5

~AD=AO037 843 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =-ETC F/6 9/2
PRODUCTION SYSTEMS AS A PROGRAMMING LANGUAGE FOR ARTIFICIAL INT==ETC(U)
DEC 76 M D RYCHENER FM$62D-73-C-007|$

UNCLASSIFIED AFOSR=TR=77=0330=-VOL~1

] L0 b i

822 o2
lize "l"E

i - R

= i
L2 s nie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARC 165-A

‘v\\..

Production Systems as a Programming Language

for Artificial Intelligence Applications

Volume |

Michael D. Rychener

December 1976

Approved for pubhc release;
distribtutien v "limiteq,

DEPARTMENT
of

COMPUTER SCIENCE

noEs 3]
AYALARLE TO OF6 3
?’gﬂiﬂ HiLh LE.MM.L Y.Mem A

Carnegie-Mellon University

i i o A

ks

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL T0 pDC

This technical report has been reviewed and is

approved for public release IAW AFR 190-12 (7b) e
Distribution is unlimited,
A. D. BLOSE

Technical Information Officer

R s

i e AR

'S

NG~ ST L sl S,

2 Bl PN I o i R AR e L R A

i B N B s Tnsiairnt 3. 8 R RS SNk i
LR 5 SIS N AL

Production Systems as a Programming Language
for Artificial Intelligence Applications

Volume |

Michael D. Rychener

December 1976

Department of Computer Science
Carnegie-Mellon University
Piltsburgh, Pa 15213 P

This repor! reproduces a dissertation submitted to the Department of Computer Science at |
Carnegie-Mellon University in partial fulfiliment of the requirements for the degree of

Doctor of Philosophy.

This research was supported in part by the Defense Advanced Research Projects Agency
under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific

Research.

MCCESTON for E :
s n

0ae Bt

UNANROUNCCY

JUSTIFIGATION

" NS
DESTRIBUTION AYRILAM

ﬁ.ﬁ. i

ML w

k
\

‘ Abstract

‘\This thesis develops a system architecture for artificial intelligence (Al), called
production systems (PSs). Each production is a simple condition-action rule, with
conditions stated on a global Working Memory and actions consisting primarily of simple
modifications to that memory. Actions can also consist of forming new productions. PSs
have been applied to a limited extent in computer science and fo a somewhat larger extent
to specialized studies in Al yThey are used in cognitive psychology to model human
: intellectual capabilities at a defailed level. With Al research tending toward larger systems
3 with greater flexibility reafirements, PSs are promising as candidates for the primary
knowledge encoding ium, but certain questions and problems with PSs have been
raised. The queshons revolve around the practical feasibity of PSs for building large
systems in a giCersity of task domains, the preservation of desirable PS properties when
plied to much larger systems than previously, and the specific advantages and

antages of PS architectural features.
This thesis seeks answers to such questions by constructing PSs to perform the i
following tasks, all of which have been developed by past Al research: extracting ‘
: equations from typical high school algebra story problems (Bobrow’s STUDENT); learning
2 / lists of nonsense syllable pairs (Feigenbaum’s EPAM); solving a variely of puzzle tasks
1 / using a single set of general methods and processes (Newell, Shaw, Simon and Ernst’s
(GPS); playing a simple class of chess endgames (Perdue and Berliner); discoursing in
natural language about a toy blocks scene (Moran's mini-linguistic system); and solving toy
blocks manipulation problems (Winograd's SHROLU system). Each implementation is

analyzed to bring out PS characteristics.
Evaluations of PSs as a programming language are made according to the traits:

practical feasibility, style, degree of theory-boundness, power and overhead of expression,

productivity, efficiency, architectural flexibility, and level.”} A taxonomy of control is

presented, and measures of frequencies of usages in the PSszf various forms of control in

that taxonomy are used to support the discussion of power and overhead of expression.

The actual PSs are able to effectively exploit PS power in the particular areas of

selections and iterations. Specific features of the particular language design used here

are central to the capabilities discussed. A taxonomy of representation is developed, to

! provide a basis for adding openness-to the PSs, replacing ad hoc internal naming

conventions, and to allow measureraent of the modularity of PSs, making interdependencies

- of various parts more examinable. The taxonomy of representation is applied to one of i

& the larger PS programs with the finding that the split between inter-module assumptions ‘

$, | . and intra-module assumptions is roughly an order of magnitude, approximately the form of
: a nearly decomposable system.

Ss are found to be effective and advantageous for the programming constructs

typical of Al systems. éyThey have particular advantages in style, conciseness, and

==

o e H architectural flexibility. ajor successes can be expected in applying PSs to farge-scale
i : ' understanding systems of the sort currently being explored. They are particularly useful
= ® in domains where system Kpowledge must grow dynamically through interaction with
N - humans and with a task environment, but without the expense of analysis of how each new
3 > ¢ . « "
: é’:‘ piece of knowledge must fit into existing structure. Their diversity of application and their
P problem-solving capabilities, both of which are deemed essential to building understanding
H“g@ systems, have been adequately demonstrated by this thesis.
Pl
TR
= | »’r)’
| h ,.."
8 :
Jf.‘_ %

g E

Acknowledgments

This thesis grew out of a long series of discussions with Allen Newell, who also
contributed significantly through his writings. He inspired the topic of the research,
. suggested methods, provided detailed criticism and encouragement of the work as it
i developed, and helped with the style and organization of the presentation. If significant
gaps and errors remain, it is because | have not responded adequately to his objections.
The other members of the thesis committee have given valuable assistance in the form of
reading and commenting on the work: Raj Reddy, David Klahr, and Victor Lesser. Donald
Waterman commented on some early versions of parts of the thesis and helped indirectly
through his writings and through organizing a number of seminars in which production
systems and representational issues were discussed. Crispin Perdue and Hans Berliner
helped with Chapter V. Others who have made general contributions in ideas and in work
along similar lines are Herbert Simon, Frederick Hayes-Roth, Charles Forgy, John
McDarmott, Kamesh Ramakrishna, Donald McCracken, Pat Langley, Thomas Moran, Charles
Hedrick, Stuart Card, Lee Erman, James Gillogly, and Jack Buchanan (I apologize in advance
for omissions). John McCarthy introduced me to Al in courses at Stanford, and interested

Sa b B S T

o 4 b

i me in the study of representing knowledge as rules.
3 My wife Pat made many things possible that might otherwise not have been, with

emotional and financial support, and occasional typing and criticism. My mother and father
and my wife’s family have also been helpful in a number of ways.

TR

Invaluable assistance has been rendered by the Computer Science Department at
CMU as a whole, providing a rich educational and social environment, powerful computing
resources, and support of the PUB document compiler and the Xerox Graphics Printer
systern,

Preface to Volume I

The technical report version of this thesis is split into three volumes, with Volume 1
containing most of the material of general interest, and with Volumes Il and lIl presenting
details of the specific studies from which the general conclusions are drawn. Thus, for all
except those with serious interest in production systems, Volume | should suffice. Volume
I has three chapters: the introduction, including background, motivation, and goals of the -
thesis (Chapter 1); an introduction to production systems and to the particular language i
used in the remainder (Chapter 1I); and the conclusion, including a summary of some of the
results of the other chapters (Chapter VII).

The following page gives the table of contents for the entire thesis, of which the
information on Chapters I, II, and Vil is pertinent to this volume. Volume II contains
Chapters III and IV, and Volume 1iI, Chapters V and VI. Each chapter has a title page, an
abstract, and a detailed table of contents, which are placed directly before the first page
of the chapter.

T

L i g

T T R Y WS TR

TR R TR SRR
% 5 !

PSP TSR PROREEIN - N e I W o 5

Sl b

i

SRS RS e S

-7

L2 i e T 5 e O A A S AR A AR A

Table of Contents

For Thesis

Chapter

I

Iv.

VI

VI

Abstract ;
Acknowledgments .

Introduction: Background and Aims of Production System Research
Last Page of Introduction vl et e

Introduction to Psnlst z
Start of Appenduces -
End of Appendices

A Production System Implementation of EPAM .
Start of Appendices . :
End of Appendices

GPSR: A Production System Implementation of GPS
Start of Appendices . R
End of Appendices

KPKEG: A Production System for King-Pawn-King Endgames
Start of Appendices . T :
End of Appendices

MiliPS/WBIlox: A Natural Language Input Toy Blocks Problem Solver .

Start of Appendices .
End of Appendices

Conclusion: Programming with Production Systems
Start of Appendices .
End of Appendices

Page

1-1
1-45

li=4
11-30
11-36

. -1
11-27
111-40

Iv-1
Iv-79
Iv-108

. V-1
. V=3i
V-53

Vi-1
VI-69
VI-134

VII-1
VII-51
VII-63

L L R e o

b i

S o S USRI SR,

'&&,“‘ & i

%(_‘ 3

bt SRR i GO AR i A 0 b

Chapter |

Introduction

Background and Aims of Production System Research

Abstract. Production systems are a system architecture whose application to artificial
intelligence has recently become attractive, due both to successes in limited domains and
to results of human problem solving studies. This chapter gives some general history of
the formalism and discusses some recent work that has a direct relation to the present
exploration of production systems as a language for artificial intelligence. As a language,
production systems are interesting, but their application to automated understanding
systems, where programming features for humans are of less importance, will provide the
central evaluative criteria. A priori properties and properties useful to building
understanding systems are explored. General comparisons lo other artificial intelligence
languages are made. There is 2 brief discussion of the design possibilities for a production
system architecture, and the peculiarities of the language to be used here are explained.
Motivation is given for five tasks to be used to demonstrate and explore production

system features.

L, St AR 5 Y S I 0 L W1 S GO A e

Introduction

Table of Contents

For Chapter |

SECTION

A

T 0O T o m

—

Definition, History, and Approach .
A.l Definition -
A2 History .
Fig. A.l1 A simple Markov Algon hm for reversing a string
A3 Approach and goais of this thesis o e
A4 Overview of chapter

The Context of This Research

B.1 Classification
B.2 Direct precursor to t‘ns research
B.3 Research strategy

The Production System Approach .

C.1 How production systems might encode comnon tructures !

C.2 Inherent properties of production systems .
General Comparisons to Other Al Languages . :

D.1 Sonme reactions to older problem-solving issues

D.2 Features of the newer Al languages
Direct Antecedents and Relatives of the Present Approach
The Tasks to be Implemeinted as Production Systems

The Froduction Systers Design Space and Psnlst .

To the Reader

References

B Tt

v

T A T

e s

e
o3 Ll Sl N6 SRS

Introduction

A. Decfinition, History, and Approach

The endeavor at hand is to devise means to create powerful and general
mechanisms, with intellectual capabilities worthy of being described as intelligent. The

“current view in the field of artificial intelligence (Al) is that intelligence will result when

information processes of an appropriate form and content are constructed. The attempt at
construction of such processes is to be complemented in Al by studying their actual and
potential structure, and the structure of the information that they incorporate or might
incorporate. This thesis proposes production systems as an effective tool for the task of

Al

This section has several purposes: to define what a production system is and
describe abstractly how it works; to give background on the origin of the concept of
production systerm; to sketch some important properties cf the #pproach to be taken in
experimenting with production sysiems; to give the general goals of the thesis; and to

"describe the sections to foliow and the remaining chapters of the thesis.

A.l. Definition

A production system is a set of condition-acticn rules representing an algorithmic
procedure on some domain. A rule, or production, applies to an element of the dornain
whenever its condition is true. The application of the production results in executing its
action, producing another domain element. In using this simple view within Al, we take the
domain to be the space of models of situations, represented by sets of symbolic
structures. A production condition is a conjunction of schematic patterns for symbol
structures, and its action is an unconditional sequence of additions, modifications,
replacements, and deletions of symbo! structures. Sequences of symbolic changes,
resuiting when productions are applicd to a model, are taken to correspond to the
modelled system’s dynamic behavior.

The scheme just sketched hardly suffices to narrow the scope to a practical or
definite computational tool. To do so requires the specification of a production system
architecture. Such an architecture has four components: Working Memory, Production
Mamory, a reccgnize-act cycle, and a procedure for resclving conflicts between competing
productions. Working Memory is the structure containing the dynamic knowledge state of
the system, referred to above as 2 model of a situation. Abstractions of Working Memory
elements are the primary constituents of production conditions, and manipulations of
Working Memory elements are the primary constituents of production actions. Specifying
the Working Merory places constrainte on the attriiutes of its elements and on the
relationships between elements, Production Mamery contains all of the productions, and
its specification defines aiowabie forrs for product.ons and their refationships within the
memory structure. Prcduction actions wsually include operators for modi{ying the
Production Memory. The rocosriza-act cycie serves to control the application of
productions. The usual form is inat f.rst a recognit.on occurs, in which a production or a
set of productions is fuund to have its condil.ons satisficd with respect to the present
Working Memory. The recognition usually irvoives matching abstract forms to specitic

-1 Al

e

T

B o

TR T —

S S SRR S

CABL RIS L

T STy

T P T T T N T

B T TR

A.l Definition, History, and Approach Introduction

elements. Then a selection from the recognized set is chosen for action, and the
corresponding sequences of actions are performed. Performing the actions results in a
new Working Meriory state, and the cycle starts over with another recognition. The
selection from the set of recognized productions is according to the conflict resolution
principles that compose the fourth component of the architecture. These principles are
usually based on the static structure of Working Memory or Production Memory, or on
dynamic aspects of the system’s operation such as recency of addition.

Several features of the behavior of a production system are essential. The
representation of system behavior as a sequence of changing model states becomes
concrete if we add the interpretation that certain of the symbol structures in the model
are processed by some autonomous mechanism to result in external behavior, for instance
moving a hand or making an utterance. Inputs from outside the system are somehow
translated into the appropriate symhol structures and appear in the Working Memory as if
they were production action manipulations, which in some architectures results in bringing
them to the focus of the system’s attention (which is used to resolve conflicts). Since all
internal behavior is by production actions, it is through those that the overall behavior is
given direction. In particular, dynamic behavior is controlied by adding Working Memory
items (signals, messages, encodings of knowledge, etc.) whose intention is interpretable by
other productions, often quite unrelated ones. A second means of control is by adding
more productions to the system, which tends in practice to be more difficult because of
longer-term effects. This is because, for reasons of history that will become clearer
below, productions are considered less subject to change than Working Memory items, and
in particular are rarely deleted.

Hereafter, "production system” wili be abbreviated “"PS", with plural form "PSs".
Also, "production" will be abbreviated simply "P", with plural "Ps". The condition of aPis
its left-hand side, abbreviated "LHS". Its action is its right-hand side, "RHS".

'A2. History

In this subsection, the history of PSs is used not only to provide a general basis for
our approach, but also to serve as a contrast to aspects of our view of PSs. The first PSs
were developed as abstract formalisms for computation, by Post (1943) and Markov
(1954). Minsky's description (1967, chapter 12) is the most accessible introduction to that

“line of thought. Galler and Perlis (1970) started with that formal basis and proceeded to

build up conventional Algoiic control structures. Figure A.l gives an example of a simple

_formal algorithm for reversing a string, using a PS similar to Markov'’s normal algorithms

(adapted from Galler and Perlis, 1970, page 9). The algorithm consists of six rules, of a
simple condition-action form. The list is ordered from top to bottom, with a higher rule
always taking precedence over a lower one. Program control symbols are m and n, and
program variables are x and y. The algorithm works on strings from some alphabet of
characters, augmented for purposes of the algorithm by the program control symbols.
Thus if the alphabet is (a, b, ¢), a legal working string is "cbnmb”™ Each rule consists of a
string pattern (condition) followed by an arrow followed by a second string pattern
(action), with the intention being to find an occurrence of the condition pattern in the
working string and replace it by the action pattern. There are two special cases: if the
condition pattern is empty, it always matches and the action pattern is simply appended to

A2 1-2

{
{
{
{
{

T RN 5T

Introduction Definition, History, and Approach A2

the left end of the working string; if the action pattern is empty, the algorithm halts.
Program variables are allowed to be assigned to any symbol in the alphabet at hand, but
not to the control symbols. Thus rule 4 says to find an occurrence of n (in particular, the
left-mcst one) followed by an alphabetic symhol, and switch their order. The algorithm
works by taking each character in a string and moving it across the string, placing it to the
left of a previously moved character. Then it sweeps across the string removing all of the
program variables. A sample execution sequence is: abc (apply rule 6) mabc (1) bmac (1)
bcma (6) mbema (1) cmbma (6) mcmbma (6) mmembma (2) necmbma (4) cnmbma (3) cnbma (4)
cbnma (3) cbna (4) cban (5) cba.

1: mxy -=>ymx
2: mm ->n
3: nm ->n

4: nx -> xn
5: n ->

6: ->m

Figure A.1 A simple Markov Algorithm for reversing a string

The present approach to PSs differs in several ways from the above. First, we take
our rule sets to be unordered, for reasons of rule independence and the consequent gain
in program clarity and readability. (But there have been PS architectures that used
ordered rule sets.) This means that each rule must explicitly contain all the conditions on
which it depends, rather than aliowing rule order to implicitly set up masking conditions
for rules so that a rule depends on its own conditions plus all of the conditions in the rules
above it. Our PSs work with Lisp-based predicate-calculus-like assertions rathsr than
strings of characters, for more structure and manageability. In contrast to the Galler and
Perlis approach, we make no effort to build ourselves into conventional control structures,
but rather lcave the system open and simple, in the hope that managing control with
Working Memory items allows the flexibility required for maximum intelligence.

Two other efforts to apply PS principles to conventiona! programming languages are
exemplified by the definition of Algol 60 and by Floyd-Evans Ps for building compilers. As
Minsky (1967) points out, using PSs to define languzges is rather different from their use
in expressing algorithms, in the sense that the former uses rules permissively and
nondeterministically. That is, a definition using a set of rules uses them generatively,
allowing generation of an indefinite number (usually) of grammatical language strings, but
not aiming at any particular language string or subclass of strings. The algorithmic
application of PSs to compiling programs has a definite processing aim in mind, and
includes control to direct the processing 1o that aim. Floyd (1961) and Evans (1964) take
the algorithmic approach, and their PSs are tailored to the task of parsing programming
languages, incorporating, in our view, too much control, allowing subroutlines of Ps,
accessible by specific labels that can be the target of explicit branching commands.

PSs became part of Al research with Waterman's (1970) program, which used them
to express poker heuristics in a learning tack. He traces his use of PSs lo both

I-3 A2

i A.2 Definition, History, and Approach Introduction

: programming language research (above) and human problem solving (below). Waterman
p had a program structure that included other aspects besides PSs, and in fact used the
: conventional parts of the program to process and manipulate the Ps. His Ps were of fixed
format and were used only to represent rules of thumb for making betting decisions. His
program created new Ps and modified and generalized existing Ps, to achieve adaptive

i _behavior. Our approach diifers in using Ps exclusively to express entire programs, and in
b | allowing general forms for them. The Heuristic Dendral project, with an approach similar
B | to Waterman’s in some ways, involves automatic learning of heuristics for interpreting data
e from chenical instruments, in particular to identify chemical compounds on the basis of
‘ ! occurrences of fractional substructures in mass spectrograms. Buchanan et. al. (1971,

1873) describe aspects of that work of interest to Al. Comments similar {0 those made on
Waterman apply here. Dendral is noteworthy in being a project carried out at the
frontiers of chemical research, and in achieving expertise in its area surpassing that of
human experts. In conjunction with chemists, it has produced publishable new results.
These and other systems are discussed further in Section E.

The body of work on which the present is most closely based is represented in
papers by Newell (1972, 1373) and in the book on human problem solving by Newell and
Simon (1972). Newell first applied the PS apprcach to nerrow problem=-solving contexts,

, extending it to perceiving and encoding processes, and in the latter succeeded in
. proposing models to account very closely (quantitatively) for some features of data from
b experiments with human subjects. The book presents more support for the usefulness of

PSs in modelling human information processes, and includes a theory of human problem
solving in which PSs or PS-like properties play a prominent role. The present concern is
with PSs independently of the detalls of their use ior psychological models, but their
preliminary success in psychology provides important motivation for examining them
seriously. Section C.2 and Section E will go into mere detail on these and related topics.

A.3. Approach and goals of this thesis

The main goal of this thesis is to establish empirically that PSs are an effective

E | language for Al applications. To date in Al, their application has been somewhat narrow:
: 1 in game-playing (betting heuristics), in chemical theory formation, in learning simple
| linguistic ruies, in representing diagnostic rules in medicine, and in a few others (see

1 Section E). People have seemingly been reluctant to try to carry over the advantages of

| PSs in representing isolated heuristics within some other program framework to the
construction of complete systems such as understanding systems or general problem-
solving systems, In fuct, there have been claims that PSs are inappropriate in a number of
ways (details in Section [). There is, of course, no question that PSs are formally of
1 sufficient power to represent arbitrary algorithms. We would like to determine instead
- their practical advantages and disadvantages in expressing major Al systems. This
F | assumes that the task of building Al systems is sufficiently different from, say, writing
. numerical algorithms to warrant a special language system (which assumption seems to be
E | widespread within Al). The approach to this determination is to code a half-dozen or so
i Al programs that have alrcady been developed and documented and that have been
1 sufficiently prominent to be the basis for other continuing research, whether explicit or in
e | disguised or modified form. The PS programs themselves will support the feasibility of
] using PSs, and in addition will be amenable to analysis of where the power of PSs comes

A3 ' [-4

4
—— o ! it - t—“

Introduction Definition, History, and Approach A3

from, of where overhead is incurred, and of where PSs offer a richness of architectural
alternatives for encoding, and of the position of PSs with respect to a few other general
traits of languages. Where program listings or detailed descriptions exist for these subject
programs, direct comparisons might yield valuable insights. A variety of techniques for
using PSs in typical Al situations will be developed and demonstrated. Such development
might then be applied to subsequent new applications. The expression of typical Al
methods as PSs may result in their reformulation in interesting ways. PS implementations
may have more powerful capabilities than their forebears as a direct result of their being
PSs, which would point up PS characteristics in actual practice. Properties of the chosen
set of Al programs might recommend them for the evaluation of cther Al languages.

PSs are a remarkably simple system architecture. There are two sides to this coin.

" On the one hand, the familiar control and data context environment has been discarded,

leaving us with only the ability to recognize patterns in a global Working Memory and to
take an unconditional sequence of actions on the basis of what is recognized. Our concern
as programmers is thus perhaps to try to recover some semblance of control, but it will be

the case that complcte control as we are accustomed to will not be necessary. That

concern can also be relieved somewhat by the far goal that PS programs be written and
augmented solely by automatic procedures, probably themselves written as PSs. On the
other hand, there is no language bias towards any of the classical weak methods of Al,
such as heuristic search (see Section D.2). Each task can be treated largely according to
its peculiarities, with the building of overlying control structures as the need arises.
Without going into more detail at this point, it often seems in Al research that commitment
too early in a design to a particular control organization can block progress later in the
design, and can in fact result ir a system whose behavior is sufficient for the original aims
but is increasingly resistant to extension. The present approach is to let the overlying
control emerge from the structure of the task-specific knowledge, expressed as Ps, during
its expansion,

Viewing the thesis as a programming task must be taken relative to two different
interpretations. The first is the use of PSs by humans to encode task knowledge to form
intelligent systems, which is the activity at hand. The second is the use by the intelligent
systems themselves to augment their own capabilities, taking in, e.g., natural language from
humans. These uses of PSs as simply another programming language and as the target for
an automatic programming system undoubtedly should be evaluated according to different
criteria. At present, the second view seems the more reasonable one (people tend to find
it difficult to program PSs) and the one more likely to be treated adequately by the kinds
of experiments proposed.

Aside from the primary goal just laid out, a number of secondary goals are present,
and are attained to varying degrees according to their difficulty and to the directness of
their relation to the methods used here. By encoding a number of Al tasks in a uniform
notation, we seek a rational basis for Al, in terms of common program features. It may be
possible to build a model of the kind of knowlcdge structuring that is most cffectively
programmed as a PS, so that further efforts wath PSs could first formulate their tasks
within that model, facilitating the details of the PS encoding. Such a model may or may nol
indicate the optimality of PSs.

Another secondary result will be more insight into the details of encoding knowledge

1-5 A3

RPN

B

i o
Sl SRy

¢ TR

A3 Definition, History, and Approach Introduction

as Ps. Some of the properties of PSs have already been elaborated, but in limited domains
(see Section E), so more evidence will be useful. This will be most useful if PSs do become
the target language for some automatic programming system or for an understanding
system that aims at automating the acquisition of new knowledge. We may understand
better what procedural knowledge is and how it is manipulated, if we study it within a
mode! that views behavior as a series of transitions between (non-procedural) knowledge
states, as sketched above in introducing PSs.

Several other secondary goals can be mentioned bricfly. This thesis will establish
methodological tools for making further studies along the same lines with other Al systems.
This will include a set of specific benchmarks against which others could be measured. A
list of desirable properties of systems will be developed, along with proper measures for
them. It will provide feedback fo the process of designing new PS architectures, for
instance by analyzing the places where the expression of knowledge in condition patterns
seems particularly clumsy. Stereotyped forms of expression might thus be made more
convenient. Finally, regardless of the stated intention not to model within psychological
constraints, the PSs might provide valuable input to psychological model builders. This
might take the form, for instance, of pointing out places where constraints on Working
Memory size might be most difficult to meet.

A.4. QOverview of chapter

This chapter discusses the place of this thesis in relation to Al in general and to
work on Al languages and on PSs. Section B discusses how the present work with PSs
derives from more general Al goals, and how it might be considered as developing means
toward those goals. Section C gives some a priori reasons why PSs look promising as an
Al language, emphasizing the peculiar PS approach to long-standing Al problems and
discussing the psychological motivation of using PSs. Section D gives features of some of
the new Al languages, and develops corparisons of those to PSs. Section E discusses
recent results from specific explorations with PSs. Section F lists the Al programs that
are the subject of the body of the thesis, and sketches some of the methodology. Section
G discusses some of the features of the particular PS architecture designed for this work,
and makes comparisons to other PS architectures. Section H gives hints to the reader on
how to find various material in the thesis while avoiding unnecessary details.

-6

Introduction

B. The Context of This Research

The goals of Al researchers belong to a diverse collection of categories, so it is
necessary before going too far to understand how the present work is related to Al's
major subareas. Section B.l uses Nilsson’s (1974) classification of Al areas to erplain
the present emphasis. Section B.2 shows how this work derives from my previous
research on PSs, that is, primarily to investigate whether the scheme of analysis will carry
over to wider applications of PSs, and whether conclusions on how knowledge might be
automatically encoded in PSs still hold. Section B.3 explains how this thesis fits into a
general strategy of studying the content knowledge required for building understanding
systems.

B.1. Classification

Nilsson has divided the field of Al into a number of research areas, of which four
are designated core areas, and the rest, first-level application areas (Nilsson, 1974). The
four core areas are: common-sense reasoning, deduction, and preblem-solving; modeling
and representation of knowledge; heuristic search; and Al systems and languages. The
present thesis is in the fourth category, but as a means to invesigating issues and
ultimately advancing the state of the art in the first and second categories. The principal
approach of interest to those is the building of understanding systems, by which I mean
systems that embody knowledge about some -ubject area, that are able to manipulate that
knowledge, including problem-solving, and that are able to exhibit communicative behavior
to demonstrate their abilities and the content of the knowledge. The following argues that
past research has not satisfactorily demonstrated the usefulness of various proposals for
understanding systems, due to the lack of diversity of behavior, and that the present
approach might therefore be more appropriate for the initiation of a large system-building
effort.

A number of past efforts have dealt with various aspects of the problems
encountered in building understanding systems, but have dealt mostly with the form of the
design without treating a body of task-domain knowledge in sufficient quantity to show
effectiveness for a large-scale system. Several lines of research that are relevant to
various components of understanding systers can be mentioned:® problem-solving
techniques, and solving simple puzzies using means-ends analysis and heuristic searchy; the
use of predicate-calculus notation and general uniform proof procedures; the integration of
the two preceding areas for robotics problem-solving ssystenis; the representation and
subsequent use of structured rnowledge in semantic nelwor-ks; and the use of ad hoc
procedures to represent knowledge, taking advantage of peculiarities of domains te avoid
the costly application of uniform procedures or weak search methods. One principle that
has emerged from these and others, and that will be central to the success of the BS
approach, is that it is very often beneficial to add domain-specific knowledge in some form;
for instance, "syntactic" methods are often considerably improved by using the "semantics”

® The reader is referred to Nilsson's survey (1974) for a broader and more detailed
summary of these lines of work, as wel! as for specific references.

1-7 B.1

{
|
|
=
]

b
:

e

r

8.1 The Context of This Research Introduction

of the domain. This is demonstrated in some natural language processing systems, in
theorem-proving systems, and in chess programs.

In addition to the deliberate (and usually necessary) scope limitations of many of the

results of Al research in the past, there are some broader respects in which the research

"is inadequate for attacking the larger aim of building understanding systems. The

effectiveness of any single approach over a diverse set of applications has not been
demonstrated. To aim at such an approach is desirable at least from the standpoint of
parsimony, though parsimony might turn out to be unachievable. Even within narrow
subject areas, there has been little attempt to prove comprehensiveness; for instance, in
dealing with representation, each system represents its own task domain without

, attempting to address any of the typical examples of the others or to deal specifically with

problems (representational and processing) in other approaches. This results in a set of
systems covering a number of task areas but whose interactions and overlaps are quite

“unknown. As a result, it is difficult to tell if particular research is a real advance. Very

few systerms have a coherent approach to one of the primary problems of the area, the
knowledge interaction problem: A particular arrangement that has proved successful on
some task may become unstable when further knowledge is to be added, due to increased

fc0mplexity of interaction between picces of knowledge. This problem can be partially

approached by asking how knowledge is applied when appropriate, how its
appropriateness is recognized so that it can be brought to bear, and how it interacts with
other knowledge in ensuring a correct result when single pieces of knowledge or single
knowledge sources are insufficient by themselves.

The present work with PSs shares the characteristic of limited domain with other Al
approaches, in being an intensive study of how knowledge can be expressed within the
constraints of the particularly promising PS form. The underlying aim is to go on to large-
scale comprehensive systerm building using exclusively that form. In order to make a
convincing case for proceeding with PSs, therefore, we use them uniformly to achieve a
wide diversity of capabilities.

There are a number of essential properties, from a conceptual standpoint, of a
language or control structure, if it is to be used etfectively for an understanding system.
Moore and Newell (1973) give a list of dimensions on which understanding systems are to
be evaluated: representation, assimilation, accommodation, action, directionality, depth of
understanding, efficiency, and error. Without elaborating on the definitions of these, it can
be seen that these are high-level properties of a system. For the present purposes,
rather than using those traits directly, it is more useful to focus on the representation, and
see how the various traits imply desirable properties for it. So the following list of
primary properties of knowledge has emerged, though it is not to be put into direct
correspondence with the list of eigrt dimensions. Knowledge within the structure should
have:

Encodability - knowledge should be easily mapped from an external form
to the form in the understanding systen; ultimately, the encoding
should be automatable.

Inspectability - content of knowledge already encoded should be readily
derivable; this is the converse of encodability, and perhaps could also
be called extractability.

Accessibility - knowledge should be accessible in some form for

B.1 -8

1
1

r - - NS SRS S S S S e

Introduction The Context of This Research B.1

£ | application when it is appropriate; this need not be as complete an
g | operation as for inspection; when knowledge is accessed or applied,
; its own nature is not as evident as is its effect.
Operability - knowledge must be amenable to such operations as
mapping, forming analogies, generalizing, optimizing, re-formulating,
deducing, and inducing. ‘
Flexibility - knowledge should have a number of alternate forms, for
instance along the procedural-declarative aspect.

.; 1 ' Organizability - there should be a variety of potential control
B | organizations, according to the demands of various kinds of content
E | knowledge.

Provability ~ there should be a way to guarantee correctness or perhaps
consistency of the encoding, in some (informal) sense; this may
b | include being able to justify the presence of some knowledge by
E | knowing how it has been found necessary for some behavior.
These features can be seen to be reasonable if an understanding system is viewed as
something that is constantly augmenting, inspecting, correcting, and applying its knowledge.
They also have the property of being somchow independent of particular systems
3 architectures, ideally being permanent and immutable properties rather than features of
3 systems that will undergo change as we advance scientifically in their design. Thus, it is
h useful to present a set of secondary properties, which are more temporary or state-of- {
the-art dependent or even controversial, ie., are perhaps the current set of properties '
that we believe are the right means to achieve the primary properties above.

Modularity - organizable in modules, each of which can be augmented
independently, for the most part; in a modular organization, relations
between pieces of knowledge (relations such as dependency,
similarity, taking exception to, and others) are mostly within modules
rather than between knowledge in distinct modules.

Uniformity -~ knowledge of various sorts encoded in a similar form; gains
in effectiveness are expected when multiplicity of basic form is
avoided.

Transparency - the representation minimelly interfering with properties

: of what’s encoded; if in encoding some knowledpe, more attention

i must be paid to the medium or form than to the content, then
transparency is lost.

Explicitness - assumptions made by knowledge should accompany it or be
otherwise directly available, rather than implicit or available only
after sorme involved computation.

Openness - avoiding coding conventions that prevent scrutiny by general

e | processes; also, open for interaction with other knowledge, perhaps

“; ! . in unexpected ways and in new contexts; also, readily available when

: i trying to diagnose errors, assign credit or blame, and other

debugging operations.
Conciseness and power - expressible briefly, in manageable picces,

- having significant computational effect.

Mixed procedural and declarative - expressible in a variety of ways
along the active-passive dimension.
Etficiency - readily accessible in termg of computation time.
These secondary properties probably do not cover completely ali aspects of the primary

B it D 43D s 803,

I-9 B.1

e

AR e ot

|
:
?
|
|
1

5 B.1 The Context of This Research Introduction

ones, but such a list gives us something to focus on, in terms of possible measurement,
while our expertise in building understanding systeme develops. Some examples of how
the two sets correspond are: modularity supports encodability, organizability,
inspectability, operability, and provability; opennass supports operability and accessibility;
- conciseness, transparency, and uniformity support encodability; and mixed procedural and
declarative supports flexibility. As we shall see beiow, some of them are obtained almost
_immediately from the definition of PSs, while others require testing and deliberate
measurement, which activities are central to the conclusions ultimately to be drawn about
PSs. A

B.2. Direct precursor to this research

The present thesis will focus in part on some questions raised by recent work with
a narrower focus (Rychener, 1975). A PS implementation, Studnt, of Bobrow’s (1964)
Student program, for solving high-school algebra word problems, was analyzed in detail to
determine its knowledge content and to study how that knowledge corresponds to the PS
representation. Knowledge was expressed as natural language statements phrased as if
spoken to an (imaginary) understanding systers, describing the steps to be foliowed and
the knowledge to be applied to perform the task. The knowledge, consisting of 218
statements in natural language, was found to map onto the Ps in a many-many fashion:
several pieces of knowledge per P, and several Ps using a knowledge statement in
different ways. One way this comcs about is the adding on of conditions to some piece of
primary knowledge; the cases represented by the conditions are represented as separate
Ps, with the principal picce of knowledge interacting in a number of ways, once with each
qualifying condition. The mapping of knowledge to Ps was fairly direct, involving only
minor amounts of programming techniques: 707 of the knowledge statements were task-
domain-related, 257 were programming techniques such as knowledge about iteration and
tree-structured data, and only 57 were concerned with peculiarities of PS control. For
this kind of analysis, the explicit and concise character (small numbers of condition
elements and actions in each P) of PSs is essential, and it is aided considerably by the fact
that the Ps are an unstructured set, so that factors like lexical location do not affect how a
P is to be interpreted and how its knowledge is to be determined. The Studnt program
supported the assertion that PSs would be appropriate for understanding systems, as
determined by the properties given at the end of Section B.1.

On the basis of the Studnt analysis, it was possibie {o sketch how PS programming
might take place. First knowledge is formulated abstractly as a problem space, a
representation of the possible behaviors on & problem, contaning a collection of
knowledge elements and operators that produce new knowledge states from current
knowledge statese. In Studnt, for inctance, the operators are actions like scanning a string
of text, splitting a string, and identifying special keywords. A problem space may include
plans, which specify common sequences of operator applications that lead to some desired
result. In the case of Studnt, the main plan was to scan the string from left to right, and
at each point, to check for dictionary tags, check arithielic precedences, detect delimiters,
and some other things, in a particular prescribed order. The problem space with plans
corresponds to an abstract mode! that describes the program more precisely, and is a

e The concept of problem space is discussed in more detail in Chapter VIL.

B.2 1-10

Introduction The Context of This Research B.2

more organized structuring of the problem space elements. The abstract model gives rise
to a number of principal knowledge statements, which form the skeleton for the PS
program. Details expressed as knowledgze statements enter into interactions with the
principal knowledge. An interaction can be excitatory, which results in addition of
conditions to handle extra cases, inhibitory, which prevents condilions from applying, or
definitional; it can deal with knowledge about when specific dynamic infecrmation is no
longer necessary (i.e., about erasing it from Working Memory), about specific programming
techniques, or about PS control. Defects in behavior of the PS are seen as a lack of the
appropriate knowledge interactions, which were perhaps too subtle to be considered in
the initial program formulation, or which are due to details of knowledge statements that
weren’t included in the initial set but which now are evidently needed for the problem
being solved. New knowledge is stated in terms consistent with the elements of the
problem space and then enters into the appropriate interactions to result in augmenting
the program. In all of this augrientation, the properties of PSs prove useful: knowledge
content must be extracted and examined, it must enter into interactions with other
knowledge, and then it must be encoded back into the program in the appropriate places.

Several questions raised by that analysis will be foliowed through in this thesis. It
“will be determined whether the form of knowledge in Studnt is similar to its form in other
PSs, and whether the analysis and its conclusions carry over. It must be investigated
whether PSs can be used for certain kinds of knowledge that were not considered within
the Studnt scope. And the conclusions with respect to the properties of PSs that make
them appropriate for an automatic understanding and acquisition system must be re-
evaluated in the light of brecader evidence. The tasks chosen for this thesis were posed
. with these and other questions in mind, as will be discussed in Section F.

B.3. Research strategy

As mentioned in Section B.1, past efforts in Al have been concerned with exploring
various segments of the probiem of building understanding systems, without establishing
comprehensiveness of application or of knowledge content. The present effort is similar in
scope, but has as its immediately subsequent aim to push the construction to a larger scale
and grapple with the problems expected there. This will require not only establishing PSs
as an effective underlying form, but also exploring details of knowledge content.
Ultimately, knowledge content probably must be explored with the following goals in mind:
to see what knowledge is actually required for some specific behaviors, as opposed to
what is convenient or what occurred to the first person who tried to get a running system
for some task; to be able to prove that a system that understands some set of knowledge
will be capable of behaving appropriately in some task domain, or in some well-described
subdomain; to expiore a number of alternatives and denonsirate the superiority of one
approach or anotier, either unconditionally or varying according to subdomain; and to
assign credit or blame to various pieces of knowledge for various aspects of behavior.
Note that only rarely will one implementation of some Al system be sufficient to give
satisfactory answers to these criteria. Past Al syctems have consistently exhibited serious
failures by these criteria, as M<Carthy has ponted out in a briet review of the area,
calling it the "look ma, no hands" disease (McCarthy, 1974). Exhinting the final behavior of
a system, with only a vague description of its inner workings and control principles
completely obscures the scarch process that probably resulted in that system. Such a

I-11 B3

{ a7

e Bt

Ty T

e AR S G e P e S L Rl ol dD A e i T

SRR S (SR,

E SN AR S

|
|
:
!
?

B.3 The Context of This Research Introduction

search probably involved intermediate systems that failed in important ways, the discovery
of critical examples that forced redesign in particular directions, and the forming of key
conceptual distinctions and representational advances. Seeing only the result of the
search might cause a person who sets out to analyze the system’s knowledge more
carefully to repeat many of the same errors simply because “unexplored” alternatives
appear or because the presence of some feature was not justified. The use of critical
examples and test cases is a common technique in the field of linguistics (although linguists
use it to debug proposals for models rather than to exercise complete working systems).

In order to systematize the study of knowledge content, it is also necessary, it
seems, to have a universal way of expressing systems and their content for the purpose
of comparison. PSs or a similar architecture seem, unsurprisingly, ideal for this. First,
though, PSs must be demonstrated effective over a diversity ot knowledge. Implementing
a variety of past systems is more appropriate for this than doing a smaller study in a new
task dorain. At least, PSs must be shown effective for expressing knowledge, if not in
efficiency of performance. In addition to putting off efficiency concerns, the present
strategy also will postpone consideration of how knowledge might be automatically
encoded into (learned by) a PS. If the present work elucidates what the PS would look
like after acquiring certain capabilities, it will give a definite target program for a learning
system to attain. '

To summarize, we are engaged in building understanding systems and in exploring
bases for that goal. Past efforts have elucidated disparate capabilities and tasks, but
without systematizing fully the results and without using similar or inter-translatable
architectural assumptions. We aim to establish PSs as a viable architecture for a number
of familiar tasks, postponing questions of performance and automatic acquisition of
knowledge in order to focus on analysis and evaluation.

e s e h e 1o

Introduction

C. The Production System Approach

This section discusses some general characteristics of PSs and shows how those are
reflected in the PS representation for a variety of common procedure and data usages in
Al A principal feature of PSs is that they are neutral with respect to many recent Al
language features (see Section D). There is no bias towards a particular method, e.g.
heuristic search, for formulating a task. Instead the encoding can be shaped to the
peculiar terms of the task. On the other hand, there are few helping features either, so
that various kinds of search, for instance, have to be coded explicitly. Qur far goal of
using PSs to automate the encoding makes this apparent deficiency more tolerable. PSs
simply encode knowledge as small, active, behavior-producing units. Knowledge is not
embedded in limiting control structure, so it is potentially open and available for
interaction in diverse ways. These general properties recommend PSs for use in analyzing
knowledge content and systematizing Al as discussed above.

C.1. How production systers might encode common structures

The following summarizes how PSs are expected to be used to encode a variety of
procedural structures:e

Ordinary control: ad hoc Working Memory data as evocation signals;
symbolic goal structures or descriptions, to which P conditions can be
responsive.

Selection from a set of alternatives in Working Memory: single P or set
of Ps arranged in a cascade; the LHS match narrows down the set
according to constraints.

Generator of possibilities to try: computation by P or coordinated set of
Ps followed by some record of the generator’s status, either as Ps or
in Working NMamory.

Decisions on control and direction of processing: sets of Ps. A stream of
behavior is a sequence of such decisions made by such sets in
succession, often with a single P from each set firing to represent
the outcome of a decision.

Modular organization of knowledge: sets of Ps whose LHSs and RHSs
share elements and that serve to elaborate various decision cases
within the module.

Maintenance of local control: ordering on events (focus of attention)
within a PS architecture, incorporated into the conflict resolution
principles.

Planner antecedent theorems: Ps of the form event -> further action.

Planner consequent theorers: Ps of the form goal -> means proposed to
achieve the goal.

Backiracking and backup in general: avoid it by making more intelligent
choices, when thare are real alternatives to choose from; when a
choice turns out to have been bad, try to patch or update the

® T¢ ‘he similar list given by Hewitt, 1971,

i-13 Ci

T RSN S

bt A T e b B et

K
!
I
|
!
1
1

C.1 The Production System Approach Introduction

current state so that the process can continue from it rather than
restoring some past state. (See “generator) The global Working
Memory can be used to communicate arbitrary forms of error
message and other diagnostics to direct search.

A couple of things above need further explanation. The Al language Planner will be

‘ discussed further in Section D. Modularity has been treated already in Section B.1.

Generation is intended for use when the elements of a set are to be examined in turn until
either the full set has been processed or an element with desired properties has been
found. This can be done in a variety of ways: the Ps can generate the full set of
possibilities each time, with past tries eliminated (based on a record in Working Memory or
on a single P that accumulates past tries, or on specific Ps that record individually

. previous tries, automatically set up to exclude later duplicates), and then a selection made

from the rernaining set, for the specific elerment to be oulput; the full set of possibilities
can be computed once and stored as a P RHS, which is then inserted into Working Memory
each time the generator is used, for further selection, with the RHS updated to remove the
selected element; the full set of possibilities can be generated each time, to be narrowed
down by previous tries stored as 2 single P RS, which is updated with each new try; or
some combination of the above, where, say part of the set is generated, processed
element by element, then some more generated, etc.

The following summarizes similar information for data structures:

Objects (past knowledge states, dynamic problem situations, specific
known world objects, etc.): in recognition form; when the object or a
distinguishing part of it is in Working Memory, it is recognized,
perhaps giving it a uniaue name so that further information can be
had (if stored in other Ps) or filling in everything immediately.

Set of objects: Ps to recognize members and give the set name, and Ps
to recognize the set name and give set members.

Semantic interconnections of knowledge: Ps that fire representing
traversal of the arc that is the interconncction; the firing of a P
makes new knowledge available.

Frames (Minsky, 1975): Ps whose "instantiation” is developed in Working
Memory; a frame's default assumptions are inserled when the frame
becomes active in Working Memory; fater data can replace defaults in
Working Memory; a frame is initially evoked according to an LHS or a
set of alternative LHSs; procedures associated with a frame are just
more Ps.

Specific isolated facts: RHSs of Ps, for instance of form context -> fact.

Open questions: Ps that recognize potential answers and react
appropriately

Trees of data conterts (Conniver, McDermott and Sussman, 1972): Ps that
store path information so that the current state can be transformed
to some desired past state, or Ps that store an entire state for direct
restoration (evohed by a name for a context that is available from
another source); see the comments on backup above, though, since
these are an intimate feature of that control organization.

Updating past information (stored in unknown Ps): Ps that recognize an
outdated fact and replace it in Working Memery, hopefully before the
process that is using it gets too far with it

C.1 I-14

et B i e

i

Wi SR T Bamy

o Y

I
23

Introduction The Production System Approach C.2

C.2. Inherent properties of production systems

There are a number of properties of PSs that follow directly from their definition
and from the spirit of the PS approach. Whether these can be fully exploited in large Al
systems remains to be demonstrated. That is, some of the points to be raised here should
be considered speculative, to be verified in practice. This subsection discusses the
properties according to three different viewpoints: architectural definition, psychology, and
programming.

In discussing a priori properties of the architecture, we follow a sequence of
successively larger units, from condition properties and action properties through
properties of the combination of Working Memory and Production Memory taken as a
whole. A P condition is a pattern on Working Memory. Thus a condition might be built up
by taking some set of elements from Working Memory and conjoining them, or by
abstracting and generalizing on such conjunctions of elements. A condition can be seen as
a selection from Working Memory of the, most important features of the situation modelied
and thus represents concisely the result of filtering out irrelevancies. A P action mostly
performs simple modilications of Working Memory, with the most interesting properties
resulting from its conventionally small size. Having unconditional sequences of actions be
small means a great deal of flexibility, allowing switching quickly from, say, one approach
to an alternative, and it means that processing is interruptable, since after a small number
of actions, the Working Memory is again examined and in particular interrupting conditions
recognized. Small size also means that the overall process can be built up incrementally,
which means that picces of the program can be left unspecified untii their need comes up
in actual behavior testing, by a user of a system, at which time the small number of actions
needed to compensate for a missing P can be filled in (PSs are of sufficiently high level
that a small number of actions accomplish a lot in terms of the overall process, but this
may be a consequence of the Working Memory representation rather than of PS
architectural features).

Considering condition and action together, two properties are evident. First, they
are roughly equal in size usually, which is a high degree of selection for the action
involved, that is, a high ratio of condition-testing per action when compared to other
control architectures (see Section D). Second, the ensemble is still rather small (say a total
of 10 to 15 condition and action elements), implying that the knowledge represented by

"the whole P is conceptually small, and in fact can be expressed as a single statement in
" natural language along with a few gualifying conditions (see Section B.2).

Considering relations between Ps, we have only the bgsic inter-communication
between them using explicit data in the global Working Memory. Ps are activated by
recognition of a condition in Working Memory as opposec to direct invocation, say by
name, of specific Ps by other Ps. Thus a P may communicate with other Ps by making
specific changes to Working Memory, but it does not know which Ps will key on those
changes. This is especially true when the PS is being augmented with new methods to

achieve old functions.

Focusing on features of the architecture as a whole, onc property is that the
dynamic transitions of Working Meriory frem one state to the next are quite directly
represented by condition-action Ps. This is interesting from the viewpoint of taking some

[-15 C.2

. U5~ RIS

R T

C.2 The Production System Approach Introduction

syster’s basic behavior as a sequence of transitions and then asking what parsimonious
mechanism might capture it. It is also interesting from the viewpoint of asking how new Ps
might arise from an existing system, the answer being that as Working Memory constantly
changes, new associations between states and their successors are established. This is
especially of use when the Working Memory has access to inputs from outside the system,
through which changes in some external environment can be monitored and eventually
described as Ps. An additional use might be to optimize existing processes by building Ps
to go from one state to another with fewer actions, say by eliminating temporary control
elements that are superfluous.

Overall, the complete (immediate) dynamic state of a PS is in the Working Memory,
and all procedural knowledge is encoded as Ps. The full dynamic state is global and
inspectable. No controi context is maintained in the structure of procedures (Ps), so that
each P includes everything, explicitly, that its action depends on and comprises. Within Ps,
only a very small amount of context is carricd over from condition to action, as bindings to
pattern variables, and that context only lasts as long as the execution of the sequence of
actions.

PSs can be interpreted as a model of human information processing by identifying
Production Memory with human long-term memory, and Working Memory with human
short-term memory. A P can be seen as a generalization of the notion of stimulus-
response pair, where stimulus has been generalized to include internal symbol structures
and patterns of structures, and where response has become a sequence of internal
symbolic manipulations and signals associated with motor commands. The recognition part
of the recognize-act cycle is considered to be accomplished very rapidly as a result of
encoding P conditions in a network in which a large number of pattern-matching and
element-testing operations ¢an be carried out in parallel. Sensory perception is seen as a
process that results, indirectly or indirectly, in building symbolic structures in short-term
memory corresponding to perccived objects. The motor system maps short-term memory
elements into the corresponding external actions. Preliminary explorations of this model,
which is based on the theory of Newell and Simon (1972), indicate cycle times (full
recognize-act cycles) of around 100 milliseconds, with individual actions ranging from 10
to 50 milliseconds. Additions to long-term (P) memory are thought to occur approximately
every few seconds. Psychological models tend to impose constraints on various features
of the architecture, such as small Working Mamory (say, up to only 30 elements maximum),
Working Memory that degrades over time as elements are unused by Ps (a controversial
topic), limitations to the kind of pattern matching that can be done, inability to erase Ps or
Working Memory items, and others. The origin of the study of PSs for Al purposes was in
psychology, but factors like the computer hardware we work with has resulted in
exploration of the PS design space in directions other than those dictated by psychological
considerations.

With respect to programming, the primary action in augmenting a PS is to simply add
Ps. Given the modular organization sketched in Section C.1, the major problem n
augmenting an existing PS, in acddition to forming new P, is iv ensure that new Ps do not
conflict with other Ps in the same kncwledge module. (Reminder: this thesis is devoted to
exploring whether the following can be realized in practice.) If a module is represented
by a set of Ps, each of which makes explicit one case of how the knowledge in the module
applies to a situation, then the ideal augmentation would be that new Ps would simply give

cz2 1-16

R
'

A T T o

_Introduction The Production Systera Approach c2
' more such cases. But often what is needed is to further discriminate one of the present
cases, for instance splitting it into two cases according to conditions that weren't
_considered previously. Thus in general, it is necessary, at least locally within a module of
Ps, to determine how new Ps are related to old ones. Since modules are determined by
shared condition elements, the explicitness of PSs is essential in this endeavor.
- Augmentation is also made easier by the conciseness, high level, and small P size.

By way of summary, we can compare the properties developed in this section to the
desirable properties of understanding systems as developed in Section B.1. The following
gives the properties in this section that seem to provide support for the understanding
system requirements.

Encodability: small unit size, explicitness of interrelations of Ps.
Inspectability: explicitness of Ps, Working Memory global.
Accessibility of knowledge: knowledge is expressed actively, evoked
according to a uniform recognition procedure.
Operability of knovdedge: main operations are adding Ps and elaborating
P conditions and actions.
Flexibility: existence of P Memory and Working Memory as memory
structures.
Organizability: P Memory has no imposed structure.
Modularity: condition-action formst, explicitness.
Uniformity: Working Memory and Ps are the only representations; Ps are
direct encodings of Working Memory transitions, suitably generalized.
Conciseness: small number of conditions and acticns per P.
Similarity of procedures and data: condition patterns are simple
generalizations of Working Memory elements, and actions specify
simple changes to Working Mamory.
Some of these properties cannot be verified without actually building systems, the main
activity of this thesis. A better idea of PS capabilities with respect to them will emerge as
the systems are built, and the finished systems will be amenable to corresponding
measures.

Introduction

D. General Comparisons to Gther AI Languages

This section first presents some reactions to prominent features of a number of
problem-solving schemes that preceded the most recent wave of innovation. The specific
approach of PSs with respect to general theorem-proving systems, languages and systems
for robotics, and other modelling and reasoning schemes will be discussed. Then the
primary characteristics of the most recent new Al languages are reviewed and the position
of PSs with respect to those characteristics is sketched.

1 D.1. Some reactions to older problem-solving issues |

One of the oldest and rost mathematically appealing approaches is to use predicate-
calculus axioms to represent real-world actions and then to use uniform deductive
A procedures to solve problems by proving the associated mathematical theorems (see

Nilsson, 1971; historically, the approach dates from the late 1950s). One reaction to this is

that the uniform deductive pro-edures developed to date are too undirected in their

search, and can’t take advantage of heuristic guidance and specific shortcuts. In most

problem-solving situations, specific knowledge can be applied to achieve a desirable result
or to move the search in exactly the right direction, whereas a uniform deductive
3 procedure applies more general knowledge, and is forced to iterate through a number of
alternative general deductions to fina an appropriate general method. Another problem is
that the uniform deductive procedures tend to be unnecessarily powerful: too much can be
proven, and this only serves to inundate a problem-solver with much irrelevant
information and increase combinatorial explosion in exploring proof possibilities. Theorem-
proving strategies that address this problem are an improvement, but remain
comparatively weak.

These three intertwined issues - too much gernerality, too much combinatorial
branching in the search, and inability to use specific heuristics effectively - have pushed
some Al workers towards a procedural representation of problem-domain-specific proof
strategies, for example, the early Planner formalism (Hewitt, 1969 and 1971). (A later
’ version of Planner overcame some difficulties and will be covered by the discussion in
" ! Section D.2.) The early Planner included language primitives that allowed an exhaustive ‘
: depth-first search to take place in order to explore alternatives in choices from among }
i sets of elements and alternatives in methods for solving some problem or subproblem. An |
{ objection to Planner’s form of pre-programmed proof procedures is that it is too pre- i
programmed and inflexible, and that it has too much action for the amount of “intelligent”
selection that it does. An objection to Planner’s search primitives is that stili more

& ‘ knowledge can be explicitly applied to cut down the scarch and to make search that is
i necessary more selective. Such additional knowledge can be expressed in Planner to some
_'; e extent, but the language predispocses the user to rely too much on its blind search.
. Relying on secarch where the emphasis should be on finding effcctive content knowledge
£ | } - for a task, it seems, is an error in research strategy. As argued above (Section B.3), one |
A) : of the purposes for developing PSs is to establish a simple form so that content

know'edse can be more freely explored.
(4 Y

Several other brief reactions to others' positions can be presented before

I-19 0.1

e’ - ==
] . ' S ———

1 PRE B
L % qp..’_m‘_‘ﬁmm I

D.1 General Comparisons to Other Al Languages Introduction

L sk

'summarizing how PSs may address these issues. Simon (1972) has discussed a long-
standing dichotomy of approach, namely, whether to express logic in a modal form or to
use a model approach. My reaction is that for convenience in exploring knowledge content
required for intelligent behavior on tasks, a model approach is more direct and convenient,
and that more (seemingly) compiex reasoning involving beliefs, modality, potential
achievability, and other issues, can be added onto a model formulation, perhaps as
“epicycles”. The STRIPS problem-solving system of Fikes and Nilsson (1971) uses a
theorem-proving approach to applying problem operators, within a means-ends analysis
searching schemec. The theorem-proving techniques, more specificaily, are applied to
determine whether the enabling conditions for the application of problem operators are
fulfilled. 1 question whether such a general mechanism 15 appropriate for such querying of
the database of assertions, and in particular would lean towards either making things more
explicit in the database (Working Memory) or towards having them derivable or accessible
.in ways that are not as general (and potentially costly) as theorem-proving. On the first
point, keeping the world of known assertions exhaustively (extensively) in the Working
Memory seems more parsimonious and immediate than te assume (apparently) without
proof that the full generality of thecrem-proving is necessary in every problem. That is, |
assume that the complexity of many domains, particularly the robotics tasks considered for
STRIPS, do not warrant the general treatment, although it is useful for purely theoretical
reasons fo explore general formulations, especially if there is a chance that they'lf prove
successful. On the second point, management of the database (Working Memory), | would
prefer the strategy of using task-specific storage-management "expert" procedures to
determine which facts should be stored and which facts should be recomputed or
rederived each time they're needed, in order to keep the database from becoming overly
large. It might be best to be able to write most programs as if everything were explicit in
the database, and then code a fzw special procedures to make the necessary adjusiments,
(After experience with writing specialists, perhaps more general routines could be
constructed that would capture just the right set of operations.)

