire at f ’-~- point Dt’ r ~~~~ the -ri r” e~ I C ir~- t ~~ Iy on the ~f~ c-r , but it will later .

EXAMINING 02 (GOTO ~ NK- ; ~- 5)62/TRY
:xAM!N: ~ cC ci (6010 M~4 K- 1 5 ~ C

I

CI 11—10

~-~~~ -~~--, - . - --••-- _-.~~ - -~~ - - - --p - - -- — - - - — —-- - —------- -- - - - ---—— —

I,

Psnie t Extended Example C.1

a 01-1 0010 0K
USING (GOTO MNK- I 5 5) (106 MNK- I 1 ! I)
((H 1)(M MNK-1) X 5) (X2 . 1)Cf 5) (V2 1))
INSERTING (106 M1-4K-1 5 5 1) (NOT (0010 MHK- I 5 5)) (NOT (LOG MNk- 1 I I I))
(;SMPX
(92 (LOC MNK- 1 5 ~ 1) (REACHFOP MNK- l BAN-i) 3

• (P3 (IOC M1-4K-1 5 5 I))
(P1 (106 MNK-I 5 5 I)
[NI (106 k4NK-1 5 5 1) j
(C2 ((.06 MNK- l 5 5 I))
(C 1 (LOC M N K - 1 5 5 1))
(H 1 (LOC M N K - 1 5 5 1 H
(P 2 (106 MHK- i 5 5 1))

Ri (LOC MHK- 1 s e i REACHFOQ M~~-I BAN-i) 3
(G2 (LOC MWK-1 5 1) 1
(Gi (LOC M N K - 1 5 5 1) J)
EXAMINING 92 (106 MNK- I 5 5 1) (REACHFOR MNK-1 BAN-1)R2/T RY

So, now we come to the REACHFOR. The monkey is at height 1 (on the floor),
reaching for the bananas at height 3, so he cannot reach them, by the assumption that he
must be at the same height as the bananas to do that. (Notice that he does make the trip
to the bananas , not rea hz llg before doing it that he won’t be able to reach; this Is just a
feature of the monkey ’s program f or ~ett ig bananas.)

921 ~REAC(4 -- RE A T ~- G P- P-i (C & LOC’M.X ,Y,’4) & LOC(8,X,V,H2) & SATISF I(S2(H,H2,H ?.LESS #42)
& #4OT(EX!STS(HN) & CLI~s”~J°(M,X V ,HN))

.~ NEEOBOX (MXV ,)-I & N~~AT LM,

The SAT !SV 1ES2 is a constraint on t ’ 1-’ match that H be less than H2, which is true at
present. The NOT(..) is induded to grapple with a problem encountered later: we don’t
wan t the monkey to reach until he has ~ :rnbed up, s’r~ e the fai lure to do the climb first
w ill send the monke-~ If l f~~ another box—getting cycle. NEEOBOX is the box-getting goal,
arid specifies the location of the ~esi ’ed box.

4. R2- i PEA CH -

USING (PE4C~~ CP ~‘~ K- : h A N- i) (LOC ~-‘~~ - C 5 5 1) (LOC BAN- I 5 5 3)
((B - BAN- I) (H - 1) ‘H? 3) ~M MN K -l) ~ ¶C~ (V 5))
INSERTINC, (NEE~)BOX YHK~~ 5 5 I) (NOT (REA C HFOR MNK I BAN-I))
C .SMP1(
(N i (NEEOBOX ~~~ - I 5 5 1) (LCjC MP4K- 1 5 5 I))

-
I (P3 (10C~~NK-1 ~~ I))

(P 1 (LOC MHK -~ 5 5 2)) -
~~

• (C 2 (LOC ‘~H~ - I 5 5 I) lj
(C 1 (LOC MN~- I 5 5 I))
(H i (L0C~-A H ’ - I 5 5 I))
[P2 (LOC ‘,4 H K -j 5 5 1))

91 (106 ‘-~~~~
‘ - I 5 5 I) (PEAC I-IFOP M~ K -- i BA N-i) 3

- (G 2 (L0C E~~’ 1 5 5 1))
(G 1 (bOC ’-4E~ 1 5 5 1)))
EXAM1~~ ’)~. Ni ?)EEOBOX MNK-1 5 5 I) (106 MNK-I 5 5 I) P41 / T RY

- A l C l

- -. -

~

-- - - - _ _ _ _ _ _ _ _ _ _ _ _ _

__
~~~~~~—w-— _ -

~
-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~
—---- ------—•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ., — —,-. _- ,_. ._ ___ ,___ , ~J ’ -~~

C.1 Extended Example Psn)st

Ni i~ the P that  -espc n~ & to the NECOBOX instance, choosing which box to go af ter
according to -

~~
- -

NI; ~~~~~ - ~ DROX X ,Y ,H~1 -% ISBOX(8) & LOC(8,X2,V2,H) & NOT( VEQ(X,X2) & VEQ(Y,VV )
S #4VA L(B ,V) & ISBANANAS~B2) & NOT( EXT ~ T S B ~~ & UPON(B3,8))
S NOT’ F TS’R3,’~~V3,HaV3) & WAL(83 V3) & N0T( VEQ(X2,X3) & VEQ(V2,YJ) )

& SA~~’-i] F~ 2 C ’ V 3 ,V3 ‘.GREAT V ’ & NOT( EXISTS(84) I UPON(84 B3 ) ) )
0UTO(M XZV2) & PUSHTO(M,BX2,Y2,X,Y) & CLIMBUP(M,X,Y,HN) & REACHFOR(M,B2) & NEGATE(1);

This says , choose a box , go to the box , push it back to the bananas, climb the box, and
reach for the bananas. The box ~ chosen by the following criteria: it must not be where
the monkey is now, it must not have another box on top of it , and must have the highest
HVAL of a— ’y o-oxes ~h-,~t sa tisf y those ~ str ~ ~s .

5. SI-i *NEFOS BOX’
USING (NEFOBOX MNK- I rI 5 t )  (ISBOX 8X3-i) (cOC 6X3. I 4 6  1) (HVAL BX3- 1 5)
(t5BA -~NAC ¶~~N- l )

((B.~ IX3 -~~~(B~ h~ (-~- C ( H ~~~~ L ) ( M M#4K-i )(V 5 ) ( X . 5 )
(X2 4) (V .5 ) (Y : 8))

INSERTING W0T0 ~~~ I -) 6) ~~S~~D MNK- ; BX3- l 4 6 5 5) (CIIMBUP MNK- I 5 5 1)
(REACHFOR k4WK - I BA N- i) ~~ ~

-
~) X MNK- i 5 5 1))

( SMP)(
( C I  (Gob —4~~~-~ 48 )  (LOC E~i’K- 1 5 5  1 ) )

G2 (0010 ~N~i-- - 4 6) (hOC i~~~’- - I 5 5 1 ) )
P~ (PUSHTO ~ Hf -I  BX3- i 4 6  55)  (LOC MI4K- l 5 5  1) 1 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~( P.3 (PLISHTO ~-~~ - -I 8X3— i 4 6 5  5~ ~~C ~~ - - 2  55  ~ )
(C2 ci ;~-~~JP MW K- 1 5 5 U VX~ MNK-1 5 5 1) 3
(92 PE A ~;hF ~~;)-1 i~~: - - 1 BA N- i)

91 (A C P ; r G R MNX- 1 BAN - I’ (106 MHK-i 55 ~) ~~~~~~~~~~~~~~~~ MNK-.i BAN—I) 3
(C i (106 MNK.- i 5 5 1))
r H 1 (L0C MNK~i 5 5 U)
E (N)I~C Cl (GOTO ~~~~~ 4 6) (LOC MNK-- 1 5 5 l)C1f1RV

6- G1-2
USING ~Ti~~T~ ‘~4~4l ~ 6s (LOC E~NK-1 S ~ I)
(((4 , U(M MNY~-) (X . 4) (X~ S I r 8) (V2 5))

-‘ (LOC ~~>~~- 2 4 6 1) (NOT (6010 ~~ 3 - . 4 6)) (NOT (hOC MNK-1 5 5 1))
(~SMPX
02 (b C ‘-~~~~~~- 1 4 ~ !) ‘6010 YN~-! 4 61 (106 MP~K-1 5 5 1) 3
RI 1: C ~~~ ~~ 4 i~ I) -~

A(~~ O~’ i~
4 - ’~’~.~ 1 ~~~~~ (106 M#4K (5 5 1)

(REAC t~ >- - ~~~~ I BA(~ I) I
(P 2 (106 P--’~ K- l 4 5 1) PLJ~C~T~) MNK-~ 8X3-1 4 6 ~ ~

) ~ c~; MNr~-I 5 !~ 2))
(M l (1CC -¼~~~- I 4 5 ~

)
~L0C ~4-’~K-) C 5 1) 3

C (106 k”~’-I ~ 6 1) (106 M~~ - I S S I ’

~ C2 (hOC ~l~-2K- i 4-6 1) ~CLIMBUP ~~-~K 1 5 5 I)(IOC Mr~K.l 5 5 I))
f NI (LOC Y’~K - ’ 4 6 1)
(~ (l OC Y ’-)X- I -

~ 6 2) ‘PL~~ ’ -
,)

~‘ P - p C - 3 BX3-! 4 6 5 ~
, (C C MMK-l 5 5 I))

P3 (10C ~-~P~ - - l 4 6 U ~~~C~’T~i ~, ‘ I -
~~~ -~~ - I 0 6 5 5) (106 MNK-I 5 5  I) )

( 92 ~L0C MNK- 1 4 6 I) (REACHFOR ~.‘NK-l BAN- I) 3
( C l  (106 MNK- 1 4 6  1 ) ) )

- - 62 (106 ‘.~~~ - - :  -~ 6 !~~ 2
~ - A ’ ’~~- - P’ rL’)C ~~~~~~

‘- -~~ ‘ .6  I) ‘~~AC #4FOP (-NY - I i~~ J - t )  t~~~ C~~
()
~ ~“~iK-- I BA N—iRI

(~~J..’ : ’ ~ ~~ ( b C  l.4NK-- 1 ‘h 6 1 (~U~HT0 V~~ . I ~X3- i i’h 6 5 5)P2fTRV

C I.4 

------~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~ ---~~~-- ~~~~ --- -- -- -- - ~~~~~~~~~~-- -- -— - --



~~~~T 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

PsnI.t Extended Example

The simplest case a? PUSl-~’TO is encountered , . aiiely, jus t a change in location
with no unstacking or stacking. P2 is the P for - 

-

P2 PUSN 0N1V r~’4 1O~M,~ X~ ,X2 Y2~ 1 #.4 X,Y,H) & LOC(B,X,V,K)
• & P~iOT( EXISTS (B2 ,142) & LOC :~:’,x ,H2) & IS3OX(B2)

.
~ 

LOC(M,X2,V2,I1) & L0C(B X2~ 2 ,k N(GATE(AL I)

• The only requirements are 1 the monkey and the box both be located at the box ’s
location, at the same height and that n-~ box is located at the push target. The result is
that the locations are changed and he PUSHTO operator deleted.

7. P2- i C (J’A H ONLV~
USING (PUSHTO h4NK- i 8X3- i ~ 6- 551 ( 106 MWK- I 4 6  I) (106 8X3- 1 4 6  I)
((B - BX3-1) ~H I) (M ~~~ - 2 )  ¶J< 4) (X2 SI  (V - 6) ~Y2 5))
INSERTING ‘ b C  MNK- ! 5 5 1) (106 ETX3- I 5 5 1) (NOT (P115(410 MNK- 1 6X3- J 4 6 5  5))

(NOT (b c MNK- i 4 6 U) (NOT (~(X BX3- 1 4 6  U)
( SMPX

- - ( H I  (LOC MNK- 2 5 6 1) (106 BX3- z 5 5 1) (106 MNk-! 4 ~ 1~ (LOC MNK- 1 5 5 1) )
(C l  (106 MNK-1 5 5 1) ft L’C G’3- L 55  1) (hOC MNK-I 4 6  1) (106 kiNK-i 5 5 I))
(C2 ( b C  kiNK- : 5 5 U c coc BX3- i 5 5  1) LOC kiNK- I 4 6  1) (CUMBUP kiNK-I 5 5  1)

(LOC M N K- 1 5 5 f l )
- ( Ni (LOC kiNK- I 5 5 1) (106 ~X 3— ) t. 5 1) ~LC-C kINK- I 4 6  I)

( P1  (LOC kiNK- I 5 5 I) :IOC 3X3- I 5 5  1) (IOC LA EI~~I 4 6  1)
- - (PUSHTO kiNK -I EC~3- :  ~ s 5 5) (LOC kINK-i s s

P3 (106 kiNK- I 5 5 1) (CC BX3- I 5 5 1) (hOC E.~NK- I 4 5 1)
(P119(410 M) .K - 2 BX 3— i 4 6 5 ~~~ ~ ~)C I.4~~~~ 1 5 S 1) )

(R2 (LOC kINK- 5 5  1)( LOC~ ’)-~ -~ 5 5  2) ( L0C M~ K~I 4 6 1
(REACfW O~ ~~~~~ BAN- U

(P2 (106 kiNK- I 5 5  (1’)C ~~V3 2 5 5  U)
(62 (106 kiNK- I ~ 5 I) (106 B~~- i 5 5  2 ) 3
( R I  (106 kiNK— I 5 ’~ 1) ‘I I)C ~‘~J 5 5  2 ) 3
( C l  ~LOC M - J K - 1  s S  I) ~1-~C 8x3— 1 ‘: 5 ~ 10C kINK-I ~ 6 U ) )
EXAMINING HI (106 MN” - -3 5 1) (106 P~ 3- I 5 5 2 ) 1C~C ‘-~5~ - !  5 5 I)HIITRY
EXAMINING CL (‘ OC #.-~~‘~~ -~ 5 5  U -LO ~ BX3- i 5 5  U (( 06 ~1H~- ;  5 5  I)C i
EXAMINING C2 (106 I.4N K-I 5 5 I) SOC 81(3— I 5 5 I) (CLIMBUP k4N~. - 1 5 5 1)
(106 kINK - - I  5- 5 1j C~ f~~’~

_‘ 
Havin(~ pusl-ed the t2r~ to th, loc~~ c- ” cf th~ ba’~anas , the monkey does the

CLJMBUP , which causes a b~ n~ i~ in height of the monkey. and puts him UPON the box he
just pushed.

C2; ‘CLIMB UP N’ - ;  V ( ‘ ~
)
~~ ‘~~S)  & LCC~~~- f ,(-1) & 5~~;I~~~5kI~

• & 10C L3: 1( . ’-~1h & -i )X-f31 )
A — , LOC(M,X ,V.l-4l.l ) P UPO NC~~. R1) ~~~~~ 2),

8. C2- I
USING (CLIMRLJP MN’ -I  5 5  1) (106 ‘~~~~~- I 5 5  I) ~~-~)~ Ef .  i~kK - - l )  (106 BX 3— I 5 5  U

(ISBOX BX3 —i )
((RI 81(3— U H 2 )  I~~~I ‘ ‘ U  Y , Y — L )  ~< 5) (V 5))

-
- 1 INSERTING (ICC ~~~~ I ¶- 5 2 ~~

‘(
~~~ ~~N K - 2  RX3 —I ) ~NOT 4~( L ’ ~’ kIN K- 1 5 5 I))

(NOT (106 kINK- h ‘ S U)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 

, $ 11-13 C.1 

-~ - ~~~— — -~~~~~ --~~~~ -----~~------



- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~TTLTITT~~~~~~ ~~~~~~~~
—

-

- C.! Extended Example Ps rdet

(REACHFOP MNK- B A N — I))
P3 (106 kiNK- I r 5 2 :J c~ON L~JK.l 81(3-I) (~OC kINK-I 5 5 1) (106 81(3-i 5 5 1)
(L3C kINK 4 6 1) ‘~~~~~ O M~- iK- 91(3—I 4 6 5 51 (106 kINK-I 5 5 1))
P (LOC kiNK- I 5. 5 2~ (ICC UNK~l 5 5 1) JO -C 81(3-I 5 5 11(106 kiNK- i 4 6 1)
(P115(410 kiNK- I ~X3— I 4 6 5 5~ (ICC kINK- I ‘35 1)) —

(P4 1 (IOC kiNK — I 5 5 2~ ~OC kINK- I 5 5) (LOC BX3- l 55 1) ‘LL MNK-l 46 I))
(C l (L)C kiNK-- i 5 5 2) ‘~ 10N kINK- I 8X 3-1))
(C2 (LOC MHK- l 5 5 2))

• (P4 1 (LOC kINK- I 5 5 2~
(P2 (1CC P—- ’ N-~- 5 5 2~ (b C M~’iK- I 5 5 1’ (106 81(3-i 5 5 1))
(02 (106 kINK - I 5 5 2 ‘~OC kINK-I 5 5 1) (IOC 81(3-1 55 1))

RI (106 kINK-I 5 5 2) (106 kINK-I 5 5 1(106 81(3— I 5 5 I))
(61(106 V2-W~~~I 5 5 C) (ICC kINK- i 5 5 1) (b C 81(3—I 5 5 1) (LOC kINK- I 4 6 1)

EXAMINING 92 (106 s~NK 1 5 5 21 (106 81(3-1 5 5 I) (REACHFOR kINK-i BAt4-I)92(IRV

9. P2-2 -‘

USING ~~~~ -) Vri~- -l BA N-)) (106 kI NK—) 5 2) (LOC 8AN 1 5 5 ~
((B ~~ 5- 1) (H 2) (

~-~2 3) ~M kI~ø~-j) (~ 5) ç~f 5))
IN- €P 7 i~ G NE ’ - JBG~ MNK-~ 5 5 2) (NOT (REACHFOP kINK- I BAN—i))

I
(NI (1’4EEDBOX kINK-I 5 5 2 1 (106 kINK- I 5 5 2 1 (106 kINK-I 55 U (106 BX3- 1 55 1)

F (ICC kINK-I 4 8 1)) -

F (P3 (106 kiNK-I 5- 5 2 :J~C.N ~-~HK- ; 81(3—!) (106 kINK-i 55 1) (IOC 81(3-1 5 5 1)
(106 ~-~~K - I 4 6 1) (PUSHTO kINK- k 61(3-1 4 6 5 5) (106 kINK- I 55 U)

(P1 (106 ~~NK-- 1 5 5 2) (106 (1N1(~ (55 1(106 61(3-1 55 2) (106 kiNk-I 48 1)
(PUSHTO I-~’~K- 1 81(3— I 4 6 5 5) -L0-~ kINK- i 55 I))

(CI (106 j — K - 1 5 5 2) UP~~N kINK- h 81(3—i)
(C2 (bOC MN ’~- 5 5 2))

~1 (106 MNK- I 5 5 2))
P2 (106 ~4 N~:- I !~ 5 2- (106 MNK-~ 5 5 I) (106 61(3-I 5 5 1))
G2 (f j~~ kiNK-i 5 5 2) (106 ~- ‘N’- -) 5 5 1 (1 06 RX3- I 5 5 1))

(Pt (LOC kINK- I 5 5 C- , - ~ CC M~)K- h 5 5 1) (106 ~~~-i S E U
CI (106 ~NK- ; s s ~ (106 kINK- I 5 5 21(106 81(3-1 5 5 U ~1OC 4 W K— 2 4 6 I)

- - - ~~~~~~~ Ni I N C ~ 0~ k4 -~~- 2 5 5 21 (106 e.H-Y - 1 5 5 2) (bOC BX3- 1 5 5)Wl fT RY

The m-~ - u e ,~ has climbed, -e~J*d, and again fa~e’~ to get the bananas , so he goes
through the NtTLL~~)X rousne agaIn.

10 P21-i
USING ~~E~ FlC’X kINK- i 5 5 V (ISBOX O X : - I) 06 6X1- l 7 8 2) (HVAL 81(1-1 3)

~~~~ ‘~ , ‘If I ~~~ I)
((B 1~c ‘ - i ‘E~2 BAN-!) ( I-I - 2 cH~ 2) (ki ~4~ K- I) (V 3~ (X 5) X2 7)

(V 5)” .’? 6)) -
TPfl~ ~ - (GO~O P~4~~,’ -- !  ‘ ~‘ ) P-~’~4 T 0 M~~ - I  81( 1--I 7 8 5 5 )  0( ~# 4~iJ P MW K-1 5 5 2 )

• (pE~~~ -:~~
1
~~~)p kI-~K-- 1 ‘~ N- I) (NO T N ’ -~~ ’ ~I4HK- ! 5 5- 2))

(
F - (r . b (GOTO kINK-I 7 6 I)C~~~’-~ I 5 - 5 2) (IOC MNK-1551 (IOC UX 3 - 1 5 5 ’)

(106 ~‘ S K - 2 4 6 1))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I P3 ‘~-H1u kINK- i  8 1 ( 2 - 2  7 8 5 5  -‘!)C ~ NK- I ~~5 2 )  (UPON ~~~
- ‘~ BX3-I)

((~K. ‘~~ K- 5 5  ))( IOC BX3— 2 5 5  I) (106 ~-~4~ - 1 4 6 2 )
(PIJSHTO 1.4NK~~ 81(3-I 4 6  c 5) (IOC L4N~ - 5 . 5  I ) )

C.! 1~-14

~

- - -- - --

~

- - - - -

~ 

-~~~~~ --~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~ --~~~~~~~ - ------—-~~~~~~ - 
-

~~~~~~~~~~~-- - -- -



~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _ _ _

- I - Psnlst Extended Examp le C.!

[P2 CPIJSHIO kiNK- I BX 1-I 7 6 5 5) (106 kINK-I 5 5 21 (106 kINK-I 5 5 1)
(ICC 81(3-1 5 5  I) )

( P1 (PU~~II0 kINK-I 81(1-I 7 8 5 5 1 (106 kINK- I 5 5 21 (106 kiNK- i 55  1)
(ICC 81(3—I 5 5  U ((OC kINK- ‘-~ 6 1) - O A t H T O  kINK- I 81(3.-I 4 6 5 5 )
(IOC kINK-i 5 5  2 ) )

• (C2 (CIIMBUP kINK-I 5 5 2) ~LOC kINK-I 5- 5 2 ) ]
( R2 (REACHFOR kINK- I BA N-i ) 3
( RI CREACHFOR kINK-I BA N- I) (ICC kINK- I 5 5  21 (106 kiNK-I 5 5  1)

• (106 81(3-1 ~ 5 2 )
( C i  (ICC kINK-- I 5 5 2) (UPON MN~ -- I BX3- A) 3
(Hl (LOC M N K - 1 5 5 2 ) ) )  -

EXAMINING Gi (GOTO kiN K-I 7 81 (106 “.4NK- I 5 5 2) (106 81(3-1 5. 5 1)61/TRY
EXAPAINING 02 (6310 kiNK- ) . 8) (ICC kINK-i 5 5 21 (1CC 81(3— I 5 5 1)62/TRY

11. 02- ‘0010 611MB’
USING (G0T() kiNK- i 7 6) (106 kINK-I 5 5 2)
(((4 . 21 CM kINK-i) CX 7) (1(2 5) CY 8) (Y2 5))
WAPNlN-~ (kINK-I 7 E) A lREADY UNOEP GOTO
INSERTING (CLTM BDOW N kINK-I) (6010 kINK-I 7 8)
( -SMPX
(C l  (C1!MBOOWN MN~ - I)  (106 kINK-i 5 5 2) (UPON kINK- i 61(3- I ) ]
( 0 2  (0010 r-~’2K- I . 8 ) )
( 6 2  (6010 MNK~1 7 ~ 1
(P3 (P1J~HTG ~-~

-
~‘(- l 81(1-! 7 8 5 5 1  (~3C kIN ’~-!  5 5 2 )  (UPON kINK-I 81(3—i )

(LOC M1’2K- 1 5 5  IULOC B1(3- i ~- 5  I aOC MNK- I 4 6 1
(PUS)1TO MN~ - I BX 3-2 4 6 5 5 )  SOC kINK- I 55  1)]
P2 (PUSHTO kINK-I 81(1-I 7 8 5 5) (106 ~A NV - I 5 5  2) (106 kINK-I 55  1)
h O C  81(3— ! 5 5  1)
Pt (P115)-lTD Yf~ I 81(1-1 7 8 5 5) (LOC kI~~ - I  5 5 2) )IOC kINK- i 5- 5 1)
(106 81(3-1 5 5 2 )  (106 ~ NK- i 4 6 1) (PUSHTO M”K - I 81(3-I 4 6  55)
(ICC kINK- I ‘ 5 1) )

( C2 (GLIMBUP V~- Y - i  5 5 2) ~0C kINK- i 5 5 2) 3
( P2 (REACHFOR K4J K- I h 4 N - I )

I RI ( I ’ ~H)OP 1K 1 ~)A ~~- I )  (106 kINK— ’ 3 5 21 (106 kINK- i 5 5 I)
(ICC 81(3-1 5 5 i )
141 (106 ) - -4 (-~K- )  5 5 2 ) ) )

EXAM (N1~&. CI (CLIMBDO W N kIN K- I) (LOC kINK- I ~ 5 2~ )S)~S~ kINK- i BX 3- i ~~ lf TRY

This i w ~ , it c neces’~’ry to cI r’it, ‘j own before the GOTO operation.

c ; - ‘c~ :‘-. -
.~ oc~ c ‘~-4~ ’ -J\ , ~ & L~ : - . Y H(  & (jP)’~(kI.~~ & !SBOX(8) & ISh4ONKEV(M)

—~ 
IOC(U,X ,Y,1) & ~~~

• 12 C l — i  ‘C l ’- ’ ) f l . ’~~
USIP4I, (CUVI~~X)W~J V- .’ U JOC ‘‘- i~~- 5 5 2’ uPON kI~~- - I 5~ 3— l) (ISBOX 81(3-I)

(ISMONKEY k IN K- I )

~
B BX3- 1~~ H 7) V MN~ - I ) ( X  5 ) v

INSERTING (ICC kI’ -W - I  5 5  I) (NO T C I P ~ 2OWN kINK-I )) (NO T (106 kINK- I 5 5 2 ) )
(NOT (UPON kINK-I J— ’

( R I  (hOC kINK- I 5 5  t ,  F,AC~ rO~ M~~. i 84N-1) (ICC kINK-I 5 52 1
(106 kINK I 55  I’ (106 81(3— I 5- 5’ 1)
P2 (1CC kiN~ - 1  5 c 1~ P - J ’ . T 0  ~~~ 1 BXl - l 7 8 5 5 )  (IOC UN’-- I 5 2)
(b0C UN~ - 1 5 5  L)( 1OC BX ~- I  5 5 1 )

11-15 C.1 

~~------- —-- ~~~ — — - - -  --~~~~~~ --.~~~~~~~ —-~~~~~--- “-—- -- -- ~~~~~~~~-- - --



C.! Exknded Example PsriI st

(C?  (ICC kINK- I 5 5 11 (CL IMB UP kINK- I 5 5  2) (IOC kINK- I 5 5 2 ) )
P2 (106 kINK- i 5 5  I) (PLISHTO kINK- I 81(1-I 7 8 5 5 )  (106 kiNk- i 5 5 2 )

— 
(ICC kINK-I 5 5 I) (ICC 81(3-1 5 5 1) (106 kINK- I 4 8  1)
(PIJSHTO kINK-I 8X3- I 4 6 5 51 (106 kINK-i 5 5 1)

[ P3 (10-C kINK-I 5 5  1) (PL1SNTO kINK-I BX I- i  7 8 55 )  (ICC kINK- I 5 5  2)
- - (UPON kINK-I 81(3-1) (ICC kINK-I 5 5  1) (10C 8X3- 1 55 1)CLOC kINK-i 46 I)

(PUSHTO kI~ K-I 81(3-1 4 6 5 5) (ICC kINK- I 5 5 1))
( P2 ((.06 kINK-I 5 5 1) (QEACHFO R kINK- I BAN-I ))

• (Nl (IOC M N K - 1 5 5 1 ) )
- (C l  (106 kINK- I 5 5  U 3

lIHIOC kINK-I 5 5 1) (106 kINK- I 5 5  2 ) )
(0 2 (106 k~NK~l 5 5  I )  (0010 kINK-I 78 1 1

CI (LOC M N K - 2 5 5  I) ( GOTO kINK-I l 8) 3 )
EXAMINING RI (ICC kINK- I 5 5 I) PEACHFOP kINK- I BAN-i) (ICC kINK- I 5 5 1)

-‘ (ICC 8 1(3 -155  I) P I / TRY
EXAM!N~NG P2 (106 )-.4N~-~ h 55  1) CPUSHTO kINK-I 81(1-i 7 8 5 5 1 (106 kINK-I 55 1)
(ICC 61(3— ! 5 5 I)P2/TPY

EXAMINING 62 (ICC kINK-I 5 5 1) (CLIMBUP kINK-I 5 5 2)62/TRY
EXAM!N~ .C P1 (106 ~-4~,K- 5- 5 1) (PLISHTO kINK- I 81(1-I 7 8 5 51 (1CC kiNk-i 5 5 1)
(ICC 81(3-1 5 5 I) (106 kIN K— I 5 5 I P 1/T RY

EXA M !‘C~ P3 ( b C  Y~ K- i  5 5 1) (P115(410 kINK-I 61(1-1 7 8 5 5 )  (LOC kINK- I 5 5  1)
(ICC 81(3-I 5 5  1) (IX kINK- I 5 5 I)P3/ TRY

EXA M!N~~ - P2 (IOC kINK-I 5 5  I) (REACHFOR MIlK-I 8AN-1)R2~TRY
- EXAMINING Ni (106 kINK-I 5 5 UN)

EXAMI~~NG CI (ICC kINK-i 5 5 I)C I
— rxAkI:- N~N’; —! (LOC k-INK- I 5 5- I) HI/T RY

EXAMINING 02 (hOC kIsK-i 5- 5 1) G~)T0 kINK-I 7 8)62/T RY
EXAM!NING ~I (ICC kINK- I 5 5 1) (GOTO MIlK-I 7 8)0 1/TRY

13 61-3 ‘~UO1O OK
USING (‘~ ‘-~ O MN~ - I 7 Bi ftOC kINK- i 5 5  I)
((H - 1) (M kINK- I) CX 71 (1(2 5) (Y 8) (‘12 5))
INSERTING (10-C kINK - i 7 8 1) (NOT (6010 kINK-I 7 8)) (NOT (106 kINK- I 5 5 1))

( P3 (IOC kINK- I 7 8 1 ) )
1 P1 (106 -44k- i 7 8 2 ) )
I C2 (100 kINK - - ’ 7 8 1)
( P2 (1CC ~-~~“ - i  8 1) )
( P 1 (IOC MNK I 7 8  I ) ]
I CI (10C ~-~N~- -- I 7 8 1) )

, ( P2 (IX kINK- i 7 8 I ) )
NI (10-C kINK 1 7 8 1 ) )
61 (106 MIlk-I 7 8 1 ) 3

( HI (IOC ‘-~-t ’ - -~ 7 8  I) 3
(62  (106 ~4~ K - !  1 9 ) )

44 ~~-(P k4 ’ - - - - P3 (106 kINK I 1 8 )P3/IR’f

The PUSI~ITO in t~i5 case s on a box that is UPON another box , so that an uns t ack Is
nece’~’- -’ -y before the execution of tF ,~. PUSHTO. The unstack is done by a simple change in

- :  location , w t 1- n t ’ t  ~ r- exp,) cit On~ r?t ~~n, since 4 1— e operation for uristack would use all of the
same nY- -r - r~ )h ,~ a~~pea rr I~ the LHS of P3.

P3- N’~ ~ P. ’ 0 — )  Pt )~W S ’T O ( M 1lx .1.1(2X.’ & IOC(M,X Y ,’l) & (OC(8,X.V,142) & UPON(B,B2)
PUSHTO(M ,131( ~X2 V .’) & LOC (F2 X,V , U & NFGATE 3,4) ,

C.! 11— 1 6

~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ — — ~~~~~~~~~-- -- --~~~~~~~

- .
~~~~~~~- -



—. — 
:—•— —— 

~~

- 
—.---

~
-----. 

—- - - -- - ---- — —--

~~~
,
~~~~~~~~

— —--

~~ 

- — -,‘--- — ------ --—

-
~~~~~~~~~ 

-

Psnlst Extenoed Example . C.!

14 P3- i U1’15TACK BEFORE PI1SIC
USING CP ’JSNTO ~.4NX - I 81(1-I 7 9 5 5) (LX MIlK- I 7 9 11(1CC BXI-1 7 8 2)

(UPON 8X2-~ 61(2-1)
((B - BX I- l) (112 8X2- a (H - I) ((42 - 21 CM MIlK-I) CX 71 (1(2 - 5) CV - 8)

(V2 . 5))
WARNING (MIlK- I BIll-I 7 9 5 5) ALREADY UNDER P118(410

- L INSERTING (P115(410 MIlK- I 81(1-1 7 8 5 5) (106 81(1-1 7 8 1) (NOT (ICC RXi-3 7 8 2))
• (1-101 (UPON BIll-I 81(2- f))

(SMPX -

(P 1 (PUSHTO MIlK- I 81(1-i 7 8 5 5 1 (106 81(1-I 7 8 I)(IOC kINK- I 7 8 1))
P2 (PLJSHTO MIlK- i 81(1-I 7 8 5 51 (1CC BIll -i 7 8 11(106 kINK- i 7 8 1) 1
P3 (P115(410 kINK-I 81(1-1 7 8 5 51 (1CC BXI-I 7 8 1))
P1 (1CC BXI- 7 8 1) (106 MIlK- I 7 8 1))
C2 (106 81(1-1 7 8 2~ (10-C MIlK-i 7 8 1))

(6 1 (10-C 61(1-1 7 9 I) (106 MIlK- I 7 8 1))
P2 (ICC 61(1- I 7 8 2) (10-C MIlK-i 7 8

~) 1
(WI (LX 6X~- 1 ~ 8 1) (10-C MIlK-I 7 9 1))
(Cl (106 81 (1—1 7 8 1) (b C ‘.“~K-I 7 9 I)
((4 1 (106 81(1-1 7 8 U (106 MIlK- I 7 8 I))
(62 (106 81(1-1 - 8 1 (10C MIlK-i 7 8 1) 3)
EXAMIN1NG P1 (P115(410 Mt- .K- I 01(1-I 7 8 5 51 (1CC BXI- l 7 9 1) (ICC MIlK- I 7 8 1)

F

P1/TRY

A second variation in the PUSHTO is that there already ex ists a box at the target location,
so that an immed iafc. s t ack operation is performed (itnphcit?y~ by a change in location and
the addition o~ the UPON predicate , as foflows.

P!4 P11514 S S TA C• ~
-

.- PUSUTO(M,8.X,Y,X2 ,V2) & LOC(M,X ,Y.H) & LOC(BX,V,N)
& LOC(82,X2 ,V2 ,H2) a ISEIOX(B2) & NOT(EXISTS(83) & UPO.Il(B3-82)

-> L0C(M,X2,Y2 N .~ & IOC(B,X2,Y2,H2.1) & UPON B,82) a, NECATE(J ,2,3

15 P1- I ‘P135(4 ~ STACk ’
USING (PIJSHTO kINK- I 81(1-1 7 8 5 5) (ICC kINK-I 7 8 1) (106 BX1-i 7 8 1)
(ICC 81(3-I 5 5 1) (ISBOX 81(3- 1)

((8 . 81(1- i) (82 81(3-1) (H 2 1 (1 4 2 . 11CM - MIlK-I) (X 7) (X2 5) (\Y 8)
(Y2 5))

INSERTING (10-C YN K~ I 5 5 1) (10-C BX i - I 5 5 2) (UPON 81(1-I 01(3-I)
(NOT (P1(5410 MIlK-I BX 1- I 7 9 5 5)) (NOT (hOC MIlK- I 7 8 3))
(PlOT (106 61(1-1 7 8)) I

C SY)’1(
RI (LOC MIlK- I 5 5 1) ((.0-C 81(1-I 5 5- U (106 81(1-I 7 8 11(1CC MIlK-I 7 9 1) 3

(P2 (1OC MN~ - I 5 5 ’ l) (L 0 C P 1 (i - i 5 5 2) (PUSH10 MNK-I R X) - i 7 9 5 5)
(106 81(1-1 7 8 I) (ICC ~~~ I . 8 I)
C2 (10-C i” ~Y - I 5 5 1) ;inc E~~I-i 5 5 21 (106 81(1-1 7 9 11(1CC kINK- I 7 9 1) 1

-t - P1 (106 M9 ~-. - I 5’ 5 1) ‘ .0-C 8 1(1—I 5 5 ?i 3
(P3 (1CC V ’~K I 5 5 I) (106 B 1 (: - I 5 5 2 (UPON 61(1-I 81(3-1)

(P115(410 K 4 ’~~- I 81(1-i 7 8 5 5) (10-C 81(1-I 7 8 I))

~~~ 

- 
- Gi (10C kI~ K- 1 5 5  I) (ICC ~ <i~ l 5 5 ? )  (106 81(1-I 7 8  11(106 MIlK- i 7 8  I ) )

P2 (106 ~-~‘ ‘.- I  5 5  13(1CC ~‘~ I-I 5 ~ .‘ (IOC 81(1-I 7 8 1 )  (106 kINK-I 7 8  II)
(NI  (IOC MIlK- ’ 5 5  1~ ‘hOC 81( 1-I  5 5 2) (LX 81(1-I 7 8 1~~10C MIlK-I 7 8  1 ) )

CI (IOC KINK- I 5 ~ 11(106 81(1-I 5 5 2) (UPON 81(1- I 81(3—I ) ~ OC 81( 1- I 7 8 1)
(106 kINK - I 7 8 1) )
Hi (hOC kI~~ I S S U ‘106 81(1-1 5 52 1 (106 81(1-1 7 8  1) (ICC kINK- I 7 9 I) )

( 02 LOC kINK-I 5 11(106 81(1-I 5- 5 21 (1CC 81(1-I 7 8 11(106 kINK- I 7 9 1) )

11-17 Ci 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


k
-

C.! Extended Example Penist

EXAMINING RI (ICC MIlK- I 5 5 11(1CC 81(1-1 5 5 2)R i /TRY
EXAMiNING P2 (ICC MIlK-I 5 5 11(1CC BX I-I 5 5 2)P2
EXAMINING C? (IOC MNK 1 5 5 11(106 BXI I 5 5 2)C2ITRY

IS. C2-2 CUMS UP N
USING (CLIMBUP MIlK-I 5 5 21 (1CC MIlK- i 5 5 I) (ISMONKEY MIlK-I) (106 BXI-i 8 5 2)

(ISSOX BXI I) -

• ((SI - BX I- i) (H 1)0 -4 1 . 2) (N kINK-i) CX .5) (V .5))
- INSfRTING (ICC MIlK- I 5 5 3) (UPON MIlK-I BX I-1) (NOT (CLIMBLIP MIlK-i 5 5 2))

(NOT (106 kINK- I S 5 I))
: (.SMPX

(G2 (IOC MWK-I 5 5 3) (Lf~C MN K- I55 l) (LOC BX 1- i55 2) ft.OC BXl-I 7 9 1)
(LOC kINK.. ! 7 8 i)

(HI 10C MNK- 1 5- 5 3 -(IO C MIlK-i 5 5 I) (ICC 81(1-i 5 5 21 (106 81(1-1 7 8 1)
(IOC MN K-1 7 81) J

(C l (LOC MIlK-i 5 5 3) (UPON MIlK-I BIll-i) (ICC MIlK- I 5 5 1) (ICC 81(1-I 5 5 2)
(UPON 81(1-i 81(3-I) (ICC BIll-I 7 8 t) (ICC MIlK-i 7 9 1) 1

(Ill (106 kINK- I 5 5 3) (106 MNK- l 5 5 11(1CC BX 1-1 5 5 21 (1CC 81(1-I 7 8 1)
(LOC MNK-I 7 8 U)

(P2 (106 kINK- I 5 5 3~~I0C MIlK-I 5 5 1) (LOC B1(1-1 5 5 2) (LOC 81(1-I 7 8 1)
(106 MIlK- I 7 8 1))

(01 (106 MIlK-i 5 5 3 3 (106 MIlK-I 5 5 1) (bC 81(1-I 55 2) (LOC BXI-l 7 9 1)
(106 MIlK-I 7 8 1) 3

(P3 (106 MIlK-I 5 5 3) (UPON MIlK-I BIll -i) (ICC MIlK-i 5 5 I) (ICC BX I-I 5 5 2)
(UPON BIll-i BX3-1) (PLJSHTO MIlK-I 81(1-1 7 8 5 5) (106 81(1-I 7 8 1)

f P1 (1CC kINK-i 5 5 3) (hOC MIlK-I 5 5 3) (ICC BX1-i 5 52) J
(C2 (ICC MIlK-I 5 5 3)]
(R1 (LOC MN K- 1553) 3
(P2 (ICC MIlK-I 5 5 3)])
EXAMINING 62 (106 MIlK-I 5 5 3) (10C OX 1-1 5 5 2)62
EXAMINING (41 (1CC MIlK-I 5 5 3) (ICC 81(1-1 5 5 2)14 1/TRY
EXAMINING CI (106 kINK- I 5 5 3) (UPON MIlK- i BXI- l) ((CC 81(1-1 5 5 2)
(UPON 81(1-I 8X3-I)C I

EXAMINING NI (LOC MIlK- I 5 5 31 (106 81(1-I 5 5 21W !
EXAMINING P2 (ICC kINK-i 5 5 31 (106 81(1-I 5 5 2)P2 fTRY
EXAMINING 61 (106 kINK-I 5 5 31 (106 BIll -I 5 5 2)61
EXAMINING P3 (ICC MIlK-I 5 5 3) (UPON kINK- I 81(1-I) (106 BIll -i 5 5 2)
(UPON 8Xi - l 8X3—l)P3

EXAMINING P3 (LOC MIlK-I 5 5 3) (LOC 81(1-3 55 2)P l
EXAMINING C? (IOC kINK-I 5 5 3)C 2
EXAMINING P1 (LOC kINK- I 5 5 3)RI/TRY

Finally, the n-~orkey is at the proper height for reaching the bananas, and he does
the appropriate thing. - —

P11 ‘REACH .’ .~CI~~~ M, 8) & LOC(M,X Y ,H)4 IOC(8.X,Y,H)& HUNGPY(M)
.
~

EATS (M ,B) & NEGA T((A IL-2) ,

I? RI - I PEACH .
USING (PEACHFOP MIlK- I BAN -i) (ICC kINK- I 5 5 3) (hOC BAIl-I 55 3) (HUNGRY MIlK-I)
((B - BA N- I) 14 3) (M MIlK-I) (X 5) (V 5))
INSERTING (EATS MIlK-I BA N-I) (NOT (PEA CHFOR MIlK-I BAN-I))

(NOT (106 BAN- I 5 5 3)) (NOT (1-IUNGRY kINK- I))
C SUPX

r C.! 11-18
r ~~-

_

r~
~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~ -‘~~ 
J: -T1_

_ _
~~~~~~~~~~

_ __ i _ 
~~~~~~~~~ ~~TII

Psnlst Extended Examp le C.!

(P2 (IOC M N K - 1 5 5 3)))
EXAMINING P2 (LX MIlK- I 5 5 3)P2

The fo l lowing gives the entire Working Memory contents at the end of the run , plus
some run statistics.

EATS (MIlK-I BA N-i) -

HVAL (81(1-I 3) (8X2- I 4) (01(3-! 5)
JIlT (PB—I)
ISBANANAS (BAN-I)
ISBO X (BXI-1)(8X2- 1) (8X3-I)
ISMONKEY (MIlK-I)
LX (BIll -I 5 5 2 1 (81(2-1 7 8 1) (81(3-1 55 I) (MIlK-I 5 5 3)
UPON (BX1-1 8X3-l) (MIlK- i BXI- I)

ISMONKEY (kINK-I)
EATS (kINK-I BAN-i)
TOP LEVEL ASSERT NIL

RUN TIME 195 SEC

EXAM TRY FIR E WMAC T E/F (/T T/F
57 32 Il 74 3.35 118 1.88
0 342 0.810 1.15 0.284 SEC AVG

46 INSERTS 28 DELETES 2 WARNINGS 6 NEW OBJEC TS
MAX SkIPX LENGTH i f
CORE (FREE.FULI)- (10880 - 883) USED (758 . 27)

ACTS SETUP (MONKEY ISP) SAVEPS (CLOSED (MONKEY - EKP)) MONC RUN SMPXEMPTY
SMPXEMPTY

TRACE
(Il—i HI- I 61-1 p2- i P11-1 61-2 P2- I C2-t P2-2 11-2 62- I Cl-I 61-3 P3- I P1-i

C2-2 Ri - i)

- -
FIRED 12 OUT OF 12 PRODS

The overa ll control of this run was achieved through the command (CMD) fi le MONC,
loaded as a result of the DCMD decla ration in the program (see Section C.4). The

• contents of MONC are:

.CVCIECMDS ((DUkI~
) (DUMPO ISMONKEY EATS))

TERMCMDS ((PERFEVA L 1) (ERASE ID
DE BUG I

; DISPDEPTH 99

The f irst line gives the :CYCLECMDS used in the run. These are executed each time the
- ‘ :SMPX becomes empt y, and allows the user to cycle again without say ing RUN, af ter

executing the commands. The cor imands cause display of the whole Working Memory, plus

the disp lay of two pred i cates that are important for the run. The :TERMCMDS tell what to

11-19

_ _

-

-—--~~~~~~~ - -- -- --—- — -~~~~~~~~~~ —~~~~~~~ -~~~~~~~ -~~~~~~~~~~ - --

r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C.! Extended Example Psnts t

do when NIL Is typed to the prompt for TOP LEVEL ASSERT. The results of those
commands are at the end of the run above. The last two commands set the :DEBUG switch,
for detection of confhc ts , and the display depth for :SMPX

C2. Concludirig. comments on the e~ampte

There are several interesting feature s of this prOgram , and Psnlst programs In
general , that shou ld be emphasized:

4 a. The Working Memory is large (compared to other PS architectures) ,
but :SMPX provides a focus for the processing, act i’~g as an attention
mechanism.

b. The conditions of the Ps are mutuall y exclusive. This me~ -;c t hat ri
order t o add P~- - closel y related condit ions must be consu lted. Ai~o.
when a P is sp lit into two (c!. Gla above), both halves hh- ,/e longer
LHSs.

c. The stack Hipie- ren~at ori ot :SMPX gives a depth-first , goal. s t J ~ng
organizatio n . We saw n P G2 h~ -w expl ic it ~e-asse rhnt~ of an
element a~ready in Working ‘iAemory brings .t to a hg h~ r stack
position which adds fk.~~o l t -

d. Flow of contro: in the program ‘s dependent on the c~ rt e r ’ of the
Working Mer-~~ry , on the cha- -~ e - made to t . and u- - the order of
those changes. Rarel y does one P signal a sing le other P; rather , e
s gna! is em itted to a ~et a’ Ps , arid th~ c o nd itt ~ n ‘ the Working
Memory re i~~i.e to the Ll—~Ss o~ the receivers determ ines w hich c-~ e
makes use of the signal T-’~ - ~s analogous ~ e~~ t~ir ’~ a goal and
letting a v~ r~ety of methods decide whe t r e - to work on 1

There is one prominent ch~ r ? 9r~~t~ of t P- i c e - ’~o~~ that is at~ p;c~ o ’ Psnlst PSs.
Every time there was a change in the LOC i t~ n~es . an ~irAPy ~- nt r y was ‘~a~ e for each P
In the system. Orc t i nar i iv , a or~~c~~ , te of ~~icb up~ -e rsa l us~ c e is c’~c la re~ to z~e a non—
fluent , to prevent tn~ bna-~y loading o’ :SLi4PX (c onsequences ~

f rh?- i g~~. ~- -~de h: a non-
• , fluent are not explored , and rio ~5MPX en~re r. i~e ~~~~ f~~ r ~~~h ~~~~~~~~

Ti- i’ c -e- 1 aration

was lef t out ir order to avoid comp licat ions , in 4 f —
~i ‘i .j~ ~r~~- -: -’ ~~‘ the ~~~~~ ~~~~~~~~~~~~ it

Is also the case that LOC was a key instance for at least oa-~ — .~t c ’ . leading tO the f i r ~~~~ of

P3- But, in fact , the sys tem works the same way w t ~. LOC as a ror i- f h~t’rt , ~~~~~~~ the
LOC as used a b e .~e ca - es pre-rn &~ re c~ a rn ra~Ion of ~~-? r ! - ’~ova of its ~5~-4’~--~ “ntr~~. and
t hen addit ion c f i~n. tl - - r r -~~‘~~ X e.- r~ r y’, thus c~

-- -~ ’ -- i. out tI- c- .
~~ ~ i’~ r ’s T~e pre— rn a ’ ~rC

examination resulted in ~. he loss from -~‘ -~flX of the PUS~~ - goal , ~- d the c :a - - - ~ e in ocat io r
• in a sense jar red ~~ m r’ r-o? y of ‘he monkey to br’~ c~ ~ PUSkTO into tI-s ~~~~~ process.