The following sketch of the PS approach to these issues tries to meet the above
objections. PSs aim to go further in being explicit about deduction procedures than did
Planner. But by using a rule format for knowledge, it is hoped that some favorable
features of the pure “declarative” predicate calculus formulation can be retained. In
particular, perhaps there will be retained such features as being able to use a rule in a
variety of situations, to maintain generality, and to keep the processing open to adapt to
task demands and to take advantage of new information, unknown when some strategy is
initiated. To anticipate some conciusions of the present study of PSs, it may be possible
to perform many things directly in PSs that were done previously with more powerful
language features, but further it may be possible to avoid such things as heuristic search
by using PSs to encode more selectivity, as determined by analysis of the content of tasks.
When general theorem-proving-like technicues are needed, PSs will be used to implement
therm "interpretively" and potentially more inteliigently, perhaps after the fashion of GPS
(Newell, Shaw, and Simon, 1963) ralher than relying on butlt-in uniform (non-interpretive)
language features. Finally, it should be noted that there have been a variety of problem-
solving approaches to which no strong reactions are felt and which are thus not discussed
here. Many of the issues these others raise are grappled with directly in the body of the
thesis.

%
=

§ i,

i
7
%

;

Yy 4

Introduction General Comparisons to Other Al Languages D.2

D.2. Features of the newer Al languages

This subsection discusses briefly the major features of the most recent Al
languages, drawing heavily on the tutorial survey by Bobrow and Raphael (1973). How
PSs stand with respect to these features is is discussed briefly at the end of the
subsection, but much more information will be presented in the context of the particular
studies that are the bulk of the thesis. Featurcs are grouped into four categories: data

"types, expanded control and data contexts, patterns for retrieval and invocation, and built-

in indeterminate search. Each of these will be considered in turn.

The new languages that are considered to be aimed at the same applications as PSs
are Planner (Hewitt, 1972), Conniver (McDermott and Sussman, 1972), QA4 (Rulifson, et al,,
1972), and Popler (Davies and Julian, 1973). These are all outgrowths or extensions of
list-processing languages, so that the basic data structure is an arbitrary list structure.
Some of the languages have a number of additional data types such as vectors, sets, and
sets with duplication. Data is stored in a common global database, and is retrieved by
specifying patterns or forms to which database elements are to be matched. Procedures
are evokable as a direct result of storage, retrieval, or deletion of data elements, so that
various sorts of bookkeeping of the database can be set up to be done automatically. In
some of the languages, the data base is so arranged that only one occurrence of a
canonical form of a data element is kept. This allows the handling of certain properties at
the data base level rather than by using explicit inference rules, for instance, collapsing
expressions like (+ a b ¢) and (+ a ¢ b) into a single element, by commutativity. Finally,
programs in these languages are manipulable objects (a property inherited from the base
languages), so that there is the potential to build self-modifying programs.

A second set of features revolves around the concept of allowing a program to
maintain internally several versions of its data base (world), and to pass.between these
versions smoothly. This has undoubtedly grown out of the best-first search regime, in
which a path is explored until it is no longer the most promising, at which point it is
(temporarily) abandoned for some other path. A program that desires to evaluate its
progress, diagnose how expectations have failed, and compare alternative explorations has
a much easicr time (according to the proponents of these languages) if there is an easy
way to enter into any number of contexts, examine data and control status there, and
resume execution from wherever it chooses. The most coherent and efficient
implementation of this concept involves the “spaghetti stack" organization (Bobrow and
Wegbreit, 1973). Another motivation for separating so distinctly the various contexts is to
allow the processing to be carricd out in a multi-processing computer environment, in
which a number of alternative branches in a search tree could be explored in parallel.

Pattern-matching provides the nucleus of a third set of features. It is possible to
specify, for retrieval purposes, matches on complex symbol structures, with new
structures built on the basis of match success. The data-base procedures mentioned
above are all based on sensitivity to patterns, that is, are keyed to classes of data
elements as specified by patterns. Pattern-maiching provides a very powerful way to
~voke more general procedures. A procedure can be indexed according to the form of
swult that it achieves, and whenever that resull s desired by other procedures, it is
evoked, either automatically or after passing further constraint testing.

1-21 D.2

o 3 Vg

asae Lo

D.2 General Comparisons to Other Al Languages Introduction

The fourth and final set of features deals with built-in search mechanisms and with
concise ways of expressing the non-determinism that gives rise to search. This concept is
closely related to the second set of features, in that a choice-point in a search gives rise
to a subdivision in the current data and control context. Similarly, it can be seen as a
device to exploit parallelism in computer hardware with a minimum burden on the user to
coordinate various processes. Often programs can be written as if no choices had been
made, that is, the search mechanics and the intricacies of alternative data and control
contexts are essentially invisible. A variant on the invisibility exists in languages that
allow the user to manipulate the possibilities, with the facility of ordering the search
according to user-defined priorities.

How do PSs stand with respect to these features? The Working Memory of a PS
corresponds directly to a database, but currently no PSs have made the leap to the
variety of data types that is available in some of these other languages, remaining in the
basic list structure domain. The current (consensus) PS approach is not to view Working
Memory as extendable to a tree of dynamic data contexts, in keeping with the PS approach
to search, which will be discussed immediately below. Pattern-matching is an essential
part of the recognition of P conditions, so PSs are in line with the above features in the
third category.

With respect to search, especially buiit-in search mechanisms, PSs take a divergent
position. Search using a PS must expioit the extra power available in PSs’ condilion-
recognition capability. Patterns as expressed in LHSs of Ps tend to be much more complex
than, say, evocation conditions for procedures in the other languages. The PS approach is
thus to use selectivity in choosing a direction for search, so that ideally search is avoiced
altogether and the right choice made initially. (In theory, there is nothing to prevent PSs
from being embedded wiihin some scheme by which alternative database contexts would
be kept, with a set of RHS primitives provided for switching between them.) For doing
basic database bookkeeping, Ps themselves are probably effective without further
mechanisms along the lines of the special database procedures described above. (Again,
though, nothing prevents such additions, if an application should warrant it.) For search
processes investigated in this thesis, the aim is to use PSs to encode what’s needed

:explicitly, and if that turns out to be burdensome or clumsy or too large a proportion of

the problem-solving, to then propose rcre specialized mechanisms - but the expectation is
that no such characteristics will be observed.

There should be no problems within current PS mechanisms in achieving the main
functions of trees of data and control contexts: communication of success and more
importantly of failure and reasons for failure; access to suspended search states;
redirection of the search to more promising alternatives; and application of paraliel
processing. Communication is more a problem of representation than of controi structure,
though perhaps less control context to interfere wiil prove to be an advantage. Wilh
respect to suspended search states, Ps can be used to store state information or path
information from which a state can be reconstructed, putting the information out of the
way of current processing until required. Redirection is more a problem of building a
symbolic description of the alternatives and comparing them than of control structure. The
recognition step in the recognize-act cycle can use parailelism, while it seems best on the
basis of human problem solving to retain seriality of the actions of Ps. Although these are
just carefully considered expectations, 't s anticipated that actual problems in the body of
the thesis will illustrate PS capabilities along these lines.

D.2 1-22

{
{
|
{

—-— _,J,__._,,_ i e P ey i iy ot s AL s o v Fas it o ORI T o r T ey
. 7 T ——

=+ Introduction General Comparisons to Other Al Languages - D.2

It should be pointed out that PSs tend to have a depth-first search orientation,
provided that the way of resolving conflicts between Ps favors those Ps that treat more
recent Working Memory elements. As a PS is processing, current "goals” give rise to new
information which will temporarily take precedence over information associated with other
. goals. Such a "pushing down in the stack" can occur a number of times, until a point is
reached where the most recent data has been processed fully, at which point control
would fall back according to the conflict resolution, to consider slightly older data. Further
pushings and subsequent falling back would eventually get back to the goal that initiated
the sequence. The resulting behavior is easily seen to correspond to depth-first search.

R | Even though the basis of PSs is pattern-matching similar in form to that in other Al
| languages, the control and use of match results is distinctive. In PSs, short sequences of
‘ unconditional actions are constantly alternating with matching that is generally more
complex than in the others. This should bring more flexibility, make shifting directions
easier, and allow processing to be more easily interruptable as new information appears.
PSs encode knowledge more uniformly, and PS languages tend to be much simpler on the
surface than the others, but without sacrificing power or conciseness. There is little static
ordering between distinct P condition patterns, and choices are made uniformly on the
basis of the conflict resolution principles. Other languages build rather rigid structures of
patterns, for instance putting them together in subroutines or nesting them dynamically
with shared variable bindings and control primitives. The evocation of procedures as
E patterns ot data emerge in Working Memory seems more open in PSs because there is no
i3 way to evoke procedures more dircctly, by name - the only recourse for a process to
: evoke others is through global communication, and a P that sets up a goal can make no
assumptions about which process will attempt to achicve it. The only local, hidden context
is in variable bindings within Ps, and that lasts only for the duration of the P’s action
seguence.

Y A A TN

1-23

o

e

£ ez

-

Introduction

E. Direct Antecedents and Relatives of the Present Approach

This section discusses a variety of work that can be considered as directly related
to the present research. There is a rough grouping of research into work that has been
well-known for a few years, work that is current but whose approach differs somewhat
from the present one, and work that is along similar lines to the present. The first group
inciudes some of the bases for PSs in specialized programming languages that are not PSs
and a few pioneering efforts that brought PSs to the attention of current Al researchers.
The second group includes applications of PS principles in varying degrees to rule
induction, medical diagnosis, and speech understanding. The third group includes a number
of poychological models, encompassing problem-solving, visual imagery, primitive
perceptual and quantitative processes, and computer programming. It also includes work
on serial pattern acquisition, simple association learning, and a detailed analysis of an
implementation of a classic Al program. The aim in presenting this survey is to raise a
number of issues, examine failings and open questions, and treat the differences of
approach that are represented.

The first programming language to incorporate PS ideas was Comit (Yngve, 1962).
Comit specialized in recognizing patterns of words within lists of words, associating with
each pattern a manipulation of the word list matched by the pattern. Rules consisting of a
pattern followed by manipulations were organized into named subroutines, within which
rules were tested in a specific order. Data structures to which patterns were matched
were also named and were subject to reorganization by commands within rules. Yngve
stated quick programmability, with satisfactory efficiency, as properties of Comit when
applied to information retrieval tasks. Bobrow (1964) applied a variant of Comit, Meteor,
to good effect in building an Al system, Student, for solving high schoo! algebra word
problems. He pointed out that the language was easy to read and write programs in, and
that the class of problems handied by the system could be easily extended by adding
syntactic rules to the program. (The actual linear eguations were solved by a Lisp
subprocedure.) Neither Yngve nor Bobrow apparently realized the architectural
possibilities that have come to light since then, as discussed in this chapter.

Comit fell out of use, probably due to the appearance of the more versatile Snobol
language (Griswold, et al., 1968), which is presently in widespread use. Snobol uses many
of the same features as Comit, but is less pure in PS terms because of the inclusion of a
number of features of more conventional programming languages - not all of the
statements do pattern matching o strings of characters, and the use of program varizbles
is less cumbcersome than in Comit. Snobol has a character basis, as oppbsed to Comit's
word (Lisp atora) basis. The recent Lisp70 progremming language (Tesler et al, 1973, and
Enea and Colby, 1973) revives the List-processing basis as in Comit but uses still more
powerful features for overall control. Lisp70 has basic units composed of rules that match
to an input "stream"” and perform basic rewriting actions on that streat. It has been
applied to finding patterns in natural language inputs, on whith to base responses in a
dialog, and to planning tasks in robotics. In addition tc the pattern-directed aspect, Lisp70
aims to include such mechanisms as coroutining, backiracking, use of fong-term database
memory, and language extensibility (to be achieved easily within the rule structure).

To summarize on the PS-like character of some programming fanguages, it s clear

B T

T

 §

E. Direct Antecedents and Relatives of the Present Approach Introduction

that the power of the basic operation of matching followed by action has been realized in
a number of ways. The mentioned approaches, however, have sacrificed a number of the
advantages of PSs for building understanding systems, by yielding to the tendency to
embed the nechanism in a framework not unlike more conventional languages (a tendency
that is generally followed by special-purpose languages). Our approach is to tey to

. maintain the pure PS architecture as a viable alternative.

Turning to areas within Al where PS principlecs have been applied, Siklossy (1368)
used a rule format to express acquired knowledge in a program for learning natural
language, in particular learning to generate language from language-independent functional
expressions. His P-like rules matched elements of the structured functional language using
only tests for set membership (as opposed to pattern variables), and performed a
translation and rearrangement of the matched elements te produce natural language
strings (Russian and Cerman). The program initialized its knowledge with a pair of
language strings that were chosen to be definitive in a particular way, and then proceeded
to- augment its set of Ps by attempting to extend the performance to other natural
language strings. Siklossy observed some dependence of program behavior on the
ordering of elements in its training sequence. The program was able to use the PS
representation to allow newly-added rules to incorporate intelligent guesses and to avoid
errors of certain types in advance, as opposed to necessitating a process of error
recovery. One PS-architectural considergtion he raised is that he started out thinking a
strictly-ordered list of Ps, with the most recently-added ones taking precedence over
older ones, would suffice for his task. He later relaxed that ordering so that several rules
could be matched simultaneously, allowing the best maich from the set to be used in
further processing - the "best" is in terms of properties of the translations produced by
the different rules. Siklossy's program was successful on a limited set of utterances, and
he gave no discouragement to extending it, but no one has taken up the challenge.

For Siklossy, the P rules were a small, augmentable part of the system, with other
major mechanisms encoded directly in a list-processing language, and the same is true for
Waterman’s (1970) program for learning betting heuristics for Poker. The Poker PS used
strict linear ordering fcr conflict resolution, aliowing a new rule to mask out the action of a
previous rule. The patterns matched by the Ps were based on values of a number of
heuristic dimensions, pre-defined as essential to betting, and the action of each rule is a
single betting decision (raise, call, etc.). The poker program converged fairly rapidly to a
levei of skill above the average amateur.

A third program of research that uses PSs as an augmentable subsystem is the
Dendral program of Buchanan, et al. (1971, 1973). It altempis a much more ambitious task,
and one whose application to practical science is immediate: the analysis of chemical
molecules and the building ot a theory of that analysis. The chemistry involves postulating
processes of molecule fragmentation that show up as measurable quantities of various
known simpler molecules, which quantities are then used for the analysis. Dendral is really
two programs: Heuristic Dendral uses a set of rules directly for the analysis; Meta-Dendral,
the more difficult and developmental part, builds the theory, representing it as rules
usable by the heuristic part, from more primitive, directly observable data. Meta-Dendral
must first search in a space of possible process rules, given the behavior under
fragmentation of known molecules, expressed as input-output pairs. The rules from this
first step are then subjected to processes of aggregation and generaiization, to try to get

E. [-26

I ——

Introduction Direct Antecedents and Relatives of the Present Approach E.

a coherent and parsimonious set of rules. The aggregation of the rules is in two steps,
one based on similarities in the processes involved (RHSs of rules) and the other based on
trying to get more abstract descriptions of classes of molecules (LHSs of rules). The
process that builds and manipulates the rule set is quite specialized and takes advantage
of chemistry knowledge. Specific data on its computational behavior are not known (it
almost certainly is not forming new rules interactively in real time), but its resuits are
publishable, on a par with those of human specialists in the area. The main emphasis on
current Dendral research is on construction of rules rather than on processing comparable
to the focus of the present work. That is, rules seem notf to be processed in an immediate,
recognize-act cycle, but rather in an inductive-explanatory mode. The principal
contribution to PS research is in the basic representation of knowledge and in the
processing that automatically produces elements in that representation.

Now we turn to a discussion of more current work, consisting in part of theoretical
designs and in part of preliminary, promising results. Becker (1973) describes a PS-like
model of what he calls intermediate-level cognition: something between low-leve! acts such
as moving a hand to a location and high-level acts such as proving a theorem. This
intermediate level is meant to encompass most of the commonplace acts that proceed in
humans at a level just below what we are aware of, and in a non-intentional manner.
Becker's model, which is described as if largely unverified by experiments, takes a stream
of sensory data and motor actions, and transforms that stream into a set of situation-
action-result rules. The stream is partitioned, usually at salient features such as the
experience of a rewarding sensation or the fulfiliment of some goal. A set of such
approximate rules, some of which will contain irrelevant factors and erroneous {(non-
general) associations, is refined through further experience, which includes deliberate
attempts by the modelled system to achieve repetitions of rewarding states. The
refinement consists of adjusting numerical weightings associated with rule elements, both
with respect to individual elements’ presence and overail rule validity. Rules are used
both in a recognize-act mode and in a goal-seeking mode, in which an attempt is made to
fulfill an LHS corresponding to an RHS that contains a necessary element of a goal state.
The primary contribution of the model for present FS work is the idea that Ps may be
constructable directly from patterns of changing Working Memory states, certainly a
scheme that would parsimoniously carry cut a general sort of knowledge acquisition.

Hedrick (1974) uses PSs to try to synthesize and extend work in several diverse Al
task areas. He exhibits a PS scheme that is applicable to learning to recognize natural
language utterances, and produce a semantic representation for i, and to inducing serial
patterns such as are common in intelligence tests. (The system was designed to
encompass several other tasks as weil.) Learning in both cases takes place as the system

_is presented with examples of input-output pairs. The existing PS is applied to each new

example, and if its behavior is incorrect, adjustment procedures are applied to augment the
PS and make changes to existing Ps. As more examples are seen, Ps are generalized by
making constants into pattern variables, and by refining semantic relations that are tested
in the recognition step. The program determines which changes to make by a “dynamic
analysis", a search through a space of possibie results, applying measures to reject
changes that are not the most parsimonious. If it is decided to add a new rule to the PS, a
“"static analysis” is applied to determine the kinds of relations to include in the P condition.
The static analysis and the P condilions themselves make use of a semantic network that
holds such information as “A NEXT 8", "B NEXT C", "JOHWN ISA MAN", and "COG ISA

1-27 E.

e —

.

el

Pl it o ot e e e T T T T

E. Direct Antecedents and Relatives of the Present Approach Introduction

ANIMAL", Thus if two elements are suspected to be relevant to the condition of a P, the

semantic net can be searched to find some relation that holds between them. When found,

1 it can be added to make the P more exact and also to make it subject to being generalized
“into forms that retain some semantic content. The semantic network is kept as a long-term

memory in addition to, and quite distinct from, P Memory. As in some of the systems
mentioned above, Hedrick’s Ps are not applied to an input according to a recognize-act.
cycle, but are used in a bottom-up parsing mode, involving a search among rule-application
sequences. The entire system isn't uniformiy encoded as Ps, but only the small
augmentable part of the system is, as has also been encountered above. The primary
problems raised by his work are the challenge to represent and effectively use semantic-
network-like knowledge, without going beyond the basic PS architecture, and to augment a
PS without going through the expensive and combinatorial searching involved in his
dynamic analysis. To be fair, he did propose some approaches to solving his combinatorial
problems, but they are still not at ail within the bounds of the spirit of our approach (to
be summarized at the end of this section). His work has raised, therefore, interesting
challenges, in addition to unifying and exploring the task domain.e

Erman and Lesser (1975) present a system organization that has a number of traits
in common with a PS approach. The aim of their system is to understand speech by
allowing a number of knowledge specialists to work on an utterance cooperatively through
a global "blackboard". Each specialist contributes only where its arca of expertise is
applicable and without knowing how that contribution might interact with the workings of
the others. The blackboard contains partial working hypotheses encoded in a form familiar
to all of the specialists. A focus of attention is maintained so that computing effort can be
allocated among the various knowledge sources, to drive the global process towards an
acceptable complete hypothesis. It differs from a PS in that each knowledge source is a
relatively large program, with evocation controlied according to the result of executing a
somewhat smaller pre-condition program. Thus action 1s in much bigger pieces of
unconditional execution (at least, uncondi‘ional with respect to giobal effert allocation), and
conflict resolution can know less about the internal structure of the knowledge sources in
making its decision about where to allocate computing effort. This work (still in progress)
can potentially contribute to our knowledge of PSs by developing task-independent
heuristics for making decisions about how to decide between conflicting sources, and by
exploring the consequences of using the global communication memory

The MYCIN system (Shortliffe, 1974, and Davis, Buchanan, and Shortliffe, 1975) is a
successful use of PSs to represent knowledge for medical diagnosis. It takes advantage of
a fortuitous correspondence between the expressive level of PSs and the way physicians
express (or can easily learn to express) their diagnostic knowledge. Rules take the
general form “premises -> conclusions”, and are usually used to reason and chain
backwards, rather than being executed in the forward, recognize-act manner (the latter is
used in a few exceptional cases)ee This means thal f the progrem wants {0 conclude

@ Hedrick’s work is also closely related tc certain pallern-recognition and concept-
formation approaches to learning, which are developing into areas that may soon benefit
PS research; a recent paper is Hayes-Roth and McCermoft (1976).

@@ Cf. consequent theorems in Hewitt’s Planner (186Y); Anderson and Gillogly (1976) are
applying MYCIN-iike rules to the bulding of interfaces between users and complex
systems; also, backward chaining using a rule-like formalism for reasoning in the
construction of Algol-like robotics programs is described by Buchanan (1874).

E. 1-28

-

]
{
i
:

~Introduction Direct Antecedents and Relatives of the Present Approach E.

something, it tries to find out what it can about the premises in the LHSs of rules that

. contain the desired conclusion in their RHSs. This “finding out” can involve interactively
- gathering experimental data from a human informant, it can be done by further backward
. chaining, using other Ps, or it can be computed by some internal function. Additional
. refinement is obtained by using confidence ratings on the various Ps, essentially stating

the confidence in the rule by the rule informant (an expert physician). (This domain is
characterized by few certainties.) These values can be thought of as probabilities,
although they are not combined, when a conclusion is the result of a number of rule
applications, according to conventional formulas of probability theory. (One of Shortliffe’s
biggest problems was to determine, empirically, an appropriate combination mechanism.)

Davis et al. point out several features attributable to PSs that are essential to their
effort, and several problems that are obtained as undesirable accompaniment to positive-
seeming features. As alrcady mentioned, PSs are close to how users want to express their
knowledge, so that the process of acquisition by the system is direct. Ps are found to be

:easily read and easily composed. Since PSs are so close to a natural expression of the
. user’s knowledge, often the program’s behavior can be explained by displaying the ruie or

rules it is working with. This is used when an error occurs or when the user is not sure
of the reasons behind a query from the system. The program can answer "why" questions
by giving the higher-up rules (supergoals), which evoked the rule being examined, and can
answer "how" questions by indicating lower-down (subgoal) rules, which are about to be

" evoked in continuing processing. One of the main problems wilh acquisition of new rules is

to ensure that they are not directly contradictory to existing rules, a problem exacerbated
by the lack of exact theory to evaluate the micanings of the contidence levels assigned to
Ps. Another problem is to make sure that a new rule takes intc account all of the
premises that other rules have used in similar circumstances, but this is alleviated by
taking advantages of rule similarities (within program-determined classes of rules), to allow

. the user to be reminded of possible omissions. In a sircilar vein, it is sometimes the case

that updating some data structure, for instance a set of values that some parameter might
take on, requires a number of related changes to other Ps, raising the question of whether
it might not be possible and more useful to have such structures expressed once, globally,
rather than distributed through the Ps as assumptions about the premises being tested. A
final feature that was added to give the rule system more direction in its backward
chaining is the concept of meta-rules, rules whose conditions refer to the kinds of
conditions that other rules are testing. This allows ready expression of heuristics that
prefer one set of rules to another, for a particular probiem. it gets around some of the
problems of control that the MYCIN group have with their rules, and, since meta-rules can
be stated for meta-rules themselves, opens up the process for even higher strategic
guidance. Full consequences of the use of these meta-rules on the overall computational
characteristics have not yet been explored, though. To summarize, the MYCIN research
elucidates some techniques for using PSs in a goal-chaining fashion, makes bold advances
into the reaim of using numerical weights on rules, and raises issues with respect to the
design of PSs to take advantage of possible automatic cxplanatory capabilities. Care must
be taken, however, not to expect the effects of the forfuitous fit of the formalism to the
domain to be present elsewhere.

While other current PS work raises a number of important issues and makes the

tasks in a number of areas more clearcut, the present thesis aims to continue a line of
work represented by a number of reporis to be discussed now. Neweli's research on PSs

1-29 &

{ E. Direct Antecedents and Relatives of the Present Approach Introduction

(1967, 1972, 1973, and Newell and Simon, 1965, 1972) is the basis for most of the others.
He introduced PSs in the general domain of modeling probiem solving, and extended it to a
number of other tasks. A PS for cryptarithmetic problems, involving finding digits to be
substituted for letters in simple addition problems, emphasized the use of explicit goals to
achieve control. In the process of developing that, there emerged a number of important
characteristics of PSs, many of which have been incorporated into the discussion in this
chapter. A PS for perceptual encoding was sketched in connection with a task of grouping
objects into describable categories. In the 1973 paper, he used a series of related PSs to
model tasks in the Sternberg paradigm, in which a human subject is given a set of digits in
rapid succession and then asked whether a particular digit is in that set. This Sternberg

f task was used to illustrate the use of PSs for a very detailed fit of a model to actual timing
characteristics of humans. The particular theory of how PSs fit into human problem
solving, as sketched in Section C.2, is given in full in Newell and Simon (1972).

Several new points with respect to PSs that Newell makes in his explorations can be
brought up here. He notes that in many cases it is not easy to arrange the PS to produce
the desired behavior, a difficulty that seems unavoidably tied to the favorable
characteristics of PSs. In particular there is the problem of maintaining local control
(unexpected Ps fire) and of avoiding unwanted side effects (interference with others’
global Working Memory assumptions). There is a certain freedom of programming in PSs,
in that it is possible to construct a wide range of them to achieve a single task with a
variety of execution characteristics. For instance, they can be readily used to represent
an evolutionary sequence ©f system behaviors. In modeling characteristic memory
unreliability in humans, Newell notes that PSs offer a mechanism of coupling, which can be
used to increase reliability. Coupling is increased by strengthening the interrelationship of
the outputs of one P with the inputs of another.

Klahr (1973) has also used PSs to achieve precise fits of a model to reaction-time
! data taken in experiments with humans. He used smali PSs to model aspects of counting
and addition. His evaluation of PSs is that they are much to be preferred over other
common techniques such as flow diagrams, both in their basis in theory and in their
precision, but that they are rather difficult to construct. In a more recent paper (Klahr,
1976), he discusses PSs for seriation, conservation, and quantification in children, and
discusses general issues of cognitive development. He points out the usefulness of PSs as
models of specific performance within a developmental sequence, but leaves open whether
' PSs or any known organization can plausibly model a corplete sequence.

Young (1973) used PSs to build a flexible model of various stages of seriation
behavior in children. His seriation task involved having a child arrange a set of clearly-
distinguishable blocks in order of size, a task which children perform with varying degrees
of proficiency at different ages. He demonstrated the flexibility of composition of his PSs
by putting together a “kit” of PSs, from which varying subsels could be chosen to result in
! the various stages of performance of the task. Five aspects of Young's work are of

3 interest here. His Ps were locally plausible, with each P taken by itself containing
something reasonable with respect to the task domain. He noted in different experimental
modes that the Ps were able to handle effectively the task variants. PSs are able to adapt

-to task demands without deliberate evocation of an "adaptive" process, that is, by making
use of their inherent recognize-act nature. His Ps most decidedly represented skill (a
direct encoding of what a child does) rather than knowledge (what a child knows, a form

5’ E. 1-30

¥ NN

|
:

Introduction Direct Antecedents and Relatives of the Present Approach E.

that only weakly says what he does as a result), which position he contrasted with other
psychological models that represent knowledge rather than skill, and he expressed hope
for a synthesis or middle ground. Finally, he proposed a mechanism through which
development might take piace: as a child repeatedly executes various manipulations in the
external world, his cognitive system acquires Ps that anticipate the results of those actions
(making use of the time in which motor actions leave his cognitive system free of
processing demands), and that eventually begin to take part in planning and mistake-
avoiding thought.

Moran (1973) and Farley (1974) both used a similar PS architecture to model human
behavior on visual-imagery tasks. Though the tasks were quite distinct, they both
involved using a PS to organize encoded visual inputs into known geometric shapes, and to
use the processed encodings further in the tasks, e.g., to anticipate more properties of the
visual environment. Moran made several points about PSs that contribute to this
discussion. He organized his Ps into subroutines, in which control could be localized, but
he realized this violated the spirit of PSs. He also admitted to using special tags in
Working Memory to achieve obscure kinds of control and communication between Ps. His
control problems fed him to conclude that means should be devised, to be expressable
within Ps, in order to make control more rational without losing other advantages of PSs.

Brooks (1975) used PSs to mode! some immediately observable processes in writing
code in a programming language. His PS started out with detailed plans of how a program
was to be written, and proceeded to fill in the details and produce the program code. His
model is not a pure PS, but makes heavy use of operators coded in his base language,
Lisp. His Ps are very specific to pieces of the plans, and tend to represent fairly large
program steps, much larger that Ps in most of the other models discussed here - on the
order of seconds of human thinking time as opposed to tenths of seconds. This is
probably due to not coding the entire process as a PS and to weaknesses in his Ps’
representational power and pattern-matching capabilitics. That is, if his PS were forced to
grapple with a number of the more basic operations (rather than using Lisp) and if it were
able to express more general patlern matches (for instance, he has no pattern variables
for comparing results from one element match to another), his Ps would tend to be broken
down into simpler units with more use made of intermediate representational and control
elements, He found it effective to use PSs to express the general coding strategy, used
by his experimental subject, of writing some code and if necessary making patches to it
later (as opposed to, say, a backtracking search through possible program modifications).

Waterman (1974, 1975) focused on self-modifying PSs for several tasks: basic
arithmetic, verbal learning (Feigenbaum’s 1963 EPAM), and series completion. He achieved
some impressive behaviors from systems consisting of an ordered list of Ps by the simple
operation of adding Ps to the list at judicious locations. He found that PSs are concise and
powerful, and that there are advantages to using a uniform notation for the fixed and
growing parts of learning systems. The chalienge he presents is to achieve similar results
without using the psychologically implausible ordered-PS architecture.®

We can now summarize the conclusions that can be drawn from the survey just

® Actually, some consider local (i.e. on a few Ps) ordering plausible, and a total memory
ordering implausible.

7 = e T AL i i . A R e

' E. Direct Antecedents and Relatives of the Present Approach Introduction

e e ———————,

presented, and re-emphasize a number of questions that have been raised by other PS
workers. First, it should be clear that while a number of systems have performed difficult
tasks from an Al viewpoint, there has been no honest attempt to explore the
consequences of using PSs over a diversity of Al tasks. Such an endeavor is also
recommended by the preliminary resuits from by study of the Studnt PS (Rychener, 1975),
. discussed above in Section B.2. As an additional challenge to such an attempt, Davis and
King, in a survey of the uses and characteristics of PSs (1975), say that a number of
domains are inappropriate for PSs: domains involving a unified theory, as opposed to being
2 _a loose collection of diverse, independent fragments; domains that require complex kinds of
control and coordination, as opposed to loosely organized ones; and domains with
predetermined uses for knowledge, as opposed to having facts statable in application-free
{ form. They don’t say using PSs in such ways is impossible, but just that it is likely to be
! very awkward and unenlightening to do so. The present approach is in opposition to that
view, and at least assumes that more evidence is required before dismissing a mechanism

' that has other promising features.

On the whole, a number of issues raised by work that is not in the direct tradition of
this thesis will be beyond its scope: the problem of representing the statistical nature of
uncertainty, as in MYCIN and in Becker’s model; issues of development, as in Young and
Klahr and to a lesser extent, Becker; the process of acquisition to any large extent, as
investigated by the Dendral research, the MYCIN research, Waterman, Siklossy, and
Hedrick; the use of Ps in a goal-driven, backwards mode instead of the recognize-act
mode, as in the MYCIN system and in Becker's model; and the use of significant non-PS
processing in processing Ps other than for the recognize-act cycle, as in the Dendral work.
The works mentioned do raise some interesting questions, other than those topics, that
might be central to the argument of the thesis and therefore might be raised again later:
the level of Ps, especially with respect to the observation that MYCIN Ps are used directly
for explanatory purposes; and the difficulty, also discussed in connection with MYCIN, of
changing program structures that are embedded in a number of rules and that might better
be represented as some other kind of global structure - in general, it may be important to
observe the common kinds of medifications to Ps that are done as systems are augmented.

i To repeat the emphasis of the present approach as a contrast: We want to express
B entire systems as PSs, avoiding approaches that have a PS as just a small augmentable

: subsystem, subject to a number of kinds of processing. This means that a PS represents
knowledge about itself as Ps, or gainc such knowledge by observing effects that occur in
the global Working Memory. The other closely-related PSs raise questions certain to be
touched on by the work of the thesis: whether certain augmentations can be obtained

without using an ordered PS; whether voriations in the PS architecture will make PSs
easier to program, avoiding difficultics in maintaining local control and preventing
unwanted side effects; and more generaly, avoiding the need for additional control

structures such as subroutincs.

e, T e

T TR T F

e
AR

Introduction

F. The Tasks to be Implemented as Production Systems

This section gives a preview of the tasks to be used in the body of the thesis to

explore the issues of Al programming using PSs. The tasks include a simple verbal

learning task, a powerful and general problem solver, a restricted chess program, a

program for conversing in a restricted but natural-appearing language, and a program for

conversing and performing manipulations on a toy blocks model. The tasks are chosen to

be representatlive of observed variety in past, "classical” Al programs. There are

| necessarily limitations in coverage, especially of important recent work, due to limitations

lin available effort. Without exploring the Al field exnaustively, these programs exercise

the capabilities of PSs as an expressive medium and provide a sufficiently broad basis for

extrapolation to other task arcas. At the end of the section, methodologies for ucing data
. gathered from the implementations will be discussed.

T o I e Ty FET, T T e QO O e v S

o

—

EPAN. The EPAM task involves having a program learn nonsense-syllable pairs
g - under restrictions on the amount of material that can be acquired for long-term storage
during the presentation of each pair (Feigenbaum, 1963). The restrictions are based on
observed human behavior, but beyond that have useful properties for our exploration:
information that has already been acquired must be known in some way and consistently
augmented; and tests must be made in order to determine what minimum of inforniation
i must be stored in order to maintain progress while staying within the restrictions. For the
PS version, the information learned is represented as Ps, so that this is an example of a PS
augmenting itself. It also indicates a position that can be taken with respect to using Ps to
store objects more general than simple syllable pairs, namely the encoding of objects

according to their distinguishing properties, in a discrimination network.

GPS. The GPS (General Problem Solver) program (Newell and Simon, 1963) uses the
powerful means-ends analysis method of heuristic search to solve a variety of logic
puzzles and symbolic manipulation problems. In addition to getting PSs to do heuristic
search, with its attcndant problems of expressing goals, maintaining goal-tree structure,
and evaluating progress, GPS includes a powerful matching operation, which is able to

} express the differences between arbitrarily-structured objects. GPS also makes use of
" discrimination networks to give canonical names to various symbol structures used in the
problem-solving process. Problems given to GPS are expressed independently of
knowledge of the internal structure of GPS itself, so that using a PS representation for
that will bring up issues of coordination and communication.

gy

Chess endgames involvina only kinfis and pawns. This task includes heuristic search
of a slightly different form from that in GPS. i tests the ability of PSs to manipulate and
access effectively representations much larger than those in GPS's repertoire. The
recognition of complex patterns of elements and the description of various aspects of the
board representation are also required. As Berliner (1973) has pointed out, considerable
advance over past technigues of chess problem-solving will be necessary in order to

T T G TRy

N acith
.

| ! attain a computer program of a Master level, to which the use of PSs may contribute.
?‘ : Natural lanpuage processing. This task involves accepling descriptions, in a

restricted subset of natural languasge, of a toy blocks scene. From the descriptions, an

LLrs B

1-33 F.

s e

,’ F. The Tasks to be Implemented as Production Systems Introduction

2
S
i

internal mode! is constructed which is used to disambiguate further inputs and to produce

i answers to queries. The PS program significantly extends the capabilities of ils direct
§ ancestor, the MILISY (mini-linguistic system) program of Moran (1972). The PS
g implementation is a fairly direct translator from external strings of words to an internal

semantic representation, without recourse to conventional phrase-structure parsing or to
generation of alternatives among which a search is done for the best inferpretation.

R | Toy blecks manipulations. This task is based directly on Winograd's (1972) program !
o for solving problems in connection with simple rearrangements of objects in a toy blocks
3 scene. Subproblems include finding space to put unneeded objects, building stacks of
: objects, packing objects compactly into a space, and removing obstructions. The language

capabilities of Winograd's system are only partially covered in this task, given tne focus on |
the blocks manipulations. Instead, use is made of the language system just discussed. The
PS implementation illustrates simple mechanisms for a backtracking search strategy, and
easily encodes a number of task-specific heuristics, some of which can be adjusted to .
avoid backtracking to a large extent. N |

Now we turn to issues of methodology. The process of constructing these PSs and
the PSs themselves provide a variety of data to be analyzed. There are some directly
observable characteristics: space and time efficiency; programming time, as an indicator of
productivity when using PSs; conciseness and directness of expiession (oblained by noting
. any content of Ps that is not task-oriented so much as PS-control-oriented); features of
' the representation of data and procedures; aspects of how control is achieved; apparent
failings or limitations of PSs; promising features of the represeniation as PSs with respect
to extensions beyond the initial task; features that point to significant advances that might
result from architectural changes within the general PS framework; features of
organization of Ps, e.g., into modules; and features of the changes made to an initial design
or model of the program in order to form it into a reasonable PS.

One thing to do with such traits is to use them in comparisons to other 1
implementations. The EPAM task provides a compariscn to another PS implementation,
which uses a distinctly different PS architecture. The chess endgame task is currently
being carried out directly in Licp, providing a basis for a number of cpmparisons. |
Comparisons to the Planner approach to problem-solving are provided by the blocks !
manipulation task. Wherever the PS approach in general differs widely from the approach
taken by the predecessor, close comparison is not possible or meaningful, but something
' should be gained with regard to general advantages or disadvantages of PSs |

o

A couple of other methodolcgical devices prove useful. Taxonomies of the features
o observed, e.g. of methods of controi in PSs, provide a general means towards comparisons |
% to broad classes of other language proposals. That is, a taxcnomy could be applied to

iy other control structures in crder to expose relative strengths and weaknesses. Where

2 control devices differ sharply for two control structures, taxonomics show the kinds of

7) issues that each is most suited to grapple with effectively, and also the kinds of issues

i that are likely to arise as obstacles to encoding. [n addition to taxonomies that arise from 3
. observed characteristics, there are developed measures of such traits as modularity, laid

5 out in Section B.1 as critical for building understanding systems. Such measures give

support for properties of PSs such as explicitness and independence of individual Ps.

W I-34 1

v A

o — e L U

T A TR -
et e . Dt

Introduction

i

i

b

i G. The Production System Design Space and Psnlst

;

- This section gives a rough sketch of the range of design that (s possible within the
- . definition of PS architecture. Some design alternatives are suggested and implemented in
¢ Newell's PSG (Newell and McDermott, 1975). The features of Penlst, "PS analyst", which is
E | the architecture used for the present investigation, are introduced and placed in

perspective. (Chapter 1l is devoted entirely to details of the Psnist language.) It will
: become evident as a result of the discussion that PSs offer a considerable degree of
@ freedom in design, and a discussion of the advantages and disadvantages of this is
included. The issues of how representative the Psnist design is and of how the design is
oriented to the goals of analysis of Al programs are also discussed.

The four main components of a PS architecture are its P Memory, its Working
Memory, its Recognize-Act Cycle, and its Conflict Resolution Principles. Since each P is
restricted to a “condition => action" form, the primary attributes of P Memory have to do
with how the Ps are related to each other (forms of condition and action elements are
discussed with Working Memory, below). PSs have been used with a variety of P Memory
structurings: Ps in a single linearly-orcered list; Ps subdivided into small subroutines,
perhaps in hierarchies, only one of which is active at any lime; and Ps in a single
unstructured set. Ps in Psnist are considered to be one unstructured set, largely in order
to avoid the problem of structural context, that is, conditions in Ps implicit due to their
place in some larger organizing structure rather than fully explicit. Because Psnlst's
conditions are thus required to be explicit, language constructs are added to allow a P to
express conditions such as whether patterns aniounting to entire LHSs of other Ps are
satisfied or not. If any relations do hold between Ps, they are in this way guaranteed to
be explicit. Explicitness is an advantage also with respect to readability, or determination
of knowledge content, although in practice it might become cumbersome to have to specify
everything in this way. One side effect of coding a number of Al programs in PSs will be
to dc-ide such questions. Another advantage of keeping the P set unordered is to allow
the program that interprets or otherwise ‘executes a PS program to apply program-
specific heuristics to allow it to achieve the recognition faster. For instance, certain
! specific P-firing sequences might be recognized as common. Condition-testing could be
reordered to take advantape of that without being restricted by some structural ordering
on the Ps. Finally, it seems implausible psychologically, based on the speed of human
recognition and on estimates of memcry size in the millions of Ps, that there is any

.ﬁ
;* complete linear ordering on Ps (iong-term memory), although other kinds of structuring
¥ cannot be ruled out.
¥

Forms of Working Memory range from linearly ordered to partially ordered to
';" j unordered, as regards inter-eiement relations; from ordered to partially ordered to
i : unordered within elements; from flat single-level lists or cets to arbitrarily nested
' structures; and from pure pattern constants and variables to evocation of arbitrary

functions in order to evaluate a particular pattern match. Most of the features of Psnist’s
| : Working Memory are justified by considerations ot efiiciency and simplicity. The Working
i, Memory itself is considered to be an unordered set of items, each of which has one of a
set of distinguished tokens called predicates as its first element, with an ordered, uniform-
sized list of arguments following the predicate name. Lack of order on the set and the

1-35

G The Production System Design Space and Psnlst Introduction

presence of a predicate are considered to be efficiency and programming advantages.
Working Memory elements also have status with respect to the event history of execution
of the PS, as will be discussed with conflict resolution below. Working Memory is allowed
to grow, in number of elements, indefinitely, a sharp contrast to psychological models,
which place severe limits on size because of the correspondence with human short-term
memory. (Psycholcgists place the limits anywhere from around 7 up to several dozens of
elements; some of the limits- are overcome by allowing elements to be deeply structured
rather than spreading out information as a number of elements.) Element arguments may
be structured lists, but they are treated simply as atomic tokens in the recognition
process. !

Condition and action elements tend to vary in much the same way as memory
elements, since they are constrained in operating on those elements. Condition elements
of Ps in Psnlst are siniple abstractions of memory elements, with a required predicate
constant at the head of the condition element, followed by a list of variable arguments
corresponding to constant tokens in actual memory items. (Not allowing a variable at the
predicate location is aimed at efficiency, and it may give some insight into the practical

'limitations of first-order systems (cf. first-order predicate logic)) Once a variable is

bound by matching it with the corresponding token from a memory item, arbitrary Lisp
predicates can be applied to test its value, ranging from equality to a constant, which is
very common, to testing complex numerical relations between variables and beyond. This

~evaluation and testing mechanism is quite contrary to any psychological operations -

humans are not considered to have such power at that low level, but must carry out
arithmetic by more deliberate mecans - and is even controversial among pure Al
researchers. Psnlst has it because it is readily aveailable from the underlying machine
structure, and 1 feel full advantage should be taken of it, since in other ways, such as
parallelism of recognition, current computer architectures place constraints on PS

. efficiency and power. Not allowing nested list structures to have an effect on the match

of conditions to memory elements is included for possible efficiency reasons and to make
all of the essential elements more explicit, forcing their occurrence at the top level of lists

in LHSs.

Action elements, although constrained like conditions by the form of Working
Memory elements, do have a few added aspects, including: commands to stop the
recognize-act cycle; operators to add to and modify P Memory; and operators to act on,
and receive inputs from, the external (user) environment. Action elements of Ps in Psnlst
are similar in form to condition elements, specifying simple additions and deletions of
elements to and from Working Memory. The only exception to this is the set of P Memory
modifying commands, which are expressed in form similar to other action elements, but
have specific operator names in place of predicates. Other operations such as input and
output are programmed as side effects: arguments to action elements can be Lisp function
calls, which can be programmed to do anything externally or to compute any function on
values of wvariables bound during the match to condition elemants - access to other
Working Memory elements is not provided for. Such functions must return values which
are then incorporated into Working Memory elements. Psnist doesn't enforce restrictions
on action functions (because of the obvious difficulties involved as soon as anything at all
is permitted), but in practice, anything beyond simple arithmetic, simple list processing, and
input-output are considered {o violate the spirit of PS programming. Keeping the actions
basically in the same form as conditions, or at least in a relatively simple form, might

G. 1-36

Introduction The Production System Design Space and Psnlist G.

eventually lead to the possibility of using the Ps in backward or "action-driven" mode, in
which a chain of P firings is sought that will achieve some memory state (cf. Buchanan,
1974, or Davis et al.,, 1875).

The basic recognize-act component of PS architectures has been subject to the
least amount of variation historically. Underlying serial hardware has predisposed systems
to consist of a discrete act of recognition followed by conflict resolution followed by a
sequence of serial actions, completing one cycle. Conceivably a single system could
encompass a number of such cycles executing in paraliel, with the same P Memory and
Working Memory, either synchronized (e.g. all recognitions starting at the same time and
delaying the start of the next cycle until all actions have a chance to execute), totally
asynchronous, or some mixture. Considerable variation, however, does occur within the
conflict resolution part of the cycle.

Conflict resolution must generally decide among a number of Ps whose conditions
have been recognized as being satisfied, usually narrowing the set down to a unique
choice of a P whose actions are to be executed. There are a number of system
characteristics on which to base the process: the structure of Working Memory (e.g. which
bindings use elements closer to the front of a linearly-ordered memory), the structure of P
Memory (e.g. where the satisfied Ps stand in relation to each other in a lincar ordering),
the specific kind of bindings that take part in the competing recognitions (e.g., whether one
is a special case of another), the history of the system (e.g. the recency of addition of
Working Memory elements or Ps), the nature of the actions to be performed on the basis
of the bindings (e.g. those that are indicated by the majority of bindings), random or

! arbitrary selection, and conceivably a number of other variations. Several principles can

be combined, applied in sequence until the conflict set is narrowed down. The system can
be more or less stringent on how many sequences of actions, associated with bindings
found by the recognition, are allowed to be executed after the conflict resolution has been
applied: uniqueness may be desired, multiple bindings to the same P may be allowed, or
mulliple bindings to a number of Ps may be allowed. Considerations of efficiency of
implementation and of psychological plausibility are factors that influence the ultimate
design of the process. Psnist makes use primarily of the history of execution of the
system, allowing those Ps to fire first that make use of the most recent Working Memory
elements. Once a P has fired using some particular set of elements, it cannot fire again
using the same ones (and performing the same actions), unless in the meantime one of the
elements has been re-asserted into the Working Memory, effectively making it recent
again. This concept is implemented using a stack, so that recent elements temporarily
passed over in making a selection are pushed down on the stack, but eventually are
allowed to rise back to the top, becoming candidates for selection again. Loosely speaking,
elements that are most recent can be considered as events, making the system event-
oriented, and giving it a focus of atlention on recent events, and at the same time making
it rather compulsive in exploring the consequences of all events, even when there have
been numerous distracting events that have pushed them out of the immediate focus.

Using (he history in this way to resolve conflicts does not determine a unigue P in
every situation, so Psnist simply arbitrarily chooses one over the others. Some efficiency
is gained by not even fully bringing these others into consideration: the first successtul
recognition found, subject to an ordering that ensures that it will be within the proper
recency constraints, is executed without further ado. Ancther important feature, in terms

1-37 G.

=

gt L e

G. The Production System Design Space and Psnist Introduction

of system behavior, is that if the successful recognition is able to come up with a number
of possible bindings for a P, all of them are executed immediately, rather than choosing
only one from the set; they are executed in arbitrary order.

We must conclude from the above considerations that the design space for PSs
contains a large number of significant variations. It is difficult to know in advance how to
make a decision on a number of the dimensions. With such a range of possibilities, it is
even hard to sharply distinguish a PS from a non-PS, although given a particular example,
there is likely to be a consensus among PS “experts”. But on the other hand, this situation
may not present a barrier to progress. PSs are easily implemented, so it's feasible to go
through a number of design iterations fairly quickly. Also the flexibility means that PSs
may be adaptable to a wide range of tasks.

To summarize how the design of Psnlst is acceptable for the overall aims of this
thesis, it should first be pointed out that there are few strong assumptions made. For
instance, keeping the P Memory unordered rather than having it strictly ordered as in
some other PS architectures, is a weak assumption (in providing less mechanism to the
user), and conclusions made from Psnlst will carry over to systems that add structure.
That is, Psnlst PSs will produce similar behavior if executed in an architecture whose
essential difference is in P Memory structure (we would expect secondary behavior
changes such as in timing characteristics). Thus by keeping the cesign simple, conclusions
may be more widely representative of PSs. Psnlst’s design also makes few assumplions in
order to be able to gather data on just which assumptions it should make. If it turns out
that certain cumbersome constructions or patterns of condition elements are common,
there will be strong justification for higher-level language features that make their
expression easier. If we take as our aim to find ways of automating the encoding of
knowledge as Ps, whether one form or another is less clumsy than the forms adopted for
the present study diminishes in importance, to be replaced by considerations of openness

and flexibility.

e

L

#

e

g

2

Introduction

H. To the Reader

The overall structure of the thesis is general things in the outside chapters, I and
VII, and detail in the others, Il through VI. Chapter [introduces PSs, gives some history
and a survey of other PS work, gives a priori features of PSs and their relation to
research in understanding systems, and motivates the choice of tasks and the PS design
used in the rest of the thesis. Chapter VII draws conclusions on the basis of the PSs
constructed, reviews all of the issues covered in fragmentary fachion in the detailed
chapters, and summarizes the strenglhs, weaknesses, and promising applications of PSs.
Chapters 1 and VII should stand together as a unit apart from the rest of the thesis, in
terms of general interest and in being free from dependence on material that is presented
only in the detailed chapters. A thorough understanding of PSs cannot be effectively
gained, though, without studying at lecast one of the inner chapters, Il through VI, in detail.
That study should include contact with the actual PS and its workings. Chapter Il is a pre-
requisite to III through VI, since it introduces the Psnist language and architecture. Note
that each inner chapter covers a single task, except Chapter VI, which combines the two

. tasks dealing with toy blocks,

Each chapter has an abstract, a detailed table of contents (including figure titles and
locations), an introduction, and usually a summary, so that it is feasible for the reader to
get a general idea of the chapter’s content quickly. In addition, most individual sections of
chapters start with an overview and include a sutamery or have summaries at the ends of
several subsections. Sections within chapters are labelled with capital letters, e.g., B, H,
while subsections are Arabic numerals attached to section letters, e.g. B.3, H1. Pages are
numbered sequentially within chapters, and a section or subsection identifier is printed in
the upper and lower corners of most pages. Appendices are also given capital letter
identifiers, and are marked similarly to sections.

The structure of detailed chapters is superficially similar to the overall thesis
structure: details sandwiched between more general introductions and conclusions. Each
chapter gives: an overview of the task to be pursued, design issues with respect to the
PS, an overview of the PS program structure and representation, examples of what the PS
does in general terms, comparisons to other implementations, details, PS issues brought out
by the implementation, task domain (PS-independent) issues, and conclusions. Those
ingredients are not necessarily all present in every chapter, or in that order, but the
reader should expect content along those lines and thus be able to be selective in what to
read. The details are usually confined to one section, which usually contains: more detail
on the overall PS structure and organization, more details on program behavior on an
example test, a discussion of how tests were chosen for the program so that a full range
of behavior could be illustrated, meaninags of the predicates used in constructing the PS,
and pointers to and explanations of notations in the appendices. The appendices contain
program listings, a cross-reference of the Ps, and detailed program output. Each chapter
has its own list of references to the Al literature. Chapter | has general PS references,
while the other chapters have only the specific task-related references that are relevant
local background.

Details of PSs are often presented at a general leve! through the use of very

1-39 H.

ol o 7 i

DS s i dead b b

H To the Reader Introduction

abstract Ps (VAPs) or abstract Ps (APs). These are an ad hoc notation that aims at
describing the content of Ps without specificying all details of control, and especially
neglecting local variable assignments. VAPs and APs are used to avoid such deficient
devices as flowcharts, and at the same time manage to convey some of the PS spirit of the

“actual programs. (A similar usage appears in a few places in Newell and Simon, 1972.)

VAPs generally are more abstract, corresponding to more of the actual PS per VAP than
do APs. Details on the abstract notation are given in Chapter IV.

1-40

Gide s T gy

B - o pesing Cigc

T

R

I T T R T AL

|
E
4
5
I
3
[

Introduction

I. References

Anderson, R. H and Gillogly, J. J, 1976. "Rand intelligent terminal agent (RITA): design
philosophy", R-1809-ARPA. Santa Monica, CA: The Rand Corporation.

Becker, J. D, 1973. A model for the encoding of experiential information®, in Schank, R. C.
and Colby, K. M, Eds., Computer Models of Thought and Language, pp. 396-434. San
Francisco, CA: W. H Freeman and Co..

Berliner, H. J, 1973. "Some necessary conditions for a master chess program”, Proc. Third
International Joint Conference on Artificial Intelligence, pp. 77-85.

Bobrow, D. G, 1964. “A question-answering system for high-school algebra word
problems”, Proc. of AFIPS Fall Joint Computer Conference, 1964, pp. 591-614.

Bobrow, D. G. and Raphael, B. R, 1974, "New programming languages for .artificial
intelligence research", Computing Surveys, Vol. 6: 3, pp. 153-174.

Bobrow, D. G. and Wegbreit, B, 1973. "A model and stack implementation of multiple
environments", Comm. ACM, Vol. 16: 10, pp. 591-603.

Brooks, R, 1975. "A mode!l of human cognitive behavior in writing code for computer
programs”, Pittsburgh, PA: Carnegie-Meilon University, Department of Computer
Science.

Buchanan, B. G, Feigenbaum, E. A. and Lederberg, J., 1971. “A heuristic programming study
of theory formation in science", Proc. Second International Joint Conference on
Artificial Intelligence, pp. 40-50. Also Stanford Al Memo 145, Stanford University
Computer Science Department.

Buchanan, B. G. and Sridharan, N. S, 1973. "Analysis of behavior of chemical molecules:
Rule formation on non-homogeneous classes of objects", Proc. Third International
Joint Conference on Artificial Intelligence, pp. 67-76. Also Stanford Al Memo 215,
Stanford University Computer Science Department.

lBuchanan J. R, 1974. "A study in automatic programming", Pnnsburgh PA: Carnegie-Mellon
Univers |ty, Department of Computer Science.

Davies, D. and Julian, M, 1973. "Popler 1.5 reference manual”, TPU Report No. 1. Edinburgh,
UK: University of Edinburgh.

Davis, R, Buchanan, B. and Shortliffe, E, 1975. "Production rules as a representation for a
knowledge-based consultation program", Report STAN-CS-75-519, Memo AIM-266.
Stanford, CA: Stanford University, Computer Science Department.

Davis, R. and King, J, 1975. "“"An overview of production systems", Report
STAN-CS-75-524, Memo AIM-271. Stanford, CA: Stanford University, Computer
Science Department.

1-41 L

L) 1 References Introduction

.Enea, H. J. and Colby, K. M, 1973. “Idiolectic language analysis for understanding
doctor-patient dialogues”, Proc. Third International Joint Conference on Artificial
Intelligence, pp. 278-284.

Erman, L. D. and Lesser, V. R, 1975. "A multi-level organization for problem-solving using
many, diverse, cooperating sources of knowledge", Proc. Fourth International Joint
Conference on Artificial Intelligence, pp. 483-490.

Evans, A., 1964, "An ALGOL 60 compiler", in Goodman, R., Ed., Annual Review of Automatic
Programming, Vol. 4, pp. 87-124. New York, NY: Pergamon Press.

| Farley, A, 1974, "VIPS: A visual imagery and perception system; the result of a protocol
analysis”, Pittsburgh, PA: Carnegie-Mellon University, Department of Computer
Science. Ph. D. Thesis.

Feigenbaum, E. A, 1963. "The simulation of verbal learning behavior", in Feigenbaum, E. A.
and Feldman, J, Eds., Computers and Thought, pp. 297-309. New York, NY:
McGraw-Hill.

Fikes, R. and Nilsson, N, 1971. “STRIPS: A new approach to the application of
theorem-proving to problem-solving", Proc. Second International Joint Conference on
Artificial Intelligence, pp. 608-620.

Floyd, R, 1961. “"A descriptive language for symbol manipulation®, J. ACM, Vol. 8, pp.
579-584.

Galler, B. and Perlis, A, 1970. A View of Programming Languages, Reading, MA:
Addison-Wesley. Especially chapters 1 and 2.

Griswold, R. E., Poage, J. F. and Polonsky, 1. P, 1968. The SNOBOL4 Programming
Larguage, Englewood Cliffs, NJ: Prentice-Hall. Second edition.

Hayes-Roth, F. and McDermott, J, 1976. "“Knowledge acquisition from structural
descriptions”, Pittsburgh, PA: Carnegie-Mellon University, Department of Computer
Science.

Hedrick, C. L., 1974. "A computer program to learn production systems using a semantic
net", Pittsburgh, PA: Carnegie-Mellon University, Graduate School of Industrial
Administration. A shortened form is in Artificial Intelligence, 7: 1, pp. 21-49, Spring,
1976.

Hewitt, C., 1969. "Planner: A language for proving theorems in robots", in Walker, D. E. and
Norton, L. M, Eds., Proc. First International Joint Conference on Artificial Intelligence,
! ‘ pp. 167-301. Boston, MA: The Mitre Corp..

Hewitt, C, 1971. "Procedural embedding of knowledge in Planner", Proc. Second
International Joint Conference on Artificial Intelligence, pp. 167-182.

E
f

'
EE

L 1-42

|

Introduction References L

Hewitt, C., 1972. "Description and theoretical analysis (using schemata) of Planner: A
; language for proving theorems and manipulating models in robots”, TR-258.
Cambridge, MA: MIT Al Lab.. Ph. D. Thesis.

, Klahr, D., 1973. "A production system for counting, subitizing, and adding", in Chase, W. C,,
Ed., Visual Information Processing, pp. 527-546. New York, NY: Academic Press.

- Klahr, D., 1976. “Steps toward the simulation of inteliectual development®, in Resnick, L. B,,
Ed., The Nature of Intelligence, pp. 99-133. Hilisdale, NJ: Lawrence Eribaum
Associates.

Markov, A. A, 1954, The Theory of Algorithms, US Dept. of Commerce, Office of Technical
Services. Translated by J. J. Shorr-kon, from Teoriya Algorifmov, USSR Academy of
Sciences, Moscow.

McCarthy, J., 1974. “Review of Sir J. Lighthill, Artificial intelligence: A general survey",
Artificial Intelligence, 5, 3. pp. 317-322.

» McDermott, D. V. and Sussman, G. J,, 1972. "The CONNIVER reference manual”, Memo 259.
Cambridge, MA: MIT Arlificial Intelligence Laboratory.

- Minsky, M., 1967. Computation: Finite and Infirite Machines, Englewood Cliffs, NJ:
Prentice-Hall. Chapter 12.]

“Minsky, M, 1975. "A framework for representing knowledge", in Winston, P. H, Ed.,, The
Psychology of Computer Vision, pp. 277-211. New York, NY: McGraw-Hill.

lMoore, J. and Newell, A, 1973. "Mow can Merlin understand?", Pittsburgh, PA:
: Carnegie-Mellon University, Department of Computer Science.

_Moran, T. P.,, 1972. “MILISY: The mini-linguistic system", in Newell, A,, Reddy, R, et. al,, Eds,,
CSD Artificial Intelligence Study Guide 72, pp. 3.23-3.45. Pittsburgh, PA:
Carnegie-Mellon University, Department of Computer Science.

Moran, T. P, 1973. "“The symbolic imagery hypothesis: An empirical investigation via a
production system simulation of human behavior in a visualization task”, Piltsburgh,
PA: Carnegie-Mellon University, Department of Computer Science. Ph. D. Thesis; short
form is in Proc. Third International Joint Conference on Artificial Intelligence, pp.
472-477.

Newell, A, 1967. "Studies in problem solving: Subject 3 on the cryptarithmetic task
DONALD + GERALD = ROBERT", Piltsburgh, PA: Carnegie Institute of Technology.

Newell, A, 1972. “A theoretical exploration of mechanisms for coding the stimulus®, in
Melton, A. W. and Martin, E., Eds., Coding Processes in Human Memory, pp. 373-434.
Washington, DC: Winston and Sons.

Newell, A., 1973. "Production systems: Models of control structures”, in Chase, W. C, Ed,,
Visual Information Processing, pp. 463-526. New York, NY: Acadenmic Press.

1-43 L

f L References Introduction

Newell, A. and McDermott, J, 1975. "PSG manual", Pittsburgh, PA: Carnegie-Mellon
University, Department of Computer Science.

Newell, A. and Simon, H A, 1963. "GPS, a program that simulates human thought", in
Feigenbaum, E. A. and Feldman, J, Eds.,, Computers and Thought, pp. 279-293. New
York, NY: McGraw-Hill.

Newell, A. and Simon, H A, 1965. "An example of human chess play in the light of chess
playing programs", in Wiener, N. and Schade, J. P., Eds., Progress in Biocybernetics,
Vol. 2. pp. 19-75. '

Newell, A. and Simon, H A, 1972. Human Problem Solving, Englewood Cliffs, NJ:
Prentice-Hall.

Nilsson, N. J., 1971. Problem-Solving Methods in Artificial Intelligence, New York, NY:
McGraw-Hill.

Nilsson, N. J., 1974. “"Artificial intelligence", Technical Note 89. Menlo Park, CA: Stanford
Research Institute, Artificial Intelligence Center. Invited paper, IFIP Congress 74,
Stockholm, Sweden. :

Post, E., 1943. "Formal reductions of the general combinatorial decision problem", American
J. Mathematics, Vo!. 65, pp. 197-268.

_Rulifson, J. F., Derksen, J. A. and Waldinger, R. J, 1972. "QA4: A procedural calculus for
intuitive reasoning", Al Group Technical Note 73. Menlo Park, CA: Stanford Research
Institute.

Rychener, M. D, 1975, "The Studnt production system: A study of encoding knowledge in
i production systems", Pitisburgh, PA: Carnegie-Mellon University, Department of

Computer Science.
|

‘ Shortliffe, 1974. "MYCIN: A rule based computer program for advising physicians regarding
) antimicrobial therapy selection”, Ph.D. Thesis. Stanford, CA: Stanford University,
' Computer Science Department.

Siklossy, L., 1972. "Natural language learning by computer", in Simon, H A. and Siklossy, L.,
Eds., Representation and Meaning, pp. 288-328. Englewood Cliffs, NJ: Prentice-Hall,
also Ph. D. Thesis, Carnegie-Meilon University, 1968.

Simon, H. A, 1972. "On reasoning about actions”, in Simon, H A. and Siklossy, L., Eds.,
Representation and Meaning, pp. 414-430. Englewood Cliffs, NJ: Prentice -Hall.

! ¢ Sussman, G. J. and McDermott, D. V, 1972. “From PLANNER to CONNIVER - A genetic
approach”, Fall Joint Computer Conference, pp. 1171-1179. Montvale, N.J: AFiPS
Press.

Tesler, L. G, Enea, H J. and Smith, D. C.,, 1973. "The Lisp70 pattern matching system", Proc.
Third International Joint Confcrence on Artificial Intelligence, pp. 671-676.

1. 1-44

f
:
g
|

Introduction References 1

Waterman, D. A, 1970. "Generalization learning techniques for automating the learning of
heuristics”, Af, Vol. 1, pp. 121-170.

Waterman, D. A.,, 1974. “Adaptive production systems", Complex Information Processing
Working Paper 285. Pittsburgh, PA: Carnegie-Mellon University, Department of
Psychology. Also in Proc. Fourth International Joint Conference on Artificial
Intelligence, pp. 296-303.

Waterman, D. A, 1975. "Serial pattern acquisition: A production system approach®, Complex
Information Processing Working Paper 286. Pittsburgh, PA: Carnegie-Mellon
University, Department of Psychology.

Winograd, T., 1972. Understanding Natural Language, New York, NY: Academic Press.

Yngve, V. 1962. "COMIT as an information retrieval language”, Comm. ACM, Vol. 5, pp.
19-28.

Young, R. W., 1973. "Children’s seriation bchavior: A production-system analysis", Compiex

Information Processing No. 245. Pittsburgh, PA: Department of Psychology. Also
available from Department of Computer Science.

1-45 L

{
§
'
|
i

Chapter Il

Introduction to Psnlist

Abstract. Psnist is a production system architecture designed for building substantial
artificial intelligence systems. This chapter starts by giving an introduction to Psnist which
requires no previous experience with production systems. There is discussion of the
recognize-act cycle, of the syntax of productions, and of special features. A short
production system for a version of the Mcnkey and Bananas problem is given as an
example.

f Psnist

Table of Contents
For Chapter Il
SECTION PAGE
) A Introduction . . AE A s AR s w e e e e e e -1

. B The Recognize-Act Cycle B R R |

' C Extended Example e e S e et . -7
. Cl1 Discussion of trace and productions lI-7

: c.2 Concluding comments on the example II-20

c3 A note on reading productions II-21

ca Program listing e R e S ok e e a s R

C5 Cross-reference and meanings for predicatess [I-23

D GrammarforPsnist « & & v v + v 4 v v e e e v o l-25

APPENDIX PAGE

A ShortSummery « « « « « o + &« s+ o s o+ 5 o s s s «» » B30

Al System architecture and production format of Psnlst II-30

t A2 Features of Psnist programs « . . . lI-31
3 A3 Features of the traceoutput lI-33

B SystemFilePointers « « v o« o o« o« . l-35
C TesketoDale + & o » o v 5 s 5 v » ¢« 5 » o« 5 s » W36

HE

Psnist

A. Introduction

A production system (abbreviated PS} is a program consisting of s set of
j productions (abbreviated Ps, singuiar P) of the form,

conjunctive condition on Working Memory => sequence of actions

where the Working Memory is a symbolic mode! of a situation, and where the actions
b 1 consist of additions and deletions of Working Memory elements. The action or behavior of
B | the program resuits as the rules in some subset of the PS operate successively on some
G- initial memory configuration to produce a sequence of intermediate memory states and a
final state in which no conditions in the PS are satisfied. Each step in such a behavior
sequence consists of a recognition of the satistaction of some P's condition followed by
exscution of its actions, giving r'se to the term recognize-act cycle. Psnist, pronounced
"PS analyst®, is a PS architecture in which: a PS s expressed as an unordered set of Ps;
the Working Memory is an unordered set of unsiructured lists of symbols; and the
recognize-act cycle is oriented to viewing changes to the Working Memory as attention-
focusing events. Each item of Working Memor . consists of an element of a set of
distinguished constants called predicates, followec b, an ordered list of arguments, which
are usuaily tokens for objects. By analogy wilh logic terminology, & Working Memory
e'ement is referred to as an |nstance of ils predicate, or simply as an instance.

An exampls of a Psnlst P is

HUNGRY(M) & ISMONKEY(M) & ISBANANAS(B) & LOC(B,X,Y,H)
=> GOTO(MX,Y) & REACHFOR(M,B)

The portion before the "=>" is the condition or left-hand-side (LHS), the portion atter, the
action or right-hand-side (RHS). The identifiers M, B, X, Y, and H are variables that take on
tokens as values during the match to the condition; the other identifiers are predicates.
The LHS is satisfied in a model in which there is a token, say MNK-1, for which the
predicates "HUNGRY" and "ISMONKEY" are satisfied, i.e, we have (ISMONKEY MNK-1) and
(HUNGRY MNK-1), and in which there are tokens, say BAN-1, I-1, J-1, end K-1, such that
& (ISBANANAS BAN-1} and (LOC BAN-1 1-1 J-1 K-1) are true (argument positions 2, 3, and 4
& of LOC are values along X-Y-7 co-ordinate axes). After recognition of the condition, the

model is changed by the addition of (GOTO MNK-1 I-1 J-1) and (REACHFOR MNK-1 BAN-1).
This P encodes the rule that a hungry monkey in the vicinity of some bananas tries to go
, i to where the bananas are and tries to get its hands on them., (This model of monkey and
¥ A, bananas is simplified for clarity of exposition.)

Notice that the resu!t of the application, or “firing", of this rule does not remove the
condition which led to its application. This kind of infinite loop will not occur, because the
Psnist architecture makes a distinction between new data, e, changes to the model, and
old data, that part of the model for which rule applications have already been tried. In our
example model, the (ISMONKEY MNK-1) and (ISBANANAS BAN-1) are not likely to be new ‘
data, whereas (HUNGRY MNK-1) is a part of the model that is likely to change, causing i

examination of the above P and possibly olhers

*
¥
B

r—

_'§~ ;o "

t &
4%
d 3
1

"Vl

s i S

T ‘““&;ﬂw-w.w““ ST

_~; = 45

i
1
)
i

A Introduction Psnlst

Section B of this chapter discusses in detail the processing assumptions imposed by
the Psnist architecture. The first few paragraphs should be sufficient to convey the
central ideas, for a cursory reading. Section C goes through in detai! an exampie of a PS
and its execution. Section D gives a semi-formal description of Psnist syntax, and gives
semantics of special system features. The reader may want (o refer to Section D while
reading Section C, and vice versa.

X
v
z

P

e

]

\|l 3

Psnist

B. The Recognize-Act Cycle

Psnist is an event-oriented system: it starts with events from the "external world”
and continues to act on the basis of internal events untii no new events are evoked.
Events are compulsively stacked up so that attention is brought to bear on esach one, if not
immediately, then at least eventually. Focusing on events serves two functions: it
prevents repetitious looping in many cases and it resolves conflicts betwean LHSs that are
simultaneously true but that do not respond to the same events. Other conflicts are
resolved arbitrarily, and are taken to be either programming errors, where one of the
conflicting Ps doesn’t have specific enough conditions, or "don’t-care” situations, where it
ultimately is not supposed to matter whether one is selected before the others. This
section describes the recognize-act cycle, in which a single recognition (match to an LHS)
is followed by a sequence of actions (changes specified by the corresponding RHS), and
whose repeated execution captures the intuitive notions just discussed.

Initially, :SMPX (stack memory for production examinations) is empty, and the system
prompts the user for starting events, which are either additions or deletions of instances
in Working Memory. The Ps associated with those changes are placed in :SMPX, and the
basic cycle starts:

1. Try tc match the LHS of the P on the top of :SMPX to instances in
the Working Memory; remove that entry from :SMPX.

2. If the match fails, do nothing (ie., skip this step), otherwise, change
the Working Memory by making the insertions and deletions specified
by the RHS of the P, using assignments to LHS variabies made by the
match. For each insertion or deletion, add associated Ps to :SMPX;
this association is determined by the possibility of usage of the
change in forming a match to the LHS of the P.

3. If there is anything in :SMPX, go to 1. and repeat the cycle, else
prompt the user for more instances; if the user types NI, exit the
control cycle, eise load up :SMPX as before and repeat the cycle
starting at 1.

The preceding description outlines the basic operation of Psnlist, but leaves out
several details. In order to elaborate, the following introduces some terminology and
sketches briefly the necessary syntax. An LHS or RHS of a P is a conjunction, the
sequence of conjuncts being separated by "&". Each conjunct consists of a predicate name
and a sequence of arguments, except that in LHSs there is also a special construction
consisting of a negated conjunction (detailc later). Except for special sysiem predicates
for evaluating Lisp predicates, conjuncts in LHSs have as arguments variables that take on
Working Memory constants (tokens) as values during the match process. In RHSs,
conjuncts specify how changes (additions of new instances or deletions of old ones) are to
be made to the Working Memory, and arguments can be variables, quoted constants, or
Lisp expressions. Conjuncts may be preceded by "NOT", which means “absence of" for LHS
forms (used in the match), and "delete" for RHS forms. Conjuncts preceded by "NOT" are
referred to as negative conjuncts, while others are referred to as positive.

The match performed in step 1 above is not exhaustive relative to Working Memory

11-3 B.

4
3_

B. The Recognize-Act Cycle Psnist

content, but rather is keyed lo specific changes in the Working Memory. The changes
used in any particular malch are obtained from an :SMPX entry which associates the name
of the P to bs matched with a list of ail the changes relevant to it that have occurred since
the previous match was done on it. Those changes that are still true with respsct to the
current Working Memory are used to make a sel of initial assignments to subsets of LHS
variables. An initiai assignment is made f - avery positive conjunct in the LHS that has the
same predicate as a nawly-added instance; @ nawly-deleted instance causes assignments to
be made to variables in corresponding negative conjuncts. The match proceeds quite
straight-forwardly, extending the initial assignments, trying to find Instances in the
Working Memory of the LHS predicates in such a way that ail of the variables in LHS
conjuncts are assigned in a mutually consistent way, anaiogous to the unification algorithm
of resolution theorem-proving. In fact, there may be many such assignments that can be
made, and the match returns a list of them; they are all used in the processing of step 2
for making Working Memory changes, but the order of use is indelerminate (it depends on
the way the match searches the Working Memory and on the way results are formed and
returned). Another important property of the match is that there is only malching at the
top list level of Working Memory instances. Any complexity of instances below this top
level is invisible to the match, a structure being treated simply all in one piece.

Several detaiis of the process in step 2 above are important. The confent of entries
in :SMPX has already been described: a P name and a list of newly-added or -deleted
instances. The RHS of a P that fires is converted (o a list of changes to the Working
Memory, by making variable assignments specified by the LHS mafch and by evalualing any
Lisp expressions that are arguments. Each of these changes has associated with it a2 list of
Ps which may be relevant to the change. Each of the Ps in the list is made into an :SMPX
entry by forming a list of the name and the change. The :SMPX enlries are stacked in
$SMPX in such a way that the top of the stack has entries associaled with the left-most
change specified in the RHS, and the rest are below it in ieft-righl order. There is ons
qualification to that: when an entry is stacked, if another :SMPX enlry exists for the P part
of the entry, the two entries are merged, the old one disappears, and the new entry on
top now contains the P name and the combined list of changes from the new and old
entries. So, the approximate order of :SMPX entries is determined by the left-right order
of conjuncts in the RHS,

The sole use of the order in which changes occur does nol defermine a unique top
entry in :SMPX for the simple reason thal many Ps can be associaled with each change. If
more than one P in such an associaled group should actually have satistied LHSs, there is a

conflict. As mentioned above, such conflicts are considered programming errors or "don't-
care”, but nevertheless Psnist attempts to arbilrate conflicts heuristically (and without
actually doing the extra computation necessary to determine the conflici, in tha usua!

running mode). The heuristic to be described now may be seen as taking info account the
relative recency of events other than the one that is common to the eniries near the top
of :SMPX, aithough for the user it is effectively indelerminate. Cvery time the list of Ps
associated with a change is accessed it is re-ordered by a one-pass sorting algorithm that
simply moves some of the Ps to the end of the lisl. How they are moved is based on a
heuristic value associated with each P (it is the PVAL property of the P). This value is
incremented every time the P is used to form an (SMPX enlry, and is decremented or
reduced every time a match is performed on the P. Thus, it is related to the number of
changes associated with the P in its :SMPX entry. It is not a stricl relation because the

B. -4

R S R

B AT,

T Y R ——
- .

¥
3
’

oy

pre—

*

Psnist

B. The Recognize-Act Cycle

Psnist is an event-oriented system: it starts with events from the "external worid”
and continues to act on the basis of internal events untii no new events are evoked.
Events are compulsively stacked up so that attention is brought to bear on each one, if not
immediately, then at least eventually. Focusing on events serves two functions: it
prevents repetitious looping in many cases and it resolves conflicts betwean LHSs that are
simultaneously true but that do not respond to the same events. Other conflicts are
resolved arbitrarily, and are taken to be either programming errors, where one of the
conflicting Ps doesn't have specific enough conditions, or “don’t-care” situations, where it
ultimately is not supposed to matter whether one is selected before the others. This
section describes the recognize-act cycle, in which a single recognition (match to an LHS)
is followed by a sequence of actions (changes specified by the corresponding RHS), and
whose repeated execution captures the intuitive notions just discussed.

Initially, :SMPX (stack memory for production examinations) is empty, and the system
prompts the user for starting events, which are either additions or deletions of instances
in Working Memory. The Ps associated with those changes are placed in :SMPX, and the
basic cycle starts:

1. Try to match the LHS of the P on the top of :SMPX to instances in
the Working Memory; remove that entry from :SMPX.

2. If the match fails, do nothing (i.e., skip this step), otherwise, change
the Working Memory by making the insertions and deletions specified
by the RHS of the P, using assignments to LHS variabies made by the
match. For each insertion or deletion, add associated Ps to :SMPX;
this association is determined by the possibility of usage of the
change in forming a match to the LHS of the P.

3. If there is anything in :SMPX, go to 1. and repeat the cycle, else
prompt the user for more instances; if the user types NI, exit the
contro! cycle, else load up :SMPX as before and repeat the cycle
starting at 1.

The preceding description outlines the basic operation of Psnist, but leaves out
several details. In order to elaborate, the following introduces some terminology and
sketches briefly the necessary syntax. An LHS or RHS of a P is a conjunction, the
sequence of conjuncts being separated by "&". Each conjunct consists of a predicate name
and a sequence of arguments, except that in LHSs there is also a special construction
consisting of a negated conjunction (details later). Except for special system predicates
for evaluating Lisp predicates, conjuncts in LHSs have as arguments variables that take on
Working Memory constants (tokens) as values during the match process. In RHSs,
conjuncts specify how changes (additions of new instances or deletions of old ones) are to
be made to the Working Memory, and arguments can be variables, quoted constants, or
Lisp expressions. Conjuncts may be preceded by "NOT", which means “absence of” for LHS
forms (used in the match), and "delste" for RHS forms. Conjuncts preceded by "NOT" are
referred to as negative conjuncts, while others are referred to as positive.

The match performed in step 1 above is not exhaustive relative to Working Memory

it-3 B.

&

b
4
el
%

2
gy |
-

Psnist The Recognize-Act Cycle 8.

value may not be set to O when there is no :SMPX entry (after a match). The values are
not made use of in an exact form anyway, since the sorting procedure used on the list of
Ps is (for efficiency reasons) very approximate. One positive result of this heuristic is that
significantly less match effort is spent finding the next matching P than is the case for
random re-ordering of the P list (the "semi-sort™ used is not significantly different in this
regerd from a strict sort on the PVAL value). An incidental effect of the re-ordering is
that the ordering of the P lists quickly loses its reiation to the order of Ps in the static
program listing.

How the heuristic ordering works out in an actual example can be seen in the first P
firing given in Section C.1. The reader may examine that and the contents of Section
C.4 and Section C5. In Section C5, the part of the cross-reference that is used in
the :SMPX processing is labelled "LHSUSES™; how that is computed should be evident trom
the form of the Ps in Section C.4.

The following summarizes the full detail of the Psnist controi cycle.
1. Match step
a. Remove the top entry of :SMPX,
b. For all of the changes noted by that entry that are still
present in the Working Memory, perform a match on the

entry’s P.
. Form a set of initial assignments for each of the
changes.

. Try to extend each of the initia! assignments, using
any instances from Working Memory.
iil. It the extension attempt succeeds, add the assignment
to the list of results, if it's not already there.
¢. Reduce the PVAL value for the entry's P.

2. Action step. If in "debug” mode, check for conflicts by performing
matches for the set of Ps on :SMPX that have the same tfirst change
as for the P that just matched successfully (if a conflict exists, an
interactive break occurs).

For each assignment returned by the maich,

8. Make the specified assignments, evaluate expressions, and
form the list of changes.

b. Reverse the list of changes, and process each of the changes
as follows:

I. For each P in the list associated with the change,
increment the PVAL value by |

il. Semi-sort the associated list of Ps by PVAL, moving to
the end of the list those with higher values. This
newly-sorted list replaces the old value of the list, for
use with future changes.

ili. For each P in the list, form an :SMPX entry (adding on
any changes from previous :SMPX entry, which is
removed), and stack the entry on :SMPX.

iv. Actually make the change in the Working Memory.

3. If there is anything in :SMPX, go to 1. and repeat the cycle, else
prompt the user for more instances; if the user types NIL, exit the

-5 B.

B. The Recognize-Act Cycle Psnist

control cycle, else load up :SMPX as before and repeat the cycle
" starting at 1.

4 1
.
B |
- 3
8
z
1
o
g 4
i |
‘
e 4
=
a
1
T
3
|
{ .

TR

T

F
®

e Vi i e

Psnist

C. Extended Example

This section presents a detailed run of Psnist on a PS version of the Monkey and
Bananas problem. The detail should be sutficient to provide an example of the workings of
the control structure discussed in Section B, as well as presenting instances of the entities
defined in the grammar of Section D. There is a full listing of the Ps in Section C.4, as
well as a cross-reference of predicate uses, Section C.5.

C.l. Di ion of trace and productions

The Monkey and Bananas problem as modeled here has the monkey in a room with
the bananas at an unreachable height. Three boxes are in the room, and the boxes may be
stacked on top of each other to build a climbable structure for the monkey. In order to
get the bananas the monkey pushes two boxes to a point under the bananas, stacks one
on top of the other, climbs up, and gets the bananas. The Ps presented here represent
the result of past learning on the part of the monkey: his actions are directly connected to
getting the bananas, with no mistakes or searching. How these Ps get {earned would be an
interesting project, but is beyond the present scope. Many features of the situation that
might be modeled are not, such as how the monkey knows the boxes and bananas are
there (he does no looking or seeing or remembering), whether he has to avoid objects in
going from one place to another and in pushing the baxes around, whether in the end it is
really worthwhile for the monkey fo do all this, considering the costs, risks, and benefils,
and so on. Even within the specific model presented there are alternative implementations.

In what follows, the trace generated by Psnlst and the Ps of the system ere
intermixed with the body of text; the generated lines and the Ps are in upper case.

The first thing that must be done is to initialize the model, loading up the Working
Memory with the starting situation. This is done by firing a P:

lli .INXT | G2 KNIY(P)
o> EXISTS(MNK BAN,BX1 8X2,8BX3) & LOC(MNK1,1,1) & LOC(BAN553)
& LOC(BX1,7,82) & LOC(BX2,7 8 1) & UPON(BX1,8X2) & LOC(BXIAE,1)
& ISMONKEY(MNK) & ISBANANAS(BAN) & ISBOX(BX1) & ISBOX(BX2) & ISBOX(BX3)
& HVALBX1,3) & HVAL(BX2,4) & HVAL(BX3,5);

The P is named I1, with the comment "INIT 1" The LHS is INIT(P), and the remainder
is the RHS. 11 is fired by asserting an instance of INIT, as the following initial segment of
the trace shows.

- TRACED RUN OF MONKEY FOR DOC
TOP LEVEL ASSERT (INIT PB)
INSERTING (INIT PB-1)
EXAMINING 11 (INIT PB-1I1/TRY
L
i-7 Cl

T T T T

TR Y T

e R i i S o T S

C.1 Extendad Exsmple Psnist

i 11-1 “INIT 1

USING (INIT PB-1)

(P . PB-1)

INSERTING (LOC MNK-1 1 | 1) (LOC BAN.| 55 3) (LOC BX1-1 78 2)
(LOC BX2-1 7 8 1) (UPON BX1-1 BX2-1) (LOC BX3-1 46 1) (ISMONKEY MNX-1)
(ISBANANAS BAN-1) (ISBOXK BXi-1) (ISBOX BX2-1) (ISBOX BX3-1) (HVAL BX1-1 3)
(HVAL BX2-1 4) (HVAL BX3-1 5)

The (INIT PB) is typed by the user It is made into the instance (INIT PB-1), inserted into
the Working Memory, and processing stariz. The match to the LHS of 11 is performed (as
noted by [1/TRY) with respect {c that instance. The match succeeds (the two lines
starting at !), making use of (INIT PB-1), assigning the variable P to the object PB-1 (the
two lines starting at USING). The resuit is the list of instances starting at INSERTING. The
EXISTS in the RHS of 11 causes creation of the objects MNK-1, BAN-1, BX1-1, BX2-1, and
BX3-1, which are then used to construct the instances shown, after the variables of the
EXISTS are assigned them as values, The predicate LOC gives the three-coordinate
location (X-sxis, Y-avis, Z-axis or height). UPON indicates that two of the boxes eare
stacked up already, with BX1-1 on fop of BX2-1. ISMONKEY, ISBOX, and ISBANANAS give
the classes of the objects. Finally, HVAL is a pre-specified heuristic value that determines
the order in which the boxes are chosen by the monkey (details leter). (The use of this
HVAL eallows us to ignore how the monkey makes the choices.)

(SMPX

[C1 (LOC MNK-1 | i 1) (LOC BAN-1 55 3) (LOC BX1-17 8 2) (LOC BX2-1 78 1)
(UPON BX1-1 BX2-1) ({OC BX3-1 46 1) (ISMONKEY MNK-1) (ISBOX 8X!I-1)
(ISBOX 8X2-1) (ISBOX BX3-1) }

[C2 (LOC MNK-1 & 1 1) (LOC BAN-1 55 3) (LOC BX1-1 7§ 2) (LOC BX2-1 78 1)
(LOC BX3-1 4 @ 1) (ISMONKEY MNK-1} (ISBOX BX]-1) (ISBOX BX2-1) (ISBOX BX3-1)

)

{ N1 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3 (1OC BX1-1 78 2) 1OC BX2-178 1)
(LOC BX3-1 4 6 1) (ISBANANAS BAN-1) (ISBOX 8X1-1) (1SBOX BX2-1) (ISBOX BX3-1)
(HVAL 8X1-1 3) (HVAL BX2-1 4) (HVAL BX3-1 5))

fP1 (LOC MNK-1 1 1 1) (L1OC BAN-1 55 3) (1OCBX1-178 2) (L0OCBX2-1781)
(LOC BX3-! 4 8 1) (ISBCX BX1-1) (ISBOX BX2-1) (ISBOX BX3-1))

[M1 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-1 7 8 2) (LOC BX2-1 78 1)
(LOC BX3-1 4 6 1) (ISMONKEY MHKK-1) (ISBANANAS BAN-1)]

[P3(LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BXi-1 7 8 2) (LOC BX2-1 7 8 1)
(UPON BX1-1 BX2-1) (LOC BX3-1 46 1)]

[P2 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-1 7 8 2) (LOC BX2-178 1)
(LoCc Bx3-146 1))

[R2 (LOC MNK-1 11 1) (LOC BAN-1 85 3) (LOC BXi-1 78 2)(LOCBX2-1 78 1)
(LOC 8X3-1 48 1)}
[R1 (LOC MNK-1 1 1 1) {LOC BAN-1 £ 5 3) (LOC BX1-1782)(LOC BX2-178 1)

(LOC BX3-146 1)]

[G2 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-1 78 2) (LOC BX2-1 78 1)
(LOC BX3-148 1)]

{ G1 (LOC MNK-1 1 | 1) (LOC BAN-] 55 3) LOC BX1-1782)(LOCBX2-178 1)

(LoC BX3-1481)))

{ISMPX now consists of the set of entries shown, which happens to include an entry for
every P except 11. Each entry i in square brackets [], and it is evident thet the order of
entries very roughly corresponds to the number of changes relevant to the P of the entry,
for example, P Cl is a candidale for further action with respect to 10 changes, C2, 9

Cl1 ; -8

Psnlist Extended Example

C.l

changes, N1, 12, P1, 8, Hl, 7, and s0 on in non-increasing order. How these relsvancies
are determined should not be clear, because the Ps have not been presented, but from

this we can at least see some of the indeterminacy.

The system then goes through the process of testing each of the Ps in :SMPX for

possible matches, and finds that none is ready to fire.

EXAMINING C1 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-17 8 2)

(LOC BX2-1 7 8 1) (UPON BX1-1 BX2-1) (LOC BX3-1 4 6 1) (JSMONKEY MNK-1)

(ISBOX BX1-1) (ISBOX BX2-1) (ISBOX BX3-1)C1

EXAMINING C2 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-17 8 2)
(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1) (ISMONKEY MNK-1) (ISBOX BX1-1)
(ISBOX BX2-1) (ISBOX BX3-1)C2

EXAMINING N1 (LOC MNK-1 1 1 1) (LOC BAN-]1 55 3) (LOC BX1-17 8 2)
(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1) (ISBANANAS BAN-1) (ISBOX BX1-1)

(ISBOX BX2-1) (ISBOX BX3-1) (HVAL BX1-1 3) (HVAL BX2-1 4) (HVAL BX3-1 5)N1

EXAMINING P (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-1782)

(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1) (ISBOX BX1-1) (JSBOX BX2-1) (ISBOX BX3-1)

P!
EXAMINING H1 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC BX1-1 7 8 2)

(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1) (ISMONKEY MNK-1) (ISBANANAS BAN-1)H1

EXAMINING P3 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC 8X1-17 8 2)
(LOC BX2-1 7 8 1) (UPON BX1-1 BX2-1) (LOC BX3-1 4 6 1)P3
EXAMINING P2 (LOC MNK-1 | 1 1) (LOC BAN-1 55 3) (LOC BX3-1 7 8 2)
(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1)P2

EXAMINING R2 (LOC MNK-1 1 1 1) (LOC BAN-1 55 3) (LOC EX1-17 8 2)
(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1)R2

EXAMINING R1 (LOC MNK-1 1 1 1) (LCC BAN-1 55 3) (LOC BX1-1782)
(LOC BX2-1 7 8 1) (LOC 8X3-1 4 6 1)R}

EXAMINING G2 (LOC MNK-1 1 t 1) (LOC BAN-1 55 3) (LOC BX1-17 8 2)
(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1)G2

EXAMINING G1 (LOC MNK-1 | 1 1) (LOC BAN-1 55 3) (LOC BX1-17 8 2)
(LOC BX2-1 7 8 1) (LOC BX3-1 4 6 1)G}

The lack of any further action causes the system to display the Working Memory
and go back to interactive mode, and this time the user types (HUNGRY '"MNK-1), which will

start the monkey (MNK-1) moving.

HVAL (BX1-1 3) (BX2-1 4) (BX3-{ 5)

INIT (PB-1)

ISBANANAS (BAN-1)

1SBOX (BX1-1) (BX2-1) (BX3-1)

ISMONKEY (MNK-1)

LOC (BAN-1 55 3) (BX1-1782)(BX2-1781)(BX3-1461)MNK-1 1 11)
UPON (BX -1 BX2-1)

ISMONKEY (MNK-1)
TOP LEVEL ASSERT (HUNGRY (QUOTE MNK-1))
INSERTING (HUNGRY MHK-1)

When the monkey is hungry, he goes to where the bananas are and reaches for them:

-9

Cl1

C.l1 Extended Example Psnlst

H1; "HUNGRY™ ©: HUNGRY (M) & 1SMONKEY(M) & ISBANANAS(B) & LOC(B XY, H)
=> GOTOMM,X,V) & REACHFOR(M,B);

EXAMINING R1 (HUNGRY MNK-1)R1
EXAMINING HI (HUNGRY MNX-1)H1/TRY

!

2 Hi-1 "HUNGRVY"

USING (HUNGRY MNK-1) (ISMONKEY MNK-1) (JSBANANAS BAN-1) (LOC BAN-1 55 3)
((B . BAN-1) (H . 3) (M. MNK-1) (X . 5} (Y . 5))

INSERTING (GOTO MNK-1 5 5) (REACHFOR MNK-1 BAN-1)

H1 fires making use of the instances on the USING line, assigning variables as specified on
the line after the USING, and inserting the instances on the INSERTING line. The GOTO and
REACHFOR instances are asserted as commands whose execution is demanded of the
monkey. They can be thought of as goals, in the sense that their achievement is not
immediate, but requires furiher processing. Thev are a simple sequence of commands, and
sequencing is handled by the ordering in :SMPX, with REACHFOR being pushed down below
the GOTQ, for processing after the GOTO has been achieved or attempted.

(SMPX
{ G2 (GOTO MNK-1 5 5) |

{ G1 (GOTO MNK-1 5 §) |

[R2 (REACHFOR MNK-1 BAN-1)]
{ R1 (REACHFOR MNK-1 BAN-1)])

For the GOTO action, we use a P such as,

Gla; "GOTO FIRSY CRACK"™ - COTO(M.X,Y) & LOC(MX2,Y2H)
w> LOC(M,X,Y,H) & NEGATE(ALL),

This says that the LOC is simply changad, and the NEGATE(ALL) erases the GOTO instance
and the old LOC. However, the possibility exists that the monkey is on a box so that he
must climb down before the change of focation. To introduce that requires that Gle is
split into two Ps.

G1; "GOTO OK" = GOTO(MX,Y) & LOCIMX2 Y2 H) & SATISFIES(HH EQ I)
o> LOC(M,X.Y,H) & NEGATE(ALL);

G2; "GOTO CLIMB" - GOTOMM X Y) & LOC(MX2,Y2,H) & SATISFIES(HH ?.GREAT 1)
w> CLIMBDOWN(M) & GOTOMMX,Y);

If the height is 1, meaning on the floor, the monkey goes immediately, as stated in GI.
Otherwise, as G2 specifies, a CLIMEDOWN is required, followed by a repetition of the GOTO
command. The repelition is necessary to add the GOTO change to :SMPX again, since it
may have been removed in the processing, if Gl was looked at before G2. P splitling as
just illustrated is one of the most common operations in the evolution of a PS. G2 will not
fire at thic point because the monkey is initially on the floor, but it will later.

EXAMINING G2 (GOTO MNK-] & 5)G2/TRY
EXAMINING G1 (GOTO MNK-1 5 5)G1/TRY

i
C.1 11-10

Psnlst Extended Example C.1

a Gi-1 *GOTO OK"

USING (GOTO MNK-1 § 5) (LOC MNK-1 | 1 1)

((H. 1) (M. MNK-1) (X . 5) (X2 . 1) (Y. 5) (Y2 1))

INSERTING (LOC MNK-1 5 5 1) (NOT (GOTO MNK-1 5 5)) (NOT (LOC MNK-1 1 1 1))
(SMPX

[R2 (LOC MNK-1 5 & 1) (REACHFOR MNK-1 BAN-1)]

[P3 (LOC MNK-1 55 1))

[P1 (LOC MNK-1 55 1))

[N1 (LOC MNK-1 55 1)]

[C2 (LOC MNK-155 1))

[C1 (LOC MNK-1 55 1))

[H1 (LOC MNK-1 55 1))

[P2 (LOC MNK-1 55 1))

[R1 (LOC MNK-1 5 & 1) (

{ G2 (LOC MNK-1 55 1)]

[G1 (LOC MNK-155 1) })

EXAMINING R2 (LOC MNK-1 5 5 1) (REACHFOR MNK-1 BAN-1)R2/TRY

REACHFOR MNK-1 BAN-1))

So, now we come to the REACHFOR. The monkey is at height 1 (on the floor),
reaching for the bananas at height 3, so he cannot reach them, by the assumption that he
must be at the same height as the bananas to do that. (Notice that he does make the trip
to the bananas, not realizing before doing it that he won't be able to reach; this is just a
feature of the monkey's program for getting bananas.)

R2; "REACH - :: REACHFOR(M B) & LOCMX,Y H) & LOC(B XY, H2) & SATISFIES2(H,H2,H 7.LESS H2)
& NOT(EXISTS(HN) & CLIMBUP(M, XY HN))
> NEEDBOX(MX Y H) & NEGATE(D),

The SATISFIESZ is a constraint on the match that H be less than H2, which is true at
present. The NOT(..) is included to grapple with a problem encountered later: we don’t
want the monkey to reach until he has climbed up, since the failure to do the climb first
will send the monkey into another box-getting cycle. NEEDBOX is the box-getting goal,
and spocifies the location of the desired box.

!

4 R2-1 "REACH -~

USING (REACHFOR MNK-1 BAN-1) (LOC MNK-1 55 1) (LOC BAN-155 3)
((B.BAN-1) (H . 1) (H2 3) (M. MNK-1) (X 5) (Y .5)

INSERTING (NEEDBOX MNK-1 5 5 1) (NOT (REACHFOR MNK-1 BAN-1)}
(SMPX

{ N1 (NEEDBOX MHNK-1 § 5§ 1) (LOC MNK-1 55 1))

[P3(LOC MNK-155 1))

[P1 (LOC MNK-155 1))

{ C2 (LOC MNK-1 55 1)]

{C1 (LOC MNK-1 55 1))

[H1 (LOC MNK-1 55 1))

[P2 (LOC MNK-155 1))

[R1 (LOC MNK-1 55 1) (REACHFOR MNK-1 BAN-1)]

[G2 (LOC MNK-1 55 1))

{ GI (LOC MNK-1 55 1)))

EXAMINING N1 (NEEDBOX MNK-1 5§ 1) (LOC MHNK-1 § 5 [)NI/TRY

i-11 C.l

C.1 Extended Exampl'o Penist

N1 is the P that responds lo the NEEDBOX instance, choosing which box to go after
according to HVAL

Ni; "NEEDS BOX™ - NECOBOX(M XY HN) & ISBOX(B) & LOC(BX2,Y2H) & NOT(VEQ(X,X2) & VEQ(Y,Y2))
& HVAL(BV) & ISBANANAS(B2) & NOT(EXISTS(BI) & UPON(B3B)) -
& NOT! EXISTS(B3 X3 YA HI VY & HVALIBRVI) & NOT(VEQIX2,X3) & VEQ(Y2,Y))
& SATISFIES20V V3 V3 7.GREAT V) & NOT(EXISTS(BA) & UPON(B4,BJ)))
w> GOTO(MX2,Y2) & PUSHTOM,B X2 YZX,Y) & CLIMBUP(MX,Y,HN) & REACHFOR(M,82) & NEGATE(1);

This says, choose a box, go to the box, push it back to the bananas, climb the box, and
reach for the bananas. The box is chosen by the foliowing criteria: it must not be where
the menkey is now, it must not have ancther box on top of it, and must have the highest
HVAL of any boxes that satisfy those constraints.

|

8 Nl-1 “NEEDS BOX™

USING (NEEDBOX MNK-1 5 5 1) (ISBOX BX3-1) (LOC BX2-1 4 8 1) (HVAL BX3-1 5)
(ISBANANAS BAN-1)

((B.BX3-1) (B2 . BAN-1) (H . 1) (HN . 1) (M. MNK-1) (V. 5) (X . 5)
X2 .4) (Y .5 (Y2 8)

INSERTING (COTO MNK-1 4 6) (PUSHTO MNK-1 BX3-1 4 6 5 &) (CLIMBUP MNX-1 55 1)
(REACHFOR MNK.1 BAN-1) (NOT (NEEDBOX MNK-1 § 5 1))

(SMPX

[G1 (GOTO MNK-1 2 6) (LOC MNK-155 1))

G2 (GOTO MNK-1 4 8) (LOC MNK-1 55 1)}

Pl (PUSHTO MNK-1 BX3-1 4 8 5 5) (LOC MNK-1 55 1))

P2 (PUSHTO MNK-1 BX3-1 8 6 5 5) (LOC MNK-1 §5 1)]

P3 (PUSHTO MNK-1 BX3-1 46 5 5) (LOC MNK-~1 55 1) }

€2 (CLIMBUP MNK-1 55 1) (10C MNX-155 1) }

R2 (REACHFOR MNK-1 BAN-1) }

R1 (REACHFOR MNK-1 BAN-1) (LOC MNK~1 §5 1) (REACHFOR MNK-1 BAN-1))

C1 (LOC MNK-1 65 1)}

[HI AOC MNK-1 55 1) })
EXAMINING GI (GOTO MNK-1 4 6) (LOC MNK-1 § 5 1JCI/TRY

(
[
{
{
{
(
{
{

t

8. i1-2 "GOT0 OK”

USING (COTO MNK-1 4 6) (LOC MNK-1 55 1)

((H. 1) (M. MNK-1) (X . 8) (X2 .5) (Y .6) (Y2 5))

INSERTING (LOC MNK-1 4 6 1) (NOT (GOTO MNK-1 4 6)) (NOT (LOC MNK-1 § 5 1))

(SMPX

{ GZ (LOC MNK-1 4 6 1) (GOTO MNK-1 4 8} (LOC MNK-1 55 1) }

[R1 (LOC MNK-1 4 6 1) (REACHFOR MHNK-1 BAN-1) (LOC MNK-1 55 1)
(REACHFOR MNK-1 BAN-1)]

[P2 (LOC MNK~1 4 6 |) (PUSHTO MNK-i BX3-1 86 5 5) (LOCMNK-155 1) }

{ Hi (LOC MNK-1 46 |) (LOC MNX-155 1) }

{ C1 (LOC MNK-1 86 1) (LOC MNK-1 55 1)}

{ C2 (LOC MNK~1 4 6 1) (CLIMBUP MNK-1 § 5 1) (LOC MNK-1 §5 1))

[NI (LOC MNK-1 46 1))

[P1 {LOC MNK-1 4 8 1) (PUSHTO MNK-1 BX3-1 86 55) (LOC MNK-155 1))

[P3 (LOC MNK~1 8 6 1) (PUSHTO MNK-1 BX3-1 86 5 5) (LOC MNK-1 55 1))

[R2 {LOC MNK-~1 4 8 1) (REACHFOR MNK-1 BAN-1) }

[G1 (LOC MNK-1 46 1)))

EXAMINING G2 (LOC MNK-1 4 6 1)G2

EXAMINING R1 (LOC MNK-1 4 @ 1) (REACHFOR MNK-| BAN-1) (REACHFOR MNK-1 BAN-1)R1
/TRY

EXAMINING P2 (LOC MNK-1 4 6 1) (FUSHTO MNK-1 BX3-1 4 6 § 5)P2/TRY

C.1 l-12

PR

9

Psnist Extended Example

mely, just & change in location

The simplest case of PUSHTO is encountered
with no unstacking or stacking. P2 is the P for i

P2, "PUSH ONLY" :: PUSHTO(M,B XY, X2 ¥Y2) &
& NOT(EXISTS(BZ,H2) & LOC(B2X
=> LOC(M X2,Y2,H) & LOC(BX2,YZH

(MX,Y,H) & LOC(B,X,Y,K)
\H2) & 1SBOX(B2))
NEGATE(ALL);

The only requirements are i the monkey and the box both be located at the box's
location, at the same height,/and that no box is located at the push target. The result is
that the locations are changed and the PUSHTO operator deleted.

!
7. P2-1 “PUSH ONLY"
USING (PUSHTO MNK-1 BX3-1 4 6 55) (LNC MNK-1 86 1) (LOC BX3-1486 1)
((B.BX3-1) (H. 1) (M MNK-1) (X 4)(X2.5)(Y.6)(Y2. 5)
INSERTING (LOC MNK-1 55 1) (LOC BX3-1 55 1) (NOT (PUSHTO MNK-1 BX3-1 46 55)
(NOT (LOC MNK-1 4 6 1)) (NOT (LOC BX3-1 46 1))
(SMPX
{ H1 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 48 1) (LOC MNK-1 55 1)}
[C1 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 4 6 1) (LOC MNK-1 55 1)]
[C2 (LOC MNK-! 55 1) (LOC BX3-1 55 1) (LOC MNK-1 4 6 1) (CLIMBUP MNK-1 55 1)
(LOC MNK-155 1))
[N1 (LOC MNK-1 55 1) (LOC BX3-1 § 5 1) (LOC MNK-1 46 1) }
[P1 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 46 1)
(PUSHTO MNK-] BX3-1 4 6 5 5) (LOC MNK-1 §5 1) }
[P3 (LOC MNK-1 55 §) (LOC BX3-1 55 1) (LOC MNK-1 46 1)
(PUSHTO MNK-1 BX3-1 48 5 5) (LOC MNK-1 §5 1)]
[R2 (LOC MNX-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 4 6 1)
(REACHFOR MNK-1 BAN-1))
[P2 (LOC MNK-1 55 1) (LOC BX3-155 1))
[G2 (LOC MNK-1 55 1) (LOC BX3-1 55 1) }
[R1 (LOC MNK-1 55 1) (LOC 8X3-1 55 1)]
[G1 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 86 1}])
EXAMINING H1 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-! 5 5 1)H1/TRY
EXAMINING C1 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 55 1)XCI
EXAMINING C2 (LOC MNK-] 55 1) (LOC BX3-1 55 1) (CLIMBUP MNX-1 § 5 1)
(LOC MNK-1 55 1)C2/TRY

Having pushed the box to the localion of the bananas, the monkey does the
CLIMBUP, which causes a change in height of the monkey, and puts him UPCN the box he
just pushed.

C2; "CLIMB UP N" CLIMBUP(MX .Y HI) & LOC(MX,Y,H) & ISMONKEY (M)
& LOC(B1 X, Y, H1) & 1SB30X(B1)
w> LOCIMX,Y,H1¢1) & UPON(MB1) & NEGATE(1,2);

!

8 C2-1 "CLIMB UP N°

USING (CLIMBUP MNK-1 5 5 1) (LOC MNK-1 5 5 1) (JSMONKEY MNK-1) (LOC BX3-1 55 1)
(ISBOX BX3-1)

((B1 . BX3-1)(H. 1) (Hl . 1) (M MNE-1) (X 5)(Y.5)

INSERTING (LOC MNK-1 6 5 2) (UPON MNK.] BX3-1) (NOT (CLIMBLIP MNK-1 55 1))
(NOT (LOC MNK-1 55 1))

(SMPX

[R2 (LOC MNK-1 55 2) (1OC MNK-1 55 1) (LOCBX31565 1) (LOC MNK-] 48 1)

1i-13 Cl1

R A

e:1 Extended Example Psnist

(REACHFOR MNK-1 BAN-1))
[P3 (LOC MNK-1 & 5 2) (UPON MNK-1 BX3-1) (LOC MNK-1 55 1) (LOC BX3-1 55 1)
(LOC MNK-1 4 6 1) (PLISHTO MNK-1 BX32-1 4 6 5 5) (LOC MNK-155 1))
{ P2 (LOC MNK-1 5 5 2) (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 4 6 1)
(PUSHTO MNK-1 @X3-1 4 6 5 5) (LOC MNK-1 55 1))
4 { NI (LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-14 € 1))
{ €1 (LOC MNK-1 § 5 2) (UPON MNK-1 BX3-1))
4 { €2 (LOC MNK-1 55 2))
N 4 { H1 {LOC MNK-1 55 2))

< [P2 (LOC MNK-1 § 5 2) (LOC MNK-1 55 1) (LOC BX3-1 55 1)]

£ { G2 (LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-1 55 1))

| [R1 (LOC MNK-1 5§ 2) (LOC MNK-1 55 1) (LOC BX3-155 1})

E | [G1 (LOC MNK-1 5 5 2) (LOC MNK-1 5 5 1) (LOC BX3-1 55 1) (LOC MNK-1 46 1)]
)

EXAMINING R2 (LOC MNK-1 55 2) (LOC BX3-1 5 5 1) (REACHFOR MNK-1 BAN-1)R2/TRY

!

8. R2-2 "REACH -"

USING (REACHFOR MNK-1 BAN-1) (LOC MNK-1 55 2) (LOC BAN-1 565 3)

3 ((B . BAN-1) (H. 2) (2. 3) (M MNK-1) (X . 5) (Y .5)

o INSERTING (NEEDBOX MNK-1 5 5 2) (NOT (REACHFOR MNK-1 BAN-1))

3 (SMPX

[N1 (NEEDBOX MHNK-1 5 5 2) (LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-1 55 1)
{(LOC MNK-1 46 1)] :

[P3(LOC MNX-1 55 2) (UPON MNK-1 BX3-1) (LOC MNK-1 55 1) (LOC BX3-155 1)
(LOC MNK-1 4 & 1) (PUUSHTO MNK-1 BX3-1 86 5 5) (LOC MNK-155 1)]

[P1 {(LOC MNK-1 55 2) {LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 4 6 1)
{PUSHTO MNK-1 BX3-1 48 5 5) (LOC MNK-1 55 1)]

[C! (LOC MNK-1 55 2) (UPON MNK-1 BX3-1)]

[C2 (LOC MNK-15512)]

[H1 (LOC MNK-1552)]}

[P2 (LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-155 1)]

[G2 (LOC MNK-1 5 5 2) (LOC MNK-1 55 1) (LOCBX3-155 1))

[R (LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-155 1)]

{ G1 {(LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-1 55 1} (LOC MNK-1 486 1))
)

EXAMINING N1 (NEEDBOX MWK-1 § 5 2) (LOC MNK-1 55 2) (LOC BX3-1 5§ 1)NI/TRY

x The monkey has climbed, reached, and again failed to get the bananas, so he goes
through the NEEDBOX routine again.

{
pre: 10 Mi-2 "NEEDS BOX"
& USING (NEEDBOX MNK-1 5 5 2) (ISBOX BX1-1) (LOC BX1-1 7 8 2) (HVAL BX1-1 3)
o (ISBANANAS BAN-1)
C (B . BX1-1) (B2 . BAN-1) (H. 2) (HN . 2) (M. MNK-1) (V. 3) (X . 5) (X2. 7)
Y .5) (Y2 8)
INSERTING (GOTO MHK-1 7 8) (PUSHTO MNK-1 BX1..1 7 8 5 5) (CLIMBUP MNK-1 5 5 2)
. (REACHFOR MNK-1 BAN-1) (NOT (NEEDBOX MNK-1 § 5 2))
(SMPX
[G1 (GOTO MNK-1 7 8) (LOC MNK-1 55 2) (LOC MNK-1 55 1) (LOC BX3-155 1) -
i (LOC MNX-1 46 1))
-y © [G2 (GOTO MNK-1 7 8) (LOC MNK-1 § § 2) (LOC MNK-1 55 1) (LOC BX3-1 65 1))
» { P3 (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 § § 2) (UPON MNK-1 BX3-1)
3 (LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 46 |)
: (PUSHTO MNK-1 BX3-1 84 6 5 5) (LOC MNK-155 1))

C.l li-14

Psnist Extended Example C.l

[P2 (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 5 5 2) (LOC MNK-1 55 1)
(LOC BX3-155 1)]
[P1 (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 55 2) (LOC MNK-1 5 S 1)
LOC BX3-1 § 5 1) (LOC MNK-1 4 6 1) (PUSHTO MNK-1 BX3-1 46 5 5)
(LOC MNK-1 55 1)]
3 [C2 (CLIMBUP MNK-1 55 2) (LOC MNK-1 55 2)]
{ R2 (REACHFOR MNK-1 BAN-1))
[R1 (REACHFOR MNK-1 BAN-1) (LOC MNK-1 55 2) (LOC MNK-1 55 1)
. AOC BX3-155 1)]
: [C1 (LOC MNK-1 55 2) (UPON MNK-1 BX3-1))
[H1 (LOC MNK-1552)])
i EXAMINING G1 (GOTO MNK-1 7 8) (LOC MNK-1 5 5 2) (LOC BX3-1 § 5 1)G1/TRY
EXAMINING G2 (GOTO MNK-1 7 8) (LOC MNK-1 5 5 2) (LOC BX3-1 5 § 1)G2/TRY

i

1. G2-1 "GOTO CLIMB"

USING (GOTG MNK-1 7 8) (LOC MNK-1 55 2)

((H.2) (M MNK-1) (X 7) (X2 S5)(Y 8)(YZ 5))

WARNING (MNK-1 7 8) ALREADY UNDER GOTC <o

INSERTING (CLIMBDOWN MNK-1) (GOTO MNK-1 7 B)

(SMPX

{ C1 (CLIMBDOWN MNK-1) (LOC MNK-1 § § 2) (UPON MNK-1 BX3-1)]

{ G2 (GOTO MNK-1 7 8) | :

{ G1 (GOTO MNK-1 7 8)]

{ P2 (PUSHTO MHK-1 BX1-1 7 8 5 5) (LOC MNK-1 5 5 2) (UPON MNK-1 BX3-1)
(LOC MNK-1 65 1) (LOC BX3-1 55 1) (LOC MNK-1 4 8 1)

(PUSHTO MNK-1 BX3-1 4 6 5 5) (LOC MNK-155 1))

[P2 (PUSHTO MNK-1 BX1-1 7 85 5) (LOC MNK-1 55 2) (LOC MNK-1 55 1)
(LOC BX3-1 556 1))

{ P1 (PUSHTO MNK- 1 BX1-1 7 8 5 5) (LOC MNK-1 5§ 2) (LOC MNK-1 55 1)
(LOC BX3-1 5 5 1) (LOC MNK-1 4 6 1) (PUSHTO MK-1 BX3-1 4 6 5 5)
(LOC MNK-1 55 1))

{ €2 (CLIMBUP MNK-1 55 2) (LOC MNK-1 55 2))

[R2 (REACHFOR MNX-1 BAN-1))

[R1 (REACHFOR MNK-1 BAN-1) (LOC MNX-1 55 2) (LOC MNK-1 55 1)
(LOC BX3-155 1))

[HE (LOC MNK-1552)))

EXAMINING C1 (CLIMBDOWN MNK-1) (LOC MNK-1 § § 2) (UPON MNK-1 BX3-1)C1/TRY

This time, it is necessary to climb down before the GOTQ operation.