In general , in cases i~i1pre suc h D - r ~ .4i re -:- f ~’ :n?~~~’ 3 u na- --o - rj au ! e , ~~~~~~
-

~ oe r.~~ dr ~
of exp licit reme r—ber -goal r~ ar~ ers , w h h c ~~ cp ~ r ~ ‘. r p r’~p ‘ing a new nca rn~~ion of

• the goal marke r . Such ~.ve~- are r~ re arid the :SL4~X sta cking reg me usuall y s , . ’ f c e s t o
hold goals in the wings until conditions are r~~h:.

- ~~~~~~~~~~~~~~~

Psnlst Extended Example C.3

C.3. A note on readini productions

In try ing to determine the intent of a P, there are a few heuristics that may help.
Each P has , in general, one pr ncipal idea or piece of knowledge. This is its essential
action , and can be obtained by looking at the f irst few conjuncts in its LHS and RHS. For
Instance, in NI, the P that represents what happens when the monkey needs a box to
reach some high place, the first three LHS conjuncts can be combined with the first two
RHS conjuncts to get the principal idea of the P, that the monkey goes to the box and

pushes it to a locatio n under the place. -

Ni; NEEDS BOX~ NEEDBOX(M,X,Y,HN) & ISBOX(B) & LOC(B,X2,Y2,H) . . -

-, GOTO(M.X2 ,V2) & PLJSHTO(M,R X 2 ,V2 ,X,Y) - . - ,

The other LHS conjuncts only elaborate the necessa ry side conditions and the remai nder
of tne RHS gives secondary actions and peripheral updating.

How it helps to have the main conjuncts requires a more detailed explanation. Each
predicate is given a meaning (see Section C.5), a prop osit ion that relates its argu ments
to each other . Conjuricts w ith shared variables result in extending end merging the
re lations between arguments. in addition, the contrast between LHS and RHS enters In,
n amely in establishing “ before ” and “ at ter n properties. For instance, in Ni, the first RHS
conjunct shares variables with the f irst and third LI-IS conjuncts in a way that also
interacts with the LHS-RHS meaning to arrive at the “monkey goes to the box ” part of the
pr incipal idea. To sum marize , the main trick here is to look at both LHS and RHS
simultaneously rather than attending too soon to the side conditions in the LHS.

I-

11-21 C.3

_ _ _ _

— - - . -

C.4 Extended Examp le Psnlst

C.4. Prp~ram Iist in~

BEGIN I PS FOR MONKEY AND BANANAS I

EXPR MOP’JKEVO, BEGIN DCMD(MOPIC>,

HZ; ‘HUNGRY NUNGRV~M~ & 1SMONKEV(M) & ISBANAHAS(B) £ LOC(B,X,Y,H)
•~ GO1O(M,X,Y) & REAC I4FOR (M,8?;

01; G010 OK” GOTO (M~
(,V) & LOC(M,X2 V2,H) & SATISF IES(H,H EQ t

—~ tOC(M,X,Y,H) & NEGAT E’A L u.

02; “6010 CIIMB - COI O- ’~
-- Y t & LOC’M,X2,12,Hi & SA1ISrI1:~HM ‘.GREAT I)

-) CIIMBDOWN(U) & GOTO t . iX Y) ,

Ci ; C~ Lt~4B DOWN” CIIMBDO ,WN’M) & IOC(M.X.Y H) & UPOW(M,B) a ISBOX(B) a IsMONKEV(M)
—> LOC(M,X,Y,1) & NECATE (I .2 3 .

C2; ‘CUMB UP N C11MBUP~~4 x Y .H1 & LOC(M .X.Y ,H) a ISMONKEV M)
& IOC(B 1,X,V .I-1i) & IS~~;-~~~ 1)

.> IOC(M,X,Y,i-iI.i) & UPON M,B I) & N€GAT E(1 ,2),

RI~ “ REACH .” -- P~ AC~~ O~~.~Rt & LOC(M,X,Y,H) ê tOC(B X,Y,14) & HUNGRYIM)
.~ EAIS(M,B~ & ~E~~A T A : L - 2 ~

R2; REACH - RE~~~” oQ :~’ ~~, & ~~~~~~ ~ & IOC(B X,Y,H2> a SATISF!t52(H,142,H ?.t.ESS 142)
& NOT(E~ lST ~~~ P & ~L M ~~P(M,~,Y,~~) ~

-~ NEEDBOX(M,) Y ,i-4) ~ NEGAT E(i,,

Ni~ “ NEEDS BOx” ~ DRo~~~ x y H N : a ISBOX(B) & iOC(~3.~ 2.Y 2H) a NOT(VEQ(X,X2) & V EQ(V,Y2)
& HVAL(8 ,V) & I S ’ -’~~S(B2) ~ NOT(iSr S~~3 & UPON B3,8 I
a ?4or(EXISTS (B3,Xav 3 ’ ‘131 & flVA 1(B3~V3} ‘~ t401(VEQ(X 2,x3) & V€Q(V 2,Y3)

& SA IIS F!E S2 (VV3V3 - -G I EAT V & NOI(E~~ ST S : f~~ & UPON(84,B3)))
-~ GO1O(M X2,Y2) & PL:; iTO~ 4 P-~~2 Y 2 X ,V) & C M P - : ~i,~ ,Y ,HN) & REAC HFOR(M,82) & t4EQAT E(1) ;

P3 “PUS H & c T,4C~
- p iii~o , 4 n x ‘, .~ 2V 2) & 1.OC(M.X .1,H) & IOC(BX ,V ,H)

& LOC(B2.X2 ,?ZH?i & I SBO X (B 2) & NCI([S(:t3’ & t.WOP~B3.B?)
.~ LO C(k4 ,X2 Y2 , & ICCIEI X2 ,Y2 H2d) & UPON(B,62) & NEGA T~’~ ?,3).

P2; “PL~SH ONIV” PuS l ’TOYi ~. IY ,~2 V 2 i & IOC (MXY H) & LOC(B,X ,Y,H)
& NOT(EXISTS(82 , H2) -~~ 1OC~82 ,X2 ,Y 2 H 2 i & ISBOX(82))

.> LOC(M X2 V2 ,fiY ~- LOC(B ,)(2,Y2 ,H) & ‘~EGATE (A t L’ .
- i i

P3, U~Si~~~< ~ PUSH ~~~~~~~~)
~Y.X 2Y2 ’ & IOC V ,Y V 4 ’ & LOC(B ,X,Y .H2) & UPOW(B ,82)

— , PU O-~~ i~ X , / ,X2~’2) & i ~~- ~!) <V 1) & t~ ~,A

11; iNli iNlT:P~
. E g T 5 l j l ~ - - B~ : ~3X ~’ /~~~ - 5 ~~~ 1, 1) ~. LOC (BA’ . ‘~~~~ 1

~— LOC(~X , ,7~ .) S IOC 1B X 2 . 7 .~ Ii S UPC- ’~i[3 ,(
~

- & LOC(BX3,~I6 , l)
- • & ISMO ~“~~4N~~ & :iA ~~~’;4 f3 4~ & ISBDX BXi) & IS I3OXI BX2) & IS3OX(8X3)

& HVA It f3Xj , 3’ & k~’A ; 1x ’~ & ii ’/ t~ BV ~,5)

END END

C.4 11-22

-l

Psnlet Extended Example C.5

C.5. Cross-reference and meanings for predicates

C1!MBDOWN(m) - ,iion~sy m is to ci is& down f rom soi ~ e~ vs tsd obj.c t (s t bo w) .
IHSUSES CI
PHSUS(S 62 -Cl

CLIMBUP(m,’çy,h) - monk.y ii to cti~ up t o hsi,~it I, it co-ordi r&su ;y .
LHSUSES C2 -

NESTEDL P2
RHSUSES -C2 NI

EATS(m,bn) - monk.y m si t s bn (to our cats, banin..).
RHSUSES Ri -

6OTO(m,~c,y) - monk.y is to ao to co-ord inits. <x,y >
IHSUSES 61 62
PHSUSES HI -61 62 Ni

HUNGRY(m~ - m s huniry
IHSUSES Hi RI
RHSUSES -Ri

HVAL(bw ,n) - bw has Pi.uri,tic vihjg n, which or dsr s how objsc ts irs cho,sit
LHSL?SES Ni
NESTEDI N!
RHSUSES 11

INJT(p) — irittitilirs probi. m p 1 & dummy.
IHSUSES Ii

ISBANANAS(bn) - bi~ is • bunch of bana nas.
LHSUSES HI Ni
PHSUSES 11

ISBOX~bw) - bi” ii s br,,
LHSUSES CL C2 Ni P1
NEST EDI P2
RHSUSES 11

ISMONKEY(rn) - m is . rn - -.y
LHSUSES Hi Ci C2
RHSUSES ii

LOC(o w ,y, h) - ob~sct o is ioe.ted if co-ordinal.. <w ,y>, h..1h1 K
IHSIJSES HI Ci G2 Ci C2 Ri P2 NI P1 P2 P3
P’JESTEOL P2
RHSUSES Cl -Gi Cl -Cl C2 -C2 - Ri P1 -P1 P2 -P2 P3 - P3 11

NEEDBOX(m ,,.~ h> - morik.y n..d. to mo,. , bo~ to -cw,y>, h..~hl h
t.HSIJSES Ni
PHSUSES P2 -Ni

PUSHTO(m,bw ,x1 ,yI ,~2 y 2) - mon~.y m is to push bo w b~ from <w l,y 1 to 2,y 2,-
LHSVS~S Pt P2 P3
RHSLJS~ S Ni -P3 -P2 P3

REP~CHFOR(in.bn) - rnon~sy a to rssc.h to , bananis bit
LHSUS~ S Ri 22
RI4SUSES Hi -Ri -P2 Ni

LJPONi0 .h-i) - o Ii upon bow l~
,,

I. - INSUSES Ci P3
NESTE OL NI P1

• RKS USE~ -Cl C2 P1 -P3 II

11-23

,~~~-~~~~~~ - ---~~~~~ -
-- -—

~~~~~~~~~~~~~ —.--- ----
~ --~~



- ~~~~~~~~~~~~
- 

~~~~~~~1~~~~~

Psnlst

D. Grammar for Psnt st

Syntact ic meta-variabl es are in lower case. The suff ix M-x-I ist ” refers to a list of one
or more of the entities specified by the part of the variable before the first “ — “

, separated
by the delimiting character or grammar entity at the position “ x ” , for ins tanc e “ arg ument— ,—
listu is a list of argument’s, separated by “

,
“
. Alternatives in the grammar are separated

by “I” - :— separates definition from what is being defined, if the definition is a formal
definition; for informal ones , “ is ” is used. Optional sequences are enclosed by “(and “ 3”.
The order of definition of the grammar variables is depth-first by the line of first
appearance , and within lines, lef t-to-right. That means , as the definitions proceed, the
most recently-mentioned variables get defined next , with others before them stacked up
for later definition, in a last-in first-out order except that the stack removal follows left—
to-ri ght order w ithin definitions. -

-

sys t em :— BEGIN (define-;-list ;] module-;-list END.
su percommen t is a comment that may be inserted anywhere , and is

- enclosed in Vs ; the Z character may not be used singly
elsewhere , even in identifiers or inside pairs of “‘s

define :— DEFINE oldid newid
oldid :— ident
ident is a string of characters , where a character can be

a letter , a digit , :, !, or ? followed by anything;
the first character of an ident cannot be a digit;
ex amp les~ Ii :VAR?-3 Fire! X?.PROC ?sQUO ?95K

newid :— ident
module :— EXPR modulename () ; [dec l a re - ; - hs t ; 3 prod-;-list ; END
inodulename :— ident
declare :— dec lareword (identpair- ,-t ist
declareword :- REQUIRE j NONFLUENT I DCMD PSMACRO
identpair :— ident I ‘ (ident - dent
prod :— prodname ; [comnt orchar 3 lhs arrchar rhs
prodname :— ident
comnt : “ string
st r ing is a string of characters , except “ and ‘Z
o rchar is a character or DEF!NE’d dent that stands for OR;

-
. , OR itself could be used; common pract ice is to use :: ;

the asc ii character for OR is 37 (octal) , w h i c h
prints as SOS ?8 or 1.-

lhs lhsconj-andch ar- Iist
Ibscon) lhspredarg notchar lhspredarg no~ :hpr (riestedc or!j)

I psma cro call
lhspr edarg :— lhss pec ia l (lspec a rg- ,- list) pred (va ’- ,-Iis t
Ihsspecial :— SATISFIES I SAT ISF IES2 SAT ISF IES3 I VNEQ I VEQ
Ispecarg is a va r or exp, depending on the pa~ticu Ia’

special: VNEQ arid V EQ take two var arguments;
the three SATISFIES’ s take one, two , and three var
arguments , followed by one argument wh ich is an ex p

var :— ident
exp is an Uiisp expression or a quoted Lisp ex pression

11-25 0.

- .
‘

- ~~~- - - -
- -

.

‘ ~‘P~GjW I’& ~~ BLkNK.-NOT ?ILbThD
___ - ~~~~ s*~_~~

_
d~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~

-. -

D. Grammar for Psntst Penist

(see the notes following the grammar)
pred :— ident
notchar Is NOT or asc ii character 5 (may be DEFINE’d otherwise)
nestedconj :— exists andchar lhs I lhsconj andchar lhs

• exists :— EXISTS (var - ,-Iist
andchar is AND or & or ascii character 4 (may be DEFINE’d otherwise)
psmac roc all is a call on a user-defined psm acro; it must return

a value with the format of en LHS or F:H$,
depending on where it occurs

arrchar Is a character or DEFINE’d ident that stands for OR;
OR itself could be used; a modified Mlisp (PSNPRE) is
required to be able to use “—> “ (which appears in the
Ps in this and other documents);
ascii 37 (octal) is OR, printing as SOS ?8 Or f4-

rhs :— rhsconj-andchar- list
rPisconj :— pred (varexp - ,-lis t) I notchar pred (v arexp- ,-li st)

I exists NEGATE (negargs
I rhsspecial (rspecarg— ,-list) I psm acroca ll

varexp :— var exp
negargs :— posirit- ,-list ALL I t&LL , negint-,-list
posint is a positive integer
hegint is a negative integer
rhsspeciat :— OEI.AYEXPND ADOPROD REPPROD REPU—IS I REPRHS

I REPCOMNT
rspecarg Is a varexp- ,-l st ; the number of vare x p ’s depends

on rhsspecial : 1, 5, 4, 2. 2, 2, respectivel y

The fo llow ing g ives the meanings for dec lareword ’ s , lhsconj ’s , lhsspeci al’ s , rhs co nj ’s ,
EXISTS, NEGATE, and rhsspecial ’s.

REQUIRE causes the modules whose names are arguments to be loaded automaticall y
whenever the module contan ing the dec laration is loaded (by LOADPS, the PS
load function). Extension EXP is assu~ ed for those files. Example:
REQUIRE(STUT, S1UCR) causes STUT.EXP arid STUCR.EXP to be loaded.

NONFLUENT causes its arguments , wh ch are essu rred ~o he pred’s , to become nori--fluents ,
that is, when changes to the Wor king Memory are made on these pred’ s, no
:SMPX entry is creat ed for fol lowing up any consequences of those changes.

• Example: NONFLUENT(LEFTCF, W~ RDEC~

DCMD causes its argument to be passed to the function CMD, whenever the containing
modu le is loaded or set up (LOADPS or SETUP fij oc ti ons). CMD is the function
which reads a command file. Example: DCMD(’(STLJDNT.CMD)).

PSMACRO declares its arguments to be PSMACPO f i les; they are read immediatel y on being
declared , resulting in defin ition of the f unct iois they contain; extensi on MAC is
assumed. The format of the f ;l~ s should be Lisp DEFPROP format or its
equivalent. Example: PSMACROISTUD~~A).

0. 11-26

~~~~~~~-rn -- -~~~~~~~ ---- - .~~~~~~~~~~~ --  ~~~~~~~~~~ 



Psnlst Grammar for Psn lst 0.

lhsconj specifies a template to be used during the match process to test for presence or
absence of an instance in the Working Memory - As each Ihsconj is matched , 

-

variables with value NIL are assigned corresponding values from the matching
instance. The Lisp VALUE property is used for this binding. A notchar
preceding a predarg specifies absence of a particula r instance , that is , al l
variables in the var- ,- l is t must have been used prev io usl y n the LHS and
thereby bound. The notchar ( nestedco nj ) construct can be used to specify
absence of a more complex condition , allowing quan tification over variables via
EXISTS ( see below ) , and otherwise allowing negation of a conjunction of
templates. A match is attemp ted on whatever is inside the 0’s, and if that match
fails , the main match continues.

SATISFIES tests the value of the Mlic ,~ or Lisp expression which is its second dr~ ument;
the match is allowed to continue if the result is non-NIL. The first argument s a
variable which is to be used ~~ an argumen t to the expression (it also expl icit l y
appears in the expression t o be evaluated , of cour~e). in this as in other p’aces,

- if a QUOTEd Lisp expression appears , the CA DR of the QUC E expression is
evaluated . This allows a user to ex press expressions eithe i in Mhsp or in Lisp.
For instance , one cou ld say SATISF IES(X , NUMBEPP X) or SAT!SFIES(X ,
‘(NUMBERP X)) with the same result. Another special feature of SATISFIES (arid
the other lhsspecia ls) is that preceding i t  by NOT causes the internal result to
have the NOT around the expression , for insl~ nce NOT SATI SF IES(N, N ?*LESS 7)
becomes iritern~~I y (SAT ISFIES N (NOT (‘LESS N 7))~

SATISFIES2 similar to SAT ISFIES , w ith two variab ’ es declared to be needed 4 or the third
expression argument. Example: SAT ISFIES2(X , Y, X ? ,GREAT Y) or SATISFIES2(X ,
Y, ‘(?*GREAT X Y).

SATISFIES3 takes three va riables and an expression , to ’ nYance , SAT ISF!E~3(L , M, N, N —

L + M) or SAT ISFIES3(L , M, N, ‘(EQUAL N (PLUS L M )).

VNEQ compares the values of its two ~ia- iab~er , and aUow s the r~atch to continue ~f they
- - are diff erent (not EQ). Examp le: VNEQ(C, D).

VEQ compares the values of ~s two variables , allowing the rra~~~ to con tinue if thi~y are
- - the same (EQ). NOT VEQ(X , Y) is converted inter na ! -~’ to ~(N[ Q(X , Y). NOT VNEQ(C,

D) is converted to V EQ(C, D).

EXISTS is used in nestedco rij ’ s in LHSs to ~~r 1are a set of variables in the local cc~nte~ l of
the nestedc onj. 10r I ~~a rce , NOT( EX~~TS~A , B) & ...) mea r that t the ~~ r-d ’ -o r~
iri~ide the N~)T( .. . ) is tr .~ - fo r some values for A ari t 3, then the m~tch is
disc ontinued. When that nestedcor i j i~~ en~ oun’e red  in the m itc h , A arid B are
assigned the va lue r-HL , and an at te m pt is made to extend the cu r - c ~nt as s griment
to variables including A and 8 so t b i t  the ccn 1~:nctio n r-ic-de the ( l ’ s is sat :sl ied.
The product ion sy r - t a x_ che ck ~ng funct iors will give a warning if the v a’  ahies of
the EXISTS are ii~.ed ivnv c~u~iy ou 1

~~th’ thr nrstedcor i j in ~1-e U—IS ~if the same
prod. A lsa , an EXISTS is ~UtO r 3I Ca li Y c reat ed (with war r i ng ) if a var ab le inside
a nestedco nj has not bet - declared by an EX iST S arid if it has not been us ed
outside of the nesteckonl context.

- -

11-27 0. 

-- . —~~~- . - 
~~~~~~

. —__
-
~~~~~~



-
~

- .-~~ ~~~~~~~~~~~~~~~~~~ 
-- -—--

~~~~~~~~~~
-——-.

-
-(

0. . Grammar for Psr ,lst Ps nts t

rhsconj Is used to specif y cha nges to be made to the Working Memory , based on va lue s
assigned to variab les during the match to the LI-IS, and usi ng values created by
EXISTS, see below. A positive conjunct (without a notch ar) is an addit ion to
the Working Memory of a specific instance , while a negative one is a deletion of
a specific instance. Note that the Working Memory is ful l y expl icit , conta in ing
only positive instances.

EXISTS Is used as an rhsc onj to s pecify that new object ; are to be created and the
objects assi gned as va lues to the variable arguments of the EXISTS. Those
values are then used throug hout the RHS in building up new instances - A
warning is given if an EXISTS variable is used in the LHS of the same prod.
Also, an RHS variable not used in the LHS or in an EXISTS is automaticall y
assumed to be an EXISTS var iable , and a warning is given. The objects created
are based on the names of the variables , for instance , EXISTS(MO N~ BAN) mig ht
create the constants MON-3 and BAN-5. The number used depends ~ r how
many previous objects were created using the particu lar variable. Internall y al l
EXISTS in an RHS are combine d into one and put at the beg innin g of the RHS.

- •1EGATE is an abbreviation for NOT of those LI-IS corij uncts r e fe r r ed ft by pos itive n irneric
arguments , counting from le ft to right H the LHS. The cou nt also includes
entities in the LI-IS that are not positive conjun cts (a positive conjunct s one
that is not preceded by NOT). ALL means that all positive LHS conjuncts are to
be negated , whereas ALL followed by negative integers means ALL BUT those
cOnjuncts referred to by the negation ; #

~he negative n’egers Warnings are

given if there is an exp licit (using integers) a ttempt ~ . nega te or un~negat e
something in the LHS that is not positive.

DELAYEXPND is used to cause delayed expansion ~f a PSMACRO . Ordin~~ ’ ’. PSM~iCRO’s are
expanded at SETUP time, thus prFclud ’~l-. the deperc~u - c of the result on v~~’es
known onl y at run time. DELAYEXPND al lows rt ~n- tinie C ~~ in to 0:c ’i~ , using
values assi gned to variab les duri ng the r ra lch or by EXISTS For ris~~nce ,
suppose STRINGINS is a PSMACRO for the co nvers ion o~ stri ngs from an e~terna I
format to a list 1f c o njunct s form in g ft - i~ inter’ i~ ~ ~~ - €~niation. Then
STRTNG!NS(’(aa bb cc)) would be a SE~~Llr~ l r ~~ cor.- -~” c - n , and the i~ t of
cOnjunc ts would be permanently substituted t a r he o~c urr r~r ’e of the
STRINGINS express ion. On the ot her hand, if one ~-a r ,t ed tc r~ er t ‘t- ~ -n ’c- -~~~

representation of a s tring that is c Orr~~ut c -i by the ~ , one r r - ~~1’4 c a .’ ,

DELAYEXPND’1STRJNGINS(L)), The e’a -~ro STPIN~~~~ -s - - -~d be ~~~~~ w - !h
argument every tim e the P f ired , with r.ossib ly ~ ‘ i if t i ’ rert r c . - f ?2Ch ~inie
DELAYEX~’N~- handi i~ c orrectly t~o occurre nc e of ~X J S T 5 r. ‘ n~’ re ’j - ’ ~~~ r - ncrc
ca l ls.

• ADDPROD has f ive argur~nnts ; (p~odnarn e, prec , com rits , h~l s t , rhs irt) . It is a p r i m t i v e for
adding a P named prodname , w ’h ~~- -“- -~~ corn~~t s , Lt ’S ih’~H - t , P}IS ~~~~~ and
preceding P prec , (if prec is not a P, pro d— i .~-ie is ~~k~ r to bc ~l~? r f ‘
module p- -cc) . A DOPROD causes assertion o f (~~fl~ Pt)C Do prodna ne)

REPPROD(prodri a rne, r.r,ririts , - - ,t , r~’c 1 ’ . f -rn3r~. rp~~~ce r ’r”~~, L. ~~~
pi iC -.‘ p

prodname as in-J icated; as se r ts (REPPRODP prc .dna’ ie)

0. 11-28

_ _ _ -~~~~~~ - , - - ~~~~~~~~~~~~ -- - -—- - _ _ _ _ _ _

T

Psnlst Grammar for Psntst D.

REPLHS(prodname, lhslist) means rep lace LHS of prodname as indicated; asser 1 s (REPLHSP
prodname).

REPRHS(prodname, rhslist) means replace RHS of prodnarn e as indicated; asser ts (REPRI-ISP
prodname).

REP~OMNT(prodname, comnts) means rep lace conint string; asserts (REPCOMNTP
prodname).

Additional notes;

nestedconj pred ’ s are implicitly locally non-fluent , i.e., Work ing Memory changes don ’t
result in :SMPX entries for those Ps contain1ng the changed pred’ s only within
the nestedconj context; note that a nestedconj must have more than one
element.

Mlisp reference: Mlisp, by D. C. Smith, Stanford AIM-135; copies are avai lable at CMU.
Recourse to that should not be necessary for reading programs , or for writing
simp le ones , especia lly j f stud y is made of existing examples of PSs.

Pref ix operators that are known to Mlisp need not have parentheses around arguments ,
e.g. NCONS B, CADR X. Binary infix operators may be writ ten between their
arguments , e.g. A CONS B, X ~ Y, W NCONC 0 CONS S (that last becomes (NCONC
W (CONS D 5)), i.e., lis t-building assoc iates ri ght , not lef t as is customary for
arithmetic functions).

Mlisp reserved words: BEGIN NEW SPECIAL END IF THEN ALSO ELSE FOR IN ON TO BY DO
COLLECT U~f~IL EXPR FEXPR LEXPR MACRO DEFINE LAMBDA OCTAL WHILE STR
STRP STRLEN AT CAT SEQ SUBSTR PRINTSTR. A lso , the Mlisp tra ’- s iator may
balk if standard Lisp functions ’ names are used in wha t it sees as illegal
contexts.

Mlisp expressions are very sim lar to Algol , w ith the feature tb~~t functions used are Lisp
functions. For insta nce , + for PLUS, / for QUOTIENT , and so on. Certain

- characters have special meanings: ta for APPEND, <a , b, i.> for ii 1ST A B C); +, *,

/, -, —, .- with standard meanings; logical connect ives as mentioned in the
grammar above; square brac k ets are used for list accessi ng, e.g. a [33 is (CADDR
a).

k
quoted Lisp expressions are Lisp s-e x press ions p~r.c~ ded by ‘

, g. (EQUAL (‘ [‘J~ M
(SUB1 L)); note that Ml sp conver ,tions should be foLo w c~d when ~~udi~ those
in the Mlisp versions of systems, namel y, special characters in atoms must be

• preceded by ‘ internall y in Psnlst , the ?‘~ are dropped or changed to /‘s.

11-29

_ _ _ _ _ _ _ _ _ _ _ _ -.4

- _

- r _
-

Ps n$st

Appendix A. $hort $ummary

A.1. System architecture and production format of Psntst

A production system (PS) is a set of conditional rules, ~roductions (Ps), that L. .
represent changes t ’ a symbolic model of a si tuation along with conditions under which
those changes are to be made. A production ~y~j~rn architecture (P5A .) provides: a

- Wo rki flg Memory (WM), which contains symbol structures representing the d / riar’- ic state
of the situation being modelled; a Produc tion Memory (PM) wh rch c o- t a Hc the Ps; a
particutar control mechanism known as the recog n ize-act çy.c�.., by w L ’rh Ps are
repea tedly executed or fired - a P that is recognized to have its condition satisfied with
respec t to WM contents is fired by having its act ions per f ormed , whereupon the c ’ - ~ie is
repea ted using the new contents of WM (Wk4 is up dated by the actions of the P that is
fired); and a set of conv entions or order ing principles by ~vh- : ‘ a single rule may be I -

selected from the set of rules that are recognized to be satisfied t-1- the contents of WM
during any recognize-act cycle.

-1
The Psnlst (PS anal yst) is a PSA , as follows. WM is an unordered set c~ data ‘ ems

called instances. Each instance is an ordered list of two or more e e r ~onts , where he f i rs t
element is a member of a set of constant atoms called pred icaf es ., and where succeeding
elements are either atoms or list structures - list structures howe’er are opaque , H e r
internal structure not being access ibt~ t o the reco g r ’ on mechanism of the PS’~ ~~

-. < ~ances
ar e considered to be grouped toget her in the WkA acco rding to the ’~ c redicates. ~~ is an .

-

unordered set of Ps, each consisting of a left-hand-side or
~~

(the ~o nd t o ” ~~
- a~’~ a

right—hand~side or RH~ (the ac tion part). The form c~ LHSs a-i d RHSs -
~~ - ‘ be discus .~~~

-

be ow . The rec ognize-act cycle consists rj f a m~~-h of t i-i e i-IS to WM, resj ing it’ t,~~~-’ , s
for y.~riabtes contained in elements of the LHS. A f ir i ng then ures those h n d !n~~ to crc ~~~~ -~~~~

WM instances accord -~g to the elements of the RHS. Tw o featu res of ‘‘ “ ‘~ a t ch are
unusual. First , all possible matches re found, and a f i ~iog occ urs imr~e d a c i y for eac h
match. That is , with i a single recognize-~J cycie , many f i r i n gs of the same ~~~-

-
~c~~c n

may i.’~cur. Second, a match must include at e . r t o - ’e da t a r i ance th at is new ~~ith
respect t o the P that s matched , where new s defined as having enter i . ~i.A ? ‘t er the
pr ~vi~ us firing 01 t~’-e P. The a .ction part of a re c - ze ~~ c y c ~e co rs~s~s nf addi-g or
deleting WM .nst ~ ~cos , and of optionally making c~ a-ges to PM using AOCPR’’P and Yher
special operators exp lained below.

The way Ps~~ t orders satisfied Ps to select o~’e ~c - f i r in g (t i s is th~ t t ! . ~~~
component) is by ordering events t hat occ ur d ,— ing t he ?r t ion part of t h e rec ’i.n~’e ~ct
- ,,rie. This is done by using a stack memory hat records , 1 i~ ea~ h ~~~~~~ chan ,y he s~ ’ of t~ ‘~
Ps that min i— f ~ ecOr r~ satis ’ied as ~i result of the r iar~~’ T’e ‘ac~. P~~r.r y is c a led
:SMPX~ stack memory for production exam,ra~io rs. More rei:ent WM change s a’ e stacked
on ton of older ones , so that Ps ~:it is f ted t c . m r-r p re r ~~nt c~’an~ r- ~ are gua rante ed to- - e , if
sa t is f - nd , before Ps using older c ha~~e~. The or~ cr of r ’ce~~ -j o’ ch?~~~cr -~~- t h p P f t r - ng

are dete~~ rwd by the c~r dcr of conjur c ts within the P’s P~~ lh-s r .r-~iIr~~g pr-n -c - p ie
leaves two se lection orders un— ,pcc ’ f ied: i f n - - - r e t h~~ one ~‘ using the s-”~’ ~~~~ ch.,nr.e
sat isfie d , one is arbitrari l y r u o~ I,~ to f i re and h other s puc~~- d dc w n in :~~YPX c y ~t1e
tha’~ges made by the se lec tea P; if ~ P t m ’ . more than o nCe in a re rOgr - izc a i cvcl, m o e

~ I 11-30

Psnls t Short Summar , A. 1

then one match is found for the P), the f i rings ar e done in an arbit rary order. With
respect to the former arbi t rary chO ce , if one P is to be selected before another one that
uses the same WM change , the L}-lS~ of the two Ps must c-~ piic t t y be mutuall y exclusive.
Tha t is , it is the user ’s responsibili t y to distinguish between don’t-care and necessaril y-
ordered situat ions. Given the :SMPX mechanism for ord ~ring P firings , the recognize-act
cycle can be summar :zed as follows: a change occurs to WM, resulting in :SMPX entries ;
starting from the top of :SMPX , Ps are matched until a P condition is found to be satisfied ;
the actions of the satisfied P are executed , resulting in stacking ip new entries ri
and so on.

¶ The following is a Psntst production that appears in a PS that models a hungry
monkey in a room w ith some bananas , as the monkey recognizes t s hunger end t r ies to
reach for the bananas.

Hi; “HUNGRY” :: HUNGRY(M) & ISMONKEY0V4) & ISBANANAS(B) & LOC(E3,X IY,H)

~ > GOTO(M,X,Y) ~ REACHFOR(M,B);

The name of the P is Hi , its comment is “HUNGRY”, and the rer na-n de ’ o~ the P gives the
LMS and the RHS, sepa r a ted by “

~~~>
“. The LHS is a conjunct ion of temp ia~es for W ¼.4

elements; each t e ’ - c .~ te is a predicate fol oweci by a list of var ables. When a match
succeeds , each vari abl’~ is bound to a spec ific token f ro m the ~~~ instance cor responding
to the temp late. Hi would n- atc b a situat 4 o n in w b ch the instances (lSM~NI~EY Mt-~K - 1),
(HUNGRY MN~-i’, J s ’ ~’JAt ~As f3AFJ - i) , and (LOC ~AN-- 1 1-1 J-3 K-2) are p resent , to
produce two new i~ r t a ” ces , (GOTO MNI<—1 1-1 J-3) arid AC~-~ C~ ~~~i ’ - -  I 13ç~\- )),
assuming,  say , tha t the (HUN~ Rr MNK-I)  - d ance  is a new one. M ‘s bo-j --id tc Ki~~h-1 , B to
BAN~-1, X to I-i, and so on. MNK—1 is a token for the monkey, BAN-i for the L~ nana s in

the room, 1-i for a spatial loc a t r along the X coord inate axis , and so on i~iC GOTO and
REACHFOR instances become insti gators of f L - r t h er action , if Ps to model the corresponding
real actions exist and if other cond itions ri the model are anp’o~ r ate.

A.2. Features of PsnkLp~~grams

The notat ion 1 y- Ps ri r’sn~ .t is a subset of the M~ - -D a r c ~ -~~e, or - a t h e ’  a special
interpretation of Ml sp exp cc- ~s ons (cee M- ;r o. D. C. ~~~ “ a it ,~

.,iord A l Lb report ,
available at CMU). A PS co rs st’~ of one or r-’ore nodu ec , each c~ which is r~~~ - c -en t ed  as
an Mlisp EXPR cons ist ing of a rJE( !~ .. END blc- -- ” Eac i-, m’od de c~ n s s t ~ of optiona l
declarat io ns , followed by a l ist o ’ -

~~ e~ i-o Ps. A P is sin~~ly a disi~~’c t io ’~ o opt~~nal
comment str ing and two conjunct ions , the f i r s t  cor 1 nn b c n~ the L I-IS, ‘ c s e ro r d , the
RHS. A spec ial  funct ion s used to tr ai s i ate the~e convert or i -tto the format ~;c cc ~
internall y b P- r -k t

The fo liowing presents nouel syntac t ic  ra t -es that are ii--i oj ntered in reading
Psnls t programs:

— the Mlisp co”’ncnt ch a rar ~er ; te~t betwee n 7.’c is gr o ed
- - used to qi rite Lisp S- ex prp c r onc

- string c~ rt~ f ant ~1c- rn:hr (for ns ’ -’’-~~’~ P~ni~t c r - r ’ ’ - nn t c )
— a semicolon ç used ‘~t ’ - ’  a P nan e art i  to se p a r a te  ~‘s

—> - this symbol separa tes  Lt-~~c of Ps fro m Rl—~Ss

1t-3 t 



- —.—.—.——- —.-~~~~~~ --—-..-—— 
-,,

~~~~
-‘— .------ ___—,----w _ _

~~~~~~~~~~~~~~~~~ -w -—- -— —
~
-----—-

~
-

~~ 
- .—~

----———-.—.-
~~~ --—_ .— --- ~‘——- —,-—- .-—--—— -- —. —- -— ,——,- -- —.— - .--——-- -—— -‘---.—.-— -- — —.~

A.2 Short Summary Ps&st

:: - used to separate Psnlst comment string fro m associated LHS
(is DEFINE’d to be OR)

-

-
— Mlisp charac t er-quote character; must he used for characters

that have special Mlisp meanings. For instance , V’-l
is an identifier , not “V minus 1,’.

‘ & - AND
— Mlisp syntax for (LIST ...), the Lisp list-building function
- Miisp syntax for Lisp APPEND function, for joining two lists

Summary of notation for Ps:
nam e “comment” :: LHS •> P1-45

The following com m ents expla in other spec at features of Psn~st programs , but onl y
to the extent necessary for easier reading of the pr ogra- -- s Examp les of these features
are to be found by the reade r in specific PSs.

Macros: ce rta in things that look like predicates are rca li -y macros , expanding into a
sequence of predicates with argum ents; these are usuall y expanded at load time ,
by user-defined Li s p programs

NOT specif ies “absence of’ when it precedes LHS con~jncts; it cerod es deletion when it
precedes RHS con incts; iri LW Ss it may aso p-ecede a nested conjunction ,
NOT(...) , in whic Li case the conj unct or is r~a ic ed as if ‘t were an t i-IS, and if ;t
succeeds the LHS match fai ts; t hese negated conjunctions may be nested, that Is ,
they may co r~t a i n nested con~~-ic lions (s ce also EX ISTS , below).

NEGATE is a built-in ‘ ma cr o th a t spec u iec which of t~ic LHS co n nmd s are to be negated In
the RHS, h,’ number , or by using ALL~ f negative integers follow ALL as en
argument , it means “ALL but” ‘he instances s p e c i f i d by the nega tive integers ;
for instance , NEG.ATE(3) would s tan d for NOT JS8ANANAS(B)I ira t ie above
examp le.

SATISFIES, SAT !SFIES2 , SAT ISF1E~3 are s pec - a l pc ~- ca ’or, fo~ test ing v? -Jer ut va riables
dt” ing the n’a~:h, ~~~ Lisp predicate s ; tb’~ r,u’-”bers 2 and 3 are the num ber o~
variab le arguments ~~AT 1SF 1ES ta~ec ore)

VEQ(x ,y) is equivalent to SAT ISFICS2(x , y x E() y), ie , e~~a i - t y .
5’. VNEQ~c ,y) is equiv&ent to SA~~’F!E S2(x ,i,~ NOQ y) , i e , rie ’~~a~ty .

Co njuncts in RHSs may use arhit r~i-y tn~ press Onc as a rg ~~ enh , to be EVAL’d as Lisp
exp ’ p ton~ during the P f ,r i~ process. ~tALco incl u- ’es Al gol-like arithme tic

- ‘ express ions)
NoNrLuENT~)) decl a re s p to he a ~on- ft uecf , that is , ;m ri ~n~p t ie —i of an instance of

predicate p into the Thr~~~r Memory does not ~~~~~~~ any P’ t o be matched for
poss~h!e f iriri~~ .~y OCi to ~h-~t r - - - ’ ~m ‘ or ~n other o’ ci; no pot : y is made t o
:SMPX for that change.

REQUIRE(a ,b,c ,..) dec lare - ; t h?t a,b,c ,.. are reqj t red modules of the PS whose r ain rrodu e
‘ contains the c e c ~a ra t io n .

PSMACRO(f i ,f2 ,...) dec la r e r , f i l es o be r,~ad to dn ’ — e t ; p r n-~~~r r s
DCMD(fl ,f2 ,) dochrr- , ti ’-? ; to b2 read as coirr~and (C~ D) f i !pc .
EXISTS in an PHS cai j c es c r ea t io n of new o bjec is whose names a re ex ten s i- rns c f the

argurn e - its of the E / tS ~ ’ : those ob~e i s ar e 1 en -.- ed ri the re r ia ’ r - te , -o ’ ~he
RHS to form v~

EXISTS in an l i-IL must be in a nested p-css ~o- - of the f orm ~& T(...) , its ‘uncto n t h or is

A .2 13 ?


~~~~iT~~~~~~~~~~~~~~~ iT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Psnlst Short Summary A.2

to locally declare its arguments as variables , causing them to be initialized to NIL
for the match that follows , within the ( ... ).

DELAYEXPND(x) where x is some macro call: this specifies that the macro is not to be
expanded when the P is inserted, but during the ac tual firing of the P; this is

• onl y used when the predicates of the RHS depend on values not known until run
time; it can not appear in LHSs.

ADDPROD(prod,prec ,comnt ,lhslist ,rhsl ist) : primit ive for adding a P (named prod) with
comment comnt; lhslist and rhsl ist are lists representing new LHS and RHS; the
prec argument is either a P name , indicating that prod is to be placed after it , or
is taken to be the name of a new module of which prod is the first P; ADOPROD
causes assertion of (ADDPRODP prod).

REPPROD(prod,c omnt ,lhs t i s t ,rhslist) : replace comment , LHS, and RHS of prod as indicated;
asserts REPPRODP(prod).

REPLHS(prod lhslist) : rep lace LHS of prod as indicated, asser t s REPLHSP(prod).
REPRHS(prod ,rhst ist): rep lace RHS; asserts REPRHSP(prod).
REPCOMNT(prod,comnt); replace comment string; asserts REPCOMNTP(prod).

A.3. Features of the t race output

TOP LEVEL ASSERT - the initial s tar t ing assert ion , typed by user.
I — a P fired

— number following ! - the tiring was the numbor ’th -

P-name followed by ‘-‘ then number - the riumber ’th firing of the P
“string” — the comment str n~, associated with the P
USiNG .. - instances from the Working Memory used in matching the LHS
(xxx . yyy) .. . - assi gnment t~ al was made for the match: xx x was assi gned the value yyy,

etc.
INSERTING ... - the insertions and deletions made by the RHS
( :SMPX .... number ) - a display c t  :SMPX after firing; number is length of SMP~ ; each

entry is enclosed in []‘s
EXAMINING ... - c~ 

-~‘es the n a m e of the P and the key rise t ions causing the e~ aminat ion
ITRY — means that a non-f a s t - ’ail exam ination is being done; f as t - f  a~ is a q~~ck check on

- c whethe r any pos ihve o red ca te has no instances , before the full-f ledged match
is tried (forn ier y /PJFF)

WARNING ... — appea rs ~ hen an inst a nce is inser ted or deleted but was already present or
absent , res pect ~~el y

— appears for a wa rning for an inc t ar rp -ose r t i o n
- appears for a warning for ~i n~ t?nce delet ion

If the RHS included ADDPROD, E°~-~~~fl, R EPCOMNT , REPLH S, or hh~’R’-t S, a message is
printed before the INSER1 Lf~G line.

PSBREAK comment AT ,. - a break in execution; user interact ions c~ rsist of commands in
0’s; the system responds with output dependent on the command , or with o~

” i
.3. (OK) is typed by the user to re ’ ume execution

The above appear on a fu ll DVERBGS.4 or :TVERBOS — 4 ‘~.‘ce; the f ollowing are
modifications to- lessi~r t rac e s :

11-33 A.3

_ _  -
~~~~__ _ _  _ _ _ _ _ _ _ _ _ _ __


- -

~~~~~~~~~~~~~~~~~~~~

.,
A.3 Short Summary Psnlst

- 3.

the P-firing message is all on one line
most of the EXAMINING message disappears; only the P name remains; if /TRY occurred,

only the / appears (in case of verbosity 1, not even P names appear)
most of the WARNING message disappears - only the a’s rema in
the USING and INSERTING lines disappear
the messages from ADDPROD et al drop out
break messages , commands , and possibly their outputs disappear

4 -

- 

After execution , t ypica l ly  a DUMP occurs ( delimited by “DUMP”), followed by the output of
PERFEVAL:

Run time for the present RUN invocation
A small table of fi gures:

EXAM is the number of examinations of Ps
TRY is the number of non-fast-fail (/TRY) examinations
FIRE is the number of P firings
WMACT is database (Working Memory) actions: insertions + deletions
E/F, E/i, T/E give ratios of the first three
the line following the numbers gives an average time figure for each of the

relevant numbers in the preceding line (divides total run time by each
of the numbers)

Detail on Working Memory changes; “NEW OBJECTS” are those created by EXISTS
Maximum length attained by :SMPX
CORE gives current available LISP core , plus amount used in current run
:ACTS — a list of the major actions in the current core-image
TRACE - a list of Ps that fired , in the order that they fired
FIRED x OUT OF ... - gives number of distinct Ps that fired

11-34



H

Psnlst

Appendix B. System File Pointers

This appendix and the next one are files that are kept on DSK: on the CMU-IOA
• computer under account [C41OMRO5). This chapter is not intended as a reference for a

Psntst user - PsnRef.Doc serves that purpose. In many cases the files mentioned in these
appendices are not on OSK:, but are kept on backup tapes. The interested reader should
request the author by mail that they be made available on DSK:.

Files relevant to Psnlst — Psnlst.Hlp

DSK: — (C41OMRO5); unless otherwise marked , files are on dectapes ,
namel y, MRO5 M12, PS2 , SV2, and SV4 - file DSK: OTADIR contains
directories for those tapes .

Psnlst.Sav runnable core image for the interpreter (DSK:)
Psnpre.Sav runnable core image for the pre-processor (DSK:)
Psnlst.Doc introduction to Psnlst
Psnref .Doc reference manual for Psrilst
Psnsho.Doc a short form of Psnlst documentation for non-users
Psdoc Jdo minor additions to system and documentat ion ,

updates to past and present Ps nref.Doc
PstaskDo c current set of comp lete or near-complete PSs (DSK:)
PSMisc.Com several small PSs - see Pstask.Do c
Pstask.Tdo set of tasks under consideration
Psntst , Psnts2, Psnts3 command files which constitute a test run

for debugging Psnls t;
— full descri ption of test protocol is Psntst Alc
— outputs from past tr ials are Psntst.tr ?, Psntst,Db?

Psnlst.Alc some sample allocations of core for P ~‘s
— this is now in Psnmis.Com , a combination of files.

- 

- documentation the entire documenta tion for the system:
Psnlst .Doc , Psnref .Do c , Psdoc Tdo
Lisp 1.6 (doc room), lIsp manual (see sys: Lisp.Doc)
Mlisp manual (doc room , under D. C. Smith )
Lisp Log, Ilsp,Log (minor details on current Lisp)
CMtJ Introductor y User ’s Manual
PDP—1O Monitor Reference manuals 

11-35  

—-— - - -



Panlet

Appendix C. Tasks to Date

Production systems in PSNLST — Pstask.Doc(C4IOMRO5]
UPDATED 22 July 76

- 
- General comments: 

-

1. If these are not on dskc or dskb, search file OTADIR, which contains
C directory listings for all MRO5 dec~apes.

2. The older ones wi l  riot necessa ily be up to date with Psnlst.
3. Systems are given in chronotr~gical order , mos t recent first.
4. Naming conventions:

all files related to a system have names with the same first
three letters as the main system name;

the extension COM stands for a combination file; if the file is
large , then it is the main source program plus others ;
otherwise it conta ins miscel laneous related files;

extension ALC gives core allocations for typ ical runs;
extension IRS, TRI, TRJ gi~.e behavior traces of various forms ;
<three Iet t er s >XR .TR S is the usual name of the cross-reference;
<thre e let te rs>C and ex tensior -s of that are command (CMD) files;
extension CT L is a batch control file;
<three letters or more>M is a P5Macro file;
OEM stands for demonstration .

5. Psnlst.Hlp contains pointers to Doc’s and other system files.

WBLOX + MILJPW - a blocks problem-solving system s imi lar to Winograd’s.
KPKEG - King Pawn King EndGame.
GPSR - GPS revisited (Ernst & Newell . 69); GPSTH gives ex tra Ps for

Tower of Hanoi; GPSMCO & GPSMC L give two versions for
Missionaries & Cannibals; GPSMK is Monkey & Bananas.

Misce lla.3ieous: PSMisc .Com has three t i les combined on it:
CRYXYZ is a PS to solve XX + YY — ZYZ (crypta r ithmetic )
Semnet.Mai is some comments on puzzle-solving and semantic nets;
Reso l u.Mai Is comments on resoLitiori theorem-proving.

TICTAC - simple TicT acToe , based on Human Problem Solving version.
MONKEY - Monkey and Bananas , wri t ten up in Pcnlst .Ooc.
EPAM - EPAM, adds Ps to represent learned nonsense syllable pairs.
STERNI3 — simple Sternburg task , variable size , positive response bias.
M1LIPS - extension of MILISY , the CMU mini-linguistic system.
STUDNI - Bobrow s STUDENT , for solving high schoo l al gebra word problems.
BFGPH - breadth-f irst grap h search (PSMacro file GRAPHM).

7- ‘ PSPCTP - PS for PCTP, a PLANNER program from MIT.
‘- SEGMNT — scan  Eng lish input and segment according to certain words that

are very common , deducing parts of speech (goes with STUDNM).

11-36



- 

- 

Chapter VII

Conclusion

Programming with Production Systems

Abstra ct .  This chapter f i rst  summar -zes the product ion ~- y: te ms (PSs) imp lemented for th is
thesis , reviewing their contribution to knowled ge f t  PSs , their contribution to knowledge
of tasks , and the open questions that they raise. Then PSs are eva~uated w i t h  respect to
a number of attr ibutes , amo”g which are pract ical feasibilit y, power , overhead , and
ar chitectural f lex ib :l ity , A taxonomy of control is used to highlight ~he power and
overhead aspect s ,  Support is given for the suitabil ity of P9s b r  understanding systems ,
by evaluating them ‘.-.-~th respect to a number of other at t r ibutes , with emp hasis on
modularit y and op”nnecs. A t~ix o : o r ~y of representat ion is developed as a moans for

- 
.1 measuring modular ity , suop ort i ng the Lixonomy of contro l , and providing openness At a

more abstract  level , t t — e methodology c ’ this t hesis is exa mi fe d for its ce~- t r ~ themes. A
sketch of a theory of Al programming is put forward , wi th  pre l r’- inary support draw n both
from an abstract co rrespondence to PSs and f r o ~’ t he s~ ’isfa c ~o ry co ncrete rea~ z a t i ~ ns -~~~

the systems as PSs. PSs presentl y have some defects , be~-~ -~~d to be correctab le , and

- ; some promising features to be explored and are at a stage of development whe~e serious
appl ications can be unde rtaken .

p

-

~

—

~

------

~

-

~ 

- - - —--- ~~-—~~~~.. — - — — -~~~ ~~~- -



Conclusion

Table of Contents

For Chapter VI!