C1; "CLIMB DOWN" - CLIMBDOWN(M) & LOCIMX,YH) & UPON(M,B) & ISBOX(B) & ISMONKEY(M)
o> LOC(M XY, 1) & NECATE(],2,3);

t
. 12 Ci-1 “CLIMB DOWN"
- USING (CLIMBDOWN MNK- 1) (LOC MNK-1 & 5 2) (UPON MNK-1 BX3-1) (ISBOX BX3-1)
] (ISMONKEY MNK- 1)
! . (B . BX3-1)(H 2) (M MNK-1) (X 5)(Y 5)
INSERTING (LOC MNK-1 55 1) (NOT (CLIMBDOWN MNK-1)) (NOT (LOC MNK-1 55 2))
(NOT (UPON MNK-1 8X3-1))
(SMPX
[RI (LOC MNK-1 55 1) (REACHFOR MNK- | BAN-1) (LOC MNX-1 § 5 2)
(LOC MNK-1 55 1) (LOC BX3-1 55 1))
{ P2 (LOC MNK-1 55 1) (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 55 2)
(LOC MNK-1 55 |) (LOC BX3-1 55 1)]

li-15 C1

e G s

"

Exbended Example Psnist

{ €2 (LOC MNK-1 5 5 1) (CLIMBUP MNK-1 5 5 2) (LOC MNK-1 55 2)]

[P1 (LOC MNK-1 5 5 1) (PUSHTO MNK-1 BX1-1 7 8 § 5) (LOC MNK-1 5 5 2)
(LOC MNK-1 55 1) (LOC BX3-1 55 1) (LOC MNK-1 4 6 1)
(PUSHTO MNK-1 BX3-1 4 6 5 5) {(LOC MNK-155 1) }

[P3 (LOC MNK-1 5 5 1) (PUSHTO MNK-1 BX1-i 7 8 5 5) (LOC MNK-1 5 § 2)
(UPON MNK-1 BX3-1) (LOC MNK-1 55 1) (LOC BX3-1 5 5 1) (LOC MNK-1 4 6)
(PUSHTO MNK-1 BX3-1 4 6 5 5) (LOC MNK-1 55 1) }

[R2 (LOC MNK-1 5 5 1) (REACHFOR MNK-1 BAN-1))

[N1 (LOC MNK-1 55 1)]

[C1 (LOC MNK-1 55 |}) ’

{ H1 (LOC MNK-1 55 1) (LOC MNK-1 55 2))

{ G2 (LOC MNK-1 55 1) (GOTO MNK-1 7 8)]

{ G1 (LOC MNK-1 55 1) (GOTO MNK-17 8)])

EXAMINING R1 (LOC MNK-1 5 5 |) (REACHFOR MNK-1 BAN-1) (LOC MNK-1 55 1)
(LOC BX3-1 55 RI/TRY

EXAMINING P2 (LOC MNK-} 5 5 1) (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 5§ 1)
(LOC BX3-1 5 5 1)P2/TRY

EXAMINING C2 (LOC MNK-~1 5 5 1) (CLIMBUP MNK-1 5 § 2)C2/TRY

EXAMINING P1 (LOC MNK-1 5 5 1) (PUSHTO MNK-1 BX1-1 7 8 § 5) (LOC MNK-1 55 1)
(LOC BX3-1 55 1) (LOC MNK-1 55 1)P1/TRY

EXAMINING P23 (LOC MNK-1 5 5 1) (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 55 1)
(LOC BX3-1 55 1) (LOC MNK-1 5 5 1)P3/TRY

EXAMINING R2 (LOC MNK-1 5 § 1) (REACHFOR MNK-1 BAN-1)R2/TRY

EXAMINING NI (LOC MNK-1 § 5 1)N]

EXAMINING C1 (LOC MNK-1 § 5 1)C1

EXAMINING H1 {LOC MNK-1 5§ 1)H1/TRY

EXAMINING G2 (LOC MNK-1 § 5 1) (GUTO MNK-1 7 8)G2/TRY

EXAMINING G1 (LOC MNK-1 5 5 1) (GOTO MNK-1 7 8)G1/TRY

}

13 G1-3 "GOTO oK™

USING (GOTO MNK-1 7 8) (LOC MNK-1 55 1)

((H. 1) (M _MNK-1) (X . 7)(X2.5)(Y.8)(Y2.5)

INSERTING (LOC MNK-1 7 8 1) (NOT (GOTO MNK-1 7 8)) (NOT (LOC MNK-1 55 1))
{ SMPX

[P3 (LOC MNX-1 7 8 1))

[P1(LOC MNX-1 78 1))

[C2 (LOC MNK-1 78 1)]

[P2 (LOC MNK-1 78 1))

[R1 (LOC MNK-178 1))
[G1 (LOC MNK-1 78 1))

[R2 (LOC MNK-178 1)}

[N1 (LOC MNK-1 78 1))

[CI (LOC MNK-1 78 1))

[H1 (LOC MNK-1 78 1))

[G2 (LOC MNK-1 78 1)])

EXAMINING P3 (LOC MNX-1 7 8 1)P3/TRY

The PUSHTO in this case is on a box that is UPON another box, so that an unstack is

necessary before the execution of the PUSHTO. The unstack is done by a simple change in
location, without an explicit operation, since the operation for unstack would use all of the
same information that appears in the LHS of P3.

P3;, "UNSTACK BEFORE PUSH" - PUSHTO(M,B XY, X2,Y2) & LOCIMX,Y,H) & LOC(BX,Y,H2) & UPON(B,82)
»> PUSHTO(M,B X,Y,X2,Y2) & LOC(BX,Y,1) & NEGATE(3,4);

H-16

SPee el S

i
3 |
-
f' Psnist Extenced Example N o8 |
!
14 P3-} “UNSTACK BEFCRE PUSH"
: USING (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 7 8 1) (LOC BX1-1 7 8 2)
A (UPON BX1-} BX2-1)
((B.BX1-1) (B2 BX2-1) (H. 1) (H2.2) (M MNK-1) (X 7)(X2.5)(Y.8)
Y2 .5)
o WARNING (MNK-1 BX1-1 7 8 5 5) ALREADY UNDER PUSHTO <o
1 INSERTING (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC BX1-1 7 8 1) (NOT (LOC BX1-17 8 2))
5 . (NOT (UPON BXi-1 BX2-1))
; (SMPX :
J [P1 (PUSHTO MNK-1 BX1-1 7 855) (LOC BX1-17 8 1) (LOCMNK-178 1)}
| [P2 (PUSHTO MNK-1 BX1-1 785 5) (LOCBX1-1781)(LOCMNK-1781)]
F [P3 (PUSHTO MNK-1 BX1-1 7 85 5) (LOCBX1-1781)])
A [R1 (LOC BX1-1 7 8 1) (LOC MNK-178 1))
{ C2 (LOC BX1-1 7 8 1) (LOC MNK-1 78 1)} _
{ Gl (LOC BX1-1 7 8 1) (LOC MNK-178 1)) |
{ R2 (LOC BX1-1 7 B 1) (LOC MNK-17 8 1)) |
[N1 (LOC BXi-178 1) (LOC MNK-1 78 1)) !
[C1 (LOC BX1-178 1) (LOC MNK-178 1)} |
[H1 (LOC BX1-1781)(0OC MNK-1781)] |
[G2 (LOC BXi-17 8 1) (LOC MNK-178 1)]) |
EXAMINING P1 (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC BX1-1 7 8 1) (LOC MNK-1 7 8 1)
P1/TRY |
A second variation in the PUSHTO is that there already exists a box at the target location, |
so that an immediate stack operation is performed (implicitly) by a change in location and
the addition of the UPON predicate, as follows.
|
E Pi; "PUSH & STACK" .. PUSHTO(M,B,X,Y,X2,¥2) & LOC(MX,Y.H) & LOC(BX,Y,H) q
: & LOC(B2,X2,Y2,H2) & 1SBOX(B2) & NOT(EXISTS(B3) & UPON(B3,B2))
‘ »> LOC(M,X2,Y2,H) & LOC(B,X2,Y2,H2+1) & UPON(B,B2) & NEGATE(1,2,3); !
!
15 PI-1 “PUSH & STACK"
USING (PUSHTO MNK-1 BX1-1 7 8 5 5) (LOC MNK-1 7 8 1) (LOC BX1-1 7 8 1)
(LOC BX3-1 5 5 1) (ISROX BX3-1) ;
;. ((B.BXi-1) (B2 BX3-1)(H 1)(H2. 1)(M.MNK-1)(X.7)(X2 5)(Y.8) ;‘
g (Y2 5y
E INSERTING (LOC MNX-1 5 S 1) (LOC BX1-1 5 5 2) (UPON BX1-1 BX3-1) I
(NOT (PUSHTO MNK-1 BX1-1 7 8 5 5)) (NOT (LOC MNK-1 7 8 1)) ‘
: (NOT (LOC BX1-17 8 1))]
e (SMPX ‘
A [R1 (LOC MNK-1 5 5 1) (LOC BX1-1 55 2) (LOC BX1-1 7 8 1) (LOC MNK-1 78 1)] 4
& { P2 (LOC MNK-1 55 1) (LOC BX1-1 55 2) (PUSHTO MNK-1 8X1-1 7 8 5 §) ’
b (LOC BX1-1 7 8 1) (LOC MNK-1 78 1))
; [€2 (LOC MNK-1 55 1) {(LOC BX1-1 55 2) (LOC BX1-1 7 8 1) (LOC MNK-1 7 8 1)] ;
it i [P1 (LOC MNK-1 55 1) (LOC BX1-1552)) ‘
g | { P3 (LOC MNK-1 5 5 1) (LOC BXi-1 55 2) (UPON BX1-1 BX3-1)
s (PUSHTO MNX-] BX1-1 7855) (LOCBX)-1781)) |
. {
bt |

[G1 (LOC MNK-1 66 1) (LOC BX1-1 55 2) (LOC BX1-17 8 1) (LOC MNK-178 1))

{ R2 (LOC MNK-1 55 1) (10C EX1-1 55 2) (LOC BX1-1 7 8 1) (LOC MNK-1 78 1))

[N1 (LOC MNK-1 55 1) (LOC BXI-1 55 2) (LOC BX1-1 7 8 1) (LOC MNK-1 78 1))

[C1 (LOC MNK-1 65 1) (LOC BXI-1 55 2) (UPON BX1-1 BX3-1) (LOC BX1-1 78 1)
(LOC MNK-1 78 1))

[M1 (LOC MNK-1 55 1) (LOC BX1-1 55 2) (LOC BXI-1 7 8 1) (LOC MNK-1 78 1) }

[G2 (LOC MNK-1 55 1) (LOC BX1-1 55 2) (LOC BX1-1 7 8 1) (LOC MNX-1 7 8 1))

)

11-17 C1

s i AR

’ C.1 Extended Example _ Psnist

>
i e b

EXAMINING R1 (LOC MNK-1 5 § 1) (LOC BX1-1 § 5 2)R1/TRY
EXAMINING P2 (LOC MNK-1 5 5 1) (LOC BX1-1 § 5 2)P2
EXAMINING C2 (LOC MNK-1 5 5 1) (LOC BX1-1 5 5 2)C2/TRY

Fas

! & : !

K . : 16. C2-2 “CLIMB UP N*

USING (CLIMBUP MNK-1 55 2) (LOC MNK-1 55 1) (ISMONKEY MNK-1) (LOC BX1-1 85 2)
(ISBOX B8X1-1) A

R . : ((B1 . BX1-1) (H. 1) (H1.2) (M. MNK-1) (X . 5) (¥ . 5))

4 " INSERTING (LOC MNK-1 5 5 3) (UPON MNK-1 BX1-1) (NOT (CLIMBUP MNK-1 5 5 2))
; (NOT (LOC MNK-1 55 1)) &

: (SMPX

| [G2 (LOC MNK-1 5 5 3) (LUC MNK-1 55 1) (LOC BX1-1 55 2) (LOCBX1-1 78 1)
(LOC MNK-1 78 1))
[H1 (LOC MNK-1 5 5 3) (LOC MNK-1 5 5 1) (LOC BX1-1 55 2) (LOC BX1-178 1)
(LOC MNK-1 78 1)]
[C1 (LOC MNK-1 5 5 3) (UPON MNK-1 BX1-1) (LOC MNK-1 55 1) (LOC BX1-155 2)
(UPON BXi-1 BX3-1) (LOC BX1-17 8 1) (LOCMNK-1781))
[N1 (LOC MNK-1 5 5 3) (LOC MNK-1 5 5 1) (LOC BX1-1 55 2) (LOC BX1-1 7 8 1)
: (LOC MNK-1 78 1))
H [R2 (LOC MNK-1 5 5 3) (LOC MNK-1 55 1) (LOC BXi-1 55 2) (LOCBX1-178 1)
) (LOC MNK-1 78 1))
[G1 (LOC MNK-1 55 3) (LOC MNK-1 55 1) (LOC BX!-1 55 2) (LOC BX1-1 78 1)
(LOC MNK-1 78 1))
. { P3 (LOC MNK-1 55 3) (UPON MNK-1 BX1-1) (LOC MNK-1 5 5 1) (LOC BX}-1 55 2)
E (UPON BX1-1 BX3-1) (PUSHTO MNK-1 BX}-1 7 855) (LOCBX1-1781))
: [P} (LOC MNK-1 55 3) (LOC MNK-1 56 1) (LOC BX1-1 552))
[C2 (LOC MNK-1 55 3))
[R1 (LOC MNK-1 55 3)]
[P2 (LOC MNK-1 55 3))
EXAMINING G2 (LOC MNK-1 5 5 3) (LOC BX1-1 55 2)G2
EXAMINING H1 (LOC MNK-1 5 5 3) (LOC BX1-1 5 5 2)H1/TRY
EXAMINING C! (LOC MNK-1 5 5 3) (UPON MNK-1 BX1-1) (LOC BX1-1 55 2)
(UPON BX1-1 BX3-1)C1
EXAMINING NI (LOC MNK-1 5 5 3) (LOC BX1-1 5§ 5 2)N1
EXAMINING R2 (LOC MNK-1 5 5 3) (LOC BX1-1 55 2)R2/TRY
3 EXAMINING G1 (LOC MNK-1 5 5 3) (LOC BX1-1 55 2)G!
3 EXAMINING P3 (LOC MNK-1 55 3) (UPON MNK-1 8X1-1) (LOC BX1-1 55 2)
5 (UPON BX1-1 BX3-1)P3
! EXAMINING P1 (LOC MNK-1 5 5 3) (LOC BX1-1 5§ 5 2)P}
EXAMINING C2 (LOC MNK-1 5 5 3)C2
EXAMINING R1 (LOC MNK-1 55 3)R1/TRY

'A Finally, the monkey is at the proper height for reaching the bananas, and he does
the appropriate thing.

A Ri; "REACH " REACHFOR(M,B) & LOC(MX,Y,H) & LOC(B X,Y,H) & HUNGRY(M)
5 «> EATS(M,B) & NEGATE(ALL,-2),

|
17. R1-1 "REACH »"
USING (REACHFOR MNK-1 BAN-1) (LOC MNK-1 55 3) (LOC BAN-1 5 5 3) (HUNGRY MNK-1)
((B. BAN-1) (H 3) (M MNK-1) (X 5) (Y. 5))
INSERTING (EATS MNK-1 BAN-1) (NOT (REACHFOR MNK-1 BAN-1))
(NOT (LOC BAN-1 55 3)) (NOT (HUNGRY MNK-1))
(SMPX

C.1 i-18

|
\[

Psnist Extended Example o |

[P2 (LOC MNK-1553)])
EXAMINING P2 (LOC MNK-1 5 5 3)P2

3 The following gives the entire Working Memory contents at the end of the run, plus
i - some run statistics.

EATS (MNK-1 BAN-1)
3 HVAL (BX1-1 3) (BX2-1 4) (BX3-1 5)
E INIT (PB-1)
b ISBANANAS (BAN-1)
3 ISBOX (BX1-1) (BX2-1) (BX3-1)
: ISMONKEY (MNK-1) T
F LOC (BX1-1 55 2) (BX2-17 8 1) (BX3-1 55 1) (MNK-1553)
: UPON (BX1-1 BX3-1) (MNK-1 BX1-1)

ISMONKEY (MNK-1)
EATS (MNK-1 BAN-1)
TOP LEVEL ASSERT NIL

RUN TIME 185 SEC

EXAM TRY FIRE WMACT E/F A 74 T/F
57 32 17 74 335 178 188
0342 0610 115 0.264 SEC AVG

46 INSERTS 28 DELETES 2 WARNINGS 8 NEW OBJECTS
MAX SMPX LENGTH 11
CORE (FREEFULL): (10880 . 883) USED (758 . 27)

ACTS SETUP (MONKEY _ LSP) SAVEPS (CLOSED (MONKEY . EXP)} MONC RUN SMPXEMPTY
SMPXEMPTY

TRACE
(11-1 H1-1 G1-1 R2-1 N1-1 G1-2 P2-1 C2-1 R2-2 N1-2 G2-1 CI-1 GI-3 P3-1 PI-!
C2-2R1-1)

E © FIRED 12 OUT OF 12 PRODS

: The overall control of this run was achieved through the command (CMD) file MONC,
7 loaded as a result of the DCMD declaration in the program (see Section C.4). The
: contents of MONC are:

< LYCLECMDS '((DUMP) (DUMPQ ISMONKEY EATS))
‘TERMCMDS "((PERFEVAL T) (ERASE 1))
e - :‘DEBUG T
| ‘DISPDEPTH 99
e |
4 The first line gives the :CYCLECMDS used in the run. These are executed each time the
F’ :SMPX becomes empty, and allows the user to cycle again without saying RUN, after

executing the commands. The commands cause display of the whole Working Memory, plus
the display of two predicates that are important for the run. The :TERMCMDS tell what to

1-19 Cl1

C.1 Extended Example Psnlist

do when NIL is typed to the prompt for TOP LEVEL ASSERT. The results of those
commands are at the end of the run above. The last two commands set the :DEBUG swiltch,
for detection of conflicts, and the display depth for :SMPX.

C.2. Concluding comments on the example

There are several interesting features of this program, and Psnist programs in
general, that should be emphasized:

a. The Working Memory is large (compared to other PS architectures),
but :SMPX provides a focus for the processing, acting as an attention
mechanism.

b. The conditions of the Ps are mutually exclusive. This means that in
order to add Ps, closely related conditions must be consulted. Also,
when a P is split into two (¢f. Gla above), both halves have longer
LHSs.

¢. The stack implementation of :SMPX gives a depth-first, goal-stacking
organization. We saw in P G2 how explicit re-assertion of an
element already in Working Memory brings it to a higher stack
position, which adds flexibility.

d. Flow of contro! in the program is dependent on the content of the
Working Memory, on the changes made to it, and on the order of
those changes. Rarely does one P signal a single other & rather, &
signal is emitted to a set of Ps, and the condition of the Working
Memory relative to the LHSs of the receivers determines which one
makes use of the signal. This is analogous to emitling & goal and
letting a variety of methods decide whether to work on it.

There is one prominent characteristic of this example that is alypical of Psnlst PSs.
Every time there was a change in the LOC instances, an :SMPX entry was made for each P
in the system. Ordinarily, a predicate of such universal usage is declared to be a non-
fluent, to prevent this heavy loading of :SMPX (consequences of changes made tc a non-
fluent are not explored, and no :SMPX entries are made for such changes). The declaration
was left out in order to avoid complications in tha iliustration of the :SMPX processing. It
is also the case that LOC was a key instance for at least one match, leading (0 the firing of
P3. But, in fact, the system works the same way with LOC as a non-fluent, because the
LOC as used above causes pre-mature examination of P3, remova!l of its :SMPX entry, and
then addition of another :SMPX entry, thus cancelling out the ili effects. The pre-mature
examination resuited in the loss from :SMPX of the PUSHTO goal, and the change in location
in a sense jarred the memory of the monkey to bring the PUSHTO inio the malch process.
In general, in cases where such pre-mature examination is unavoidable, use must be made
of explicit remember-goal markers, which cause a P to fire, inserting a new incarnation of
the goal marker. Such cases are rare, and the :SMPX stacking regime usually suffices to
hold goals in the wings until conditions are right.

C.2 1-20

P

Psnist . Extended Example C3

C.3. A note on reading productions

In trying to determine the intent of a P, there are a few heuristics that may help.
Each P has, in general, one principal idea or piece of knowledge. This is its essential
action, and can be obtained by looking at the first few conjuncts in its LHS and RHS. For
instance, in N1, the P that represents what happens when the monkey needs a box to
reach some high place, the first three LHS conjuncts can be combined with the first two
RHS conjuncts to get the principal idea of the P, that the monkey goes to the box and
pushes it to a location under the place.

N1; "NEEDS BOX" :: NEEDBOX(M X,Y,HN) & ISBOX(B) & LOC(BX2,Y2H) . ..
«> GOTO(MX2,Y2) & PUSHTO(MBX2,Y2X,Y) .. .«

The other LHS conjuncts only elaborate the necessary side conditions and the remainder
of the RHS gives secondary actions and peripheral updating.

How it helps to have the main conjuncts requires a more detailed explanation. Each
predicate is given a meaning (see Section C5), a proposition that relates its arguments
to each other. Conjuncts with shared variables result in extending and merging the
relations between arguments. In addition, the contrast between LHS and RHS enters in,
namely in establishing "before" and "after” properties. For instance, in N1, the first RHS
conjunct shares variables with the first and third LHS conjuncts in a way that also
interacts with the LHS-RHS meaning to arrive at the "monkey goes to the box" part of the
principal idea. To summarize, the main trick here is to look at both LHS and RHS
simultaneously rather than attending too soon to the side conditions in the LHS.

I1-21 C3

c4

ca.

c4

Extended Example Psnist
rogram listin
BEGIN 2 PS FOR MONKEY AND BANANAS 1
EXPR MONKEY(); BEGIN DCMD(MONC);

H1; "HUNGRY™ :: HUNGRY(M) & ISMONKEY(M) & ISBANANAS(B) & LOC(BX,Y,H)
=> GOTO(M,X,Y) & REACHFOR(M,B);

G1; "GOTO OK" :: GOTO(MX,Y) & LOC(M X2 Y2,H) & SATISFIES(HH EQ 1)
=> LOC(M,X,Y,H) & NEGATE(ALL);

G2; "GOTO CLIMB" - GOTOM X V) & LOCIM X2, Y2 H) & SATISFIES(H,H *«GREAT 1)
«> CLIMBDOWN(M) & GOTO(M X, V),

C1; "CLIMB DOWN" - CLIMBDOWN(M) & LOC(MXY,H) & UPON(M,B) & ISBOX(B) & ISMONKEY(M)
=> LOC(M,X,Y,1) & NEGATE(1,2,3);

C2; "CLIMB UP N* - CLIMBUR(MX,Y,H1) & LOC(MX,Y,H) & ISMONKEY (M)
& LOC(B1,X,Y,H1) & ISBOX(B1)
=> LOC(MX,Y,H1+1) & UPON(M,B1) & NEGATE(1,2);

R1; "REACH +" - REACHFORIM,B) & LOC(MX,Y,H) & LOC(B,X,Y,H) & HUNGRY(M)
=> EATS(M,B) & NEGATE(ALL,-2)

R2; "REACH -" :: REACHFOR(M B) & LOC(M XY H) & LOC(BX,Y,H2) & SATISFIES2(HH2,H 2.LESS H2)
& NOT(EXISTS(HN) & CLIMBUP(M XY, HN) }
o> NEEDBOX(M,X,Y,H) & NEGATE(1),

N1 "NEEDS BOX™ = NEEDBOX(M XY, HN) & ISBOX(B) & LOC(B,X2,Y2 H) & NOT(VEQ(X,X2) & VEQ(Y,Y2))
& HVAL(B,V) & ISBANANAS(B2) & NOT(EXISTS(B3) & UPON(B38))
& NOT(EXISTS(B3 X3 Y3HZV3) & HVAL(B3V3) & NOT(VEQ(X2X3) & VEQ(Y2,Y3))
& SATISFIES2(V,V3 V3 7.GREAT V) & NOT(EXISTS(B4) & UPON(B4,B3)))
»> GOTO(M,X2,Y2) & PUSHTO(MB X2,Y2 X,Y) & CLIMBUP(M XY HN) & REACHFOR(M,B2) & NEGATE(1);

P1; "PUSH & STACK" :: PUSHTO(M B XY, X2,Y2) & LOC(M X,Y H) & LOC(BX,Y,H)
& LOC(B2,X2,Y2Z,H2) & ISBOX(B2) & NOT(EXISTS(B3) & UPON(B3,82))
=> LOC(MX2,Y2,H) & LOC(B X2,Y2 H2+1) & UPON(B,B2) & NEGATE(1,2,3);

P2; "PUSH ONLY" - PUSHTOM,B, XY, X2,Y2) & LOCIMX,Y H) & LOC(BXY,H)
& NOT(EXISTS(B2Z,H2) & LOC(B2,X2,Y2 H2) & ISBOX(B2))
o> LOC(MX2,Y2 H) & LOC(BX2,Y2 H) & NEGATE(ALL),

P3; "UNSTACK BEFORE PUSH" - PUSHTO(M,B XY X2,¥2) & LOC(MX Y H) & LOC(BX,Y,H2) & UPON(B,B82)

O LATREY

11; “INIT 17 INITC(P)
=> EXISTSIMNK BAN BX | BX2,8X3) & LOC(MNK | 1,1) & LOC(BAN5,5,3)
& LOC(BX1,7,8,2) & LOC(BX2,7,8,1) & UPON(BX1,BX2) & LOC(BX34,6,1)
& ISMONEEY(MNK) & ISBANANAS(BAN) & ISBOX(BX1) & ISBOX(BX2) & [SBOX(BX3)
& HVAL(BX1,3) & HVAL(BX2,4) & KVAL(BX35),

END; END

Psnist Extended Example C5

e

C5. Cross-reference and meanings for predicates

| : CLIMBDOWN(m) - monkey m is to climb down from some slevated object (ag. box).
LHSUSES C1
RHSUSES G2 -C1i
CLIMBUP(m x,y,h) - monkey iz to climb up to height h ot co-ordinetes <x,y>.
LHSUSES C2 .
NESTEDL R2
RHSUSES -C2 NI
EATS(mbn) - monkey m sats bn (in qur case, bananas).
RHSUSES R1 .
GOTO(m x,y) - monkey is to go to co-ordinetes <x,y>.
1 LHSUSES G1 G2
RHSUSES H1 -G1 G2 NI
HUNGRY(m) - m s hungry
LHSUSES HI R1
RHSUSES -R1
HVAL(bx,n) - bx has heuristic valus n, which orders how objects are chosen
LHSUSES NI
NESTEDL N!
RHSUSES 11
INIT(p) - initinlize problem. p is & dumemy.
LHSUSES 11
ISBANANAS(bn) - bn is # bunch of bananas.
LHSUSES M1 NI
RHSUSES 11
ISBOX(bx) - bx is & box
LHSUSES C1 C2 N1 Pi
NESTEDL P2
RHSUSES 11
ISMONKEY(m) - m is 8 mor ey
LHSUSES H1 C1 C2
RHSUSES I
LOC(o,x,y,h) - object o is localad at co-ordinates <x,y>, height h
LHSUSES H1 G1 G2 C1 C2 R1 R2 NI P1 P2P3
NESTEDL P2
RHSUSES Gt -G1 C1 -C1 C2 CZ -RI P1 -P) P2 -P2P3-P3 11
NEEDBOX(m x,y,h) - monkey needs to move 8 box fo <x,y>, heght h

F LHSUSES N1
1 RHSUSES R2 -N1
.4 PUSHTO(mbx,x1,y1,x2,y2) - monkey m in to push box bx from <xi,yl> to «x2,y2>.

B LHSUSES P1 P2 P3
RHSUSES N1 -P) -P2 P3
REACHFOR(mbn) - monkay m is {o reach for bananss bn
LHSUSES R1 R2
RHSUSES H1 -R1 -R2 N!
. UPON(o,bx) - o is upon box bx.
LHSUSES C1 P3
NESTEOL NI PI
" RHSUSES -C1 C2 P1 -P3 11

’ (]
y |
B
i
4

]

Psnist

D. Grammar for Psnist

Syntactic meta-variables are in lower case. The suffix "-x-list" refers to a list of one
or more of the entities specified by the part of the variable before the first "-“, separated
by the delimiting character or grammar entity at the position "x"; for instance “argument-,-
list™ is a list of argument’s, separated by " Alternatives in the grammar are separated
by “|". ™=" separates definition from what is being defined, if the definition is a formal
definition; for informal ones, “is" is used. Optional sequences are enclosed by “(" and "T".
The order of definition of the grammar variables is depth-first by the line of first
appearance, and within lines, left-to-right. That means, as the definitions proceed, the
most recently-mentioned variables get defined next, with others before them stacked up
for later definition, in a last-in first-out order except that the stack removal follows left-
to-right order within definitions.

system := BEGIN [define-;-list ;] module-;-list END.
supercomment is a comment that may be inserted anywhere, and is

enclosed in %’s ; the 7 character may not be used singly
elsewhere, even in identifiers or inside pairs of ™s

define ;= DEFINE oldid newid
oldid = ident
ident is a string of characters, where a character can be

a letter, a digit, ¢, !, or ? followed by anything;

the first character of an ident cannot be a digit;

examples: I1 :VAR?-3 Fire! X2.PROC 7¢QUO 795K
newid = ident J
module .= EXPR modulename () ; [declare;-list ;] prod-;-list ; END d
modulename = ident ¢
declare = declareword (identpair-,-list) i

declareword

:= REQUIRE | NONFLUENT | DCMD | PSMACRO

identpair = ident |’ (ident . ident)
prod := prodname ; [comnt orchar] lhs arrchar rhs :
prodname = ident H
comnt 1= " string " :
string is a string of characters, except " and 7
orchar is a character or DEFINE’d ident that stands for OR;

OR itself could be used; common practice is to use :: ;

the ascii character for OR is 37 (octal), which

prints as SOS 78 or Te
Ihs := |lhsconj-andchar-list
lhsconj := lhspredarg | notchar Ihspredarg | notchar (nestedconj)

| psmacrocall
Ihspredarg = |hsspecial { Ispecarg-,-list) | pred (var- -list)
Ihsspecial := SATISFIES | SATISFIES2 | SATISFIES3 | VINEQ | VEQ
Ispecarg is & var or exp, depending on the particular

special: VNEQ and VEQ take two var arguments;

the three SATISFIES's take one, two, and three var

arguments, followed by one argument which is an exp
var = ident
exp is an Mlisp expression or a quoted Lisp expression

11-25 D.

= s .
&]

D. Grammar for Psnist Psnist

(see the notes following the grammar)

pred 1= ident

notchar is NOT or ascii character 5 (may be DEFINE'd otherwise)
nestedconj 1= exists andchar lhs | lhsconj andchar Ihs

exists = EXISTS (var-,-list)

andchar is AND or & or ascii character 4 (may be DEFINE'd otherwise)
psmacrocall is a call on a user-defined psmacro; it must return

a value with the format of an LHS or RHS,
depending on where it occurs

arrchar is a character or DEFINE’d ident that stands for OR;
OR itself could be used; a modified Mlisp (PSNPRE) is
required to be able to use "=>" (which appears in the
Ps in this and other documents);
ascii 37 (octal) is OR, printing as SOS 78 or T«

rhs = rhsconj-andchar-list

rhsconj = pred (varexp-,-list) | notchar pred (varexp-,-list)
| exists | NEGATE (negargs)
| rhsspecial (rspecarg-,-list) | psmacrocall

varexp = var | exp

negargs = posint-,-list | ALL | ALL , negint-,-list

posint is a positive integer

negint is a negative integer

rhsspecial = DELAYEXPND | ADDPRQD | REPPROD | REPLHS | REPRHS
| REPCOMNT

rspecarg is a varexp-,-list ; the number of varexp's depends

on rhsspecial : 1,5, 4, 2, 2, 2, respectively

The following gives the meanings for declareword's, lhsconj's, thsspecial's, rhsconj’s,
- EXISTS, NEGATE, and rhsspecial’s.

REQUIRE causes the modules whose names are arguments to be loaded automatically
whenever the module containing the declaration is loaded (by LOADPS, the PS
load function). Extension EXP is assumed for those files. Example:
REQUIRE(STUT, STUCR) causes STUT.EXP and STUCR.EXP to be loaded.

NONFLUENT causes its arguments, which are assumed to be pred's, to become non-fluents,
that is, when changes to the Working Memory are made on these pred's, no
:SMPX entry is created for following up any consequences of those changes.
Example: NONFLUENT(LEFTOF, WORDEQ).

DCMD causes its argument to be passed to the function CMD, whenever the containing
module is loaded or set up (LOADPS or SETUP functions). CMD is the function
which reads a command file. Example: DCMD{((STUDNT.CMD)).

PSMACRO declares its arguments to be PSMACRO files; they are read immediately on being
declared, resulting in definition of the functions they contain; extension MAC is
assumed. The format of the files should be Lisp DEFPROP format or its
equivalent. Example: PSMACRO(STUDNM)

D. 11-26

- r

Psnist Grammar for Psnist D.

lhsconj specifies a template to be used during the match process ta test for presence or
absence of an instance in the Working Memory. As each lhsconj is matched,
variables with value NIL are assigned corresponding values from the matching
instance. The Lisp VALUE property is used for this binding. A notchar
> preceding a predarg specifies absence of a particular instance, that is, all
variables in the var-,-list must have been used previously in the LHS and
thereby bound. The notchar (nestedconj) construct can be used to specify
absence of a more complex condition, allowing quantification over variables via
EXISTS (see below), and otherwise allowing negation of a conjunction of
templates. A match is attempted on whatever is inside the ()'s, and if that match
fails, the main match continues.

SATISFIES tests the value of the Mlisp or Lisp expression which is its second argument;
the match is allowed to continue if the result is non-NIL. The first argument is a
variable which is to be used as an argument to the expression (it also explicitly
appears in the expression {o be evaluated, of course). In this as in other places,
if a QUOTEd Lisp expression appears, the CADR of the QUCTE expression is
evaluated. This allows a user to express expressions either in Mlisp or in Lisp.
For instance, one could say SATISFIES(X, NUMBERP X) or SATISFIES(X,
(NUMBERP X)) with the same result. Another special feature of SATISFIES (and
the other Ihsspecials) is that preceding it by NOT causes the internal result to
have the NOT around the expression, for instance NOT SATISFIES(N, N ?¢LESS 7)
becomes internally (SATISFIES N (NOT (sLESS N 7)))

SATISFIES?2 is similar to SATISFIES, with two variables declared to be needed for the third
expression argument. Example: SATISFIES2(X, Y, X 7¢GREAT Y) or SATISFIES2(X,
Y, "(?#GREAT X Y).

SATISFIES3 takes three variables and an expression, for instance, SATISFIES3(L, M, N, N =
L + M) or SATISFIES3(L, M, N, (EQUAL N (PLUS L M))).

VNEQ compares the values of its two variables, and allows the match to continue if they
are different (not £Q). Example: VNEQ(C, D).

°
VEQ compares the values of its two variables, allowing the match to continue if they are
the same (EQ). NOT VEQ(X, Y) is converted internally to VNEQ(X, Y). NOT VNEQ(C,
D) is converted to VEQ(C, D).

[EXISTS is used in nestedconj's in LHSs to declare a set of variables in the local context of
} . the nestedconj. For instance, NOT(EXISTS(A, B) & ..) means that it the condition
” inside the NOT(..) is true for some values for A and B, then the match is

b discontinued. When tnat nestedconj is encountered in the match, A and B are
Ei ' assigned the value NIL, and an attempt is made to extend the current assignment
to variables including A and B so that the conjunction inside the ()'s is satisfied.
The production syntax-checking functions will give a warning if the variables of
| the EXISTS are used previously outside the nestedconj in the LHS of the same

B prod. Also, an EXISTS is automatically created (with warning) if a variable inside
8 nestedconj has not bee.. declared by an EXISTS and if it has not been used

E outside of the nestedconj context.

-27 D.

Grammar for Psnist Psnist

rhsconj Is used to specify changes to be made to the Working Memory, based on values
assigned to variables during the match to the LHS, and using values created by
EXISTS, see below. A positive conjunct (without a notchar) is an addition to
the Working Memory of a specific instance, while a negative one is a deletion of
a specific instance. Note that the Working Memary is fully explicit, containing
only positive instances.

EXISTS is used as an rhsconj to specify that new objects are to be created and the
objects assigned as values to the variable arguments of the EXISTS. Those
values are then used throughout the RHS in building up new instances. A
warning is given if an EXISTS variable is used in the LHS of the same prod.
Aiso, an RHS variable not used in the LHS or in an EXISTS is automatically
assumed to be an EXISTS variable, and a warning is given. The objects created
are based on the names of the variables, for instance, EXISTS(MON, BAN} might
create the constants MON-3 and BAN-5. The number used depends on how
many previous objects were created using the particular variable. Internally ali
EXISTS in an RHS are combined into one and put at the beginning of the RHS.

- «EGATE is an abbreviation for NOT of those LHS conjuncts referred to by positive numeric
arguments, counting from left to right in the LHS. The count also includes
entities in the LHS that are not positive conjuncts (a positive conjunct is one
that is not preceded by NOT). ALL means that all positive LHS conjuncts sre to
be negated, whereas ALL followed by negative integers means ALL BUT those

conjuncts referred to by the negation of the negative integers Warnings are
given if there is an explicit (using integers) attempt to negate or un-negate
something in the LHS that is not positive.

DELAYEXPND is used to cause delayed expansion of a PSMACRO. Ordinarily, PSMACRO’s are
expanded at SETUP time, thus precluding the dependence of the result on values
known only at run time. DELAYEXPND allows run-time expansion to occur, using
values assigned to variables during the match or by EXISTS For insiance,
suppose STRINGINS is a PSMACRO for the conversion of strings from an exlternal
format to a list of conjuncts forming the internal representation. Then
STRINGINS(*(aa bb cc)) would be a SETUP-time conversion, and the list of
conjuncts would be permanently substituted for the occurrence of the
STRINGINS expression. On the other hand, if one wanted to insert tha interna!
representation of a string that is computed by the P, one might say,
DELAYEXPNIXSTRINGINS(L)). The macro STRINGINS would be called with L as
argument every time the P fired, with possibly a different resull each time
DELAYEXPND handles correctly the occurrence of EXISTS in the result of macro
calls.

ADDPROD has five arguments: (prodname, prec, comnts, thslist, rhslist). It is a primitive for
adding a P named prodname, with comnt comnis, LHS Ihslist, RHS rhslist, and
preceding P prec, (if prec is not a P, prodname is taken to be the first P of
module prec). ADDPROD causes assertion of (ADDPRODP prodname)

REPPROD(prodname, comnts, lhslist, rhslist, means replace comnt, LHS and RHS of P
prodname as indicated; asserls (REPPRODP prodname)

11-28

T

{
1

Psnist Grammar for Psnist - D.

REPLHS(prodname, lhslist) means replace LHS of prodname as indicated; asserts (REPLHSP
prodname).

REPRHS(prodname, rhslist) means replace RHS of prodname as indicated; asserts (REPRHSP
prodname).

REPCOMNT(prodname, comnts) means replace comnt string; asserts (REPCOMNTP
prodname). .

Additional notes:

nestedconj pred’s are implicitly locally non-fluent, i.e., Working Memory changes don't
result in :SMPX entries for those Ps containing the changed pred's only within
the nestedconj context; note that a nestedconj must have more than one
element.

Mlisp reference: Mlisp, by D. C. Smith, Stanford AIM-135; copies are available at CMU.
Recourse to that should not be necessary for reading programs, or for writing
simple ones, especially if study is made of existing examples of PSs.

Prefix operators that are known to Mlisp need not have parentheses around arguments,
e.g. NCONS B, CADR X. Binary infix operators may be written between their
arguments, e.g. A CONS B, X © Y, W NCONC O CONS S (that tast becomes {(NCONC
W (CONS D S)), i.e., list-building associates right, not left as is customary for
arithmetic functions).

Miisp reserved words: BEGIN NEW SPECIAL END IF THEN ALSO ELSE FOR IN ON TO BY DO
COLLECT UNTIL EXPR FEXPR LEXPR MACRO DEFINE LAMBDA OCTAL WHILE STR
STRP STRLEN AT CAT SEQ SUBSTR PRINTSTR. Also, the Miisp translator may
balk if standard Lisp functions’ names are used in what it sees as illegal
contexts.

Mlisp expressions are very similar to Algol, with the feature that functions used are Lisp
functions. For instance, + for PLUS, / for QUOTIENT, and s¢ on. Certain
characters have special meanings: ® for APPEND, <a, b, ¢> for (LIST A B C); +, &,
/, = = ¢ with standard meanings; logical conneclives as mentioned in the
grammar above; square brackets are used for list accessing, e.g. a[3] is (CADDR
a).

quoted Lisp expressions are Lisp s-expressions preceded by ', eg. (EQUAL (PLUS M N)
(SUBI L)); note that Mlisp conventions should be followed when including those
in the Mlisp versions of systems, namely, special characters in atoms must be
preceded by 7 ; internally in Psnlst, the ?’s are dropped or changed to /'s.

11-29

|

g
! -3
&
- 8
: L
{ Penist £
I £
Appendix A. Short Summary %
.. A.l. System architecture and production format of Psnist

1 A production system (PS) is a set of conditional rules, productions (Ps), that

’ . represent changes t> a symbolic model of a situation along with conditions under which
those changes are to be made. A production system architecture (PSA) provides: a A
Working Memory (WM), which contains symbol structures representing the dynamic state %
j of the situation being modelied; a Production Memory (PM) which contains the Ps; a f
particular control mechanism known as the recognize-act cycle, by which Ps are £
repeatedly executed or fired - a P that is recognized to have its condition satisfied with ?
respect to WM contents is fired by having its actions performed, whereupon the cycie is %:
repeated using the new contents of WM (WM is updated by the actions of the P that is 2

fired); and a set of conventions or ordering principles by which a single rule may be
selected from the set of rules that are recognized to be satisfied by the contents of WM
during any recognize-act cycle.

The Psnist (PS analyst) is a PSA, as follows. WM is an unordered set of dala items
called instances. Each instance is an ordered list of two or more elements, where the first
element is a member of a set of constant atoms called predicates, and where succeeding
elements are either atoms or list structures - list structures however ere opaque, their
internal structure not being accessible fo the recognition mechanism of the PSA. Instances
are considered to be grouped together in the WM according to their predicates. PM is an
unordered set of Ps, each consisting of a left-hand-side or LHS (the tondition part) and a
right-hand-side or RHS (the action part). The form of LHSs and RHSs will be discussed
beiow. The recognize-act cycle consists of a match of the LHS to WM, resulting in bindings
for variables contained in elements of the LHS. A firing then uses those bindings to create
WM instances according to the elements of the RHS. Two features of the match are
unusual, First, all possible matches are found, and a firing occurs immediately for each
match. That is, within a single recognize-act cycle, many firings of the same production
may occur. Second, a match must include at least one data instance that s new with
respect to the P that is matched, where new is defined as having entered WM after the
previous firing of the P. The action part of a recognize-act cycle consists of adding or
deleting WM instances, and of optionally making changes fo PM using ADDPROD and other
special operators explained below.

The way Psnist orders satisfied Ps to select one for firing (this is the fourth PSA
component) is by ordering events that occur during the action part of the recognize-acl
cycle. This is done by using a stack memory that records, for each WM change, the sat of
Ps that mipht become satisfied as a result of the change. The stack memory ic called
:SMPX, stack memory for production examinations. More recent WM changes are stacked
on top of older ones, so that Ps satisfied by more recent changes are guaranteed to ' -e, if
satisfied, before Ps using older changes. The order of recency of changes with a P firing
are determined by the order of conjuncts within the P's RHS. This ordering principle
leaves two selection orders unspecified: if more than one P using the same WM change is
satisfied, one is arbitrarily chosen to fire and the other is pushed down in :SMPX by the
changes made by the selectea P; if a P fires more than once in & recognize-acl cycle (more

Al [1-30

Psnist Short Summary Al

than one match is found for the P) the firings are done in an arbitrary order. With
respect to the former arbitrary choice, if one P is to be selected before another one that
uses the same WM change, the LHSs of the two Ps must explicitly be mutually exclusive.
That is, it is the user’s responsibility to distinguish between don't-care and necessarily-
ordered situations. Given the :SMPX mechanism for ordaring P firings, the recognize-act
cycle can be summarized as follows: a change occurs to WM, resulting in :SMPX entries;
starting from the top of :SMPX, Ps are matched until a P condition is found to be satisfied;
the actions of the satisfied P are executed, resulting in stacking up new entries in :SMPX;
and so on.

The following is a Psnist production that appears in a PS that models a hungry
monkey in a room with some bananas, as the monkey recognizes its hunger and tries to
reach for the bananas.

H1; "HUNGRY" :: HUNGRY(M) & ISMONKEY(M) & ISBANANAS(B) & LOC(BX,Y,H)
=> GOTU(MX,Y) & REACHFOR(M,B);

The name of the P is Hi, its comment is "HUNGRY", and the remainder of the P gives the
LHS and the RHS, separated by "=>". The LHS is a conjunction of templates for WM
elements; each template is a predicate followed by a list of variables. When a match
succeeds, each variable is bound to a specific token from the WM instance corresponding
to the template. Hl would match a situation in which the instances (ISMONKEY MNK-1),
(HUNGRY MNK-1), (JSBANANAS BAN-1), and (LOC BAN-1 I-1 J-3 K-2) are present, to
produce two new instances, (GOTQO MNK-1 1-1 J-3) and (REACHFOR MNK-1 BAN-1),
assuming, say, that the (HUNGRY MNK-1) instance is a new one. M is bound to MNK-1, B to
BAN-1, X to I-1, and so on. MNK-1 is a token for the monkey, BAN-1 for the bananas in
the room, I-1 for a spatial location along the X coordinate axis, and so on. The GOTO and
REACHFOR instances become instigators of further action, if Ps to model the corresponding
real actions exist and if other conditions in the model are appropriate.

A.2. Features of Psnlst programs

The notation for Ps in Psnist is a subset of the Mlisp language, or rather a special
interpretation of Mlisp expressions (see Mlisp, by D. C. Smith, a2 Stanford Al Lab report,
available at CMU). A PS consists of one or more modules, each of which is represented as
an Mlisp EXPR consisting of a BEGIN .. END block. Each module consists of optional
declarations, followed by a list of labelled Ps. A P is simply a disjunction of an optional
comment string and two conjunctions, the first conjunction being the LHS, the second, the
RHS. A special function is used to translate these conventions into the format used
internally by Psnlst.

The foliowing presents novel syntactic features that are encountered in reading
Psnlst programs:

" - the Miisp comment character; text between 7's is ignored.
' - used to quote Lisp S-expressions

b - string constant delimiter (for instance, Psnlst comments)

} - @ semicolon is used after a P name and to separate Ps

-> - this symbol separates LHSs of Ps from RHSs

11-31 A2

gl e

"

\|

A2 Short Summary Psnist

- used to separate Psnist comment string from associated LHS
(is DEFINE'd to be OR)
? - Miisp character-quote character; must be used for characters
that have special Mlisp meanings. For instance, V?-1
is an identifier, not "V minus 1".

& - AND
< - Miisp syntax for (LIST ...), the Lisp list-building function
(] - Miisp syntax for Lisp APPEND function, for joining two lists

Summary of notation for Ps:
name ; "comment” :: LHS => RHS ;

The following comments explain other special features of Psnist programs, but only
to the extent necessary for easier reading of the programs. Examples of these features
are to be found by the reader in specific PSs.

Macros: certain things that look like predicates are really macros, expanding into a
sequence of predicates with arguments; these are usually expanded at load time,
by user-defined Lisp programs.

NOT specifies "absence of* when it precedes LHS conjuncts; it denotes deletion when it
precedes RHS conjuncts; in LHSs it may also precede a nested conjunction,
NOT(...), in which case the conjunction is matched as if it were an {HS, and if it
succeeds the LHS match fails; these negated conjunctions may be nested, that (s,
they may contain nested conjunctions (see also EXISTS, below).

NEGATE is a built-in macro that specifies which of the LHS conjuncts are to be negated in
the RHS, by number, or by using ALL; if negative integers follow ALL as an
argument, it means "ALL but® the instances specified by the negative integers;
for instance, NEGATE(3) would stand for NOT ISBANANAS(B), in the above
example.

SATISFIES, SATISFIES2, SATISFIES3 are special predicates for testing values of variables
during the match, using Lisp predicates; the numbers 2 and 3 are the number of
variable arguments (SATISFIES takes one).

VEQ(x,y} is equivalent to SATISFIES2(x,y,x EQ y), i.e., equality.

VNEQ(x,y) is equivalent to SATISFIES2(x,y,x NEQ y), i.e, inequality.

Conjuncts in RHSs may use arbitrary expressions as arguments, to be EVAL'd ss Lisp
expressions during the P firing process. (Mlisp includes Algol-like arithmetic
expressions.) _

NONFLUENT{(p) declares p to be a non-fluent, that is, an insertion of an instance of
predicate p into the Working Memory does not cause any Ps to be matched for
possible firings keyed to that insertion. In other words, no entry is made to
:SMPX for that change.

REQUIRE(a,b,c,...) declares that ab,c,. are required modules of the PS whose main module
contains the declaration.

PSMACRO(f1,f2,...) declares files to be read to define user macros.

DCMD(f1,f2,..) declares files to be read as command (CMD) files.

EXISTS in an RHS causes creation of new objecis whose names are extensions of the
arguments of the EXISTS; those objects are then used in the remainder of the
RHS to form instances

EXISTS in an LHS must be in a nested expression of the form NCT(...); its function then is

A2 11-32

R -y

TP

\!ﬁ

Psnist Short Summary - A2

to locally declare its arguments as variables, causing them to be initialized to NIL
for the match that follows, within the (...).

DELAYEXPND(x) where x is some macro call: this specifies that the macro is not to be
expanded when the P is inserted, but during the actual firing of the P; this is
only used when the predicates of the RHS depend on values not known until run
time; it can not appear in LHSs.

ADDPROD{prod,prec,comnt,lhslist,rhslist): primitive for adding a P (named prod) with
comment comnt; lhslist and rhslist are lists representing new LHS and RHS; the
prec argument is either a P name, indicating thal prod is to be placed after it, or
is taken to be the name of a new module of which prod is the first P; ADDPROD
causes assertion of (ADDPRODP prod).

REPPROD(prod,comnt,lhslist,rhslist): replace comment, LHS, and RHS of prod as indicated;
asserts REPPRODP(prod).

REPLHS(prod,lhslist): replace LHS of prod as indicated; asserts REPLHSP(prod).

REPRHS(prod,rhslist): replace RHS; asserts REPRHSP(prod).

REPCOMNT(prod,comnt): replace comment string; asserts REPCOMNTP(prod).

A.3. Features of the trace output

TOP LEVEL ASSERT - the initial starting assertion, typed by user.

! - aP fired

number following ! - the firing was the number’th

P-name followed by -’ then number - the number’th firing of the P

"string" - the comment string associated with the P

USING ... - instances from the Working Memory used in matching the LHS

(xxx . yyy) .. - assignment thal was made for the match: xxx was assigned the value yyy,
etc.

INSERTING ... - the insertions and deletions made by the RHS

(:SMPX ... number) - a display of :SMPX after firing; number is length of :SMPX; each
entry is enclosed in [J's

EXAMINING ... - gives the name of the P and the key insertions causing the examination

JTRY - means that a non-fast-fail examination is being done; fast-fail is a quick check on

whether any positive predicate has no instances, before the full-fiedged match
is tried (formerly /NFF)

WARNING ... - appears when an instance is inserted or deleted but was already present or
absent, respectively

%+ - appears for a warning for an instance insertion

*- - appears for a warning for an instance deletion

If the RHS included ADDPROD, REPPROD, REPCOMNT, REPLHS, or REPRHS, & message is
printed before the INSERTING line.

PSBREAK comment AT .. - a break in execution; user interactions consist of commands in
()’s; the system responds with output dependent on the command, or with “ok"
(OK) is typed by the user to resume execution.

The above appear on a full :DVERBOS=4 or :TVERBOS = 4 trace; the following are
modifications for lesser traces:

R R e S e T e T

A3 Short Summary Psnist

the P-firing message is all on one line

most of the EXAMINING message disappears; only the P name remains; if /TRY occurred,
only the / appears (in case of verbosity 1, not even P names appear)

most of the WARNING message disappears - only the s’s remain

the USING and INSERTING lines disappear

the messages from ADDPRQD et al drop out

break messages, commands, and possibly their outputs disappear

After execution, typically a DUMP occurs (delimited by "DUMP"), followed by the output of
PERFEVAL:

Run time for the present RUN invocation
A small table of figures:
EXAM is the number of examinations of Ps
TRY is the number of non-fast-tail (/TRY) examinations
FIRE is the number of P firings
WMACT is database (Working Memory) actions: insertions + deletions
E/F, E/T, T/F give ratios of the first three
the line following the numbers gives an average time figure for each of the
relevant numbers in the preceding line (divides total run time by each
of the numbers)
Detail on Working Memory changes; "NEW OBJECTS" are those created by EXISTS
Maximum length attained by :SMPX
CORE gives current available LISP core, plus amount used in current run
:ACTS - a list of the major actions in the current core-image
TRACE - a list of Ps that fired, in the order that they fired
FIRED x OUT OF ... - gives number of distinct Ps that fired

11-34

% 1

gy B3

Psnist

Appendix B. System File Pointers

This appendix and the next one are files that are kept on DSK: on the CMU-10A
computer under account [C410MRO5]. This chapter is not intended as a reference for a
Psnist user - PsnRef.Doc serves that purpose. In many cases the files mentioned in these
appendices are not on DSK:, but are kept on backup tapes. The interested reader should
request the author by mail that they be made available on DSK:.

Files relevant to Psnist = Psnlst.Hlp
DSK: = [C410MROS}; unless otherwise marked, files are on dectapes,

namely, MRO5 MI2, PS2, SV2, and SV4 - file DSK: DTADIR contains
directories for those tapes.

Psnlst.Sav runnable core image for the interpreter (DSK:)

Psnpre.Sav runnable core image for the pre-processor (DSK:)

Psnlst.Doc introduction to Psnlst

Psnref.Ooc reference manual for Psnist

Psnsho.Doc a short form of Psnist documentation for non-users

Psdac.Tdo minor additions to system and documentation,
updates to past and present Psnref.Ooc

Pstask.Doc current set of complete or near-complete PSs (DSK:)

PSMisc.Com several small PSs - see Pstask.Doc

Pstask.Tdo set of tasks under consideration

Psntst, Psnts2, Psnts3 command files which constitute a test run
for debugging Psnlst;
~ full description of test protocol is Psntst.Alc
- outputs from past trials are Psntst.tr?, Psntst.Db?
Psnlst.Alc some sample allocations of core for P S's
- this is now in Psnmis.Com, a combination of files.
documentation the entire documentation for the system:
Psnlst.Doc, Psnref.Doc, Psdoc.Tdo .
Lisp 1.6 (doc room), Ilsp manual (see sys: Lisp.Doc)
Mlisp manual (doc room, under D. C. Smith)
Lisp.Log, llsp.Log (minor details on current Lisp)
CMU Introductory User’s Manual
PDP-10 Monitor Reference manuals

11-35

3
\
&
i
£
)
5
'
§

R Gl R SRR T e A
-~

S ac o

Py N R Y R T T T IR Ty ey

-

L A

Appendix C. Tasks to Date

Production systems in PSNLST = Pstask.Doc[C410MR05]
UPDATED 22 July 76

General comments: ‘
1. If these are not on dskc or dskb, search file DTADIR, which contains
directory listings for all MROS dectapes.
2. The older ones will not necessarily be up to date with Psnlst.
3. Systems are given in chronological order, most recent first.
4, Naming conventions:
all files reiated to a system have names with the same first
three letters as the main system name;
the extension COM stands for a combination file; if the file is
large, then it is the main source program plus others;
otherwise it contains. ‘miscellaneous related files;
extension ALC gives core allocations tor typical runs;
extension TRS, TRI, TRJ give behavior traces of various forms;
<three letters>XR.TRS is the usual name of the cross-reference;
<three letters>C and extensions of that are command (CMD) files;
extension CTL is a batch control file;
<three letters or more>M is a PSMacro file;
DEM stands for demonstration.
5. Psnist.HIp contains pointers to Doc’s and other system fifes.

WBLOX + MILIPW - a blocks problem-solving system similar to Winograd's.

KPKEG - King Pawn King EndGame.

GPSR - GPS revisited (Ernst & Newell, 69); GPSTH gives extra Ps for
Tower of Hanoi; GPSMCO & GPSMCI give two versions for
Missionaries & Cannibals; GPSMK is Monkey & Bananas.

Miscellaneous: PSMisc.Com has three files combined on it:

CRYXYZ is a PS to solve XX + YY = ZYZ (cryptarithmetic);
Semnet.Mai is some comments on puzzle-solving and semantic nets;
Resolu.Mai is comments on resolution thearem-proving.

TICTAC - simple TicTacToe, based on Human Problem Solving version.

MONKEY - Monkey and Bananas, wriften up in Psnlist.Doc.

EPAM - EPAM, adds Ps to represent learned nonsense syllable pairs.

STERNB - simple Sternburg task, variable size, positive response bias.

MILIPS - extension of MILISY, the CMU mini-linguistic system.

STUDNT - Bobrow's STUDENT, for solving high school algebra word problems.

BFGPH - breadth-first graph search (PSMacro file GRAPHM).

PSPCTP - PS for PCTP, a PLANNER program from MIT.

SEGMNT - scan English input and segment according to certain words that
are very common, deducing parts of speech (goes with STUDNM).