SECTION PAGE

A Review of the Body of the Thes is V II-4
A.1 Review and summary of specific implementations V u -i
A.2 Statistics on the programs implemented Vl1-8

• - 
, 

A.3 Overview of co ncl usions V IZ- ID

B Programming Language Issues V u -i 1
8.1 General programming language fea tures VU-i 1

- 3.2 Control featu res V I!-13
8.3 Suggested improvements in basic operators VlI-18
8.4 Additional programmability topics V 11-2 1
8.5 Variations in efficiency over the systems VI1-22

C A Basis for Understanding Systems Vl!-23
C.1 General features V I[ 23
C.2 Representat ion taxonomy VtI-25
Fi g. C.1 Values for modifier components V I I-27
C.3 Application of the predicate renaming VII-29
Fig. C.2 The Transf module in GP S R VU-3D

Fig. C.3 LHS interactions between modules in GPSR ~ 30
Fig. C.4 RHS interactions between modules in GPSR VII-31

O The Nature of Al Programming V I1 33
0.1 Themes of control VI! 33
0.2 Problem spaces as a basis for a theory of Al programming  VI1-36

E The Future of Production Syste ms V 1T -43
E.1 Serious defects V l1— t~
E.2 Promising fea tures VII 43
E.3 Gaps n the evidence on production syste ms V If-45
Fig. E.1 A fragment of a semantic network VU-46
E.4 Pract ical , impractical , and theoretical applications V II—46
E.5 The case for production sys tems VlI-47

F References

APPENDIX PAGE

A Renamings of Predicates VI1-52
B First Abstrac tion V !t 5~’t
C Cross - reference of First Abstract io n V II—6 1
0 Second Abstract ion V lI-62

V U— i

IL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—

~~

—

~~~ TEII ~~~~~~~~~ I

Conclusion

A. Review of the Body of the Thesis

A. !. Review and summary of ~pe c i f i c mpjementat ions

This subsection reviews e acr i ot the PSs mplemented , emphasi zing the nature of the
task performed , the phenomena exhibited by the program , th e organization and unusual
features of control ri the PS , how it cor ,tr b:,tes to ~nowledge abou t PSs , w ha t is gained
from comparisons to other imp lementat ions of the pro~~am , how t i~ PS cont ributes to t as ’~

- -

domain knowledge , disturbing and promising features of the PS, and open questions.
Motivat ions arid gr ne ra l references fu r the tas k - s are given in Chapter 1 and will not be
repeated here. Each ~~t~ r s ta - t ~- out w ith a more deta i ied descr - pt ion of the task , and
includes a fuller set of references , in c— i~e the reader needs a br et re .’ e ,~ of t h e ~~~~
beyond the sentence o- two given here. Cer~~

.-, ‘O p’ CS such as how ~- Drt r o is ac h ’.-’~d ri
the PSs , will be avoided in the fol :ov~ing brief ~umma r ,es , aid t reat ed as a ~ ho~e ri Sect ion
8. Section A~2 summar izes ?rd e-~p~ains a number of the superhcia l attr ibutes of these
PSs.

Studnt. This PS is not part of the thesis , and has been presented as a sepa rate ,
self—contained s tudy of ~ c Some of ;ts major irn phca t ions have a r e a c i y been d sc. -~ssed in

Chapter I. The measures and ut her discussion of this chap ter ~~h be applied to S~udnt ,
howe -er. St ’ :d~’~ ~ak~ c sto ~-~ pr oblem~ s t a ted in a res t r i c t ed ra t u ra ~ la -g u~ge and
translates the n- into se t s of linear eciu” ivns , ~~ .ise solution is the s olut ion uf the
pro bier -s Stud& sOlv~~ a d-ve~ :-e co llection c 27 probiems , appl ying both general
parsing methods to subd .-~de sentences into a ço bra ic ~~nres~~o-~s and spec fic tr~cks a”-~
idioms to allow ident~f ,cation s 13 ue made betw ’ - v a r i a n t s of se- r ’ar- I c d ; v equ~ ’alei~
phrases. The pr — i - a r f means of control and organi.~a~:on s a l e t t - t -D - r gh’ s:an o f a
proh’ c - ~ statement , appl ying at each po~~ -~-r . ri the scan a ’ ’ of t H~ ~pç v cab~e -~~ Orf~~t 2
transformations , c c t c ’ ra r-y c ias se s , and other ops .i:o’ is . Cc - i pa r i so n to ton ori gir’~a
program for this task chc ~-~- s hn- .. su b r o u t r c ~ . and o ’r,er t~- -~’ic of c~~—i ’i ‘~ t-e ~on’ ’ mere
d,i’a— d r - e- and key~-~ to t he e~t - :o - r igh t s- :an , -~~ ar,~ Ia 1 ’ n 1’ c- -- - $~~~ 3r~~ na angucge to

-
. , PSs . DeL ‘s of t h ~ behavior of the PS m~’~e ~~~~~ ron ’ac t w tri pr -n toc o s t a l c - I sf hu~~a’-

sub ,e ct s ~o l i - - g similar p~ob le m-~, ~nd in pa : ~j : a~ ft ’ :~~nt P3 is re~~i y seen a~
king in a prob lem space , a the~ r ~ of . ~‘ a - .- io r JSOd in o~ ’er ~-uman prob~~ro s~- v - ’g

s ’ i e~ T b~ Studnt PS w- i r an~ i yznd -n deta : ~ c - ‘ e r - ~’nr ~ ~no~~ledg~ c ~r ’ r i r i f a-n d tc ~
s t l i / ho-~ th~ ’ know ledge hcc ’-ri~ s en’-~ r-l’ci as -, T~’a~ ana l .’ s -s c - - ’ ..~’ pron sirig
features 1 t’ e encod~~1~ pr-oc ’~ - s , a- - ’ ~~~~~~~~~~~~~ rrot~~~ t 3 n for COri T~

-
~ ~~~, i r-.’ stud - ‘~~~:~~ 5 ,

in part is nar for t h~ purp ~e - ~t t - ~plo~- -- -~ the ‘- :od : ~ o’ ~ ‘~.-~~er .~r - ~t ,- of task
k n ow i ,~

Ep ?- -n . The Epam PS ic re l at iv e i y sr - a1 pro~..ram tb~ t e.’ ’~ris ‘ ‘ -se ’ -~- e -s ~
l a b .~

assoc iat ions by nc re r renta ~ly bui -~ ’ ; up a m-n~~a1 d-~ cr na ’ , - n net~~o r”- The ~- n t w c
stored inter -ial l y as a sr ’t of ~h~ ’ ‘ p- ’ - p r ~~~r a - ’ c3 — ’ -~ ~nt . erco~L~s f~ ct ~ ~~~
dist inguish the var o ,,s ~~ r : ~~us s-/ ’ aht es and e —: - t r- -~ r- I~y cu es ihe —- ~ n’o r- 7 su e s are
also d c t nau ’;hed by t he netw ork to p’ ~~~~ links ~r~~ - t~~n st mul ‘

~~~ t he p. f r- ~~~
respon1.r sy l’ ables . The PS’s be hav’nr -.-.- .~s ‘e- - t i ’h c’n sever  i~ ord ‘~a ry  5p ’c ~~ v i a ~T~Ie

pairs , consist ,n~ of th ree , se~ c- -i , ,inj i nc p a - -s, A- -id un a y’~ of r..- - r s  r 1-’~: oser ‘ -

VII I A 1  

----~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ ---~~~~~~~~~-- -~~~~~~~~~~~~~~~~~~



- - ~~~~~~~~~~~ -~~~~~~~~ -- -~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~w~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.—
~~

-- -
~~~~~~ 

--
~~ 

—
~~

—. —--
~~
-—---- --

-- - -~~~~~~~~~~~~~~~-~~~~~~~~- -

I.

A.! 
- 

Review of the Body of the Thesis Conclusion

ordered list , with the response sy llable of each pair also serving as a stimulus for another.
It exhibited a number of the phenomena that accompany such verbal learning in humans
and in previous vers ions of Epam by other researchers: stimulus generalization , resp onse
generalization , and forgetting (retroactive inhibition). (Epam was used to explore using a
PS to build a PS, and not necessaril y to imitate past work .) The learning in Epam is pre-
defined and r i gid, and mistakes occur only in controlled ways.

The PS is organized functionall y (not by a struc ture imposed on P Memory) into an
executive to control the input of stimuli and the out put of rep lies in the proper sequence ,

4 . and to control the other parts of the PS, which test results and engage n correct ive

~ i modifications and add it -o ri s to the network Ps. Epam ’s primary cont r ibutions to PSs are its
mode of representing the discr im ination network arid its ex p lorat io r  of operators that a PS
architecture should include to al!ow addit ion and modification of Ps. Each path of tests
from the “top” of the network to a terminal that produces an internal memory cue or a
repl y is encoded as a P, with the match to the P’s LHS correspo nding to the t raversal  of
the network. This representat ion and its mani pulation is importar- t because it is a means
to storing and ‘~f fec t ive l y using knowledge about s pecif ic facts  of all kinds , e.g., problem-
solving knowledge states , objects that are part of a world model (scenes, faces , etc.), and
lingu istic knowled ge. The particular mode of storage emphasizes its access ibility by
recognition of a few distinguish ing character is t ics ri a (possibl y pa r t ia l )  descr - pt io r i . Toe
resul ts with respect to important PS operators for adding and modif y ing Ps will be
included later (Section B 3). Epam also broug ht up issues with respect to the
architectural alternatives available in PSs for storing information : Wo rking i~.Aemory versus

P Memory. With in the Epam task , i t  is quite feasible to store longer-tern :nfo~mat ion ,
including information on the Ps the mselves , as Ps , and rest r ic t  the ure of Work ng M~’n’or y
to shorter- term information — a usage that correspo nds g e n e r a l l y to current PS rnndels of
human information processing. The PS implemen tat ion also raises somn purely task -
specif ic questions such as whether to nc 1 ude ge neral tests in the netw o rk as well as
specific ones , whether to make use of possibl y-erroneous nfon’ation fro m older t ec~s in
constructing new ones , and on the format and co n- p lef e ner- , of n’e rna l men- - D ry  cues. A
trade off occurs in Epam between being a ble to exa’-iine ex istin g P cond t ’~ ris arid storing
Information about the intent of a P in some othe r form.

- . The Epam PS in Psnict was compared to another version , W ater m an ’s EPAM2 , w hich
is coded in a PS arch tect u re that has an ordered P M~- r”o ry  arid an o-dered W o r k r i r ,
Memory. EPAM2 has about half the number of Ps t ha t Epam has , and - this dif~nrence is
accou nted for ri part by the use Waterman makes of the o rde r - r i g  between the Ps his PS
adds to reDresent the  n e t w o r k  - the ordering ai Io~~s old ~r S r ~’~~ i~ to ~-e masked out by
(placed lOw er in precedence than ) new ones , r a t h e r  than having to modif y o ld Ps so tha t
they are consonant w i th  new ones. T hCU RO a large part of the d ,f 1ero nce between the
two PSi is thus due to using order ri adding new Ps , a n~~jor - t y  of the dif ference is due to

• task-related design features.  For ‘ Ictaric e , EPAM2 uses tw o  c st~nct ni--~works , one for
stimuli and one ~or internal rr ’- r- nory  cues , whereas Fpam r’-a’~es Ps in a sirg le nrit se rve

both purposes . Because of t h 5 , I PAM2 can ’t 1~: ~rn l v t ~ ~
f sy l lables (as opposed t o pairs).

Also EPA kA .’ stores ex t ra  in f o rm . t i O n  in the net ~.- O r l . , a- ’ o -~ - n~ tests for c omn dibi t v
betwee n an incoming stimu lus and th e stimu lus ha t t ’ -e net ~ c r k  ~ s ts  w ri re or -ia lly built
up to disc r im inate (t r ’ e two  O f t C n  d 1 er beca uce ‘~-e net only inc udes part -” t e s t s ) .

Epam demonst ra tes  t he f e a~ ib il i t y of a PS t n~~t augments ts e lf , but  i t s t ea t u re~ ra i s e

-
~~~~~~ A. ! V~ -2


- ‘ Conc lus ion Review of th e Body of the Thesis A. !

questions concerning flexibility, generalit y, and plausibility. it is spec ialized to the th ree-
letter sy llable domain , and this is now seen as a detect with respect to the simplicity of
the program itself : a more general program would be smp er , accordi ng to pre l mina ,.

analysis (this conclusion is specific to EPAFVI, and the “more genera ” re fers ri-dy to position
dependency of letter tests) . It is also specialized with respect to error in the input and to
other variations in the task. Such anomalies quickl y lead it to construct a network that
cannot be properl y corrected. The PS is ti gh t l y designed, rather than being open read i y
to modificiation, so that it is hard to envision how the program could be learned in a loose ,
adaptive way from a more primi tive basis. This is not seen as a defect in the PS
architecture , but in the present implementation , which is in a sense opt im ized to .~-ork on a
par ticular unvarying task - further research in reformulating it more generall y is expected
to alleviate this problem. In fact , part of the next PS to be discussed is an object

• canonization process that does Epam-like things in a so mewhat improved fashion.

GP$R. This PS embodies a general problem-solving execut ive , a number of problem-
solving methods , and a variet y of other task-independent mec hanisms. In combina~ on with
a problem spec ification , also expressed as a PS, it becomes a problem solver with
considerable generality and reasonab le power over a variety of puzzle-solving tas ks. The
basis f or the problem-solving methods is means-ends anal ysis , wh,ch uses a description o~
the difference between its current state and the desired state (problem solution) to guide
its behavior.

The problems given to GPSR alt bring out its basic features: it achieves the
combination of a set of general , task-i ndependen t methods w t h very speci f ic prob em
information. The problems all involve heuristic search in a sp~ re where the possibil i t ies
are much more numerous than the po ss ib I t i es ac t -~~ly examined by GPSR before it f - o d~.- a
solution. GPSR solves th ree problems: Tower of Hanoi , Monkey and Bananas , ,~ro

Missionaries arid Cannibals. The prog arn that GPSR mim es w a s exercised on eleven task s ,
but the three chosen here are representative of most o~ f -- r. e eleven a d also are var ied
in difficulty and in the mechanisms used. The Tower of i-~an~ t a i k involves moving a s~a~ k

of disks from one peg to another , with res t ’ - c t i o n r on how ‘~e disks can be ar ‘nged on
top of each other , using only ore intermediate peg to ’ temporar y p a r t a ’ stacks . CPS~
solves this w ithout a single e x t r a move , a resul t that deri-~r-~; ri part from a fortuitous way

of expressing the d if ferences w i t h which the means -ends ~na~~c - -~ w o r k s The Monkey and
Bana nas task involves a monkey t ry ing to get to r o ’ -’e barir las , p i~~~’- cJ 3i i t c : -Je - k
immediate reach , by mo’.-- ’ng a box and c inibing o. tc ‘. flr-~ fc - r n iu l at ion of t f - p t a r k

i l lustrates some of the cha otic behavior that can r~~ ,j t w”n GPSP does n ’t make the r g kt

kinds of means-ends connect i ons between d f t e r e n ~r- and the actions ta ke- ’ to reme~~
them. A more exact fo rmulation (giving GPSR rr-oi - r to ~

. wi th rather than mooi:~ ’i’~~
GPSR itself to act more appropriatel y) al owe d a s m o ’ or and more d i r r c t solution
Whereas the Tower of Hanoi involves only one k rd of pro~- em operator , mo. - t r i g a disk
from one peg to another , the Monkey task invokes selec t iO n ‘rem among a cc- I o~

•

- operators with varying effects. The Miss ionar ies and Canndia ’ s t a ;k nivcd~-e mov’ng three
missiona ries and three cannibals across a river in a sma ll boat , arid ~s d -st rigii-shed by
having more comolex restr ict ions on how he mo-~- n i ~ can be done than in the Ot ort r t w o

tasks . Also the search space and consequentl y the probler’ - - solving e ’ f cr rt “e greater
Thus this task was useful fo r exp loring v a r n r . op f u - ~c ri ~~~~~~~~~ ‘0’ Ii -~rr ~,t i”~ li ,~
weaknesses in some of its me thods , and fo~ co m pa r iny G~’SP to t~ ° o- - g ’~ a . ‘e r ~ PS
versions of the program . GPSR has a lot or s-- n ila r it y to th~ original , ~ th 31

Vfl-3

— ~~~ - -~ -~-- ~~ -- . - .- ~~~— -.- ___

_ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
“uUI~

A.! Review of the Body of the Thesis Conclusion

strengths and weaknesses , but its detailed behavior differs because of different ways of
making certain arbi t rary choices.

GPSR is functionall y dec omposab le~ into a problem-solving executive , vari ous
problem-solving methods , and a number of lower-level processes , which are used by
specific task operators t o perform symbolic operations. Problem states are represented
as tree-structured objects. In order to access parts of these objects , advantage is taken
of the power of the LHS match , both within the general processes that examine arid
evaluate differences between objects (using new Ps created as the problem-solving
progresses ) and w’thi n the task-specific Ps (encoding problem information directl y in the

* LHSs of task Ps). PSs are ideal for representing networks of decisions , as occur in the
selection of methods , in canonization networks and network schemas , arid in making
connections between differences and operators and between d i f ferences and their
estimated diff iculties. The match of problem states to each other , to determine the
direction to be taken , is encoded as a set of Ps that fire (essential ly ) asynchronously in a
scatter f a s h i o n , each pu rsuing branches of the tree-structu red objects and producing
differences acco rdingl y. Goa ’ con tex ts  and control contexts wit b ir .  methods are all icept
openly in the Working Memory, arid no res t r ic t ion -i capabi l i t y is inherent in t h s  p rac t i ce
(as has been c laimed by cr i t i cs  of PSs). PSs also pro -ic e f fec t i ve  for  a number of
processes of selection and generation. Severa l places in GPSR I t - s t r a t e  how advantage
can be gained from the abilit y to exp ress things , t her in working t-Aemo ’y or P Mem ory.
It was found to be qu t e easy to make alterations and extensions of GPSR in 0-do- to test
various problem-solving options. An anal ysis of the knowledge encoded in the execut ive ,

— combined wi th ~oi— e h istory on how the executive was formed as e~<p erierice wi th GPSR
was accumulated , shows the ease and direct ness & a urnenring and debugging knowledge.

GPSR raises questions fdr fu rther research bo~ in the task of constructing genera ’
problem solvers ani in the use of PSs. It has proved t i  he a usefu l  and f IOx hlO tool for
exploring var i ous options within means-ends ana ’ ys is and ~- e l ,’t ed methods , and for trying
out variat ions in the execut ive.  It lOOkS promising f~ r the expa’-is-on of the app l icat ion
area of GPS techniques In particul a r , the ease in v,c~rking w t h  GPSR nia i es p-oss ble its
use as a general language-system-l i ke basis f rom w h i c h  t o  s ta r t , in building spec i f i c
problem—solving syste ms:  PSs are amenable to ta sk -s pcc i f c rriod~ icat i ons and

- 
‘ specia lizations , d - -d  the GPSR concept of an e x e r u t i v e  di ct ’ l~utin g n~czi lo r - -solving eff ort

and coor di nat ing communications among a set o~ loose l y-conne . ted methods provides a
sui table control organ ization , and one that is closel y linked i th the spv t of PSs.

GP SP illust rates a number of d iff icu lt ins W I~ O PSs , bu~ t he r e  is also evidrnre’, ~~~~~
re presenta tio ns used , tbid they can be a ilev i~~:’~’d wi th in  PSs tual Ciur~ n~’ r . t r a t i o ns  m ust
await resul t- , of further r~~

.,e3 rc h l .  T e  ef f ic ie ncy of GPSR was bare ly  !O er .’ b e , but w thin
an order of magnitude of good perfo rmance for any under~~ing l,in~ uage. This can be
t raced to t w o  fea tu res  of GPSR: the number of P f j r i r i~ s and the s ’ e  it Wo rk :ng ~‘cr- Drv

• 
- 

The P firings prnhi er~ could be eased cons iderabl y by c o P a p ’ -  n~ ad j ace nt t ings , in a
• number of wel l-dc ri~~ ’ed c-i ’-- e s , so that t he PS w ould be tuned s p e c i f i c a l ly  to pron ’ emn s

This c o t l a ps - r i~ 6 pos~ ib~~ because the part icular adjacent  t i r ngs a e  j ust  “inte rp re t i ve ’
sngrne ri c Of an n~ r:’ration that could ne combined into a s - ’~~ ie LHS - the general nature 01

~ The decomposl )n is d”te rm ined by the c~, d~~ntc of Ps , not by a s t r i o  ‘u-al division of P
Memory such as subrout i ning.

;~~ 
A.1

- - -- - -- -~~~~~ - --------



r - 

- - - 

~~~~~~~~~ 

—

~

—

~~~~~ 

. -~ -~~--,~ --.-.—-—-—-- —‘- -----  _ _ _
~~~~;—~~

.—_
~~

_

~
—,-‘--,----w ~~~~~~~~~~~~~~~~~~~~~~~~~~~ S —‘.~ .——- -.‘ --

~~~~~~~ ~~~~~~~~~~~~~~~ 
- --- 

~~~~~~~~~~~~~~~~~~ “.--

- p - -

~~~~~
----— - - - - -  —-— 

--

Conclusion Rev iew ~f the Body of the Thesis

GPSR d icates that th ings be done a step at a time rather than realizing the sav ings
available from assuming a partuular object size and form . !t is proposed for the future
tha t some mechanism be included to allow this tuning to be done dynamical i- u The Wor k ing
Memory size problem is resolvable , according to a post hoc anal ysis , h~’ making ~nuch more
use of Ps as a sto rage medium rather than letting, e.g., goal-specific data ju s t a-~ cur’- i ia te
in Working Memory with the gradu~’l effect of making t he ma ke to L~4 Ss of Ps perform
more search among irr elevant poss;bi ’i ties. There is also an cHt ec t u ra l  so lution to some
of the problems with erasure, namely riot allowing Working Memory to ex pand without
limit , but to have, for instance , a f ixed size or a rixed element t” -t ime Some problems
with eff iciency and with clumsiness in expressing things in the PS language could be
alleviated, it is proposed , by making cer t a r i  operat io ns , such as erasure and the
construction of n’~w Ps, the province of special RHS co~ - a to r s , -~ hose hes~ form ~~n now

be deduced from existing PS examples (see Section 8.3). Overall , then, CPSR is
worthwhile in a number of ways , exercising the con trol an-J rep~e se n t a iona capabilities of
PSs , demonstrati ng pr oblem--solving capabilities , and raising o rc lr~~- :~ that w ill lead to
ad vances  ri the design of PS architectures.

KPK EG. This PS is a limited approach tu the domain ~ chess endganies with two
kings and a pawn (king ~awn Icing end&arne). Probleni c in this domain are dist - { u i n h e d

among chess problems in lending themselves o solution , as a c lass , wi t -I sma~ amounts of
specific chess knowledge and with small amounts of se a -  i-b among possible moves. The
objectives of either s -do are lim~ted; the side wi t h the pawn must “ -  to pro msi te  the pawn
to a queen and thereb y w in , and the side ~‘t b king only must try to block that or ach ie ~~e
a s ta lemate. KPKEG is an implementation of a strateg y hierar cb - r- pr nc pt e , under which a
si de f~rst  establ’shes a s~ra tegy level and then t r ies  to geee ra~e moves that might fur~b.pr
that ~ rategy . For the t ask at hand , there arc ’  se~ eri s t r a t e g y  le - ,-e ls , ranging f ro m d i r?ct
promotion of the pawn or capture of the pawn , thr - ugh moves to control the paw n s path
to its queening square , ‘o moves t ha t  t ry  o ~o -e ‘b~ ere my king to back 0tf , and O’he

last resorts. Th ese levels are so ar ranged t ’ -~,i mO - -~-s ~e~~e’ 3 t ed ~~~~~ ‘-d with a
level s t ra tegy can never be e t t e n t~~e ; a r ~. higne ~~~~ so ~—~ t - - o re ‘c an mrne rf-at e
limi t on the moves t h a t  are co ns idf -ed. K~’~ :~~ c O ’ eJl y so lves ~~~~~ 6~~~~~~i p par t - o ” u  of
the given class , one of w h c h was des igned to . ‘ce fte ri’-ng am f 

~o t h rou~~h a -node- it~
.

amount of search , i o., one riot a m e nab l e to i r - r’-”u ate  so ution w t h  a p~~ce of basic
knowledge. The problem reriu r rig sea rch o ’ abe t ~O o.n’dr’s) w a-s w ed  0 ex D ’ r i e

several options ri USiflc~ the s t r a~eg-,- h i e - a r c ’ l- / • .nO~. ~~ nc~un rig ar opt i on  of hi~ -r ~~
the program store w inning posi t io ~~ and mri~cs -r, P~, f c- kit i~’e use. The othe r tw~ te :Js
demons trate application of var ous pieces ol ~~ - - - ‘ . ‘ e i - n  riot us’~d ri ‘~ - r f r- t , eac b
searching less then five nodes be~o - e  arr iving at a sr i ut or ~ ~es” c~ oer .~nent ’- i l t us t r a ’ed
the ease w ith which exp loration am ong possible prog -am des gr-s ca n t o  ca” i rd cut ~ - !h

a PSs.
-, KPKEG is organized as grcuor c~ Ps r~’ p -ns ’ nt ’~ a ~f ç . ‘egy rx e c u t ” .’p, s t ’ ? t e g r

evaluators , means to s t ra t e yc-s , rm o- .-e g e r e r 1 1o’- s , an d hoa’- -’l u:~~’ a~i~rs . The or’ a n u z a t c ”
among the groups of Ps i s roughly bi o ra~c h c a t . h-it c~ “ann : -~~r’t r ol -s iooc ~ , wi t h

sequencir- p~ of act iors based ~~“ s t r  ‘ r ’  ee ’ - - - r’ ”~’- of a nor t on ra t n~~r ¶~~a r~ on i

control r e r : pe . The rna :n ele me nt of th is l o o s e ’ - ’ ’ . c an - ‘ l it - i  f O r s t r a t e g c . s a , One

depth of a tree to c O m m ui :a t ~’ a i - t ~ s e v er a l  l~~v~~ls u’ s l - . i t c g e s  ah~~- - ~‘ and be low i t in

tree. T - . contr ol is ach ieved throug h fhr g ’ob~ W rir Ic- -~g M~~r’~O r - ,~ Socc ’i~
knOw lody-  is encoded as Ps f t a t  crur t a ,i - - - ‘ v~ -i” ~ C O r d : O  - r i c -A led ge . so ft ~ i ts

Vj V.., 

- 
_ _ _ _ _ _ _ _ _I



, A037 6*3 CARP€GIE— ELLOt4 UNIV PITTSBURGH PA DEPT OF COMPUTER — fTC FIG 9/2PROOUCTION SYSTEMS AS A PROGRAMMING LANGUAGE FDR ARTIFICIAL INT—ETC(IJ)DCC 76 M D RYCHENER Ffl620—73—c—oo7;
UNCLASSIFIED A FOSR— TR—77—g 33O~ yoj ...j

I I
I Pu I
I ______ 

__ _ _

END
o A T  F

FIL ME r

4 — 7 7

L. 41



I I C ~ 
I~I 8  ~2~5I ________ 
~~~~ lOhI~2

I.’
~~

IIIIU8

HIH ‘ 25
~~~~~~ HII~

6

V



r ~~~~~~~~~ T iTTT~T~~~ ~~~~~~ I T ~~~~T T ~~~~ - .

A.1 Review of the 8ody of the Thesis Conclusion

augmentation is simple and direct , white l eaving open the possibility of having, instead of a
single P, an ar bitrary PS program sequence, evoked in the same way as the single Ps
presently there. The use of PSs made building the program easy, with much of it built
incrementally, filling in missing pieces manually while focusing on other aspects already
coded.

The PS can be compared to a Lisp program currently being developed for the same
task. Although the Lisp program, CP, is built around a search scheme different from the
strategy hierarchy as used in KPKEG, the two programs are still quite similar in approach
and in general aspects of program behavior. The bigges t differences between the two are
in static characteristics of the programs , in run efficiency, and in openness f or extension.
KPKCG is roughly a third the size of CP, in length of program listing, and about half in
terms of a count of primitives (functions versus Ps). On the other hand, CP runs 3-4 times
faster , though this is probabl y due to the fact that the PS is being run interpretively and
to a number of other features that could be avoided by re-designing the PS to be
especially tuned to the chess task. The PS is much more open to extension and
improvement ri behavior because the chess knowledge is under less control , and can
potentially become driven by new features of the situation as they ar ise, in a bottom— up
fashion. CP uses pattern-like constructions in Lisp to represent chess knowledge, but
these are all strictl y controlled in a top-down way, and are even evaluated according to
their static program order . These features of CP are likely to be detrimental in situations
where key aspects of a position arise unexpectedly, during a search whose objectives are
vaguely defined or defined in the wrong direction. The PS includes a number 06 things
represented descriptively, in a way tha t will become more important as the chess task is
made more complex , since the program will have to deal with aspects of a situation that
are not easil y recomputed or recognized otherwise. This capability has not been
demonstrated ef f ect ivel y in CP, while in KPKEG, it ar ises automatical l y from the
arc hitectural design. KPKEG augments its store of knowledge by adding Ps, a facili ty not in
CP at all. This augmentati on is promising from the standpoint of automatic generalization
and other proposed operations on Ps (to be discussed in Section E.2). Finally, cer tain
fea tures of PSs make KPKEG a good candidate for some proposed mechanisms such as
causality anal ysis, lemmas , and refutati on descri ptions , which are put forward as essential
to efforts to improve chess- p laying programs to a Master level.

MiIiPS. This PS accepts restricted natural language sente nces and either adds to an
internal model of a toy blocks scene or answers queries w ith respect to that scene. It
processes sentences without building a conventio nal parse tree , relying instead on a more
direc t mapp ing to an internal representation that is mostl y semantic. Inputs containing
apparent ambi guities , redundancies , and inconsistenc ies are correctl y interpreted. The
referents of c omp lex phrases in the input language are determined by close interaction
w ith the internal scene model. The program operates wi th a single left-to-rig ht scan
acr oss an input , with no backing up in the lexical string to handle anomalies , and with only
linear backing up in a semantic representation of the input to resolve inconsistencies. The
program processes a test sequence of 25 sentences , demonstrating the mentioned
features.

MiliPS is organized around the left-to-right scan of an input. At each point , a
number of levels of processing can be done, including lexical , grammatica l , semantic , and
pragmatic processing. The grammatical checks are minimal: each wo rd must obey simple

A.1 VlI-6



.~ “rnr~~ r . ’ c..~ -— . ‘p.. ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~ W 
~~~~~~~~~~~~ 7r ~~‘ r’~~~~ ’ -

Conclusion Review of the Body of the Thesis A.1

restrictions on the class of word immediately preceding it in the string. The semantic level
of processing divides into three levels: resolving local noun-phrase ambiguities , ass ociating
noun phrases together according to relations and predicates (phrases may modify nouns
that they are not directly adjacent to), and making use of contents of a sentence according
to the main intent of the sentence (according to sentence type). The last two semantic
levels deal largely with inconsistencies and redundancies. At each point in the scan of a
sentence, as many of these levels is applied as possible, in a bottom-up fashion, so that
processing is fairl y evenly distributed over the words in the sentence and so that surface
structure can be quickly discarded.

The primary contribution of MiliPS to work with PSs is the development of an
approach to natural language processing that is direct, simple, and uniform over the
syntactic , semantic, and pragma tic aspects of the task - all of these to a degree unmatched
by other approaches. The present approach, though restricted to a toy domain, has
promise because that toy domain includes, if viewed abstractly, primary elements of most
other domains: objects , attributes of objects , and relations between objects. Ano ther
indication of the generality of the approach is its position with respect to six kinds of
completeness: reference , description of new objects , query logic, manipula tion,
augmentation, and input-output symmetry. MiIiPS is complete to a large degree on the
f irst three kinds of completeness, indicating a basic language adequacy. It is augmented
with respect to manipulation by the WBlox PS described below. But it fails on the last two
kinds of completeness , indicating that work needs to be done to improve its flexibility in
adapting beyond its initial capabilities. The system that MiIiPS embodies for working out
the interactions between the anomalies of ambiguity, redundancy, and inconsis tency seems
to be a conceptual advance in natural language processing, exhibiting how the use of PSs
leads to organization around fairly natural constructs. It also is stated generally enough to
be applicable to wider domains. It is hoped that the MiI~PS approach to grammar (simp le
adjacency checks) will carry over to other domains , but grammar becomes so complex in
general that only further research can bear out that hope.

Several features of the system as a PS need further experimentation. The model of
the toy blocks scene is presently stored in Work ing Memory, wher eas the general PS
approach to storing such longer-term information is to use Ps, e.g., as a discrimina tion
network. MiliPS operates by simply erasin; most of its Working Memory between
sentences, whic h is not as general or theoretically ~iean an appr oach as , say, having it
gradually fade or using deliberate deletion processi~ . In more general tasks , the decision
on what information might be useful across sentence boundaries becomes more complex
and is not amenable to such a simplistic solution as is presentl y used. Finally, MiIiPS’s run
speed is a factor of 5 or so too slow , in comparison to other current systems and in
comparison to real elapsed time. This problem will probabl y be treated by general
methods of achieving PS efficie ncy, with nothing inherent in the task to present special
diff iculties.

WBlox. This PS combines a toy blocks problem solver with an augmented version of
MiliPS to make a problem-solving system with restricted natural language input. It differs
from MiliPS in being able to perform manipulations such as putting blocks on other blocks ,
building stacks , compac ting the space occupied by a set of blocks , and finding spaces to
put unwanted blocks. The program exhibits sat isfacto ry behavior on a set of 27
sentences , which exercise all of the program’s capab il it ies , The intent of imperative

Vl l-7 A.1


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
I~~i ‘~ 

—- -- ---- -- —;-- - -- -  — -- -- - -

A.1 Review of the Body of the Thesis Conclusion

sentences is determined by noting inconsistencies with the blocks scene, according to the
system used in MiliPS. Using this scheme, apparent ambiguities in commands are readily
resolved. The system establishes goals arid subgoals in a hierarchy, to break problems
down into manageable components, and it can handle And-Or sequencing of goals. It also
implements a backtracking scheme that allows it to search through all possibilities for
various actions, if necessary, to find a combination of actions appropriate to the task
demands. Much of the need for backtracking, however, is avoided by taking advantage of
the selectivity inherent in the LHSs of Ps.

WBlox provides a close comparison to a similar program coded in a Planner-like
language. The PS compares favorab ly in conciseness of program listing with the other
vers ion, and is within an order of magnitude of reasonable time efficiency. Effective PS
versions of all the features in the original language are easil y achieved. The PS must use
explicit conventions to achieve the backtracking search , but at the same time, since the
mec hanisms are explicit rather than built into the language , there is more opportunity to

• . improve performance with task-specific knowledge and to control how the backtracking is
coordinated. Al though W E3lox is restric ted to being similar to the original version , several
fea tures of PSs are promising for extending the program to more demanding blocks tasks.
In particular , still more advantage could be taken of LHS selectivity to avoid unnecessary
backtracking, and there are a number of alternative ways within the PS architecture for
doing the bookkeeping associated with the backtracking, making the PS flexible for
extension. Given PS featu res , effec tive implemen tations are easily conceived for current
or proposed problem-solving systems. In going beyond WI3lox, PSs are promising with
respect to the abandonment of st rict backtracking for a more flexible search scheme ,
allowing more accurate diagnosis of difficulties , more specific corrective actions , arid better
communication between alternative search paths.

A.2. Stat ist ics on the programs implemented

This subsection gives a wide variety of statistics on the PSs implemented. The
presentation is incomplete , in that the numbers are not accompanied by a discussion of
their significance. In a sense , this subsection could be considered a footno te or an
appendix to the summa ries of the PSs. Each description of the various tables includes
pointers to where the figures are discussed.

The following table gives some static features of the PSs , in columns in the following
order: the number of Ps; the number of predicates ; the number of PSMacros and primitive
Lisp functions , the space used, stat ical l y, in thousands of 36-bit words , divided into free
space (ordinary list cells ) and full—w ord space (print names and strings); programming time
in weeks , in three f ields , the actual pr ogramming time , the number of weeks of elapsed
time in which an “intensive ” ef for t  was spent (intensive 8 hours or more , an arbitrary
boundary), and weeks elapsed in w Fich the effort was weak (non-zero but less than 8
hours), and the hours of programming time per P in the system. This tab le implies that
space use ranges from 100 to 150 words per P. The programming time figures wi ll be
used in connection with productivit y (Sect ion 3.1). Note also that the number of Ps
versus the number of predicates is roughly a linear function , but no conclusions will be
drawn from this (the taxonomy presen t ed in Sectio.i C.2 changes the relationship
considerably).

A.2 Vfl-8 

~~~~-,‘~~--~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

- - - - - - ‘

~~~~~~~~~~~~~~~~~~

—

~~

‘-— 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~T T~~~~~~~~~~~~~~~T1I ‘~ T~~
‘1

Conclusion Review of the Body of the Thesis A.2

Pa Preds. PSMac. Space (K) Prg. t. (wks.) Hrs./P
+ Fcns. free + full act / int I wk

Epam 41 37 4 + 17 5.9 + 0.3 2.47 / 5 / 8 2.41
-

‘
WBlox 130 99 14 + 29 20.8 + 0.9 5.40 / 8 / 13 1.0
KPKEG 141 86 10 + 29 18.8 + 0.8 3.49 / 9 / 11 0.99
MiIIPS 193 125 3 + 10 17.9 + 1.1 2.60 / 5 / 11 0.54
GPSR 217 167 11 + 34 26.3 + 1.7 6.54 / 14 / 11 1.06
Studnt 260 251 5 + 25 29.0 + L7 6.58 / 16 / 17 1.01
MiliPW 278 184 14 + 14 26.2 + 1.6 see WBIox
M/W Blox 408 269 14 + 31 45.3 + 2.4 8.0 / 13 / 24 0.78

The figures for W Blox are for the WBlox system alone without the natural language
(MiIiPW) part , except that the programming time combines the time for augmenting MiIiPS
with the complete time for WBlox. The “MfWBlox” line gives figures for the combined
MiliPW/W Blox system. The number of Ps given is for the main PS plus a typical number of
test Ps (around 3), not the full set of test Ps (which set was never loaded all at once). The
programming time ratio (hours/P) for GPSR, however, includes coding time for 23 task Ps
not included in the 217 total , since coding the task Ps for GPSR turned out to be non-
trivial. For the other PSs, the test Ps involved simply posing a task in natural language or
whatever was appropriate.

The next table gives some dynamic measures of the running systems. The primary
conclusion from this table has to do with the efficiency of PSs, which will be discussed
further in Section B.5 and Section E.1.

Run time WM time Fire time T/E ratio
(miii.) (msec.) (msec.)

Epam 1.25, .31-3.15 145, 119-202 617,487-880 1.31, 1.14-1.45
KPKEG 12.6, 8.39-20.8 215, 194-239 935, 840-1060 3.27, 3.12-3.48
MIIiPS .50, .26-1.03 115, 95-162 341, 291 -463 1.68, 1.53-1.92
GPSR 32.7, 2.04-66.0 163, 96-234 534, 328-Th8 1.55, 1.20-1.75
Studnt 5.65, 1.3-20.1 131, 88-212 511, 349-824 2.36, 1.91-2.74
M/W Blox 4.93, 1.42-19.5 261, 184-486 912, 608-1950 1.42, 1.18-1.65

Each column gives first an average f igure and then a range of values over the tests run.
The columns give, respectively: run times for the collection of tests assoc iated with the PS;
times for Working Memory actions , i.e., the total run time divided by the number of actions;
times for firing a P, averaged similarly to the second column; and the try/fire ratio , which
is the number of match attem pts made by the system for each successful P firing , on the
average. Epam’s times are inflated because the system wa s run with more t race

- . , information than the others , probably by a factor of less than 2. The times are all suspect
because there was not a concerted attem pt to control the amount of free working space
available to the running system. In most cases the fluctuation from vary ing the amount

- ‘ would be small , but in at least the case of WBlox, it is known that garbage collection
consumed up to 50Z of the run time , a result that would probably vary cons iderabl y with
the amount of free space.

The following are some more static values, except for the “Fan i/o ” column. These
-

- show some characterist ics of PSs that wil l be made use of in discussing features of the

~~~~ ~ Vl I-9 A.2

—.-- - -- -~~~~~~~~~--‘~~~~~~~~ ‘- - •--~~~~.- - -rn_~-~~~~~~~~ .~~~~~~~~~~~~~~~~~~ _~~~~~~-_~~‘~~~~~~~~~~~~~



-. 
TL~ r _ _ _  ___ •

P.2 Review of the Body of the Thesis Conclusion

language that seem critical to its power (see the end of Section 8.2), that support
a priori properties of PSs (Section C.!), and that say something about the style of
programming.

N.ccnj. Sat. Fan i/o LHS uses LHS length
avg, max avg, max avg, max avg, max

Epam .195, 2 .81, 3 2.32 3.32, 14 4.34, 8
WBlox .654, 6 1.65, 10 NA 4.37, 41 5.21, 17
KPKEG .496, 7 1.19, 7 2.09 8.5, 77 8.47, 22
M1IiPS .347, 3 .32, 3 1.99 3.94, 37 3.57, 9
GPSR .641, 5 .81, 17 1.75 3.62, 37 4.47, 34
Studnt .150,5 .22,4 1.80 3.40, 112 4.57, 26
MiIiPW .371, 4 .45, 4 NA 3.91, 46 3.96, 14
M/WBlox .461, 6 .84, 10 1.96 4.29, 46 4.36, 17

The columns in this table, except “Fan i/o”, give an average value and a maximum (minima
are all 0 or 1). The values of the columns, respectivel y, are: the number of nested
negated cenjuncti ons, i.e., NOT( . .. ), per P; the number of SATISFIES constructs per P; the
fan-in and fan-out average value over the Ps, which is a count of the number of Ps that
dynamically fire bef ore or after a P; the number of uses in LHSs, for the average
predicate; and the lengths of LHSs. The fan-in and fan -out (the average values of which
are identical) are computed from typical test runs, or from combinations of several runs.
The best such measure would include many firings of eath P, but that proved impossible in
practice. In particular , the figure for GPSR is based on a relatively small test run, so it is
somewhat smaller than the typical value.

A.3. Overview of conclusions

This chapter presents conclus ions in several categories. First PSs are viewed
narrowly as a programming language. Section B gives a number of featu res of PSs
brought out fair ly directly by the implementations of Al programs as described in the
preceding chapters . In Section C, PSs are viewed in the more general framework of
understanding systems , which raises a number of more general issues. Then even more
general considerations are raised, in Section D, as we investigate what the present work
says about the nature of doing Al programming. Section E points out the gaps in the
evidence about PSs, summarizes a number of promising features that could be explored,
and discusses the most serious failings of PSs, the specific features that need to be
improved before they can be acceptab le for wider use. Section E closes with a discussion

-
‘ of possible applications and misapplications of PSs.

VI!- 10 

---~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Conclusion

B. Programming Language Issues

This section evaluates PSs as a programming language. Section 8.1 gives a
number of characteristics that are important to the evaluation, and discusses evidence that
PSs are satisf ying on those characteristics. Section 8.2 presents a taxonomy of the
control techniques used over the set of PS programs. Techniques are separated into
process evocation and data management aspects. Frequencies of usage of the various

• techniques give some idea of the power of PSs. Section B.3 summarizes the kinds of
improvements that are suggested by programming practices in the completed PSs. Section
84 discusses the peculiar forms of architectural flexibility in PSs, and how it affects
programmability. Section 8.5 examines the various efficiency factors of PSs that vary
over the existing set of PS programs.

8.1. General programming language features

The central questions of the thesis with respect to programming language features
of PSs can be categor ized as follows:

Practical feas ibility: Are PSs feasible in practice , as opposed to formally,
for expressing significant Al systems?

Style: Where do PSs fall among the various vague labels that are
attached to a language to indicate its sty le? Most languages seem to
be among these possibilities: sequentiall y imperative , functionall y
oriented or app licative , and pattern -directed. Some classifie rs also
distinguish procedural versus declarative , or active versus passive.

Degree of theory-bound-ness: How much do PSs force expression into a
coherent view of programming, representation , or approach~ This
can be taken positively, if the theory is deemed useful , or negatively,
if the theory is overly restrictive. A related question is whether PS
characteristics are evident at large organizational levels , or whether

• they are used at a lower level to construct other sorts of
organizations and systems .

Power of express ion: Which common constructs or imperatives are
particularly easy to express?

Overhead of expression: Which common usages are awkW ardl y
expressed , tending to interfere with expression of program cont ent?

Productivity: Are PSs eas il y coded, read, and augmented ?
Efficiency: Do PSs incur an efficiency penalty ?
Architectural flexib ility: Do PSs offer a variety of ~‘ays to express

programs , ranging along a number of dtmer:, ons such as
specialization , generalit y, conciseness , use of memory structures , and
ef ficiency?

Level: Are PSs a high-level language, with power to express significant
computat ions concisel y’

It should be emphasized that cons iderations here deliberatel y ignore some factors relevan t
to human effo rt in programming , since we are more conce rned with using PSs in automatic
knowledge encoding systems than with some of the finer points of human programming.

Vu -il 81



• ~~~—~~~~~---—,, .- — -,---,—•.---—• •.—.—~~~~ ~—~~~•--——.—~—~ - -...~ —,-~
---.---- —--— —----.-- - - ---- .- -- —

;. 

-.—-

~

.-
~~ 

- 
- - -~~~-- - .-- •~_ii~

8.1 Programming Language Issues Conclusion

Feasibility has certainly been demonstrated by the six PSs completed. The claims
by others (see Chapter 1) that PSs are unsuitable for a number of A ! domains and
capabilities have been, to a large degree, refuted. As we shall see below (Section C) the
implementations have been carried out without violating the major properties of PSs from
the standpoint of building understanding systems. That is, the programs were constructed
without resorting to obscure programming tricks and without building up other control
structures orthogonal to the PS arc hitecture. Any objections to the feasibility of using
PSs now have to be based on objections and limitations in the set of At systems
implemented. Section E.3 discusses a number of possible further exp lorations that could

• 
. answer objections to the set of systems.

Experiments are not required to answer questions of ~~~~~~~~~~ at least , not to answer
them superficially. PSs are firml y in the class of pattern-directed languages. But they are
also suffic iently general to allow expression of programs at the opposite extreme , namely,
as sequentially imperative programs. That is, Ps could be arranged to lire in a
predetermined sequence, simply by using appropriate data conventions. To verif y that the
existing PSs are not in fact in that sty le, we can recall the figures given in Section P.2 for
average fan-in and lan-out of P firings. Those figures show that many Ps are followed in
execution by a number of other Ps. The average value is around 2, with actual
distributions of the numbers of preceding and following Ps ranging up to about 20 for
each. (Some of the PSs have over half of their Ps followed only by one P, but many of
those same Ps fired only once during the tests on which the data are based.) Although no
similar figures are known for other programming languages, it seems clear that a
conventional sequential program would not have values much above 1.

On the degree of theory-bound-ness of PSs, Section D is devoted to putting forth a

theory of Al programming and to examining how welt PSs are suited to the domain as
characterized by the theory. That addresses the positive aspects of being theory-laden.
To ensure that PSs are not overly restrictive , the negative sense of being theory-bound, it
should suff ice to point to the wide variety of control and data capabilities that are
demonstrated in the PSs. This says little about how the theory affects human usability,
since the cost of developing those capabilities is not available. On the related question of
w hether PS assumptions are evident at larger organizational levels , two kinds of

~ i descriptions of the PSs completed give differing answers. Firs t , the PSs are described
abstractly as executive + methods + processes + task Ps (GPSR), as a hierarchical se t of
operators (W Blox), and so on. This is a PS-independent description. Second, t he PSs are
also described, at a more detailed but still abst ract level , using abstract Ps represen ting

I’ varying numbers of actua l Ps. The expression of processes in terms of abstract Ps seems
to be strong evidence of the permeation of PS concepts to higher organizational levels ,
w hile the use of other abstract descriptions is a practice that can be carried out with any
underlying architecture , if the description is taken sufficientl y abstractly.

To answer questions of power and overhead, Sect ion 8.2 develops a taxonomy of
control featu res , and gives some rough measures of PSs relative to it. Evidence developed
in the anal ysis of the knowledge in the Studnt PS wil l also be used in those measures . An
alternative approach wou ld be to app ly an abstract model of Al programming, such as the
one in Section 0, to determine how well the capabilities of PSs are suited to operations
put forth as common, by model considerations.

8.1 Vfl- 12

_ _ _ _



- -
~~~~~~

•
~
••

~~
-

~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~ 
-
~ ~~

.- --
~
---- •

~~~~~• 
- - -

Conclusion Programming Language Issues B.1

To approach productivity, we can interpret the statistics for programming time given
in Section A.2. Programming times range from 2.5 weeks for Epam, at 2.4 hours per P, up
8.0 weeks for the full MiliPS/W Blox system, at an average of 0.8 hours per P (recall that
these are actual hours spent, with “elapsed time ” respectively of 13 and 37 weeks).
Rough estimates place the proportion of designing and coding at between 20~ and 30Z,
with the remainder spent on debugging. The major problem in using these figures for
comparison is that such data is not available for other implementation attempts on the
same problems. One reason why Epam is high is the difficulty of design by indirection: it
is a PS that constructs a PS. Qualitatively, overall coding and debugging times for the PSs
seem quite reasonable , and will undoubtedly be improved when there are more efficient
PS implementations , since debugging is a major component. Section C.1 discusses the
properties of the PSs with respect to augmentation under the topic encodability, which is
closely related to productivity.

The efficiency question will be discussed in more detail in Section B.5 and Section
E.1. The principal result on efficiency, indicated by the PS implementations , is t hat less
than an order of magnitude improvement in will bring PSs to a reasonable usability. A
summary of the ways in which PSs exhibit architectural flexibilit y is included in Section
B.4. These arise in general from tradeoffs between using Working Memory versus P
Memory, from degrees of specificity and generality in Ps, and from the vary ing degrees of
use of multiple firings of Ps to perform iterative and other processes. The~high ~~~ of
PSs is supported by their conciseness, which is approached here by measuring the length
of program listings, an attribute which affects the manageability of a program white
work ing on it , saying how much of a program can be encompassed visually. From KPKEG,
PSs are about three times as concise as Lisp. From GPSR, PSs are estimated to be tour to
five times as concise as IPL-V. And from W Btox , PSs are roughly the same as Planner in
conciseness.

B.2. Control features

A small number of mechanisms of control are used in the set of PSs implemented in
Ihis thesis. In reviewing and classif ying them here , we wish to get some idea On the
overall nature of how PSs achieve control. We also wish to emphasize how f ew the
control mechanisms are. The details of how the techniques are achieved will indicate
which features of the particular PS architecture are central. After presenting all of the
techniques, frequencies of usage are given, to indicate the power and overhead of PSs, as
defined in Section 8.1.

Process-evocation aspects of control.

Evocation by a direct signal is by far the most common kind of control used in the
PSs. By this , one module, represented by a set of Ps, performs some action and passes
control on to another module directl y. Control can be passed either by a specific
evocation signal or by asse rting a result and ett ng that be picked up by the aopropri ate
successor. Psntst ’s conflict resolution process , based on focuss ing on the most recent
Working Memory changes (events), is used to achieve both of these forms. Note that a
“direct signal” is not a signal to a particular P, but rather is a goal-like symbol structure ,
inserted in Working Memory and responded to potentially by a set of targets unknown to

VI!-i3 8.2



____ 
-~~~~~~~~

-- 
~~~~~~~~ ~~~~~~

•
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

t —---
~~~~~~~~~~~~~~~~ ~~~~~~~~

--
~~
—

~~~
- 

- 
-- -

~~~~
- - - - • - • - - -

~~
-

B.2 Programming Language Issues Conclusion

the evoker, according to other global conditions. Also, a particular P can respond (be a
target) for a number of such signals, as specified by conjuncts in its LHS.

Iteration is somewhat less frequent than evocation , but is still present in a number
of places, and in several different forms. The most powerful form of iteration is by
repeated firings of a single P. This often performs the function of generating a set of
combinatorial possibilities, as is the case in most of the feasible assignment generators in
GPSR. It is achieved by having the LHS express a pattern for all of the desired elements
to be iterated over (combinations to be generated). When the P is triggered by some

• signal or new data, it fires once for each such element. A second powerful form of
iteration uses a set of Ps but each is still expressed as if only one element were being
processed, i.e., w ith no deliberate looping control. Ps in the set , once started up, fire
multiple t ime s, in a sca tt er fashi on, even t uall y pr ocessing fully all the input elements to be
iterated over. This is analogous to asynchronous processing in a conventional sense.
Since this form of iteration often is used to perform some process on all the elements of a
set at the same time, it has been referred to in the body of the thesis as “parallel ism”. An
example of the scatter kind of iteration is the Match-Diff method in GPSR, and an example
of the more “parallel” kind of loop is the generation of descriptions of objects in MiliPS.
The third form of iteration is a deliberate iteration , using control signals , with explicit
testing of completion of the iteration and explicit selectio n of the element to be used in a
single execution of the body of the iteration . An examp le of this is the stacking of a set of
blocks in WBlox. The backtracking mechanism in WBlox is also set up as a deliberate
iteration, but one whose execution over the full set of possibilities is rarely carried out.

Processes that are not strictly controlled require coordination (synchronization)
mechanisms to recognize their completion and arrange things to continue to further
process steps. P5s can do this in two ways . One way is to assert , along with the
evocation of an uncontrolled iteration , a second signal that will be lower in priority as an
event, and thus whose examination will be postponed until no events in the iteration can
be further processed. That is, the method is to make use of Psnlst ’s :SMPX stacking
mechanism for examination of events and their associated Ps. A P that responds to the
second signal alone can then assume that the iteration is completed and tha t the proper
continuation can be evoked . This form of coordination is used to make use of the results
of the Match-Diff meihod in GPSR. The second PS coordination technique is to check
explicitly for completion each time a result is produced, and if any signals ex ist that
indicate some state of partial completion , re-ass ert them, and otherwise continue to the
next process step . The object-filing process in GPSR uses this kind of coordination to
ensure that all objects have been filed when a set of them were input to it. An alternative
to these deliberate coordinations that is occas ionall y used is to let the default processing
order take place, using process results whenever they come out , but otherwise just

• allowing control to fall back to any uncompleted portions when the result-using process
can go no further. This is used in the object -description process in MiliPS, and it works
because outputs are replies that come at the end of processing of an input, i.e., results

• that are followed by the awaiting of further user inputs.

Selection is used to perform important functions of narrowing down sets of objects
L

to particular elements , and of deciding how control is to continue. The selection from a set
of data items is usually done with a single P, and se lection of control is done as a set of
Ps. In KPKEG, a single P is used to selec t the next move to be tried, from among a set of

6.2 Vfl-14

—~
~~~~~~~ ~~--.--~~~ -~~~-----~~~~~~~~~~ -~~~—-~~ ~~~~~

- --— ,. 
-~~~~~~~~~~ -~~ ~ -~~ -, -~ --,--- ~~~~~~~~~~~~~~~~~~~~~~ 

-

Conclusion Programming Language Issues B.2

candidates produced by a strategy move generator. That is, the same P always fires, but
it produces a selected element according to conditions specified in its LHS. In GPSR, the
method selection process consists of a number of Ps, ore of which fires to initiate a
method appropriate to the goal that is input to the process . The power of PSs in this
instance is that one need only specify the cases as separate Ps, with the automatic
recognition process performing the selection.

Often a complex process is broken down into a cascade of separate steps. In this
way, a decision that could be done as a singlr.~ P firing from among a large set of Ps is
broken down into two much smaller sets. That is, the combinations of conditions are
changed from being multiplicative , with each P representing, say, a product of two
possibilities along two dimensions , to being additive, with each o f tw o se ts of Ps
separa tely making the choices~on each of two dimensions. This is done simpl y by split ting
P LHSs into fragments , adding signals to all ow the separate steps in the cascade to
communicate intermediate results. An example of this is the Try-Old-Goals process in
GPSR, which breaks the selection of an old goal to retry into two steps, one narrowing
down a set according to a numbe . of criteria , and the other narrowing that result still
further to produce a unique selection.

$equencing of processes involves primarily evoking one process and establishing at
the same time a way for things to continue when the results of that process become
known. This is done in two ways. The first is to assert , along w ith a process evocation
signal, whatever data is required to combine with the process ’s results. This assumes
further Ps that do the combination and proceed accordingly. The second is to assert a
signal that wil t become active after control falls back f rom  the process , i.e., after no other
higher-priority events are in :SMPX. On being recognized , the signal is converted to
ac tions that continue the processing. This second technique guarantees that results are
not used prematurel y, ef fect ive l y isolating the process from selections that are to be done
on results. Often the si gnal also effects a renaming of othe data that were hidden by a
firs t renaming, to avoid similar unwanted interactions. An examp le of the first sequencing
technique is the sequencing of goals in GPSR, and of the second, the sequencing of steps
within the Findspace process in W9l~x.

A rough idea of the power and overhead of PSs can be obtained by looking at
frequencies of usage of the var ious features in the PSs. Where counts are given in the
following, they are derived from re -examining the PSs , and may not be perfectl y accurate ,
though the general form of the conclus ions would not be a ttered by adding a few missed
instances . Counts are based on the static form of the PSs , since we are concerned wi th
programming or encoding properties rather than w t h  dynamic , performance aspects .
Evocation by a direct signal is a very heavil y-used feature. One measu re of its usage is
derived from the knowledge anal ysis that was done on the Studnt PS, where it is evident
in more than half of the Ps. Generally in PSs , the d istincti on between control evocation
and other kinds of Wor king Memory items is difficult to make , since contro l signals tend to

F • . be goal-like rather than goto-like. One criterion for a control si gnal is that it is used once
• and deleted , but this isn’t always accurate. Among the six PSs , there are 18 cases of

evocation by asserting data rather than control signals , which amounts to less than 1OZ of
all control passing . Iteration is used about 60 tin,es over the set of six systems. Of the

- . 
- three forms of iteratio n , the deliberate fo rm accounts for about half , the sing le -P f o r m

about a sixth, and the multiple -P parallel form about a third. Though the deliberate form is

V lt -15 B.2



_ _ _  

—. —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- —
~~~
‘- 

.

~~~~~~ 

-

~

--- -

8.2 Programming Language Issues Conclusion

the one that incurs the most overhead and the least power , its overhead aspec t is
generally not as significant as other forms of overhead, because only a small amount of
explicit control is necessary anyway. Also, some iterations are inherently deliberate.
Coordination is done 6 times using the “powerful ” :SMPX event-order technique, and 9
times using the more cumbersome , deliberate technique. The next subsection will discuss
possible remedies. There are 16 instances of the use of selection by a single P. Though
this seems a small number , the actual uses made of it exp loit its power to a significant
extent. The multiple-P, control selection, also a powerful feature , is used in over 20
striking cases and in a larger number of lesser cases , and, along with the di re c t signal

•
. evocation, is quite an essential feature of PSs. Breaking down a complex selection or

-
, other process into a cascade of steps is used about 3 times. Sequencing using :SMPX

occurs about 16 times , while its “check-result” form is used heavily in W Blox goal
sequencing and 9 times in the other PSs. Of these two forms , the :SMPX is slightly more
of an overhead feature.

To summarize on the power and overhead usages , in the case of iteration , the full
power of PSs is not exploited as much as might be desirable , although there are
undoubtedly places where deliberate iteration is unavoidable. Coordination presents
significant difficult ies in terms of overhead, and will be discussed fu rther in the next
subsection. The power inherent in selection is well-used in the PSs, and the ability to
cascade is not exercised me:h, but seems potentially useful for more demanding
applications. Finally, the frequency of usage of the slightly more cumbersome form of
sequencing is significan t, though at present is not sufficiently serious to need further
attention. Overall , this discussion supports the assertion that PSs are a powerful control
structure.

Data management aspects of control.

The above top ics have all deal t with a process-e vocation aspect of control , but
along w ith evocat ion, there must be some management of data: operators need to be
connected with their operands , and results mus t be produced and used appropriate l y.
Here, opera tor is meant in a rather abstract sense , as something (a process , module , set of
Ps) that takes some input data (operands) and produces some action or result. Iri general ,
the data management is performed simultaneously with the process evocation , with LHSs
perf orming some data connection operations , a,~d with RHSs often combining both process
and data actions. The following wi ll discuss several such topics ri turn.

Connection is made between operators and operands w ithin the PS match. That is ,
the ma tch takes an evocation signal and uses data arguments of Wo rking Memory instances

to form coherent patterns , which then constitute sufficient context for an operator to be
applied. Often , the necessary links are f ormed betwc en instances by using spec If ic tokens ,
e.g., unique goal names. Matches can involve following chains of such associat ions to bring
in all of the required items.

Arrang ing, results and result-usage signals takes place within sing le PHSs. An
exception is the operator-ap plication prepa ration that is done in GPSP, but that is at a
much higher level than we w ish to examine here. That is , that kind of arrangement is on a
different scale. W ithin sing le RRSs , all arrangement takes place for communication between
operators composed of sets of Ps. The alter nat ive would be the evocat ion of preliminary
setup operations , expresse d as se parate Ps, but this does not occur .

8.2 VII-16

_ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~

‘— ~~~

Conclusion Programming Language Issues B.2

Renaming of data is used for two purposes: protecting data so that it will not be
used in the wrong way, and the converse operation of releasing data for use that had
been protected. In the PSs at hand, renaming is done along with other operations within a
single P, appear ing as a side effect of some other process. It is also done by an explicit
evocation si gnal , to be processed by a single-P iterati on (more complex iterations might be
used, but no such occur in the PSs here). Often that evocation signal is placed after some

• other signals , so that it is examined and used after some process , acc ording to the event-
order conflict reso ’ition mechanism. Epam uses renaming (of the side-effect type) to save
the results of one net-P firing cycle while a second cycle occurs , so that the former
results can be properly distinguished from newer similar data.

Cleanup is the operation of deleting or otherwise disposing of old Working Memory
ins t ances s o that t hey don ’t interfere with further processing. It is generall y carried out
in the same ways as renaming: within single Ps, as a side-effec t, and in a more exp licitly
iterative way. GPSR contains a number of exam ples of erasure Ps, which fire in single-P

• multiple-fire loops, f or instance , erasing unneeded Match- Diff intermediate data.

A mechanism for handling data that is onl y sli ghtl y used in PSs to date is having
inf ormation stored as Ps for use at some later time. This is done entirely by deliberate
processing, generall y Including iterations tha t gather the various components of the Ps to
be built. GPSR builds recognition networks of Ps that are then used in recognizing the
occurrence of previously-seen problem-solving situations , thus perf orming indirectly the
important control function of preventing repetitions.

To conclude our discussion of the data aspects , we touch on the topics of frequency
of usage, power , and overhead. The connection of operands with operators and the
arrangement for communication of results are very common operations , and their simpl icity
of implementation indicates their relativel y high power . In this case , the power derives
from the basic PS rule form , Renaming is rare , but is also easily achieved and powerfu l .
Cleanup is sufficientl y frequen t ri its less powerful , iterative f orm to be a si gnificant
problem for som~ of the PSs (GPSR in particular). The need t o go through deliberate
iterations to store information as Ps is also of an overhead nature , alth ough the use of the
stored information later is a powerful mechanism , since it avoids other sorts of de l iberate
processing. Section B.3 will discuss possible improvements in these last two weaker
features of PSs.

Essential features of Psnlst.

Four features of the P~nlst PS architecture are essential for these control
techniques. The main one is the use of event order (:SMPX). This has al lowed the PSs
here to overcome many of the PS control problems that have occu rred or have been
pred cted with respect to othe r PS architectures or PSs ri genera l. The testing wit hin
LHSs of

~~2 predic ntes (expressed as SATISFIES in the language) is used heavil y, with
about three fourths as many occu rrences as the total number of Ps (which is not to say
that three-fourths of the Ps actuall y contain an occurrence) . Of the uses of SAT ISFIES,
only a few are used t o test equal ity to a co nstant , so that mos t are used for more
significant purposes such as testing numer ical relations. The allowing of multip le f i r ing s on
the same recognize -act cycle plays an important part in the power cons idera tions above ,
being used in a number of ways to imp lement the more powerful PS control fac ilities.

V Il- 17 8.2

~~~~~~ -.- — -~~~~~• - - - -~~~~~~~~~~~~~~~~~~~~~~~~ - •~~~ - -- ~~~~~~~~~~~~



--- -

~~~~~~~~~~~

. . — - -•---

~~~~

———

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8.2 Programming Language Issues Conclusion

Negated conj unctions of condition elements are used .verall about .414 times per P on the
average , a higher proporti on than negations of single elements , for which the f igure is
.255. Their overall importance is indicated by their frequency of usage and by their use in
implementing the control facilities above.

8.3. Suggested improvements in basic operators

A number of improvements in the basic PS operators are indicated by undesirable
overhead properties. These were all initially suggested in the various chapters where
they first became evident , and some have been reviewed briefl y in Section 8.2. They are
not expected to change the area of feasib ility of use of PSs as much as to make them more
powerful in locations where some awkwardness has been noticed. In some cases , the
sugges tions are superficial language changes that would have no effect on present
program structures , usually shortening or modif y ing components of individual Ps, while in
others , the changes would be more far-reaching, and are thus perhaps more controversial
with respect to keeping PSs simp le. The basic aim , however , is to be very conservative
and not to go beyond modifications that are suggested direct l y by the evidence of existing
PSs.

The experience with adding Ps in Epam, GPSR, and KPKEG indicates a set of
operations for doing so that are less general and more direct with respect to the
commonly-used functions w ithin the present P-adding operators. That is , the present
general operators - adding an entire P, rep lacing a P’s LHS, replacing a P’s RHS, and
replacing an entire P - are actually used only to perform a simpler set of functions , with
the full generality of those operators only interfering with the functions. Some candidates
for additional operators , to be verified with further experiments:

Extend an LI~IS by adding conjun cts at the right end (not left); in Epam,
for instance , this would be used t o add tests for more letters , in
order to make finer discr iminations.

Extend an RHS by adding conjuncts , ei ther at the right end or in a
position relative to a conjunct sat isf ying some pattern; e.g., one might
want to add an action before some known action.

Split an LRS into two parts , extending the LHS in two different ways by
adding tw o lists of conjuncts.

Add conjuncts to a nested negated conjunct in an LI-IS; this was used in
GPSR to exte nd a negative test on an ob ject w ith further tests , to go
along with adding similar tests to the LHS of another P.

Update an RHS conjunct by rep lacing one constant w ith another; this is
used in Epam , for examp le , to change the rep ly image in a P.

Make the contents of the LHS or RHS of a P ava ilable for inspection in
Working Memory.

Make the variables in a newl y-added por tion of an LHS be unique
- . relative to ex isting variables there , to ensure that the new portion

doesn ’t interfere in matching.
These operator s and op tions would have the e f fec t of making the parts of PSs that deal
wi th adding new Ps and refining old ones more conc ise , smp ler in terms of PS control , and
simp ler with respect to the amount of basic list-processing necessa ry to form the new
structures.

.

_

~~~~~~~~~~~~

_
_ __ _ _ _



r , - , -~ - .~~~~~~~~~~
. - . 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~ - ~~~~~~~~~ -~~~~~~~ --.•---- • -~~~~~~
- - - -

Conclusion Programming Language Issues 8.3

-
- An operation in LHSs that occurs in most of the PSs is essential to selections , to

narrowing down the set of possible matches to one with particular properties. Consider
as an example trying to select t he element from Working Memory with the highes t
numerical value for some predicate. At present , this would be expressed roughly
corresponding to “an instance of the predicate such that there does not exist another

•
- instance with a higher value.” The effect of this is for the matcher to successively test

each instance of the predicate until all the ones with the maximal value are found, with
match failure occurring for the others, after an iteration through part Of the instances for
each. What is really needed here is to be able to apply the “highest value” predicate to
the set of possible values for the other predicate, and to immed iatel y select those with
maximal value. That is , one writes the P knowing that at a certain point there are going to
be a number of possibilities , and one wants to express an intention with respect to that
set of possibilities rather than to use the indirect present method, whi ch says essen tially
“and there doesn’t exist a match that does any better .” In many cases at present , it , is
necessary to apply severa l of these tests to narrow down the possibilities, and for each

• additional one there must be a laborious recapitulation, within the “not exists ” nested
conjunction, of the restrictions that have been applied so as to ensure that each “not
exists ” is working with the proper set of possibilities. What is proposed is that instead,
when a series of restrictions are to be applied, each applies to the set of possibilities
remaining at that point.

Some more explicit examples will clarif y these distinctions. Suppose the new
primitive is named MAXIMAL, that the evaluation predicates are HIGHER1 and HIGHER2, and
that the Working Memory predicate whose instances are being selected from is PREW .
Then the expression,

PREDI(X) & WOT(EX ISTS(V) & PRED1(V) & SATISFLES2(X,Y,Y HIGHER! X))

would be expressed,

PREDL(X) & MAXIMAUX ,HIGHERI).

The expression,

PREDI (X) & NOT(EX I STS(Y) & PRE D I (V) & SATISF!ES2(X,V,V HIGHER] X))
& PJOT(EX ISTS (V) & P~EOl (V)

& NOT(EX I STS (Z) & PREDI(Z) & SATISFIES2(Y,Z,Z HIGHER! V))
& SATISFIES2(X ,V,V HIGHER2)O)

would become,
*4

PREOI(X) & MAXIMAI(X ,’HIGHERI) & MAXIMA LCX,’HIGHER2).

Examples of tests even more deeply nested than the second one., can be found in GPSR,
KPKEG, and WOLOX . In GPSR, in the Try-Old-Goals process , a tes t involving a number of
such restrictions is split into two Ps, the sec ond app lying to the result of the first , in order
to make it possible to untangle all the conjoined tests. The use of MAXIMAL improves
readability, is much closer to the intended concept , and should have some advantages for
PS efficiency.

VII-19 8.3

6.3 Programming Language Issues Conclusion

Several changes to the way matches are expressed and to the way actions are
specified are suggested by the PSs. Currently, LHS elements are a predicate constant
followed by a list of variable arguments , and if an argument is to be matched to a constant ,
it must be done indirectly through the SATISFIES mechanism, which can in fact test much
more general attributes of a value corresponding to a variable. This form, assuming a
constant head and variable tail, is in prac tice almost always the right one, wi th t he average
use of equality to a constant being made less than once per P in all the PSs (that is once

‘ out of a large number of match variables). Nevertheless , cases have occurred in the PSs
where the indirectness of test ing equality to a constant seems to incur unnecessary
combinatorial matching cost , so it is recommended that quoted constants in condition
elements be allowed. This would bring the pattern-matching more into line with all of the
other pattern languages in use. The restricted for m was tried partiall y as an experiment ,
to see just what the consequences would be, and partially because the implementation was
s impler. Another restrict ion that can probably be abandoned is the failure of the match to
descend into structured lists. That is , all matching is done only at the top-level argument
list. Structure in matching is useful at least in the case where there are a large number of
argumen ts , some of which can be more easil y grasped if bound together into distinct sub-
lists. This would be useful , f or instance , in W E3lox , f or representing the numerous
occurrences of spatial coord inate tri ples. A third restriction in Psnlst is that predicates

•
‘ must always be constant , where conventional Al usage would dictate a capability for the

predicate to be variable , like any thing else. In the orig inal implemen tation of Psnlst , for
this featu re , efficiency was a considera tion, in that having predicates be constants allows
the construction of simp le indexes of possible uses of new Working Memory elements. But
exper ience with the PSs indicates that there are important gains in flexibi lity, and perhaps
also in efficiency, by allowing at leas t a restricted form of variable in the predicate
position, both in condit ions and actions. At present , the most reasonable compromise with
the original vers ion is to allow variables in the predicate position that are restricted to
being bound to one of an explicit set of elements.

Several other improvements have been suggested by the various PSs. One is a
more powerful erasure operator , f or instance allowing the deletion of all the instances of
some predicate , or of all instances satisf ying some pattern. Such an operator would be
useful in reducing the number of Ps that currentl y perform only erasure operations , and is
a matter of convenience as much as it is an improvement in effic iency. A second facil ity
suggested by some of the PSs is a general set of functions for taking external forms and
converting them into usable Working Memory items , and for doing the converse operation
to produce exte rnall y readable structures from Wo rking Memory elements. At least two
kinds of representat ions would be useful: one for st r ings of ato ms , as are used in Studnt
and MiliPS, and one for s tructured object s as in GPSR. The conversion operators could be
very close to the ones developed ad hoc in the mentioned sys tems , but built into the
sys tem and generalized somewhat to be more w idel y usable. A third new operator would
be usefu l for providing a more powerful means of coord ination than the deliberate
condition-testing used in the PSs in a number of cases (discussed somewhat in Section
8.2). A specific operation suggested is some kind of an explicit delay of examining some
new Working Memory elements until other consequences that have occur red since some
specified change have been complelel y finished This would allow older consequences to
take ef fect before initiating s ome new process that assu mes that all those results are
av ailable for examinat ion. It amounts in ef fect to al 1ow ing a P to explicitl y p lace its acti ons
somewhere below the top of the stack of events (:SMPX).

B.3 V ll-20

Conclusion Programming Language Issues 8.4

B.4. Additional programmabi lity topics

There are several ways that PSs exhibit architectural flexibility. One is in the
variety of implementations of the main control techniques, as discussed in Section 8.2. A
second group of features revolves around tradeoffs between the use of Working Memory
and P Memory. The three different ways to build Epam, as discussed in Chapter III, are
based on differing uses of Ps and Working Memory. In connection with GPSR, there Is the

• potential use of Ps to store goal and object information. Ps are used in GPSR to store
information about loc-progs , and could be used in a similar way to store information about
move operators , wi th added benefit of providing a better mechanism for noting when
proper use is made of that information. In GPSR and KPKEG, a varie ty of ways of
controlling the status of processes to generate sets of possibilities are illustrated, and the
discussions of the systems include additional ways. In GPSR, there is f lexibility in
specifying external tasks to do, in that task specifications can use more information
expressed as Ps and less as Wo rking Memory items. The discussion of MiIiPS raises the
possibility of storing the scene representation as Ps instead of as Working Memory
elements. Maintaining trees of alternative data contexts while searching is discussed in
connection with WBlox , and a number of alternatives , vary ing in their Working Memory and
P Memory usage, are sugges ted. Generally, the exist ing PSs do not exploit the use of P
Memory as much as they could, but it is expected that as more general end powerful
systems are built , making greater demands, P Memory will be more commonly used.

A few other forms of architectural flexibilit y are illustra ted by the PSs. The
discussion of GPSR pornts out the range of expression used in various networks: some of
the networks use very specific constants , others use a few very general Ps, with mostl y
variables in conditions , and others are expressed as objects , with the tests carried out
interpretively. GPSR also has promise with respect to becoming specialized to particular
tasks by building additional specif ic Ps as tasks are manipulated. More generally, the PSs
include different degrees of spec ialization, with the very general GPSR, and the more
specialized WBlox and KPKEG. Wt3lox in particular is specialized to a specific goat-subgoal
structure. Finally, the discussion of the -augmentation of MiIiPS for Wt3lox points out how
the architectural flexibility can be used in dealing with the problem of distinguishing
between tempora ry relations , which are computed as needed and then discarded, and
other more permanent data , f rom which , for instance , the temporary data is derived.

Thus there is a wide range of variability in storing information and in conventions
for use of data for communication . Information can be stored in RHSs, available with the
appropr iately-keyed demand; it can be activel y st ored as a network , ac companied by
conditions in which the informati on is judged automatical l y to be useful; and it can be
stored as structu re that is interpretable when its content is desired. Changes to
structures can be stored incrementall y so that they can be revoked in the same fashion.
Actions can be packaged for unconditional execution in one sequence or can be broken
down into conditional parts . A set or its comp lement can be kept in Working Memory, and
similarl y, Ps can be set up to record what ’s left to do (the set proper), or they can be set
up to remove possib ilities alread y considered (the active form of the complement of the
se t). Data can be kept in Wo rking Memory as a means of making it temporary in nature.
The deletion of data ca rs signal the proper use of data or the completion of some process.
Alt of these examp les il lustrate the particular kind of f lexibilty that PSs have. Rather than
thinking of programming with a comp letel y arbitra ry means of representing and

VII-2 1 8.4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- - -



F~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
T

-.

~~

-

~~~

‘-.-.

8.4 Programming Language Issues Conclusion

processing, there is a predicposition to a small set of powerful mechanisms. The
mechanisms derive from the split in the architecture between a relatively small , passive

• Working Memory, and an active P Memory. There is a range of specificity/generality from
concrete Working Memory elements , through slightly abstract P conditions and actions , to
more distributed representations , with information encoded, in whatever way is
appropriate, as a mixture of evotcable data, recognition processes , and general elaborations

- - on those.

B.5. Variations in efficiency over the systems

There are a number of interesting variations in the figures of Section A.2 that bear
on eff iciency. The figures in question are those for average cycle time (P firing), average
Working Memory action , and for match effort as reflected in the try/fire ratio. There is
little apparent relation between changes in those values and the number of Ps in the
system. The highest values (indicating least efficiency ) are attained by KPKEG, one of the
smaller systems , and WI3lox, the largest. But these systems seem not to be systematicall y
hig h on other attributes . The apparent lack of trends on a number of dimensions leads to
the hypothesis that there are more complex factors that determine the efficiency of a PS,
and that these factors combine in some way to make a PS efficient or not. Such
interactions will thwart attempts to build simple models of effic iency. Perhaps what these
factors are will emerge as more PSs are constructed , providing additional data points.

A few isolated characte ristics may have something to do with the variations. KPKEG
is high on length of LHS and on the number of SATISFIES tests , so these may combine to
make matching more expensive. An inherent property of KPKEG is close similarity
between Ps, so that in order to find a match from among a set of Ps, most of which are
plausible by superficial criteria , muc h effort must be expended. WBlox suffers from quite
a different problem, apparently. Its size causes it to put unexpected strain on certain

• Implementation deficiencies , particularly those having to do with needless use of
temporary list cells. This usage f orces an unwarranted number of garbage collections, and
the sheer size of P Memory, all of which must be examined during that process , adds

-: - significantly to system overhead. As was discussed in Chapter IV, GPSR incurs some
inefficiencies by overloading some of the Working Memory predicates with too many
instances (which can be alleviated by using P Memory), and als o spends a significant
portion of time doing cleanup by firing erasure Ps.

I

Vfl-22



r :~T - ~r~~~~ IT7 T~- T T : Ti± -_~~~

Conclusion

C. A Basis for Understanding Systems

This section first assesses the position of PSs with respect to most of the
understanding system characte ristics laid out in Chapter 1. Two of those emerge as a
focus for the discussion in the rest of the section: modularity and openness. Section C.2
presents a taxonomy of representation intended to meet possible difficulties of PSs with
respect to that focus. Section C.3 discusses the results of applying that taxonomy.

C.1. General features

A number of observable properties of the implemented PSs can give support to the
suitabilit y of PSs for building unders tanding systems. Because no understanding systems
of the sort aimed at were built as part of the thesis , the evidence summa rized here can
only provide evidence for plausibility, not a full demonstration. We will address two sets
of related properties , which were introduced in Chapter 1. First there are the a priori
properties: properties of conditions and actions , properties of how Ps interact , and
properties of the overall architecture. Only a couple of these properties need empirical
support , the size of conditions and actions , and the degree of interaction between Ps.
Over the entire set of PSs, the average of the averages of LHS and RHS sizes (given in
Section A.2) are respectivel y 4.87 and 4.34. These numbers support the small unit size of
Ps, and also support the assertion that PSs have a high degree of selecti on (LHS) b r  each
ac tion (RHS), as compared to other typical Al program min g systems. How Ps interact is
much more difficult to measure , since it depends on stat ic , organi zational , arid dynamic
properties. Most of this section will be devoted to this topic , but f irst we summarize some
other aspects of PSs.

The second set of properties is the list of properties of systems that are crit ical to
their use as understanding systems. Recall that Chapter 1 introduced a set of primary
properties: encodability, organizability, inspectabi ht y, accessibility, flex ibility, and
operability. These primar ies have a number of secondary aspects , many of which are
shared among several primaries: modularity, conciseness , uniformity, transparency,
provability, exp lici tness , and openness. There are a few specific points to be made here in
support of some of these properties for PSs (and some of them are also supported by
a priori properties of PSs, as discussed in Chapter 1).

The encodability of knowledge in PSs is suppo rted primaril y by the feasibility of the
six PS implementat ions. Some further support is given by observed properties of building
and ex tending those PSs. In GPSR, a number of execu tive options were added on after the
program was working properl y. Those options were quite easy to imp lement , wi th rio
unexpec t ed, indirect interactic .ns. Sim ilarl y, in KPKEG, there were no c omplications ii
trying various options in the search executive. In augmenting MiIiPS to work with WB lax , a
large number of changes were made , but only a very small nun~ber involved changes t o
ex is t ing Ps (adding a cond ition element or modif ying one or tw o RHS elements ) while the
vas t majority involved simpl y adding Ps.. PSs are different from other languages in having
more independent units of augmentation (Ps). That is, usuall y Ps are jus t added, with no
decision necessa ry as to where a P goes (since the sta t ic  order of the PS is irrelevant to

VIl-23 C.1



____  ____________ 
-

~~

-- --

~~

. 

~~
—

~~

-- — I.~~~ ~TTT~

C.1 A Basis for Understanding Systems Conclusion

processing) and with little attention necessary on how it is to be used, since its condition
is exp licit. The related property of irispectability of knowledge in PSs is not a problem in
practice , al though programming by a human and the construction of a process to inspect
Ps automaticall y (as an adjunc t to encoding fur ther knowledge) involve different issues.
The central problem in automating, wi th regard to inspectability, will be the lack of
openness of the representation, a problem that will be attacked at length below.

The conciseness of PSs is supported by the relatively small number of Ps required
-
‘ 

for the various programs . For instance, KPKEG is 2-3 times smaller in size of program
listing and in number of functional units than a comparable Lisp program. PSs are a
particular way of managing data and procedures that suffices where a number of ad hoc
mec hanisms have to be included in Lisp programs at the expense of conciseness.
Transparency of PSs is supported by the Studnt knowledge analysis. That is, the
knowledge analysis gave evidence that the Ps are a level of expression minimally

r interfering with the primary encoding task and also a level of expression close to natural
language statements , which in turn are derived from an abs tract process model. In the
case of Studnt , almost three fourths of the knowledge is about the task and about solving
task problems , wi th most of the remainder devoted to programming techniques and a small
fraction devoted specifically to PS control. The f lexibility of PSs is evident in the variety
of architectural alternatives , discussed in Section 8.4. The organizability of PSs is
supported by the variety of organizations used in the six programs. GPSR implements a
general method coordination and method evaluation problem-solving structure. KPKEG
implements a straigh tforward heuristic search approach . W I3lox is organized as a
specialized goal hierarch y, wi th the addition of backtracking as its search method. The
MiIiPS bottom-up recognition hierarchy is yet another organization. t4one of these
organizational structures was at all troublesome to put together , indicating that PSs are
well-suited to a variety of approaches. Some of the organizations are modified slightly
and made more powerful by taking advantage of the power of selection of PSs.

Two major areas have been left unsettled by the above discussion: the area
encompassing the questions of modularity, provability, and interaction; and the area of
openness. Having Ps interac t too much with too many other Ps is undesirable in a number
of ways. With large PSs , and we fully expect understanding systems with many thousands
of Ps, then interactions could get too diverse to be taken into consideration effectively, so
that some kind ~“ ~truc tural subroutining would have to be imposed. This would subvert
many PS properties that depend on having the system be a uniform , single-level s tructure.

- 

• Too much interaction implies also that there are assum ptions made in writing each P. That
is, it implies that there is global context of some sort stated ex plicitl y in Ps. This makes Ps
much harder to modif y white maintaining global correctness. It gives PSs the overall
appearance of being intricately-asse mbled pieces that are somehow coordinated to drive a
sequence of global actions. Als o, the pr ovabi lity of correctness of knowledge in a system
is much more difficul t when there are such far~reaching imp lications and interactions. The
remedy for such objections to PSs is to show their modularity. The representation
taxonomy of Section C.2 wilt provide a means to that proof.

The other major understanding system t rait that is noticeably lacking in the PSs
implemented so far is openness. T” ese P55 are closed in seve ral senses: they work only
on the narrow task domains for which they were designed , with their knowledge encoded
in such a way that it would not be applicable unless a number of Working Memory

C.1 VII-24

~ 

~~~~~~~~~— --- -~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~ .•-~ ,..•-—...— --~ .-.—r— ~~~~~~~~~~~~~~~~~~~~~
• •—•_

~ ~~~•~
.•,___•_

~
_•

~~~~~~~~ 
.• _-

~
•_ - ~~

_
~
••

~ 
•
~
-•_

~ ~~~~~~~~~~~~~~ 
-..—...- ,.. -

• 
-

~~~~~~~
-- _ -

Conclusion A Basis for Understanding Systems C.1

conditions (all associated with the particular task implementation) held; they use a number
of internal names that are effective ly inscrutable to other processes , so that general
processes of error diagnosis and progress evaluation cannot be applied when problems
are encountered - if such problems can be recognized at alt; and the naming conventions
prevent new external knowledge arid newly-developed internal knowledge from making
appropriate contact and interacting w ith existing knowledge (assimilation), and thereby
also prevent such knowledge from being incorporated on a longer-term basis
(accommodation). Openness is the key to allowing a program to respond flexibl y to
variants of a task , by impr oving its assimilation capabilities , and thereby is the key to

•
. unexpected generality and power. Further, open programs can readily be combined into

larger units, with opportunity for sharing processes and capabilities , and for application of
methods from one to new problems in others. The representation taxonomy below
approaches openness by providing a rational basis for naming. There are processing
requirements for openness that go along with such naming, which cannot be specified at
presen t, being more properl y the subject of further explorations. It seems at present that
representational barriers to openness are much more serious than are any lacks on the
processing side.

C.2. Representation taxonom y

The taxonomy of predicates ’ meanings in this subsec tion supports three aspects of
PSs: their modularity, their openness , and the simplici ty of control constructs required - a
verification of the control taxonomy of Sect ion B.2. By breaking down predicates used in
the six PSs into more primitive meaning elements , and by replacing ad hoc abbrevia tions
and conventions with a more rational scheme , the number of meaning elements is
drasticall y reduced and the interactions of various predicates becomes more transparent.
Recall that predicates a e the constants that occupy the head position of each Working
Memory element and each LHS and RHS conjunct , thus constituting the essential meaning of
both dynamic and longer-term struct ures. Renaming the predicates as proposed here does
nothing to computational properties of the present PS~, but provides a poten tial openness
for interaction which future app lications will exp loit. The f ollowing scheme should be
considered a f irst approximation , sufficient for the purposes of this chapter.

The taxonomy divides predicates into two major types: those that refer to
processes , arid those that refer to data st ructures. Each pred rate is broken down into
three components: a primary name, an op tional seconda -y name , arid a set of modifiers.
The primary name is the main process name or the name of the global data structure being
ref erred to. Primary names are rather general concepts (evMuate , apply, goal , object ,
network) , and although they originate with specific tasks , i t is hoped that as a system
grows and expands its tas k domain , there will gr ow up, around a primary, a useful set of
ass ociated knowledge (expressed as Ps). The second ary name is a qualifier to the primary

• name, in case it has attributes , entry points , subproces ses , case frames , manner qualities ,
and other such subco ncepts. In some cases primary arid seco ndary are verb and direct
object. The modif iers are a se t of tags that apply to show fur ther subaspects such as
truth value and degrees of imperativeness (in a vague , non-technical sense)~ A global data
object such as a goat with a var el y of attributes has primary GOAL , with sec ondaries like
ac tual object OBJECT , dif f icult y OIEFIC, supergoal SUPER, etc. These would be wr i t ten as
GOAL *OBJECT, GOAL *DIFFIC, and GOAL *SUPER, according to the proposed notation,

VII-25 C.2

. •

~

. ~~~~~~~~~~~~~

~

~~~~~~~~~~~

_ 

~~~~~~~~~~~~~~~ T~~~~~~~~~~~TTT T~~~~~~~~

C.2 A Basis for Understanding Systems Conclusion

which places “a” before secondaries. With “ /“ preceding modifiers as In the proposed
notation, and given that •‘T” is the modifier for “true” truth value, the GPSR predicate
HASSUPERGOAL becomes GOAL *SUPER fT. The primary SELECT might have secondaries
like OBJECT, GOAL, and METHOD. A concrete object is subdivided according to its
attributes. Thus an OBJECT might have secondaries TYPE, SUBOBJECT, LOCATION, arid

• SHAPE.

The main content of the taxonomy, at present , is in the modifiers. (The definition of
secondary vs. primary is also content , but is left vague.) Modifiers are in five classes: goal
va lues, t ru th va lues, process types, data types, and degrees (see Figure C.1). A modifier
has three positions in general , i.e., is composed of at most three things: a goal value, one
of (truth value, process type, data type) (a mutually exclusive set of classes of values),
and a degree (with possible subdegrees tacked on).

The expository notation adopted here suffices for the purposes of this chapter , but
other issues should certainly be considered if a notation is to be used effectively by
opera tional systems for self-examination. That is , what is reada ble for a human may not
be suita ble for a PS to use, in bot h pattern-matching capability and openness. Three
dimensions of variation of notation can be distinguished: nested, open structure versus
tight encodings as strings; internal versus external modality; and implicit or explicit
argument typing.

For human readability, the first dimension includes a tight encoding with distinctive
characters to segment a string, e.g., EVAL*GOAL/WA.2. For a list-processing-based PS,
though, w ith strings taken as units (atoms), structure must be indicated differently, as in
(EVAL GOAL (W A 2)) or ((EVAL GOAL) (W A 2)).

The second dimension deals with the location of the modifiers , with external modality
common in some published PSs, e.g., (OLD (RESULT (EVAt. GOAL G-3 OK))). In this ,
arguments have been added to the primary and secondary in order to illustrate a complete
Working Memory element. The corresponding internal modality (adopting abbreviations)
would represent it as (EVAL GOAL (0 R) G-3 OK). Internal modalit y g ives more prominence
to the primary and secondary, and makes it easier , in conventional pattern-matching
schemes, to have an optional degree position - the absence of a tail of a list as o~~osed to
the absence of a level of nesting.

The third notation dimension deals with whether to have explicit type tags for
arguments or to let types of arguments be implicit in the position within the list of
arguments. Typed arguments are common in sema ntic network representations. Moore
and Newell’s Merlin (1973) uses explicit typ ing to allow a general interpreter to make
mapp ings between structures , some of whose components are optional or incomplete.
Similar advantages are claimed by Hayes-Roth (1974). The element (EVAL GOAL G-3 OK),
w hich uses implici t ordering to t ype its argumen ts and to distinguish primary and
secondary, might be rewritten (prim:EVAL sec:GOAL goal:G-1 value:OK). One can envision
mixed strategies for typing, but wherever implici t typing is used, auxiliary inf ormation is
necessary for complete openness.

To conclude this brief discussion of notation , the best appr oach for futu re work
would be to use a representation with nested list structures and with internal modality.

C.2 V11 26

~

.- - -- ~~~~~~~~~~~~~~~ - . • ~~--~~ -~~~~~~~~ . -

-~~~~iiT~~~~~~~~~~~ T:: T~~~~ -—., TT~I1~ .~~~~

Conclusion A Basis for Understanding Systems C.2

~~~j values (modalities):
W Want , want to achieve, want to activate.
O Don’t want , want to deter or delete or disable.
O Old, no longer current.
B Been achieved, “be”, a neutral goal status.

Truth values:
T True or succeed.
F False or fail.
M Maybe, in progress, partial.
U Unknown, but attempt has been made.

Process types (types of imperatives):
A Activate.
C Check, combine (as in combining present data with the result of some

subprocess), coordinate (as in coordinating the results of several
processes or lines of “parallel ” execution), continue (after solving a
subgoal).

H Hold (as in holding a signal until some other event has had its chance
to go through, whereupon a P converts it to active status).

G Generate , gather , or more generally iterate.
$ Select (as from a set of similar items).

Data types:
R Result;
E Effect , side-effect , error condition or indication, extra information

(addition to main result).
X Conte~t (as for a process).
I Input (as to a process , in addition to predicate arguments).
K Knowledge about , information about (knowing about a process Is

distinct from activating it , f or instance).

Degrees:
1, 2, 3, . . . Steps in a process , degrees of completion , degrees of

certainty; substeps and subsubste ps could be indicated by stringing
together a number of degrees ; when strung together , “.“ is used as a
separator , e.g. 2.17.4.

Figure C.1 Values for modifier components

These preferences are based on presen t pattern-matching capabilities. There is the
possibility that , since a lot of list structu re is imposed by these preferences , the

assump tions should be built into the pattern-matching algorithms to avoid unnecessary
condition-testing. On the third dimension , implicit typing seems to involve less symbol-
processing, and is thus prefer red at the moment , but may become unworkable later
because of diff iculty in determining the implicit information.

We now use the f ollowing P, from GPSR, to il lustrate this renaming process.

V ll-27 C.2



~~—w nr~~ — ~~~~ . ,,~~
. 