11-36

B Cegh b bt

L
3

Chapter VII

Conclusion

Programming with Production Systems

Abstract. This chapter first summarizes the production systems (PSs) implemented for this
thesis, reviewing their contribution to knowledge of PSs, their contribution to knowledge
of tasks, and the open questions that they raise. Then PSs are evaluated with respect tc
a number of attributes, among which are practical feasibility, power, overhead, and
architectural flexibility. A taxonomy of control is used to highlight the power and
overhead aspects. Support is given for the suitability of PSs for understanding systems,
by evaluating them with respect to a number of other attributes, with emphasis on
modularity and openness. A taxonomy of representation is developed as a means for
measuring modularity, supporting the taxonomy of control, and providing openness. At a
more abstract level, the methodology of this thesis is examined for its central themes. A
sketch of a theory of Al programming is put forward, with preliminary support drawn both
from an abstract correspondence to PSs and from the satisfactory concrete realizations of
the systems as PSs. PSs presently have some defects, believed to be correctable, and
some promising features to be explored, and are at a stage of development where serious
applications can be undertaken.

-~
[4

IS S AL

? Conclusion
Table of Contents
For Chapter VII

SECTION PAGE
e A Review of the Body of the Thesis . . . o rmrl w e a WEER]

Al Review and summary of specmc |mp|ementat|ons e e el e Y=

A.2 Statistics on the programs implemented VI-8

« - A3 Overview of conclusions « « « « « &« « o« » . VI-10

B Programming Language Issues . . S e RS

B.1 General programming Ianguage features e e e NH=1

B.2 Control features P T e R 1 L

B.3 Suggested improvements in bas:c operators e e e e NS

8.4 Additional programmability topics Vil-2l

B5 Variations in efficiency over the systems Vi-22

C A Basis for Understanding Systems VI-23

C.1 Cameralfeatures . . & s som s e ox ow ow wom s s VFES

C.2 Representation taxonomy ViI-25

Fig. C.1 Values for modifier components Vil-27

C3 Application of the predicate renaming VIiI-29

Fig. C.2 The Transf module in GPSR o w4 ww o o= o V=30

Fig. C.3 LHS interactions between modules in GPSR 0 AR R e w = YR30

Fig. C.4 RHS interactions between modules inGPSR VI-3l

D The Nature of Al Programming « « « « . . VIi-33

D.1 Themes of control VI-33

D2 Problem spaces as a basis for a theory of AI programmlng . VII-36

E The Future of Production Systems VI-43

£.l Serious defects e i T B L SR PINTRRPAR R S . |

E.2 Promising features . . . e e e w e NEERS

E3 Gaps in the evidence on productlon systems e e a ws VEEERD

Fig. E.1 A fragment of a semantic network v e Py et e D0

i E.4 Practical, impractical, and theoretical apphcahons R Vii-46
i £S The case for production systems VI-47
B ORBIOrontst . 5 5 v o % a s b 6w wLw wow e W R e we S
F APPENDIX PAGE
& A Renamingsof Predicates, . « + ¢ v v & « & » o« & © % Vii-52
B First Abstraction . . . e e e e e bl S St G

C Cross-reference of First Abstractvon T S R T o SRR g e o

D Second Abstraction R Mo e U E e o e

g;

Sl

Conclusion

A. Review of the Body of the Thesis

A.1l. Review and summary of specific implementations

This subsection reviews each of the PSs implemented, emphasizing the nature of the
task performed, the phenomena exhibited by the program, the organization and unusual
features of control in the PS, how it contributes to knowledge about PSs, what is gained
from comparisons to other implementations of the program, how the PS contributes to task
domain knowledge, disturbing and promising features of the PS, and open questions.
Motivations and general references for the tasks are given in Chapter | and will not be
repeated here. Each chapter starts out with a more detailed description of the task, and
includes a fuller set of references, in case the reader needs a brief review of the task
beyond the sentence or two given here. Certain topics, such as how control is achieved in
the PSs, will be avoided in the following brief summaries, and treated as a whole in Section
B. Section A2 summarizes and explains a number of the superficial attributes of these
PSs.

Studnt. This PS is not part of the thesis, and has been presented as a separate,
self-contained study of PSs. Some of its major implications have already been discussed in
Chapter 1. The measures and other discussion of this chapter wili be applied to Studnt,
however. Studnt takes story problems stated in a restricted natural fanguage and
translates them into sets of linear equations, whose solution is the solution of the
problems. Studnt solves a diverse coliection of 27 problems, applying both general
parsing methods to subdivide sentences into algebraic expressions and specific tricks and
idioms to allow identifications to be made between variants of semantically equivalent
phrases. The primary means of conirol and organization is a lett-to-right scan of a
problem statement, applying at each position in the scan all of the applicable idiomatic
transformations, dictionary classes, and other operations. Comparison to the original
program for this task shows how subroutines and other kinds of control become more
data-driven and keyed to the left-to-right scan, in translating from the original language to
PSs. Details of the behavior of the PS make some contact with protocols taken of human
subjects solving similar problems, and in particular the Studnt PS is readily seen as
vorking in a problem space, a theory of behavior used in other human giroblem soiving
studies. The Studnt PS was analyzed in detail to determine its knowledge content and to
study how that knowledge becomes encoded as Ps. That analysis showed promising
features of the encoding process, and provided motivation for continuing the study of PSs,
in particular for the purpose of explering the encoding of a wider variely of {ask
knowledge

Epam. The Epam PS is a relatively smali program that learns nonsense-syliable
associations by incrementally buiiding up a minimal discrimination network., The network,
stored internally as a set of Ps that the program can augment, encodes fests that
distinguish the various stimulus syllables and emit memory cues. The memory cues are
also distinguished by the network to provide links from the stimuh to the externally-given
response syllables. The PS’s behavior was tested on several ordinary sets of svilable
pairs, consisting of three, seven, and nine pairs, and on a set of pairs representing an

Vii-1 Al

Al . Review of the Body of the Thesis Conclusion

ordered list, with the response syliable of each pair also serving as a stimulus for another.
It exhibited a number of the phenomena that accompany such verbal learning in humans
and in previous versions of Epam by other researchers: stimulus generalization, response
generalization, and forgetting (retroactive inhibition). (Epam was used to explore using a
PS to build a PS, and not necessarily to imitate past work.) The learning in Epam is pre-
defined and rigid, and mistakes occur only in controlied ways.

The PS is organized functionally (not by a structure imposed on P Memory) into an
executive to control the input of stimuli and the output of replies in the proper seguence,
and to control the other parts of the PS, which test results and engage in corrective
modifications and additions to the network Ps. Epam’s primary contributions to PSs are its
mode of representing the discrimination network and its exploration of operators that a PS
architecture should include to allow addition and modification of Ps. Each path of tests
from the "top" of the network to a terminal that produces an internal memory cue or a
reply is encoded as a P, with the maich to the P's LHS corresponding to the traversal of
the network. This representation and its manipulation is important because it is a means
to storing and effectively using knowledge about specific facts of all kinds, e.g., problem-
solving knowledge states, objects that are part of a world model (scenes, faces, etc.), and
linguistic knowledge. The particular mode of storage emphasizes its accessibility by
recognition of a few distinguishing characteristics in a (possibly partial) description. The
results with respect to important PS operators for adding and modifying Ps will be
included later (Section B.3). Epam also brought up issues with respect to the
architectural alternatives available in PSs for storing information: Working Memory versus
P Memory. Within the Epam task, it is quite feasible to store longer-term information,
including information on the Ps themselves, as Ps, and restrict the use of Working Memory
to shorter-term information - a usage that corresponds generally to current PS models of
human information processing. The PS implementation also raises some purely task-
specific questions such as whether to inciude general tests in the network as well as
specific ones, whether to make use of possibly-erroneous information from older tests in
constructing new ones, and on the format and completeness of internal memory cues. A
tradeoff occurs in Epam between being able to examine existing P conditions and storing
information about the intent of a P in some other form,

The Epam PS in Psnist was compared to another version, Waterman’s EPAM2, which
is coded in a PS architecture that has an ordered P Memory and an ordered Working
Memory. EPAM2 has about half the number of Ps that Epam has, and ‘this difference is
accounted for in part by the use Waterman makes of the ordering between the Ps his PS
adds to represent the network - the ordering allows old Ps simply to be masked out by
(placed lower in precedence than) new ones, rather than having to modify old Ps so that
they are consonant with new ones. Though a large part of the difference between the
two PSs is thus due to using order in adding new Ps, a majority of the difference is due to
task-related design features. For instance, EPAMZ uses two distinct networks, one for
stimuli and one for internal memory cues, whereas Epam makes Ps in a single nel serve
both purposes. Because of this, EPAMR2 can't learn lists of syllables (as opposed to pairs).
Also EPAM?2 stores extra information in the network, avoiding tests for compatibility
between an incoming stimulus and the stimulus that the network tests were originally built
up to discriminate (the two often differ because the net only includes partial tests).

Epam demonstrates the feasibility of a PS that augments itself, but its features raise

Al Vil-2

‘0

. Conclusion Review of the Body of the Thesis Al

E: questions concerning flexibility, generality, and plausibility. 1t is specialized to the three-
o letter syllable domain, and this is now seen as a detect with respect to the simplicity of
the program itself: a more general program would be simpler, according to preliminary
2 analysis (this conclusion is specific to EPAM, and the "more general" refers only to position
dependency of letter tests). It is also specialized with respect to error in the input and to
k' other variations in the task. Such anomalies quickly lead it to construct a network that
cannot be properly corrected. The PS is tightly designed, rather than being open readily
to modificiation, so that it is hard to envision how the program could be learned in a loose,
adaptive way from a more primitive basis. This is not seen as a defect in the PS
3 . architecture, but in the present implementation, which is in a sense oplimized tc work on a
E particular unvarying task - further research in reformulating it more generally is expected
; to alleviate this problem. In fact, part of the next PS to be discussed is an object
3 canonization process that does Epam-like things in a somewhat improved fashion.

GPSR. This PS embodies a general problem-solving executive, a number of problem-
solving methods, and a variety of other task-independent mechanisms. In combination with
a problem specification, also expressed as a PS, it becomes a problem solver with
considerable generality and reasonable power over a variety of puzzle-solving tasks. The
basis for the problem-solving methods is means-ends analysis, which uses a description of
the difference between its current state and the desired state (probiem solution) to guide
its behavior.

The problems given to GPSR all bring out its basic features: it achieves the
combination of a set of general, task-independent methods with very specific probiem
information. The problems all invoive heuristic search in a space where the possibilities
are much more numerous than the possibilities actually examined by GPSR before it finds a
solution. GPSR solves three problems: Tower of Hanoi, Monkey and Bananas, anc
Missionaries and Cannibals. The program that GPSR mimics was exercised on eleven tasks,
but the three chosen here are representative of most of those eleven and also are varied
in difficulty and in the mechanisms used. The Tower of Hanoi task involves moving a stack
of disks from one peg to another, with restrictions on how the disks can be arranged on
top of cach other, using only one intermediate peg for temporary partial stacks. GPSR
solves this without a single extra move, a result that derives in part from a fortuitous way
of expressing the differences with which the means-ends analysis works. The Monkey and
Bananas task involves a monkey trying to get to some bananas, placed outside its
immediate reach, by moving a box and climbing onto it. One formulation of the task
illustrates some of the chaotic behavior that can result when GPSR doesn’t make the right
kinds of means-ends connections between differences and the actions taken to remedy

.;' them. A more exact formulation (giving GPSR more to work with rather than modifying
R GPSR itself to act more appropriately) allowed a simpler and more direct solution
243 Whereas the Tower of Hanoi involves only one kind of problem operator, moving a disk
4 from one peg to another, the Monkey task involves selection from among a sel of
k| operators with varying effects. The Missionaries and Cannibals task involves moving three
7 § missionaries and three cannibals across a river in a small boal, and is distinguished by
it having more complex restrictions on how the moving can be done than in the other two
2 tasks. Also the search space and consequently the problem-solving effort are greater

Thus this task was useful for exploring various options in GPSR, for illustrating the
weaknesses in some of its methods, and for comparing GPSR to the original non-PS
versions of the program. GPSR has a lot of similarity to the original, with identical

Vii-3 Al

R

w1y

}

& =2 MLl

Al Review of the Body of the Thesis Conclusion

strengths and weaknesses, but its detailed behavior differs because of different ways ot
making certain arbitrary choices.

GPSR is functionally decomposable® into a problem-solving executive, various
problem-solving methods, and a number of lower-level processes, which are used by
specific task operators to perform symbolic operations. Problem states are represented
as tree-structured objects. In order to access parts of these objects, advantage is taken
of the power of the LHS match, both within the general processes that examine and
evaluate differences between objects (using new Ps created as the problem-solving
progresses) and within the task-specific Ps (encoding probiem information directly in the
LHSs of task Ps). PSs are ideal for representing networks of decisions, as occur in the
selection of methods, in canonization networks and network schemas, and in making
connections between differences and operators and between differences and their
estimated difficulties. The match of problem states to each other, to determine the
direction to be taken, is encoded as a set of Ps that fire (essentially) asynchronously in a
scatter fashion, each pursuing branches of the tree-structured objects and producing
differences accordingly. Goal contexts and control contexts within methods are all kept
openly in the Working Memory, and no restriction in capability is inherent in this practice
(as has been claimed by critics of PSs). PSs also prove effective for a number of
processes of selection and generation. Several places in GPSR illustrate how advantage
can be gained from the ability to express things either in Working Memory or P Memory.
It was found to be quite easy to make alterations and extensions of GPSR in order to test
various problem-solving options. An analysis of the knowledge encoded in the executive,
combined with some history on how the executive was formed as experience with GPSR
was accumulated, shows the ease and directness of augmenting and debugging knowledge.

GPSR raises questions for further research both in the task of constructing general
problem solvers and in the use of PSs. It has proved to be a useful and flexible tool for
exploring various options within means-ends analysis and related methods, and for trying
out variations in the executive. It looks promising for the expansion of the application
area of GPS techniques. In particular, the ease in working with GPSR makes possible its
use as a general language-system-like basis from which to start, in building specific
problem-soiving systems: PSs are amenable to task-specific modifications and
specializations, and the GPSR concept of an executive distributing problem-solving effort
and coordinating communications among a set of loosely-connected methods provides a
suitable control organization, and one that is closely linked with the spirit of PSs.

GPSR illustrates a number of difficulties with PSs, but there is also evidence, from
representations used, that they can be alleviated within PSs (actual demonstrations must
await results of further research). The efficiency of GPSR was barely tolerable, but within
an order of magnitude of good performance for any underlying language. This can be
traced to two features of GPSR: the number of P firings and the size of Working Memory.
The P firings problem could be eased considerably by collapsing adjacent firings, in a
number of well-delineated cases, so that the PS would be tuned specifically to problems
This collapsing is possible because the particular adjacent firings are just “interpretive”
segments of an operation that could be combined into a single LHS - the general nature of

@ The decomposition is determined by the contents of Ps, not by a structural division of P
Memory such as subroutining.

Al vii-4

{

W
e

ot

< -y Y

I peste T

i P

TN

Conclusion Review of the Body of the Thesis Al

GPSR dicates that things be done a step at a time rather than realizing the savings
available from assuming a particular object size and form. It is proposed for the future
that some mechanism be included to allow this tuning to be done dynamically. The Working
Memory size problem is resolvable, according to a post hoc analysis, by making much more
use of Ps as a storage medium rather than letting, e.g., goal-specific data just accumulate
in Working Memory with the gradual effect of making the match to LHSs of Ps perform
more search among irrelevant possibilities. There is also an architectural solution to some
of the problems with erasure, namely not allowing Working Memory to expand without
limit, but to have, for instance, a fixed size or a fixed element lifetime Some problems
with efficiency and with clumsiness in expressing things in the PS language could be
alleviated, it is proposed, by making certain operations, such as erasure and the
construction of new Ps, the province of special RHS operators, whose best form can now
be deduced from existing PS examples (see Section 8.3). Qverall, then, GPSR is
worthwhile in a number of ways, exercising the control and representational capabilities of
PSs, demonstrating problem-solving capabilities, and raising problems that will lead to
advances in the design of PS architectures.

KPKEG. This PS is a limited approach to the domain of chess endgames with two
kings and a pawn (king pawn king endgame). Problems in this domain are distinguished
among chess problems in lending themselves to solution, as a class, with small amounts of
specific chess knowledge and with smali amounts of search among possible moves. The
objectives of either side are limited: the side with the pawn must try to promote the pawn
to a queen and thereby win, and the side with king only must try to block that or achieve
a stalemate. KPKEG is an implementation of a strategy hierarchy principle, under which a
side first establishes a strategy level and then tries to generate moves that might further
that strategy. For the task at hand, there are seven strategy levels, ranging from direct
promotion of the pawn or capture of the pawn, through moves to control the pawn’s path
to its queening square, to moves that try to force the enemy king to back off, and other
last resorts. These levels are so arranged that moves generated in accord with a lower-
level strategy can never be effective against higher ones, so that there is an immediate
limit on the moves that are considered. KPKtG correcily solves three simple positions of
the given class, one of which was designed to force the program to go through a moderate
amount of search, i.e.,, one not amenable to immediate solution with a piece of basic
knowledge. The problem requiring search (of about 40 nodes) was used fo explore
several options in using the strategy hierarchy nnowledge, including an option of having
the program store winning positions and moves in Ps, for future use. The other two fests
demonstrate application of various pieces of knowledge not used in the first, each
searching less then five nodes before arriving at a solution. These experiments illustrated
the ease with which expioration among possible program designs can be carried out with
PSs.

KPKEG is organized as groups of Ps representing a strategy executive, strategic
evaluators, means to strategies, move generators, and board updaters. The organization
among the groups of Ps is roughly hierarchical, but dynamic control is loose, with
sequencing of actions based on strategic elements of a position rather than on a strict

control regime. The main element of this looseness is an ability for strategies al one
depth of a tree to communicate with several levels of strategies above and below it in the
tree. This control is achieved through the global Working Memory. Specific chess

’

knowledge is encoded as Ps that contain a minimum of control knowledge, s0 thal its

Vil-£ Al

CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2
PRODUCTION SYSTEMS AS A PROGRAMMING LANGUAGE FOR ARTIFICIAL INT==ETC(U)
DEC 76 M D RYCHENER F44620=-73-C-0074

UNCLASSIFIED AFOSR=TR=77=0330-VOL=-1 NL

AD=A037 B&3

II‘E2 I 2
o

END
gl
s

mu | O e B2

gz
KL e

oy
et e

lL2s e, e

P

A.l Review of the Body of the Thesis Conclusion

augmentation is simple and direct, while leaving open the possibility of having, instead of a
single P, an arbitrary PS program sequence, evoked in the same way as the single Ps
presently there. The use of PSs made building the program easy, with much of it built
incrementally, filling in missing pieces manually while focusing on other aspects already
coded.

The PS can be compared to a Lisp program currently being developed for the same
task. Although the Lisp program, CP, is built around a search scheme different from the
strategy hierarchy as used in KPKEG, the two programs are still quite similar in approach
and in general aspects of program behavior. The biggest differences between the two are
in static characteristics of the programs, in run efficiency, and in openness for extension.
KPKEG is roughly a third the size of CP, in length of program listing, and about half in
terms of a count of primitives (functions versus Ps). On the other hand, CP runs 3-4 times
faster, though this is probably due to the fact that the PS is being run interpretively and
to a number of other features that could be avoided by re-designing the PS to be
especially tuned to the chess task. The PS is much more open to extension and
improvement in behavior because the chess knowledge is under less control, and can
potentially become driven by new features of the situation as they arise, in a bottom-up
fashion. CP uses pattern-like constructions in Lisp to represent chess knowledge, but
these are all strictly controlled in a top-down way, and are even evaluated according to
their static program order. These features of CP are likely to be detrimental in situations
where key aspects of a position arise unexpectedly, during a search whose objectives are
vaguely defined or defined in the wrong direction. The PS includes a number of things
represented descriptively, in a way that will become more important as the chess task is
made more complex, since the program will have to deal with aspects of a situation that
are not easily recomputed or recognized otherwise. This capability has not been
demonstrated effectively in CP, while in KPKEG, it arises automatically from the
architectural design. KPKEG augments its store of knowledge by adding Ps, a facility not in
CP at all. This augmentation is promising from the standpoint of automatic generalization
and other proposed operations on Ps (to be discussed in Section E.2). Finally, certain
features of PSs make KPKEG a good candidate for some proposed mechanisms such as
causality analysis, lemmas, and refutation descriptions, which are put forward as essential
to efforts to improve chess-playing programs to a Master ievel.

MiliPS. This PS accepts restricted natural language sentences and either adds to an
internal model of a toy blocks scene or answers queries with respect to that scene. It
processes sentences without building a conventional parse tree, relying instead on a more
direct mapping to an internal representation that is mostly semantic. Inputs containing
apparent ambiguities, redundancies, and inconsistencies are correctly interpreted. The
referents of complex phrases in the input language are determined by close interaction
with the internal scene model. The program operates with a single left-to-right scan
across an input, with no backing up in the lexical string to handle anomalies, and with only
linear backing up in a semantic representation of the input to resolve inconsistencies. The
program processes a test sequence of 25 sentences, demonstrating the mentioned
features.

MiliPS is organized around the left-to-right scan of an input. At each point, a

number of levels of processing can be done, including lexical, grammatical, semantic, and
pragmatic processing. The grammatical checks are minimal: each word must obey simple

Al VII-6

Conclusion Review of the Body of the Thesis Al

restrictions on the class ot word immediately preceding it in the string. The semantic level
of processing divides into three levels: resolving local noun-phrase ambiguities, associating
noun phrases together according to relations and predicates (phrases may modify nouns
that they are not directly adjacent to), and making use of contents of a sentence according
to the main intent of the sentence (according to sentence type). The last two semantic
levels deal largely with inconsistencies and redundancies. At each point in the scan of a
sentence, as many of these levels is applied as possible, in a bottom-up fashion, so that
processing is fairly evenly distributed over the words in the sentence and so that surface
structure can be quickly discarded.

The primary contribution of MiliPS to work with PSs is the development of an
approach to natural language processing that is direct, simple, and uniform over the
syntactic, semantic, and pragmatic aspects of the task - all of these to a degree unmatched
by other approaches. The present approach, though restricted to a toy domain, has
promise because that toy domain includes, if viewed abstractly, primary elements of most
other domains: objects, attributes of objects, and relations between objects. Another
indication of the generality of the approach is its position with respect to six kinds of
completeness: reference, description of new objects, query logic, manipulation,
augmentation, and input-output symmetry. MiliPS is complete to a large degree on the
first three kinds of completeness, indicating a basic language adequacy. It is augmented
with respect to manipulation by the WBIox PS described below. But it fails on the last two
kinds of completeness, indicating that work needs to be done to improve its flexibility in
adapting beyond its initial capabilities. The system that MiliPS embodies for working out
the interactions between the anomalies of ambiguity, redundancy, and inconsistency seems
to be a conceptual advance in natural language processing, exhibiting how the use of PSs
leads to organization around fairly natural constructs. It also is stated generally enough to
be applicable to wider domains. It is hoped that the MiliPS approach to grammar (simple
adjacency checks) will carry over to other domains, but grammar becomes so complex in
general that only further research can bear out that hope.

Several features of the system as a PS need further experimentation. The model of
the toy blocks scene is presently stored in Working Memory, whereas the general PS
approach to storing such longer-term information is to use Ps, eg, as a discrimination
network. MiliPS operates by simply erasing most of its Working Memory between
sentences, which is not as general or theoretically clean an approach as, say, having it
gradually fade or using deliberate deletion processes. In more general tasks, the decision
on what information might be useful across sentence boundaries becomes more complex
and is not amenable to such a simplistic solution as is presently used. Finally, MiliPS’s run
speed is a factor of 5 or so too slow, in comparison to other current systems and in
comparison to real elapsed time. This problem will probably be treated by general
methods of achieving PS efficiency, with nothing inherent in the task to present special
difficulties.

WBlox. This PS combines a toy blocks problem solver with an augmented version of
MiliPS to make a problem-solving system with restricted natural language input. It differs
from MiliPS in being able to perform manipulations such as putting blocks on other blocks,
building stacks, compacting the space occupied by a set of blocks, and finding spaces to
put unwanted blocks. The program exhibits satisfactory behavior on a set of 27
sentences, which exercise all of the program's capabilities. The intent of imperative

Vil-7 Al

e

Al Review of the Body of the Thesis Conclusion

sentences is determined by noting inconsistencies with the blocks scene, according to the
system used in MiliPS. Using this scheme, apparent ambiguities in commands are readily
resolved. The system establishes goais and subgoals in a hierarchy, to break problems
down into manageable components, and it can handle And-Or sequencing of goals. It also
implements a backtracking scheme that allows it to search through all possibilities for
various actions, if necessary, to find a combination of actions appropriate to the task
demands. Much of the need for backtracking, however, is avoided by taking advantage of
the selectivity inherent in the LHSs of Ps.

WBIlox provides a close comparison to a similar program coded in a Planner-like
language. The PS compares favorably in conciseness of program listing with the other
version, and is within an order of magnitude of reasonable time efficiency. Effective PS
versions of all the features in the original language are easily achieved. The PS must use
explicit conventions to achieve the backtracking search, but at the same time, since the
mechanisms are explicit rather than built into the language, there is more opportunity to
improve performance with task-specific knowledge and to control how the backtracking is
coordinated. Although WBlox is restricted to being similar to the original version, several
features of PSs are promising for extending the program to more demanding blocks tasks.
In particular, still more advantage could be taken of LHS selectivity to avoid unnecessary
backtracking, and there are a number of alternative ways within the PS architecture for
doing the bookkeeping associated with the backtracking, making the PS flexible for
extension. Given PS features, effective implementations are easily conceived for current
or proposed problem-solving systems. In going beyond WBlox, PSs are promising with
respect to the abandonment of strici backtracking for a more flexible search scheme,
allowing more accurate diagnosis of difficulties, more specific corrective actions, and better
communication between alternative search paths.

A.2. Statistics on the programs implemented

This subsection gives a wide variety of statistics on the PSs implemented. The
presentation is incomplete, in that the numbers are not accompanied by a discussion of
their significance. In a sense, this subsection could be considered a footnote or an
appendix to the summaries of the PSs. Each description of the various tables includes
pointers to where the figures are discussed.

The following table gives some static features of the PSs, in columns in the following
order: the number of Ps; the number of predicates; the number of PSMacros and primitive
Lisp functions; the space used, statically, in thousands of 36-bit words, divided into free
space (ordinary list cells) and full-word space (print names and strings); programming time
in weeks, in three fields, the actual programming time, the number of weeks of elapsed
time in which an "intensive" effort was spent (intensive = 8 hours or more, an arbitrary
boundary}, and weeks elapsed in which the effort was weak (non-zero but less than 8
hours); and the hours of programming time per P in the system. This table implies that
space use ranges from 100 to 150 words per P. The programming time figures wiil be
used in connection with productivity (Section B.1). Note also that the number of Ps
versus the number of predicates is roughly a linear function, but no conclusions will be
drawn from this (the taxonomy presented in Section C.2 changes the relationship
considerably).

A2 VII-8

Conclusion Review of the Body of the Thesis A2

Ps Preds. PSMac. Space (K) Prg. t. (wks.) Hrs./P
+ Fcns. free + full act /int / wk

Epam 41 37 4+17 5.9 +03 247 /5/ 8 241
WBlox 130 99 14 + 29 20.8 + 0.9 5.40 / 8 / 13 1.0
KPKEG 141 86 10 + 29 188 + 0.8 349/9/11 0.99
MiliPS 193 125 3+10 179 + 1.1 260/5/ 11 054
GPSR 217 167 11 +34 263 + 1.7 654 /14 /11 1.06
Studnt 260 251 5+25 29.0 + 1.7 658 /16 / 17 101
MiliPW 278 184 14+ 14 262 + 1.6 see WBlox

M/WBlox 408 269 14 + 3l 453 + 2.4 80/13/24 0.78

The figures for WBlox are for the WBlox system alone without the natural language
(MiliPW) part, except that the programming time combines the time for augmenting MiliPS
with the complete time for WBlox. The "M/WBlox" line gives figures for the combined
MiliPW/WBlox system. The number of Ps given is for the main PS pius a typical number of
test Ps (around 3), not the full set of test Ps (which set was never loaded all at once). The
programming time ratio (hours/P) for GPSR, however, includes coding time for 23 task Ps
not included in the 217 total, since coding the task Ps for GPSR turned out to be non-
trivial. For the other PSs, the test Ps involved simply posing a task in natural language or
whatever was appropriate.

The next table gives some dynamic measures of the running systems. The primary
conclusion from this table has to do with the efficiency of PSs, which will be discussed
further in Section B.5 and Section E.1.

Run time WM time Fire time T/F ratio

(min.) (msec.) (msec.)
Epam 1.25, .31-3.15 145, 119-202 617, 487-880 1.31, 1.14-1.45
KPKEG 12.6, 8.39-20.8 215, 194-239 935, 840-1060 3.27,3.12-3.48
MiliPS .50, .26-1.03 115, 95-162 341, 291-463 1.68, 1.63-1.92
GPSR 32.7, 2.04-66.0 163, 96-234 534, 328-768 155, 1.20-1.75
Studnt 5.65, 1.3-20.1 131, 88-212 511, 349-824 2.36, 1.91-2.74
M/WBlox 4.93, 1.42-195 261, 184-486 912, 608-1950 1.42; 1.18-1.65

Each column gives first an average figure and then a range of values over the tests run.
The columns give, respectively: run times for the collection of tests associated with the PS;
times for Working Memory actions, i.e., the total run time divided by the number of actions;
times for firing a P, averaged similarly to the second column; and the try/fire ratio, which
is the number of match attemots made by the system for each successful P firing, on the
average. Epam’s times are inflated because the system was run with more trace
information than the others, probably by a factor of less than 2. The times are all suspect
because there was not a concerted attempt to control the amount of free working space
available to the running system. In most cases the fluctuation from varying the amount
would be small, but in at least the case of WBIlox, it is known that garbage collection
consumed up to 507 of the run time, a result that would probably vary considerably with
the amount of free space.

The following are some more static values, except for the "Fan i/o" column. These
show some characteristics of PSs that will be made use of in discussing features of the

VII-9 A2

I T . i o s e e i o v 1

-

A2 Review of the Body of the Thesis Conclusion

language that seem critical to its power (see the end of Section B.2), that support
a priori properties of PSs (Section C.1), and that say something about the style of
programming.

N.conj. Sat. Fani/o LHS uses LHS length

avg, max avg, max avg, max avg, max
Epam 195, 2 81,3 232 332,14 434,8
WBlox .654, 6 1.65,10 NA 437,41 521,17
KPKEG .496, 7 1.19,7 209 85,77 847,22
MiliPS .347,3 32,3 199 394,37 357,9
GPSR .641,5 81,17 175 362,37 447,34
Studnt .150,5 22,4 1.80 3.40,112 457,26
MiliPwW 371, 4 .45, 4 NA 391,46 3.96, 14
M/WBIox .461, 6 84,10 196 429,46 436,17

3 The columns in this table, except "Fan i/o", give an average value and a maximum (minima
' are all O or 1). The values of the columns, respectively, are: the number of nested
negated conjunctions, i.e., NOT(. ..), per P; the number of SATISFIES constructs per P; the
fan-in and fan-out average value over the Ps, which is a count of the number of Ps that
dynamically fire before or after a P; the number of uses in LHSs, for the average
predicate; and the lengths of LHSs. The fan-in and fan-out (the average values of which
are identical) are computed from typical test runs, or from combinations of several runs.
The best such measure would include many tirings of each P, but that proved impossible in
E practice. In particular, the figure for GPSR is based on a relatively small test run, so it is

somewbhat smaller than the typical value.

A.3. Qverview of conclusions

This chapter presents conclusions in several categories. First PSs are viewed
3 narrowly as a programming language. Section B gives a number of features of PSs
: brought out fairly directly by the implementations of Al programs as described in the
preceding chapters. In Section C, PSs are viewed in the more general framework of
understanding systems, which raises a number of more general issues. Then even more
general considerations are raised, in Section D, as we investigate what the present work
says about the nature of doing Al programming. Section E points out the gaps in the
evidence about PSs, summarizes a number of promising features that could be explored,
and discusses the most serious failings of PSs, the specific features that need to be
improved before they can be acceptable for wider use. Section E closes with a discussion
of possible applications and misapplications of PSs.

e b s e b e
S . i R Bttt Vo A i 0 D Bt .

VII-10

Conclusion

B. Programming Language Issues i

' This section evaluates PSs as a programming language. Section B.l gives a
? ‘ number of characteristics that are important to the evaluation, and discusses evidence that
f PSs are satisfying on those characteristics. Section B.2 presents a taxonomy of the
} control techniques used over the set of PS programs. Techniques are separated into
| process evocation and data management aspects. Frequencies of usage of the various
} techniques give some idea of the power of PSs. Section B.3 summarizes the kinds of
2 improvements that are suggested by programming practices in the completed PSs. Section
| B.4 discusses the peculiar forms of architectural flexibility in PSs, and how it affects
| programmability. Section B.5 examines the various efficiency factors of PSs that vary
over the existing set of PS programs.

B.1. General programming language features

The central questions of the thesis with respect to programming language features
of PSs can be categorized as follows:

Practical feasibility: Are PSs feasible in practice, as opposed to formally,
for expressing significant Al systems?

Style: Where do PSs fall among the various vague labels that are
attached to a language to indicate its style? Most languages seem to i
be among these possibilities: sequentially imperative, functionally
oriented or applicative, and pattern-directed. Some classifiers also }
distinguish procedural versus declarative, or active versus passive. :]

Degree of theory-bound-ness: How much do PSs force expression into a
coherent view of programming, representation, or approach? This
can be taken positively, if the theory is deemed useful, or negatively,
if the theory is overly restrictive. A related question is whether PS
characteristics are evident at large organizational levels, or whether
they are used at a lower level to construct other sorts of

{ organizations and systems.
; Power of expression: Which common constructs or imperatives are
particularly easy to express?

Overhead of expression: Which common usages are awkwardiy
expressed, tending to interfere with expression of program content?

Productivity: Are PSs easily coded, read, and augmented?

Etticiency: Do PSs incur an efficiency penalty?

Architectural fiexibility: Do PSs offer a variety of way< to express
programs, ranging along a number of dimersions such as
specialization, generality, conciseness, use of memory structures, and
efficiency?

Level: Are PSs a high-level languzge, with power to express significant
computations concisely?

It should be emphasized that considerations here deliberately ignore some factors relevant
to human effort in programming, since we are more concerned with using PSs in automatic
knowledge encoding systems than with some of the finer points of human programming.

=
5
i {
}
f
5

VII-11 8.1

T

ATy

rp—

T T L ™

¥
|

B.1 Programming Language Issues Conclusion

Feasibility has certainly been demonstrated by the six PSs completed. The claims
by others (see Chapter I) that PSs are unsuitable for a number of Al domains and
capabilities have been, to a large degree, refuted. As we shall see below (Section C) the
implementations have been carried out without violating the major properties of PSs from
the standpoint of building understanding systems. That is, the programs were constructed
without resorting to obscure programming tricks and without building up other control
structures orthogonal to the PS architecture. Any objections to the feasibility of using
PSs now have to be based on objections and limitations in the set of Al systems
implemented. Section E.3 discusses a humber of possible further explorations that could
answer objections to the set of systems,

Experiments are not required to answer questions of style, at least, not to answer
them superficially. PSs are firmly in the class of pattern-directed languages. But they are
also ‘sufficiently general to allow expression of programs at the opposite extreme, namely,
as sequentially imperative programs. That is, Ps could be arranged to fire in a
predetermined sequence, simply by using appropriate data conventions. To verify that the
existing PSs are not in fact in that style, we can recall the figures given in Section A.2 for
average fan-in and fan-out of P firings. Those figures show that many Ps are followed in
execution by a number of other Ps. The average value is around 2, with actual
distributions of the numbers of preceding and following Ps ranging up to abou! 20 for
each. (Some of the PSs have over half of their Ps followed only by one P, but many of
those same Ps fired only once during the tests on which the data are based.) Although no
simifar figures are known for other programming languages, it seems clear that a
conventional sequential program would not have values much above 1.

On the degree of theory-bound-ness of PSs, Section D is devoted to putting forth a
theory of Al programming and to examining how well PSs are suited to the domain as
characterized by the theory. That addresses the positive aspects of being theory-laden.
To ensure that PSs are not overly restrictive, the negative sense of being theory-bound, it
should suffice to point to the wide variety of control and data capabilities that are
demonstrated in the PSs. This says little about how the theory affects human usability,
since the cost of developing those capabilities is not available. On the related question of
whether PS assumptions are evident at larger organizationa! levels, two kinds of
descriptions of the PSs completed give differing answers. First, the PSs are described
abstractly as executive + methods + processes + task Ps (GPSR), as a hierarchical set of
operators (WBlox), and so on. This is a PS-independent description. Second, the PSs are
also described, at a more detailed but still abstract level, using abstract Ps representing
varying numbers of actual Ps. The expression of processes in terms of abstract Ps seems
to be strong evidence of the permeation of PS concepts to higher organizational levels,
while the use of other abstract descriptions is a practice that can be carried out with any
underlying architecture, if the description is taken sufficiently abstractly.

To answer questions of power and overhead, Section B.2 develops a taxonomy of
control features, and gives some rough measures of PSs relative to it. Evidence developed
in the analysis of the knowledge in the Studnt PS will also be used in those measures. An
alternative approach would be to apply an abstract model of Al programming, such as the
one in Section D, to determine how well the capabilities of PSs are suited to operations
put forth as common, by model considerations.

8.1 VII-12

\
USBREUSE = NSRS S —

!

3

-t

Conclusion Programming Language Issues 8.1

To approach productivity, we can interpret the statistics for programming time given
in Section A.2. Programming times range from 2.5 weeks for Epam, at 2.4 hours per P, up
8.0 weeks for the full MiliPS/WBlox system, at an average of 0.8 hours per P (recall that
these are actual hours spent, with "elapsed time" respectively of 13 and 37 weeks).
Rough estimates place the proportion of designing and coding at between 207 and 307,
with the remainder spent on debugging. The major problem in using these figures for
comparison is that such data is not available for other implementation attempts on the
same problems. One reason why Epam is high is the difficulty of design by indirection: it
is @ PS that constructs a PS. Qualitatively, overall coding and debugging times for the PSs
seem quite reasonable, and will undoubtedly be improved when there are more efficient
PS implementations, since debugging is a major component. Section C.1 discusses the
properties of the PSs with respect to augmentation under the topic encodability, which is
closely related to productivity.

The efficiency question will be discussed in more detail in Section B5 and Section
E.l. The principal result on efficiency, indicated by the PS impiementations, is that less
than an order of magnitude improvement in will bring PSs to a reasonable usability. A
summary of the ways in which PSs exhibit architectural flexibility is included in Section
B.4. These arise in general from tradeoffs between using Working Memory versus P
Memory, from degrees of specificity and generality in Ps, and from the varying degrees of
use of multiple firings of Ps to perform iterative and other processes. The high level of
PSs is supported by their conciseness, which is approached here by measuring the length
of program listings, an attribute which affects the manageability of a program while
working on it, saying how much of a program can be encompassed visually. From KPKEG,
PSs are about three times as concise as Lisp. From GPSR, PSs are estimated to be four to
five times as concise as IPL-V. And from WBlox, PSs are roughly the same as Planner in
conciseness.

B.2. Control features

A small number of mechanisms of control are used in tha set of PSs implemented in
this thesis. In reviewing and classifying them here, we wish to get some idea on the
overall nature of how PSs achieve control. We also wish to emphasize how few the
control mechanisms are. The details of how the techniques are achieved will indicate
which features of the particular PS architecture are central. After presenting all of the
techniques, frequencies of usage are given, to indicate the power and overhead of PSs, as
defined in Section B.1.

Process-evocation aspects of control.

Evocation by a direct signal is by far the most common kind of control used in the
PSs. By this, one module, represented by a set of Ps, performs some action and passes
control on to another module directly. Control can be passed either by a specific
evocation signal or by asserting a result and letting that be picked up by the appropriate
successor. Psnlst’s conflict resolution process, based on focussing on the most recent
Working Memory changes (events), is used to achieve both of these forms. Note that a
"direct signal” is not a signal to a particular P, but rather is a goal-like symbol structure,
inserted in Working Memory and responded to potentially by a set of targets unknown to

VII-13 B.2

t
£

RE e e e L

el e e e

:
i
!
4

2l e

B.2 Programming Language Issues Conclusion

the evoker, according to other global conditions. Also, a particular P can respond (be a
target) for a number of such signals, as specified by conjuncts in its LHS.

Iteration is somewkat less frequent than evocation, but is still present in a number
of places, and in several different forms. The most powerful form of iteration is by
repeated firings of a single P. This often performs the function of generating a set of
combinatorial possibilities, as is the case in most of the feasible assignment generators in
GPSR. It is achieved by having the LHS express a pattern for all of the desired elements
to be iterated over (combinations to be generated). When the P is triggered by some
signa! or new data, it fires once for each such element. A second powerful form of
iteration uses a set of Ps but each is still expressed as if only one element were being
processed, i.e., with no deliberate looping control. Ps in the set, once started up, fire
multiple times, in a scatter fashion, eventually processing fully all the input elements to be
iterated over. This is analogous to asynchronous processing in a conventional sense.
Since this form of iteration often is used to perform some process on all the elements of a
set at the same time, it has been referred to in the body of the thesis as "parallelism". An
example of the scatter kind of iteration is the Match-Diff method in GPSR, and an example
of the more "parallel" kind of loop is the generation of descriptions of objects in MiliPS.
The third form of iteration is a deliberate iteration, using control signals, with explicit
testing of completion of the iteration and explicit selection of the element to be used in a
single execution of the body of the iteration. An example of this is the stacking of a set of
blocks in WBlox. The backtracking mechanism in WBlox is also set up as a deliberate
iteration, but one whose execution over the full set of possibilities is rarely carried out.

Processes that are not strictly controlled require coordination (synchronization)
mechanisms to recognize their completion and arrange things to continue to further
process steps. PSs can do this in two ways. One way is to assert, along with the
evocation of an uncontrolled iteration, a second signal that will be lower in priority as an
event, and thus whose examination will be postooned until no events in the iteration can
be further processed. That is, the method is to make use of Psnlst’s :SMPX stacking
mechanism for examination of events and their associated Ps. A P that responds to the
second signal alone can then assume that the iteration is completed and that the proper
continuation can be evoked. This form of coordination is used to make use of the results
of the Match-Diff meihod in GPSR. The second PS coordination technique is to check
explicitly for completion each time a result is produced, and if any signals exist that
indicate some state of partial completion, re-assert them, and otherwise continue to the
next process step. The object-filing process in GPSR uses this kind of coordination to
ensure that all objects have been filed when a set of them were input to it. An alternative
to these deliberate coordinations that is occasionally used is to let the default processing
order take place, using process results whenever they come out, but otherwise just
allowing control to fall back to any uncompleted portions when the result-using process
can go no further. This is used in the object-description process in MiliPS, and it works
because outputs are replies that come at the end of processing of an input, ie., results
that are followed by the awaiting of further user inputs.

Selection is used to perform important functions of narrowing down sets of objects
to particular elements, and of deciding how control is to continue. The selection from a set
of data items is usually done with a single P, and selection of control is done as a set of
Ps. In KPKEG, a single P is used to select the next move to be tried, from among a set of

B.2 Vil-14

Conclusion Programming Language Issues B.2

candidates produced by a strategy move generator. That is, the same P always fires, but
it produces a selected element according to conditions specified in its LHS. In GPSR, the
method selection process consists of a number of Ps, ore of which fires to initiate a
method appropriate to the goal that is input to the process. The power of PSs in this
instance is that one need only specify the cases as separate Ps, with the automatic
recognition process performing the selection.

Often a complex process is broken down into a cascade of separate steps. In this

way, a decision that could be done as a single P firing from among a large set of Ps is

s broken down into two much smaller sets. That is, the combinations of conditions are

{ changed from being multiplicative, with each P representing, say, a product of two

possibilities along two dimensions, to being additive, with each of two sets of Ps

3 separately making the choices-on each of two dimensions. This is done simply by splitting

P LHSs into fragments, adding signals to allow the separate steps in the cascade to

communicate intermediate results. An example of this is the Try-Old-Goals process in

GPSR, which breaks the selection of an old goal to retry into two steps, one narrowing

down a set according to a numbe: of criteria, and the other narrowing that result still
- further to produce a unique selection.

R i LRt Bl e L e LR

— g

Sequencing of processes involves primarily evoking one process and establishing at
the same time a way for things to continue when the results of that process become
known. This is done in two ways. The first is to assert, along with a process evocation
signal, whatever data is required to combine with the process’s results. This assumes
further Ps that do the combination and proceed accordingly. The second is to assert a
signal that will become active after control falls back from the process, i.e., after no other
higher-priority events are in :SMPX. On being recognized, the signal is converted to
actions that continue the processing. This second technique guarantees that resuits are
not used prematurely, effectively isolating the process from selections that are to be done
on results. Often the signal also effects a renaming of othe: data that were hidden by a
first renaming, to avoid similar unwanted interactions. An example of the first sequencing
technique is the sequencing of goals in GPSR, and of the secord, the sequencing of steps
within the Findspace process in WBlox.

{ A rough idea of the power and overhead of PSs can be obtained by looking at
i frequencies of usage of the various features in the PSs. Where counts are given in the
following, they are derived from re-examining the PSs, and may not be perfectly accurate,
' though the general form of the conclusions would not be altered by adding a few missed
| 1 instances. Counts are based on the static form of the PSs, since we are concerned with
programming or encoding properties rather than with dynamic, performance aspects.
Evocation by a direct signal is a very heavily-used feature. One measure of its usage is
derivec from the knowledge analysis that was done on the Studnt PS, where it is evident
in more than half of the Ps. Generally in PSs, the distinction between control evocation
and other kinds of Working Memory items is difficult to make, since control signals tend to
be goal-like rather than goto-like. One criterion for a control signal is that it is used once
’ and deleted, but this isn't always accurate. Among the six PSs, there are 18 cases of
evocation by asserting data rather than control signals, which amounts to less than 107 of
all control passing. Iteration is used about 60 times over the set of six systems. Of the
three forms of iteration, the deliberate form accounts for about half, the single-P form
about a sixth, and the multiple-P paraliel form about a third. Though the deliberate form is

T

VII-15 B.2

et s oD e

Y
|
!
|

B.2 Programming Language Issues Conclusion

the one that incurs the most overhead and the least power, its overhead aspect is
generally not as significant as other forms of overhead, because only a small amount of
explicit control is necessary anyway. Also, some iterations are inherently deliberate.
Coordination is done 6 times using the "powerful" :SMPX event-order technique, and 9
times using the more cumbersome, deliberate technique. The next subsection will discuss
possible remedies. There are 16 instances of the use of selection by a single P. Though
this seems a small number, the actual uses made of it exploit its power to a significant
extent. The multiple-P, control selection, also a powerful feature, is used in over 20
striking cases and in a larger number of lesser cases, and, along with the direct signal
evocation, is quite an essential feature of PSs. Breaking down a complex selection or
other process into a cascade of steps is used about 3 times. Sequencing using :SMPX
occurs about 16 times, while its "check-result” form is used heavily in WBlox goal
sequencing and 9 times in the other PSs. Of these two forms, the :SMPX is slightly more
of an overhead feature.

To summarize on the power and overhead usages, in the case of iteration, the full
power of PSs is not exploited as much as might be desirable, although there are
undoubtedly places where deliberate iteration is unavoidable. Coordination presents
significant difficulties in terms of overhead, and will be discussed further in the next
subsection. The power inherent in selection is well-used in the PSs, and the ability to
cascade is not exercised much, but seems potentially useful for more demanding
applications. Finally, the frequency cf usage of the slightly more cumbersome form of
sequencing is significant, though at present is not sufficiently serious to need {further
attention. Overall, this discussion supports the assertion that PSs are a powerful control
structure.

Data management aspects of control.

The above topics have all dealt with a process-evocation aspect of control, but
along with evocation, there must be some management of data: operators need to be
connected with their operands, and results must be produced and used appropriately.
Here, operator is meant in a rather abstract sense, as something (a process, module, set of
Ps) that takes some input data (operands) and produces some action or result. In general,
the data management is performed simuitaneously with the process evocation, with LHSs
performing some data connection operations, axd with RHSs often combining both process
and data actions. The following will discuss several such topics in turn.

Connection is made between operators and operands within the PS match. That is,
the match takes an evocation signal and uses data arguments of Working Memory instances
to form coherent patterns, which then constitute sufficient context for an operator to be
applied. Often, the necessary links are formed betwcen instances by using specific tokens,
e.g., unique goal names. Matches can involve following chains of such associations to bring
in all of the required items.

Arranging results and result-usage signals takes place within single RHSs. An
exception is the operator-application preparation that is done in GPSR, but that is at a
much higher level than we wish to examine here. That is, that kind of arrangement is on a
different scale. Within single RHSs, all arrangement takes place for communication between
operators composed of sets of Ps. The aiternative would be the evocation of preliminary
setup operations, expressed as separate Ps, but this does not occur.

B.2 Vil-16

L34 i

Qg £, Pt

S :

Conclusion Programming Language Issues B.2

Renaming of data is used for two purposes: protecting data so that it will not be
used in the wrong way, and the converse operation of releasing data for use that had
been protected. In the PSs at hand, renaming ic done along with other operations within a
single P, appearing as a side effect of some other process. It is also done by an explicit
evocation signal, to be processed by a single-P iteration (more complex iterations might be
used, but no such occur in the PSs here). Often that evocation signal is placed after some
other signals, so that it is examined and used after some process, according to the event-
order conflict resoiution mechanism. Epam uses renaming (of the side-effect type) to save
the results of one net-P firing cycle while a second cycle occurs, so that the former
results can be properly distinguished from newer similar data.

Cleanup is the operation of deleting or otherwise disposing of old Working Memory
instances so that they don't interfere with further processing. It is generally carried out
in the same ways as renaming: within single Ps, as a side-effect, and in a more explicitly
iterative way. GPSR contains a number of examples of erasure Ps, which fire in single-P
multiple-fire loops, for instance, erasing unneeded Match-Diff intermediate data.

A mechanism for handling data that is only slightly used in PSs to date is having
information stored as Ps for use at some later time. This is done entirely by deliberate
processing, generally including iterations that gather the various components of the Ps to
be built. GPSR builds recognition networks of Ps that are then used in recognizing the
occurrence of previously-seen problem-solving situations, thus performing indirectly the
important control function of preventing repetitions.

To conclude our discussion of the data aspects, we touch on the topics of frequency
of usage, power, and overhead. The connection of operands with operators and the
arrangement for communication of results are very common operations, and their simplicity
of implementation indicates their relatively high power. In this case, the power derives
from the basic PS rule form. Renaming is rare, but is also easily achieved and powerful.
Cleanup is sufficiently frequent in its less powerful, iterative form to be a significant
problem for some” of the PSs (GPSR in particular). The need to go through deliberate
iterations to store information as Ps is also of an overhead nature, although the use of the
stored information later is a powerful mechanism, since it avoids other sorts of deliberate
processing. Section B.3 will discuss possible improvements in these last two weaker
features of PSs.

Essential features of Psnlst.

Four features of the Psnlst PS architecture are essential for these control
techniques. The main one is the use of event order (:SMPX). This has allowed the PSs
here to overcome many of the PS control problems that have occurred or have been
predicted with respect to other PS architectures or PSs in general. The testing within
LHSs of Lisp predicates (expressed as SATISFIES in the language) is used heavily, with
about three fourths as many occurrences as the total number of Ps (which is not to say
that three-fourths of the Ps actually contain an occurrence). Of the uses of SATISFIES,
only a few are used to test equality to a constant, so that most are used for more
significant purposes such as testing numerical relations. The allowing of multiple firings on
the same recognize-act cycle plays an important part in the power considerations above,
being used in a number of ways to implement the more powerful PS control tacilities.

Vil-17 8.2

e ——————_—

T T TR

B.2 Programming Language Issues Conclusion

Negated conjunctions of condition elements are used overall about .414 times per P on the
average, a higher proportion than negations of single elements, for which the figure is
.255. Their overall importance is indicated by their frequency of usage and by their use in
implementing the control facilities above.

R N R O T T e

T

B.3. Suggested improvements in basic operators

A number of improvements in the basic PS operators are indicated by undesirable
: i . overhead properties. These were all initially suggested in the various chapters where
E ¢ they first became evident, and some have been reviewed briefly in Section B.2. They are
: not expected to change the area of feasibility of use ot PSs as much as to make them more
P powerful in locations where some awkwardness has been noticed. In some cases, the
suggestions are superficial language changes that would have no effect on present
program structures, usually shortening or modifying components of individual Ps, while in
others, the changes would be more far-reaching, and are thus perhaps more controversial
with respect to keeping PSs simple. The basic aim, however, is to be very conservative
and not to go beyond modifications that are suggested directly by the evidence of existing
PSs.

o

The experience with adding Ps in Epam, GPSR, and KPKEG indicates a set of
operations for doing so that are less general and more direct with respect to the
commonly-used functions within the present P-adding operators. That is, the present
general operators - adding an entire P, replacing a P's LKS, replacing a P's RHS, and
replacing an entire P - are actually used only to perform a simpler set of functions, with
the full generality of those operators only interfering with the functions. Some candidates
for additional operators, to be verified with further experiments:

Extend an LHS by adding conjuncts at the right end (not left); in Epam,
for instance, this would be used to add tests for more letters, in
order to make finer discriminations.
Extend an RHS by adding conjuncts, either at the right end or in a
position relative to a conjunct satisfying some pattern; e.g., one might
want to add an action before some known action.
Split an LHS into two parts, extending the LHS in two different ways by
adding two lists of conjuncts.
Add conjuncts to a nested negated conjunct in an LHS; this was used in
GPSR to extend a negative test on an object with further tests, to go
along with adding similar tests to the LHS of another P.
Update an RHS conjunct by replacing one constant with another; this is
used in Epam, for example, to change the reply image in a P.
Make the contents of the LHS or RHS of a P available for inspection in
Working Memory.
Make the variables in a newly-added portion of an LHS be unique
relative to existing variables there, to ensure that the new portion
doesn’t interfere in matching.
B These operators and options would have the effect of making the parts of PSs that deal
k with adding new Ps and refining old ones more concise, simpler in terms of PS control, and
simpler with respect to the amount of basic list-processing necessary to form the new
structures. : .. g

ks

TR TR S AR T T

8.3 VIl-18

Conclusion Programming Language Issues 83

An operation in LHSs that occurs in most of the PSs is essential to selections, to
narrowing down the set of possible matches to one with particular properties. Consider
as an example trying to select the element from Working Memory with the highest
numerical value for some predicate. At present, this would be expressed roughly
corresponding to “an instance of the predicate such that there does not exist another
5. . instance with a higher value." The effect of this is for the matcher to successively test
. each instance of the predicate until all the ones with the maximal value are found, with
E y ; match failure occurring for the others, after an iteration through part of the instances for
P ' each. What is really needed here is to be able to apply the "highest value" predicate to
. the set of possible values for the other predicate, and to immediately select those with
maximal value. That is, one writes the P knowing that at a certain point there are going to
| be a number of possibilities, and one wants to express an intention with respect to that

set of possibilities rather than to use the indirect present method, which says essentially
"and there doesn’t exist a match that does any better." In many cases at present, it is
%2 necessary to apply several of these tests to narrow down the possibilities, and for each
additional one there must be a laborious recapitulation, within the "not exists" nested
conjunction, of the restrictions that have been applied so as to ensure that each "not
exists" is working with the proper set of possibilities. What is proposed is that instead,
when a series of restrictions are to be applied, each applies to the set of possibilities
remaining at that point.

Some more explicit examples will clarify these distinctions. Suppose the new
4 primitive is named MAXIMAL, that the evaluation predicates are HIGHER]1 and HIGHERZ2, and
it that the Working Memory predicate whose instances are being selected from is PREDI.
] Then the expression,

PRED1(X) & NOT(EXISTS(Y) & PREDI(Y) & SATISFIES2(X,Y,Y HIGHER1 X))

would be expressed,

e Gt it S i i i b i i Lt

PREDI(X) & MAXIMAL(X,'HIGHER]).
The expression, |

‘ PRED1(X) & NOT(EXISTS(Y) & PREDI(Y) & SATISFIES2(X,Y,Y HIGHER] X))

b | & NOT(EXISTS(Y) & PRED1(Y)
E & NOT(EXISTS(Z) & PREDI(Z) & SATISFIES2(Y,2,2 HIGHER! V))
k. | & SATISFIES2(X,Y,Y HIGHERZ X))
: would become, '

Y - PRED1(X) & MAXIMAL(X, HIGHER1) & MAXIMAL(X,'HIGHER2).

_ - Examples of tests even more deeply nested than the second one_can be found in GPSR,
e | KPKEG, and WBLOX. In GPSR, in the Try-Old-Goals process, a test involving a number of
! such restrictions is split into two Ps, the second applying to the result of the first, in order
to make it possible to untangie all the conjoined tests. The use of MAXIMAL improves
readability, is much closer to the intended concept, and should have some advantages for
% PS efficiency.