-. _ _
~~~~~~ _—_

- -

C.2 A Basis for Understanding Systems Conclusion

M38; “GEN DES ASG. CHECK NUMV(DA) & CENDES ASC2(G,oP,UA.,C,LD)
&. HASVAR(C VAR) & NASVAP I.JNK(VAR,P) & HASLP COMPON(L,P) & VAR-DOMAIN(VAR,N)
& SATISFIES2(N,O,NUUHERP N & N GREATERP 0 & NOT(N GREAIEPP 0))
ERASE:LPCCT) & FILE DES ASG(DA,OP) & FEASASG(OP ,DA,G) & ASSIGNS N(OA,VAR,N)
& NEGATE(1,2);

This P is from the process that generates desirable assignments for move operators , a
part.of the Reduce method. It connects the variable component of a move operator with a
component of the loc-prog that locates a difference to be reduced. It then picks some
elements from the domain of the variable and sets up desirable assignments from them. At
this point, understanding what it is doing is not as important as watching the
transformation that the P undergoes in having its predicates renamed and its contents
abstracted slightly.

M38 “DEN DES ASG.” (GEWR T .DESAS G/A 3) (GENRT .OESASG/A .2>
(COMPON .VARBL /T) (VA RBI .IINK/T) (t.OC-PROG .LINKIT) (VARBI .DOMAIN/T)

•> (b C PROC .LINK/DT) (FILE .DESASG /A) (GENRT .FEASASG/A) (VARBL .ASG/M.L)
(NOT (GENRT .DESASG /A 3)) (NOT (GENRT .DES~SG/A.2))

The firs t abstraction consists of removing the SAT[SFIES2 and the conjuncts ’ variable
arguments , leaving only primaries and secondaries. The change to the first two conjuncts
of the LHS shows how the renaming emphasizes similari ty in mear.ing of predicates , while
distinguishing steps in the process. The second line of the LHS shows how interrelations
between elements are more transparent. The fenaming makes the RHS betray its function
much more accurately. The ERASE is repl aced by the goal value D, raising what is being
erased to top-level status in the conjunct. The “/A” in two conjuncts shows that these are
active signals, where bef ore there might have been some doubt , and the use of /M.1 with
the VAROL *ASG shows it is an assignment that is only partial l y specified. Note that the
“8” goal value is imp lici t in the renaming, though in the prefer red nc’tation for further
work, there would have to be something to occupy each position, in order to make
matching reasonable.

A second abstraction can also be obtained, allowing the main function of the P to he
seen at a glance. The following has only primaries , with duplicate elements removed.

M38 “DEN DES ASGu” GENRT COMPON VARBL LOC PROC ., LOC PROC FILE GENRT VARBI.

Appendix A gives the renamings of the predicates of GPSR. The first half gives the
GPSR name fo llowed by the new name , while the second half has the names reversed,
ordered according to the new name. From the second half , it can be seen that the number
of primaries is relativel y small , 29, of which 14 are process primaries , and 15, data.
Appendix B gives the f i rs t abst ract ion (as in the above examp le) for the entire GPSR
system, except for tas k Ps. Append ix C is a cross-reference of that abstract ion. Appendix
O gives the second abst ract ion for all the Ps, arid in addition divides the PS into modules
(to be discussed in the next subsection). Modules are labelled , and are also partitioned ,
using b fank fi nes, into groups of Ps very similar in form. Give n this thvision, an even more
abstract form of the PS can be constructed by merging similar abstract Ps together (this is
not shown in the appendices exp licitly).

C.2 VII-28

- .

Conclusion A Basis for Understanding Systems C.2

The taxonomy of Section B.2 is closely related to the modifiers of Figure Cl.
Evocation corresponds to the “A” process type, iteration to the “G”, coordination to the
“C”, and selection to “S”. Cascading is possible because of the existence of degrees and
subdegrees, allowing a step to be divided and subdivided as appropriate. Sequencing
combines the use of “A” arid “C types of predicates , with the “C” type providing the data
for continuing after a step has been completed. With respect to the data aspects of the
taxonomy, “I” and “X” indicate inputs to processes (in addition to arguments to “A” items),
and “R” and “E” are used for results. Renaming of data to hold it back from being used
immediately is done with ‘H”, cleanup is init iated with the “0” goal value, and the desire to
evoke knowledge stored as Ps (and in other ways) can be expressed using “K”. The goal
values add indirection to these meanings: one can “wan t” to do something, ra ther than
doing it directly, for instance. This allows preparatory activity, applica tion of a method
that is essential to applying some thing else , having “sec ond thoughts ”, and other similar
delaying and interposing. Goal values are not very common in the renaming of GPSR, but
are thought to be essential to more demanding understanding-system tasks , where things
are expected not to fit together so effectivel y and direc tl y.

The correspondence of the taxonomy of representation with the taxonomy of
control, combined with its effect ive application to GPSR, supports potential openness. It
should be possible to write PSs that can make better use of the PS representation of
other processes for their anal ysis and correction , The structure of names into primary
and secondary helps to reduce the total number of names , arid mig ht allow the connection
of processes associated with a name under one primary to be applied to occurrences
elsew here. A procedure for assimilating informati on from an external environment or from
strange procedures can have an effect ive means for doing so , requiring only a relatively
small amount of knowledge about how things are named. That is , such a procedure can
simply do a mapping between representations , with the expectati on that if the right names
are chosen, some Ps will be able to take processing further.

C.3. Application of the predicate renamirif ~

As a result of renaming, GPSR is divided into 14 processes , corresponding to
primaries in the renaming: Eval , the eva luation of goals and differences (17 Ps); Select ,
w hich selects old goals and methods (11 Ps); File , which recognizes and canonizes goals ,
loc—progs , objec t s, and assignments (52 Ps); Match , which compares obj ects and extracts
differences (21 Ps); Transf , which is the method for tra r~sf orm goals (12 Ps); Reduce, the
method for reduce goals (8 Ps); Gee rt , w hich generates move -o pe rato r assi gnmen ts (16
Ps); Apply, which app lies or tries to apply rro\’e operators ~2O Ps)i MoveOpr , the meth od
for move-operator applicat ion goals (6 Ps> a’~d a set of f ive operations , add, rem ove,
increment , decrement , ?ncj copy (a total of 27 Ps) Each process primary plays a central
role in a set of Ps that is the corresporid ir~g rr’~dule, Figure C.2 gives an example of the
sec ond abstract ion for the Ps in the Tr a ns f module (taken from Appendix 0). Note the
basic similarit y of form of the Ps: AU except M26 and M27 include a process control s ignal ,
M26 and M2? deal with the creation of new subgoals and are keyed to the “W” (want) goal
modality. (More deta iled versions of the Ps are in Appendix B.)

- Using the abstracted forms of the modules , interactions between them can be
determined and are of two types: LHS assumpt ions and RHS actions. Figure C.3 shows

VII-2~ C.3

C.3 A Basis for Understanding Systems Conclusion

M20 • TRANSF -C ” TRAMSF GOAL .> MATCH TPANSF
M2OS • SUC TRANS ’ TRANSF GOAL -> COAL - TRANSF
M22 “ MATCH VAL ” TRANSF EVAL -, TRAI’4SF - EVAL
M23 • MATCH FIN ” TRANSF ., MATCH TRANS F
M24 “ COMP DIFFIC ” TRANSF .> TRANS F GOAL
M24E EQS MVAL “ TRANSF . - TRANS F
MZ4F “ EQS MVAL- - TRANSF .> - TRANS F
M24N ” EQS MVAL SV- T RAWSF ., TRANS F
M24S “ EQS MVAL S V ” TRANS F .> TRANS F GOAL
M25 “ SUC UESCR • TRANS F GOAL OBJECT . GOAL - TRANSF

MTh “ NEW REDuCE ” GOAL -, FILE EVAL GOAL
M27 • NEW REDUCE “ GOAL -, FILE EVAL GOAL

Figure C.2 The Transf module in GPSR

counts of assumptions made in LHSs of the modules’ Ps. The counts in the figure are taken
from a cross-reference (Appendix C) done on the firs t abstraction of GPSR (Appendix B),
using module boundaries determined by examining the forms of the Ps in the second
abs tract version (A ppend : D>. Reading across a row in the figure, there are counts of the
number of mentions , in LHSs, of the module at the head of the row. That is , the row
counts indicate which other modules are assuming something about the module at the head
of the row. Reading down a column, the counts indicate what the module at the top of the
column assumes about the others. A vast majority of the assumptions being made are
intra-module, with the diagonal of the figure having 827.. Out of 100 entries , 10 on the
diagonal are filled, 11 off are fi lled, and 79 are blank. The order of modules in the figure
is based on making as many interac tions as possible fall near the diagonal, particularly sn
spaces adjacen t to it. Only 5 entries are outside the near-diagonal region, accounting for
about 57~ of the total interactions (95~ are thus wi thin that region).

Tr.n ef Miitch File Gg ri r l Riduc. App ly Eval Select Mev .Opr Op.r ’ns
Tranat 15 3
Mst c h 14 18
FilI’ 4! 1 4
Cer,rt 1 16 2
Reduoo 8
Apply 4 29 1 1
Eval 1 5 11
S.k,ct 14
Movo0pr 4
Op. r ’nu 38

Figure C.3 LHS interactions between modules in GPSR

C.3 Vll-30

F~~~~

-
7~~~ ~~

- - - _ _ _ _ T1 ‘TI ~i_iLT~~~~—~~ ~~~~~~~~~~~~
—i~ -

—

Conclusion A Basis for Understanding Systems C.3

The strongest inter-module interaction is between File and Match (without it, 907. of
the Interactions are intra-module). Recall that in filing objects , t he match is invoked and
then terminated as soon as a suitable difference is found. To do this , File must know an
unusual amount about Match. The full details of the interaction disclose that File uses
primarily knowledge about intermediate results in Match, so that it can terminate
unnecessary ma tching by deleting them. This seems to be a weak form of interaction, in
contrast to actually assuming how a module works , for instance. Similarly, making a more
detailed analysis can “decrease ” a few of the other counts, but the changes are not
essential to the main claim of modularity.

Figure C.4 shows counts of references made in RHSs of the modules ’ Ps. Reading
across this figure , counts are given for the number of evocations or cancel lations by other

• modules of the module at the row ’s head. Reading down a column, the counts indicate
— w hich modules are evoked or cancelled by the module at the top of the column. This

figure omits two counts , due to Omission of a column for the task-dependent Ps, which
allow GPSR to solve problems . The omitted fi gures would be a 1 in the Eval row and a 3
in File (filing two objects and the top goal), since the initialization P evokes those two
modules to start GPSR running. Task Ps other than the initialization P are included in the
Apply module and the Genrt module, and the appropr iate values for them have been
incorporated in both fi gures (the task Ps for the Tower of Hanoi are used). The only place
whore the task Ps make an entry where there would have been space is in the Operations
row , Apply column of the RHS table - the task Ps are the only evolcers of the operations.

T,anat Matc h File G.nrl R.duc. App ly Evil S.lect Mov.Opr Oper’rii
Tr.n it IC I 1 1
Match 2 26 9
File 2 1 83 5 4 2 1 1
C.nrt 1 23 2 1 1
Reduce 11 1
Appl y 4 9 29 2 4
Evil 3 1 5 18 1 1
Select 7 13
Mov oOpr 1 4
Oper ’n. 3 39

Figure C.4 RHS interactions between modules in GPSR

~~

- The RHS counts make the system look less modular , but even with the larger number
‘ of off—diagonal entr ies , diagonal entries stil l are 76~ of the total counts. Of 100 possib le

ent ries, 10 are on the diagonal , 29 are off , and 61 are left blank. Outside the near-
diagonal region, there are 16 entries , accounting for about 1O~ of the interactions. Note
that the “chain” of near-diagonal elements reduces the gain from a deco mpos itie ri that
combines some present modules , since inter-module interactions would still pers ist. The
decrease in modularity doesn ’t detract from the claim for modularity based on the LHS
figure, since evocation is not a strong interaction in the san” sense that making use of

V It-3 1 C.3

)~~‘
.

_ _

-——~~— - . - - -~~~ .---~~~-.. -- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—--

~~~~ —-- -~



C.3 A Basis for Understanding Systems Conclusion

knowledge about a module in an LHS is. Pure modularity would be 100Z on the diagonal in
the LHS case , but less than that for the RHS case , since some evocations of other modules
are necessary.

Others have studied the problem of measuring modularity and of determining short—
term and long-term effects of inter-module interactions. Simon (1969) discusses the

• 

. 
behavior of near-decomposable systems. The above tables can be put into the form of

• near-decomposa ble matrices by grouping the modules Match, File, and Genrt into a
subsystem, and also Reduce, Apply, Eval , and Select into a subsystem. Tha t is, the ma trix
that results by treating those groupings as single modules is nearl y a diagonal matrix , wi t h
very few off-diagonal elements. Simon also mentions an order of magnitude difference
between inter-n,odule interactions and intra-module interactions as a rough criterion for
es tablishing a clear decomposition. This criterion applies to the module interaction tables
with the mentioned group ings. There are more exact mathematical criteria , referre d to by
Simon, f or establishing near-decomposability and concluding that a system will have
desirable short- term and long-term behavior , but the applicability of the more exact
cri teria is unclear at present because it is unclear whether the PSs satis f y the basic
assump tions of that fo rmalization of behaving systems.

These figures on modularit y suffice to draw the desired conclus ions about PSs,
answering possible objections raised in Section C.1. ft should be possible to build very
large PSs without having to impose structural context (subroutining) to reduce global,
inter-module interactions. Thus the uniform, single-level property of PSs is likely to be
preserved. That Ps seem not to make global assump tions , but rely ra ther on iritra-n,odule
interactions , makes t heir incremental augmentation and modification tractab le , and adds to
the possibilit y of having their knowledge be effectivel y provable.

V l1-32



- _ __ _ _ _

Conclusion

D. The Nature of Al Programming

D.1. Themes of control

This subsection will discuss major control themes, with tw o purposes in mind: first ,
to isolate the essential features of the tasks done in this thesis , with a view toward
improving the set of benchmarks; second, to explore how various underlying architec tures
have an effect on the imp lementati on of these themes , using PSs as an example. The
themes are put forth as being characteristic of a broad range of Al programs. Primarily,
we aim to set up a basis for general evaluation of present and proposed Al architectu res.
One means to this is establishing a set of benchmark programs , whose implementat i on
reveals central features and provides convincing evidence that there is adequacy for a
much larger set of Al systems. A set of benchmarks should thus span a wide range of
capabilities , but should try to avoid redundancy of mechanisms so that as much as possible
can be gained from each imp lementati on. The discussion here of the themes that make up
the PSs implemented helps bring out the benchmarks ’ structure and raises cons iderati ons
that may lead to other evaluative approaches.

The following themes require organizational and control facilities that are more
demanding than the control featu res given as basic in Section B.2 (iteration , selec tion, etc.).
They are more demanding at least in the sense of requiring a combi nation of several
techniques. These themes are present , for the most part , ~n the complet ed PSs.

And-Or goal sequencing, wit h recursively-nested goal structure;
Backtracking and other forms of extended iteration and genera tion of

possibilities;
GPS-like heurist ic search executive , involving general me thod-

coordination , evaluation of progress , and allocation of effort;
GPS match, involving the extract ion , cata ~ogrng, and evaluati on of

differences between complex , structured problem states;
Data-directed or pattern-directed oroblem-solving strategy ;
Natural language processing, including disambi guation and coordination

with the pragmatics of the dorn a ri under discussion;
Automatic acquisition of new knowledge, both procedures and data.

A number of indicat ions of the power of PSs fo llow from the implementations of
these themes. That is , the theme s are achieve d, in riany cases , with unexpected ease ,
avoiding a number of traditional mechan is ms. A number of the programs exhibit comp lexity

• without tbi.~ conventional st ructura l  hier~irc hy programming sty le. Hierarch y and other
• structuring is ach ieved rather easil y using the seeming ly weaker programming faci l i t ies

• provided by the PS architecture. Using PSs allows an approach to natural language
processing that avo ids a c onventional syntactic parsing mechanis m. Backtracking is

achievable in PSs , also without the kinds of con trol pri mit ives specificall y added to other
Al languages for that fac i l i ty .  In PSs , structu res that are learned by a program need not
be interpreted by some part of the program , but can be encoded as ac tive structures ,
behaving in ways sim ilar to the rest of the system. The global Working Memory is crucial
to this capabi lity, in allowing a program to e lf ect ive l y moni tor the action of such newly—

VlI-33 D.1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ _ _ _ _ _ _ _

—

D.1 The Nature of Al Programming Conclusion

added pieces of knowledge. From this, it is clear th at useful insights can be gained about
an arc hitecture by implementing programs that include the above them es. The insigh ts
about PSs given here were by no means predictable in advance, and in many cases

• emerged only as the language and its capabilities were exercised in ac tuai programs.

• There are other effects of an architecture on implementations , th ough these are not
near ly as evident from gross program features , or as easil y measurable , as is the shape of
how the themes are produced. The following useful features of PSs are potentialities
suggested by actual practice , and expl oitable by further research , ra ther than features
demonstrab le by implementing the PSs to specific levels of performance as required by
the benchmark concept. A major proposal for an Al architecture might be given an initial
evaluation by t ry ing to achieve a corresponding set of funct ional capabilities.

• Global Working Memory for general communications.
Architectural flexibilit y, deriving fr om degrees of generality and

speciali zation that Ps can have in practice and from the alternative
memory structures availab le; the effect is to allow plenty of room for
design.

Small s ize of Ps and at the same time the amount of action accomplished
by a few elements; this allows PSs to be programmed incrementall y,
and potentiall y automatica ll y.

Independence of Ps within the P Memory, and the lack of structu re of P
Memory (for instance , as subroutines), PSs are open for combination
into larger systems , with ties between such pr ogram fragments
provided by similarl y open Ps, through the global Working Memory.

Abstracted Ps as a feasible way of describing the action of a PS;
abs tract Ps (APs) and very abs tract Ps (VAPs), which are used
throughout the thesis to represent PSs for descri ptiv purposes ,
re tain the sty le of the more concrete PSs and indica a unifying
organizational framework a t all levels of abstraction , cer tainly a
rari ty among programming arc hitectures for Al.

The present set of programs is useful for benchmark comparis ons, with two possible
excepti ons. The use of Epam as a task is probabl y redundant. It seems feasible that the
mec hanisms within GPSR are suf f icient to perform the Epam task , and ri fact GPSR includes
several kinds of Epam-like networks , with the object network actua ll y an improvemen t
over the desi gn used in the Epam PS. Comp lete details of doing the Epam task in GPSR
have not yet been worked out (and s pace would not permit it here) , but the main idea is to
ex tend GPSR slightl y t o allow it to add operators during the problem-solving process , and
then to give it the task of building a set of operators to produce a list of syllables. This
could easil y be done , by my est imate , with fewer addit ional Ps than the 4 1 that const itute
the Epam PS. The second possible exce ption to usefulness as a benchmark task is the

- - res tricted chess task. The primary themes addressed by that task are the use of a
heuristic search execut ive and the potential for data-d i rected problem-solv ing. The

•
. former is central to two other tasks , GPSP and W Blox , and the latte r might be jus t as

effectivel y exp lored by elaborating the tas k given to the blocks problem-solver , for
instance. On the other hand, the evaluator of a new Al language mig ht want to emphasize

— perf ormance aspects that are best exerc ised by a task like chess, where potentiall y a

large amount of search is done. That is , emp hasis in a language might be on making search
most effective. Decisions on such borderline cases are best made in connection w ith
particular studies.

D.1 Vfl-34

L
~~~~~~~~--—-- -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~---- ,-~~~



TT TTT~~ ~T~~-1T ITTTT~TT~~~~

Conclusion The Nature of A! Programming 0.1

The set of benchmarks must be augmented to meet the demands of growth of the A!
field. The following themes are proposed to make the set of benchmarks more complete,
but most of them are not considered necessary to pursue in order to be confident about
the applicability of PSs to original areas of research (see Section E.3). Each theme is
accompanied by suggested comp lete programs that include it.

Best—first heuristic search , with problem states or contexts too large to
maintain as distinct objects , as in GPSR; GPSR uses primarily a depth-
first search , but could be easily modified to be more along the best-
first lines (some suggestions in Chapter IV elaborate on this); an
essential part of a task to exercise this would be flexible use of
information from a number of distinct contexts , and flexible switc hing
of effort from one to another; some of the more advanced blocks
problem-solving systems are of this nature (Fahlman, 1974, and
Sussman, 1975).

Semantic network or a similar knowledge structure , involving
combinatorial search through relational struc tures and operations on
knowledge such as mapp ing (Moore and Newell, 1973; Shapiro, 1971);

Extension of the natural language task to one of comprehension of larger
units (Schank , et. al., 1975);

Search among competing hypotheses using diverse knowledge sources
(Erman and Lesser , 1975);

Induction of patterns from examp lars (Winston , 1975, Hedrick, 1974); the
Hedrick formulation of the task has the advantage of making use of a
seman tic network , thus combining themes; -

Automated design (Eastman , 1973); this task involves use of information
in fulfilling vaguel y-s tated objectives and perhaps trading of f various
objectives , ra ther than problem-solving toward a definite goal; a task
like blocks manipulation might be extended to include this theme.

A current task form is the construction of understanding systems themselves , rather
than attacking singly the variety of themes that seem to be requisite for this larger aim.
Perhaps a domain will be discovered that combines the themes in such a form as to be an
effecti ’~.a benc hn,ark. Benchmarks , however , must also not involve too much domain
knowledge, so that more comp lex unders tanding systems are automatica ll y ruled out.

In conclusion, although these themes and the discuss ion here indicate something of
the nature of Al programming, the sharpness of the distinct i ons between architectures is
not fully satisfactory. That is , the form of the PS arc hitecture is reflected to some extent
in the form of the above themes as they appear in the PSs, but looking at the themes
alone is not suff icient to determine all features of an arch itecture , for two reasons. First ,

• it doesn’t bring out the same kind of information as is broug ht out by the more detailed
analysis that arose f rom the features of Section 6.1 and thei r app lication t o the taxonomy
of Section 6.2. Second, it doesn ’t exercise enough those capabilities that are new in the

f . architecture , in a sense only exposing the potentials for significant advance. Perhaps
4 . some sys tematic way of forcing unexpected augrnentat ions to a sys t em after comple tion to

the predefined benchmark , c ould bring out more of the dynamic potential of an
architecture , as opposed to simply testing its feasib ility in a circumscr ibed tas k .

One might also question the entire benchmark concept , and t ry to examine the

i:j Vll-35 0.1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- -~~~-- - . - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —~~~


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- -

-

D.1 The Nature of Al Programming Conclusion

present re.&ults from the standpoint of avoiding the programming altogether . Perhaps an
analytic technique could be based on the features put forward in Section 8, But some
aspects of architectures seem evident only in building complete systems , and in bringing
them to some predefined performance level. More anal ysis might redLce the number of
actual sys tems built , by forming tasks tha t include more of the central themes. We might
even hope for a single, comprehensive task , but this must wait until we can better
characterize the essential nature of Al. In any such attempt it must be clear that the
desired themes are being exercised in all of the important ways , and especially in those
ways tha t are somehow critical in discr iminating architectures. How to formulate the
construction and evaluation of critical test cases will persist as an important research area.

D.2. Problem spaces as a basis for a theory of Al programm ing

The concept of problem space is central to the anal ysis of human problem solving
behavior put forward by Newell and Simon (1972 , p. 59, pp. 810-811). A problem space is
a means of expressing the possibilit ies for behavior , rather than restricting a desc ription
to the actual behavior observed. It thus desc ribes more comp letel y the problem solver ,
and even provides a basis for prediction . It has five components: (1) a set of elements ,
each representing a state of knowled ge about a task; (2) a set of operators that produce
new elemen ts from existing ones; (3 the in it ial element, the state of knowl edge at the
beginning of a task; (4) the d esi red element , or set of eiements , whose at tainment
constitutes a comp letion of the task - attainment achieved by app lying operators to
elements starting with the initia l one; (5) ~nd the total knowledge avai lab le , ranging f rom
temporary dynamic information to long-term reference information .

The most useful form for a +hnory of A l programming wou ld be one that would
provide an initial framework with which to start tne process of programming. That is , one
would want something that would app ly to an initial statement of a problem and
immediately organize it so that ~he succeeding steps of filling in more detail and encoding
it in some language (preferabl y PSs) would be strea mlined. What this subsect ion attempts
to do is to motivate the use of problem space by pointing out how the PSs developed for
t his thesis can be formulated as problem spaces , ar. :1 also by poinl’ng out how well-suited
PSs are for exploiting the structure imposed on a probler” by the problem space
framework. Three assum ptions are made in ca rry i ng this for~~ard: f i ’ ‘ ‘, t hat a problem
space framewor k is relativel y easy to develop for typical A l programs , when one is in the
initial exp loration stages; second , that the corres pondence u~ the fina l form of the
completed PSs to prob? orr spaces means that there can be sornelh r’r, Ike a p rO 1’iiefl’ space
framew ork guiding the process of constructi ng a PS from the heg rin ng; and third , that the
representat i on as a problem space means that processes of programm ing can take
advantage of it in those problem space terms , w ith the prob~’n’ s pac e s t ruc t t ~ e clea r
enough to use. The f i rst assumption may be made more plausible by il lustrating the
applicat ion of problem space framework to the programs of the thesis , but it cannot be
shown valid w if tc ’uf t ? k ! r ’ g some new problem and a~~c~’p fi r~g t he sa~’e application
pr ocess. The second assu m ption is even more diff icu lt to support , seeming t o require at
least detailed ~,t u dy of the incre mental construct ion ~‘ PSs. The third assumption is an

in~ta nce of a more gene ral princip li’ , that rep reser la t ion a f fec ts process ing done on it.

Problem spaces st ructure a task by div ding app licab le knowledge into a relativel y

0.2 V II-36

rr ~~~ —

Conclusion The Nature of A! Programming 0.2

small number of operators . Each operator (by definition) can take action in a number of
ways, and it is this variability that allows a small set of operators to generate large
behavior spaces. That is , if we take each knowledge state (problem-solving dynamic state)
as a node in a graph representing the search space , then an operat or applied to a
knowledge state can potentiall y cause the graph to branch out in a number of directions,
each representing the transition to a new, distinct knowledge state. How it branches in a
particular case depends on the content of the state.

As we have seen above, as a result of the renaming of predicates , a PS is divided
into a relatively small number of main processes , each composed of between roughly 10
and 50 Ps. What better representation than as a set of Ps could there be, for the kind of
variability inherent in problem space operators? PSs have two distinct advantages: The
behavior of PSs divides into relatively small sequences of unconditional actions ,
corresponding to Ps, so that there is a high degree of conditionality and so that Ps can be
seen as units of variabilty. PSs act by global communication , with potential access to a full
knowledge state and action on a full knowledge state . For the moment , this suitability
about PSs is hypothetical , of course , and it needs to be qualified by say ing that although
the most natural correspondence would be to have each possible full action of an operator
represented by a single P, in practice it must be allowed that a sequence of P firings
w.thin an operator is necessary to develop its action. In fact , in applying the problem
space concept to the Studnt PS, each operator averaged around 15 P firings. When such a
number of Ps participates in determining the action of an operator , it must be the case
that the amount of variability in the resulting knowledge states is correspondingly large.

Another possible correspondence between PSs and problem spaces is that problem
spac e operators are coord inated on a large scale in a fashion similar to the way Ps are
coordinated on a small scale. A problem space operator is somehow matched to a
knowledge state to produce a new one. The result is a relativel y small amount of action
on a global set of knowledge states: the -addition of a new one. Most importantly, the
openness of the selection of an operator to apply to a sta te corresponds to the openness
of selecting a P for firing: problem space operators are generally not described as
participating in some sequential procedural framework , but are stated more as data-
directed, relatively independent entities. This is not completel y true for all problem
spaces , because there exist in some spaces sequential plans. These ~~~~ serve to tie
together the app licati on of several operators into a coherent sequence. Plans can be
temporary, task-dependent shortcuts to solutions , or they can be used effectively in many
situations , in which case they become a form of stereo typed behavior and move away fr om
being part of problem solving behavior. But this is analogous to sequences of Ps that
become sufficientl y common and useful to be convertib le into a single P with a longer
unconditional act ion sequence.

Before going into detail on the particular PSs seen as problem spaces , there is a
qualification to our adherence to a st rict definition of problem space. The concept of
problem space is being discussed here at a very abstract level , wi th the consequence that
it is in some cases an idealization of what the essence of problem space is. The details of
the definition of problem space given by Newell and Simon have been modified somewhat
to apply to the broader domain here. On the one hand, we are not concerned so much
wi th the detaled theo retical implications of the def inition of problem space for cognitive
psychology. On the other hand, the number of examples that were exp lored in the

VlI-37 D.2

0.2 The Nature of A! Programming Conclusion

problem space framework in the original defining work is so small that some distortion and
modification is almost inevitable.

The Studnt PS has as its task to convert a string of words into a set of algebraic
equations and a speci fication that certain variables of those equations , the unknowns , are
to be solved for. A knowledge state for Studnt consists of a partially—scanned string of
words, along with internal symbol structures that represent the status of the process of
constructing the equations and unknown variables. Speaking broadl y, the prob lem space
operators app ly to such states to produce increments of progress , represen ted in new
states that have less unscanned st ring or less internal partial structures , and more of the
f inal result. The space of possibilities is large because of the astronomical numbers of
equations that can be formed from grammatical strings of even relativel y small size.

The problem space operators are divided conceptually into three sets: the initial
scan operators , the parsing operator s , and the operators f or segmenting unknowns. The
initial scan operators are of three types: a transformatio n operator , which replaces idioms
in the problem string by other standard forms ; a dictionary-tagg ing operat or , which

classifies certain key words , f or the use of later operators; and an initial chunking
operator , which f orms the main sentential chunks from the st ring and notes their ma:n
connectives (which are “is ” or some ari thmetic operator). In app lying these initial scan
operators , the Studrt t PS makes use of a plan that resolves certain ambigu ities w ith
respect to which of them might app ly to the problem string by invoking them in a
particular order and also according to a strict left to right scan across the input string.
The initial scan operato rs work directl y with the input string, producing a modified str ing
and ultimatel y converting that string into a chunk , which is a string that has specif ic
boundaries , a unique name , and other properties. Chunks are the primary components of
the internal symbol structures that combine with the partiall y-scanned input s tring to make
up knowledge states in the problem space.

The second set of operators are for parsing a chunk into an equation : ore operator
scans a chunk to f ind an appropriate place to sp lit it into component ChUn kc , a
operator identifies a chunk as a var iable , as not subject t o furth e r subdivis ion , arid a ’ co
checks whether that variable is the same as a previousl y identi fie d v a r lab e chur~ ; ~-~nd a
third operator recomb ines variable chunks into exp ressions , whic h can then he la i~r’~~ n~

-,

more comp lex expressions by further combinations , using in f o r ”3 1 c- n assoc~~’ed w ’ t ~ the

chunks when they are spht by the first parsing operator . The pa’s ing npe’a ’ ~ lb “ 1 ake
chunks from a know led ge state and operate on them to produce further rb~~n~~ and also
express ions , which are c losel y associated w~lh ch inks , rather like ~b e r other a ’!r~~

, ites
4 An equation is a particular kind of egpress ion.

P , The third set of operators has only one element , a s pe c a oper a ’n’ icr sp l’t ~ing a
chunk recognized t o contain the s pecif ica lio r of the va riable unknowns ir i t c the
appr opriate unknown chunks. When those chunks are determined , they are der~ ihed with

IT . previous problem variables by the same procedure that is app led within l~ r’ ~~rsing
operator . The parsing and unknown seg mentatio n o perators a ’e organized into plans in
ways similar to the organization of the initial scan operators , and f or similar reasons

GPSR aims to find a sequence of task o perato rs that apply s ucce s si ve 1 ,, to an ‘n Ipa l
sym bolic configurat ion to produce a desi red configuration . T o do this , ‘ sets up an

0.2 Vlt-38

Conclusion The Nature of Al Programming 0.2

internal knowledge state organized around goals. Thus to GPSR, the space being searched
is a space of goal trees , and only secondarily a space of task configurations. That is, the
space GPSR is searching in is not the space of task operator sequences, such as the Move-
Disk operator in the Tower of Hanoi problem or the Cross-River operator in the
Missionaries and Cannibals. It is something more: task confi gurations are incorporated into
a richer description space built around goals to transform task configurations from one to
another, goals to reduce differences between task descriptions, and goals to apply
particular (partially—instantiated) task operators. GPSR’s knowledge states , in addition to
containing a general goal graph structure , are composed of a current status for the

• problem-solving executive and a number of auxiliary task-dependent structures.

The process primaries derived from the renaming process in Section C are
candidates for problem space operators: Apply, Evaluate, File , Generate, Match, Move-
Operator , Reduce, Select , Transform , and the Operations. We can narrow down this set by
taking the problem space operators only those members that involve significant problem
solving, i.e., that represent places where a number of possibilities exist and where the
operator goes with one in preference to the others. Evaluate takes a goal, either new , old,
newly—succeeded, or new ly-failed , and pr oduces an evaluation of it , with the result of
augmenting the current knowledge state by making some goal (either the goal immediatel y
input to be evaluated, or another goal selected according to its evaluation) the current
goal. For our purposes, it can be said t o include the File and Select processes , since they
don’t make changes to major components of knowledge states and since they are
dynamically subordinate. Select does, however , do significant problem solving, so that it
could be seen as an operator closel y linked by a plan to the Evaluate operator. (Some
vers ions of GPS include goals of select typo , in which case Select is augmented beyond its
GPSR form and is more independent of the executive.)

The Transform process is capable of recognizing when a solution is attained, and
otherwise is the evoker of Match, which results in establishing a new reduce goat. Match
is subordinate to Transform and also to Evaluate , and is not considered to be an operator ,
since it is subordinate arid since it doesn’t do problem-solving in the sense of selecting
from alternatives in the space. Instead it produces an exhaustive list of d fference s and
leaves the evaluation and selection of those to its parent processes. (Even in augmented
forms of Match in GPS, where so -called immediate operators are added, there is no
problem-solving in the present sense because the immediate operato rs are necessary for
the match to proceed.)

Reduce is closely tied by a problem space plan to two other operators , Generate
and Apply, wh ich do a significant amount of problem-solving. Reduce takes the focus on a
reduce goat and selects a task operator to be applied to reduce the d ifference attribute of
the goal. It then evokes Gene rate , which c onnects info rmation about the task operator and
the difference to be reduced to form a set of desirab le assignments for the variables of
the task operator. Generate also extends these ass i gnments to fu ll , feasible assignments.

• The Reduce plan then calls for the evocation of A pply, which takes the set of feasible
assignments and checks the result of app lying task operators for each. Apply selects from
the results of the app lication attempt , to produce a success signal (a modificatio n of the
executive status for a goal) or information that is used to construct a new goal.

The Move-Operator process is little more than a plan to evoke the Apply operator

v11 39 0.2

IL~ ~~~~~~. -

0.2 The Nature of A~ Programming Conclusion

to try to apply a task operat or , and then to construct a new goat according to the result
of Apply. It doesn’t do much problem-solving, but it has a visible effect on the knowledge
state , so it deserves operator status. The Operations processes are subordinate to Apply
and do only straightforward symbolic manipulations to attributes of goals , so they are not
problem space operators. Thus, GPSR includes the following problem space operators:
Evaluate, Transform , Reduce, Generate , Apply, and Move-Operator. This discussion of
GPSR is important in illustrating the use of the structure evident from the renaming of

• Section C. That GPSR’s process structure and its structure as a problem space correspond
so closely is strong evidence for the argument that problem spaces are effective as a

•
. theory.

The two examples already given should give a good idea of the form of the
argument for problem spaces. Problem spaces for the other four PSs need only be briefly
ske tched in order to provide additional support arid comp leteness of coverage. The task
for k.4iliPS is to form a unique interpretation of an input string, maintaining both
consistency with a model of a toy blocks scene and naturalness of the interpretation (as
opposed to finding an interpretation that would not occur to a human in a simi ’ar situation).
In some cases , MiliPS recognizes some kind of error in the input , and provides a diagnosis
of the problem as its output , e.g., by describing specificall y the sort of ambiguity detected.
A knowledge state has the remaining unscanned input string, a list of objects encountered
in the sentence that can still be useful for making further interpretati ons, the unresolved
ambiguities in sentence , and unused rela tions and other structural f ragments that are to be
filled in by more scanning of the input. MiliPS searches in the space of possible
interpretations by applying operator s to lexica ll y classify words , to verif y grammar , to
create and identify objects assoc iated with nouns , to app ly attribute values and relations
to restrict ambi guities , to resolve inconsistencies and redundancies , to describe scene
objects , and t o deduce and perform the actions that are the main intent of an input. These
operators are all represented by sets of Ps in MiliPS, and are easil y distinguishable as
program units. Some of the mentioned operators do less in the way of reducing the
remaining space of possibilities for an input , i.e., do less pr oblem-solving, t han others , with
the reduction of ambi guities, inconsistencies , and redundancies estimated to be the most
important.

The space of possibilities for Epam is the space of extensions of an existing
discrimination network in order to improve performance on the sy llable task. In a sense , it
is searching a space of networks. Primaril y, Epam consists of a primitive matching process ,
w hich compares its behavior to the desired behavior , and an extend-net operator , which
takes action on the diagnosis of a diff iculty produced by the ma tch. In contrast to GPSR’s
match , the match in Epam does do some problem-solving, distinguishing between various
cases to be corrected. The extend-net operator , however , is responsible I or the majori ty
of the problem-solv ing.

W I3tox consists of ~‘ number of tas k operators for manipulating blocks worlds , only
some of which are problem space operators. It is given a particular blocks conf iguration
arid a command to be executed on that configuration , with the command amounting
essentially to a part ial description of a desired state. Since there is l ittle in the way of
internal goal descr i ptions (in contrast to GPSP) , the knowledge states are taken to be
basically blocks configurations , am ong which W !3lox searc hes with a var iety of operators ri

order to achieve the desired one. The operators chosen for the designation of problem

0.2 VlI-40

- ~~~~~~~~ —~~- -—- ---~~~~~--- ~~~ - - —---~~~~~~---~~~~~~~~~~~~ --

-
----~ ..-~~~~~ —~~-

—

Conclusion The Nature of Al Programming 0.2

space operator are the intermediate-level blocks operato rs , as opposed to the lower-level
commands, which do no problem-solving and are subordinate , and the high-level commands
that initiate the system ’s activity but that don’t do any thing directl y. Thus the problem
space operators are the following, which do produce different configurations of blocks
when applied: PIJTONSET, which is an iteration of the basic PUTONI operation, but wi th the
capabilit y of trying alternatives; STACKUPSET, an iteration of the PUTONI operator , similar
to PUTONSET in problem-solving capability; PUTONI, the placement of one block
somewhere on top of another; PACK, an itera tion of PUTON1 and other more primitive
operators; FINDSPACE, w hich finds space to put something, doing a small amount of
problem-solving to arrive at a suitable location; GRASP, which should really be called
TRYGRASP, an attempt to grasp an object that may involve some rearrangements before

• being achieved; GETRIDOF and CLEAROFF, which also do rearrangements to place objects
in non-interfering locations; and MAKESPACE, which rearranges blocks to fo rce the
availability of open space .

Finally, KPKEG searches among chess positions , with the basic knowledge states
augmented by inf ormation about strateg ies being tried and alternatives still avai lable. The
primary operators are an evaluation operator , similar to GPSR’s execu t ive, and a generator
of moves that fulfill strateg ic objectives established by the executive. If one wanted to
refine the generate operator , it could be broken down into a small number of strategy-
specific generators.

The above presentation of problem spaces has emphasized the operators at the
expense of describing details of knowledge elements and tota l knowledge available. This is
because the operators are the generators of the behavior spaces , and are the most visible
components in the PSs , since each operator is a set of Ps. It should be pointed out that
often the actions of problem space operators have been described abstractly in the body
of the thes is as very abstract Ps (VAPs). But it is also the case that in doing the above
descriptions, there is amp le contact with general task concepts , and the emphasis is not
entiret y on the opposite bottom-up considerations , the way that the PSs , which are only
particular implementati ons of the tasks , c orrespond in organization and in detail with
problem spaces. In some cases , the presence of problem-solving within operators has
been portrayed as central , sinc e it is through the existence of problem solving t ha t there
is a potential for a space of possibilities. That is , problem solving is seen as the
application of knowledge to make decisions of some sort , and it is the possibility of making
decisions in a number of ways that makes the space.

In conclusion, there are a few points to be made on the apparent advantages of
implementing problem spaces with PSs. The taxonomy of c ontrol presented in Sect ion B
can be seen as a kit of techni ques for implemen ting problem space operators. The level of
the various elements of the taxonomy i~ such that i t doesn ’t cross the conceptual
boundary of a problem space operator. That is, the control techniques are right for doing
operations within problem space operators. Also , nothing in the taxon omy proposes any
overarching organization that wou ld conflict with the problem space view. When
implemented as PSs, problem s pace ope rators become rather open in terms of inter-
operator interactions , both in te rms of the size of action done by a P (interruptabi lity) and
in terms of the globalness of all Wo rking Memory interactions , that the inter -operator
interaction doesn’t get out of hand is demonstrated by the modularity measu res in Sect ion

• C. Finally, augmentation of a PS program can be viewed in two w ays: the augmentation of

V Il-4 1 0.2

_ _ _ _ _ _ _ _

D.2 The Nature of Al Programming Conclusion

the operator set , which should be facilitated by modularity and globalness of interaction
and evocation of all the operators; and augmentation of particular operators by adding Ps
to represent further behavioral possibilities , also aided by precisel y the same factors .

Having verified to some extent that PSs are right for problem spaces , we stilt have
to examine the larger question of how fruitful it is to view Al programs as utilizing
problem spaces. Certainly the view is supported by the specific correspondences for the

-
-

six PSs above. But perhaps we should reconsider the definition of problem space and
- note that it includes some amount of search as contrasted in the extreme case with an
•

•
. algorithm that performs directl y wi thout such intermediaries as goals and subgoals (Newell

• and Simon, 1972, pp. 820-823). Thus our assertions about the nature of Al programming
and the suitability of PSs should be app lied only to research of an exp lora tory form, a
form that is common in most past Al research and that seems inevitable in dynamic, open-
ended understanding systems.

I

I
VIL-42

--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
, -~~~~~~

• Conclusion

E. The Future of Production Systems

E.1. Serious defects

Run-time efficiency is the primary weakness of the PSs implemented here. To
summar ize a number of comments made in connection with particular PSs, run-time is too
large for practical purposes by roughly an order of magnitude (more precisely, a factor of
6 to 10 times). One effect of this is that the programs are too slow to be run
interactively, and in practice , much of the debugging f or the thesis was done in batch
mode, with only One or two runs per day. At present , this is diagnosed to be due to
correctable causes. The Psntst interprete r has several known, low—level inefficiencies , and
probably more , si m ply because not enough time was taken to make the internal algorithms
and data representations more optimal . As has been discussed in Sect ion B.5, there is no
c lear evidence that there are co& t l y factors inheren t in the PS architecture (such as
increasing expense as the number of Ps increases), except perhaps for the presence in
Working Memory of a large amount of useless informatio n that has not been properl y
cleaned up. This is als o in agreement with another study of PS eff ic ie ncy (McDermott et.
al., 1976). But most importantl y, PSs are amenable to signif icant efficiencies beyond
improving isolated architectural features and interpreter implementati ons: the possibilit y of
representing PSs in a compiled form. This involves transform ing the external
representa tion of the Ps into a form that takes accou nt of repetitive arid redundant
matching operations , conve rting them t o a form optimal for the matching algori thms and
mak ing provision for the storage of partial results to avoid duplicati ons. Forgy (1976) and
McDermott et at . (1976) describe some initial ef for ts in th i s direction. Forgy says that PS
efficiency might be improved on by at least a factor of 5 (over the present Psnlst) , and
per haps more, by proper compi lation, and als o that properl y-designed hardware could
achieve quite a bit more than that , up to more than 15 times the present Psnlst. It is
expected that efficiency will be a top-priority item for PS research , but also that its
resolution will be relativel y rapid.

The other major defic ic ncy with the PS imp lemer .tatio ns here s the ad hoc qualit y of
the control and data representation. The proposed sh ift in representat ion outlined in
Section C.2 is a resp onse to this feature and all i ts consequences. A re lated ‘eature is the

• excessive use of control as opposed to letting more process ing be more open , specif i call y
data-driven or bottom up. The tasks chosen did not tes t the architecture along this
attribute, as was ,mplCd in the discussi on in Section D.l and be low in Section E.3. There
can be no doubt that PSs are we ll-suited to such a st yle, and it is like, ,’ that this capab ility
of PSs will be exerc sed more when PSs are applied to tasks that also make use of the
openness resulting from the proposed representation shi ft.

E.2. Promising features

A number of featu res of PSs are indicated by the programs done, but the tasks
were not carried far enough to all ow them to be actua lly demonstrated A cluster of
capabilities rev olves around the potentia l for automatic creation and modification of Ps ,

Vll-43 (.2

-. ‘ ‘ ~~~~~~~
.‘ ‘‘ • ‘~~ , - .. .- ---~‘fl —- - c ,- -.-~

. , . —. ~~~~~~~~~~~~~~~~~
‘
~~

— “ ‘~
‘~~ ~~~~~~~~~~~ _ — •.-—~.v -—.w—_ ‘

~

- - - -

E.2 The Future of Production Systems Conclusion

where automatic refers not so much to deliberate actions within PSs but to other more
general processes that can app ly in an unrestricted way to running PSs . First , there is the
possibility of collapsing dynamicall y-adj acent Ps into shorter , more task-specific ones,
w hich could accomplish some action with fewer recognize-act cycles in particular cases.
This was emphasized most in connection to GPSR, where a number of “interpretive ”
aspects of the processes were amenable to being tuned to take advantage of fixed
properties of the various tasks. There is the possibility of tak ing more advantage of the
converse of collapsing sequences of firings , namely to break down unnecessari l y complex
Ps into simpler combinations or cascades of Ps , with the benefit that the result is more
general , capturing a number of cases for which there weren ’t c omplex Ps before. This
was noted in connection with GPSR and KPKEG. If , for instance , a set of Ps test the
interac tion of a number of factors , say 6, divided into two sets of 3 related tests , then to
have single Ps perform all the possible combinations would require 9 tests , wher eas 6 Ps
suffice if the test is broken down into a sequence of two tests requiring 3 P~. each . This
mechanism especiall y pay s off when the smaller Ps are accidenta! ly app licable t o s tua~:’)ns
outside the cases to which they were close l y tied (as distinguished from simp ly filling in
missing cases within the local combinatorial ones). The utility of each of these two P-
modification operations is that they could be t ied to the frequency of usage of Ps, so tha t
such “optimization” w ould be applied only where sugges ted by tas ks. All this is not to say
that such automatic augmentation processes are si gnifican t enough to become an
overshadowing fac tor in the power of PSs , but that they might operate in the background
to improve PS capabi l ties and exploit inherent architectural flexibilit y.

Augmentation of PSs could be madc automatic by periodicall y forming new Ps from
changes occurring in Working Memory. That is , a condition is formed from some set of
older Working Memory elements , and an act ion , from some more recent set , the tw o sets
thus associated together as a P simp ly by time adjacency. This was discussed as an a
priori property of PSs in Chapter 1, and has yet to be explored except in prototype
studies. Similar Ps formed in such fash ion could conceivabl y be collapsed into smaller
numbers of more general Ps, simpl y by conve rting selected constants to variables
(“selec ted” referring to constants that diffe r or clash in otherwise similar parts of PS).

The use of the representational taxonomy of Section C.2 is promising fr om t he

standpoint of combining se paratel y-developed system s to obtain new interact ons beyond
a simple sum of the ir properties. This would certain l y be facil i tated by keeping the
number of primary processes as small as possible , a ’ d by keeping them open for
application or mapping to new task areas. Structural features of GPSR (see Ch~apte r IV),

• f or instance , make it open f or use as a module in other systems.

Finally, there are ways that °Ss lend thern~~;ves to more power , both in genera l an~
in specialized tas k dom~~ns The recognize-act cycle might be modified t o allow more of
the multi ple f irings , along the lines of the ones that occu r now when there are a number of
possible matches to the same P. One possibility is to a~low a number of d i f ferent Ps all to
fire on the same cycle , when they are true and at the same ti me are keyed to the same
event or change to Working Memory. This would increase the power of PSs to do i terat ion
and to express esse nt ia il y asynchronous processes , dec reasing the need for deliberate
c ontrol mechanis ms. Specialized power fo llows from the PS a rchi tectu re when the
language is modified to take advantage of pecul iar i t i es of task c . This pos~ihilt t y comes up
in connection with chess , where the cent ral t ask represent atio n , the chess position , is

E.2 V II-44

• .-~~~~~~- - - • - - -~~~ -— ~~~~~~ -~~~~~~ •- • - - -~~~~~~~~~ .-.- .~~~~


~~~~~ -~~ - -.- --... , .- —, ~__-?..-__n-w__ 
~~~~~~~~~~~~~~~~~~ .~~~~~,,. - . ,~~~~~~~- . •-, -—r ’- - - -- --- .~ - .- ‘r’ ..-,~ -~~~ - - -

- -- - — - - - ~~~~~~- -

Conclusion The Future of Production Systems E.2

something that is common to much processing and could be streamlined to be expressed In
the language and in the underlying implementation more efficientl y.

E.3. Gaps in the evidence on production systems

One major area of A! programming untouched by the PSs of this thesis deserves
some discussion here: the area of encoding knowledge in the form of semantic networks.
A useful formulation of this tas k will include two aspects of understanding systems:
operability of knowledge arid automatic encoding of knowledge. The PS approach to
semantic networks wi lt be sketched briefly below. Some important aspects of operabilit y
of knowledge are mapping or conversion of Working Memory elements so that existing Ps
can be applied to them (termed assimi lation by Moore and Newell, 1973); formation of new
concepts; formation of problem spaces , as discussed in connection w ith the Studnt PS
(Rychener , 1975); and the modification and augmentation of ex isting knowledge embodied
in processes and about processes. The PSs developed here don’t make much contact with
a number of other sys tems that use Ps in a radicall y different way , RHS-driven , “goal—
oriented” production-based systems (Davis , Buchanan , and Short l i ff e , 1976). Such systems
have achieved a moderate amount of operability. My current thinking on this other form ~s
that it may be a more primitive for m , and that a transitional sequence might be found to
connect the RHS-driven form , by a series of collapsing and aggregat ing operations , with
the form common to this thesis and a number of others (see Chapter 1 for related work).

The PS approach to semant ic networks follows the same principles used for
discrimination networks in Chapters III and IV.~ Sema ntic connections will be represented
by Ps, rather than by relational structu res in Working Memory interpre ted by Ps. The

firing of a P wil l represent the traversal of an arc (Or arcs) in the conventional network ,
and that firing will result in leaving in Working Memory a tempo rary state , the internal
state of the network executive or searcher , as it were. This s not unl~ke the process
described by Rumelhart et. at. (1972).

Query ing the information in the network would be by construc ting a P or set of Ps
that would monitor the chang ing Working Memory state and f ire on recognition of an
answer , ei ther positive or negative or something else , depending on the st ringency of the
test. Multiple-ori gin searches could be ca rr ied out by fir ing Ps in parallel , especiall y
effective if the conflict resolution is loosened up to allow several d ’ferent Ps to fire at
once, as suggested above. Figure E. 1 gives a fragment of a network , using simp lified Ps.

The N Ps, the network proper , are two simp lified classif ication h~era rch ies , one for
“tulip” and one for “dog”. The f i rst three Q Ps represent three questions that might be
posed to such a network: is Dog-i an animal” , is Tu lip-3 a plant” , arid “is Tul ip-3 a dog”.
The Q4 P represents a genera l piece of information , “plants can never be ani mals ”, !he
sort of thing that would be used to answer the th i rd question in the negative. For each of
the questions , a search involving firing of several Ps takes place , w ith cne of the Qs
ultimatel y providing an a” sw e r For instance , to answer the f i rs t question , “Dog-7” w ould

• be asserted , resulting in tiring Ni (producing isa-dog(Dog-7)) , then N3 (isa-ca nine(Dog-7)),
then N4 (isa-mamma l(Dog-7)) , then N5 (is-animal(Dog-7)) , arid finall y 01 (ar iswer (yes)) .

• The approach was developed in conversations with A. N~’well arid D. Waterma n .

V II-45 E.3

~ I
_ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r ~~~~~~~~~~~~~~~~~~~~~~~~ -,~~,-- - ~ -.~-..-. .—- --.---...- — -.---..— ~~• - .- —----- ,--. . .- -- ,.- .- .- -

- 

- - - -

~~~~~~~~~~ 

- -

E.3 The Future of Production Systems Conclusion

Ni: Dog-7 -> isa-dog(Do~ -7);
N2: Tulip-3 - > sa- t u i p Tulip- 3);
N3: isa-dog(x) -> isa-ca riine(x) ;
N4: isa-cani ne(x) —> sa ~“amma l(x)
N5: isa-mammal(x) -> isa -ar imat (x ~

• N6: isa—tu lip(x) —
~~ isa-f tower (x) ;

N7: isa—f lower (x) —> isa-p larit(x) ;

• 01: isa-animal(Dog-7) -> ar iswer (yes) ;
Q2: isa—plant(Tu lip-3) —> answer(yes);

-
- 1 03: isa-dog(Tu li p-3) --> answer (yes) ;

• Q4: isa-a nimal(x) & isa—p ia nt (x) — > answer(no);

Figure E.1 .A fragment of a semant ic network

Note that in the case of the th r~ questio n , two searc hes need to be done , namel y one
starting w ith Tulip-3 and one star t ing with the assumption that “isa-dog(Tuli p -3Y , wi t h the
searches ultimatel y producing the ~or~ rad~~t o n recogn ized by Q4 .

The Ps above are simphf ,cd . An act j a~ syst e m needs some guidance of the search ,
and it needs some w a y o~ st opping the search. Guidance ca n be provided by adding ext ra
conditions and act ions to the re~wci ~. Ps , and by adding ex tra Ps to monitor the state of
the search in Wo rking Memory , perf o rm !~; deleti ons to prune the search. Stopping the
search might be achieved by havi ng ex tra Working Memory elements record a search
ac tivation level , updated each time a netw ork P f ires or each time some recognizable event
occurs.

From this pre ’n na v p~e~er~a t i cn , PSs :a’ - be seen to have several positive
features for this ~~~ ~~DI C hC ~ie iir istic nt c rr , iat on can L e encoded direct l y in the
network , riot , for instance , in some all-kno~,- g cen t ra ~zed executive , where its access
might become rather involved. The netw ork is act .et y er~ osec~, and ta~~ s advantage of
the power of PSs to perfor m t i c i terat ion of the search cycle. And t re pat te ’ ns searc ied
for are limited only by the ex press ivi : power of Ps. hi~ “‘cans that there is no l ”~ t to
the divers it y of knowled ge brought together fo~ an ~nswr’ r , or to the prc-ressi r~ done at
each step in a search . Er thu~.i .icm for this ~1p~ roach must , how ~ver , be tempered by the
obvious d i f f icu l t y of c’ ,e~~i!1 contr ol: .~~t t h ~o ‘r.~r~y P~ hi ‘i~~ n . \ - nCh~ O nOu~. fa ~hon , th~~r0

may be a reuui~ernent fo r a ?rge number of general querying and (doma in-spec if ic)
search-l imiting Ps to co nta~ ~he s e a rc ~i No task anal ,’ -e s e~~s~ (to my knowledge) that
w ould provide data on t he vj t~~ t ial d f f , c _ u t j e~ here. ~~~ instance , there are no measures
on the “branching fac tor ” o~ se-~ai t ’C nets , and n O? r t c J a ~ there a ’e no comparisons of

-‘ branching f or networks used in various tas ks.

E.4. Prac t ica l~~~pra t ca L and ~~~~~~~~ ~~i~t~- ~~~~

PSs seem idea l 1y suit ed for b~~~~~ - O ~~-e l c : g n i t ve f 1 - c t - ~~n~ where ia r~ e amounts of
drimain kn~ wlertge are to he hrn~~ rY ‘ o bear ~-~c~’ t~i: ,kr . e~pIo t ‘he .‘~d c s ~~~~ sys t em
propert ies of PSs , part icula r l y the ~~~ Iha~ know ~edi;~ is a±ied ‘-ic reme nta l l y and

I:. E.4 V Il-~ E~

- __
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Conclusion The Future of Production Systems E.4

Interactively. Some specific app lica tions are: knowledge-based systems , wher e an expert’s
knowledge is encoded and applied to real problems; computer-aided instruction, a field
w ith unlimited room for expansion of the knowledge base , while at the same time
demanding a concurrent augmentation of processing capabilities; human-computer
interfaces in general (particularly natural language ones), where the interface must be
adaptable and per haps even capable of modelling its users; tasks familiar to cognitive
psychologists such as protocol anal ysis and modelling; and cognitive components of

r robotics, speec h understanding, and visual systems. These areas are contrasted to low—
level number—crunching applications , such as acoustic arid visual-image preprocessors. PSs
might not be best in areas where little is known and reliance must be primaril y on brute-
force exhaustive search techniques. But two qualifications can be made to these apparent
rnisapplications of PSs. First , even in exp loratory s tud ies , the incremen tal property of PSs
might allow effective and rapid narrowing of a large sea rch space. Second, since PS
interpreters can be coded relatively easil y, there may be cost-ef fect ive specialized PSs
for , e.g., tasks involving numerical computations that are somewhat condition-dependent.

On the theoret ical side , PSs are well-suited to several kinds of exploration.
Generally, PSs are a transparent medium for exp loring the content and form of knowledge
in a domain. PSs are good for exploring new ideas , given the rapidity with which a
workrng system can be constructed. Much theoret ica l , app licati on-independent work
remains to be done in the area of automatic encoding of knowledge , i.e., building
instructable PSs. PSs have proven effective in this thesis for replicating past Al ef torts
and in more detailed anal ysis of past work , and are a concise means of expressing
pr ograms for documentary and descri ptive purposes. Using PSs , the field of A l might yield
to analysis aiming toward a comprehensive rational ization or systematizat ion. Finall y, PSs
might prove to be useful to current explorations of parallel computer arch itectures , as a
simple computational mechanism that allows complex systems to be br oken down into a
number of asynchronous modules , or perhaps as an abstract formalism for such systems
regardless of the actual imp lementation.

E.5. The case for production systems

PSs are effect ive and advantageous for the programmi ng co nstructs typ ical of Al
systems. The six PSs implement system s w ith a v ar ie ty of r”~ U ods and representations.

• Of nine programming language properties discussed . PSs ha- ic ~art icu lar advantages in
style, conciseness , and archi tectural f lex ibil ity. They a lso are ia-o rab le with -e~pect to
practical feas ibilit y, productivit y, and degree of being gu ded ~-y a t h eo ry . Their attr ibutes
are mixed on power and overhead features , and ~‘e negative ,it the moment on ef f ic iency.

• Some of these evaluations a re str ic t l y com parat ive , ~hile o’i’ n r - can not be c r ’ r a r ~:t ive at
present die to lack of sim ilar nle,v Jres for other r - ,tr” c . ~‘~ ha r - v~~’s of P’~ cor ’ t ro ’ a re
encompassed by a re lativel y c onc ise ta~onom~ of c x p-oce ~s-evo c at iO n categories and
f ive data-management categories. Maj or successes can ~c e i pe r ted in appl ying PSs to
large-scale understa ridin~ sys te m s o~ the sort curr er’~i y being exo lored. Of a set of seven
secondary understanding system properties , four are su pported b’~ a priori ‘-‘S propert es
and are further supported by the s ix PSs. Two other propert ies , openness and modularit y,
are suppor ted by the application of a taxonomy of re prese ntat on . and the seventh ,
provability, has not been at t a ked by the present methods. Two pr,n~a ry understanding
sys tem properties , operabilit y of knowledge and automatabi l ity of the encoding of

Vl1-47 E.5

~~~~~~~~~~~~~--“.--- • ~~~~ - - - -~~~~~~~~~~~ - . - . --~~~ ------. -~~~~~~~~~- _ _



_ _  _ _ _ _ _ _ _ _ _ _ _  

-
~~

- -
~~~~~~~~~~

----— ---. -
~~~~~~~~~~~~~~ 

-.--

~~~~~~

-

~~~

--

~~~~~~~~~~ 

—..-

E.5 The Future of Production Systems Conclusion

knowledge, have not proven amenable to demonstrat ion by the present approach, and are
left open for further research.

PSs are par t i cu lar l y useful in domains where system knowledge must grow
dynamically through interaction with humans and w ith a task environment , but wi thout the
expense of analysis of how each new piece of knowledge must fit into existing structure.
A set of major themes of contro l in the systems implemented stand as hallmarks of Al
programming and may prove useful in evaluating new and proposed system architectures
for Al. A preliminary theory of Al programming can be based on the correspondence of
the PSs w ith the concept of problem space. Such a theory may provide a framework for
the organization of futu re understanding systems , especiall y given PS properties.
Diversity of application and problem-solving capabilities , both of which are deemed
essential to building understanding systems , have been adequatel y demonstrated.

‘1

.4

V ll-48

_ — - - - - “.-

- r ~~~~~~~~~~~~~~ — _ _ _ _ _ -

—
-

- -

Conclusion

F. References

Davis, R., Buchanan, B. and Short liffe , E., 1975. “Production rules as a representation for a
• knowledge-based consultation program”, Report STAN-CS -75-519, Memo AIM-266.

Stanford, CA: Stanford University, Computer Science Department.

Eastman, C., 1973. “Automated Space Planning”, ArttficiaL Intelli gence, Vol. 4, 1, pp. 41-64.

Erman, L. 0. and Lesser , V. R., 1975 . “A multi-level organization for problem-solving using
many, diverse , cooperating sources of knowledge ”, Proceedings of the Fourt h
Inter,uztj .onzzl J oint Conference on Arufi.ci.o.L Inte U~gence, pp. 483-490.

Fahlman, S. E., 1974. “A planning system for robot construction tasks ”, Artifi.ci,aL
Ir aewgence, Vol . 5, 1, pp. 1-49.

Forgy, C. L., 1976. “A production system monitor for parallel computers ”, Pittsburgh, PA:
Carnegie-Mellon University, Department of Computer Science. In preparation.

Hayes-Roth, F., 1975. “Collected papers on the learning and recognition of structured
patterns ”, Pittsburgh, PA: Carnegie-Mell on Universit y, Department of Computer

• Science. First paper in collection deals with representation.

Hedrick , C. L.. 1974. “A computer program to learn production systems using a semantic
net”, Pittsburgh, PA: Carneg ie-Mellon University, Graduate School of Industrial
Administration. A shortened form is in Al, 7: 1, pp. 2 1-49, Spring, 1976.

McDermott , J., Newell, A. and Moore, J., 1976. “The efficiency of certain production system
implementations ”, Pittsburgh, PA: Carnegie-Mellon Universit y, Department of Computer
Science.

Moore, J. and Newell, ,~~~, 1973. “How can MERLIN uriclerstand?” , in Gregg, L., Ed., KnowLedge
ar id Cognition., pp. 201-252. Potomac , MD: Lawrence Erlbaum Associates.

Newell , A. and Simon, H A., 1972. Human Proble m SoWing, Englewood Cliffs , NJ:
• Prentice-Halt.

Rumelharl , D. E., Lindsay, P. H and Norman, 0. A., 1972. “A process model for long-term
memory”, in Tulving, E. and Donaldson , W., Eds., Organ4ziltLon rind Memory, New York ,
NY: Academic Press.

Rychener , M. 0., 1975. “The Studnt production system : A study of encoding knowledge in
production system5 ”, Pittsburgh , PA: Carnegie-Mellon University, Department of
Computer Science.

• - Schank , R. C. arid the Yale A l Project , 1975. “SAM -- a story understander ”, Research
Report No. 43. New Haven , CT: Department of Computer Science , Yale University.

Simon, H A., 1969. The Science: of the Aruf~c~a4 Cambridge , MA: The MIT Press .

VIl-49 F.

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-

~~~~~~~~~~ 

““

~~~~~~

F. References Conclusion

Shapiro, S. C., 1971. “Net structure for semantic information storage , deduction, and
retrieval”, Proceedings of the Second In ernAt~onaL Jotnt Conference on Aruf icial

• 

~
- Intelligence, pp. 5 12-523. London.

Sussman, G. J., 1975. A Computer Model of SkiU Acqui.uuon, New York, NY: American
Elsevier. Publication of Ph.D. thesis , MIT Al TR-297, 1973.

. - Winston, P. H., 1975. “Learning structural descri ptions from examples ”, in Winston, P. H., Ed.,
The Psychology of Computer Vision , pp. 157-209. New York, NY: McGraw-Hill.
Publication of Ph.D. thesis, MIT MAC TR-76, 1970.

F

-~~~~ VlI-50
.j 1~: 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~


_______________________ ________________________________
____________________________ ______ - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Conclusion

CONCLUSION APPENDICES

‘ i

- ; -

— -

GOAL .~~~~tT

~~~e~~it A. lAM 1~~~~ ~~ P~~ O1CATI3 00.~. •0PlOI~?S
,aas~~ oIrc ,ASo AP~~Y .UO’#~~~~ i~~~ 3

ACOLAS? AOO .tIu(ftd ‘~~~~ ~~~~~~~~~~
ACOt I’M ADi~ •L I IM/A MA$SL~ DGOAL GOAL
APPL vo~ APPLy .,~O’p1~~~~ fC HAS ~~~~~~~ OR~~ C T .T~~ ’~~(* PT

APPL Y O I ~~rq APPL Y .MOVT OPI/? ,4AS APILCVV. GOAL •T ACS((VIL/T

APPL YD l r f R- S~ IL, APPL Y aLIOVI ~~2ITC I4ASVAI. .VA&L* PT
APPLYLOC PROe APPL Y tOCPQ0G~ A HASVAQ COM~~ .YAR~ L~~T

APPLYOP APPL Y .MOVT CPR/A I4ASVA6L I’M VAP~~ .j IW PT
APPL Y OPZ APPL Y .IlOVE ,~~ QN Il~ *t AS T •t T’MM
apPtYopc APPl Y .FOQ1~OPP/A I’CtL P16 I1A 1 .4. IIAIFI

APPL Y Qt SLJ.T APT’I.Y uUOVT.CPII1 . II6t T IIOVI~~~~ •S t t /T

ASGIG’IS VAIIAL .ASGPT 1S2 1’M’Jl 1~~..JI’M4$1OPU .1PP(PT
*SSIG*?S O Yarn. •ASG /U2 ISAPPL y GOA& GOAL .TY,(APPt ’l I~

I~ 
ASSTGI4Sft VA PPL .ASG/t& I I~~ (ScR I~~~~~~J ~~~~CT •tV’fO1SCt I~~ D/T

CHAWGi S~VAL MOVT~~~? .VALCHAW ~~~/T I~~ (A~~V O8~~ CT .TYPL G,.,.,.IY fT

.OLSA $G(A3 igopuc, V ORUOPP .TYPL PT

C’M CART TRY GOAT. .Rt I QY/’W 7~~ CV1 0’ h~QYt ~~ I .1 APt FT

- 
- - C -4T C KCN~’L PILl .GOAL/&2 I0’(IIX(GOAT. GOAL .TAP TPlQ6XTIT

C)iCALTtLX GT’MT .O(SASG/T ISSAA~ ~~ .(CT .TJJM ~~
CHOOSLOLDGOAL SO L I CT .COAL/S ISS Ak~ OI VAI~~ •A 5G~~M~~Pd2

CHOOST OLOCAJ S(L(CT .OA~~ Ct S  ISOA’M(QY c16ACI .5AA~~fl

Ccii. CAlM I WI T I’ .O(SASG’G ISS AIM COAL GOAL .SA’M PT

cot t PM T M T P  .LOCPROG/O ISOLT SIT .IWTSI T /T

COt OM Y *A TP .~~~~~CT/O ISTlAW5T ~~~ T GOA& GOAL
COOY (AST C~~Y .(l’MIOd LASTOA’R T ‘RIP .t*SATG/l1

CQPYLI’M copy .~~Iuc fA LASTLPW I ‘R i p  .LOc tpoG Ad

COPVORJ COPT .O6L~~CT / A  t *SIC’ R T ‘A lP
O(C R&A ST . t I ’MA~ L IIA S
Of CA L I’M OTC I .11116/A LOCA XIP a~ATO4 .C *IICT /A2

- IVAL .OIrr’rn LOCPAOG A~ ST.L1 A ’PT.V .LOC PVOG /R

O I P F R E V A I. AtS I IVAI. •b1 PPI /A .l MA T Q-lML6 I MA TO -T  .P1ICT/i

D I 6 F I f V A L A 5 S~ (VA.  • 01F61/ A2 IAATc,-4C161 •O~ ZC ’/A
OIPPRLVALRI O1.LT (VA T. .OIrr’/I hIAT O1.QTSi MA T~~~

APPL Y .uovvc.i,o * MATC~~ !S1XPM T ILT •~~ lA T ’/ C 2

LRASEC,’oIaS SI L I C T  .GOAL /OS MA T DAATSTI O8~* CT .ITS’RPT

1QAS1 Cp,OI~~~S.O SLLICT .Qii,(CT,tS MATOTAI SLIT UA T D T  .cAl.ACT/R
FRAS(CS FILl .GOA1,~ A.2 ~gAT O~YpL ~~~~~~~

(PAS T CSP P ILl .GOAL /D1.2 M.ATO-, Y5~ I T P A V ~~ ,t2
IRAS (&PC LO CPQOG .~~I~M/DT Md lii ‘Q~~~IM .M A

(P A S ( A T A T CW O I F F  LIATOI /tIA IR T ACCASIAM COAL .T XTIAUS T PT

IRASTAIDI MA104 .c16ACTI~ A ‘III .o( SASC/c

IRA ST AIL ) UA104 /0A2 MOVI O’IM T ’CO MO~.tOAI •A ~~T’Cfl A
IRA SI*.IW I DIPPA .l.!U6 IV T MKTGGAL APPt Y COA L .T A ’AP Ti.VPC

‘AX IGOAL T RAHS GOAL . ‘ R X T  IRAW5 ’C
TUAS (AT v A L TRAIIOP /~~ 2 c’R T GX C lit! .~AA C’ /A 5
CRA St ORJ O11MCT /~~T 0’4’S4.~~O~ PILl

IV AT. GOAT. (VA T. .00*1./A ~~ COGi GAL l I L T  .X *. IA .T

I X T O A W I T  P I L l  •OT SASGISL I ~~~ Xt MtT’CO RI~~XT /A

Fill .O( SASC/A .l ~~~~~~~O’O-R PT ’X( .IQP U IC

tX1 tP~4 T1 FILl .LOCPPOG M.I ~~IA. asT P1,..OSi .W 4* Al

£XT (PM T 7 FILE .LOC.PQOGfA .i ~~ M& TUT l4 uO’IT .L 14*/A

- 
- IX Y O W I T  Fill •Oe~~ C 1/A i AISIATOE’LP M~A I~4

.CXTAIPQ /G II TR A C3AL •R~ ‘ R A F T

P A I L  GOA T. /1 ~~ T R Y - i L A W5 T R A ~~J

PA lLID GOAL /0’ S I L E C T O I S A ~~ GI AP T .ry SA5;~~a

FIASASG 011167 .FEA SA SG/A VLTCT ,41”~O S I t I CT

PI tCCE S~~SG ‘Ill .~~SASG/A ~~L1CT MW0AJ SOLI CT

P ILIGOAL PILE .COAL IA SO L ICTOP 61
P IL(&O( (~SCG P ILl •LOCPPOG/A 0”. i T ( ~~ 6 I~ f
I IL~~Ot1Ar.T 61(1 ,op~~cI/a ~~ p~~~pp ~~~ ,~ cp c

~~
A L .P!~~ .j ~j . 4 j y ?  a~~ t v P w

lOOu21’ML1Th~~T HOO VOcu?T6Pt f T O P c  / A  0 ’QOI I~~TAA I4 ~~~A . • I.’RPT~’UAwS PW

60Pu06’ AT( TTIOT ) FOPIAOPR /A ~.rcoic CTA.

GEWOISASG 01146 ? •C*SASG(A.l ~~~ CI(O( D COAL IV’

~~ 0114111 S-~SGO CI’M T •OI SA S G / A 2  T t S :~~A A r  M ’P

0(11 PCOA’POW LOCPQOG •1 4*1W 1151GM T ‘ I L  .P.~ Cl 41. 1
C P S Q I W i ?  CPSP /A T TS ’ GMTP li~. l .CA .IC I /A  I

IIASACT LLA( 061.4 COAl .OiL*CT/T 7151GM IS F LI .0’~ C’ ‘~2
ITA S A L T O J U S  GOAL ,A LTDI ’ TUFY TIAGI.ASG IRA C I

HAS AIT T I C GOAL •A W T P C P T  TRA GIGOAL T R A C( .CSAL A

HASDI SASO Goal , 145A5Gfl TIAcO i’C ‘AaZI  .~~ &tI14T 1

‘ IASOASIPT O ORJ GOAL .0’SOPACTPT Y RACIOAJ  ~~~~~ .0’RC’ A

HASO I’P IC GOAL .0I~’ iC/ i  TSACIII ‘6~ C1 1

4, AlA sn I p cR GOAL .O iF’ R/T  11A1451 ‘*AV SJ

O61.*CT .jSIgt PS/T 16*1454 3 ¶ 1* 1454 A )

AlA SI “S W I ’  P •L’~S PT TtA~~J 0’ti A~4 “CO ‘AA14TJ

V HA SI 1416 Di”  .L1AM PT T I A CIC(. OALT ‘. I L I C T  . -~‘ I~~.FAL C16JCV/A

S HA %IPCOAW OAI LO( P60’ .Li4* PT I tI A PI , .1 .~P1-’ A

IIA SUClV( CO4.IPOPI MO~/t0 ’R .COA.P06117 *y’.’ . r ,-IGM ~A A
WASW*MI b l U R  ,~~ pj*~ ri ‘t l A M ~~ l ’ h 1 S T TLP ~ API A .U~~ 1GMPWt.3

A , * S W I W I T A S  GOAL .WIW IIASIT ?P~ AP” Q? SI.A T  API5 A •~~O~4~~~’PWI

1~~’M WYT ASOPO GOAL •M w,i as r io 1l16.~~~i APPI V IMOVI 0”

A . YlI.AP

iL.~ - - -- -- --
~
-- -.--- ______



_ _ _  _ _ _

-
~~~~~~~~~~~

-
~~ .-.-- —- I~~:~~~~~~~~~ T””~~TT :~~ -

-

IIS*4MII~~~ ~~ PSIOICATE5 A.

• VASO~ 4AIW VARUL .OAAIA lIT /S ,JCUIO
XPcOL L tPQøl M*T~~P/ O ~~~~~~~~ RT,?tA&4$~~ 0’SOIIT A1D~TIAS4

.~~OL~t .’MATR~~LV/W srau,Ia(D~ PP
RI TRY

e’MXT IRAAIS/d MAT GOAL TIA16$
.‘46XTAPPL Y IC ‘MXTGOALI,PPLY
.(XTtALISTPT 14T.C11S1*H
iTYPI IIAM5F~~~~/T iS TPAASP O ’G~~~

.L 1116/A AOOt I’M PT IRSA’M GOAT.
uL I’M~~ ACOt AS T •TFP1RIoiXIfl ISAP OLCIGOAL

APPI.Y .T YPP APPLY /T I$.APPLYGOAL
TIYAPI~I sTIAU&EVILM NASTSA~~ &(VR L
TRYAPPPIStLT e~~.PII PT ~4ASSL,IRG~~~

.,1CVt OAe /wC.3 1RYA PY 0ITPI ~~(TL, .OPIOI’Pt HAS0’OIIP*
•MOV! 0”Q1WAA TIYAPP J .011 /I HA501
.MOV((PP ,‘WA TRYA PP •IR P11*5,116 ,4ASlM W1(aS~~~
.LOCPPOG ii LOC P’OG*I SIL ? •‘RW6(AS/T TIASWIWP EAAS
.AlOV (0’ I/WW.3 I4AS01OIPPIAS6 .DIFPRFT HASOITFI
.MQV1(PV /OA ERAS! APP ,OItT!CIT NASOIIPI C
.UO’l(~~~’P ,P APPL ADO StJ.T ,0(SOP JI CT/Y NASOC S III DCRJ
.IOQMC PR/A APPL~~GPP .NSASG PT HASO(S~ SO
,M OV 6G ~ 1l 4l APi ’LVOP ? .AAIT(Cf T HASA HT(C
•M0S 1 C* L1 -A A PP’. lOP .AL TDIIPIPT NASAL TOIPPI
•LØ(PQC((A A PV,.v(OC PROG .O Z CTPT HASACIUALARJ

APP’. VOI ’ FSSL T () /01 FAILED
APP~V0I I1R 16 FAt ’ .

•M O V C W R / C APPL Y CAP .P(TRYPp D(0’~~~T1Y
COMPOPI

•VARIR./7 HASYAR /A ~~SAI11IT
COPY

.OPII CT/A CO’YORJ .114*/1 i’MJl I ’M

.LI’M/A COPYLI* iL i4 *A& I MdAL A5 T

.LIAR /M ~CPVLA5 T LOCPPOG
Ot~~ 1.14*/I MASI.PCO,, OId

1.14*/A OI0’t I’M ,LI ’MPP G(TLPCOMPOPR
.11(1CM 0(CILAS T •LI4*/O T (AASItPC

DIP ,.
sHAME /S HASIAMI eOaA CTItJ ~~ S’.A T6E TLP
sL UM/S HAS’.I’M OA16 CTAT MA T O4DVSU. T

uL I(ac IDT (PAS(*4d I .OAACT/R . I MATOl~~$i

(VAI. s0’~ CT/A MATCI4OIPF
sOCAL /A (VA L GOAL 5CS16CT/1 MATOICIP I
.01F11dI D I P F I t V A L D O S%.L? •0’ICT/A..2
.DIFPR/A 2 DIPPI CYALAT S? (UASTMI1
.OlFtR/A .i DIIPR(VA LDOSI /bA2 (*A5(M. I
.oursi ~ OIFFIC VAT. .~~16CIIVA

PILE ~VA (IASIIIAIOIOIFF
.OPICT/A2 T (SICM TS
.CPIICT/A .i TI ST CM T R . .‘MT’COIA tAOVT OPMIT’CO
.CSICTM. I T ISTGM TT .TYP€/T ISIDOVT01
.Oil %C T/A i SAL I T OP .~~ T PT IlM(T
.GO AL /14. 1 PI COGGOAL sCCMPOPI/T HASIAO *SCCMPOP

.OPIMCTM.5 O M I S L~~CH .VltcPwd0(PT DW.~~ S~YFd.

.OAMCT/A .5 OMTSL~ C 4*116

.D(SASG/C MOAT CA .0eZCT/A 115104*1

.OPIICT/C2 UATCW RTS(I(*J.1 sOAM C T M 1*51014 ?

.OM~~CT/ A F IL EC RA C ? .LOCRQOG /M LASTIPWI P
pLOCP*OG /A P I I ’ L O C PQOG .01SASGI5~ LA STOA$R T

.GOAL/A P h (GOAL •Ll~~fT

.OtS*PG,A P 7%(O1$A ~~ .OI1AC’IV C~~ CI4 T

.O~~NC T/A 3 (VIOlE T .t OCPROG IV C0’L PM V
•LOC.PROG/A .i CX T L P M T Z ,‘.YSASGIV C01.OAM ?

1.00P’OG M. I (X T L P W I P 4*0’
.D(SASG/A .I I X I O A ’R T Z .1X ’RIPI IV V RCC(L

.DPSASG /54.I I X T OAIA T •LIIRPT L i 4 * S
•GOAL /01t2 11*51 COP •YALIJ PT MAS Y AL

.GOAL/0A 2 (RAST (.3 .(XI~~55 tT MASRIPP

.GOA L / A 2 GM0’SMR 0~~.1CT

~0’44~7 1116Cr? COP .R~$TR (7 MA T~~API SIR
.1451/ ? 152916111 .SNR /T ITSAMI(QY
/A 101V7i4*5/TP4 1140 .5frJ16 .41 ISIAIM

• PO*11OPt sTV’ IlX*D,fl/T l~~~~~~~’
IYPI IT ISIOAM0’ .TII TCIiPIDPT I~~~C S C Q I R I O~~ 4

IA P0RI~0’MI 11CC .I01IPXX /1 MAIl

0(616? •IST~~ Pfl MA SIAT ~~4*
•c* SASGIA ML!CTO(SA ~~ . C X ’P I P R IV (*T(PS

•O(SA SGIA .2 G6~~~~SATC7 IV1 (IASI OSJ

.Ot5*~SG/A .I GI ’CI%ASG

.P(A SA?G/A PIASA SG •MdIA MEIWI T

.DPSASG,t O P C R S I L I

.0’ IASG I A.I dIA Ci PANT 1.14/1 ,IA*’R
GOAT.

lOT $LCUIO(O I ~~L0CICP

VIi .S3 A.

--
~~~~~~~~~~~ ~~~‘ - A ~~~~~~~~~~~~~ ’~~~ 7~~~~~~~~~~y~~~~~~ ’A -  ~~~~~~~ 

-
~~~~

- - ~~~~~~~~~ ~~ - _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A. ~ 5P1CI14$ OP PUIDICATIS CSAc I,R~~

~~~~~~~
IA ~~OLc(*(TlCO ?p 5. P115 ? ~~~~TRPLT1OPI

~~MOFV1
.114*/A SIMLI4* (O POPS IMIT IG’SA IA)
.L II46N ~~MLAST .s

SELECT (OR16CT .TPPf~ .*~~~11l(OA CT .T01I40flE PT ) (T RACE .I140(WT/7 )
.~~ 000A( OSAC ?/A T QY ~~ OC OAL S (14116 .LOC#POG AT) (14116 .014.RCTM ) ( I D T P  .SISA$G/440 (GOAT. .TRACEL(VEL fT )
.O61.*CTfl SLL(CTMWCAJ (4*5(010’ IA))

.141(10(1/A SLLI CTAP THOO

.O61~~CTlDS (RAS(CNOIC5S40 11 OPAL IVAT. 0’ IIVA4. .GOAT. IA) (4*? UOPAL .$*MIPT)fl

.GOAL /05 UAS(clIoIas MT ((GOAL .DIP P ICFT)i)

.O~ 16CT/0 OOSL~~.DCSJ .4

.GOAT. /5 oOst~~ DGOA& (SELeCT .1411CC/A) (1401 ((VAT. sODA. IA))
SEP

3 531 1 (~ ~~~QA~ (VAT (TVAL •GOAL /A)(4*T (VI LE .GQA L /A I))(COAL .OIPPIC/T )
TRACE (OPAL sTy f50 0lX(/I((140T ((GOAL .SAVM /111) (GOAt .TRA~~((V 1L/T)

/T TRACII40 (GOAL .SIDORPT i
• sO~ 1CT/A TRAC( CeJ .4

.11401W?.’? SRAC( lAD (TRACE PIt (GOAL •6(TAV ,P(  (lOT ((VA L .GOA L IA))

.GOA L /A TI AC I G O AL

.0(5*56/A TRACEASG £21 GOAL OVAL -. (IVAL .GOAI IA) (lOT (P 11 •C.SAI /A II) (GOAL •DI’P IC’S )
TRARTSF (GOAL .TY P tI (~~Ct /~ J (00*1 •5A ’R 171 (COAL .TRA C T L ( 1 5 L / T )

/A T RANSO ORUM(TICO .1

/A .3 71*14513 (TRACE /T ) ( S I IE CT .Ot GGC’IO8~~C’ * 1(440 ’ (V A t •COAL /A ))
TRAVIST 2 (lOT (GOAL .0114 I C / I l l  (‘M’ C.OAL .‘RAC *t tVT l. /1))

.R( TR Y/S 4* TRY ,IRAIJS
/C2 MA T CI4VU? (3 G0At EVIL  A • U  FA L .C O AL /A(  (440 1 ( ‘ ( L I  .GO A L (A l))  (GOAL .OIIP I C / T I
/02 M AT O . 4VA L (GOA T. .A 1 4 ’ E C I ’ ) ( C O A L  .I R A G I ( ( 4 5 L f 1(
P002 ERASCATYA L .

VA ROL (TRACE PT) (GOAL /V( (GOA L ,(X44A4.~~I/S i (HO T (IVAL .GOAL /A))
.A3GOAAC ,412 155AM CA
,A5G/14.I ASSIGITS AT (4 60AL (VAT .S~ ( (VA 1 .0OAL/A4 (~40Y (V ILE •COAL/A (( (GOAL .DIPYIC/ T )
.ASG/113 ASSIGIiSO (140? ((GOA L .AWI(C1T (~) (GOAL .l*ACQ*IVI L /T ) (GOAL .SI16OR PT I
.ASGPT ASS IGITS (GOAL .TyV(RO ~~XI /T )
.00(1*114/1 VA QOOAi.A (W .1

sL UM/S MASVAILIIR (TRACE PT) (GOAL / P)(GOA L .(K44A L461/Si (SlO T (111. .GOAL /A))

LI - SAME RCP ((VAt. .GOA( IA) (COAL .5*14171 (GOAL sTRACEIIYR L /1)

~~~AL .OIPPIC/I ?

(TRfr,C1 /ll (54(11’ .~ .D(X.AL OA~~C ’ A) (HO T ((VAT. .GOAT. /A))

(4*1 (GOA L ,IRACTL(Vt L 1)) 15101 IGOAL .D1TF IC/ I))

(10 SIX TIANS (GOAL PT) (COAL •l4X1 TRAAIS /C) (COAL .DIPP ICPT)
(GOAL s~~.P1l tT ((COA L .T MCTLEVT L PT I

(TRACE / T))? i t t •COAL IA) CLV~L •GOA L /A) (COAL ,TTP(11*1610111 / T)

(GOAT. .OA16CT/T I ((~0A L ,o(SORJ(CTIT) (COAL .A i , T E C / T) (C OAL .SL16OI PT)

- (GOAT. . Q I I P 1 C (T ((COAL /O’((HO T (GOAL IT)i

(I I ~~~~~ A~~~.V (C O A L / I I I G O A L •MX ’#.PPL!/t) (GOAL .SEPERF T (
(GOAL .IRACE&EVT L Ill

(TRACE IT))! ILl .COA L A l (TA IL .COAt ‘~~((COAL •TVPIA PP(T/T((COAL .oeMCT/l i
(GOAL .0 ’ ! T C (‘ C I L •~I S” .G/ I) ICOA L •SlPIR PI)(C.OAL •OPR ,T)
(GOAL . M ’ I C l) I C C A t C I I (Md ’ (CO AL

t T 7 ~~~~~ ~~~~ ~~~~ ~~ HO~ ~~~~ . ‘A X I ‘lAi4S~~~))I
MT ?(GOAL .‘A A ’ *PPl,VICf l ((COAL .0.16111’) (GOAL .TRACII(ViiL /1)

(TRACE PT I (GOAL 1’) (COAL I V)

120 ,A i1 •~~ ‘‘ (C.OAT. flu (GOAT. .AM7 C ‘TI TODAT. .TI*CSLI45L PT)

.1

(TRACe PT) (COAL .4*T$Y /W) (COAL ~~~
) (A/Al COAl, MI)

Eli • PA IL AN’I ~ ro’ . ~ ((4*! ((GO A L •Ald ’(C - ‘))) GQAL .SIftI UPT 1
(GOAL .‘LAat TA T / T)

I (TV.CE PTi (COAL .RI’t ’ A~~(C- OAt ,~~) (‘40’ (GOAL ‘LI

til • 04~ J 51 TlY (GA •PA T~ Vfp ~ (‘#3’ (COAL • !XMA4JST/Tii
(1461 (GOA L .T VTITIfr.h~J5~~ l 111(COAL .‘RACI((VI L PT)

(TRACe P’I 154 L (C T .14 ‘C)! ‘A L (COAL .11 ‘I’V “I (HOT (GOAT. .11 1S’VPW))

(11 D(CE Al ‘ R ~ I (GA L •RI lSY1W) :c.o.~ .1114*4.41/Si (HOT (OPAL ~~~))

(GOAL ~II)SA’ (GOAL •Rc ’ r’ 1)

r (~~~ PAI L PIP 1 . /A .61 II’1W) IGOAL ,~~~)(I*A ~~ .14*1w-I/T I

(VU ~~~ “ I (SO I CT .~~~~LtSAL OP1CT/ ’ (T ’40 ’ IGOAL .M’IYPWI)

a. P31 W

-.

I

P1 4*? A4* T RACIIOPI

UI • 04CE RET RY T O - (GOAL .RI T RV/W) (COAL .1YPR T tANV~~~~~T) PS - PILE G~~~
- (!fl1 .GOAL IA)

(RIOT ((TR~~ 5 .4*TRY/I))) (COAL .(RACLLL AlL/I)
.4 (TRw .~~~~~ IA) (P Ill .GOAL /* 1) (1101 11111 .GOAT /Afl

(TRACE IT) (SILE CT .010GO AL OYICT,A)M(GOA .I(T 1V/~ 54
P P ~ 4 * C G T - (P I L E .COA L/A ((GOAL .TVRE T RAAlV~~~~ fT)(GOAT. .o(SORACT/T)

(23 RET RY TR A W ~ ‘ (GOAL •RO T I’V ”W) (GOAL .ly51TQAW31~~~T#T)(1tA&46I .4* T1! /T) (GOAL .CRICTI ’(
(GOAL .Al . IDIPF A / T) (COAt .T IA C((EVIL/ I) (140T (IGOAL . G O A C T ’ T (IGOAL .TVli T AAW$, OsS# PT I(G0*L .0(4*RIC!IT))(

(T5A#4~~ /A .3)(IPAWSF ,A l 2) (T S A CE /T))T .CT IGOAT. .SITRV/W1) (4*T (PILl .GOAL /A II)
(HOT (C.OAL .A L (OIPEIP T ()

PPW I(CGT (Pfl(.GOAT. IA I ((GOAI . .TV4*T ,ATTV~~~~ /T) (GO*T. .O($0e~~ CTtT)
(26 R(T RY TRAPIS (GOAL .*O T RY /’W3 (GOAL .IVT(T t*wV~~~T/T) (TlNTlF 4*TRYIfl (GOAT. .OAZCT/1I

(RI O T ((GOAL .AL T 01PP1/T))) (GOAT. .TI*Ct LEVO L /7) (HOT ((GOAL sCAZC?PT i (GOAL stVPO T **AlV~~~~ /T) (OPAL sOISPS.ACT/S)I)

(TRAC E PT) (Stu d .01 OGO AL OA.IC1/A) (HOT (GOAL .RI TU,f*1) (GOAL .5*14 PT) MT (PILl •GPAt /A.I))

E30~~ TRY 01.0 GOAL S - (S* 1(CT .01 OGOA(O0.ICT/A) (GOAT sTY’E Rl0(~~~P?) PR RIC GA - (PIL(.COA(/A (((GOA L sTAP!A~~tY /T) (GOAL s~~~~CT PT)

• (PlOT IOOAL .CAI IS)(COAL .~~ SAS G/T)
((SOL Id .OAMCT/T i (GOAL .CRf l CTI T((HOT (COAL .TVTO T tAJI5?~~~~ PTI) (1461 iiGOM .OPJCTP’ ((GOAL .~~ $A3OPT) (COA L .?YP(AAREY/S) (GOAL sCRIPT)))

(PlOT ((COAL .(, 46ACT/ I ((GOAL .TVPO T AANS4 CROT rT()(((
(RIO T (COAL .lX/LALISTITU (G OAL .DIPO ICfT i (4*1 (lIlt .OOA(/ A I i)
(4401 (lOC AL .TYP (QO OLXt It) (4*T (GOAT. .OXILA LOT/TI((GOAL .DI(PICIT)))
(COAL .5tPO R ’T (p31. IEC GA - (PiLl .COAL ,* I) (GOAL .TVP(APSL Y I1) (GOAL sGO.*Ct/T)
(4*1 (GOAL .012PT)(GOAL .0(SASGPTi

((GOAL .IYP(APVLY/T((COAL .TVP(QIOlxtPT) 16011 .O(PP (C/T I .1

(HO T (GOAL .1114*1)57 /ll) (GOAL •5I~~(RI?) (GOAL sTYlI TRAJASI 031/SI)) (P IL E .GOAL /*2)151(1 .GOAT. I~ t2) (HOT)P ILE .GOAL /A .I))

(SEL e CT .GOAL /3) (1401 (0 . L I CT PCI 060AL CRICT/A)) P15 0.0 RIO (((T I R - (t I L t .CO*L /A2 I MT ((COAL .OPtC(IPR)))
(HOT ((P ILl •GOAL 1A2((4*’ ((GOAL .01lO(” Rfl(()

(SI CHOOSI OLD (SItEd? .GOAL /5) (HOT USELI CT sGOA& tS))) .4

(GOAL .IAAC((EVI L IT) (TRACE • IHOiHTPTI (IlL! S GOAL I0A2) (GOAT. .5MW / ‘) (HOT (PIL l .GOAL /~~42))

(Mul cT .GOA L/DS i (T RACt ‘T((S)T .E CT .14T 1C(T/A)(GOA L sR(T ITPT) P IT ~~D Oi 1P R . (PJ~(• GOAL /A2) (GOAL .CRROI(P5(
((lOT (TRACE • (l.OtNT / T)) (T RA CE • (4*1147/1) (146? ((TILl .OOAL l A j ((GOAL •~~lCIPFS)))

ES ? ERASE C” (SELICI .GQAT. ‘05) (SELI CT .GOAL /5) (III! .GOAL /O*2i (GOAL .SA14 PT) MT (PILE .GOAL .~~42))

(1IOT (SE LECT .GOAL /DE)) (SlO T (SOLId .GDAL /S)) Pp - (IS C~~
- (T ILE •GOAL /~~42(

UI 44W 084 CR1? ’ (M L (C T .3I,DGOALO8 LICT ,A (ISILICT .O9ICT/’t) (VI LE .GOAT. /DA21I410 1 (7 (11 .GOAL~~ 42))
(GOAL •OPIJII ’T / T) (ITO’ (GOAL •T VV ~ T sA I45 I CR11/I))
(RIOT ((GOAL .O61J(C.1/?i (COAL • T VP(TIAW$T OPT (T)() (IT (Al CS • (P ILt .GCAL /0A2) (T ilt 5GOAL ‘*21

(SELECT .O61~~C1/5) (SlO T ISLL(CT .0l DGOAT. Oe~~CT/A)) MT (TILE 500AL6A.2(((4*! (PILE .CjOA LIA2))

136 Ct-lOOSf 00J (S T L I C T .CIRACT/5) (HO T ((C/ LOG ’ .O61*CT 5(() 51~ ~~ 15 (L I •~~‘ L A I) ICOAL •!YPll(A~~I PTi (GOAL .0840111 1

(TRACt .iHOi RIT PT) (COAL .SlWl R iT i (COAL .CASO8JICT/1((1401 I(GO5T. .0.161111))) (COAt .DIT’RIT (15163! (- ~~ AL .3(1(5/Il (COAL .GOAC !,’ T ((COAT. • .‘IRIUXL

ISE LECT .C’61~~ C’ ~)$((T Q A C (IT) (‘It! .(LQAL / A) I (V A T . .GOAL IA) (SlO T (‘ (‘ I .GOAL ‘A I))

(GOAL sTYI’E TRAVEL 0V’.T ‘ ((C O A L .C* IACT 1TI (GOAL •C,(SOAACT/S)(GOAL .0.161111)
((TOT (TRAC E •l1#)l lJT,’TI((T 5 A C(• (M(4 11T/T) P31~ lie GA ‘ (‘ (LI .“(A I A ‘ ((COAL .‘~ “l1~~XI ‘TI (C OAL .DI’ I ‘ -

(GOAL .01JOCTPT)M’ ((GOAL •D)EPIIT((GOAL .01I ~~C’t’ i (((OAT. .‘VlI5l (*~~t “1(1

(37 (R A SE CII ’ (MulCT •OIIACT/O5l (SE LECT .0*.ACTIS (.1

.1 (OPAL .3MW PT) (4*’ II IL I .60*4 A 1)1

(SlOT (SOLI CT •001ACTP0S1) (PlOT (C(LICT .OILACT.5((
P I O PI L E 0eACT 1 5 J L (.~~~A C T / A)

P I PI L E LOC AIOG - (P ILE .LOC.16IOG/A((OI~~ R .1(4*/Il (140! (lO(’’l sL 14*11(1)
(GOR CT .(KTRIPI(G)(M (9 . C R Z C T ’ A (” IL(•SOIICT ,4 4 I i

(0)1(1 •L (4 *P T I 1’ i L E .LOC 9IOG /) -t I IM’ (P I L E •LOC#IOG/A)) (I40T (T ILE . C R AC ’ VI I

VS • (iT I4* LPI# I ‘ (P ILl •LOC9~ OG /5tI) I l l T (5 T P I N (T I ((•CR i~~’4 , ’(

(T ILE •LOC~ RO~.,A .T) O4O T L~ (LE .LOCPIOG ftLI)) (! fl. i •CA IC’ - 1)4* ! (‘Itt .081C’ 1 4 1 (1 ‘~(‘ (SI P .0811 - II

P3 51 (P14 ! ? CCL ‘(1 (10 •(OC16ROG/A.I) W(T f l .L(I*PT) P 4 3 ’ MW 14! PIOII ‘ (11 I .GAl* C’ - A II ‘ W ’ (C /O C T .5114 %i’((

(HOT I(0l’’ l A L ((NIT))) (08ICT •T YA4~~ R.O.T V 7’ (4 * 1 •ICICI SI)

(14116 •LOC9QOG,C) (LOCT’Q OG .T. I4*/’I ((HOT (l ILt .LOC.IIOG/A ((l)STA?OA .08SC’ ((1 5 (0 .(%C~ C2T A I f l ’C ’ .00tCtII(1O5SA’~ .l T L

(HOT (DI’~~ •T. (4* 17)) (I(T• .416/TI (SlIP • C 1 6 % C ’l’((446 T (1(11 .CV1IC’ A I))

PA • C~~ LP 14? (14 T A •LOCPIOG ”G)(O(”l .~ (IA /1((HOT I(O (~ ’5 1.14*11(1) c I a . $‘14 SE T ‘(‘ ILl .C*IICI A l l (ORA CT .5MW AlT

(04116 .I OC f tOCi ’(I)(’ t O Cf I O G .(IS IPT(MT (01”’ .L(lA IlI) (‘ILl . C R IC ’ A 2 ((SlO T (‘I, ’ •~~ulC’ - * 1(1(4*’ l~~~A ’ .SAA4Al()

p3 COO. 1114? 0 ’)14 19 .LG C .4 ’ROG /G)MT ((011(1 .i. IIAPT(S P t ~~’ 31*4 Ot.J (T (II •TP RCI ‘A Z ? (4*’ ((CRAC T .s*4 flfl)
(14(16 •L OCPIOG ISI)(T5ACi •I10111’/T i .1

.1 (NAT G4 .OP~~CT *((fli t .~~IA C T t 2 ((~~~ ’CII .C A J C’ ‘Ii

(‘4 TA .tOC PIOG ’SIl (15(100 .14*14 PT) (C,/AW(1 PSI (I (TRACT PT) MT ((ILl .~~~1 C T - A) L

(cAIJICT .(ITRI PR ,’T(l’TQ T (IAT P.tOC#I OG /G))
h r SAM ~pv c’i.t . 1 6 A C AJl (0811’ .5114 1’i

P3I L A S T 4 * 7 ’ (MTP51 O C~~~OG,SI)
((1*704 .~~lICT/1I 1? (LI .YIICIIC2i((1AT D4 .08ACT/1)

(14?16 •LOC PROG /W) (HOT (‘lIE .08AC’ A l l)

VI(~33

•-—~~~ -- -—----~~~~~ -~~-- -~~~~~ - - - — -r -~ — ~~~~~~~~~~~~~
p — — - - —

~~
~~~~~~~~ A—~~~~~~~~~~~ — ———-- — — — - - -

I - -

PIU T ~~~ 1IACT loll

? IR LAST (It T - (14 TA .O(TICI/SI) (1461 )(l(L( .ORJICT/A2(((

(1414 •08JICTftI) (~~~C1 ,OT( (GOAt, 1T( (ITO ? (TILE .GOJICT/ A .I()

P20 00/DI l l  (~ (LI •0(4JIC1/C.7) (HATCH sQSJICIIR )) P170 ’ PM’ COW’ 0 “( II  • 0 4 I C T / A  5)(MA !3l .OPICT/A)

(RIOT (((1*104 .ORJICT/I. (0) (1461 (((1*704 .041,IC’ -~ I,()

(111,10.4 .OeJIr,T/OA)(UA I CH fl’TR) (‘lATCH ‘CA2( (V (LI •ORACT/A ,31 (HATCH •08RCT/A( (P (LI .08JICT,I4Ti)SlO! (PILl  ORAC T/A I))
(HOT (P ILl .08ICT/C20 (HOT (MA Y 04 .OtACT/R I((

PIll. 0R4 1 COW ’ L 11(11 .GOA CT/ A  I) ((lAID, ,GOJICT/A 2)

PS) ’ IRS MO I • (MAICI I ,Q)RJIC T /0A) (HACC$ aOSA CT/A ) MT ((MATCH .08JICT/I . (II)

(MAY04 .QRACT/I ) (HOT (MATCH .GOA CTdO A )( (HOT (11*104 .08*C?/A) ) (MAY04 .ORICT/AZ)(T (LI .08ICTPItS( (HOT (T ILE •C8JI CT/A.3)(

P27 ‘IRS (ill ‘(MAYO-o /00) (MAT CH solid /I ) P471 041 COALT 1’ (VIL E .08JICT/A 5) (MATCH sOSJI CT/R. I)
.1 .4

(DIPPI .tII*1/V T ((HOT (MAY04 /080(1101 (S&A T O’I .COACTIR )i) (14*104 .OlJIC(/I()(’~~ E •08JICr.44.3)(W T (PILE •OPACT/A Ifl

025 ’ (05 (11). - (11*701 /081 (4*? ((MATCH .08JICT,t.))() P471’054 T COW’ S ‘ (P IL E ,GOZ C T/A5 (  (V III .GOJICT/ A 2)