VII-19 B3

B.3 Programming Language Issues Conclusion

Several changes to the way matches are expressed and to the way actions are
specified are suggested by the PSs. Currently, LHS elements are a predicate constant
followed by a list of variable arguments, and if an argument is to be matched to a constant,
it must be done indirectly through the SATISFIES mechanism, which can in fact test much
more general attributes of a value corresponding to a variable. This form, assuming a
constant head and variable tail, is in practice almost always the right one, with the average
use of equality to a constant being made less than once per P in all the PSs (that is once
out of a large number of match variables). Nevertheless, cases have occurred in the PSs
where the indirectness of testing equality to a constant seems to incur unnecessary
= combinatorial matching cost, so it is recommended that quoted constants in condition
{ elements be allowed. This would bring the pattern-matching more into line with all of the
other pattern languages in use. The restricted form was tried partially as an experiment,
to see just what the consequences would be, and partially because the implementation was
simpler. Another restriction that can probably be abandoned is the failure of the match to
descend into structured lists. That is, all matching is done only at the top-level argument
list. Structure in matching is useful at least in the case where there are a large number of 7
arguments, some of which can be more easily grasped if bound together into distinct sub-
lists. This would be useful, for instance, in WBIox, for representing the numerous
occurrences of spatial coordinate triples. A third restriction in Psnist is that predicates
must always be constant, where conventional Al usage would dictate a capability for the
L predicate to be variable, like anything else. In the original implementation of Psnist, for
. this feature, efficiency was a consideration, in that having predicates be constants allows
E’ the construction of simple indexes of possible uses of new Working Memory elements. But
experience with the PSs indicates that there are important gains in flexibility, and perhaps
g also in efficiency, by allowing at least a restricted form of variable in the predicate
y position, both in conditions and actions. At present, the most reasonable compromise with
the original version is to allow variables in the predicate position that are restricted to
being bound to one of an explicit set of elements.

: Several other improvements have been suggested by the various PSs. One is a
: more powerful erasure operator, for instance allowing the deletion of all the instances of
E some predicate, or of all instances satisfying some pattern. Such an operator would be |
s
b

useful in reducing the number of Ps that currently perform only erasure operations, and is
a matter of convenience as much as it is an improvement in efficiency. A second facility
R i suggested by some of the PSs is a general set of functions for taking external forms and
¢ converting them into usable Working Memory items, and for doing the converse operation
: to produce externally readable structures from Working Memory elements. At least two
kinds of representations would be useful: one for strings of atoms, as are used in Studnt
and MiliPS, and one for structured objects as in GPSR. The conversion operators could be
very close to the ones developed ad hoc in the mentioned systems, but built into the |
system and generalized somewbhat to be more widely usable. A third new operator would |
be useful for providing a more powerful means of coordination than the deliberate |
condition-testing used in the PSs in a number of cases (discussed somewhat in Section
B.2). A specific operation suggested is some kind of an explicit delay of examining some
new Working Memory elements until other consequences that have occurred since some
specified change have been completely finished. This would allow older consequences to
take effect before initiating some new process that assumes that all those results are
available for examination. It amounts in effect to allowing a P to explicitly place its actions
somewhere below the top of the stack of events (:SMPX).

E L B.3 VII-20

Conclusion Programming Language Issues B4

B.4. Additional programmability topics

There are several ways that PSs exhibit architectural flexibility. One is in the
variety of implementations of the main control techniques, as discussed in Section B.2. A
second group of features revolves around tradeoffs between the use of Working Memory
and P Memory. The three different ways to build Epam, as discussed in Chapter III, are
based on differing uses of Ps and Working Memory. In connection with GPSR, there is the
potential use of Ps to store goal and object information. Ps are used in GPSR to store
information about loc-progs, and could be used in a similar way to store information about
move operators, with added benefit of providing a better mechanism for noting when
proper use is made of that information. In GPSR and KPKEG, a variety of ways of
controlling the status of processes to generate sets of possibilities are illustrated, and the
discussions of the systems include additional ways. In GPSR, there is flexibility in
specifying external tasks to do, in that task specifications can use more information
expressed as Ps and less as Working Memory items. The discussion of MiliPS raises the
possibility of storing the scene representation as Ps instead of as Working Memory
elements. Maintaining trees of alternative data contexts while searching is discussed in
connection with WBlox, and a number of alternatives, varying in their Working Memory and
P Memory usage, are suggested. Generally, the existing PSs do not exploit the use of P
Memory as much as they could, but it is expected that as more general and powerful
systems are built, making greater demands, P Memory will be more commonly used.

A few other forms of architectural flexibility are illustrated by the PSs. The
discussion of GPSR points out the range of expression used in various networks: some of
the networks use very specific constants, others use a few very general Ps, with mostly
variables in conditions, and others are expressed as objects, with the tests carried out
interpretively. GPSR also has promise with respect to becoming specialized to particular
tasks by building additional specific Ps as tasks are manipulated. More generally, the PSs
include different degrees of specialization, with the very general GPSR, and the more
specialized WBlox and KPKEG. WBIox in particular is specialized to a specific goal-subgoal
structure. Finally, the discussion of the -augmentation of MiliPS for WBlox points out how
the architectural flexibility can be used in dealing with the problem of distinguishing
between temporary relations, which are computed as needed and then discarded, and
other more permanent data, from which, for instance, the temporary data is derived.

Thus there is a wide range of variability in storing information and in conventions
for use of data for communication. Information can be stored in RHSs, available with the
appropriately-keyed demand; it can be actively stored as a network, accompanied by
conditions in which the information is judged automatically to be useful; and it can be
stored as structure that is interpretable when its content is desired. Changes to
structures can be stored incrementally so that they can be revoked in the same fashion.
Actions can be packaged for unconditional execution in one sequence or can be broken
down into conditional parts. A set or its complement can be kept in Working Memory, and
similarly, Ps can be set up to record what’s left to do (the set proper), or they can be set
up to remove possibilitics already considered (the active form of the complement of the
set). Data can be kept in Working Memory as a means of making it temporary in nature.
The deletion of data can signal the proper use of data or the completion of some process.
All of these examples illustrate the particular kind of flexibilty that PSs have. Rather than
thinking of programming with a completely arbitrary means of representing and

.

Vil-21 8.4

R .

T

L g

8.4 Programming Language Issues Conclusion

processing, there is a predisposition to a small set of powerful mechanisms. The
mechanisms derive from the split in the architecture between a relatively small, passive
Working Memory, and an active P Memory. There is a range of specificity /generality from
concrete Working Memory elements, through slightly abstract P conditions and actions, to
more distributed representations, with information encoded, in whatever way is
appropriate, as a mixture of evokable data, recognition processes, and general elaborations
on those.

B.5. Variations in efficiency over the systems

There are a number of interesting variations in the figures of Section A.2 that bear
on efficiency. The figures in question are those for average cycle time (P firing), average
Working Memory action, and for match effort as reflected in the try/fire ratio. There is
little apparent relation between changes in those values and the number of Ps in the
system. The highest values (indicating least efficiency) are attained by KPKEG, one of the
smaller systems, and WBIlox, the largest. But these systems seem not to be systematically
high on other attributes. The apparent lack of trends on a number of dimensions leads to
the hypothesis that there are more complex factors that determine the efficiency of a PS,
and that these factors combine in some way to make a PS efficient or not. Such
interactions will thwart attempts to build simple models of etficiency. Perhaps what these
factors are will emerge as more PSs are constructed, providing additional data points.

A few isolated characteristics may have something to do with the variations. KPKEG
is high on lengih of LHS and on the number of SATISFIES tests, so these may combine to
make matching more expensive. An inherent property of KPKEG is close similarity
between Ps, so that in order to find a match from among a set of Ps, most of which are
plausible by superficial criteria, much effort must be expended. WBIlox suffers from quite
a different problem, apparently. Its size causes it to put unexpected strain on certain
implementation deficiencies, particularly those having to do with needless use of
temporary list cells. This usage forces an unwarranted number of garbage collections, and
the sheer size of P Memory, all of which must be examined during that process, adds
significantly to system overhead. As was discussed in Chapter IV, GPSR incurs some
inefficiencies by overloading some of the Working Memory predicates with too many
instances (which can be alleviated by using P Memory), and also spends a significant
portion of time doing cleanup by firing erasure Ps.

Vil-22

Conclusion

C. A Basis for Understanding Systems

This section first assesses the position of PSs with respect to most of the
understanding system characteristics laid out in Chapter . Two of those emerge as a
focus for the discussion in the rest of the section: modularity and openness. Section C.2
presents a taxonomy of representation intended to meet possible difficulties of PSs with
respect to that focus. Section C.3 discusses the results of applying that taxonomy.

C.1. General features

A number of observable properties of the implemented PSs can give support to the
suitability of PSs for building understanding systems. Because no understanding systems
of the sort aimed at were built as part of the thesis, the evidence summarized here can
only provide evidence for plausibility, not a full demonstration. We will address two sets
of related properties, which were introduced in Chapter 1. First there are the a priori
properties: properties of conditions and actions, properties of how Ps interact, and
properties of the overall architecture. Only a couple of these properties need empirical
support, the size of conditions and actions, and the degree of interaction between Ps.
Over the entire set of PSs, the average of the averages of LHS and RHS sizes (given in
Section A.2) are respectively 4.87 and 4.34. These numbers support the small unit size of
Ps, and also support the assertion that PSs have a high degree of selection (LHS) for each
action (RHS), as compared to other typical Al programming systems. How Ps interact is
much more difficult to measure, since it depends on static, organizational, and dynamic
properties. Most of this section will be devoted to this topic, but first we summarize some
other aspects of PSs.

The second set of properties is the list of properties of systems that are critical to
their use as understanding systems. Recall that Chapter | introduced a set of primary
properties: encodability, organizability, inspectability, accessibility, flexibility, and
operability. These primaries have a number of secondary aspects, many of which are
shared among several primaries: modularity, conciseness, uniformily, transparency,
provability, explicitness, and openness. There are a few specific points to be made here in
support of some of these properties for PSs (and some of them are also supported by
a priori properties of PSs, as discussed in Chapter I).

The encodability of knowledge in PSs is supported primarily by the feasibility of the
six PS implementations. Some further support is given by observed properties of building
and extending those PSs. In GPSR, a number of executive options were added on after the
program was working properly. Those options were quite easy to implement, with no
unexpected, indirect interactions. Similarly, in KPKEG, there were no complications in
trying various options in the search executive. In augmenting MiliPS to work with WBIlox, a
large number of changes were made, but only a very small number involved changes to
existing Ps (adding a condition element or modifying one or two RHS elements) while the
vast majority involved simply adding Ps. PSs are different from other languages in having
more independent units of augmentation (Ps). That is, usually Ps are just added, with no
decision necessary as to where a P goes (since the static order of the PS is irrelevant to

VIl-23 Cl1

Gt A e o e i

C.1 A Basis for Understanding Systems Conclusion

processing) and with little attention necessary on how it is to be used, since its condition
is explicit. The related property of inspectability of knowledge in PSs is not a problem in
practice, although programming by a human and the construction of a process to inspect
Ps automatically (as an adjunct to encoding further knowledge) involve different issues.
The central problem in automating, with regard to inspectability, will be the lack of
openness of the representation, a problem that will be attacked at length below.

The conciseness of PSs is supported by the relatively small number of Ps required
for the various programs. For instance, KPKEG is 2-3 times smaller in size of program
listing and in number of functional units than a comparable Lisp program. PSs are a
particular way of managing data and procedures that suffices where a number of ad hoc
mechanisms have to be included in Lisp programs at the expense of conciseness.
Transparency of PSs is supported by the Studnt knowledge analysis. That is, the
knowledge analysis gave evidence that the Ps are a level of expression minimally
interfering with the primary encoding task and alsc a level of expression close to natural
language statements, which in turn are derived from an abstract process model. In the
case of Studnt, almost three fourths of the knowledge is about the task and about solving
task problems, with most of the remainder devoted to programming techniques and a small
fraction devoted specifically to PS control. The flexibility of PSs is evident in the variety
of architectural alternatives, discussed in Section B.4. The organizability of PSs is
supported by the variety of organizations used in the six programs. GPSR implements a
general method coordination and method evaluation problem-solving structure. KPKEG
implements a straightforward heuristic search approach. WBlox is organized as a
specialized goal hierarchy, with the addition of backtracking as its search method. The
MiliPS bottom-up recognition hierarchy is yet another organization. None of these
organizational structures was at all troublesome to put together, indicating that PSs are
well-suited to a variety of approaches. Some of the organizations are modified slightly
and made more powerful by taking advantage of the power of selection of PSs.

Two major areas have been left unsettied by the above discussion: the area
encompassing the questions of modularity, provability, and interaction; and the area of
openness. Having Ps interact too much with too many other Ps is undesirable in a number
of ways. With large PSs, and we fully expect understanding systems with many thousands
of Ps, then interactions could get too diverse to be taken into consideration effectively, so
that some kind of <tructural subroutining would have to be imposed. This would subvert
many PS properties that depend on having the system be a uniform, single-level structure.
Too much interaction implics also that there are assumptions made in writing each P. That
is, it implies that there is global context of some sort stated explicitly in Ps. This makes Ps
much harder to modify while maintaining global correctness. It gives PSs the overall
appearance of being intricately-assembled pieces that are somehow coordinated to drive a
sequence of global actions. Also, the provability of correctness of knowledge in a system
is much more difficult when there are such far-reaching implications and interactions. The
remedy for such objections to PSs is to show their modularity. The representation
taxonomy of Section C.2 will provide a means to that proof.

The other major understanding system trait that is noticeably lacking in the PSs
implemented so far is openness. These PSs are closed in several senses: they work only
on the narrow task domains for which they were designed, with their knowledge encoded
in such a way that it would not be applicable unless a number of Working Memory

Cl1 Vil-24

Conclusion A Basis for Understanding Systems Cl1

conditions (all associated with the particular task implementation) held; they use a number
of internal names that are effectively inscrutable to other processes, so that general
processes of error diagnosis and progress evaluation cannot be applied when problems
are encountered - if such problems can be recognized at all; and the naming conventions
prevent new external knowledge and newly-developed internal knowledge from making
appropriate contact and interacting with existing knowledge (assimilation), and thereby
also prevent such knowledge from being incorporated on a longer-term basis
(accommodation). Openness is the key to allowing a program to respond flexibly to
variants of a task, by improving its assimilation capabilities, and thereby is the key to
unexpected generality and power. Further, open programs can readily be combined into
larger units, with opportunity for sharing processes and capabilities, and for application of
methods from one to new problems in others. The representation taxonomy below
approaches openness by providing a rational basis for naming. There are processing
requirements for openness that go along with such naming, which cannot be specified at
k present, being more properly the subject of further explorations. It seems at present that
‘ representational barriers to openness are much more serious than are any lacks on the
processing side.

C.2. Representation taxonomy

|

f The taxonomy of predicates’ meanings in this subsection supports three aspects of

i PSs: their modularity, their openness, and the simplicity of control constructs required - a
verification of the contro! taxonomy of Section B.2. By breaking down predicates used in
the six PSs into more primitive meaning elements, and by replacing ad hoc abbreviations

f and conventions with a more rational scheme, the number of meaning elements is
drastically reduced and the interactions of various predicates becomes more transparent.
Recall that predicates are the constants that occupy the head position of each Working
Memory element and each LHS and RHS conjunct, thus constituting the essential meaning of
both dynamic and longer-term structures. Renaming the predicates as proposed here does
nothing to computational properties of the present PSs, but provides a potential openness

; ; for interaction which future applications will exploit. The following scheme shouid be

f considered a first approximation, sufficient for the purposes of this chapter.

The taxonomy divides predicates into two major types: those that refer to
processes, and those that refer to data structures. Each predicate is broken down into
three components: a primary name, an optional secondary name, and a set of modifiers.
The primary name is the main process name or the name of the global data structure being
referred to. Primary names are rather general concepts (evaluate, apply, goal, object,
network), and although they originate with specific tasks, it 1s hoped that as a system
grows and expands its task domain, there will grow up, around a primary, a useful set of
associated knowledge (expressed as Ps). The secondary name is a qualifier to the primary 1
name, in case it has attributes, entry points, subprocesses, case frames, manner qualities,
and other such subconcepts. In some cases primary and secondary are verb and direct
object. The modifiers are a set of tags that apply to show further subaspects such as
truth value and degrees of imperativeness (in a vague, non-technical sense). A global data
object such as a goal with a varicty of attributes has primary GOAL, with secondaries like .
actual object OBJECT, difficulty DIFFIC, supergoal SUPER, etc. These would be written as ¢
GOAL *+OBJECT, GOAL sDIFFIC, and GOAL 2SUPER, according to the proposed notation,

VII-25 C.2

S ——

C.2 A Basis for Understanding Systems Conclusion

which places "s+" before secondaries. With "/" preceding modifiers as in the proposed
notation, and given that "T" is the modifier for "true" truth value, the GPSR predicate
HASSUPERGOAL becomes GOAL sSUPER /T. The primary SELECT might have secondaries
like OBJECT, GOAL, and METHOD. A concrete object is subdivided according to its
attributes. Thus an OBJECT might have secondaries TYPE, SUBOBJECT, LOCATION, and
SHAPE.

The main content of the taxonomy, at present, is in the modifiers. (The definition of
secondary vs. primary is also content, but is left vague.) Modifiers are in five classes: goal
values, truth values, process types, data types, and degrees (see Figure C.1). A modifier
has three positions in general, i.e., is composed ot at most three things: a goal value, one
of {truth value, process type, data type} (a mutually exclusive set of classes of values),
and a degree (with possible subdegrees tacked on).

_ The expository notation adopted here sutfices for the purposes of this chapter, but
other issues should certainly be considered if a notation is to be used effectively by
operational systems for self-examination. That is, what is readable for a human may not
be suitable for a PS to use, in both pattern-matching capability and openness. Three
dimensions of variation of notation can be distinguished: nested, open structure versus
tight encodings as strings; internal versus external modality; and implicit or explicit
argument typing.

For human readability, the first dimension includes a tight encoding with distinctive
characters to segment a string, e.g., EVAL*GOAL/WA.2. For a list-processing-based PS,
though, with strings taken as units (atoms), structure must be indicated differently, as in
(EVAL GOAL (W A 2)) or ((EVAL GOAL) (W A 2)).

The second dimension deals with the location of the modifiers, with external modality
common in some published PSs, e.g, (OLD (RESULT (EVAL GOAL G-3 OK))). In this,
arguments have been added to the primary and secondary in order to illustrate a complete
Working Memory element. The corresponding internal modality (adopting abbreviations)
would represent it as (EVAL GOAL (O R) G-3 OK). Internal modality gives more prominence
to the primary and secondary, and makes it easier, in conventional pattern-matching
schemes, to have an optional degree position - the absence of a tail of a list as-opposed to
the absence of a level of nesting.

The third notation dimension deals with whether to have explicit type tags for
arguments or to let types of arguments be implicit in the position within the list of
arguments. Typed arguments are common in semantic network representations. Moore
and Newell’s Merlin (1973) uses explicit typing to allow a general interpreter to make
mappings between structures, some of whose components are optional or incomplete.
Similar advantages are claimed by Hayes-Roth (1974). The element (EVAL GOAL G-3 OK),
which uses implicit ordering to type its arguments and to distinguish primary and
secondary, might be rewritten (prim:EVAL sec:GOAL goal:G-1 value:0K). One can envision
mixed strategies for typing, but wherever implicit typing is used, auxiliary information is
necessary for complete openness.

To conclude this brief discussion of notation, the best approach for future work
would be to use a representation with nested list structures and with internal modality.

c.2 VII-26

Conclusion A Basis for Understanding Systems C.2

Goal values (modalities):

W Want, want to achieve, want to activate.

D Don't want, want to deter or delete or disable.
O Oild, no longer current.

B Been achieved, "be", a neutral goal status.

Truth values:
T True or succeed.

, F False or fail.
, . 7 M Maybe, in progress, partial.
1 U Unknown, but attempt has been made.

Process types (types of imperatives):

A Activate.

C Check, combine (as in combining present data with the result of some
subprocess), coordinate (as in coordinating the results of several
processes or lines of "paraliel” execution), continue (after solving a
subgoal).

Hold (as in holding a signal until some other event has had its chance
to go through, whereupon a P converts it to active status).

Generate, gather, or more generally iterate.

Select (as from a set of similar items).

o v T

—

a types:

Result;

Effect, side-effect, error condition or indication, extra information
(addition to main result).

Context (as for a process).

Input (as to a process, in addition to predicate arguments).
Knowledge about, information about (knowing about a process is
distinct from activating it, for instance).

X=X m o

Degrees:
{ 1, 2, 3, ... Steps in a process, degrees of completion, degrees of

certainty; substeps and subsubsteps could be indicated by stringing
together a number of degrees; when strung together, "." is used as a
separator, eg. 2.17.4.

| Figure C.1 Values for modifier components

= : These preferences are based on present pattern-matching capabilities. There is the
possibility that, since a lot of list structure is imposed by these preferences, the
assumptions should be built into the pattern-matching algorithms to avoid unnecessary
condition-testing. On the third dimension, implicit typing seems to involve less symbol-
processing, and is thus preferred at the moment, but may become unworkable later
because of difficulty in determining the implicit information.

We now use the following P, from GPSR, to illustrate this renaming process.

¥

'
v
-

Vii-27 C.2

4,1,,
TR

C.2 A Basis for Understanding Systems Conclusion

M38; "GEN DES ASGs" :: CHECK:NUMV(DA) & GENDES-ASG2(G,0P,DA,C,L,D)
& HASVAR(C,VAR) & HASVAR LINK(VARP) & HASLP.COMPON(L,P) & VAR:DOMAIN(VAR,N)
& SATISFIES2(N,0,NUMBERP N & N GREATERP O & NOT(N GREATERP D))
=> ERASELPCCT) & FILE:DES-ASG(DA,0P) & FEASASG(OP,DA,G) & ASSIGNS N(DA,VAR,N)
& NEGATE(1,2);

This P is from the process that generates desirable assignments for move operators, a
part.of the Reduce method. It connects the variable component of a move operator with a
component of the loc-prog that locates a difference to be reduced. It then picks some
elements from the domain of the variable and sets up desirable assignments from them. At
this point, understanding what it is doing is not as important as watching the
transformation that the P undergoes in having its predicates renamed and its contents
abstracted slightly.

M38 "GEN DES ASGs" (GENRT (DESASG/A 3) (GENRT DESASG/A.2)
(COMPON «VARBL/T) (VARBL LINK/T) (LOC:PROG «LINK/T) (VARBL .DOMAIN/T)
«> (LOC:PROG -LINK/OT) (FILE .DESASG/A) (GENRT FEASASG/A) (VARBL +ASG/M.1)
(NOT (GENRT (DESASG/A 3)) (NOT (GENRT «DESASG/A.2))

The first abstraction consists of removing the SATISFIES2 and the conjuncts’ variable
arguments, leaving only primaries and secondaries. The change to the first two conjuncts
of the LHS shows how the renaming emphasizes similarity in mearing of predicates, while
distinguishing steps in the process. The second line of the LHS shows how interrelations
between elements are more transparent. The renaming makes the RHS betray its function
much more accurately. The ERASE is replaced by the goal value D, raising what is being
erased to top-level status in the conjunct. The "/A" in two conjuncts shows that these are
active signals, where before there might have been some doubt, and the use of /M.1 with
the VARBL *ASG shows it is an assignment that is only partially specified. Note that the
"B" goal value is implicit in the renaming, though in the preferred notation for further
work, there would have to be something to occupy each position, in order to make
matching reasonable.

A second abstraction can also be obtained, allowing the main function of the P to be
seen at a glance. The following has only primaries, with duplicate elements removed.

M38 "GEN DES ASGse" GENRT COMPON VARBL LOC PROG «> LOC:PROG FILE GENRT VARBL

Appendix A gives the renamings of the predicates of GPSR. The first half gives the
GPSR name followed by the new name, while the second half has the names reversed,
ordered according to the new name. From the second half, it can be seen that the number
of primaries is relatively small, 29, of which 14 are process primaries, and 15, data.
Appendix B gives the first abstraction (as in the above example) for the entire GPSR
system, except for task Ps. Appendix C is a cross-reference of that abstraction. Appendix
D gives the second abstraction for all the Ps, and in addition divides the PS into modules
(to be discussed in the next subsection). Modules are labelled, and are also partitioned,
using blank lines, into groups of Ps very similar in form. Given this division, an even more
abstract form of the PS can be constructed by merging similar abstract Ps together (this is
not shown in the appendices explicitly).

VII-28

Cocien Sl s

Conclusion A Basis for Understanding Systems _ C.2

The taxonomy of Section B.2 is closely related to the modifiers of Figure C.1.
Evocation corresponds to the “A" process type, iteration to the "G", coordination to the
“C", and selection to "S". Cascading is possible because of the existence of degrees and
subdegrees, allowing a step to be divided and subdivided as appropriate. Sequencing
combines the use of "A" and "C" types of predicates, with the “"C" type providing the data
for continuing after a step has been completed. With respect to the data aspects of the
taxonomy, “I" and "X" indicate inputs to processes (in addition to arguments to “A" items),
and "R" and "E” are used for results. Renaming of data to hold it back from being used
immediately is done with "H", cleanup is initiated with the “"D" goal value, and the desire to
evoke knowledge stored as Ps (and in other ways) can be expressed using "K". The goal
values add indirection to these meanings: one can "want" to do something, rather than
doing it directly, for instance. This allows preparatory activity, application of a method
that is essential to applying something else, having "second thoughts”, and other similar
delaying and interposing. Goal values are not very common in the renaming of GPSR, but
are thought to be essential to more demanding understanding-system tasks, where things
are expected not to fit together so effectively and directly.

The correspondence of the taxonomy of representation with the taxonomy of
control, combined with its effective application to GPSR, supports potential openness. It
should be possible to write PSs that can make better use of the PS representation of
other processes for their analysis and correction. The structure of names into primary
and secondary helps to reduce the total number of names, and might allow the connection
of processes associated with a name under one primary to be applied to occurrences
elsewhere. A procedure for assimilating information from an external environment or from
strange procedures can have an effective means for doing so, requiring only a relatively
small amount of knowledge about how things are named. That is, such a procedure can
simply do a mapping between representations, with the expectation that if the right names
are chosen, some Ps will be able to take processing further.

C.3. Application of the predicate renaming

As a result of renaming, GPSR is divided into 14 processes, corresponding to
primaries in the renaming: Eval, the evaluation of goals and differences (17 Ps); Select,
which selects old goals and methods (11 Ps); File, which recognizes and canonizes goals,
loc-progs, objects, and assignments (52 Ps); Match, which compares objects and extracts
differences (21 Ps); Transf, which is the method for transform goals (12 Ps); Reduce, the
method for reduce goals (8 Ps); Genrt, which generates move-operator assignments (16
Ps); Apply, which applies or tries to apply move operators (20 Ps); MoveOpr, the method
for move-operator application goals (6 Ps) and a set of five operalions, add, remove,
increment, decrement, and copy (a total of 27 Ps). Each process primary plays a central
role in a set of Ps that is the corresponding module. Figure C.2 gives an example of the
second abstraction for the Ps in the Transf module (taken from Appendix D). Note the
basic similarity of form of the Ps: All except M26 and M27 include a process control signal;
M26 and M27 deal with the creation of new subgoals and are keyed to the "W" (want) goal
modality. (More detailed versions of the Ps are in Appendix B.)

Using the abstracted forms of the modules, interactions between them can be
determined and are of two types: LHS assumptions and RHS actions. Figure C.3 shows

VII-29 C3

e

| C3 A Basis for Understanding Systems Conclusion
]

M20 " TRANSFG * TRANSF GOAL »> MATCH TRANSF

M20S " SUC TRANS * TRANSF GOAL => GOAL - TRANSF

M22 " MATCH VAL " TRANSF EVAL -> TRANSF - EVAL

M23 " MATCH FIN " TRANSF «> MATCH TRANSF

M24 " COMP DIFFIC " TRANSF «> TRANSF GOAL

M24E " ERS MVAL " TRANSF «> - TRANSF

M24F " ERS MVAL- " TRANSF «> - TRANSF

M24N " ERS MVAL SV- " TRANSF => TRANSF

M24S " ERS MVAL SV " TRANSF «> TRANSF GOAL

M25 * SUC DESCR " TRANSF GOAL OBJECT => GOAL - TRANSF

. . M26 " NEW REDUCE " GOAL => FILE EVAL GOAL
t M27 * NEW REDUCE GOAL «> FILE EVAL GGAL

Figure C.2 The Transf module in GPSR

counts of assumptions made in LHSs of the modules’ Ps. The counts in the figure are taken

from a cross-reference (Appendix C) done on the first abstraction of GPSR (Appendix B),
using module boundaries determined by examining the forms of the Ps in the second

: abstract version (Appendi: D). Reading across a row in the figure, there are counts of the
3 number of mentions, in LHSs, of the module at the head of the row. That is, the row

counts indicate which other modules are assuming something about the module at the head

of the row. Reading down a column, the counts indicate what the module at the top of the

column assumes about the others. A vast majority of the assumptions being made are

intra-module, with the diagonal of the figure having 827. Out of 100 entries, 10 on the

diagonal are filled, 11 off are filled, and 79 are blank. The order of modules in the figure

is based on making as many interactions as possible fall near the diagonal, particularly in

spaces adjacent to it. Only 5 entries are outside the near-diagonal region, accounting for

: about 57 of the total interactions (957 are thus within that region).

At Y

Transf Match Filo Genri Reduce Apply Eval Select MoveOpr Oper'ns
A Transt 15 3

E | Match 14 18

- Fito 4q1 1 4

Genrt 1 16 2

Reduco 8

Apply 4 29 1 1

Eval 1 5 11

Select 14

MoveOpr 4

Oper'ne 38

Figure C.3 LHS interactions between modules in GPSR

C3 VII-30

Conclusion A Basis for Understanding Systems C3

The strongest inter-module interaction is between File and Match (without it, 907 of
the interactions are intra-module). Recall that in filing objects, the match is invoked and
then terminated as soon as a suitable difference is found. To do this, File must know an
unusual amount about Match. The full details of the interaction disclose that File uses
primarily knowledge about intermediate results in Match, so that it can terminate
unnecessary matching by deleting them. This seems to be a weak form of interaction, in
contrast to actually assuming how a module works, for instance. Similarly, making a more
detailed analysis can “decrease” a few of the other counts, but the changes are not
essential to the main claim of modularity.

Figure C.4 shows counts of references made in RHSs of the modules’ Ps. Reading
across this figure, counts are given for the number of evocations or cancellations by other
modules of the module at the row’s head. Reading down a column, the counts indicate
which modules are evoked or cancelled by the module at the top of the column. This
figure omits two counts, due to omission of a cofumn for the task-dependent Ps, which
allow GPSR to solve problems. The omitted figures would be a 1 in the Eval row and a 3
in File (fiing two objects and the top goal), since the initialization P evokes those two
modules to start GPSR running. Task Ps other than the initialization P are included in the
Apply module and the Genrt module, and the appropriate values for them have been
incorporated in both figures (the task Ps for the Tower of Hanoi are used). The only place
where the task Ps make an entry where there would have been space is in the Operations
row, Apply column of the RHS table - the task Ps are the only evokers of the operations.

Transf Match File Genrt Reduoe Apply Eval Select MoveOpr Operns

Trensf 16 1 1 1

Match 2 26 9

Fite 2 1 83 5 4 2 1 1

Genrt 1 23 2 1 1

Reduce 11 1

Apply 4 Q 29 2 4

Eval 3 1 5 18 1

Setect 7 13

MovoOpr 1 4

Oper'ne 3 30

Figure C.4 RHS interactions between modules in GPSR

The RHS counts make the system [ook less modular, but even with the larger number
of off-diagonal entries, diagonal entries still are 767 of the total counts. Of [QO possible
entries, 10 are on the diagonal, 29 are off, and 61 are left blank. Outside the near-
diagonal region, there are 16 entries, accounting for about 107 of the interactions. Note
that the "chain™ of near-diagona! elements reduces the gain from a decomposition that
combines some present modules, since inter-module interactions would still persist. The
decrease in modularity doesn’t detract from the claim for modularity based on the LHS
figure, since evocation is not a strong interaction in the same sense that making use of

VII-31 C3

s

L. dLER B S sl s

e W LN

C3 A Basis for Understanding Systems Conclusion

knowledge about a module in an LHS is. Pure modularity would be 1007 on the diagonal in
the LHS case, but less than that for the RHS case, since some evocations of other modules
are necessary.

Others have studied the problem of measuring modularity and of determining short-
term and long-term effects of inter-module interactions. Simon (1969) discusses the
behavior of near-decomposable systems. The above tables can be put into the form of
near-decomposable matrices by grouping the modules Match, File, and Genrt into a
subsystem, and also Reduce, Apply, Eval, and Select into a subsystem. That is, the matrix
that results by treating those groupings as single modules is nearly a diagonal matrix, with
very few off-diagonal elements. Simon also mentions an order of magnitude difference
between inter-module interactions and intra-module interactions as a rough criterion for
establishing a clear decomposition. This criterion applies to the module interaction tables
with the mentioned groupings. There are more exact mathematical criteria, referred to by
Simon, for establishing near-decomposability and concluding that a system will have
desirable short-term and long-term behavior, but the applicability of the more exact
criteria is unclzar at present because it is unclear whether the PSs satisfy the basic
assumptions of that formalization of behaving systems.

These figures on modularity suffice to draw the desired conclusions about PSs,
answering possible objections raised in Section C.1. It should be possible to build very
large PSs without having to impose structural context (subroutining) to reduce global,
inter-module interactions. Thus the uniform, single-level property of PSs is likely to be
preserved. That Ps seem not to make giobal assumptions, but rely rather on intra-module
interactions, makes their incremental augmentation and modification tractable, and adds to
the possibility of having their knowledge be effectively provable.

Vil-32

Conclusion

D. The Nature of Al Programming

D.1. Themes of control

This subsection will discuss major control themes, with two purposes in mind: first,
to isolate the essential features of the tasks done in this thesis, with a view toward
improving the set of benchmarks; second, to explore how various underlying architectures
have an effect on the implementation of these themes, using PSs as an example. The
themes are put forth as being characteristic of a broad range of Al programs. Primarily,
we aim to set up a basis for general evaluation of present and proposed Al architectures.
One means to this is establishing a set of benchmark programs, whose implementation
reveals central features and provides convincing evidence that there is adequacy for a
much larger set of Al systems. A set of benchmarks should thus span a wide range of
capabilities, but should try to avoid redundancy of mechanisms so that as much as possible
can be gained from each implementation. The discussion here of the themes that make up
the PSs implemented helps bring out the benchmarks' structure and raises considerations
that may lead to other evaluative approaches.

The following themes require organizational and control facilities that are more
demanding than the control features given as basic in Section B.2 (iteration, selection, etc.).
They are more demanding at least in the sense ot requiring a combination of several
techniques. These themes are present, for the most part, in the completed PSs.

And-Or goal sequencing, with recursively-nested goal structure;

Backtracking and other forms of extended iteration and generation of
possibilities;

GPS-like heuristic search executive, involving general method-
coordination, evaluation of progress, and allocation of etfort;

GPS match, involving the extraction, cataioging, and evaluation of
differences between complex, structured probiem states;

Data-directed or pattern-directed nroblem-solving strategy;

Natural language processing, including disambiguation and coordination
with the pragmatics of the domain under discussion;

Automatic acquisition of new knowledge, both procedures and data.

A number of indications of the power of PSs follow from the implementations of
these themes. That is, the themes are achieved, in many cases, with unexpected ease,
avoiding a number of traditional mechanisms. A number of the programs exhibit complexity
without the conventional structural hierarchy programming style. Hierarchy and other
structuring is achieved rather easily using the seemingly weaker programming facilities
provided by the PS architecture. Using PSs allows an approach to natural language
processing that avoids a conventional syntactic parsing mechanism. Backtracking is
achievable in PSs, also without the kinds of control primitives specifically added to other
Al languages for that facility. In PSs, structures that are learned by a program need not
be interpreted by some part of the program, but can be encoded as active structures,
behaving in ways similar to the rest of the system. The global Working Memory is crucial
to this capability, in allowing a program to effectively monitor the action of such newly-

VII-33 D.1

b et o

D.1 The Nature of Al Programming Conclusion

added pieces of knowledge. From this, it is clear that useful insights can be gained about
an architecture by implementing programs that include the above themes. The insights
about PSs given here were by no means predictable in advance, and in many cases
emerged only as the language and its capabilities were exercised in actuai programs.

There are other effects of an architecture on implementations, though these are not
nearly as evident from gross program features, or as easily measurable, as is the shape of
how the themes are produced. The following useful features of PSs are potentialities
suggested by actual practice, and exploitable by further research, rather than features
demonstrable by implementing the PSs to specific levels of performance as required by
the benchmark concept. A major proposal for an Al architecture might be given an initial
evaluation by trying to achieve a corresponding set of functional capabilities.

Global Working Memory for general communications.

Architectural flexibility, deriving from degrees of generality and
specialization that Ps can have in practice and from the alternative
memory structures available; the effect is to allow plenty of room for
design.

Small size of Ps and at the same time the amount of action accomplished
by a few elements; this allows PSs to be programmed incrementally,
and potentially automatically.

Independence of Ps within the P Memory, and the lack of structure of P
Memory (for instance, as subroutines); PSs are open for combination
into larger systems, with ties between such program fragments
provided by similarly open Ps, through the global Working Memory.

Abstracted Ps as a feasible way of describing the action of a PS;
abstract Ps (APs) and very abstract Ps (VAPs), which are used
throughout the thesis to represent PSs for descriptiv. purposes,
retain the style of the more concrete PSs and indice a unifying
organizational framework at all levels of abstraction, certainly a
rarity among programming architectures for AL

The present set of programs is useful for benchmark comparisons, with two possible
exceptions. The use of Epam as a task is probably redundant. It seems feasible that the
mechanisms within GPSR are sufficient to perform the Epam task, and in fact GPSR includes
several kinds of Epam-like networks, with the object network actually an improvement
over the design used in the Epam PS. Complete details of doing the Epam task in GPSR
have not yet been worked out (and space would not permit it here), but the main idea is to
extend GPSR slightly to allow it to add operators during the problem-solving process, and
then to give it the task of building a set of operators to produce a list of syllables. This
could easily be done, by my estimate, with fewer additional Ps than the 41 that constitute
the Epam PS. The second possible exception to usefulness as a benchmark task is the
restricted chess task. The primary themes addressed by that task are the use of a
heuristic search executive and the potential for data-directed problem-solving. The
former is central to two other tasks, GPSR and WBlox, and the latter might be just as
effectively explored by elaborating the task given to the blocks problem-solver, for
instance. On the other hand, the evaluator of a new Al language might want to emphasize

performance aspects that are best exercised by a task like chess, where potentially a

large amount of search is done. That is, emphasis in a language might be on making search
most effective. Decisions on such borderline cases are best made in connection with

particular studies.

D.1 VII-34

T————" - - e
e | Conclusion The Nature of Al Programming D.1
. The set of benchmarks must be augmented to meet the demands of growth of the Al
R field. The following themes are proposed fo make the set of benchmarks more compliete,
but most of them are not considered necessary to pursue in order to be confident about
3 the applicability of PSs to original areas of research (see Section E3). Each theme is
k. accompanied by suggested complete programs that include it.

Best-first heuristic search, with problem states or contexts too large to
- E. A maintain as distinct objects, as in GPSR; GPSR uses primarily a depth-
i first search, but could be easily modified to be more along the best-
3 : first lines (some suggestions in Chapter IV elaborate on this); an
: . - essential part of a task to exercise this would be flexible use of

; information from a number of distinct contexts, and flexible switching
of effort from one to another; some of the more advanced blocks
problem-solving systems are of this nature (Fahiman, 1974, and
Sussman, 1975).

Semantic network or a similar knowledge structure, involving
combinatorial search through relational structures and operations on
knowledge such as mapping (Moore and Newell, 1973; Shapiro, 1971);

i Extension of the natural language task to one of comprehension of larger

’ units (Schank, et. al.,, 1975);

Search among competing hypotheses using diverse knowledge sources

g (Erman and Lesser, 1975);

ﬁ . Induction of patterns from examplars (Winston, 1975, Hedrick, 1974); the

2 Hedrick formulation of the task has the advantage of making use of a

: semantic network, thus combining themes;)

Automated design (Eastman, 1973); this task involves use of information
in fulfilling vaguely-stated objectives and perhaps trading off various
objectives, rather than problem-solving toward a definite goal; a task
like blocks manipulation might be extended to include this theme.

A current task form is the construction of understanding systems themselves, rather
than attacking singly the variety of themes that seem to be requisite for this larger aim.
Perhaps a domain will be discovered that combines the themes in such a form as to be an
y effectiva benchmark. Benchmarks, however, must also not involve too much domain
! knowledge, so that more complex understanding systems are automatically ruled out.

In conclusion, although these themes and the discussion here indicate something of
the nature of Al programming, the sharpness of the distinctions between architectures is
B | not fully satisfactory. That is, the form of the PS architecture is reflected to some extent

in the form of the above themes as they appear in the PSs, but looking at the themes

) alone is not sufficient to determine all features of an architecture, for two reasons. First,

3 s it doesn't bring out the same kind of information as is brought out by the more detailed

, : analysis that arose from the features of Section B.1 and their application to the taxonomy

[of Section B.2. Second, it doesn't exercise enough those capabilities that are new in the

‘ architecture, in a sense only exposing the potentials for significant advance. Perhaps

some systematic way of forcing unexpected augmentations to a system after compietion to

{ the predefined benchmark, could bring out more of the dynamic potential of an
architecture, as opposed to simply testing its feasibility in a circumscribed task.

One might also question the entire benchmark concept, and try to examine the

2 VII-35 D.1

D.1 The Nature of Al Programming Conclusion

present results from the standpoint of avoiding the programming altogether. Perhaps an
analytic technique could be based on the features put forward in Section B. But some
aspects of architectures seem evident onty in building complete systems, and in bringing
them to some predefined performance level. More analysis might reduce the number of
actual systems built, by forming tasks that include more of the central themes. We might
even hope for a single, comprehensive task, but this must wait until we can better
characterize the essential nature of ALl In any such attempt it must be clear that the
desired themes are being exercised in all of the important ways, and especially in those
ways that are somehow critical in discriminating architectures. How to formulate the
construction and evaluation of critical test cases will persist as an important research area.

D.2. Problem spaces as a basis for a theory of Al programming

The concept of problem space is central to the analysis of human problem solving
behavior put forward by Newell and Simon (1972, p. 59, pp. 810-811). A problem space is
a means of expressing the possibilities for behavior, rather than restricting a description
to the actual behavior observed. It thus describes more completely the problem solver,
and even provides a basis for prediction. It has five components: (1) a set of elements,
each representing a state of knowledge about a task; (2) a set of cperators that produce
new elements from existing ones; (3) the initial element, the state of knowledge at the
beginning of a task; (4) the desired element, or set of eiements, whose attainment
constitutes a completion of the task - attainment achieved by applying operators to
elements starting with the initial one; (5) and the total knowledge available, ranging from
temporary dynamic information to long-term reference information.

The most usefu! form for a theory of Al programming would be one that would
provide an initial framework with which to start the process of programming. That is, one
would want something that would apply to an initial statement of a problem and
immediately organize it so that the succeeding steps of filling in more detail and encoding
it in some language (preferably PSs) would be streamlined. What this subsection attempts
to do is to motivate the use of problem space by pomnting out how the PSs developed for
this thesis can be formulated as problem spaces, and also by pointing out how well-suited
PSs _are for exploiting the structure imposed on a problem by the problem space
framework. Three assumptions are made in carrying this forward: first, that a problem
space framework is relatively easy to develop for typical Al programs, when one is in the
initial exploration stages; second, that the correspondence of the final form of the
completed PSs to problem spaces means that there can be something like a problem space
framework guiding the process of constructing a PS from the beginning; and third, that the
representation as a problem space means that processes of programming can take
advantage of it in those problem space terms, with the problem space structure clear
enough to use. The first assumption may be made more plausible by dlustrating the
application of problem space framework to the programs of the thesis, but it cannot be
shown valid without taking some new problem and attempting the same application
process. The second assumption is even more difficult to support, seeming to require at
least detailed study of the incremental construction of PSs. The third assumption is an
instance of a more general principle, that representation affects processing done on it.

Problem spaces structure a task by dividing applicable knowledge into a relatively

VIil-36

e

Conclusion The Nature of Al Programming D.2

small number of operators. Each operator (by definition) can take action in a number of
ways, and it is this variability that allows a small set of operators to generate large
behavior spaces. That is, if we take each knowledge state (problem-solving dynamic state)
as a node in a graph representing the search space, then an operator applied to a
knowledge state can potentially cause the graph to branch out in a number of directions,
each representing the transition to a new, distinct knowledge state. How it branches in a
particular case depends on the content of the state.

As we have seen above, as a result of the renaming of predicates, a PS is divided
into a relatively small number of main processes, each composed of between roughly 10
and 50 Ps. What better representation than as a set of Ps could there be, for the kind of
variability inherent in problem space operators? PSs have two distinct advantages: The
behavior of PSs divides into relatively small sequences of unconditional actions,
corresponding to Ps, so that there is a high degree of conditionality and so that Ps can be
seen as units of variabilty. PSs act by global communication, with potential access to a full
knowledge state and action on a full knowledge state. For the moment, this suitability
about PSs is hypothetical, of course, and it needs to be qualified by saying that aithough
the most natural correspondence would be to have each possible full action of an operator
represented by a single P, in practice it must be allowed that a sequence of P firings
within an operator is necessary to develop its action. In fact, in applying the problem
space concept to the Studnt PS, each operator averaged around 15 P firings. When such a
number of Ps participates in determining the action of an operator, it must be the case
that the amount of variability in the resulting knowledge states is correspondingly large.

Another possible correspondence between PSs and problem spaces is that problem
space operators are coordinated on a large scale in a fashion similar to the way Ps are
coordinated on a small scale. A problem space operator is somehow matched to a
knowledge state to produce a new one. The result is a relatively small amount of action
on a global set of knowledge states: the -addition of a new one. Most importantly, the
openness of the selection of an operator to apply to a state corresponds to the openness
of selecting a P for firing: problem space operators are generally not described as
participating in some sequential procedural framework, but are stated more as data-
directed, relatively independent entities. This is not completely true for all problem
spaces, because there exist in some spaces sequential plans. These plans serve to tie
together the application of several operators into a coherent sequence. Plans can be
temporary, task-dependent shortcuts to solutions, or they can be used effectively in many
situations, in which case they become a form of stercotyped behavior and move away from
being part of problem solving behavior. But this is analogous to sequences of Ps that
become sufficiently common and useful to be convertible into a single P with a longer
unconditional action sequence.

Before going into detail on the particular PSs seen as problem spaces, there is a
qualification to our adherence to a strict definition of problem space. The concept of
problem space is being discussed here at a very abstract level, with the consequence that
it is in some cases an idealization of what the essence of problem space is. The details of
the definition of problem space given by Newell and Simon have been modified somewbhat
to apply to the broader domain here. On the one hand, we are not concerned so much
with the detailed theoretical implications of the definition of problem space for cognitive
psychology. On the other hand, the number of examples that were explored in the

VII-37 D.2

i el i i

D.2 The Nature of Al Programming Conclusion

problem space framework in the original defining work is so small that some distortion and
modification is almost inevitable.

The Studnt PS has as its task to convert a string of words into a set of algebraic
equations and a specification that certain variables of those equations, the unknowns, are
to be solved for. A knowledge state for Studnt consists of a partially-scanned string of
words, along with internal symbol structures that represent the status of the process of
constructing the equations and unknown variables. Speaking broadly, the problem space
operators apply to such states to produce increments of progress, represented in new
states that have less unscanned string or less internal partial structures, and more of the
final result. The space of possibilities is large because of the astronomical numbers of
equations that can be formed from grammatical strings of even relatively small size.

The problem space operators are divided conceptually into three sets: the initial
scan operators, the parsing operators, and the operators for segmenting unknowns. The
initial scan operators are of three types: a transformation operator, which replaces idioms
in the problem string by other standard forms; a dictionary-tagging operator, which
classifies certain key words, for the use of later operators; and an initial chunking
operator, which forms the main sentential chunks from the string and notes their main
connectives (which are “is" or some arithmetic operator). In applying these initial scan
operators, the Studnt PS makes use of a plan that resolves certain ambiguities with
respect to which of them might apply to the problem string by invoking them in a
particular order and aiso according to a strict left to right scan across the input string.
The initial scan operators work directly with the input string, producing a modified string
and ultimately converting that string into a chunk, which is a string that has specific
boundaries, a unique name, and other properties. Chunks are the primary components of
the internal symbol structures that combine with the partially-scanned input string to make
up knowledge states in the problem space.

The second set of operators are for parsing a chunk into an equation: one operator
scans a chunk to find an appropriate place to split it into component chunks; a second
operator identifies a chunk as a variable, as not subject to further subdivision, and a'so
checks whether that variable is the same as a previously identified variable chunk; and a
third operator recombines variable chunks into expressions, which can then be taken into
more complex expressions by further combinations, using information associated with the
chunks when they are split by the first parsing operator. The parsing operators thus take
chunks from a knowledge state and operate on them to produce further chunks and also
expressions, which are closely associated with chunks, rather like their other altributes
An equation is a particular kind of expression.

The third set of operators has only one element, a special operator for splitting a
chunk recognized to contain the specification of the variable unknowns into the
appropriate unknown chunks. When those chunks are determined, they are identified with
previous problem variables by the same procedure that is applied within the parsing
operator. The parsing and unknown segmentation operators are organized info plans in
ways similar to the organization of the initial scan operators, and for similar reasons

GPSR aims to find a sequence of task operators that apply successively to an initial
symbolic configuration to produce a desired configuration. To do this, it sets up an

D.2 VII-38

—

Conclusion The Nature of Al Programming D.2

internal knowledge state organized around goals. Thus to GPSR, the space being searched
is a space of goal trees, and only secondarily a space of task configurations. That is, the
space GPSR is searching in is not the space of task operator sequences, such as the Move-
Disk operator in the Tower of Hanoi problem or the Cross-River operator in the
Missionaries and Cannibals. It is something more: task configurations are incorporated into
a richer description space built around goals to transftorm task configurations from one to
another, goals to reduce differences between task descriptions, and goals to apply
particular (partially-instantiated) task operators. GPSR's knowledge states, in addition to
containing a general goal graph structure, are composed of a current status for the
problem-solving executive and a number cf auxiliary task-dependent structures.

The process primaries derived from the renaming process in Section C are
candidates for problem space operators: Apply, Evaluate, File, Generate, Match, Move-
Operator, Reduce, Select, Transform, and the Operations. We can narrow down this set by
taking the problem space operators only those members that involve significant problem
solving, i.e., that represent places where a number of possibilities exist and where the
operator goes with one in preference to the others. Evaluate takes a goal, either new, old,
newly-succeeded, or newly-failed, and produces an evaluation of it, with the resuit of
augmenting the current knowledge state by making some goal (either the goal immediately
input to be evaluated, or another goal selected according to its evaluation) the current
goal. For our purposes, it can be said to include the File and Select processes, since they
don’t make changes to major components of knowledge states and since they are
dynamically subordinate. Select does, however, do significant problem solving, so that it
could be seen as an operator closely linked by a plan to the Evaluate operator. (Some
versions of GPS include goals of select type, in which case Select is augmented beyond its
GPSR form and is more independent of the executive.)

The Transform process is capable of recognizing when a solution is attained, and
otherwise is the evoker of Match, which results in establishing a new reduce goal. Match
is subordinate to Transform and also to Evaluate, and is not considered to be an operator,
since it is subordinate and since it doesn't do problem-solving in the sense of selecting
from alternatives in the space. Instead it produces an exhaustive list of differences and
leaves the evaluation and selection of those to its parent processes. (Even in augmented
forms of Match in GPS, where so-called immediate operators are added, there is no
problem-solving in the present sense because the immediate operators are necessary for
the match to proceed.)

Reduce is closely tied by a problem space plan to two other operators, Generate
and Apply, which do a significant amount of problem-solving. Reduce takes the focus on a
reduce goal and selects a task operator to be applied to reduce the difference attribute ot
the goal. It then evokes Generate, which connects information about the task operator and
the difference to be reduced to form a set of desirable assignments for the variables of
the task operator. Generate also extends these assignments to full, feasibie assignments.
The Reduce p!an then calls for the evocation of Apply, which takes the set of feasible
assignments and checks the result of applying task operators for each. Apply selects from
the results of the application attempt, to produce a success signal (a modification of the
executive status for a goal) or information that is used to construct a new goal.

The Move-Operator process is little more than a plan to evoke the Apply operator

VII-39 D.2

D.2 The Nature of Al Programming Conclusion

to try to apply a task operator, and then to construct a new goal according to the result
of Apply. It doesn't do much problem-solving, but it has a visible effect on the knowledge
state, so it deserves operator status. The Operations processes are subordinate to Apply
and do only straightforward symbolic manipulations to attributes of goals, so they are not
problem space operators. Thus, GPSR includes the following problem space operators:
Evaluate, Transform, Reduce, Generate, Apply, and Move-Operator. This discussion of
GPSR is important in illustrating the use of the structure evident from the renaming of
Section C. That GPSR's process structure and its structure as a problem space correspond
so closely is strong evidence for the argument that problem spaces are effective as a
theory.

The two examples already given should give a good idea of the form of the
argument for problem spaces. Problem spaces for the other four PSs need only be briefly
sketched in order to provide additional support and completeness of coverage. The task
for MiliPS is to form a unique interpretation of an input string, maintaining both
consistency with a model of a toy blocks scene and naturalness of the interpretation (as
opposed to finding an interpretation that would not occur to a human in a similar situation).
In some cases, MiliPS recognizes some kind of error in the input, and provides a diagnosis
of the problem as its output, e.g., by describing specifically the sort of ambiguity detected.
A knowledge state has the remaining unscanned input string, a list of objects encountered
in the sentence that can still be useful for making further interpretations, the unresolved
ambiguities in sentence, and unused relations and other structural fragments that are to be
filed in by more scanning of the input. MiliPS searches in the space of possible
interpretations by applying operators to lexically classify words, to verify grammar, to
create and identify objects associated with nouns, to apply attribute values and relations
to restrict ambiguities, to resolve inconsistencies and redundancies, to describe scene
objects, and to deduce and perform the actions that are the main intent of an input. These
operators are all represented by sets of Ps in MiliPS, and are easily distinguishable as
program units. Some of the mentioned operators do less in the way of reducing the
remaining space of possibilities for an input, i.e., do less problem-solving, than others, with
the reduction of ambiguities, inconsistencies, and redundancies estimated to be the most
important.

The space of possibilities for Epam is the space of exiensions of an existing
discrimination network in order to improve performance on the syllable task. In a sense, it
is searching a space of networks. Primarily, Epam consists of a primitive matching process,
which compares its behavior to the desired behavior, and an extend-net operator, which
takes action on the diagnosis of a difficulty produced by the match. In contrast to GPSR's
match, the match in Epam does do some problem-solving, distinguishing between various
cases to be corrected. The extend-net operator, however, is responsible for the majority
of the problem-solving.

WBIlox consists of a number of task operators for manipulating blocks worlds, only
some of which are problem space operators. It is given a particular blocks configuration
and a command to be executed on that configuration, with the command amounting
essentially to a partial description of a desired state. Since there is little in the way of
internal goal descriptions (in contrast to GPSR), the knowledge states are taken to be
basically blocks configurations, among which WBlox searches with a variety of operators in
order to achieve the desired one. The operators chosen for the designation of problem

D.2 VII-40

Conclusion The Nature of Al Programming D.2

space operator are the intermediate-level blocks operators, as opposed to the lower-level
commands, which do no problem-solving and are subordinate, and the high-level commands
that initiate the system’s activity but that don't do anything directly. Thus the problem
space operators are the following, which do produce different configurations of blocks
when applied: PUTONSET, which is an iteration of the basic PUTON1 operation, but with the
capability of trying alternatives; STACKUPSET, an iteration of the PUTON1 operator, similar
to PUTONSET in problem-solving capability; PUTON1, the placement of one block
somewhere on top of another; PACK, an iteration of PUTONl and cther more primitive
operators; FINDSPACE, which finds space to put something, doing a small amount of
problem-solving to arrive at a suitable location; GRASP, which should really be called
TRYGRASP, an attempt to grasp an object that may involve some rearrangements before
being achieved; GETRIDOF and CLEAROFF, which also do rearrangements to place objects
in non-interfering locations; and MAKESPACE, which rearranges blocks to force the
availability of open space.

Finally, KPKEG searches among chess positions, with the basic knowledge states
augmented by information about strategies being tried and alternatives still available. The
primary operators are an evaluation operator, similar to GPSR's executive, and a generator
of moves that fulfill strategic objectives established by the executive. If one wanted to
refine the generate operator, it could be broken down into a small number of strategy-
specific generators.