(4*1 (MAID-I /00)) (PILE .14.1(1 ~2( (7 .1 •C8IC! ,4- ,5)G40T (P ILE •GOiCT/A 5))

126 - (53 hIt I ((lATCH /0*2) (‘1010.4 sQAJ ICT/A 2( P421.1 Lftl-V4 GO - (T ILE .OAJIC’ MT(

)OIPVI .1 I4*/DT ( (HOT (MAID-I 10*2) 1(110? ( M A Y 3 4  GOJICT/A.7)) (VIII •C4RC( ,Y  11(1(0 ) (t iLt • Q 6 A C T M 5 ) )

P 2 1  ‘ EQS ML I. (LlAT3i /DA,.?) (4*1 ((MATCH . 08ACT/AZ ) I I  PeA • (Al 04/ )08JIC’ /DT) CI II C T  •T ~~~ 141(II (‘~ (04)111 . (X T SEPI/TI

((lOT ( MA T C H  / 0 A 2 ( (  (C4 JI CT ‘C- - . I!~~’ 04/IC! .lCI4*(31/’T((  (4*T (08,RCI .tx T ~~~PRf1((

116 ‘(aS 41.1 I )0 (P PR .1(14/01) (DIPPO .L I4*fT i ‘ (53 06) 14 ’ 100/IC’ ~~‘( 
(4404(1 ~L (IA PT )  (HOT ((4*4(1 .VALL6PT)))

11101 10(1(0 .1(1*1/07)) (1(01 (D(PCR •L II*1PT)( (CIC’ /011(4*1 1~lOC* .1 4* “LI

P 77 - IRS ‘1141- (011(1 .1)4*/UT) (1401 (10(1(1 .1(4*/1(1) PIT - (PS 06) ‘1’~ ‘ (CIII’ CT “101(1 .1)4*11) (‘101* .1*111 (T(

(1101 (DI’PR .L 10* 1/0?)) (1461 ( GEL/O CT Cli ‘(4* ’ (1lO(# . 1 1* 1 1 ( 1  MT (4*131 •%‘*LLIITI(

P78 IRS MO I (113 ‘(MAT CI-0 .06/OCT/I)  (1401 (((4* ToT .ol~ cr/e1)1 PU ‘(PS 01,) W ‘(W f ’C’  C,- ’ )  ‘4*’ 05401* .1(1411(I)

(HO’ ((04/O CT •!CIHO1* Ill))
(RIO T ((1*104 •0fl ) T C T / I ( )  .4

(4*1(18/O CT /0T ()
(30 IX T  04 ST - ( P I L E  •CE4/I CT ~‘A3(  (04 TA .10-45/I) )O(PPR .1(4*/S i

(‘TO T (1011(1 •L I’JI/’((( PIG ’ P L *  ((IS ASS ‘ (Pill . E SAOG A 1  ((All. .A5t,,l1 I ;  (140 ! (((AlIt •A5G /U. ()()

(I.& T A  .08JI Cl/C ) (HOT (PILE .014)1 CT / A 3 ( (  (110 1 (p1111 .1(1417)) (VAIl. • ‘(/1 4’ ( ( ( ‘ ( L I  ~ t.s c C .  ~‘~~( (‘TO T (S 11 •t*SA1.C V ( ~

P37 E~~T (C ’ (5/O T A •OOINCTIC( ( U l T r A  51 (4*/ I l  (1101 ((DIPVR .1)14/TI)) PSI  (( l. A ‘ ,,L LT.1 • 1(,(- 1_AM -5121(1 (LI .LESA SG(P4 ’ (  (((GA. •(4 S*3C/T 1

- l  ‘(144 1 ,II&(,V C ~~ , A L

(14 TA .(CJICT /C) (1401 (0( 1(0  .1 (l. l4/T((  .4

(lILt .015*5611_I - - ‘iA •‘l . . cAC( ( fA I  ,(>A , •‘Ej,,A S G- ! (  (4*’ (AlIt .A5((5A44 -~.‘2,(

P36 ’ 5(1(1 014 P ’ “.0 ‘t .Cl04 J ( CT ,’GT (WO T (08/ IC? .TYPE DL.bc.ll/l )) (4*1 (1(1 1 .tlL S ASC ‘11(1

(ITO! ((D( IPA •, (1.4/T O) (44 ‘P •LHSIT ) (1419 .CELJICT,SI)

(1101 ((‘4 T A  • O#JO C T ’S I ( ( I  PRLII ‘ (VSO “A - (‘ ( I T  .Y SASC 1’ (‘ (LI •C ‘(A , ( (‘s I )

(P IL E •CA .JI I ,A 0 (  (CIIAIIITASI Zi (’4 TA .L/OIJ(CTAI) (HOT (54 TA .GOACT*3() (PILE .C4(A’.G ‘- ~‘C - (T IL E •01SA((~G ‘CII

)140T ( 5 / O T A  .L l ’ StT I i
P5111 4 ‘ QA ‘ ~‘ ‘ 1  ‘ -

~ ‘ - ‘- I ( I  0161- i 1’ IL l  .0( SASGM(O)
PS I ’ 51’L (1 OIl P0M (M T P .004/ICT IC) ( GAO/Ill .TYPL OLA.S4Y ’T i

(1401 ()0(P PR .1(4 * /T i ) )  (14TP •L~~5fT ) 1140’ Ill! .(-‘ I,’ 5( -Ill

(P~LI .18/IC T ‘A/I) (CHA14LI I’M 1) (1401 ( M T P  .141/OCT/Cl ) (1(01 (1419 .11617(1 152 ‘ I ¶ ) L ~ 7 ‘! - (‘ (L I • C~ S*SG~S-t))

P31, ’ 51’l. iT  (C I  - (I III • C V I A C T / A 0 )  (S )~( • Y S T . ’ - , • ( (1(0? “ ( t O • / O ’,.A!(( st)))

(CIIARI4(tPtl 1I’N3’ (‘IL! .ET A / I C T / A A ) )  1~~~ ( ‘ S I ’ CD ’ ’’ I •i~~~i~~ ’ ’ - ’  ‘, 1 1 o , ~~S 3  S. ( (IdOl “4 I V ~~, • A(.5 ’S4,l (’ (

(HOT ((VA~~~ • * SCT ‘4

1’ , P38 S PLI? (C7 ) ’ T L !  .GAIAC’ ,’A .6)
‘V~~~ . ( ) V~~(’ ,~~ ( ‘.54’, . ‘‘, - C T.’2 (‘160! ( T ’ ~ ’ .CE$A ~ C A “(HOT (VIllA .ASG /(1 I ) )

(3IANCE PSI 2 1 (SlOT (((LI .18/Id A/Il)
P5I ’C0L O* ’~

I 4 i P . ’~~1.”- -( r;)(VA4 ’S •... , -S. 1 4*! 1,50’s, .A$C tAl I( ’ )

140 ~ 110 0 1 1 c R  ‘ ( 0 1 ( 1  .OO4JI CT/C2) (I401 ((MAYO-I •GOACT/I.(l(i (5419 .LPIS IT ) (4*1 ((1441 ~~ c,1 SI fl)
I ’ R A C P  sIMDl W I/ l i

,‘S/O l~~ •1_4 1’ - ’ 1.: ~~~~~~ •~~ - % (‘( ‘AS - N4~~ .V c .  ‘4 Ii)
(hIAT CI .011/I C! ,Cll( (144/I CT .31414171 (TRACE IT) (HOT (liLt s 08A CT~~2)(
(*40( (’ 4TP . ( I’ (PT))  (IA ‘ COO 1 -S I P ’ 0 J ’#  . 1 S A 1 1  t’ iP’ ! I,’IIT(1 .*5 c  ‘.111 - ‘ 5 4 A  .(E SASG ’.4

14?  ‘04 CR 0014 ‘ (011/OCT .‘,A).M ”((COAL 1’) ( 4 I ’ P .~~~’.AI C %1 l ” / P (4 h i  ‘~~ ‘ ‘T.A A .14’.A! G1 C4(

(b ILE .OIIACT IA 5) IIIOT (COA L /1(1 ~~
‘ I ~~~ ‘4 - 0 S~~ - ‘4’

• A ? O’ITGO14 ~‘ l l  •‘(.l ;f 1 _ ! - . ’ I ( A 0 ’ ) ( M V T C I I .014/OC 1(1) ( ( pT • • •, ,s -  .,.

(HOT ( ‘ 4 1 V ’~~11 .011/OC’ ~ I / I  I’~(-! I l 11A ’ IS’  • 141$ (! /A 7 ( ( (

Ill -IA 

_ _ _



T TTTT”~~ T~TT~~ ’ ~~~~~~~~~~~~~~~~~~

C..’b.AO. FII$T A~~ YIACTI04

U I  - SEL Yb ‘ (SE L E CT .AIE T HQO/A) (GOAL .tYIt T IAI451~~~~fT) .4

(VILE .GOAL/A)(t (A4. .GOAL /A( (COAI, .ST.,4tl/Y ) (GTOAL .OI’ PIC/T )
(TIASlV /A)(1401 (SEL ECT sIl( t 4*fl/A )) (006). .TVPERO14XO /1) (GOAL .00ICT/? ) (GOAL .OIPIU#’T ) (GOAL .I45(,TRAIIS /C3

(HOT (GOAL .lt CI(X(.I4X? ,TIAW SIlY)
(12’ II I. ROD ‘(SELICT .I4THOflfA)(GDAL .TVPA RIOIX(PT)

5130 ’ XCLG ’1IOOIXT /A( (COAt .OZfPItT ~~HOT (GOAL .10 111/I))

(54 01/Ct /A) (HOT (SEL IC? .14T4*fl/A) ) .4

(~~ 5I.V st OC,P5~~~/A))1C*/C* /A.I((110T (5114(1 /6))
113 ‘ ((1 AIIM - ( T Z I I C T  .04 T 1100/A) (GOAL sTYIE APPLY/I) (GOAL .CII fT (

I110V(OPI .TVP(/ T ) (13) - SEt 04 ’ (lOlL? /A .) ) )A ~~~V .t OCPl0G/0) (440! (SE T sTVPI St T/Y))

- . (~~~I46eI sTYlE/I)
(UC’vl -(Cl .4.04 T HOO/II) (HO T )01 L(C l  .h4T1-40c)/A))

(SE14T .O(SASGIA) (GOAL .041/7) ((TOT iltOt/CE fALl)) (5)01 (lAIt Y .L0C~~~GOtRI)

• (IA ‘ (IL APAP I ‘ (TLI (Ct  •11( T 1401l/A) (COAL sTYPP APPtY/li (GOAL s041/I)
(10041005 sTY(’t Il) (010? (rOsu?(I.t(IolI .5*V( fT) )  ML a. 5(1 ‘(110(40* /A I((AP!t Y .LOCSIOG /l)(R T s TYPISET/TI

- . (MOI4T~~~I .5(TIT I (ttOY(,001 .TYPE /1)

1P0.uOP* ‘A) (4*T (S ILECT .1.04 T I-TO O/A))
(GlIAT d(5A50/A)(GOAL .041/1) (SlOT (SOOLLI /* 1(1 (tAO ? )PAItV .LOCS*OG /I))

U5~ 5(1 *0017 - (SILIC’ .11l’i40(l/A((COAL sT’ VI’fAPRtY/T)(QOAI. s04I/T)
((0141000 .TYPL (TI (IOAuZ(11L/ T 000 .T VD( P T)  (133~~ 5(1 00 b~~~~ 

- (P(1440t l A o  (APRt V sI,OCPIOG /V) (140T TSET sTY lISt T / T ) )
(10111001 .TYP( F’T) (COAL .CIJEC(/? (

(l0Il .12I11JT Ol’I /A ) (HO T I M L E C T  .14 T 0400/A))
(PAIL? .PO8UOPIFA) (1114/CL .Pom,lfC) (Idol (1001/Cf /A.)))

1170 ’ TRAII$! 40 - (TAAII1/ IA) (COAL .0l(1CT/T ) (GOAL ,IX106ACT/T ) (4*1 (PAIL’ .L0CPR~~~,I)(

(MAT CH .014/ICT/A) (TEA ’d’J 01.3) (SlO T (TRASI1/ /Af l  (133$ ’ ML P 0154 SIT - (St ILL? ,A.I)IAPIL Y 5LOCIROG /R) (MT 5TYPE S( T 1T )

)110V~ 04I .$1T/T l (‘01(4011 .TY10 /7) (CO Al .014/OCT/li
(1705 ‘SUC ‘PA IlS )T RA* SP / * ) (O,.OAt .04 /OCT / I) (GOAL .OE SOS/OCTPT I - .

(UI.! .P00110011A) (0111.401 .10811/C l (ITO~ (1101./CE /A )))
(GOAL /T)  (140? (TRAIISI /6)) (4*1 PAIL! .L0C PQOG /0()

(.47 ) ‘ ‘TA T CIS 54 SI/I, T ‘(MATCH .544/ICT/I( (134 - ML C/OS ASG ‘(5(4*1 .0( 5*50/A) (11O’It 041 .C01. OOlfT )

((VA). .QIFI I /A) (TS A WSI /C2) (HQT (51*101 .06/OCT/I)) (01141 •0ISASG/A fl (APPI. t .MOVT~~~I/’w A) (GOAL 5OISASG IT)
(HOT ((414 1 .Q( SA(G/A()

1177 ‘11*104 VAt - (70*141/ (C2) (1 VA ~ .01115 /0 )
l&34A - Mi. 015 ASG All ’ 10114’ .O( SASG/14) (Idol 1141051 , .C01 0Wfl((i

(TRA NSP /0.7) (440! (‘RAIdS) /C2() (HO T lIVId, .OUFR/ R)( (4.l0V?~~~ .COMeOOdfT ( (C0I&(C .VARI,/T) (‘10’/t~~~I .VAI CI’14440(/1)
((AlIt .0011*114/?)

(.473 ‘11*104 1(14 ‘(TRA IlS) ,ii, 3) ‘~ ‘I

.4 (L0C~~ OG .t ( 14/ UT)  (L OCAIOG .1 I*/Y ( (P (( 1 .1(1 (A SC/f ’)  ((7141 . I IA(A(C (A )

(MATCH /0*) (TIAIISI /63) (440 1 (TQfr.IISF /54,3)) (~ A~~ .A $GP41.II (APPL Y ,U05t~~~RT ’WA( (GOAL .0(5*56/T I (HOT (5(14! .015*50(14))

(41St ‘(0*51 11.0 - (I.IATCH /DA) (MAYO -I .C4JPC T/A i MSIM ’$1L 015 ASS. - (5(14? .015*56(I) (510141’04I .COA OOIPT)
.4 4-

(1101 (MAY 04 /0*)) (110? (MA TCH .014./O CT/A)) (5(IAT .r* SATS./ A i()A PP1 T .MoV(~~~IPWA) (0OAL .015*56111
(I10T (514*? .(*SA$ C 4 ( (

1174 ‘ COMA ( ‘ (( P IC - (TRA IISI /A ,3) (TI/OWSI .02) (‘TO T ((TR*1~~ /1,21)1
(HOT ((‘RA IdS) /02))) (13404 ’ 5)1 0(5 ASS. ‘ (5( 14 1 .0) 5*36 141(110(1001 .COI.I000I/T )

(15*5)1’ /t)17) (C.OAL .RE C14/CI .I4XT :TRAW5 fw~ (140! (T A ~~~~ /143)) ((44* ! .01SASG’A I((*P” .Y .AIOS’I~~~R.’WA) ft.0*L .0)5A3~~(T(

(140? (11*011/ /02)) (4*! (514*? .015*30-A))

I.176( ~ IRS lIlA), ‘ (TRA/ITJ 1002) (TIAA!5I /0.21 (1107 UT5*WSP /12(1) 51341’ ((S 5(1 ‘101147 ‘IV S.A SGIA((HO ( ((54C”l OWl .C01PA014/7)((

.4 ((1)!
• (0401 (TRAP41J /0821) (440 ’ (TR.A16d11 /02)) ((WOVt~~~ .CO*.~ OI( ‘1) (CCWACI .1*01 /1) (540%’? ~~~~~ . AL 0IA~~~~ /T(

((A ll. .OC’M* ( Id’T I((

01741 ‘ (05 MYAL . ‘ (TRAIdSI /00 21 (4*1 ((TR,AJl5( /02))) .4

.4 ((454! sCA SASG (T ( RTO T (014* ’ .0( 5*55/Al) 
-
.

(140 1 (T’AA$ St /00 -7))
M35 51? IOWA. (0114’ .GASASG/A.T) It OCAICG 5LI14/l)

(17414 ’ (A S 11(A). SV. - (T OP/Ill /142) (TWill /52)14*1 ((IRA/OIl .R( T SY /’T))) (HO T (0 0CS151’. .1 4* 1 ) )

(TRAWl ) 1002) (‘1401 (TRA I l’. /12(1 (514*’ • 145 * c1_ I/~ /545! (5(14 ? .C/O SASC ‘A ))

11745 ‘ 105 MVAL SI ’ (!RA/IIJ .102) (T RAWSI  /12)(TRAI6F .ITQ! PT) (1350 ‘01 T CO’ ‘ ( ( 1 4*T  .015*5511 () ( ITOT ((L OCfeoG .LII4 “ fi )

- , .4

(IRA/OIl ‘(TO)’ (GOAL .14) ‘5(141/ I )  (140? ( TRT/ IOJ  /12)) (t OCAIOG .tI1A ’W)l1_I I14T .010A55-S2)(1l0 ’ (5(141 .(4 5,ASG A.())

1171 51)1. TISCI - (TRA Wl ’ 11( 1(40! ( (~~PSIj7.l ‘12(((O-0*L .C*S08/O CT/T) 1130 G ( W 0 ) S  A55 ’ (514*? .00 S.A-SG/W2((COM’O~I .VAISIL /I)ftOCPICG .LI*fl)

(18JfCT .T Y A O D ( S C R ( ( T ( C ’ I I ( C . O A L  .C8/ICT/’ ) (SARI •DOIIA ( Id tT l

(COAL /I) (140? )TANISI ‘A ,7’ ( (5114? .1*1*11 4 .7/ ‘ ( (P  .D( SATC/A) (0144? . I E A T A S C (A (  ((All. .A55/5i I)

5475 ’ 14W 51O-JC ) - ( ( ( 1 _ l i  .Ql ((1~~(.I4,T,T1A4il /’W) (GOA L .01004/ICTPT( 5130* ‘(4(015 IL/S APP ‘ (CIlA? .t*SASC A2L/COAA(C .1111 PT)

(GOAL .014 /OC T ~T ) ( 5 )QT ((‘(‘II .11(41 (C IT  I)) (51057 001 .V*I C)’5W. I /T )  (110(1001 .C0ITP0(i/T( NOISE .OOAIA)WFT )

(I I t t  .‘1015 ‘A (  ( ( ( A (  •C5* I  l1_.C~~I .SE/I(l,’YI ( C.OAt .0)01(1(1 ) (~O. .øC -L ‘U. ‘ l’(  ( T (~ l .(‘5 5A36-A I(G1 l4’ .l1l ~$A’1G/A )(V ADl. .A$(( /M I)

( C O A L  .15(10411.401 / T ) ( ( 07 Id / O C T  ‘ T (  r7~T’A .01111/T I (GOAL .441? 1 1A440 /1.) (146 ? (5114? . r / O c A , c - W r l

(ITO ? (C-OIL .11151 .4 .4411  ‘ RAh ~ ‘*1)
113 1 ’ItS / C  ‘ ( OC.,cU/ .i(~* 1T(110CP~ OG .t )4* (T )

1177 - lAW RT C(T V’l ‘ (C’I~ .IT (IX? .I/Ol~ T EWSPV)  (GOAL .C*SOAAC’/T I (SlIT 1(114! .GE1.* SG’~ ‘() (HOT I l (44*T .0(5*56,11(1

(GOAl . 1 8 / O C T  /TT (( .014 .I’TII I C/ T I  -,

VII SI S.

-‘



-~~~~~ 

- 

-~ - 

5
~~~~~ % ” T~’~5” ‘~~~— —~~~~~~~~~~“~~ “ -- .-~~

—-.- - -

5, ?Ill T MITSAC T (01 S Il AS

(IdOl (T.OC’ICG .1(14101)) (140? (5014106 .114*/T I) MAUI ‘UI,! (IAn ‘ (*0115 .h0OV1~~~I/DA) (6011,0 s(~~~1~~~~ /A) ((*411. 1*00/T I

‘S

10370 - (55 IC It - AS - (LOSAICI? .i.114/D?) (5(14 1 .O(5*56FA ,Z) (541 lUll ? .1 001/56(1 (140? (APPLY .ldOVt OPV/A)) (1401 ((All , .ASG/T))

(5(141 .0(SASG,A2) (HOT (1.014106 .1 (l4/0T((5110’ Itt DIrT S - (API,4 ,(40%’T OWI PAA R((6(01.! .OYT 00I PWM3)
(1101 ((GOAL . lAwl (AS ‘ : 5 - ~P ’ . •L OC AIOG IA) ((

1131S ‘ 10$ Lf RE-AS - (LOCA006 .L(I/O / DT) ((5541 .0(5*50/A) (HOT)(APPT. ? .110V7 10’T ~~~~~ ‘ 6 0 T ((APPLY .MCYI 00I/Sl1&3)))
,, (1401 ((APPL Y .4’OY(OWl

(5(14? .DPSASG/A) (1401 (~ 019(06 .1(14/0?))
(APPL Y .UO57 OWQ tWT ((4*’ (API,! .MOVT 01APWAA))(I40T (APPL Y .M0V5,OPRPA’113fl

113$ ‘ 6(140(5 ASG. ‘ (5(1401 .OO SAS C/A ,1)(CIIdOT .O SASG/A2)Ecc1400d,VAASLPT) (HOT (P411! .IIOYT01I PWA ()
(VA RIL .1 (5/O fT ((1.019006 .IIIA IT ((VAR RL .DOMA DI/T) -

., 5145) ’ 5(1 (0(441 - (API,’ .1105’? 005 /WA4)(APP(? .AlOVt~~~~ PW103)

(tO S~cooG .1)1/I/IT))! III .t’k S” SC’* l(51I4T .I(ASa$G/A((VAR I. .ASG ALI) (1401 ((GOAL .IA W T E A S ‘fl’((1451 ((APPL Y .LOC9005/A)))
(NO T (1.4141 .01 SA SG/A,’fl) (1401 (0(14T .0(SASG/12() (110? ((PAll.? .MO 4t OWI /* nJ3 (((

113(1 - GLW* 55~~. (5(IdQ ? .O(5A5G/A ,Ifl (GlOIR T .0(SASG/A2)(C0U0004 .VASIL PT) (~~~~ Y .14OV(~~~~,’U’11,3(
(VAR5(. i (14/7) (HOT)L OCPROIY .1(1/O PT)) (COAL .5(5*55/7) (51A01 .A5G /U,I)
(5154T .4 (P .5ASG/A) (F 1(1 ~01SASG/A) 5111 ‘ 110 CT)1 P5 ‘ (API,! .UoV1~~~~7SlAA~ (I40T ~ PPSLY .MOVZ OPs #’W11311)

‘I
(4*1 ((6004.,’ .MOV(01V/Sl4 (((

(L.OCc’RoG .111/I mY) ((lOT ((.1141 .Ot SASG(A .3))/5C T (5(4*1 .0(SASG/A .2))
(0401 ((1Q11 .D(4 ,ASG/T)((NOT (VAST)). .656/14 ((((410 ? ((54*1 .l(ASASG/A)) (GOAL I l((GOA L .tV’l,A tJSY(T) (540! (APPLY .11OVy~~~~/WAA))
((lOT (r IL E .01 SASS/A))

1011? ’ 4 * 0 (0 (5 ‘ A ‘ (AP I, ’ .l1OV(0’R,’W 6 f ’ ((~10’ ((APPLY .MOV1~~~AtW5d ,3(((

M39 ’ G T W O P S ASS.- ’ (ST I/O T .0(SASG/A .3)(GtIA ’ .0(SA50162) (API,! .110510’! ‘.A~~,’40T ((COAL .IA W1(AS/ I (((

(‘TOT (115110044 .VAVl. / T) ((ART)), .1114/7))) -

.
~

(COAL 5) “C~l. . (4 ,4 - 5 ç ’ (‘(p540 ’ (APPL Y ,MO%7 005fl1A.l)(

(LOCPQ OG .1 Il/I /5T) (440 T ((,)54? .0(5*55 ‘A S)) (4*1 (5(14? .OISASG/A2)((1)1 (APR? •~‘40V? ~~~~ ‘~~0 (

l.14O ’ TIV AI”t ’ (AP?’l.! .ll0’dIOWQtwA) (GOA L ,A/O 1’5(AS/1) 1110 ’ TOSI PP RIS - (AP! 1 .MOYT OWR /’WE)I GO*L .TYPI RE OIXE/T ((GOAL .015/OCT/TI

(R OOT ((APP),! .M(1V) ‘QPS PW I’) (GC’At . I4W ?EASIT()((‘40’ ((COAL .1411(65 /?))) (COAL .~~:“
(
~-

(l.’OT ((COAL .141 W I T A S . ’TI(((GOA L .04, /OCT/f l (SlO T ((5(1/OT .1(65*55/A))) .4

(T I) . ! .1 0 4 5 4) 7 (5 1 , p104, 1)) ,CA L ~ T YPT *P0~~v /T) (GOA L .0(SASC.- ’T(

(APP?.! .llO’Pl -OWl i l l (API,! .MQY1001/t ((HOT (*101.1 .MOVT00OPAA11 (GOAL .0101. ‘‘I- ‘1(~~/ .011.7/ (15/ .0A/’ C , / T) (GOA). .D ll ’ IC/I)

(RIO T (GOAL .14111(A SPT)) (6004. .R,P(l,’T I 5,’’ (APP?! .110(1010 P0’T C

114000 ’ TO! APPLY 114,5.1 ‘(A PI,! .MOV(00l~’WA) (GOA L .IA WI(ASIT) MIS ‘ ITO! *SG (4? ~~R5(A) (G OAL .14 W’ E ,S — ’) (GOAL .11T 1Y/T)

((lOT ((APPL Y .MOVE 000 PWA) (COAL .I/O *ItA$/1(() .4

(PAIL! ,lIO%’?01l ” W*) (4* ? (1111/Ct /6(1 (440 ? (5004. .lt T R’V /’T()

(Ai’Pt’l .lI0V(0’0/’wA) (P115! .140Vt 000fW14)
111 A E T R V 5(1! ’ (14 11.5? ~~‘ (GOAL .l1TO!/’T) (4*! ((GOAI, .I/OWIt *5 /T)((

11400’ 01-AS ((ASA IG ‘ (GOAL .MW1(ASIT) (5(I4T .P(ASASG/A((APPL Y .110(1001/WA) 506) .0) SAG.. ‘ S

(5(14? .((A SA SG/A) (API’?,! .UOYt’00Q /W11) (440 1 (APPLY .MCV1,001/’AA)) (API,! ,U5Yl~~~~ ‘~~I/) (NO! (PT ‘IX) /A))(I40T (GOAL .0) TRY/TI)

MAQU ‘),J4.I’lO(O T R’IA’P - (APP?,! .110(1 ,192/054) ‘ 0) ‘~~~ 4*T9 (%40 - 1540? A ((GOAL .51 T Oo / I) (RiQ T UOOA,L - 5(5*35(1)))

(APPLY .MOYt 01R PAA)(SlQ? (APP?.! .IAO(1001/11T4)) (1101,401 /1/ 140? (.54, .5(T5’V IT((

111? ‘ APP?, ! 51(1. - (APV4,Y .UOVI 0’5/t) (API,! .UOVt~~~~,I) 5150 ‘1*051 01 ‘(11050010 .U(‘HOG A) (1401 (GOAL .0? ?IY/’T() (GOA L s01RO!IPSI

.5 (5061 .15’’ C
(1)11 . 0 4 / O C T / A) (COAL PT) fldoT (60(0.! ,M0((010/()((ITO? (P#I,Y .MO57~~~~,I)) -‘

(NOT (APPL Y .4.40(1011/WA/I)) (GOAL .RT($X(.IAITAJ’Pt ’-’*’T ‘440 ’ (11057 000 .,,,?T4I0O/A)(

(.447 ’ ((A L 140(110’ (APPLY .MOVT OWA /t((APPT.V .11OV?6P2 /E I 5151 ’ P/OW 0(0 A P P ’ 7 ?’ , .L’ ?lXI.R/ O X T ~APPt~~’W’I)G0A 1 .015MG/I)
,, (GOAL .5’ll 5 . (4 , .5.’ I ‘1,15 0

1(14*1 .1)I110 *()A PP(O .130’4(O’Q PWC3)(600I Y .hlOv(’(PQ PWA) .‘

(NOT (A0’P~ V .110(1,190 /(11 (410? (APPL Y .11057(01011) (PIll .55(4, 4 ’ ,’ . - ‘ I / Z * ’ 5 5 ’.5A L .SL~ 1S .71 ~~~~~ .Dll’ (C/ I)

(50*). ,!VI’? 4 , ’5 r / fT (~ , “ ‘ ? ‘ Q 5 (;0l , .14 5 C ! ‘1) (1.061 .140 ‘.*.PPL Y ‘C)

1143 ‘ 0(r IR 0(0 1(1. ’ (114’(5 .1105’C ’195fW555(f lVmL .D (” Q ‘0’ (1401)50A). .0(11X0.M ‘ 9-” ’ ‘1-’ 5
(APP?! .M0VE 0’21W113((RIO T ((APPl Y .4.IOYT 0’2PICj(5T ’I~ L .0(tFl/1(((

- ‘ 1 - uoso 1’ - ‘~~~~“-~ ‘~~ c .~‘i ‘ <‘ ‘s ’ s.s’ (50*1 .01 155/ I ’) (GOAL .015/I)
(APP?,Y .11O’4(0’OP0AA)(AI’P(Y .110V(0’QpI%A,3(/5IQ T (PAIL! .(4O(5~~~~pWtJ)) (‘40’ ((GOAt .0105,7 4 - 0 5) 5 - ‘S .011-606/0)
(HOT (tV f ’ t .0(l ’ O /S) (- ‘

((554? . 1 5’,4 - 5~ 05 (1(04,!’ .11051 010 /WA) “*0’ (11051010 slIt T i - lOG/A N
- (‘T Ill T) (’ ’ (C I ‘ (1,4- ?” ? .110V(015/’W1.,3 (’ Y V A L .0(’ f5 ~~)

((40? (SAP S?, ! .~~ 7 , (015P461#,3D) /5JO ’ ((API,! .11051010 ‘*1,3)5564, .D(I(l~~))) 1157 ’ TOT A IP R(1 ‘(II ”. ’ .11051 G’~ ~s’?()CC’S , .‘VI’) ~~~~G ’ “ ((55 .5 0 5 ,
~),

T T ((1/

(API’?,! .110’s! C P A tWA/I) (41’!’?,! .11OVI00I /’05,13((?IQ ’ (API,? .M0!1000PW1,3)) (55005 .P((I,)1) .i-/O~~~’ .1/0 ’ 0’ ((45” (PAl,!’ .(4DYD O’’Sl)) (HOT (COA 5 .01(1(55~” (1

(RIOT ((5 0 7 . I 5 ’ ’ O / 1)) (COAL • 5 1T ’ 1 C / I)

11031 • 0 (1(1 0(4 1 (1 - (APT ’7 Y •U0’VI OWI PWC,,3) (1Y Si, .0(111/1) 1150’ 51(0! AS S (U.”- ? (IA . ‘,‘l “~~~ ‘A) ’50A L .1*51007” ! (((‘* 5 .5! ‘O?~ T I

(APPLY .(4557(010/0%’ 1)
o ‘‘ (I,PU(Y ,11(~~(,’f’* ‘4 9 - 5 ’ - ~) ‘T 010 .11* ‘‘l’s: 571(4* ! (GOAL .51 ‘5 ’ ‘ ‘ 7

(APPLY .11051(0” /06,0) (API’? ! .110(1 00*,’w%’,j) (‘dOT (APPLY .h005’1000Ps’t.3))
((TO T ((VA t .0 (105/71) 1059 ’ S? TO! 111 ‘

~~‘15I’? 01.14 400’61 (COAS •P(‘0’ “ ()HOI 1(00~). •M W ?IA S”T)))

-S

(444 ’ AIR L ! I A)) - ‘I.’!’! .UO51tOW0~ C) (54O ? ((API,! .11014(01/I))) (UI, ! .11/I/Y(A’c -. I/~~(4lOT (l.4O,’1 005 .IA ’’)(’4 ‘(1401 (606) .0) R~ “ T , (

(RIOT ((APPL Y •I.So’.1411’4 1 p

. 1O ’ I1,1’ ’ ,-’ ’’ 114’ 1111’ 555’ . I V P d T 8 ’ 5 I V 4 4 C 7 .’ CP’hfYI”(

- - ‘ (APPLY .M0V T CP’~
1(A) /A ’ ! ’ ? .UO’P(01PWA((API’I,’ .1005101/lAO) .1

(‘TO ? (API, ! .IIQ! P 01111)1 (lIATO-’ . / 5 I P C T / A)

—~ ‘~~~~ 4~~4’47~’ ‘~~TO~~~”
5 - ‘~~~~~~~

‘
~~~‘~~~~~1,1 ”~~~~~~”5 ~~~~~~~~~~ —“. ‘

. ~~“ 
‘~~~~~‘~~~~~~

_ ! ‘-‘
~~~~~~~~~‘ “1

__ —
—

P15? PI$T~~ CTI0R)

II MO . ‘(MAT CH . 1 4 / OC T / A) (1-40(11 .1114/71 (Idol ((04OCT .A(S?R/T))) ? ‘3 ‘SIll L (01 1*1 ‘ (51 110’,’? .1, 101/A) (0)110141 sI, (14/11) (1-4001 .1114/1)
7 .‘ (1-u .VAL L1,’1

(AIAO CN .001/OCT/A) .4

(1-doT (*14.1051 •1 (IA * ((1-40! (r(’lOY(.1, (16/lI)((440? (*~ 0(.1(14(T))
13 ’ MC))1I%0 V/IL ‘ (MA TCH .OR/OCT/*) C44001 .VA(IS IT) ((40 ? (1-~~0(. vA) . lL fT((

(MA7DO .OIIJTCTJ*2) (5/0? (MAT CH .14 /OC T/A ((T I ‘ 51111114*92 C ‘ (2)110(1 sC, (14/A) (0)M0((.L j*,%’((51001 .4, 114/7)

(4 MC) I/O/DIP 0 4) ‘ (MATCH .051/O CT/A) (14001 .0.114/I) (1-lOT ((54005 .1(14/7))) 12) 11051 .1- 114 /lI) (NO’ (0) 110(1 ~ (14/A))

(MA?OI .011/OCT/A) 120 ’ (I~~ 1)14 I ‘ ((l ~ ,R .1 (1111) (01ICT sT5(IdoO1 /T) (I~~~(t (14/1)

-
s

05 ‘ 4.10 IJ’*01P Rfl ‘ (1-IATCI-4 .O)131CT/A~ (14’1(5 .1,114/1) 1140’? ((56301 M,714/’?))) ((4C R .1,114/il (1101 (((405 pUll/I))

(11*1554 .0(10111/A) 7 2) ‘ (4CJ 1 (1 4 5 ’ ((14-6.1 16 1) ((145 .4, (*M) (~~ ? (((145 .1(14/I l))
I (S.130(.1(*/ ’T(

06 - MO 1/1400 1 V I - (4..ATC?i .0)1/OCT ‘A((1400(.VA LLS /’T) (HOT ((HOSE .VAIL5 /Tfl)
(141,s .111p /I1U110 ’ ((1405.7 16 1).

(1,4*1511 .O)) L (C ! / A 2) (HOT (1101D, •011/OCT/A)(
- Tfl)I40ft1,(14V ’(LI409. ,) IA 1)) (l i C A ./(I.1 5.I((1~~~(.1(I/O /THl~~~ .V A t L / O ,1)

0 7 - MO /JI45(l 57 ‘ (MA TCH .Q)RJTC T / A ((I,401/O .561/1(1) (140 ? ((56300 .VA& l1f1))) -‘

(4*1 ((ICR .1114/(1) (lIS T ((4406 .1 116/’M(((5401 (4*01 .VA& L,5 /T))
— (I,SA’(5-l .301/ O C T *21(140? (11AT CO-I . O 5 1 / O C T J A (((4*15 .YAL,1 ‘ 7)

00 - (05 (400 ’) l.45(’~~, •OIT J ? C T , A 2)(I/X’c (IA/I) (1401 ((04/OCT .10511404/Of)))) T?3 ‘ 11401(14 ,? ((140)6 , L (I /O / () (04 /O CT .T5(l10C*/T ((1-40(11 .1(14 ,’)

(14001 .514,15/0)
)MPs’51-s .51))J ((7 62) (b o I l .4,(lA/I) -I

(NOT 5 1 4 0 . 5 11*ffl((I4O ’ (1*05* .0*1)5 /1)) (110(11 .PA)1,1 /’T(
09 ’ 105 140 0 ‘01’ 5 7 0 5 (0 / .0P / O C T , A 2) (040(1) . I T & W / I ((C 0 4 * C T .15(4*15/?)

- (440 1 ((UA’C)’I .3 *14(1’ ‘ ((5) 130 ’ 15(5 , (1 4 / - (5 (0 0 .7) 1 6 ‘*1 (04 / O C T .(14I10COIT) (51004 .L(1 6’~~)

(1(11 .0 OC P0Q(L , A ‘((I I I .~ 714(T) (MAT CH .O)I/ O C T 1 (3) (5(15 .7 (i4 .’lI((NOT (5(00 .1116 A((
(H O T (U/ITO-I .Of (J (CT /A 25(

131 5 (CSL(14* ’ (5(CR .1(14740 (5(11 .5 (16-1 -45 (100’ ((tICS . 1 (1 6 , 0 0 /
0) 0 ‘ 14,0 q(S1,5.T I - (MP/T C1’4 .O)1/OCT,t,3((QI?*l .140(44 /1) (16301 .1. UI - ‘T (

(UA’ 51-4 .08/OCT /9) (RIOT (MATCH .08/OCT /5 3(((140 T 101111 .04*144/To (5(11.7 (14 5.1) 54* ’ (05 12 .1 434 40)

K)) - 0 .01 .1111* 119 I (11A1554 .0A/OCT /A~~) /5AIOOt .L(14(T((QR/O5? .TOPI63C1-f!% 132 ‘5((54,(19,’4 (5((5 s4 ,L14 /6~ (0t (5 .1(14/MUW/OX .tlIC,’TUHOO(.5*’ , .A C’

(MAT CH . 1 4 / OC T / I)
-, (HOT (1 5 (5 . 5 UI ‘0 /) (140’ ((*1)6.1 (16ft4)((4*T (1-4045 ‘WA L L-(- ‘!((

(11*151! .08 /151 / 9 (0 (0(115 .((14/1((RIO ? (UA~ CH .14/OCT/A2(((04001 •V~ L 1

T I ’ 60(1 LIII) - (6 0(1 .) (L V / A) (O 4 4 / O C ’ .T5(I40fl(/1((~/Q~ (1405* .1(1*/I))) (3) ‘5((5 1 , (4 . VT ‘ (0116 .L (16 ’ (((04 IO CT .TOPliOSEfT flIlOOI .1.16 ‘ i

.5 (4*111 .‘414,/ ,f (1)

(*00 •L (131,51) (140(’(.1 (14 /0) (ROO T (000 .1(4* I((.1
(4*1 (0(01 .1(114/A)) 5540 1 (4*0(•0I,LIIT)) (54005 .VALL11 /” T)

12 ’ *000.114 I’ ‘ (AIX) .) (1II ,’*) (OIL/O CT .TCPHOTIfl((14001 .1114/11
TAO ‘COPY , ‘A S ‘ (COPY p1)14 *’ (0)1/OCT ST5(%001P’) (11001 .L 14 /’)

(ADO .L(14P11((IIOT (A GO . L I I P A 1 -S

(~~~~ ‘- .tII6 ’il)OA. ’ (COP? p - I A ‘0
03 ‘*001. 1 4 1 4’ (0)00 •~ (1 4 , 4/ (A(/O) .1(14 54) (14Q T ((P00 .L(IAIA)t)

(4*T)(ITOI)1 . L (1 4- ’ (() ? a (‘ C0p?/,)IA 5 ’)C0P’1.t)16 0,5(19’ .,) 5 I4 ’11((140T (ICVP I .L fl ,0 ’~~
((

—I (1~~ t .1’16/I)
(ADO •5 143 < 5.4) (‘ 4557’S .1(131/1) (ROo T (P00 .1 (IA /A ’)

(COPY • ,)L~ 54 4* ’ (555105 ., ‘ 1 4 ’A))

-
TI - A50 I ’ M II ‘ (AIX) • ((1 4 / A) (A GO •(, (14,54) (140? (5*00 .1,114/0(11

) 4400(.1 , (IA fT) TI7 ’COVYl(III Y ’ (COP!’ ” 13< * (((OPV . (l/O /14((IIO? (5i-51P5 .))I’b 0)

I - , (4*01 (Ils ‘II -l/Y 0 ‘ i - I -

(6(30 .1I14/~
) (‘40 ’ (0)00 .1 (14 /6))

I ‘-
~~~~ .oAL, t r~~(l~oo ç~~

’-, ., 03< *~~ (‘~~,7 (COP! .) (14 ,51)

4 T I A(3O L ’A V ’ fl CX- .( /ik 1 ) ( * 5 4 5 5 .1)44 ’.7)(IIQT ’ 7 A ,’O . L ) 4 3 < 0 (( (

1 “ 
TlJ ’ C O D I L I I . .  I ‘ ((1) ’!! . 1 : 3 <  A((IIQ T )1100’!.L(IA/14(()(’do? ( ( C O Y . ( I A I A ( o )

(140(5 .1(14(1) (1-401)4 . 4 0  (/1 )  (1-40 ? 1,555 •L (l6 /A)((4* T ) 000 .((I6 /11)( (04*1? .?01140’* 1’’ (4*00 • 16 ‘fl (‘~O0( ~~*7L1

T6 ’ A 00(1’A V1 - (OL’t’ .L 114/6(1510? 1(000 .1(14 ,51,- , ( ((9.45’ .T14IIOC5 IT ) ‘.4Sl .AA). L.5 /I( (NOT (CO~~Y .  ‘ 0 ( /

- (RIOT ( A1, ( 557 •, I/I 5 5 5
- 

( 
I - C I  COPY 04J T14 (GO” s140 C’ S) (14J(CT .15(14001(1)

(110(0 .11131 -
‘ I 5 7 5 5 4  . sA - *  ‘I) )%40 T ADO .~~(14 lA o ,,

)C
~~
! .19/OCT/I) (0401? .?5(14045 /T)

‘ 
T i e’  01111 ,114  61)  119 - (1*1105’) ~/ ) I A */ (CII4 ICT  .TC9.~~ 5 ~1) (“10 .( (16/’?)

• 
- 

- )IIOT ((0 l4 .40VT •t ( 1 4 (~~- ) i  C2 5 O P Y 0 4 J N ’) COP’I . Y~ 1 ( ’ ~~~I (l4 O5* .L )16 /?(”4OT ((4*C( .VM,I ‘II)

• (041105’! .1 ~A IA) (RI 1105’! • . (44 ‘ 1 1 5 -5 4 0 !  ‘10,51 .L!U.  “/1  (CCI! .145)’  0’ 1513551 .7)161’)

T P ) 5 1 1 1 ( I A ’.” C C ! O P ’ ’l’’.’C”T .) ‘11/ ’A / / 6 4 4 C ’  .‘01l.U5 /’( (RIL(* .4(14/I) l’’1 15(401,I’7’(CS0!’ ,51I! ’ 0 ’ ( I.O(* .L ( 14’ l)TNOO4 . V A , o A / I (

-‘ 5’ (5111051 .- ~~ “ (RIO T (5( 11051 p4,114 0 ,1 ((~~ A •) ) IA ‘)(Ido(X ‘ 41 ,11 7? (10’! .~1(11,! A ( (

T I ? ’ 1 1 1 . 4 ) 1 1 4  0 7 )  071 4 (AIIICV? •1 1511/Al (0) 5105’! 01 )I4 /54 ( (I~~~/O .1(16/1) Cl ’ CC•” 0- . ‘((191- •‘8A C T ,I ‘0’ )5140(’t .,)l4 ‘ 5 ) )
(I/DT ((015.4001 .- 14 ‘ !/ , ‘  (‘40 ? ( (04/O1? , ‘ 70’ I.(’ /5(I)

(l1M0’/T .-. , I A A 5 -)14 l.lC5? •1 (14 /Id ) (140 ? (4*4 * •7 44 ’’ ((43’ )C0P~ . 5 5 9 6’ ’  A / I

OIl -Al
O

R .