The above presentation of problem spaces has emphasized the operators at the
expense of describing details of knowledge elements and total knowledge available. This is
because the operators are the generators of the behavior spaces, and are the most visible
components in the PSs, since each operator is a set of Ps. It should be pointed out that
often the actions of problem space operators have been described abstractly in the body
of the thesis as very abstract Ps (VAPs). But it is also the case that in doing the above
descriptions, there is ample contact with general task concepts, and the emphasis is not
entirely on the opposite bottom-up considerations, the way that the PSs, which are only
particular implementations of the tasks, correspond in organization and in detail with
problem spaces. In some cases, the presence of probiem-solving within operators has
been portrayed as central, since it is through the existence of probiem solving that there
is a potential for a space of possibilities. That is, problem solving is seen as the
application of knowledge to make decisions of some sort, and it is the possibility of making
decisions in a number of ways that makes the space.

In conclusion, there are a few points to be made on the apparent advantages of
implementing problem spaces with PSs. The taxonomy of control presented in Section B
can be seen as a kit of techniques for implementing problem space operators. The level of
the various elements of the taxonomy is such that it doesn't cross the conceptual
boundary of a problem space operator. That is, the control techniques are right for doing
operations within problem space operators. Also, nothing in the taxonomy proposes any
overarching organization that would conflict with the problem space view. When
implemented as PSs, problem space operators become rather open in terms of inter-
operator interactions, both in terms of the size of action done by a P (interruptability) and
in terms of the globalness of all Working Memory interactions. That the inter-operator
interaction doesn't get out of hand is demonstrated by the modularity measures in Section
C. Finally, augmentation of a PS program can be viewed in two ways: the augmentation of

VIii-41 D.2

D.2 The Nature of Al Programming Conclusion

the operator set, which should be facilitated by modularity and globalness of interaction
and evocation of all the operators; and augmentation of particular operators by adding Ps
to represent further behavioral possibilities, also aided by precisely the same factors.

Having verified to some extent that PSs are right for problem spaces, we still have
to examine the larger question of how fruitful it is to view Al programs as utilizing
problem spaces. Certainly the view is supported by the specific correspondences for the
six PSs above. But perhaps we should reconsider the definition of problem space and
note that it includes some amount of search as contrasted in the extreme case with an
algorithm that performs directly without such intermediaries as goals and subgoals (Newell
and Simon, 1972, pp. 820-823). Thus our assertions about the nature of Al programming
and the suitability of PSs should be applied only to research of an exploratory form, a
form that is common in most past Al research and that seems inevitable in dynamic, open-
ended understanding systems.

Vii-42

i
{

v
>

3
ko

* P N 2

o

Conclusion

E. The Future of Production Systems

E.1. Serious defects

Run-time efficiency is the primary weakness of the PSs implemented here. To
summarize a number of comments made in connection with particular PSs, run-time is too
large for practical purposes by roughly an order of magnitude (more precisely, a factor of
6 to 10 times). One effect of this is that the programs are too slow to be run
interactively, and in practice, much of the debugging for the thesis was done in batch
mode, with only one or two runs per day. At present, this is diagnosed to be due to
correctable causes. The Psnist interpreter has several known, low-level inefficiencies, and
probably more, simply because not enough time was taken to make the internal algorithms
and data representations more optimal. As has been discussed in Section B.5, there is no
clear evidence that there are costly factors inherent in the PS architecture (such as
increasing expense as the number of Ps increases), except perhaps for the presence in
Working Memory of a large amount of useless information that has not been properly
cleaned up. This is also in agreement with another study of PS efficiency (McDermott et.
al, 1976). But most importantly, PSs are amenable to significant efficiencies beyond
improving isolated architectural features and interpreter implementations: the possibility of
representing PSs in a compiled form. This involves transforming the external
representation of the Ps into a form that takes account of repetitive and redundant
matching operations, converting them to a form optimal for the matching algorithms and
making provision for the storage of partial results to avoid duplications. Forgy (1976) and
McDermott et al. (1976) describe some initial efforts in this direction. Forgy says that PS
efficiency might be improved on by at least a factor of 5 (over the present Psnlist), and
perhaps more, by proper compilation, and also that properly-designed hardware could
achieve quite a bit more than that, up to more than 15 times the present Psnist. It is
expected that efficiency will be a top-priority item for PS research, but also that its
resolution will be relatively rapid.

The other major deficiency with the PS implementations here is the ad hoc quality of
the control and data representation. The proposed shift in representation outlined in
Section C.2 is a response to this feature and all its consequences. A related feature is the
excessive use of control as opposed to letting more processing be more open, specifically
data-driven or bottom up. The tasks chosen did not test the architecture along this
attribute, as was implied in the discussion in Section D.1 and below in Section E3. There
can be no doubt that PSs are well-suited to such a style, and it is likely that this capability
of PSs will be exercised more when PSs are applied to tasks that also make use of the
openness resulting from the proposed representation shift.

E.2. Promising features

A number of features of PSs are indicated by the programs done, but the tasks
were not carried far enough to allow them to be actually demonstrated. A cluster of
capabilities revolves around the potential for automatic creation and modification of Ps,

Vil-43 €2

1
4
|
i

E.2 The Future of Production Systems Conclusion

where automatic refers not so much to deliberate actions within PSs but to other more
general processes that can apply in an unrestricted way to running PSs. First, there is the
possibility of collapsing dynamically-adjacent Ps into shorter, more task-specific ones,
which could accomplish some action with fewer recognize-act cycles in particular cases.
This was emphasized most in connection to GPSR, where a number of ‘“interpretive"”
aspects of the processes were amenable to being tuned to take advantage of fixed
properties of the various tasks. There is the possibility of taking more advantage of the
converse of collapsing sequences of firings, namely to break down unnecessarily complex
Ps into simpler combinations or cascades of Ps, with the benefit that the result is more
general, capturing a number of cases for which there weren't complex Ps before. This
was noted in connection with GPSR and KPKEG. If, for instance, a set of Ps test the
interaction of a number of factors, say 6, divided into two sets of 3 related tests, then to
have single Ps perform all the possible combinations would require 9 tests, whereas 6 Ps
suffice if the test is broken down into a sequence of two tests requiring 3 P< each. This
mechanism especially pays off when the smaller Ps are accidentally applicable to situations
outside the cases to which they were closely tied (as distinguished from simply filling in
missing cases within the local combinatorial ones). The utility of each of these two P-
modification operations is that they could be tied to the frequency of usage of Ps, so that
such "optimization" would be applied only where suggested by tasks. All this is not to say
that such automatic augmentation processes are significant enough to become an
overshadowing factor in the power of PSs, but that they might operate in the background
to improve PS capabilities and exploit inherent architectural flexibility.

Augmentation of PSs could be made automatic by periodically forming new Ps from
changes occurring in Working Memory. That is, a condition is formed from some set of
older Working Memory elements, and an action, from some more recent set, the two sets
thus associated together as a P simply by time adjacency. This was discussed as an a
priori property of PSs in Chapter I, and has yet to be explored except in prototype
studies. Similar Ps formed in such fashion could conceivably be collapsed into smaller
numbers of more general Ps, simply by converting selected constants to variables
("selected" referring to constants that differ or clash in otherwise similar parts of Ps).

The use of the representational taxonomy of Section C.2 is promising from the
standpoint of combining separately-developed systems to obtain new interactions beyond
a simple sum of their properties. This would certainly be facilitated by keeping the
number of primary processes as small as possible, and by keeping them open for
application or mapping to new task areas. Structural features of GPSR (see Chapter V),
for instance, make it open for use as a module in other systems.

Finally, there are ways that PSs lend themselves to more power, both in general and
in specialized task domains. The recognize-act cycle might be modified to allow more of
the multiple firings, along the lines of the ones that occur now when there are a number of
possible matches to the same P. One possibility is to allow a number of different Ps all to
fire on the same cycle, when they are true and at the same time are keyed to the same
event or change to Working Memory. This would increase the power of PSs to do iteration
and to express essentially asynchronous processes, decreasing the need for deliberate
control mechanisms. Specialized power follows from the PS architecture when the
language is modified to take advantage of peculiarities of tasks. This possibility comes up
in connection with chess, where the central task representation, the chess position, 1s

E.2 vii-44

e e

'-:, | Conclusion The Future of Production Systems E2
something that is common to much processing and could be streamlined to be expressed in
4 the language and in the underlying implementation more etficiently.

4 E.3. Gaps in the evidence on production systems

One major area of Al programming untouched by the PSs of this thesis deserves
3 : some discussion here: the area of encoding knowledge in the form of semantic networks.
a A useful formulation of this task will include two aspects of understanding systems:
5 - operability of knowledge and automatic encoding of knowledge. The PS approach to

semantic networks will be sketched briefly below. Some important aspects of operability
of knowledge are mapping or conversion of Working Memory elements so that existing Ps
can be applied to them (termed assimilation by Moore and Newell, 1973); formation of new
concepts; formation of problem spaces, as discussed in connection with the Studnt PS
(Rychener, 1975); and the modification and augmentation of existing knowledge embodied
in processes and about processes. The PSs developed here don't make much contact with
a number of other systems that use Ps in a radically different way, RHS-driven, "goal-
oriented" production-based systems (Davis, Buchanan, and Shortliffe, 1976). Such systems
have achieved a moderate amount of operability. My current thinking on this other form is
that it may be a more primitive form, and that a transitional sequence might be found to
connect the RHS-driven form, by a series of collapsing and aggregating operations, with
the form common to this thesis and a number of others (see Chapter | for related work).

The PS approach to semantic networks follows the same principles used for
discrimination networks in Chapters Il and [V.e Semantic connections will be represented
by Ps, rather than by relational structures in Working Memory interpreted by Ps. The
firing of a P will represent the traversal of an arc (or arcs) in the conventional network,
and that firing will result in leaving in Working Memory a temporary state, the internal
state of the network executive or searcher, as it were. This is not unlike the process
described by Rumelhart et. al. (1972).

Querying the information in the network would be by constructing a P or set of Ps

that would monitor the changing Working Memory state and fire on recognition of an

B | answer, either positive or negative or something else, depending on the stringency of the

g test. Multiple-origin searches could be carried out by firing Ps in parallel, especially

effective if the conflict resolution is loosened up to allow several different Ps to fire at
once, as suggested above. Figure E.l gives a fragment of a network, using simplified Ps.

4 . The N Ps, the network proper, are two simplified classification hierarchies, one for
g "tulip”" and one for "dog". The first three Q Ps represent three questions that might be
% i posed to such a network: "is Dog-7 an animal”, "is Tulip-3 a plant", and "is Tulip-3 a dog".

' ’ The QA4 P represents a general piece of information, "plants can never be animals", the
sort of thing that would be used to answer the third question in the negative. For each of
the questions, a search involving firing of several Ps takes place, with one of the Qs

b

T ultimately providing an answer. For instance, to answer the first question, "Dog-7" would
be asserted, resulting in firing N1 (producing isa-dog(Dog-7)), then N3 (isa-canine(Dog-7)),

Y then N4 (isa-mammal(Dog-7)), then N5 (is-animal(Dog-7)), and finally Q1 (answer(yes)).

® The approach was developed in conversations with A. Newell and D. Waterman.

Vii-45 E3

B At SRl RO S8 G o~ A RS T e i o

per T il v V8 Al et
TR

b e i e o N

The Future ot Production Systems Conclusion

N1: Dog-7 -> isa-dog(Dog-7);
N2: Tulip-3 -> isa-tulip{Tulip-3);
N3: isa-dog(x) -> isa-canine(x);
N4: isa-canine(x) -> isa-mammal(x);
NS: isa-mammal(x) -> isa-animal(x)
N6: isa-tulip(x) -> isa-flower(x);
N7:isa-flower(x) -> isa-plant(x);

Ql:isa-animal(Dog-7) -> answer(yes);

Q2: isa-plant(Tulip-3) -> answer(yes);

Q3: isa-dog(Tulip-3) -> answer(yes);

QA4: isa-animal(x) & isa-plant(x} -> answer(no);

Figure E.1 A fragment of a semantic network

Note that in the case of the third gquestion, two searches need to be done, namely one

starting with Tulip-3 and one starting with the assumption that "isa-dog(Tulip-3)", with the
searches ultimately producing the contradiction recognized by Q4.

The Ps above are simplified. An actual system needs some guidance of the search,
and it needs some way of stopping the search. Guidance can be provided by adding extra
conditions and actions to the network Ps, and by adding extra Ps to monitor the state of
the search in Working Memory, performing deletions to prune the search. Stopping the
search might be achieved by having extra Working Memory elements record a search
activation level, updated each time a network P fires or each time some recognizable event
occurs.

From this preliminary presentation, PSs can be seen to have several positive
features for this task. Specific heuristic information can be encoded directly in the
network, not, for instance, in some all-knowing centralized executive, where its access
might become rather involved. The nelwork s actively encoded, and takes advantage of
the power of PSs to perform the iteration of the search cycle. And the patterns searched
for are limited only by the expressive power of Ps. This means that there is no limit to
the diversity of knowledge brought together for an answer, or lo the processing done at
each step in a search. Enthusiasm for this approach must, however, be tempered by the
obvious difficulty of overall control: with so many Ps firing in asynchronous fashion, there
may be a requirement for a large number of general querying and (domain-specific)
search-limiting Ps to contain the search. No task analyses exist (fo my knowledge) that
would provide data on the potential difficulties here. For instance, there are no measures
on the "branching factor" of semantic nets, and in particular there are no comparisons of
branching for networks used in various tasks.

E.4. Practical, impractical, and thecrelical applications

PSs seem ideally suited for high-level cognitive functions where large amounts of
domain knowledge are to be brought to bear. Such tasks exploit the understanding system
properties of PSs, particularly the way that knowledge is added incrementally and

E.4 VII-a6

Conclusion The Future of Production Systems E4

interactively. Some specific applications are: knowledge-based systems, where an expert’s
knowledge is encoded and applied to real problems; computer-aided instruction, a field
with unlimited room for expansion of the knowledge base, while at the same time
demanding a concurrent augmentation of processing capabilities; human-computer
interfaces in general (particularly natural language ones), where the interface must be
adaptable and perhaps even capable of modelling its users; tasks familiar to cognitive
psychologists such as protocol analysis and modelling; and cognitive components of
robotics, speech understanding, and visual systems. These areas are contrasted to low-
level number-crunching applications, such as acoustic and visual-image preprocessors. PSs
might not be best in areas where little is known and reliance must be primarily on brute-
force exhaustive search techniques. But two qualifications can be made to these apparent
misapplications of PSs. First, even in exploratory studies, the incremental property of PSs
might allow effective and rapid narrowing of a large search space. Second, since PS
interpreters can be coded relatively easily, there may be cost-effective specialized PSs
for, e.g., tasks involving numerical computations that are somewhat condition-dependent.

On the theoretical side, PSs are well-suited to several kinds of exploration.
Generally, PSs are a transparent medium for exploring the content and form of knowledge
in a domain. PSs are good for exploring new ideas, given the rapidity with which a
working system can be constructed. Much theoretical, applicaticn-independent work
remains to be done in the area of automatic encoding of knowledge, i.e, building
instructable PSs. PSs have proven effective in this thesis for replicating past Al efforts
and in more detailed analysis of past work, and are a concise means of expressing
programs for documentary and descriptive purposes. Using PSs, the field of Al might yield
to analysis aiming toward a comprehensive rationalization or systematization. Finally, PSs
might prove to be useful to current explorations of parallel computer architectures, as a
simple computational mechanism that allows complex systems to be broken down into a
number of asynchronous modules, or perhaps as an abstract formalism for such systems
regardless of the actual implementation.

ES5. The case for production systems

PSs are effective and advantageous for the programming constructs typical of Al
systems. The six PSs implement systems with a variety of methods and representations.
Of nine programming language properties discussed, PSs have particular advantages in
style, conciseness, and architectural flexibility. They also are favorable with respect to
practical feasibility, productivity, and degree of being guided by a theory. Their attributes
are mixed on power and overhead features, and are negative at the moment on efficiency.
Some of these evaluations are strictly comparative, while others can not be comparative at
present due to lack of similar measures for other systems. Mechanisms of PS control are
encompassed by a relatively concise taxonomy of six process-evocation categories and
five data-management categories. Major successes can be expected in applying PSs to
large-scale understanding systems of the sort currently being explored. Of a set of seven
secondary understanding system properties, four are supported by a priori PS properties
and are further supported by the six PSs. Two other properties, openness and modularity,
are supported by the application of a taxonomy of representation, and the seventh,
provability, has not been attacked by the present methods. Two primary understanding
system properties, operability of knowledge and automatability of the encoding of

VII-47 ES

e —

.«_

ES The Future of Production Systems Conclusion

knowledge, have not proven amenable to demonstration by the present approach, and are
left open for further research.

PSs are particularly useful in domains where system knowledge must grow
dynamically through interaction with humans and with a task environment, but without the
expense of analysis of how each new piece of knowledge must fit into existing structure.
A set of major themes of control in the systems implemented stand as hallmarks of Al
programming and may prove useful in evaluating new and proposed system architectures
for AL A preliminary theory of Al programming can be based on the correspondence of
the PSs with the concept of problem space. Such a theory may provide a framework for
the organization of future understanding systems, especially given PS properties.
Diversity of application and problem-solving capabilities, both of which are deemed
essential to building understanding systems, have been adequately demonstrated.

2% Firabl

e e gk TP

e

e — A ———

| 2

Conclusion

F. References

Davis, R, Buchanan, B. and Shortliffe, E., 1975. "Production rules as a representation for a
knowledge-based consultation program", Report STAN-CS-75-519, Memo AIM-266.
Stanford, CA: Stanford University, Computer Science Department.

Eastman, C., 1973. "Automated Space Planning", Artificial Intelligence, Vol. 8, 1, pp. 41-64.

Erman, L. D. and Lesser, V. R, 1975. "A multi-level organization for problem-solving using
many, diverse, cooperating sources of knowledge", Proceedings of the Fourth
International Joint Conference on Artificial Intelligence, pp. 483-490.

Fahiman, S. E, 1974. "A planning system for robot construction tasks", Artificial
Intelligence, Vo\. 5, 1, pp. 1-49.

Forgy, C. L, 1976. "A production system monitor for parallel computers”, Pittsburgh, PA:
Carnegie-Mellon University, Department of Computer Science. In preparation.

Hayes-Roth, F., 1975. "Collected papers on the learning and recognition of structured
patterns”, Pittsburgh, PA: Carnegie-Mellon University, Department of Computer
Science. First paper in collection deals with representation.

Hedrick, C. L., 1974. "A computer program to learn production systems using a semantic
net”, Pittsburgh, PA: Carnegie-Mellon University, Graduate School of Industrial
Administration. A shortened form is in Al, 7: 1, pp. 21-49, Spring, 1976.

McDermott, J., Newell, A. and Moore, J,, 1976. "The efficiency of certain production system
implementations", Pittsburgh, PA: Carnegie-Mellon University, Department of Computer
Science.

Moore, J. and Newell, A, 1973. "How can MERLIN understand?", in Gregg, L., Ed., Knowledge
and Cognition, pp. 201-252. Potomac, MD: Lawrence Erlbaum Associates.

Newell, A. and Simon, H A, 1972. Human Problem Solving, Englewood Cliffs, NJ:
Prentice-Hall.

Rumelhart, D. E, Lindsay, P. H. and Norman, D. A, 1972. "A process mode! for long-term
memory", in Tulving, E. and Donaldson, W., Eds., Organization and Memory, New York,
NY: Academic Press.

Rychener; M. D, 1975. "The Studnt production system: A study of encoding knowledge in
production systems", Pittsburgh, PA: Carnegie-Mellon University, Department of
Computer Science.

Schank, R. C. and the Yale Al Project, 1975. "SAM -- a story understander”, Research
Report No. 43. New Haven, CT: Department of Computer Science, Yale University.

Simon, H A, 1969. The Sciences of the Artificial, Cambridge, MA: The MIT Press.

VII-49 F.

| 4

F. References Conclusion

Shapiro, S. C., 1971. "Net structure for semantic information storage, deduction, and
retrieval”, Proceedings of the Second International Joint Conference on Artificial
Intelligence, pp. 512-523. London.

Sussman, G. J, 1975. A Computer Model of Skill Acquisition, New York, NY: American
Elsevier. Publication of Ph.D. thesis, MIT Al TR-297, 1973.

Winston, P. H,, 1975. "Learning structural descriptions from examples", in Winston, P. H, Ed.,

The Psychology of Computer Vision, pp. 157-209. New York, NY: McGraw-Hill.
Publication of Ph.D. thesis, MIT MAC TR-76, 1970.

VII-50

e AN S . SIS Ll R Nt s 55 it S de i catabbc e el

: I Conclusion

CONCLUSION APPENDICES

viL-8!

ADOLASTY

ADOL I\
APPLYCHK
APPLYOIFFR
APPLYODIFFRSETLP
APPL YL OCPROC
APPLYOP

APPLY QP2

APPL Y0PF
APPLYRESWLT
ASSIGNS
ASSIGNSO
ASSIGNSN
CHANGES:VAL
CHECKNUMY
CHECKRE TRY
CHECKGAME
CHECKSIL X
CHOOSE OLDGOAL
CHOOSE OLD08Y
COLOANET
COLLPNET
COLONET
COPYLAST
CoPYL [N
COPYORY
DECRLAST
DECRYL T\
DIFFREVAL
DIFFREVALRES |
DIFFREVALRES?
DIFFREVALRESWLT
EQASEAPP
ERASECHOICES
ERASE CHOICESO
ERASECS
ERASECSP
ERASELPC
ERASEMATCHOIFF
ERASI MO
ERASE ML |
ERASEMN |
ERASE MR)
ERASEMVAL
ERASE 08J
EVALGOAL
EXTOANET
EXTOANE 12
EXTLPANEY
EXTLPVET2
EXTONET
EXTREPR

FAIL

FAILED
FEASASG
FILEQESASG
FILEGOAL
FILELOCHROG
FILECOXRCT
FOOM2 NPT ME THOD
FORMOP ML THOD
GENDES ASG

GE NDE SASG2
GETLP COMPON
GPSRINIT

MASAC TUAL OB)
MASALTOIFFR
HASANTIC
HASDES ASG
MASDE S 192 008)
HASOIfFIC
HASDITFR
MASTE X TR PR
HAS(S

HASL I'w
HAS(P COMPON
HASMOVE COMPON
HASNAME

MASME WIEAS
HASNE WP ASORD

Appesdat A, BENAMINGS OF PRIDICAILS

ADO I
ADD oL INK/A
APPLY oMOYE OPR /T
APPLY eMOVEOPR T
APLY sMOVEOPR FC
APPLY =L OCPROG /A
APPLY *MOVEOPR/A
APPLY aMOVEOPR M
APPLY «f OOMOPR/A
APPLY aMOVEOPR /R
VAWRL wASG/T
VAVSL SASG/M2
VAVBL »ASG/M.)
MOvE-OPR wVALCHANGE /T
GENeyY wDESASG/AJ
GOAL oRE TRY W
FILE »GOAL /A2
GENRT oDESASG/E
SILECT »GOAL /S
SCLECT »ORXCT/S
NP #DESASG/G
NEY P #LOCPROG /G
NETP «08XCT/G
copy sl I
coPy oL I /A
coPy vOBXCT/A
ofce oL 1IN/
DeEce sLINK/A
EVAL *DIFFR/A
EVAL DIFFR/A.\
EVAL eDIFFR/A2
EVAL oDIFFRMR
APPLY sMOVE OPR /DA
StLECT #GOAL /DS
SLLECT wOBXCT/DS
FILE *GOAL /DA2
FILE *GOAL /DH2
LOCPROG oL INK /DT
MATCH /OA

MATCOH «08XCT /DA
MATCH /DA2

DIFFR ol INK/DT
MATCH /oR

TRANSF /082
oaxCcr nr

EVAL wGOAL /A
FILE eDESASGM 1
FILE DESASG/A.)
FILE wLOCPROG M|
FILE »LOCPROG/A.)
FILE wOBXCT/AY
OHXCY wEXTREPR/G
GOAL A

GOAL /0F

(4404 oFEASASG/A
FILE sDESASG/A
FILE =GOAL /A
FILE oLOCHROG /A
FILE sORXCT/A
FOPMZ INPITOPR /A

FOPMOPR /A

GinerY sDESASG/A.)
GEWNRY sDESASG/A2
LOCPROG ol 1K /W
Grse /A

GOAL sORXCT/T
GOAL sALTOIFFR/T
GOAL SANTFC/T
GOAL #DESASG/T
GOAL sDESOBXCT/T
GOAL «OIFFIC/T
GOAL sOIFFRAT
onxcY sixtTREPR/Y
e LI Yad
pirre oL I/

LOC $R0G ol I /T
MOVT 0PR eCOMPON /T
oIrrR SNAME /T
GOAL SNEWFEAS/T
GOAL SNEWFEAS/TO

vii-s2

HASOP
HASOPOIFFR
HASOPO IFFRASG
HASREPR
HASSLPERGOAL
HAS T0PNODE
HASTRACELEVEL
HASVAL
HASYAR
HASVARL T\
INCRLAST
INCR(TNK
INSLY

182187
ISAPPLYGOAL
1SDE SCR | BE 008)
1SOUNY

1S oRmoP
1SMOVE 0P
ISREDUCE GOAL
1SSAME
1SSAMEOA
ISSAME €QY
ISSAME GOAL
1SSty

IS TRANSF ORMGOAL
LASTOANET
LASTLPNET
LASTONET
LIS

LOCEXTP
LOCPROGRE SULT
MATCHOLF |
MATCHDIFF
MATCHRLS |
MATCHKESEXAM
MATCHRESTR
MATOHRESULT
MATORVAL ©
MATOHYSET
MCIN]T
METHOOS £ XH
MORE DA
MOV 0P ME THOO
NEX T GOALAPPLY
NEXTGOAL TRANS
OMETSUCC
OME T SUCCH
RECOGGOAL
REOUCE ML THOO
1 DUCT OPCHK
REMLAST

REML T

RS TSETLP
RETRY

RETRY TRANS
SELECTOLSASG
SELECTMETHOD
SELECTV wORJ
SILECTOP
seLiToe
SPROLT REDAPP
SPROUT RED-TRANS
S0
SUCCLEOED
TISTOM T
TESTOM T
TESTOM TR
TESTOM IS
TRACE ASG
TRACE GOAL
TRACT IND
TRACE OBJ

TRAC |G
TRANSS 2
TRANSS 3
TRANSS R Ml THOO
TRYOLDGOALS
TRYAPD
Tavare2
TRYAWO I FRSTTLP
TRYAPOSY SIAL Y
TRY AP

FORDM2 INPUT OPR
GOAL

oaxcy

o8xCY
foRuOrR

GeAL
osxcr
YARBL

GOAL
SEY

GOAL
NETO
TP
NETP

MATOH
APPLY
MATON
MATOH
MATOH
L2183
o8xCY
MATOH

TRANSS
PROALEM
COAL
FILE
MOV OPR
GOAL
GOAL
FILE
FILE
e

REOUCE
R MOVE
REmovE
MATOM
GOAL
TRANSS
ctwer
SELECT
SELECT
Rt OUCE
Flce

GOAL
GOAL

NP
e
rie
FILE
TRACE
TRACE
TRACE
TRACE
TRACE
TRAVSS
TRANSS
TRANSS
seece
APRL Y
Abw v
ABR Y
APOL Y
ALY

= TOPNOOE /T
sTRACELEVIL/T
SVALUE /T
eVARBL /T

L INC/T

oL 1N/

oL IN/]

oSET/T
sIYPENT

o TYPEAPPLY /T
aTYPEDESCRIBED /T
1 YPEDUNMY /T
sTYPENT
sTYPE/T

o TYPEREOUCE /T
o SAME A
SASGEAVE M2
oeXC? s SAME /T
o SAME /T
wIYRESET /T

» TYPE TRANSS ORM /T
sDESASG M
*LOCFROG M
OBACT M

wi I /T
wOBNCT /A2
LOCPROG R
cOERCT/]
sO8XCT/A
sOEXCTA
OBXCTA2
oRESTR/Y
s08XCTA

n2

~z

aMC /A
CEXHAUSY /T
*DESASG/C
eMETHOD /A
wNEXTAPPLY/C
WNEXT TRANS AC
OBXCT/AS
POBXECTMY

e GOAL /A

L]

oFORM T

oL A

sl JNK/A
0BAECTACY
eRETRY/T
sRTTRY T
sDESASG/A
*METHOD /A
eBXCT/T

/AN
COAXCI/AN
w2 OUCE o M X T APPLY /W
B DUCE o NE XTI TRANS /W
n

nr

sORACT/A
SORXCTYALL
sORXCT/A
WORXCT/A2
*OULSASG/A
«GOAL/A

e INOENT T
«ORXCT/A

n

~My

a3

N

»OLDGOR 0B XCT /A
SMOVE OPR /WA
SMOVEOPR WA A
SNOVE 0PR /WCD
SuOVL OFR /WE
PMOVE OPR SWH

st

-

SR o5

Bt fat

v

i
}

———¥

v

i)

S g ey

Conchrsom

VAROOMA IN VARSL
XeCOLL oot

sLINK/A
oL INKA
APPLY
SMOVEOMR /M
oMOVL OFR /WE
PMOVEOPR /WC
oMOVE-OPR /WA A
SMOVE OPR /WA
sLOCPROG R
oMOVE OPR /WM.
*MOVE OPR /DA
oMOVEONR /R
oFORMCPR /A
eMOVE CI'v M
oMOVE (VI A
eLOCPROG /A
oMOVL-OPR A C
PMOVE OPR ¥
oMOVEOrR /T
COMPON
oVARML /T

sORXCT/A
ol INK/A
sLINKA

wl INK/A
oL INK/M
DIFFR
eNAME /T
ot /T
ol INK/DT
EVAL
eGOAL /A
sDIFFR/M
sDIFFR/A2
sDIFFR/A.L
eOIfFFR/A
FILE
»ORNXCT/A2
SORXCT/A.Y
*0BXCTM.)
eORXCT/AA
®GOAL /A.1
sOBNXCTMS
wORNCT/AS
sDESASG/C
ONNCTAC2
sORXCT/A
»LOCPROG /A
»GOAL /A
oDESASG/A
o08XCT/AD
oLOCPROG /A.\
sLOCPROG M1
#DESASG/A.)
eDESASG /M1
«GOAL /DH2
wGOAL /DA2
eGOAL /A2
FORM2 INPUT OPR
e TYPE/T
/A
FoauOPR
iYL Y
L]
Ginvery
sDESASG/A
SOUSASG/A2
eDESASG/A.Y
ofEASASG/A
sDESASG Y
oDESASG/AY

v

sOOMAIN/T
ExTREPR/O

ADOL 1
ADOLAST

TRYAPPH
TRYAPPRESL T
TRYAPPOIFFRST TP
TRYAPP2

TRVAPP
LOCPROGRESL T
HASOPOIFFRASG
ERASE APP
APPLYRESULT
APPL v OBF
APTLYOP2

APPL YOP
APPL YL OCFROG
APPLYOIFFRSE TP
APPLYOIFFR
APPLY X

HASVAR

COPYORY
COPYL 1M
COPYLAST

DECRYL Th
DECRLAST

HASNAME
MHASL IWe
ERASEMN |

EVALGOAL
DIFFREVALRESWLY
DIFFREVALRTS2
DITFREVALRES |
CIFFREVAL

TESTONETS
TESTOME TR
TESTOMETF
sPLiroa
RECOGGOAL
ONE 1 SUCCH
ONE TSUCC
MORE OA
MATCHAESEXAM
FILECAXCT
FlLrLOCPROG
FILEGOAL
FILEDESASG
EXTOMET
EXTLPET2
EXTLPRT
EXTOAMET2
EXTOANET
ERASECSP
ERASECS

O CXSAME

1S21wU1
FORUZ [NPUT ME T HOO

1SF Oauce
F ORMOP M THOO

SILECTOUSASG
GINDLS ASG2
GENDES ASG
FEASASG
O&CHSI(x
O€Cx MY

SUCCIEOL0

SEMAMINGS OF PREDICATLS

LOCPROG

MATOM

TP

FROML (M

vii-8

n

succeeo .

#AE DUCE oME X T1TRANS A SPROLIT AT D:TRANS
#REDUCE o NE X TAPPLY /W SPROL T REDAPP

aRETRYNT
SNEXTITRANS /C
NEXTAPOLY /T
eEXHAUST /T

o TYPE TRANSFORM /T
sSAME /T

o TYPEREOUCE /T
STYPEAPPLY/T
sTRACELEVILANY
sSuPtR/T
oOPROIFFR

[4 Tad
sNEWFEAS/TD
sNEWFEAS Y
oDIFFRNT
oOIfFICT
eOESOBXCT/T
sDESASG /T
eANTEC T
SALTDIFFR/T
ORXCT/T

/1OF

I

oRtTev /Y

L

oLINx/1
st I

oLINK/T
ol 1N/
LI /DT

*0BXCTAD
*OBXCTA
wOBECTAI
w0BXCT/A
w08 XCT/1
eOBRCT/A2
on

DA2
*0BRCT DA
A

oML THOD /A
oTYPEN
oSETN
aCOMPON /T
VAL CHANGE /T

*0BXCT/A
SOBRCT A
L OCPROG M
sDESASG /M
alHS T
208XCT /G
#LOCPROG /G
s0ESASG /G

oEXTREPR/G
LN
sVYALUE /T
ot XTREPR /T

oRESTRAT
aSAME /T

oSAME A

« TYPEDUNY /T
«TYPEOESCR 8D /T
«10PNOOL /T
sixTRErR/T
oIXTREPR/OQ

nr

oMC /A
"wen

mi

ey 1
NEXTGOAL TRANS
WEXTGOAL APPLY
L THONS € XM
1STRANS? ORMGOAL
I1SSAME GOAL
1SR€OUCE GOAL
ISAPPLYGOAL
HASTRACELEVEL
HASSUPt RGOAL
HASOPOIFFR
HASOP

HASVE WFEASORD
HASNEWTEAS
HASDIFFR
HASDIFFIC
HASDES 18 00RY
HASOESASO
MASANT(C
HASALTOIFFR
HASAC TUAL ORJ
FAILEOD

FANL

cecxaETRY

GPSRINIT

INCR 10
INCRLAST

HASLPCOMPON
GETLPCOMPON
ERASELPC

RESW TSETLP
MATOMRI ST
MATOMRES |
MATOHOIFF
MATCHOIF |
LoCEx TR
CRASEAR |
CRASEM |
ERASTMD |
ERASTEMATCHOIFF

MOVE 0P ME THOO
ISMovEOP

wsey

HASMOVT COMPON
CHANGE SYAL

TESTON T
LASTONE T
LASTLPVET
LASTOAMY
HASLKS
CoLon !
CoLCPWET
CoLOAME Y

XRCOLL
LIws
HASVAL
MASREPR

MATOMRESTR
1SSAME €QY
1SSAME

15D Y

15Dt SCR 10 00RY
HAS 1 0P NOOE
MASE X TRE PR
(xTRe PR

[RASE 08J

“emgr
MASL NS

stLcror

S

REMOVE

SELECT

TRACE

TRANSF

VARBL

MENAMINGS OF PREDICATES Conc s lon

of ORM/C REOUCE OPCHK

/A REOUCE ME THOO Aopend B. CIRST ARSTRACTION

oLINK/A REML T €0 " PROB INIT ~ (GPSR /A)

oL I REMLAST o
(OBXECT s TYPEDUMMY /T) (ORECT » TOPNODE /T) (TRACE @ INDENT /T)

o0t DGOALOBXCT/A TRYOL DGOALS (NETP »LOCHROG /M) (WE TP «OBXCT A (NETP oDESASG) (GOAL « TRACELEVEL /T)

sORXCT/T SELECTME WOR) (WOT (GPSR /A))

sMETHON /A SELECTME THOD

sONXCT /DS ERASECHOICE SO €1 " GOAL EVAL OK ~ [EVAL sGOAL /A) (NOT ((GOAL =SAME /T)))

=GOAL /DS ERAS{CHOICES (NOT ((GOAL #DIFFIC/T)))

*0BXCT/S CHOOSE OLDO8Y o

*GOAL /S CHOOSE OLDGOAL (SELECT oME THON /A) (NOT (LVAL #GOAL /A))

oTYPESET/T 1sseT €2 " GOAL EVAL- ™ (EVAL »GOAL /A) (NOT (F ILE »GOAL /A.1)) (GOAL »DIFF IC/T)
(GOAL s TYPEREDUCE /1) (NOT ((GOAL s SAME /T})) (GOAL s TRACELEVEL/T)

lad TRACING (GOAL »SUPER/T)

PORXCT/A TRACE08) o

s INDENT /T TRACE:IND (TRACE /T) (GOAL »RETRY.'W) (NOT ([VAL sGOAL /A))

*GOAL /A TRACE GOAL

wDESASG/A TRACE ASG E2% " GOAL EVAL-R " (TVAL »GOAL /A) (WOT (FILE «GOAL /A 1)) (GOAL eDIFFIC/T)
(GOAL o TYPEREDUCE /T) (GOAL » SAME /T) (GOAL » TRACELEVEL/T)

/A TRANSF ORMME THOO o¥

/A3 TRANS! 3 (TRACE /1) (SELECT o Ot DGOALOBXCT /A) (NOY (EVAL »GOAL /A))

M3 TRANSS 2 (NOT (GOAL oDIfF I1C/T)) (NOT (GOAL » TRACELEVEL/T))

sRETRY/T RETRY:TRANS

r2 MATCHVSET £3 “ GOAL EVAL-A " (EVAL »GOAL /A) (NOT (F ILE #GOAL /A.1)) (GOAL eDIFFIC/T)

m2 MATOH VAL (GOAL s ANTEC /T) (GOAL » TRACELEVEL/T)

oR2 ERASE MYAL o
(TRACE /T) (GOAL /¥) (GOAL sEXHAUST/T) (NOT (LVAL sGOAL /A))

eASGSAME M2 1SSAME OA

®ASG/M. | ASSIGNSN €4 " GOAL EVAL-S " ({VAL sGOAL /A) (NOT (T ILE «GOAL /A.1)) (GOAL »DIFFIC/T)

wASG/M2 ASSIGNSO (NOT ((GOAL »ANTEC/T))) (GOAL s TRACELEVEL /T) (GOAL »SUPER/T)

SASG/T ASSIGNS (GOAL » TYPEREDUCE /T)

aDOMAIN/T VAROOMA IN)

ol INK/T HASYARL I (TRACE /T) (GOAL /) (GOAL »EXHAUST/T) (NOT (EVAL »GOAL /A))

€8 " SAME REP " (EVAL wGOAL /A) (GOAL »SAML /T) (GOAL » TRACELEVEL/T)
(GOA(»OIFFIC/T)
o
(TRACE /T) (SELECT wOLDGOALOBX C1/A) (WOT (EVAL sGOAL /A))
(NOT (GOAL » TRACELEVEL /T)) (NOT (GOAL «DITF IC/T))

€10 “ SUC TRANS * (GOAL /1) (GOAL oNEXT:TRANS /C) (GOAL «DIFF IC/T)
(GOAL «SUPTR/T) (GOAL » TRACELEVEL/T)
0l
(TRACE /T) (FILE «GOAL/A) (LVAL sGOAL /A) (GOAL ®TYPE TRANSE ORM /T)
(GOAL »ORJECT/T) (GOAL »DESOBJICT/T) (GOAL sANTEC/T) (GOAL sSLPER/T)
(GOAL «DIFFIC/T) (GOAL /OT) (NOY (GOAL /T))

€11 " SUC APPLY ~ (GOAL /T) (GOAL »ME X TAPPLY/T) (GOAL »SUPER/T)
(GOAL wTRACELEVEL /T)
0
(TRACE /1) (F ILE #GOAL /A) (EVAL »GOAL /A) (GOAL o TYPEAPPLY /T) (GOAL «OBXCT/T)
(GOAL sDIFFIC/T) (GOAL »DE SASG/T) (GOAL »SUPER/T) (GOAL »0PR/T)
(GOAL wANTEC/T) (GOAL /0T) (NOT (GOAL /1))

€12 " SUC SUP " (GOAL /T) (NOT ({GOAL »WEX T TRANS X))

(NOT ((GOAL #h% X TAPPLY /C))) (GOAL #SUPER/T) (GOAL @ TRACELEVIL/T)
-

(TRACE /1) (GOAL /T) (GOAL AT)

€20 " FATL ANTEC * (GOAL /7) (GOAL »ANTEC /T) (GOAL « TRACELEVEL/T)
D
(TRACT /1) (GOAL »RT TRY AW) (GOAL /OF) (WOT [GOAL)

€21 " FATL ANTEC. " (GOAL) (NOT ([GOAL wANTEC/T))) (GOAL eSUPER/T)

(GOAL »TRACE LEVEL/T) .
o

(TRACE /T) (GOAL o T8Y W) (GOAL /0F) (WO (GOAL)

€22 ° OA DX RETAY. © (GOAL oRETRY AW) (WOT (GOAL »f XMAUST /T))
(VO [GOAL » TYPE TRANSS ORM 1)) (GOAL & TRACTLEVIL/T)
«
(TRACE /7) (SELECT »ME THOD /A) (GOAL oRETRY/T) (NOT (GOAL oRE TRY /W)

[23 7 OOX RETRY (X " (GOAL « R TRY AW) (GOAL oI XHAUST/T) (NOT (GOAL /OF))
.
(GOAL A7) (NOT (GOAL »# TIY AW))

(250 “FATL P ° (GOAL oRT TRY W) (GOAL /OF) (TRACE » INDENT /T)

-

(TRACE /7) (SELECT wOUDGOALDBECT/A) (WO (GOAL oit TRY W)

vil.s4

B L

SRS

g it e

}
1

Concnon

E24 " CHECK RETRY 7G " (GOAL »RE TRY W) (GOAL »TYPE TRANSS ORM /T)
(NOT ((TRANS? RE TRY/T))) (GOAL » TRACELEVEL/T)
>
(TRACE /T) (SELECT »OLOGOALOUXECT /A) (WOT (GOAL o€ TRY W))

E29 T RETRY TRANS ~ (GOAL «RF TRY /W) (GOAL o1 YPE TRANSS ORM /T) (TRANSF off TRY/T)
(GOAL »ALTDIFFR/T) (GOAL » TRACELEVEL /T)
T2
(TRANSF /A3) (1RANSF /R.2) (TRACE /7) (NOT (GOAL »RE TRY A¥))
(NOT (GOAL sALTDIFFR/T))

€26 " QETRY TRANS. ~ (GOAL »RETRY AW) (GOAL o TYPE TRANSFORM/T) (TRANSS oRETRY/T)
(NOT ((GOAL »ALTOIFFR/T))) (GOAL »TRACELEVEL/T)
o

(TRACE /T) (SFLECT vOLDGOALORXCT /A) (NOT (GOAL oRE TRY W)

€30 " TRY OLD GOALS ~ (SELECT »Ot DGOALOBJECT/A) (GOAL »TYPEREDUCE /T)
(NOT
((SELECT »ORJECT /T) (GOAL »ORXCT/T) (NOT (GOAL »TYPE TRANSF ORM/T))
(NOT ((GOAL sGRJECT/T) (GOAL »1VYPE TRANSS ORM/T)))
(NOT (GOAL sf XHAUST /T)) (GOAL »DIFFIC/T)
(NOT ((GOAL »1YPEREDUCE /1) (NOT (GOAL »EXHAUST /T)) (GOAL sDIFFIC/TH))
(GOAL »SUPER/T)
(NOT
((GOAL aTYPEAPPLY /T) (GOAL » TYPEREDUCE /T) (GOAL oDIFF IC/T)
(NOY (GOAL »EXMHAUST/T)) (GOAL »SUPLR/T) (GOAL »TYPETRANSS ORM/T)))
>

(SELECT »GOAL /S) (NOT (STLECT »Ou DGOALOBXCT/A))

€31 " CHOOSE OLD ~ (SELECT ¢GOAL /S) (NOT ({SELECT 9GOAL /S)))
(GOAL » TRACELEVEL /T) (TRACE » INDENT/T)
o
(SELECT »GOAL /DS) (T1RACE /T) (SELECT wME THOD /A) (GOAL wRETRY/T)
(NOT (TRACE = INDENT /T)) (TRACE » INDENT /T)

€32 " ERASE CH ™ (SELECT ¢GOAL /DS) (SELECT »GOAL /)
-

(NOT (SELECT »GOAL /DS)) (NOT (SELECT »GOAL /S))

€35 " NTW OBJ CRIT ~ (SELECT oL DGOALOBXCT /A) (SELECT »OBXCT/T)
(GOAL »ORXECT/T) (NOT (GOAL » TYPE TRANS! CEM /1))
(NOT ((GOAL »ORJECT /T) (GOAL o YPETRANSS ORM/T)))
-
(SELECT »ORJXCT/S) (NOTY (SiLECT »OLDGOALOBXCT/A))

€36 ° CHOOSE ORJ ™ (SELECT vORXCT/S) (NOT ((SELECT vORXCTS)))
(TRACE » INDENT /T) (GOAL »SUPLR/T) (GOAL #DESOBACT/T) (NOT ((GOAL »SUPER/T)))
>
(SELECT »OBECT /DS) (TRACE /T) (FILE «GOAL/A) (EVAL »GOAL/A)
(GOAL » TYPETRANSI ORM /T) (GOAL «OHXCT /T) (GOAL #DESOBACT/T) (GOAL s SUPER/T)
(NOT (TRACE o INDENT /T)) (TRACE o [NDENT/T) ¥

E37 " ERASE COH ~ (SELECT «ORXECT/DS) (SLLECT »OBXCT/S)
B
(NOT (SELECT »ORXCT/DS)) (NOY (SCLECT «OBXCT/S))

F 1T FILE LOCPROG “ (F ILE »LOCHROG /A) (DIFFR oL INK/T) (NOT ((DITFR oL INK/T)N)
B
(DIFFR oL INK/T) (F ILE #LOCPROG A1) (NOT (FILE »L OCPROG /A))

F2 " EXTEND (P MLT © (FILE #LOCPROG M)
-
(FILE «LOCPROG /A1) (NOT (FILE oL OCPROG /M 1))

FI ST P NET COL " (FILE oL OCPROG/A.1) (DIFFR ol INK/T)
(NOY ((DIFFR oL 1\ /T)))
.
(VETO oL OCPROG /G) (LOCHROG ol [MK /T) (NOT (F ILE oL OCPROG/A.(})
(NOT (DIFFR o INK/T))

F@“COLLPMIT “(METP oL OCPROG /G) (DIFFR oL 1NK/T) (NOT ((DIFFR o JNK/T)))

0

(MET# oL OCPROG /G) QLOCHROG ol INK/T) (NOT (DITFR ol JNK/T))

FS " COLLPNET D~ (METH oLOCIROG/G) (NOT ((DITFR oL 1NK/T)))
(MC 19 oLOCPFROG /M) (TRACE » INDENT/T)
o
(NET® aLOCPROG M) (DTFFR o NAME /T) (CHANGE PM 1) (TRACE /T)
(OHXECT »EXTREPR /T) (NOT (MET# o OCPROG /G))

FSE “LAST MLT “ (METP ol OCFROG)
-

(NET# oL OCHPROG /M)

FIRST ABSTRACT ION

F8 " FILE GOAL ™ (FILE «GOAL /A)
-
(TRACE #GOAL /A) (¥ ILE «GOAL /A 1) (WOT (F ILE «GOAL /A))

F7 RECGT- " (VILE «GOAL /A 1) (GOAL o TVPE TRANSS ORM /T) (GOAL »DESOBRCT /T)
(GOAL »OBXCT/T)
(NOT ((GOAL »ORJXCT/T) (GOAL T YR TRANSI OMM /T) (GOAL «DESORRCT/T)))
-

(NOT (TILE «GOAL /A1)

F7% REC GT " (VILE oGOAL /A.1) (GOAL »TYPE TRANSS ORM/T) (GOAL «DESOBXCT /T)

(GOAL »ORXCT/T)
(NOY ((GOAL ORJECT /T) (GOAL »1YPE TRANST ORM /T) (GOAL »DESOBKCT /T)))

o

(GOAL o SAME /T) (WOT (F ILE «GOAL /A.1))

F8 " REC GA- ~ (FILE eGOAL /A 1) (GOAL o TYPEAPPLY/T) (GOAL «OBRCT/T)

(GOAL »0PR/T) (GOAL »DESASG/T)
(NOT ((GOAL sORXCT/T) (GOAL »DESASG/T) (GOAL e TYRAPPLY/T) (GOAL wOPR/Y)))

)
(NOT (F ILE wGOAL /A 1))

FON " RLC GA " (FILE «GOAL /A 1) (GOAL sTYPEAPPLY/T) (GOAL =0BXCT/T)
(GOAL s0PR/T) (GOAL »DESASG/T)
o
(7 ILE «GOAL /A2) (7 ILE #GOAL /DH.Z) (WOT (7 ILE #GOAL /A.1))

FBS “OLONODIFFR ™ (FILE «GOAL/A2) (NOT ((GOAL +OPROIIFR)))
(NOT ((FILE #GOAL /A2) (NOT ((GOAL »OPROIFFR))))
B
(F ILE eGOAL /DA2) (GOAL »SAME /T) (WOT (7 ILE «GOAL /DN2))

FBY “OLDOIFFR « ° (VILE «GOAL /A2) (GOAL «OPROIFFR)
(NOT ((FILE #GOAL /A2) (GOAL wOPROIFFR)))
)
(7 ILE «GOAL /DA2) (GOAL »SAME /T) (NOT (F ILE «GOAL /D))

F8Y " ERS CSP ° (FILE «GOAL /DH2)
o Y
(7 ILE #GOAL /DA2) (WOT (T ILE «GOAL /DM2))

FBI " (RS CS " (TILL #GOAL/DA2) (T iLE wGOAL /A2)
o
(NOT (7 ILE #GOAL /DA2)) (WOT (¥ ILE e GOAL/AZ))

FOTRICGR " (FILE «GOAL/A }) (GOAL wTYPERTDUCE /T) (GOAL »ORXCT/T)
(GOAL «DIFFR/T) (NOT ((GOAL #DITFR/T) (GOAL »ORXCT/T) (GOAL o TYPEREDUCE /7Y
.

(MOT (FILE «GOAL /A 1))

FON " REC GR " (T ILE «COAL /A 1) (GOAL o ! YPERTDUCE T) (GOAL »DIFFR/T)
(GOAL #OBXCT/T) (NOT (IGOAL #DIFFR/Y) (GOAL «OBRCT/T) (GOAL » ! YREREDUCE /7))
)
(GOAL »SAME /T) (WOT (T It «GOAL /A1)

FIO"FILE OBRCY " [TILE «OARCT/A)
-
(OBRCT of XTREPR/G) (VET# s0BXCT /A) (FILE «OBRCTALI)
NOT (T JLE «OBXCT/A))

F1L O TESTFINT (FILE «0BRCTACT)
B

(FILE «OBECT/A 1) (NOT (TILE «ORECT ALI)) (NOT INETH «OBXECT /A))

P13 NEW NCT PROO T (FILE «ORMCT/A 1) (NOT [(ORJECT o SAME AN
(OBJACT wTYPEDUMOMY /T) (M T4 «OBXCT M)

)

MATOM «ORXCY/AY (T 1LE «OAXCT T2) MATON «ORXCT /1) (OMANGE P 1)
(NETP olNS/T) (WM TP «ORXCT M) (NOT (TILE «OBXCT AL

FIa " SAME SET " (TILE «ORXCY /A1) (ORXCT »SAME AN
o

(TILE «OBRCT/A2) (NOT [V ILE «OMRCT/A 1)) (NOT (ONACT »SAME A1)

P15 SAME OBJ “(TILE «CBRCT/AZ) (NOT ((OBXCT o SAME /1))
-
(MATOM «OBRXCT/A) (ILE «ORNCT L) (MATOHM «ORXCT/T)
MNOT (FILE w0BXCT/A2))

P17 SAME QY " (TILE «ARCT/AZ) (OBACT o SAME/T)
-
(MATOH «DRECT/A) (FILE aDRRCT D) (MATOH «ORRCT/T)
(NOT (F1LE «0BACT/A2))

8.