_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ ‘—‘- ‘~ ‘ ‘ “‘~~ ‘~~
‘ “



- ‘,~~ ,-~~~,,, , 7~~~~~~~~~ W ‘ ‘p •# ‘ ,“ 
~~~~~~~~~~~ ~

“,‘ ., ‘,. , ,, ,, ,. ,
—~~ ~~~~~~~~~~~~~~~ -

,,, , ~.- - - -~
,

-

0- lI~~ T Al5IMCTIOIl

4 0 0 ‘01015 (14*). (OVA l . .01111/A) fl~~~
.LXT51PR/’T) (1-lOT (4*1* .1*15101/c))

(AP9(.V .105P000/A(a1/A1 oO(OI R/A ,)) (5101 (TIM .0(011/A)) 56 ’ SOTT (4(1 ‘(440(5 .(5T5101/G((SIST ((*4001 .VAI,I.I tT()) (W0? ~4*01 .1)14/1)))
(4*11 .(X?~~ 01fT)

0? - 0(010 14*1 * 5 ‘ ((‘ .‘*t .0(110/A (((AP P lY .105400(1/1) •‘

“ (14001 .(X)5101/1) (l/Q1 (14045 .(1T5101/c)(
((V/I l, .D((I R/ A 2) (4IQ T ((V A 4 .01015/A ~

) (1-401 (APVI,! .4,059200/!))

*3 ’ ‘ (‘4005 .(X1~~
PQ(0~ (14045 .1*T5101f?) (NOT ((HOSE .4)C?51014 /G)))

03 - 0I~~1R (451 02 ‘ ((IA) , .0 Il(51A2) -/

“ ((6315 .IX?51P5/ ’?) (4*1(14045 .LXT51PS/c))
(OVAL .010(5/9) (1401 ((V/IL .OIFIS/A2)?

Xl ’ T5(- (1-dQ45 .(XT5101/ 1))04)6CT .15(1-4001/11(4*1 ((4*01 .(XT5105IG)))
04 - Ol~~~l (1-01 02. ’ ((50)0. •OIPF!/A .21 (TRACT .(MX51T /? (

((1461 .0 (0 1 2 / 9) (1Q01 ((4*1 .D)l ’ l/A2)) (04SCT .(*15105fl((1-lOT (1401* .1*15155 /?))

(35 ‘ (3 (? 1 4 (461 7171 ‘ ((V Ol .5(1(11*2)

((V A) , , 5 (’ / P ’ ,S/ 041(1 (I S O ’ , . 5 4 - 0 2))

V I - IQS1-,’4 ‘ .5 5 5) .‘/7 0 0) ‘ , 55 *~ .?S’T’f?OAIOSIQQRO /’T ((G Q A L .S&P(R/ ’T(

7* . • ‘ 7 1 5 5 5) 5 (5 (7 - (((1 5 5 5 5 * 1 .0 8 / OC T/ i) ((SAC) .(4*) IIT/ ’T((‘75A 1 .5($Oo/OC?/1)
(4/01 ((.26) .OIQI f l ‘ (‘ 5

(14 * 55? / ‘ T) ’ ’ O A C (.0514(1? ‘51 (50*4, .TOO C(1(5 ’11/’? ((1-lO? (TRACT .00*1/A))
(1-405 (‘ 0 0) ,) .) U ’ I 1 Q 1 ,’T) (((1 AC (.1140415 ’S)

4? ‘ 040 -1 ‘ ((7 1 ,,’ •CI400 C ? ,’A I fl1I-14551 .(XT51P* (5) IlIAC? .14*4 14?!?)

(T O A d /T) (540 1 (T O/IC E .O4IJO CT/ A((
‘ -
.

143 ’ ‘Q! 1-455 /) 1 7 1 O 7 (,,“ 5 5 ‘5 / 1 , 55 /361 .? ‘.‘P(TRA N’SIOOiA(1((50*1 •SI91IIT(r
(GSA. • ‘P A / 4 , 1 5 / (1) 5 (A) ,740 /) 15 /~ (1501), .0(SOO1OC(IT)(COAI .AI4l(C/ ’?(
) (7 1 6 5 5 (.11401 IS ’ f ’) 55

(T RA CT / 1)) ’ 7 1 0 5 5 1 .5/1)(CT .’A(‘.550) .TP)’C? t (V T L / 1) (4*T (TRAC T .00*1/A))
(4*T’ (TQA C(. (IT ,07’ / T ((((RA C (.) M) (I Q T / ’ T (

V A ’ APPLy ‘ (‘ 4 1 - C f • ‘‘O’7 4) 5 5 5 5 4 , .TS T ’ f * PPlYT ’) ‘ (5 5 1, .0t’ (Q ‘5)

10550 ,. .140) C? 1 ‘UI’) 1(05) .55/ ’ ,?) , ’ ‘5(1.0* 1 . 5 5) 5 1 CCI I 5 5 5 5 * 1 .0(1-3450 (T)
(55 ,55 * 1 .771’P[’ ((540 1 ((“ G O •S I Q T I (, “ f l f l ’ QAC (.) 1 0 ’ (ST IT)

(TRACT /‘I)) ‘ 7 1 A 5 5) .00SA!6101(IRA CT ,‘70/ ,”) , ’ - S I (5 5 5 5 4) .‘Q.AC(l,tVtLI /T) - —

(4*1)1Q1 -C(p5556) 1*11) 5555 ’ ’ (171*11 — / 4 / ,) ‘ ,T ‘fl) (5 4 4 5 5 T .)M)4 IIO IT (

V 5 ’ Apr ! - ‘ (7 1 4 5 5 1 .“ 5 5 0 L ‘ * 1 f lOC A/ • i!I ’FA PDLY/’1 5 (‘(‘1 .1-1410/TI
‘ ‘ 5 5 0 5 5 . ‘ S ’ l (I I~1 (‘ (‘ 5 5 5 5 6 1 ./ f l (” T I ’) 5 5 5 5 0 / •1(’ ’IC/1((COAL .C*SASGCT)
11,55*1 .IX’Q,’T ((G OA), .5 5 ’ IC ,’T l) IQACt .’M((II T ITI

(T O / I C ? /5) (10,6550 .551 S4/(,(~ -~~ 1 4 1-557 p ’~1/ I ’ / 5) 55 51 -, • ‘ 0 5 (1 1 E V ?), 11)
40/01 (T*A C(.550055 ‘5/14 (1)0 ? l I P S) ? •(15’,) 1l? ,~T) 0 5 1 0 5 5) • (4*4 1 - I /TO

1441 ’ 0150/C l -) ‘ l 5 C (.OQSi ‘5) (SCAt .T!l ’l 1((XjC(/ ‘ (‘ 555 0) .5 1 5 5 0 / l I

(5001 .‘ 7 1~~~(7 1) 7 1 1 / 1) ‘(- 5561 . 5 / 1 - 5 5 1 ‘ (7 ,001 ~)‘ (/ P I (10*1 .0(11 (C/T O
(‘ 0 * 5 5) , 5 . ? 14’ ~ 5 / (4 I j l 1~ ‘ ,“ ‘ (

(T O A d .‘(‘ ‘) . ‘ 5 () .5501/I 7 5 *) (1 , 00) .5 7 1 * 5 5 / 0 (/T) i’ (/’?IST (‘41I((.00511*))
(4*1 (TRAC T ,‘ 4 f ’ 4 ~ ‘ ‘1)) I ’ R P C (.)140(4 IQTIT (

5 147 ‘ 5 5 5 5 5 4 ‘ (‘ 7 1 1 - 7 0 4 5 0)55 ‘ (/ V 0 W r 4 , ,‘‘ , ‘4 2) (lOO T (55*0) .* 1-51542)((

(T RA CE • “~~~Ii? /1)

(~~~ACf - “ (-~~~- (T O A C (.‘I S~~S’ 5 ((

145 - *55 .5 2 ‘ (‘ 7 1 * 7) .‘-(‘55 A ’ - - - ‘~~ 1~
P4?S~ .5 1-5 /1121 (140? ((0*051, .‘ 0,5421(1

4 711-1? . 5 5 5 7 1 /!)

(1 5 / ’ ’ ,‘? ()1 -47I — 5 5 ’ ,)l ’, 4 1’ 0~~5’ /

“ - 149 - ASO 3 (‘ 7 1~~),~ .55(’7A’(. - 5 / (0*15(4 .A SG / 1 1 2 ((5 R .*C0 .(1404 1QT/1 (

‘4)
1- 0 7 ’ /1) (ROO T I ’ 1 S ’~I .1 5 1 -- ’ ‘ - 5))

5) ’ 14~
91fl5 ’(OlI / I l l S .?4015 ’ ”V - ’ 1 (, ’ 0 ’ O C T .‘I’$ 1451f? I 14*01 .,,)14/T(

(140(5 .f X ! 4”~ ‘) (5 7 3 * 7I .4 1’5 1 P QIS) (4* T ,7~~~
P . ’

((40411, .0010)10 ‘ . 1 5555541) .0 TSf PQ/1)

‘80’? (4*1* .0(1 ‘5109 1,1/ 4415 4 .4*1(1 / 5 5 ‘1-4700 • (V) 5150 (5)

Ill-IC

frj

Ai.t,. dpI C ~~090 51.ff514~~~ 04 f1~~ T AM(ftP,~ TI~~ $51,~~~$((3 5) 5 0) 7 (7 0 3 7 0 1 7) (7 4 l f l .173 474 .073 47$ 540 0470 5470.
9425 40)9 .613 I 473 .M7~~ (O i l 713 -1j 16 135$ 4$ l’0 175 6 5 5 *9 5(0 -4 (0

St ADO 1) 1 1 1 1
t~~SU5(5 T I 17 ?) Tn T O l l 440015(2
RI ’ S ’ lOL T3 ~5 T 5 TI . Ll~~~~~SM3 I~~I 1037 10335 1034 1034* 1034.41034(41131*1030 103710311059
0’-l51j5,l5 T I .T 4 T7 - 1 7 T I - 13 141 T n - T 5 . T 6 1451104, 1031*10361

~~..51tSM3 -1050 .1057 - 1011 M3S
L0’SIIS($ 1 4 7 1 -) 1037111-] 1473)5 MAO *40514 40409 10151/104 (1012 U13wI~~ 1041, 1045 10451 10(0

b lOt/ITS (4 (3 (51 P (3 5) 0 (30 (37 4)1 (35 040 5 35 031 0 31
140 $ ‘ 0 5 5 / 43455 164 0161043 MOP 1441 4.409 10431 *410 10450 1051(01 134
0’-’ , ‘ ,4 , / ‘. 1130 433 , 1 0 3 7 4 3 3] -1033 10335 (133$ 4034 1034* 463S*4W34I(M40 MAO 144514 l4*t~~t S (O (3 (6 (3 - 0 5 (5 5 . 1 0 3 1 1 0 4 3 1 9 , 3 0 4 3 1 5 3 4 4 3 4 433 .050 533
(1405 10400 1440U -*4100/ -*41 / 104? -1042 10*3 -404 3 *41w -1043? 1041, .1041, 1014 *465 (35(31 .101(51

MA4(1143 -MAO 1145) *640 M4$T -1041 MIS 0419 1032 -Id57 MSI MS90? -02 (40434

• 1” 05’ 1 1,. Ll-~~JITS 04$ 0 4 7 5 (9) 5 5 5 35 6 57 0 1 5 9 0 (1 17 TO 1)0 T 4 ~ 1 (7 113 104 170 17)
0 ’ - ’ S s , S l S (5 0 (3 (3 1 5 3 3 0 3 6 1 3 5 0 3 1 ?fl ’ 7 3 ? 3 0 1 7 5 ? 3 7 ? 3 7 I * O T S) T * 7 ?I3C P C 3 X (X 7 0 3 X 4 03 X6

COMDOA 143,T (O1 (4$ 4 9 1 5 (5 4 6 1 7 I I 1317 14 04 *3 0 5
55 1110510141 ~~~~~~ ~~~~ ‘d~~~~ I.-~~.I5]S .183 1 * 7 1) 13 15 1(, 1)0 . 1 (7 - 1 13 1 7 3 .T77 TI) .T73 137 -137 133

• ‘-4’ ‘ 1 5 5 / *4 3401059 .13) 147 163 C? 1-3*) 7 1 2 0 3 - 0 3 *4 *4 *0 *0 -06
C O Y OS/IC’

‘ ,-‘S S t S b 5 / 0 ’ 8 ’ T I 7 T O 3 C I c 7 C3 C4 II.T.j5)Sr l f (4 1 1 7 0 3 4 (3 5 0 4 I 1 4 1 (4 $ l 4 7 5 4 S * 4 2 3 1 0 r 9 i l (? I T 7 T I T) 0
T I) 170 ‘23 5 310 ~33 $10 1113 C l (17 (‘5 X(Xl

710” ’ ’ ‘55 !1~~ TAO 1 4) ‘ 6) - 1 4 7 TI) C / C2 -Cl CS ~0 5 1) D 4 , (/ 3 0) 5 (4 5 1) SI ll
Of ” . 5l-OS U S I S(O .) (I O . 1 1 5 0 40 0 6 7 (4 I J S 1 (4 6 1 4 7 . O S S C I . X 1 0 0

~~~~ S / ’ . 135 1 3 ?  ‘1? 733
P,5 5 i )’ ) l  l S  1~~ IJ5( S U3O M 3 (  1137 14)3M3) S l.411 1049 M1914
P’~~~~~’,( S T3 0 - ‘J O  ‘ 1~ ‘ 3 /  ‘ 3 7  ‘ .13 15514,/ c5  407 1030 6430 - 40 3 )  - 1037 *41-3 -4033 M33S 40335 4045 -1019 1019(4

0(110 514*’.’)
I 4 ( 0 1 / 5 ( 2 7 1 ) 0  13 7 0 ’ ’ ?  L I-64.~ l.S ? I O 1 I (  ‘ / 7 1 ) 3 1 ) 4

(4 5 5 1 ( 5 5 / I )  1 3 1 4 1 5 ( 7 7 ( 3 Q 1 3 7 I 3 4 1 3 )
04 /555 ) 1,) 55 4 / 0 )  I 4 1 3 0 7 7  02’  076 4 2 7  130 5 ( 7  55 (9 4 ( 0 5 0 )  II4T./c S T O O  T I )  - T I )  ? ) 7  - T I  3 1(1 .7 (5

511CC?
( ‘ - I c s s s l S ( I 1 ? ( 7 I ( 3 l 4 ) 0 M 7 ? M43 *41~~~l,4l31.0(D7 03 o4 b9 1l ’ l O t ) $ 1 1 1 30 1 3 1 1 3 ? ( 3 0 ( 3 6 ( 3 ’ * 4 ) M ? U3 ’41 103

14 ‘ ‘ l O s  1 143 1 013 1  MS’(O71 ( 3 7( 3 ) 1 3 9
R- ’55 ’ 5 / 5  )~~~~~? (71 ( 3 (4  ( R ( / 0 1 1 I ( 3 9 M ? /  M731479h171M17 -M43 -M430 0 0 - .$ t J S ) S ( ( ( 2 I ) S (7 7 ( 2 3 R ( 1 l U6t3O .13 O t 3 ) f 3 ? t 3 3 ~ 93 3 136~ L3l - M I

4.143 ( 4 4 7 1 0 5 ) 0 1  0 ( 0 ,  02 03 03 01 - 01 03 .4)3 107 103 141 *43
51?

1 0 1 5 5 5 5 5 5 ’ S / i  17* 0 3 . ( 4 1 f I ( 7 1 3 1 6 ( i ( T h ’ $ ? 1 1 4 0 4 5 1 5 T ’ l V ( 1 10 9 0 9 1 1 ’ ( O  )W5(J$5 5 -M3)1033 -U3) M333

r ( I ( ( 3 0 ) 6 F ( 5 o ) 7 5 7 0 1 3 0 1 3 $ 1 3 9 5 4 0 5 1 7 ’ * 7 0 5 4 7 1,tl7I(I75(43115 50P3)  TI.AC)
5 9 1 0  55 (44157 I 53 10311 L IlICt S (Z ~5 ( 3 )  1 3 6 ( 9( 00  II) (‘2 (1) 04 (15 46 (11 (1* 1-1*9

R I ( S’ ( l  I S S r S T I ., 7 1 5 I 1 4
0’-/SU’l ’) ( ( 5 0 ? ?  ‘ 3 6 ’ I  ( ( ( 2 - 4 2  .(3 1$  3$.? 7 , 0 7 l 4 3 5 , S A . 1 5 3 4 5 5 5  459 (36 4 3 $ 5 5 1 3 5 1 0 v )  (9(13 (17 (13 .431-4 .Vl (15 .43 4$ ’V$ Vi .v7 VI -V$ V9
0 5 ’  4 ’ 1 9 5 r5y (5F 9 ( 9 4 4 5 ) O $ ( 0 5 1 ( . o ( ( 5 ( 3 $ ( 3 5 ) 4 3 1 4 5 I 3 4 I 3
1 ) 7  5 7 1 70 12’) -4 10 (3 4  (33  -136 - 139 -/1 0 5 4 1  ‘07 1470 -1470517’. 3631, 11*14.1
1479 . ’6 7 5 0 4 7S  1 4 7 S 5 6 7 ’ J 4 4 7 T J 1 0 0 4 0 / ’ 5 9 ( - 5 9 I ( 3 1 M 4 0 ( 1 0 -’311052 .FSZ I,14S4/ I t S l31 - (26111-2’O 107’O$ Mfl~~ ?3 Ml4 M24(~~ Z*’ M7*~~M24$~~ lI
.55,3 0.175 5 7 1 1 0 34* 4036 MICA *431 -4.439/ 10411.I17 W 9 (  t S 1 0 (~~ ( 34 1071 1174( 4074 ’ 1076*1025

P001.12 ( 4 ’ ;’ 5(456 lIlus( s ( 7 5 1 0 ) 1 0 7 5  MiD M7071 402 )  (477 .1477 1,123 .10234*4 .1424 .14741 .10760 642610

1 I’OSUSL$ ~‘4 43 5 .1476* 1Q15 -10763, 14,25

Q” ./S~ S 145, 0*0(4
).I-lOlJS( 3 5 0  13) 1 5 3 1 5 5  1.434* (‘-3* 103634 103* 113*1 MISC 47 4$ 4$

) ‘I5(,’,5 ’ , 144 10(, 1033 1433$ IOSTEDI 5 50 ( 3 , 311 5  ‘ 3)1 U365113907 (1$

0 ’ 0 0 , S ) S M* t.-41),~~T 5 4 5 0 4 3 I ’ 3 ] J ) 3 ’ 0 ,  l51l.131A M3$ 613534 M3$ .&4351 .M14(

5? ” ’
55 0’55II’,T !  5 5 )  1436 10361 M3ITM *4 3404 40345 4035 4035.5 40,31 1p43f,A 40315 1137$ *433103*11039
4.1/11*

1401001 1355’  4 4 / 5 5

55’s ’,(’, I! ‘.15 14$? 441 ’? 1034 1014* 4014* 103610 1131114103144 - 403414 1136I .40,340 UI?

• 
431’S 44 V,(, MISC. 1010,1131 .6 ‘- ‘11. 0 1 0 3 1 4  UllS 10,35 -4315 MI!? 113940406 1437

-‘I’ 055 6
(“- ‘-5 S ( ? 4 7 1 1 1 I 6 ( 5 r  / 0 1 ’ I (  1 7 1 7 3 ( 7 1  ( 7 7  127(71  - / 7 3 U 3 5 1 7 4 1 7 5

O ‘7 1,1  I) 130  ‘ 3 / 1 1 5  ( 3 5 ( 3 6 0 7  ( 7$615111 , ’ (T  l9(~~~ (4 I  5 5 ) 1 0 ?  U7103 4 0 0 815
44 (’S P .’ ’5 44 ) ” I, 07 4 1 4 3 7 71 4 5 3  M 3 O M 3 3 4 3 S ( 5 5 4 4 7 P ’’.’ C U* 0 4 M404 U4 7 4 3 4 I 4 3 A 9 U 4~~4

4 115,0 ~“ 5 ’ , 5 ’ .’ U ( 7 0 ’ ’ M ) R M 5 , 9 Y s 7 3 5 / ’- V S yO

• j ./I ç ! I .- t l ) 7 f f l ’ / 7 ( 7 / ( .’ r - l ) )  l ] 0 1 3 5 1 3 0 . ( , ( 1 ) . I $ F O S I I T O S ( 9 ( 4M26

4 1040 1 0 5 3 4 10155 l9155( 4 . 1 / r i  4369 1449*. 4,457 ( 0 5 3 9 )  54

1 6 5 5 / 1,1 5 5 4 ~ ) 0 7  ( 7 9 ( 3 5 ’ ?  ( 1 0 1 0 .4 ( 0 5 1 1  1 ( 1 ( 1 7 ( 7 0  / 70  0 2 /  ( 7 1  ( 27  - (77
5 7 3  ‘ ‘ 3  - (73 0  - ( 7 4  ( 7 5  1 2 5 ( 3 /  (,141 (71 4155  ‘0’  (‘71 5 d ) I 0 7 1 5 I &4 7 0 $ l 4 l l
l~~7l ’  s’ ,” 14,(~ - ~4?6 107? 1 4 7 7 1 0 3  / 4337 1036 *436*  403611 *436(4 1039/ - MAO *4 6 0 *4 * 6  (MIT
M A 7  •3 49 1.149 ‘119’d M’ .O10’ .(  1 . 4 5 1 4 0 5 1  1157 115* .M5 , 9 4 ) Y 3 YA VS VT.

1’ • GPO,

1’- ’ ,’ ”  5 ( 0
1.151/5,55 (0

(147 10

1 0 1 5 5 / 5 3 ,15, ‘70 17) T i P  173
M ” ’ f I ” . ‘7
R,. S ‘ s , $  (70 - ?7Q T 7 1  . 1 7 1  -177 T 7 3

. 5 5

‘ * 5 5 - - ’, ’ “ 4 3 7 1 -  Mi)’. 1037 5 03 ( 4  ‘.4375 *436 1.4351

i~ (~ 
4 $ ’ ’’  -

!(II 71.1’S .0 5 5  0 3 ( 4 10345 10316 (01415 (637 1037* -*4375 4039 163*1 4039

~-i 4.1* ’ ’  0/

/ 4 11 ’3 , - , , ’. l ’ , 1 2 0 1 7 1 0 2 7 ( 2 3 ( 3 4 0 2 5 1 2 1 ’ 4 7 0 0 4 7 1 , 1 475 1 0 ? 1 U 7 3 ( 1 0 1 ? 1 3 h h 1 3 16
1 _ I ,

(4’’.lf J / ’20 0 2 3 17 3 ’2 4 ’ - 4 0 ( ’ 7 ( 4 7 0 0 4 3 $ 19

5 7,

- ‘- ~~“ 2) 14)



~

“

~~~

‘ ‘

59095dM 0. M,CC440 M5LMCTI~~ 45 T40
Y33 ’~~~~I1 5(51J14 ((TAI lO/ I CT - 0)1(51(140 .10(4 ,1 0906(40140*4 . IOTA

(0 9500 11611 -
~~ S5 .1 00/Id TIACS (4 14 0 GOAL .60 91 IOTA

o S ’ 5 (4(0 0 1 / (T I ! .lC10*J~~~~~~ 1 - ‘ILl
S 40001.61 (V A), 1- (35 ~~,)T 097 ’ ‘III ‘I Q-lA~~~~~40*4 - (3 1 1

1) - GOAL O V A L 00 ‘ 90*4, - soA ~ .
. 911(10 - (v At (40 ’WoO(S ’) ,(Lf . IIAT04 10T• TOAd -I *4* 104 OSACT TRACt • SILt

-((2 GOAL (5~~~
‘ 5 1 -A l - 1(11 GOA L .‘ T RACT 03051 - (VA) . 14140

(2* GOAL (VA), -! ’ (VA), - ((((G O A L .4 T OAd 911CC? - (VA). .030*4, (4) • 050900*40 ’ OS/ICT COAL •~ ((LI - GOAL
(3 ’ 030*) (V A) , 5 ’ (464, - ((1 1 00*4. .’ ‘SACS GOAL . (VA L (4? &OTOOM • ((L I - MATO I .’ C640 CT COO). .(fl,(
(6 ‘ 4)0*). (VA t -S ‘ (VA?. - 1)4 ,9 GOAL .1 T RACE GOAL . (VAt
IS ’ SAMS 051 ’ (VA). GOAt .0 TRACt 911(11.14*4.- GOAL 5470 ’ OMt C0(40 0 (III MAT CI-l . IMATO4((1(

(47), ‘0141 4)0(41 4, ((LI MATCI-4 .’MA T 045I t (

•
I(0 S)X (5*49 GOAL .’ TRAC I (‘((C ~ #AL GOAl. 5475 ’ 09401 COVT I’ 1(11 40.6(04 .01634104 ((LI
C)) ’ S)X AP#L V COAL .0 T QACI I I L ((VAL GOM 147S ’OSS T cO4 T S ’ ((L (. ’l)((
1(7 SUC SOP ’ GOAL .- T RA C(GOAL (l7U ’ Lftd.H OO ’ 5 0
(20 P A I L *111(1 ‘ GOAL • . T RA CT GOAL

• (7) ‘ F A (~ *141(1- ’ COAL .4 TRAC T GOAl . (14 ’ (5S O40J ’ 01/ICT . l 06 / ICT

17Z ’CllOCO 1(101. ’ GOAL . I T RACS STIEd GOAL (l8 ’ (lS 06/ h ’ 06/ICT (40)5 .‘O S / I C T - I ~~~34

£2 3 CHTCX Q T T S Y (3 4 1 4 ’ CO Al, .‘ GOAL 147 (RS OSJW ’ OP/Id ‘4009 .’ - 00/IC’ - 40(31
(23* IAIL 051 ’ GOAL TRAC t • ‘ IRAC I STI CT .~~054, (4$ ’ (IS 0(4.1 II- ’ 00/IC? -MIS .0. 00/IC?
(7 6 ’ CS-lICK 0(157 10 ’ COAL . 15*0171 • . TRAC(SIL ICT . 00*),

• (73 OT T OY TRA NS ‘ GOAL TRAI/S! .7 TR ,A/IKJ TMCS . 60*4. 030 ’ I lL (OCS ASG ‘ ((LI 9*5(4 .1 (ASS), ((LI
(26 ’ R (T R Y TRANS. ‘ GOAL TeA l/SI .1 TRACt ST LC CT .60*), 131 ‘01005 ’ 05001. 51/ I 00*1 55(10’ “(ILl G(IOT GOAL .0*051.

(3) 4 4 ’ I.4~~~~0* ’ ‘(LI .1 0 (1 1
S M005&I SIL ICY (3(1,1 ’ 16011 0*’ ‘ (((1 ‘ ‘ I (19

132 (XT (I I V OA MT ‘ ((LI “ ((L I
(70 ’ 171! 010 GOAL S ‘h Id (‘.0*1 .- ((LICT (33 ’ DA 46 1CC). ‘ ((LI 9*005, .0 46TP PARS), - ((LI
(I I (‘040050 0(0 ’ S E L E C T GOAL T RAC t .0 ST),(CT TRAIl GOAl.
(37 ‘ 10411 -f Cl-I ’ 5(1(11 • ‘ - St O I C S 155 .4)01 0 * 1 4 ? ’ (4 ? 4 0 (#5(4 .0 ((TA PARS),

(35 ’ O4T W 0113(1(1 ‘ 1-I i ld? 00*1 . SO L ICT 596 CCI. 0* 4 6 10 ’ 140 140 - 5611(4 .‘ 46 140 CS4A~~t~~~
(341 ’ C’-’OOS(054 3 ’ S ELEC T T RAC(GOAL •‘ StL(CT TRACT ((L I (SAL 00*4. (37 ‘ LA ST (AT (5 1 4 0. 1 4 6 1 4 0

(37 ‘ (RA 5(4)14 ’ 5(1 C C ? .‘ - SU.1CT
S (‘001St SO L ICT A SA h I S

S MOOLL(F)L(S
91(TI ‘ V,LtC l ~550 ‘1 (6 (451 - Sf 4.14)?

(I ‘ (ILl L OCAS OG ‘ ()((D(f(5 .10I(FSIIL I *47 ’ 511 1(3 ’ S E L ECT 511*1 .‘ 010X(Still?
(2 IXT I UD L P (41’ ((((. . 1(L (U)’ $LL *05*4 ’ 511(1150* 1 4.~045 .5(5.’ 4.1001095 . StL(CT

5 (3 ‘ ST L P 04(0 CCL ‘(LI 0 (5 5 5 .1 I OTA 1019500.5(4.1 .09(15 MI ’ S/ b AlPS ? S01(C T GOAL 5(14005 - 105U21(PU1OPS .1(051-409*
SIL(CT

(I ‘10?. 4,40 P4(T ‘ (41 TO 0(555 .0 ((TIP LOIRSOG .0 (5(5 *43 ’ SOt *09* 2 ‘ S E LE CT GOAL 50530~~ c (Ø1407(IPtJl40AS .4 FQ11IZI10UTORS

(5 ’ COt LP (4110 ’ I4 T P . 0 (((5 TRACt ‘ I l4TAO l1r5 Dt14~~~ct) 10*09 SOLId
061 CT

(9€ - L A S T IOLI ((TA .‘4 4 ? P 3 *4004,61 TIA6ISI,(XC * (T 71(7)0210040235 AlT IIATO4 S

16 ‘(111 GOAL - (RE ‘ I ISACS SIL l 4470 ’ T RAWSI G ‘ 15*1452 1.5*(.1145104 10544SF

F ? ‘ SOC GT. - (III GOAL ,‘ - (() (40709 ‘ CX ‘(9145 ’ ‘71715’S’ 54)64, .‘ C0*4 -

F744 * j C 4) T ‘ ((10 00*). ‘ - 0051 - ((L I (03) ’13.’ C)11651J.? ‘ 4.l~~ ’(I’ ,
. (I* 15* 145,71.14* 104

(S ’ SLC CA- ‘ IIL(GOAL .- () ~ (M77 ’b~’’C04 V 71 L ‘ 0.’.’) ((0 .‘T S A 4 4 SJ (VA),

(9/6 ” * ” C G A ’ (1 t (GOA L ‘ -
~~

(LI *473 ’ h’~~1D-l ’ (Id ’ 1(10551 . ‘1.IA T O / T05.49F

‘S5 ’ OI014O Cl (’ (5 ’ (I t (. - GOA L .’ I I L O GOAL 1473(’(*A .s(M O MIII ”.

55? 010 0 (5 0 5 . ‘ ((L I GOAL . (iLl GOAt 71471 ’ CC14 Oj ? I T C 1(04,53 , ‘ ‘R04,”,I COAL
(IV (*3 Cs ’ ‘ ‘ (L I ‘ ‘ ((L I 44751 ‘ (5 5 164*) . ‘ ‘0071551 ,‘

(51 ‘ lOS CS ‘ S I L O ‘ ((11 40741 ‘(05 14(16). ‘ ‘(*‘.550 .- 305445,1

(9 ’ SIC GO - 5) 1 1 GOAl, .1 5 (1 1 4474(6 ’ iRS (346/I SW- ’ ¶05147.1 . 15*443
(9(4 ’ SIC GA ’ r (t (GOAL .0 /‘.C(I - ((LI 40345 ‘ (05 14761 59 ’ ‘ (715550 . - ‘50 143$ 50*,

4473 ’ CX CX SC~
‘ TRAIlS? GOAL OS/Id .0 COAL . T RAMSI

• F 0 ’ S ‘.1 001/O CT ‘ (I I I • - 0A .SCT (4140 (((4
II T I ST 5 (4 4 (I L ? . 5 1) 9 - ((TA *42* • I4W 5(04X(‘ GOAL ‘ - ((1(1(61 GOAL

S 3 ‘ ((1 4 4 4 0 4 4 1 4 0’ (III - oIl/OC T 01/IC’ 4 6 T A . I MA T 0 4 P I L (0’tA~~~~4 0 W I O T A 0I21’M w I (OlXR GOAL ,- () i ((VA (. GOAL

((T O

((5 ’ $?’ M(1- f l ’ It t 1 O l 4 Y C T , ~ (’ , t - 0 0 / I C ?
(I S ’ S’-140((‘IS,’ (h . ’ - 0(15(1 “ 1 4* T 0 4 ((L (
F / 7 ‘ ¶051/ (03 (1 ’ S I L l 00-4 ,551 . 1 I4ATO-I (((1 *4)0 ‘ A(t$tt G ’ ((551(5 GOA L .0*0(4(1 RTCXT

((9 ’) . S S T I (? ’ (4 0 9 . 4 4 1 9 (03 l ’ S O L 5(’ ((CXI AlPt v . 501M71150119,IGT10? C 0 A L . 0 1 00XT . APPt V

‘20 ’O6/ C t ’ R ’ r ((I M*T ClO.IkI*T041 (L(3437 ’S(L OI S(T ’ SI DIXS APPL V SL?IICOV! 005 .0G(10T GOAL . RT 04XI .
0/ 600l,!

• * M000I. 6(MA T C 1 - 4 55 4433 ’S(L5(’5(l -’’ ((t0X(A(~tY - 5 1 15 O S U O P I GDAL .’? AlPLV 5f 0lX1
1437 SIL(0001S(’ ITCXI *P2t W 5f 7 U079 5(5 (OSU09500AL .’ *P* LVR S DIXI

0 2 / ‘ 5 5 3 MD) ’ 4 3 1 0 ’55 0-. .I MATCI’4

(77 ‘(09 11* 3 ‘ MATI’-0 . 0 (1 (5 - *45104 • 40004/If GI10T
— (2 3 ’ (5 ’ . 1 4 I / ’ ’ ~~*‘ ,‘~ ..‘ I4A’Q6

(74 ’ (55 141 I ‘ MA ’ (o l .‘ O(,
~~I - 40*104 71434 ‘511015 *7) ” 11)1,4 ’ 147515(4 . ’ (7460* 9(4(1006 4

~‘ P23 ‘ (0 5 5 14~ 1 ‘ 434 ’ / 0 1 , , . M*?04 1031A ’9 (t N S ”5 5 ’ 0 f l’ (‘P47 - 1101-I 5 UO’409t CO*0ON VAI51.

(7404 ‘ (7155 - 14(4) ‘ (7 (1(5 . ’ 0 I ’ ’* L0C05,’11. I l / I f 5 (4 6 ? v*0(4 II’S’ ! / 5 5 5 * 5 5

5 7 7 ’ l71 ’, 145 / - - DI” .’ - Q) ~~1I 40 94* 4 ’ 51 . (9 5 ~ ‘5 5 1 ’ 115V~ 43)’.T C5) . 5.I10T AP*L Y (“ CA L

575 ‘(*5 1.44) ’ S ((, ‘ IOATO ’ I . . - 44*104 *4)1(4 ’ 1-I 5514 ’ 10’ 55 1~~ / 1 l4~ 14:- ,T ~4’ ‘ ‘ 4) 3 , 4 ’ A~~~ ! (‘.0*1
40 3 45 ‘ (($ ‘(l (.410’ 44 551,1 (94 l)’1.”01I (1*505, .10910?

S W QO/,fi, (‘ (L I 51, 1 0 4 5 MiS ’ S ? ’ 7/SIP. ’ 0(10’ (0(40000 . ’ /

40196 ’ Gl ’ COA# ’ G(’~~’ IO.’9406 ,, - S C I’SOG G(IOT

(30 ’ 1’ ’ 0 0 . 5’ ‘ 11(1 (4 (T A O T F ’ I .’ lIP ‘ 9 . 09 (9 - D(” S 433$ ’ 5 (0 (4 5 , 1 5 5 / , 7,110 ‘ ‘‘34~” - 31(5)5 , *Vft ‘ ‘ (.I IOT FIL (9*0(4

(37 ’ t O T (VI - ((1 4 0 0 (1 5 5 .~ 005 1 4 0 . 0 1 (4 1 14)6-I ’ (‘ . 4 0 4 519 5 A’s) . *9* ’ 54 14? 101’$’CSI 1604) 095 9*5(4 .‘L01De~~~
F (L (

r

~~~~~ — — -‘ — “
~~~~~~~~~ rr”

______________ 55’” “~~
‘“ ‘ ‘ “‘ ‘ —~~~~~~~~.,. ‘~~~~~~~~ ‘ .___, — - —p

—

COAl ~~5555 AISTRACTIOW 0.

4037 ‘ (59 IC’ L OC.ASC*’. - 00(0? .0 .1059500 130 ’ 010919,4 I ’ 0100 OS/OCT ((II .1-0100

40370 ‘ IIS L C I T .A S ’ L0?,9505 6POT ,1G9(0I .LQC PROG T3) ‘01(119(4 (4 ’ 0(09 0001 .10(09
M37S ’ (53 LC SO AS ’ LOC9500 0010? .I 09(0? . L OCOSQO ‘32 ’ DE CO Lill Y ’ 01(1(404* .‘ .9€59 (4001 14001
1635 ‘ 01(6 DES *555 ’ 59,4 ? 4)O*.P0(6 (1*551. (.01.9505 .’ 101,9500 ‘ILl 00144’ 13’) ’ 1(0(11(4601 ’ (70(1 06/OCT (40(5 .1 - Old? - ‘40140 14401

OA RS’.
MW ‘ 51(6 ASS. . - 50(41 CO*.*O(4 0*5(4 - LOC9500 GOAL SASS). (ILl ‘~ ~~~~ 1,&(COAT S

LOC0600 - 01,4? - GOAL I/ASS), - ((LI
-‘ 1639 ’GS N DES ASS.. ’ 01(01 . COSo~ 00 - 054(4 .1(00950~~,09,4! TOO ‘ COPY 9 , 4) ’ COA’ OS/OCT 44501 .40000

1*) ‘ 1090(114111’ C090 14011(.1-0990
* M~~ ,L(*991,05 II?’ COPYLI46V ’ C00! I414* ,~~444* ‘COPY

iI2 ’COPI L E*t ’ COPV OS*CT 55(* .0W001 .~~~~T
16*0 ’ ISV APPL Y ’ APPLY GOAL - 61101 .~~APPLY.G55),
404044 ’ TRY APPL Y 1.0,1,1’ APPLY GOAL “APPLY CI ’ 0990 06) 109 ’ COPY (S/OCt .00990 OS/OCT
‘447 05 ‘01.51- ((A$*(’G ’ 0.0*1 c,pos SAltY .059(4 5 APPLY 09 ’ COAT ~~ (6 ’ COPY (40(10 .0 09PY (lOfl(
*4401) ’ 1)14- 540(0 TRYAPS ’ *954,0 ,o AAltY 50 ‘COAT 063540 ’ 0990 (44* ,)(~~40 .0990

f *414 1 ’ APPlY SIX ’ A PPL Y .0 ’ I L I GOAL . AP(4V C4 ’ COAT J . ’ COAT .p ~~~~(.~~5/OCT .) - 09PV
— 40.1-7 ‘ (V A L 0 0 0 (5(5 ‘ APPL Y . / (VA (APPLY

4043 - DII’S O T I S (C . ’ API’T ~ (V O L ‘ - APPL Y . 1(1*1, 8 ~~~~,&I 10*4,55*9 115
401131 ‘ 0 1(0 5 0 1 (5 (C I ‘ *PPIV (OIA L .1 *991! ‘(V A t

4 441131 ‘ OI ’ FS D I ’ S (C. ‘ 11(11(1 (OIL . - APPL Y - (VOL OI ’DI((I (SAL ’ (0*4. .1- 00(4 (1 (SAL
(.1474 ‘*0-191 (1 SA lt ‘ A l ’ P O Y . ’ APPL Y 03’ OI$(S (VAJ, I) ’ (SAl, *0(4(1.1(051 ‘ APPLY

APPI I 504/SI ‘ APPLY 19*551. ‘I - APPL Y - SASS), • 0~~(S 1PM 07 ’ (VA), .0 (VAL
‘S 40113 ‘ SI L 01010 ‘ 4/lob - (“ GAL .o APPL Y Dl • 01(15 (VOl. 52. ’ ((1*0. ,1 ((1414,

4.14)9 ‘ 1-IL 101441 ‘ APPL Y 60* .0 APPL Y D5 ’O(((l (VOL t2T ’ (051 .015*).
M46 ’ (4 5 4) (F1 5’
40*61 ’ (100(514 TA , ’ A PPL Y - (‘.041. .160*1 ‘ APPLY 8 14001,1,1 TRACt S
(.4*7 ’ TOVA PO a~ S ’ APPLY GOAL ‘~ (9L((V AL GOAL ~ AP9LY

SO ‘ 15*5451 ‘ leAd? G55(.0 !I*(7 60*),
5 40001.00 5(01/Ct *(.AI14 5 (12’ OAJ ’ TRA Il OP/IC’ “ ‘SA lt

(13’ 1054051 ‘ 75*1) SIlL .‘ ~IACt GOAL
MA! ’ 0015(1 *50 ’ 5101)11 GOA L “ APPLY . 510(3,7 ‘GOAt y4 ’ *((4V ’ TRAC t SOIL ‘- IRACT GOAL
4049 ‘0110! 001) ’ 5(012(0 GOAl. .- P.PPl,Y - 500(3,1 - GOAl, V1- ’APS,.P ’ 15651 5(71’, .0 10519 50*1

L 404904 ‘SITS! (4V04 1I45 ’ (90(2(4 GOAL .0 0101.40? ‘ COIL 0* ’ 5(012(1 ’ TRACt 7,51/ 05/OC .515*10 GOAL
‘.07 ‘ASS I ‘ TSA CT 011551. .‘ TRA C t

3 (4001.1.1 MOVE ’00R 0, 55 ‘ASS 7 ’ TRAC t YAWS?. .‘ T IAC(
55 ’ *35 3 ’ TRACt 11*551, .1 TRACt

(.490 ‘h15 /(09 ’ (4O’o’T 00? - GOAL GOAL , - GOAL ‘ MOvT~~~~
(45) ‘ M W 010 *09 ’ 60*1 .‘ 5 1 L E (IAL GOAL t I4~~~L(05,/OCT .10151(5
4.452 ’ 0-40021 09 ‘Dl ! ’ *4001 005 ‘ GOAL GOAL .0(1(14 ! *9(4(1.1604409?
1o457 ’ TQY*PP R(S ‘ APPL Y COAL .I GOAL , APPLY 0) ‘ IX? SOPS • 05/OCT 1404* . 0 4 4 0 (5 . 5 5 / OCT
M55 ’ Rf T RY 4155 ’ 110194094 GOAL . - APPLY - I400((92 . GOAL X2 ’OSSC ’ ‘4044 “ ‘14)5*
4039 ‘ R/I TR Y 00(7 ’ 400(1045 00*1 .0 AP9),V .44001095.50*), 03 ’ SOIl’ 445435 .0 40)540

0-Cl ’ lOTS SIlL ’ 400(4 “0001
S 0.4004A(MAICS4 AGAI(4 % 05’ A S f ’ (400.0 54000

1- CS’ 109’ 1104* 05/OCT TRACt .006/OCT ‘ (450*
10 ‘ MAICI’ lOl((S O P ’ 11*11.11 014/SIT ‘0 (AlT O-I
E l ‘ MO. ’ 115104 (45410 - 0(1/OCT .0 1.4*104
E3 MO BAO VAL 40*TC5I 40O4* .’4 0 A IGI
04 ‘*40 1)0455 1 54) ‘ (4* 14)50 ‘45100 .1 4.IAT D4

13 ‘ (‘0 1)505 1 (47 ‘ (4*7114 (45(9 .040* 104
‘ K6 ’IlIO LJOJOFFVI ‘ UATC H 443410 .IMAT(71

417 ‘4000*401! 307 ’ (‘11101(4044 .0 711*104

15 ‘ 1,01 lI/IS ’ MA T(7) ‘40410 .05 /OCT .0 MA T O.4 D(((S
19 ’ LOC IXIR TIc ‘ 4055 (70 (454)9 (‘SI/SC? .1 (9 4 (0 (0 (S 145104

- - 1) 0 ‘400 0510,?. ? 5 ‘ 40*111401(05 .‘ I4A~ C11 - D(’5I

-I
’ •

III ‘LOG (SIR TOP I ‘ U*T L1--I (404’4 OS/O CT ,OMA T O4DI(SS

9 16004.4,1 1400 8

S I ‘AOOLD* l ’ *00 0(1/OCT .140(4 ,0*00 14500
17 ‘*001(46 I ‘ AOl OfT/S C ’ (40(5 .‘A 5 0

- 4 13 ‘ *00 1 (IA ‘4 ’ 1100 IJ0(T(“ *00 54091
TS ’ a O l h l (A N .’ *04) 110544 ,0 *00
15 ‘AOOLIUI Y ’ ADO “4001* - *00
T6 ’*OOLIMI VT ‘ *00 00/O CT .0 0 - 404* - A09

S 40001,1, C RI 44051 5

- . i 1 (0 ‘01(4 L (491 ALL 104 • RI MOV(151/IC 1 ‘401 “ ST MOO! ‘5500
I I) ‘ ((‘ 4 1 (4 6 S” f C 100 ‘ 0140001 004 5114514 .00(11044
I I Z ’ QI I4L I ’ M ALL A lp ’ SIUO01 (((09 .-51 M051.14501
113 ’ O O M L O,4 V A L ‘ 51 (100(55(4 .O . SS UO V O . I4 0(4

III ‘ A1ML(,4 A S IC ’ (((40025 (454* .‘5(M044

S MOOU(II2(R 8

120 ‘ (14 0 (0 (4 6 I ‘ 952(5 00/OC i ((4* .o lICI

55 12 ? ‘ (52(5 1(46 k ’ (4411 (4044 ., (((S
T77 ’ (’2 (R 1 (4 6 V ’ IIlCPIlOfl1 ,’ - I ((S-(411054541
123 ’ :‘s ’ 1 (46 s” ‘ ($401 O P/OCT (4044 ,0 . (‘404 .1400* 54041.4

t McOUIIXdI %

53943 ‘ 0.

_ _

~~-~~~~~~~~~~~~~~~~~ “—-‘-- ~~~~~~~~~~~ -‘ -- ,-~~ ~~~--~~~~~~~~~~~~~~~ ‘ —— “~~~~-“ ----‘. — — -‘-‘

____ -~~

~~~~~~ ~~~~~ ,Ji :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘-

4-

S ECU RITY CL IPICAT1 ON OF TIl lS PAGE (*7,en Data ’/Onte~*d)

) 9 REPORT DOCUMENTATION PAGE 
— 

BEFORE COMPLETIN G FORM
•

~:1i:~~~~

’ 

~~~W~ Ucr~

J

(‘BE:

~~
—

~~
~~~~~~~~~~~~~~~~~~ ,. ~,VT *C!.~~~~

7N 

NO, 3 RECIPIENT’S C A T A L O G  NUMBER

~~~~~IT LE (and ______ 

-
5- T Y PE OP REPORT & PERIOD COVERED

i~~~ ~~~~~~_ ~~ 7~
—-• -

‘s~~~~ ~ RODUCTION ,~YSTEMS AS A ~‘ROGRMM ING ~~ANGTJACE
/ (7) I n t e r i m .,‘ ~~~~~ f

FOR ~,RTIFICIAL INTELLIGgNCE APPLICATIONS . I ~~~~~~~~~~~~~~~~~~ O R G . R E ~~ OR T N
~~~~~*R

- 
- 0 — yo lurne I • j  __________________________________

__________ - 8- CO N T R A C T  OR G R A N T  NUMBER(S)

0, - ~~~~~~ ._,_,, ._ ,- .‘, —-

~~~~ / (
,

)
Michael D/Ych~~~~~~~

,J ~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

9 PERFORMING OR GA N I Z A T I O N NAME AND ADDRESS t O. PROGRAM ELEMENT. PRO.IECT . T A SK
AREA & W O R K UN I T N U M B E R S

Carnegie-Mellon University 61102FComputer Science Dept. 23 04 AZPittsburgh , PA 15213
I I . C O N T R O L L I N G OFFICE NAME AND ADDRESS ,“ ~

‘f’t’. *4W!8-*4

De fense Advanced Research Projects Agency
(!. ~

Dec.li~~~r 076)
1400 Wilson Blvd ~i. N U M B E R OF

Ar lington , VA 22209
—

503
14. M ONITORING AGE NCY NAME & A D D R E S S (S (different fr om Controlling Office) (S . SECURITY CLASS. (of (lois report)

Air Force O f f i c e of S i e n t i f i c Research (NM)
Bo l l i n AFB , DC 20332 UNCLASSIFIED
.1 1 (5. , DE C L A S S I F I C A T I ON DOW N G R A DI N G/ _ L ~5 ~ • I SC H E D U L E

lb L)l1~1~~~ lTION LTATEMENT (of (hi. Report)

~ Approved for public re lease; distribution unlimited .

17, D I S T R I B U T I ON S T A T E M E N T (of (he .b.(racl entered in Block 20, if different from Repor()

IS. S UPPLEMENTARY NOT ES

(9. 1< EY WORDS (Confinu. on reverse side If necessary and identify by block number)

20 A B S T R A C T This thesis develops a system architecture for artificial intelligence (Al)1 called
production systems (PSs). Each pr oduction is a simple condition-action rule, w ith
conditions state d on a global Workin g Memory and act ions consisting primarily of simp le
modificatio ns to that memory. Actions can also consist of forming new productions. PSs
hav e been ~‘pplicd to a limited extent in computer science and to a somewhat larger extent
to specIa lIzed ~tud c’ s ri A ? . They are used in cognitive psychology to model human
inte l lectu a l capabil ities at a detai lcc l level . With A l research tending toward larger systems
wit h greater flex ibil ity requirements , PSs are promising as candidates for the primary

DD ~~~ 1473 EOIT IOPI OF I NOV 85 IS OBSOLETE -
UNCLASSIFIED

- - .~~~~~~~~~~~~ . . ~~~
OF TH IS PAGE (N~ .n Des. tn (.r.d~

,,~~~

_ _ - .~~~~~~~~~~ ~~~~~~~~~~~~~~ 0-~~~~~~~ --—- -

~ T T’TT T~~

lJN CLA SSIF ’i1
~

J)
SECURITY C L A S S I F I C A T I O N OF THIS PAGE(lV ~,.n Bat. £ni.~.d)

knowle dge encoding medium , hut certai n questions aoid problems with PSs have been
raise d. The questions revolve around the pract ical feasibit y of PSs for building large
sy stems in a diversity of task domains , the preservat ion of desirable PS properties when
they are applied to much larger ~ys te ro ’is than previousl y, and the specific advantages and
disadvan tages of PS arch itectura l features.

This thesis seeks answe rs to such questions by const ructing PSs to perform the
f ollowing tasks , all of which have been developed by past A l research: extract ing
equati ons from typ ical high school al gebra story probten~s (Bobrow ’s STUDENT); learning
lis ts of nonsense sy llable pairs (Feigenbaum’s EPAM); solving a variety of puzzle tasks
using a sing le set of general methods and processes (Newell , Shaw , Simon and Ernst’s
GPS); play ing a simple c lass of chess endgames (Perdue and Berliner); discoursing in
natural language about a toy blocks scene (Moran’s mini-linguis tic system); and solving toy
blocks manipulation problems (W inograd1s SHROLU system). Each implementation is

-. analy’~od to bring out PS c ha rac t è , is t i c s. -

Evaluations of PSs as a programming language are made according to the trai ts:
pract ical feasibility, sty le , degree of theory-bou ndness , power arid overhead of expression ,
p r o d u c t i v i t y, e f f i c i e n c y , ar~hitect ural flexibility, arid level, A taxonomy of control is
presented , and measures of f requenc ies of usages in the PSs of various forms of control in
that ta~ononty are used to support the discussion of power and overhead of expression.
The actual PSs arc al~le to effect ive l y exp loit PS power in the particu lar areas ‘of
selec tions an(l i terations. Spec if ic features of the particular language design use d here
are central to the capab il it ies discussed. A taxonomy of represe ntation is developed, to
providc ’ a basis for adding openness to the PSs , rep lacing ad hoc internal naming
c onvc ,at iorls , and to allow mear .ureroicnt of the modularity of PSs , ma king interdependencies
of v a r i o u s p a r t s mo re examina ble, The taxonomy of representation is app lied to one of
the larger PS programs with the fi nding that the split between inter-module assumptions
arid int ra- - modu lo ar.sumplions is roughl y an order of magnitude , approxima tel y the form of
a nearl y decomposable system.

P5s a re found tc ~~ c Ic .t ; ’ . a’~d an cus for the rro~ramni ,nc cons~ructc
typ ical of Al syst ems. They have particular advant ages in st y le , c onciseness , and

architectu ra l flexibilit y. Ma;Or successes can be ex pected in appl ying PSs to large-scale
understanding syste ms of the sort curre ntly being explored. They are particularl y useful
in domains where system knowledge must grow dynamicall y throug h interaction with -

hurnarir, and with a t ask e n v i r onm e n t , but w ithoul the expense of anal ysis of how each new
-
,

‘ piece of knowledge must f i t into e x i s t i n g s t r u c t u r e . Their diversi ty of app lication and their
problem-solving cap ab i l i t i e s , both of v.’hich are deemed essent ial to building understanding
sys tems , have been adequa tel y demonstrated by this t hesis.

(0

F-

UNC~~~SSIF IED

—

A
- - -~~~~ . - - - - - - $SC~~ I~ Y C~~*1~~~ IC*~~~~N OP ThIS PAGI~~~~sW D~~. Iei .,.d~