FI1O LAST MLY ™ (NET® «ONXCT M)
-

(NET® ORXCT M)

F20 " 08JDIFR " (FILE «ORXCT/C2) (MATCH o0BXCTALI)
(NOT ((MATOH «OBJECT R. 1))
3
(MATCH »OBJECT /DA) (MATOH /NR) (MATOH /DA2) (F ILE «ORRCT/AT)
(NOT (FILE »ORECT/C2)) (NOT (MATOH »OBRCT /AR 1))

F21 " ERS MO | ™ (MATCH «ORXCT /DA) (MATCH w0BXCT/A)
-

(MATCH «OBXCT /1) (NOT (MATCH 208X CT/DA)) (NOT (MATOH 08X CT/A))

F22 " ERS MR ~ (MATOH /DR) (MATCH «OBXCT A1)
Bl

(DIFFR s INK/DT) (NOT (MATCH /DR)) (NOT (MATON «OBXCTAR.1))

F23 " ERS MR |- " (MATOM /D) (NOT ((MATCH «08XCT A1)
-
(NOT (MATOH /DR))

F24 "ERS ML | " (MATCH /DA2) (MATCH 08 XCT/A2)

(DIFFR oL INK/DT) (NOT (MATOH /DAZ)) (NOT (MATOH «OBXCT/A2))

F2%5 " ERS ML I- " (MATOH /DA2) (NOT ((MATOH «OBXCT/A2)))
S

(NOT (MATCH /DA2))

F26 " ERS MN 1 T (DIFFR oL INK/DT) (DIFFR ol IAK/T)

o

- (NOT (DIFFR »L INK/DT)) (NOT (DIFFR oL INK/T))

F27 “ERS MN |- " (DIFFR oL 1K /DT) (NOT ((DIFFR wL 1MK/T)))
-

(NOY (DIFFR ol INK/DT))

FZ8 "EAS MO SIG ~ (MATOH «OBXCT /1) (NOT ((MATCH «OBXCT /AN
.
(NOT (MATCH «OBJECT /1))

F30 " €EXT ONST " (FILE sOHNCT/AZ) (MET® wLHS/T) (DIFFR »LINK/T)
(NOT ((DIFFR oL INK/T)))
e

(NET® wORXCT/G) (NOY (FILE wORXCT/AD)) (NOT (DIFFR oL INK/T))

F32 "EXT ON™ (NETP eOBXCT/G) (DIFFR aL INK/T) (NOT ((DIFFR oL INK/T)))
-
(NETP »OBXCT/G) (NOT (DIFFR oL INK/T))

F34 " SPLITONP “ VTS sOHXCT/G) (NOT (CBXCT 1YPEDUMMY /T))
(NOT ((DIFFR oL 1WK/T))) (NETP oLHS/T) (TP w0BXCT M)
(NOT ((NE T wORIECT M)))
]
(FILE »ORXCT/AQ) (CHANGEPM 7) (M TP «ORXECT /M) (NOT (NETP »0BXCT/G))
(NOT (NET# oLHS/T))

F35 " SPLIT ONP OM “ (METP sOHXCT/G) (OHXCT wTYPEDUMMY /T)
(NOT ((DIFFR oL INK/T))) (NETP oL HS/T)
B

(FILE sORXCT/AN) (CHANGE FM 7) (WOT (MET# »OBXCT/G)) (NOT (NETP wiHS/T))

F36 " SPLIT ORL " (FILE «ORXCT/AN)
-

(CHANGE #M Z) INOT (F ILE «CAXCT/AA)

< FIRCSPLIT OA2 " (FILE «OHXCT/AA)
-

(CHANGE #M 2) (NOT (T ILE »ORJXCT/AA))

PAO "NOOIFFR “(FILE wOHXCT/C2) (NOT ((MATOH wOBXCT AR 1)) (NET# oLKS/T)
(TRACE » INDINT/T)
-
(MATOM »OAJECT /DA) (OHX CT »SAME /T) (TRACE /T) (NOY (TILE wOBXCTAZ)
(NOT (VETP «L M5 /T))

FA1 " CHECK DOME “ (OHACT »SAME/T) (GOAL /T)
o

(FILE wOBXCT/AL) (NOT (COAL /T))

FAZ " OMET DOVE “ (F1LE O ECT /A 8) (NOT ((MATCH #0B X CT/A))
(NOT ((MATEH wOAACT A 1)) (NOT ((MATCH «ORXCT/A2))

S ——— UG LA P e

LY

|

FIRST ABSTRACT ION Conc s on

(NOY ((F ILE wOBECT/A2)))
B
(OBRCT /D7) (GOAL /T) (NOT (T ILE wOBXCT/A.5))

PAZD T ONET CONT D~ (FILE «OBXCT/AS) (MATOA «ORECT/A)
(NOT ((MATOH wOBECT A, 1)))
«
(MATCH «OBECT/A) (7 1LE «OBXCTALS) (NOY (P ILE wOBXCT /A)}

FAZL " ONET CONT L ™ (FILE «0BXCT/AS) (MATOX «0BXCT/AZ)
(NOT ((MATCH w08 XCTAR. 1))
-
(MATON wOBXCT/AZ) (7 ILE sORECTALS) (MOT (F ILE sOBXCT/A.8))

FAZR " OMET CONT R ™ (T ILE «OBXCT/AS) (MATOM «OBECTAR ()
-
(MATCN «OBXCT A1) (FILE «OBRCT M) (WOT (¥ ILE «ORXCT/AS)

FAZS “ONET CONT § ° (FILE «CRXCT/AS) (FILE «0BRCT/AZ)
B}
OFILE wOBRCT/A2) (P ILE «0BXCTALS) ONOT (FILE »OBXCT/AS)

FAZU " UNM O ~ (FILE »CBXCT M)
Bl
(FILE «OQRECT /A 5) (NOT (FILE «OBRCTAMS))

Fas " ERS 08J " (OBXCY /DY) (OBXCT wTOPNODE /1) (OHXMCT »EXTREPR /T)
-

(OBXCT ADT) (NOT (CHACT »1OPNODE/T)) (NOT (OAXCT oEXTREPR/T))

FAB " [RS OBJN “(OBACT /27) (NOOE wl INK/T) (NOT ((NOOL eVALUE /T)))
o

(ORXCT /D7) (NOT (NODE sl I /T))

FAT " ERS OB NV " (OBCT /DT) (NODE el 1K /T) (NOOE s VALUE /T)
o
(NOY (OBXCT /DT)! (WOT (NODE ol TRK/T)) (NOT (NODE aVALUE/T))

FOR " (RS OBUN. T [0BXCY /DT) (NOT (INODE ol INK/T)))

(NOT ([0 HCT «YOPNOOR /T)}) L
-

(WY (c8XCT /DT

F% " FILE DES ASG ~ (TILE «DESASG/A) (VARBL sASG /M. 1] (NOT ((YARBL s ASG M. 1))
B
(VARBL 3ASG/M 1) (F ILE «DESASCALI) (NOT (F ILE «DESASG/A))

FSiTOUDOA " (VAR vASGSAME AL2) (T TLE #DESASG AL)) (GOAL wDESASG/T!
(GENRT oFLASASG/A)
«
(F ILE «DESASG/C) (CINRT ofEASASG/A) (GOAL eDESASG/T) (NOT (VARBL sASGSAME A .2))
(NOY (FjLE eDESASGMLY)

FEIM “ MOKE DA " [1LE «DESASG/C) (Y JLE sDESASG A1)
-
(F ILE sDESASG/A) (MOT (7 ILE «DESASG/CY)

FSIM "M DA T (FILE «DESASG/C) (NOT (FILE «DESASGM L))

NOT (F ILE »DESASG CY)

F82 " [XTENO OAMET © (FILE aDESASGMY)

(UL oDESASG /A) (WOT (F 1LE «DESASG ML)

FSI“CAMT OOU " (FILT «DESASG/A 1) (VAREL s ASG /A 1) (NOT ({VAUBL s ASGAL I

MNOT (AR «ASC A)Y
-
VTP o OESASG/G) (VAT e ASGAI2Z) (WOT [FILT oDESASG/A 1)) (NOT [VARRL sASG /M 1)) v

P85 °COX DA MY~ (META «DESASG/G) (VARSI wASG /W 1) (NOT ((VARBL o ASG A1)
MNOY {[YARRL »ASG A 1))

(NE TP o0F SASG /G) (VARSI o ASG M2) (WOT (VAR wASC A1)

P86 COUDAMTD " (VTP «DESASG/G) (NOT ((vARIK ¢ ASG AV 1)) (NETP o DESASG)
B

(NE 19 oDF SASG M) (OHANGE PV 7] (WOT (WE T# o DESASG /G
FO7 T LAST MUY T (NETA SESASG AN

«

TP oK SASG V)

Conchmon FIRST ABSTRACT [OM L

M1 T SEL TF T (SELECT oMETHON/A) (GOAL »TYRE TRANSS ORM/T)
B
(TRANSF /A) (NOY (SELECT sMETHON/A))

M2 T SEL RED " (SELECT oME THON /A) (GOAL o TYPEREDUCE /T)
o

(REDUCE /A) (NOT (SELECT oME THON/A))

M3 T SEL APPM T (SELECT oMETHOD/A) (GOAL e TYPEAPPLY/T) (GOAL uOPR/T)
(MOVE-OPR o TYPE /T)
o

(MOVEOPR oME THON/A) (NOT (SELECT »METHOD/A))

MA T SEL APPF | T (SELECT o METHON /A) (GOAL »TYPEAPPLY /T) (GOAL »OPR/T)
(FORMOPR o TYPE /T) (NOT (FOSMZ INPUTOPR o TYPE /T))
o

(FORMOPR /A) (NOT (STLECT oMETHOD /A))

M3 " SEL APPF2 T (SLLECT sMETHON/A) (GOAL o TYPEAPPLY /T) (GOAL »OPR/T)
(FORMOPR « TYPE /T) (FORMZ INPUTOPR o TYPE /T)
o

(FORMZ INPLTOPR /A) (NOT (SELECT »ME THOD /A))

M20 " TRANSF G ~ (TRANSS /A) (GOAL »ORXCT/T) (GOAL »DESOBXCT/T)

(MATOH sOBJECT /A) (TRANSE /M) (NOT (TRANSF /A))

MZ0S © SUC TRANS ~ (TRANSF /A) (GOAL »ORXCT/T) (GOAL »DESOBXCT/T)
&

(GOAL /T) (NOT (TRANSS /A))

M2 TMATOH RESULT 7 (MAT(H «CBXCTA)
o

(EVAL »DIFFR/A) (TRANSH /C2) (NOT (MATCH «0BXCTAR))

M22 “ MATOH VAL ~ (TRANSS /C2) (EVAL sDIFFR/MR)
o

(TRANSF /R2) (NOT (TRANSS /C2)) (NOT (EVAL »DIfFFR/R))

MZ3 " MATCH FIN © (TRANSE M)
>
(MATCH /DA) (TRANSF /A3) (NOT (TRANSF /M3))

M23E ~ ERASE MO ° (MATCH /DA) (MATCH «0BXCT /A)
B
(NOT (MATCH /DA)) (NOT (MATCH «ORXECT/A))

M24 ° COMP DIFFIC ~ (TRANSF /A3) (TRANSF R2) (NOT ((TRANSF /R2)))
(NOT ((TRANSF /R2))
£
(TRANSF /DR 2) (GOAL »REDUCE s NE X T:TRANS /W) (NOT (TRANSF /AZ))
(NOT (TRANS /R2))

M24E " ERS MVYAL " (TRANSF /DR2) (TRANSF /R.2) (NOT ((TRANSF R2))
>

(NOT (TRANSF /DR2)) (NOT (TRANSF /R2))

M24F ~ ERS MYAL- " (TRANS! /DR2Z) (NOT ((TRANSF /R2)))
B

(NOT (TRANSF /DR2Z])

MZAN " ERS MYAL SV- © (TRANSF /DR 2) (TRANSS /R2) (NOT ((TRANSF «RETRY/T))
-

(TRANSS /DR2) (NOT (TRANSS /R.2))

M245 " ERS MVAL SY T (TRANTS /DQ2) (TRANSS /R2) (TRANSS «RETRY/T)
T3

(TRANSS /DR2) (GOAL »ALTDITFR/T) (NOT (TRANSF /R2))

M2% " SUC DESCR * (TRANSE /AD) (NOT ((TRANSS /R2))) (GOAL »DESOBRCT/T)
(OAJCT aTYPEDESCRIMOD/T) (GOAL »OAXCY/T)
-

(GOAL /T) (NOT (TRANSS /ADY)

M26 " NEW REDUCE ™ (GOAL #REDUCE o WE X 11T RANS /W) (GOAL #DESOBXCT/T)
(GOAL »OHECT/T) (NOT ((COAL oDIFFIC/TI))
>
(FILE aCOAL /A) (LVAL s COAL /A) (GOAL oSUPTR/T) (COAL »DIFFIC/T)
(GOAL »TYPEREOULE /1) (COAL »ORNCT/T) (GOAL sDITFR/T) (GOAL oMEXT TRANS)
(NOT (COAL oREDUCE o WE X 1RANS AW))

M27 °NEW REOUCE © (COAL 01 OUCE o NEX T TRANS /W) (GOAL oDE SORXLCT /T)
(GOAL »OHJECT /T) (GOAL oDIIFIC/T)

o
(¥ ILE nGOAL /A) (LYAL »GOAL /A} (COAL »SUPER/T) (GOAL »DIFFIC/T)
(GOAL «TYPEREOUCE /T) (GOAL sORXCT /1) (GOAL eDIFFR/T) (GOAL wiEX T:TRANS /T)
(NOT (GOAL oREOUCE « NE X T:TRANS /W)

30 " REOUCEG "~ (REOUCE /A) (GOAL oDIFFR/T) (NOT (GOAL »RETRY/T))
»

(APPLY oL OCHROG /A) (REDUCE /A.1) (NOT (REDUCE /A))

M3 * SEL 0P * (REDUCE /A.1) (APPLY L OCPROG /R) (NOT (SET a TYRESET/T))
(MOVECOPR « TYPE /T)
-

(GEMRT wDESASG /A) (GOAL sOPR/T) (NOT (REDUCE /A.1)) (NOT (APPLY »LOCPROG /R))

M32Z ° STL OP SET ~ (REDUCE /A.1) (APPLY oL OCPROG/R) (SET wTYPESET/T)
(MOVEOPR oSET/T) (MOVEOPR « TYPE /T)
B
(GENRT «DESASG/A) (GOAL »0PR/T) (NOT (REDUCE /A.1)) (NOT (APPLY o OCPROG /R))

M33 " SEL OP FORM " (REDUCE /A.1) (APPLY oL OCPROG /R) (NOT (SET e TYPESET/T))
(FORMOPR » TYPE /T) (GOAL »ORXCT/T)
0
(APPLY of ORMOPR /A) (REDUCE of ORM /C) (WOT (REOUCE /A.1))
(NOY (APPLY » OCPROG R))

MIIS " SEL FORM SET ™ (REDUCE /A.)) (APPLY L OCSROG/R) (SET aTYPESET/T)
(WMOVE OPR wSET /T) (FORMOPR «TYPE /T) (GOAL »ORXCT /T)
o
(APPLY »f ORMOPR /A) (REDUCE of ORM/C) (WO T (REDUCE /A.1))
(NOT (APPLY L OCPROG /R))

M34 ° SEL DES ASG ~ (GENRT «DESASG /A) (MOVIOPR wCOMPON/T)
o
(GEWRT OESASG/A.1) (APPLY »MOVEQOPR /WA) (GOAL oDESASG/T)
(WOT (GENRT #OESASG/A))

M34A “ STL DES ASG AWB ~ (GIMRT +OESASG/A) (NOT ((MOVE OPR wCOMPON/T)))
(MOVE OPR «COMPON /T) (COMPON e VARBL /T) (MOYT OPR « VAL CHANGE /T)
(VARBL #DOMAIN/T)
B
QLOCHROG wi INK/D1) (LOCPROG ol INK/T) (F ILE «DESASG/A) (CINRY of EASASG/A)
(VARBL »ASG /M. 1) (APPLY sMOVEOPR /WA) (GOAL sDESASG/T) (WOT (GENRT uDESASG/A))

M36M * SEL DES ASGE * (GENRT sDESASG/A) (MOVIOPR «COMPON/T)
-
(GENRT «DESASG /A1) (APPLY » MOVEQPR /WA) (GOAL oDESASG/T)
(NOT (GENRT wDESASG/A))

MIEN " SEL DES ASGe * (GENRT »DESASG/A) (MOVE OPR «COMPON/T)
B
(GENRT oDESASG /A)) (APPLY o MOVEOPR /WA) (GOAL »DESASG/T)
(NOT (GENRT »DESASG /A))

MI4R © ERS SEL " (GIMRT wDE SASG/A) (NOT ((MOVE 0PR # COMPON/T)))
(noT
((MOVT 0P + COMPON /T] (CCMPON «VARBL /T) (MOVT 0P » v AL CHANGE /T)
(VARBL #DOMA [N /7))
-

(GEMRT oDESASG /A1) (NOT (GENRT «DESASG /A))

M3 “GET COMP. " (GENRT wDESASG/A)) (LOCPROG wi 1MK/T)
(NOT (L OCHROG ol 1K /T)))
-
(GEMRT sDESASG /A2) (NOT (GEMRT sDESASG /A1)

MISG T GET COMP T (GEMRT wDESASG/AL)) (NOT (LOCPROG wi INK/T)))
el
LOCHROG oL 1N /W) (GINRT #DESASG/A2) (NOT (GENRT »DESASG /A1)

M6 “ GENDES ASG ™ (GENGT oOF SASG/A2) (COMPON o VAR /T) (LOCPROG wl 1N /T)
(VARBL sDOMAIN/T)
«)

(GENRT ¢OESASG /AZ) (FILF «DESASG/A) (GINRT of EASASG/A) (VARBL e ASG M 1)

MIBA “GINDES ASG ARR ~ (CTWRT s DESASG /A 2) (COMPON « VARBL /T)
(MOVE OPR o VAL CHANGE /1) (MOVE OPR «COMPON /T) [VARBL «DOMAIN/T)
o
MLOCPROG oL 1M M T (FILE o ¥ SASG/A) (GENRT of [ASASG/A) (VAR »ASGAM.1)
(NOT (GEMNRT o DESASG /A

MI7 RS L€ T LOCHROG oL 1N DT) NLOCPAROG ol WK /T)
MVOT [(GEMRT «DESASG /A 2))) (WOT (((ENRT »Of SASG /AN

B

]

FIRST ABSTRACT [ON

(NOT (LOCHROG ol INK/DT)) (NOT (LOCPROG ol JAK/T))

M3I7R " ERS LC RE-AS " (LOCHROG oL INK/DT) (GENRT »DESASG/AZ)

(GENRT sDESASG/A2) (NOT (LOCPROG ol [AK/DT))

M37S " ERS LC RE-AS ~ N OCPROG oL INK/DT) (GENRT wOf SASG/A)
5

(GENRT oDE SASG/A) (NOT (LOCPROG ol 1A /DT))

M3I8 "~ GEN DES ASGe ™ (GENRT »DESASG/A3) (GFNRT »DESASG/A2) (COMPON e VARBL /T)
(VARBL oL INK/T) (LOCPROG oL INK/T) (VARBL »DOMAIN/T)
-
(LOCPROG oL I /DT) (FILE wDESASG/A) (GINRT oFEASASG/A) (VARBL »ASGA.1)
(NOT (GENRT oDESASG/ALY)) (WOT ((ENRT »DESASG/A2))

M3BF " GEN ASGr - ~ (GENRT »DESASG/AT) (GTNRT »DESASG/A2) (COMPON » VARBL /T)
(VARBL »L IWK /T) (NOT (LOCPROG oL INK /T)) (GOAL »DESASG/T) (VARBL sASG/M.1)
(GENRT of EASASG/A) (F 1L E «DESASG/A)

>
(LOCPROG wL I /DT) (NOT (GENRT o DESASG/A3)) (NOT (GENRT wDESASG/A2))
(NOT (GOAL »DESASG/T)) (NOT (VARBL sASG/M. 1)) (NOT (GENRT of EASASG/A))
(NOT (FILE «DESASG/A))

M39 * GEN DFS ASGe- ~ (GENRT »DESASG/AJZ) (GENRT »DESASG/A2)
(NOT ((COMPON wVAWBL /T) (VARBL vl TAK/T)))
-

(LOCPROG oL 1K /DT) (NOT (GENRT wDESASG/AT)) (NOT (GENRT wDESASG/A2))

MAQ T TRY AMRLY (APPLY »MOVEOPR /WA) (GOAL »hE WFEAS /T)
(NOT ((APPLY s MOVE OPR /WA) (GOAL sNEWFEAS/T))) (NOT ((GOAL »VEWFEAS/T)))
(NOT ({GOAL »NEWFEAS,T))) (GOAL »ORXECT/T) (NOT [(GENRT f EASASG/A)))
(APPLY sMOYE -OPR /A) (APPLY sMOVE-OPR /T) (NOT (APPLY sMOVEOPR/WA))

(NOY (GOAL »NEWFEAS/T))

MAOH ™ TRY APPLY MULT (APPLY »MOVEOPR/WA) (GOAL oNEWFEAS/T)
(NOT ((APPLY o MOVE-OPR/WA) (GOAL oNE WFEAS/T)))
-

(APPLY sMOYEOPR /WA) (APPLY sMOVEOPR /WH)

MAOR ~ RE-AS FEASASG ™ (GOAL »MEWFEAS/T) (GENRT of EASASG/A) (APPLY sMOVEOPR/WA)
-
(GENRT aFEASASG/A) (APPLY sMOVE-0PR /WH) (NOT (APPLY sMCVEOPR /WA))

MAOU ~ UN-HOLD TRYAPP * (APPLY sMOVEOPR /WH)
-

(APPLY o MOVE0PR /WA) (NOT (APPLY s MOVE-OPR /WH))

MA | T APPLY SUC ~ (APPLY s MOYT-0PR /C) (APPLY sMOVEOPR /R)
o»
(FILE «OBXCT/A) (GOAL /T) (NOT (APPLY sMOVE OPR /T)) (NOT (APPLY aMOVE OPR/R))
(NOT (APPLY sMOYEOPR /WA A))

MAZ TEVAL OP DIFFR * (APPLY o MOVEOPR /T) (APPLY »MOYT OPR /Y)
-
(EVAL sDIFFR/A) (APPLY o MOVE OPR /WC 3) (APPLY # MOVE OPR /WA)
(NOT (AFPLY sMOVEOPR /C)) (NOT (APPLY »MOVE OPR 1))

MA3 T DIFFROIIFICs " (APPLY o MOYE-OPR /WC.3) (EVAL #DIIFRAR)
(APPLY »MOVE-OPR /WM J) (NOT ((APPLY sMOVE OPR /WC3) (EVAL #0IfFR/R))
o

(APPLY sMOVE OPR /WA A) (AVPLY s MOVEOPR /WA J) (NOT (APPLY »MOVE-0PR /WCJ))
(NOT (LVAL sDIfFR/M))

MATF TDIFFRDIIFICT " (APPLY s MOVE OPR /WC3) (FYAL oDIFFRAR)
(NOT ((APPLY wMOYEOPR /W 3))) (WO T ((APPLY »MOVT OPR AWCI) (LYAL sDIfFRA))
o
(APPLY sMOVE OPR /WA A) (AVOLY sMOVEOPR /WM .J) (NOT (APPLY #MOVE OPR /WCI))
(NOT (EVAL »DIFFR/R))

MAJL “DIFFRDITFIC. ~ (APPLY oMOVEOPR /WCI) (EYAL oDIFFR/R)
(APPLY sMOVE 0PR /WM 1)
o
(APPLY sMOVE 07 WA A) (AVOLY sMOVE OPR /WM J) (NOT (APPLY s MOVE OPR /WLD))
(NOT (EVAL »DIFFR /D))

MAG T APPLY FATL ~ (APPLY sMOVE 0P /C) (NOT ((AZPLY sMOVE OPR)
(NOT ((APPLY o MOVIOPR /1))
T
(APPLY s MOV 0P TIA) (APPLY sMOVE OPR WA) (APTLY sMOYT OPR /WA A)
(NOT (APPLY aMOY! 0PR/T))

Conchson

MAGE © APPLY [RASE ~ (APPLY sWMOVEOPR/DA) (APPLY sMOVEOPR/A) (VARBL «ASG/T)
-
(MOT (APPLY sMOVT OPR /DA)) (NOT (APPLY aiOVEOPR/A)) (NOT (YARBL cASG/T))

MAS T SEL DIFFR * (APPLY s MOVE OPR /WA A) (APR(Y « MOVE OPR /WMJ)
(NOT [(GOAL »NEWFEAS /T))) (NOT ((APBLY »(OCPROG /A)))
(NOT ([APPLY s MOVE OF2 /W 3))) (NOT ((APPLY o MOV OPR /WMD)
(NOT ((APPLY #OYT OPR /W J)))
-
(APPLY sNOVEOPR /WE) (NOT (APPLY sMOVEOPR /WA A)) (NOT (APPLY »MOVE.OPR /WMD)
(NOT (APPLY s MOVE OPR /WA))

MAS| T SEL IDENT © (APPLY » MOVE OPR /WA A) (APRLY »MOVEOPR /WM Y)
(NOT ((GOAL oMEWFEAS T))) (WOT ((APPLY sLOCHROG /A)))
(NOT ((APPLY sMOVE OPR /Wi 3)))
e
(APPLY & MOVEOPR /W 3)

MAS " NO O1FFR ™ (APPLY « MOVEI OPR /WA A) (NOT ((APPLY sMOYL OPR /WM. J)))
(NOT ((APPLY sMOVT QPR /W A))}
-

(GOAL /F) (GOAL sEXHAUST/T] (WOT [APPLY s MOVI OPR/WAA))

MAGT T NO DIFFR TAL " (APPLY o MOVIOPR/WAA) (NOT ((APPLY sMOVE QPR /W 1))
(APPLY s MOYEOPS "W A) (WOT ((COAL sMEWTEAS /T)))
)
(GOAL /) (GOAL of XHAUST /T) (NOT [APPLY o MOVEOPR /WAA))
(NOT (APPLY # MOVE OFR /W A))

MA7 " TRYAPD RS T (APPLY sMOVEOPR /W) (GOAL o TYPEREDUCE /T) (GOAL vOBXCT/T)
(GOAL »DIFFIC/T)
>
(T ILE «GOAL /A) (EVAL »GOAL /A) (GOAL »TYPEAPPLY /T) (GOAL #DESASG/T)
(GOAL »OPROITFR) (GOAL #OPR/T] (GOAL »ORJECT/T) (GOAL »DIFFIC/T)
(GOAL »SUPER/T) (NOT (APPLY aMOVIOPR /WT))

MAS “ RETRY ASG ~ (REDUCE /A) (GOAL wNEWTEAS /T) (GOAL »RETRY/T)
-

[APPLY sMOVIOPR AWA) (WOT (REDUCE /A)) (NOT (GOAL »RETRY/T))

MA9 T RETRY 0PD T (REDUCE /A) (GOAL wRETRY/T) (NOT ((GOAL «MEWTEAS /T)))
(GOAL »DESASG/T)
B
(APPLY wMOVE OPR /w A A) (WOT (REDUCE /A)) (NOT (GOAL #RE TRY/T))

MAGN " RETRY NOTHING * (REDUCE /A) (GOAL »#E TRY/T) (NOT ((GOAL « DESASG/T)))
o
(REOUCE /A) (NOT (GOAL »RE TRY/T))

M30 " MOVE OF © (MOVI OFE oML THOO /A) (NOT (GOAL wRETRY/T)) (GOAL #OPROITFR)
(GOAL #DIfFIC/T)

o

(GOAL »REDUCE #ME X T APPLY /W) (NOT (MOYE OPR » ME THOD /A))

M5 “NEW RED APP © (GOAL »RTDUCL e MEXTAPPLY /W) (GOAL »DESASG/T)
(GOAL »DIFF IC/T) (COAL »ORXCT/T)
o
(FILE wGOAL /A) (T VAL »GOAL/A) (GOAL #SUPLR/T) (GOAL »DIFFIC/T)
(GOAL o TYPEREDUCE /T) (GORL »DIFFR/T) (GOAL «OR KCT/T) (GOAL wWEXTAPPLY/C)
(NOT (GOAL »REDUCE « NS X T AP Y W)

b T MOVE OF - DIF " (UOVI OPR sMETHOO /A) (MO T (COAL oRETRY/T)) (GOAL #0PR/T)
(NOT ((GOAL wOPROITFR))) (GOAL «DESASG/T)
B
(CENRT «FEASASG /A) (APOLY OV OPR/WA) (NOT (MOVT OPR aM{ THOD /AN

MY T TRYAPP RS T (APDLY «MOVE OFR AWT) (GOAL « TYPEAPPLY /T) (GOAL »DIrFIC/T)
«r .
(GOAL #REDUCE s ME X TAPPLY /W) (NOT [ASPLY sMOVEOPR /WE)) (NOT (GOAL #DIFFTT/TH
(GOAL »DIfFIC/T)

MSE T RETRY ASG T (MOVT OPR «MIE THOO /A) (GOAL wNEWTEAS T) (GOAL oRE TRY/T)
B
[APPLY oMOVEOPE ArA) (NOT [MOVT OPY el THOD /A)) (N0 (GOAL oRE TRY.T))

M9 T RETRY OPD ° (ST OFR oML THOO /A) (GOAL oRETRY /T) (WOT ((GOAL »ME WTEAS /T)))
-
(APPLY atOYTOPT /WA A) (MO T (WOVT OPR « Ml THOO /A)) (WOT [GOAL #RETRY/T))

O “MATOHOIIF 108 ° (MATOM «DOXCT/A) (CHALT o TOPNOODE /T)

(MATOH wORXCT/A)

vil.se

)

Conchssion

K) " MO « " (MATCH «08ECT/A) (NOOE sl INK/T) (NOT ((OBXCT sRESTR/T))

o

(MATOM «08XECT/A)

K3 " MO BAD VAL T (MATOH «ORJECT /A) (NOOE s VALLE /T)

>

(MATOH wORJECT/AZ) (NOT (MATCH OB JCT/A))

K4 © MO UNOEF N1 © (MATCH «OAXCT/A) (NOOE wL INK/T) (NOT ((NODE L INK/T)))
B

(MATCH «OBJECT/A)

K3 T MO UNDEF NZ 7 (MATOH 208X CT/A) (NDOE »L TR /T) (NOT {INODE w18 /7))

.
(MATCH «OBJECT /A)

K6 " MO UNDEF VI 7 (ATCH eOBXCT /A) (NODE sVALUE/T) (NOT ((MODE s VALUE /T)))

B

(MATCH »OBJECT/A2) (NOT (MATCH «OBECT/A))

K7 " MO UNDEF V2 ™ (MATOH oOBJECT /A) (NODE s VALLE /1) (NOT ({NODE =VALUE /1))

5

(MATCH «DRIFCT/A2) (NOT (MATCH ¢ORBJXECT /A)Y)

KB T (QCEXTR ™ (MATCH «OAJECT/A2) (NOOC oL INK/T] (NOT ((OBHCT »TOPNODE /T)))

«

(MATOH «OBXCT/AZ) (DITFR oL INK/T)

K9 T LOCEXTR TOP ™ (MAT(H wOAXCT /A2) (NOOE sl 1NK/T) (OB XCT aTOPNOOE /T)
(NOT ((MATOH »OBJECT /1))
o
(FILE «LOCPROG/A) (DITFR wl INK/T) (MATCH «ORXECT AL 3)
(NOT (MATCH «CRIECT/A2))

K10 MO RESULT F ™ (MATCH sOBXCTAC3) (DIFFR oNAME/T)
-

(MATOH «OBXCT /R) (NOT (MATOH «OBECT /T 3)) (NOT (DIFFR oNAME /T))

Kil“LOCEXTR TOP | * (MATCH «OAXCT/A 2) (NOOE oL IMC/T) (OR XCT « TOPNXE T}
(MATCH «08XCT/1)
o

(MATCH aOBJECT/R.1) (DIFFR ol INK/T) (NOT (MATCH «OBXCT/A2))

T1 7 ADO LINK T ™ (ADD »L TAK/A) (OHXECT »TOPNODE /T) (WOT [(NODE oL 1N /T)))
B
(ADO »l INK /M) (NOOE oL INK/T) (NOT [ADD wl 11K /A))

T2 " ADO LI |- 7 (ADO oL IAK /A) (OHXECT = TOPNODE /T) (NODE »l INK/T)
»
(ADO wl INK /M) (NOT (ADO wiL JAK /A))

T3 7 ADO LIMK N ™ (ADO oL TNK/A) (ADO wi TR /M) (NOT ((ADD wL 1NK/AY))
(NOT ((NODE ol 1A /7))
-

(ADO oL TR /M) (NODT oL 1MC/T) (NOT (ADD sl JAX/A))

T4 © ADO LIMK N- 7 (ADO wL IANK/A) (ADO oL [N M) (NOT ((ADO wi I\ /A1)
(NODE »L 1IK/T)
-

(ADO el 1MW /M) (NOT [ADD ol 1AK/A))

TS “ADO LINK ¥ ~ (ADO ol 1k /A) (ADO wi 11K M) (NOT ((ADD wL 1K /A)))
o

(NODE L TMK/T) (NODE sVALLE /T) (NOT (ADD oL INK/A)) (NOT (ADOD ol 18K M)

T6 " ADO LINK VT 7 (ADD oL 1K /A) (NOT ((ADD ol IMC/M))) (OBRCT o TOPNODE /T)
(NOT ((ADO al IWX/A)))
&y

(NODE oL 10 /T) (NODE o VALLE /T) (NOT (ADO oL IMK/A))

TIO “REM LIMCALL 100 * (FEMOVE »L JNC/A) (OHXCT « TOPVODE /T) (NOOE ol INK/T)
(NOT ((REMOVE o\ I /A)))
.
(REMOVE sl 1A /A) (REMOVT ol [N) (NOT (NODE oL 1N /T))

VI " REM LI SPEC TOP © (01 MOVT ol INK/A) (OHACT »T0PNOOE /1) (WOOE el 1N /T)
.

(REMOVT ol 1WA A) (NOT (RLMOYT ot (WK /AYY

TIZ T REM LI ALL AUR T (5 MOVE el INK/A) (B MOVT ol |NKA) (WODE . [/T)
(NOT ((Ef MOVE wl INK/A)))
.
(QEMOVY ol JN/A) (REMOYT oL [N A) (NOT (MOOE ol [/T))

FIRST ABSTRACTION

VI3 MEM L INKG VAL ™ (REMOYT ol INKC/A) (REMOVE ot INK /M) (NODE wi INK /T)
(NOOE & VAL LE /T)

>
(NOT (REMOVE ol [N /A)) (WOT (REMOVE ol 1K /) (NOT (NODE oL 1K /T))
(NOY (NOOE »VALLE /T))

Y14 " REMLINK ARS C © (REMOVE wi [NK/A) (REMOVE ol [NK) (NOOE wi [N /T)
o

(REMOVE ol |1 M) (NOT [RENOYT ol INK/A))

T20 " INCR LI | (INCR oL INK/1) (OB CT nTOPNOOE /T) (NODE il INK/T)
o

(INCR oL 1M Ad) (NOT [INCR wi 1M /1))

T21 7 INCRLINE W ™ (INCR oL JNK/T) (INCR ol INK M) (NOT ((INCR oL INX/ID)
(NOOE s 18 /T) i
)

(INCR L JNMCAJ) (WOT [INCR ot 1NK/T))

T22 " INCRUINK Y " (INCE wl TN /) (INCR ol INK /) (NOOL ol TRK/T) (NOOE e VAL UE /T)
>
(NOT [INCR oL JNK /1)) (WOT (INCE wi INK /M) (NOT (NODE o VALLE /T))
(NODE sV AL LE /T)

T23 T INCRLING YT 7 (INCR «L INK/]) (CBXCT & TOPNOOE /T) (NODE i TN /T)
{NOOE #VALLE /1)

o

NOT [[NCR oL TNK /1)) (NOT (NODE e VALUE /T)) (NOOE » VALUE /T)

T30 " DECR LINK | " (DECR oL 1Nk /A) (OBXECT » TOPNOOE /T) (NODE wL 1N /T)
>

(DECR ol 1K /M) (WOT (DECR ol WK /A))

T30 " DECR LIW N ™ (DECR ol INK/A) (DECR oL INK M) (WOT ((DECR oL INK/A)))
(NODE #l 1WK /T)

B

(DECR wt MK) (NOT [DECR wL 1K /A))

TIT T OECR LINC Y " (DECR w4 I /A CORTR sl THK A} (HOOC w4 18 (TS (NQOK s\ /7
)
(NOT [DECR o MM /A)) (NOT (DECR oL INK /M) (NOT (NODE ¢ VALLE /7))
(NOOE wVALLE /T)

T32 TOECR LN VT 7 (DECR oL INK/A) (OBJECT » TOPNOOE /T) (WODE ol I /T)
(NOOE wVALLE /1)

o
(MO (DECR ol INC/A)) (NOT (NODE »VALUE /T)) (NODE »VALLE /T)

T80 “ COPY L INK |~ (COPY o INK/A) (OHJECT » TOPNOOE /T) (NOOE wl WK /T)
)
(COPY o INK) (NG T (COPY ol (MK /AY)

TE 1T COPY LINK N T (COPY ol [NK/A) (COPY of [MA) (NOT ((COPY uf INK/A)))
(NOOE »L T /T)
)
(COPY o INKAJ) (NOT (COPY ol INK/A))

T&Z ~ COPY LINK ¥ ~ (COPY wi [N /A) (COPY ol TNK /W) (NOT ({COPY wl INK/A)))
(NOOE wl TRK /T (NODE wVALLE /T]
o

(NOOE o VALLE /1) (NOT (COPY oL IRK/A)) (NOT (COPY wi TNK /M)

TEY T COPY LINK T 7 (COPY sl [N /A) (NOT ((COPY sl INK /M) (NOT ({COPY oL 1N /A)))
(OBACT wTOPNONE/T) (NOOE i [WK/T) (WOOE »VALLE /T)
o

(V00T o VALLE /T) (NOT [COPY ol [NK/AY)

€1 " COPY 08J 10P © (COPY rORXCT/A) (OHXCT TOPNOOE /T)
o

(COPY vORNMCT/A) (CHXCT »TOPNOOX /T)

€2 " COPY OBJ N~ (COPY «ORXCT/A) (WODE sl INK/T) OT ((NODE «VALLE /1))
«)

(COPY »OBXCY/A) (NOOE oL I\ /T)

€7 COPY 08 WY " (COPY sORNCT/A) (NOOE ol 1\ /T) (NOOL aVALLE /T)
o

(OO st T T (WQOE sy ALK ST (COPY +CAXCT/AY)

CA “COPY OfJ -~ (COPY o RACT/A) (NOT ((NOOE o INK/TIN)
NOT ((OAACT o TOPVOOE /T)))
)

MNOY (COPY sORNCT /A

2 r
8. FIRST ABSTRACT [OM Conc s on
|
i { O1 " DITFR EVAL ™ (EVAL »DIFFR/A) (NOOE sEXTREPR/T) (NOT (NODE oEX TREPR /G))
)
(APPLY ol OCPROG /A) (EVAL sDIFFR/A.1) (NOY (EVAL »DIFFR/A)) X8 " BOTT NIL ™ (NOOE «EXTREPR/G) (NOT ((NODE «VALUE /T))) (NOT ((NODE et 1N /T)))
(NOOE oEXTREPR /T)
D2 “OIFFR EVAL R " (EVAL vDIFFR/A.|) (APPLY #L OCPROG /R) o
o (NOOE =EXTREPR/T) (NOT (NOOE af X TREPR /G))
(EVAL sDIFFR/AZ) (NOT (EVAL »DIFFR/A 1)) (NOT (APPLY »l OCPROG /R))
X5 " ASC " (MODE o X TREPR /G) (NOOE oEXTREPR/T) (NOT ((NODE « X TRE P /G))) ‘
D3 “DIFFR EVAL R2 ~ (EVAL »DIFfR/A2) o
- (NOOE sEXTREPR/T) (NOT (NOOE f X TREPR /G))
(EVAL sODIFFR/R) (NOT (IVAL ¢DIFFR/AZ))
! X6 " TP " (NOOE «EXTREPR/T) (OBXCT o TOPNOOE /T) (NOY ((MOOE » £ X TRE PR /G)))
D& “DIFFREVAL R28 ™ ([VAL »DIFFR/A2) (TRACE = INOENT /T)
- -
(EVAL »DIFFR/R) (NOT (EVAL #DITFR/A2)) (OBXCT wEXTREPR/T) (NOT (WODE sEXTREPR/T))

D% "DITFREVAL R2T " (EVAL #DIFFR/A2)
o

| (EVAL »O1FFR/R) (NDT (EVAL »DIfFR/A2)) |

V7T TRANSE T (TRACE ¢ GOAL/A) (GOAL »1YPETRANSH OQM/T) (GOAL »SUPER/T)
(COAL » TRACES EVEL /T) (GOAL »ORXCT/T) (TRACE » INDENT/T) (GOAL »DESOBXCT/T)]
(NOT ((GOAL wANTEC /T))) |
o
(TRACE /T) (TRACE sORJECT/A) (GOAL o TRACELEVEL /T) (NOT (TRACE wGOAL /A))
{NOTY (TRACE o iMOENT/T)) (1RACE » INDENT /T)

Y2 T O8I T (TRACE sOBJCT/A) (OHXCY sEXTREPR/T) (TRACE » INDENT/T)

(TRACE /T) (WOT (TRACE »ORJECT/A))

V3 " TRANSE ~ (TRACE »GOAL /A) (GOAL w1 YPETRANSS ORI /T) (GOAL #SUPER/T)
- (GOAL wTRACELEVEL/T) (GOAL »ORXCT/T) (GOAL »DESORMCT /T) (GOAL #ANTEC/T)
(TRACE » INOENT /T) t
- L
(YRACE /T) (TRACE sOHJECTA) (GOAL sTRACELEVEL/T) (NOT (TRACE wGOAL/A)) -
(NOT (TRACE o INDENT/T)) (TRACE o INOENT /T)

YA T APPLY T (TRACE sCOAL /A) (GOAL «TYPEAPPLY /T) (GOAL sSIPER/T)
(GOAL »TRACELEVEL /T) (GOAL «ORIECT/T) (GOAL »DIFFIC/T) (GCAL sDESASG/T)
(GOAL »OPR /T) (NOT ((GOAL »ANTEC/T))) (TRACE » INDENT /T)
o
(TRACE /7) (TRACE »DESASG/N) (TRACE oORXCT/A) (GOAL s TRACELEVEL/T)
(NOT (TRACE »GOAL /AY) (O (TRACE w INDENT /T)) (TRACE # INDENT/T) L

VS T APPLY " (TRACE eGOAL /A) (GOAL »TYPEAPPLY/T) (GOAL »SUPER/T)

(GOAL wTRACELEVEL /1) (GOAL »ORIECT/T) (GOAL »DIfFIC/T) (GOAL #DESASG/T)
(GOAL »OPR/T) (GOAL »ANTEC/T) (TRACE » INOENT/T) g
(TRACE /T) (TRACE «DE SASG/A) (TRACE 9OHXECT /A) (GOAL » TRACELEVEL /T) 8
(NOY (TRACE wGOAL/A)Y) (WO (TRACE » INDENT/T)) (TRACE w INDENT /T)

VE " REDUCE ~ (TRACE «GOAL /A) (GOAL « TYPEREDUCE /T) (GOAL »SIPER/T)
(GOAL mTRACELEVEL /T) (GOAL »ORXCT/T) (GOAL »DIFFR/T) (GOAL #DIFFIC/T)
‘ (TRACE w INDENT /T) (CHIECT oEXTREPR/T) ¥

(TRACE /T) (TRACE »OHXCT/A) (GOAL wTRACELEVEL/T) (NOT (TRACE »GOAL /A}) i
(NOT (TRACE » [MDENT /T)) (TRACE » INDENT/T)

V7 T ASG | T {TRACE »DFSASG/A) (VARPL »ASG A2) (NOT ((YARBL »ASGA2)))
(TRACE »INDENT /T)
o

(YRACE /T) (NOT (TRACE «DESASG/A)Y)

[YR ©ASG 2 T (1RACE «OF SASG/N) (VAZRL wASG AM2) (NOT ((VARBL wASG/M2)))
{TRACE o INDFNT /T]

i . u:;r.(/1) (MOT (TRACE »DESASG/A)) .
; . . VO T ASG I T (TRACE #DESASG/A) (VARBL sASGAM2) (TRACE INDENT/T)
{ 5 (':A((/1) ONOT (TRACE oK SASG/AY)
:f M) TEXT REDQ T (OHACT wEXTETPR/G) (OHMCT »TOPNONE /T) (NOOE »L INK/T)
e o

= (MOOE of X TRY 5% /6) (NOOE »f X TREPR/T) (NOT (ORACT »f X 19599 /G))

X7 “DESC " (NOMKE o XTEEPR/G) (NOOE wl 1K /T)
o .

(MOOE o€ X TREPR /() (NONE »EXTREPR /T)

'0 N3 TBOTT (MOOE of X 19 PR /6] (NOOE wVALUE /1) (MOOK »f X198 P9 /1)
-

Bl

vil.ee

H
: ’
229
E |
£ | Concuson 1
o
4 Acrendix C. CROSS REFERENCE Of FIRST ABSIRACTION BSUSISFISFISF7F20 $20F21 -F21 F22 £2) §24 F29% F28760Fa20 FAL
FAZR MIO M2 M2 M2 KOK | KI LIKA KIS KE X6 K? K7 KB K9 X9 K 0 X0 3
ADO kil xi
p LHSUSES T1 1213 Y0 1516 MOVE 0P
2 NESTEDL T3 TA TS5 Y6 LMSUSES M3 M3 | MY2 MITS MI4 MIAA MISM MI4N MIBA M50 M52 W38 M9
& PHSUSES T1-T) T2.1213.73710-10 .75 .18 MESTEOL M34A MISR
3 APPLY BSUSES M3 M50 M32 W58 MY
X LHSUSTES M1 MIZ MIT MIIS MAO MAOH MAOR MAGU MA | MAZ MAT MAT MATL Mas Maag TP
\ MAS MAGT MAE MAGT M87 MST D2 LHSUSES FOFSPSEFIIFIDFIOFI2FIAFISFAOFS3 FO8 73
1 MESTEO(MAD MAOH MAT 14137 MAG MAS MAS] MAE MAST MESTEOL F34
3 SUSES MI0 M3 .MI7 M3J M3 MIDS MIIS MIE MIOA MIOM MION MO -MAQ MAOH WSUSISEOFIFAFS FSFSEFIOFIIFIIFIOFIOFIZFIA F36 35 FOOFS)
i MAOR MAOR MADU -MAOU -MA | MA? MAZ MAJ -MAT MATF MAJF MATL -MAT M4Aq Mee FS3F%6 F56 757
MAGE MAS MAS MAS] MAS MABT MAT MAB MAY M52 -M57 MSE M9 DI -D2 NOOE
« OHANCE PM LHSUSIS Fa6 Fa7 K CI A KSES KT KB KK |I T2 TG TIOTI) T12 VI3 Y14 720721
3 R=SUSISFSFIIFIAFISFI6FIBTS T2 723 T3S 131 132173 40 141 TAZ TA3 C2 €Y X! X7 X3 X4 X3 X6 4
CoMPON MESTIOU FAB FERKE K3 kB K7 1] TIC2 CA X8 X3 X6 3
LHSUSES MIAA MI6 MI6GA MIB MBS WHSUSES S86 F67 1) TITSI6-T10-T12.7137122.722 123 -.T23 132 .132 '3
: . NESTEDL M34R MI9 LT3 742 703C7 CIX) X2 XF X X& -X& X5 -X3 -X6
CoPy oBxC”
1 LHSUSLS TA0 T8) Ta2 Ta3 C| €2 C3 Ca LHSUSES 137 14F |7 FI4FISFAIFATAGTAT FARM25KOXD KL T) T2 1B TIO
NESTIDL Tal 142 Ta) TII120 723730 733 140 TA3CI V2 VR X) X6 1
PHMSUSLS TAQ TAQ Ta| TA) .TA2 143 CI C2 -C3 -CA NESTEOL FI3FISFeB X)) KB CE
ofre BSUSLS(OFSFI0 F1aFa0FA2 748 FAAFA6 A7 FABCI -X| X6
(H5USES T30 131 Y32 133 ®EOUCE
- NESTEDL T3 LHSUSTS MI0 M3 (W37 W3 IS KA WA MagN
QHMSUSIS 130 -130 13} -131 -132 -133 BSUSTS M2 MI0 N30 M3 [-MI2 M3J MIT M3IIS -MITS -MAS -MAS MAIN
K DIFFR RE MOVE
¢ LMSUSLSFIFIFAF26F27130F32 K10 (HSUSES TIO TII Y12 T13 118
NESTEOL FIFIFAFESF27 630632534538 NESTEDL T10 112
RHSUSLS F 1 F3 FAFS Q2528 126 427 FI0 FI2 KB X9 X10KI1 MHSUSIS TIOTIE T)1T12-T13T14-T18
EvAL STLECT
ﬂ LHSUSIS E1 E2 E7RETEQ E8 M22 MAT MATF MAZL DI D2 D3 D4 DY LHSUSIS EJ0ED 1 E3Z EISEI6 E37 W1 M2 MI MA M5
NESTEDL MATJ MAJS MESTIOL E20 €21 £38
RHSUSES €1 (2 E22 E3 £ EREI0E 1! EI6M2| M22 M26 M27 MA2 .MAT -MAJF RHSUSIS (1 E2R EBE22 (23R E26 €26 €30 -E30 €31 -EI2 E38 LIS €36 £37 M|
: MA3JL MA7 M51 01 DI D2 D203 D104 04 0% 0% M7 M3 A M5
FILE str
3 LHSUSIS £2 E29 (3 EAF I F2FIFBFTFINTEIBNFRSFBT FBY FBIFIFINT)0 LMSUSTS M3 1 M32 .w3) MI3S
¥ FLIFIFIAFISFIT7F20730F36FIBFA0FA2FAZDFAN FAZRFASFAUFSFY) TRACE
“ FSIMFSINFSD F 8] MIRS LHSUSIS €239 EY(3873 FE0 VI V2 VI VA V8 VB V7 VB VS X6
- NESTEDL FES FrBT Fa2F5IN WHSUSIS (O E2E2RETESEBEIOE (T EIZE20€21 €22 (2IRCE24E25E26¢E31 43
RHSUSISEIOE 11 EI6F T F1F2 .52 .FIFG §6 F7 .FTN FBFEN FENFRS £8S €36 £3I6FSFEFA0 V] V| V2 -V2 V3 -V VA -VA V5 V5 V6 .vE V7 .V7 V8 -VB V3
FBY FRT FAY FRY FBI FG FONT IO FIOFIL-FIIFIZF13¢F10 FIQF |8 F 1y ve
FI17 FI7F20 £20 £30F34F3% F16 F38 F40FQ)| -FA2 Fa2D FA7D FAN Fon TRANS/
FAZA FAIRFA2S FAISFAZU FAZUFSO £50FS| .FS1TSIM F5IM FSINFS2 .F82 LHSUSTS £29 £26 MO0 M20S M22 M23 M26 M20E W26/ M24N M24S W23
FOIMIENZT MIAA MIG MIGA MIB -MIBF MA | MA7 M5 K3 NESTEDL £24 W28 M2AL M24T WZENM2Y
FORM2 INELT 0P BIGUSES £29 M1 M20 M20 M20S M2 | W22 M27 W23 M23 M26 M28 M20L -M268F M26N
LHSUSLS Ma M5 MTON MZAS M2488 M2Y
RHSUSES MY VAR
fFoauorR LHSUSIS F50 F81 FO3FSS MIGA MIS MIGA MIS MIBF MAGL VT VB VS
LHSUSES MA M5 M3 M33S NESTIOL FROFSIFAS FO6 MISQMID YY) VB
PHSUSES A RSUSTS F50 £91 F83 £53 759 F55 MIAA MI6 MIGA MIS MIBF -MaaL
{ GENRT
- LHSUSTS 751 U308 MIAA MIAM MIAN MIAR MY MISG MI6 MIGA MITR MI7S MIB MIBF MI9
d MaoR
MESTIOL M27 MaC
. 4 EHSUSLS PR 1 MII MIZ WTA MTO MISA MTAA MISM MICM WIAN MISN MI4R .MJ40 MYY
s MIT MIGG MISG MIE MIGA MIGA MITR MTTS MIB MIB MIRF MT9 MAOR MY
g GOAL
X LMSUSISEZE2R FIEAERTIOE I EI2E20821 822 F22€23 £230270€248 €27
4 F26030 £30C31 6% EISEI6FTPINTRIBNFRT FOFONFA(FS| M| M2 MI MA MY
- M0 MIOS 75 MIG MIT7 T3 MI0 MIT IS MIRS MAD MAOH MAOR MAT MAB WAG MAGN
23 MUO MLO MY MSD ML UL MIR MY VI VI VA VS VE
; NESTEDU ETE2E0F 127821 L26E30 FI0EISEI6FTIFINIRFIBS FET FIFON MG
4 MAO MAOH MAS MAG] MAGT WATG MAGN M52 MET v VA
4 PHSUSISFOFZ E2R (3 €8 EREIO L£10E1] E11EI12E20 £20€2) (21822 €22
f €73 £23 E23R 28 €29 (26E31LI6FINFRSFRT FON FA |1 Fa2 731 M20S M2e
p MZ285 MZS M6 MIEM27 M27 MI | MI? M0 MIGA MIOM MIEN MIRS MAQ MA | MA6 MAGT 1
. MA7 MAE MAG MAGN M5O MY M5 M57 M5T7 ML8 MY V) VI VA VS VE
‘ ‘ GPse 2
L LHSUSLS 1O
*

| RMSUSLS (0

' . Incr

LHSUSIS Y20 1217122123

MESTEDL T21

BHSUSIS 120 -120 121 121 -722 .1y
4 LOCPRNG

2 LMSUSES MIS MIG MIT WIT70 W75 MIR MIRS

MESTEDL MY% MG

EHEUSLS P FA MIAA MISG MIBA MY) MITR MITS MIB NI MID
MATIM

LHSUSIS 120020V F22F23F2AF25F2RFAZ0OFA 1429 M2 | M2JE KO K| XTI KA K kS
| K) KR KO KIONX] |
B MESTEDL F20F23F525T2RF60FE2 FaD FaN K3

g
N

T

By vitei

i

K

9
.

Aovendux D. SLCOND ADSTRACTION

€0 " PROB INIT " GPSR .) OBRCT TRACE MET# GOAL - GrSR

X MODWULE EVAL 3

E1 " GOAL EVAL OK ™ EVAL - GOAL «> SELECY . EVAL

€2 " GOAL EVAL- ~ EVAL - FILE GOAL «> TRACE GOAL - EVAL

€2R " GOAL EVAL-R * EVAL - FILE GOAL «> TRACE SELECT - EVAL - GOAL
€3 " GOAL EVAL-A © EVAL - FILE GOAL «> TRACE GOAL - EVAL

€4 " GOAL EVAL-S ~ EVAL - FILE GOAL > TRACE GOAL - EVAL

€8 " SAME REP T EVAL GOAL -> TRACE SELECT - EVAL - GOAL

€107 SUC TRANS
€117 SUC APPLY ™
E12 " SuC SuP
E20 " FAIL ANTEC ©
€21 TFAIL ANIEC. T GOAL «> TRACE GOAL

E22 " CHECK RETRY. = GOAL +> TRACE SELECT GOAL

£23 " CHECK RETRY [XM © GOAL «> GOAL

E23R “FAL REP GOAL TRACE «> TRACE SELECT - GOAL

€24 " CHECK RETRY TG GOAL - TRANSF «+ TRACE SELECT - GOAL
€25 " RETRY TRANS GOAL TRANSF «> TRANSF TRACE - GOAL
€26 " RETRY TRANS- © GOAL TRANSF «> TRACE SELECT - GOAL

GOAL +> TRACE FILE IVAL GOAL
GOAL «> TRACE FILE EVAL GOAL
GOAL .- TRACE GOAL

GOAL > TRACE GOAL

I MOOLLE SELECT 3

E30 " TRY XD GOALS ™ SELECT GOAL «* SELECT

€31 7 CHOOSF (LD~ SELECT GOA(TRACE > SELECT TRACE GOAL

€32 " ERASE CH ~ SELECT «» . SELECY

€35 " NEW OBJCRIT = SELECT GOAL «° SELECT

£36 © CHOOSE OHJ SELECT TRACE GOAL «> SELECT TRACE FILE EVAL GOAL
€37 " ERASE CH ™ SELECT «> - SELECT

X MOOWE FILE R
F1 " FILE LOCPROG ~

F2 "EXTEND (P NET *
F3"STLPNET COL ©

FILEDIFFR . DIFFR FILE
FILE «»FILE
FILEDIFFR > NETP LOCPROG - FILE - DIFFR

FQa "~ COLLPNET ©
FS"COLLPMETD ™
o8 XCT
FSE " LAST MLT ™

NETP DIFFR > NETY LOCPROG - DIFFR
NETP - DIFFR TRACE <> NETP DIFFR CHANGE PM TRACE

MTP ONETP

F6 " FILE GOAL ~ FILE > TRACE FILE

F? RECGT-~ FILEGOAL «» - FILE
FIN"RECGT = FILE GOAL .: GOAL - FILE

F8 “REC GA- " FILE GOAL -~ - FILE

FEN “REC GA ™ FILE GOAL « FILE

F8S “OLONOOIfFR " FILE - GOAL « FILE GOAL
F8T "OLDOIMFR . " FILE GOAL « FILE GOAL
FBY " ER3 CSP FILE « FILE

FBI "ERS CS ™ FILE «» - FILE

FO "REC GR. * FILE GOAL > - FILE
FON"RECGR ™ FILE GOAL «) GOAL - FILE

FIO " FILE ORECTY © FILE « ORNCT NETP FILE

Fit “TESTFINT FILE FILE - NETP

FIZ NEWNET NETP ™ FILE - OHNCT OAXCY NETP o> MATON FILE CHANGE PM ME TP
NETP

F1a°~ SAME SET T FILEOHXCY o FILE . OHXCT

F15 " SAME 00, ~ FILE OHECT o MATOHFILE

P17 " SAME EQV © FILE OHACT o MATOR P ILE

F19 LAST MLT " MNP NP

fF20 " oBiOIFR " FILE MATOM o) MATOA FILE

T MOOLE MATCH S

MATOH o MATOH
MATCH o DITFR - MATCH
MAT(HM o - MATOH
MATCHM O DITFR - MATOH
MATEM o> - MATOH
DIfFFR . . DIFFR
DIFFP .0 . DIFVR
MATOM - - MATOM

F2) " ERS MDD T
F22 “ERS MR "
23 " ERa MRl T
$28 " €S ML) "
F2% TtRS M- T
F26 (RS MN) T
F27 T ERT MmN T
F28 " (AS MO S1G T

X MOOWLE FILE AGAIN Y
F30 “ExT OoNST T FIENITPOIIIR ONETP . FILE - DIPFR

FI2EXTONT MTPODINFR O NLIP.DIIFR
F38°SPLITONP " NP . OANCT - DIFRMTE O FILE CHANGIPM M TP .

0.

vile

Conc s o
NP
FISTSPLITONPOM® NETP OBJCT - DIFFR NET® o) FILE CHANGEPM - METP -
T

FILE > CHANGI PM . FILE
FILE <) CHANGIPM - FILE

38 smiT ol

38" SPLIT 082"

F&0 " WO OIFFR © FILE - MATO{ NETP TRACE <> MATOM OBCT TRACE - FILE -
TP

Fa| " O®CX DONE ©

FA2 ~ ONET DOWE *

OBXCT GOAL «» FILE - GOAL
FILE - MATOM > OBECT GOAL - FILE

FILE MATCH o> MATOX F ILE
FILE MATOM o> MATOHM FILE
FILE MATOM &> MATOM FILE
FILE = FILE

FILE O FILE

FAZD * ONET CONT D ©
FAZL " ONET CONT L ©
FOZR " ONET CONTR®
FA2S " OMET CONT S ©
FOZU ™ UN-HOS ~

Faa “ges o8y "

Fag (RS OBUN "
Fa7 " (RS OBINV
Fo8 " (RS OBUN- ~

O8XCT) ORXCY

OBXCT NODE «> OBXCT . NODE
OAXCT NODE) - OBXCT - NODE
OBXCY - NOOE «> - OBXCT

FS0 “FILE DES ASG ™ FILE VARBL > VARSL FILE

FS1 "OLDOA "~ VARBL FILE GOAL GENRT o FILE GENRYT GOAL - VARBL
FOIM " MORE DA © FILE o FILE

FSIN " MORE DA- © FILE & - FILE

FS2 "EXTENDOANET = FILE > FILE

FS3"DAMET COL FILE VARBL «» NET® vARBL - FILE

MNETP VARRL o NETP vARRL
NETP . VAUBL > NETP CHANGE PM
NETP OMTE

£33 °COL DA MET ©
F56 " COLDAMTD "
FS7 TLAST MY ™

 MODULE SELECT AGAIN X

M| TSELTF T STLECT GOAL «) TRANSF - SELECT
M2 “SELRED T SELECT GOAL « REOUCE - SELECT

MY T SEL APPM T SELECT GOAL MOVIOPR »> MOVEOPR - STLECT

MA T SEL APPF L T SELECT GOAL FORMOPR - FORMZ INPUTOPR o F ORMOPR -
seLecr

MY T SILAPPFZ ° SELECT GOAL FORMOPR f ORM2 INPUTOPR o FORMZ INPUT OPR -
SELECT

% MOOULE TRANSS [XCEPT MZ | AND M23f ART MATOM %

TRANS/ GOAL «) MATOM TRANSS
TOANSS GOAL «° GOA(L - TRANSF
MATOM o EVAL TRANSS - MATOM
TRANSS FYAL o TRANSS - EVAL
TRANSS) MATOH TRANSF
MATOM o0 - MATOM
TRANSS o> TRANSF GOAL

M20 © TRANSFG ©
M20S “ SUC TRANS ©
M2 MATOMNRESAY T
M22 " MATCH VAL T
M2 TMATONFIN T
MZ3C " ERASE MO ©
M24 " CoMP DIFFIC "
M268E © (RS MYAL © TRANSS o) - TRANSS

M26F " [R5 MVAL. T TRANSF o) - TRANSS

M2ZEN T EBS MYAL SY- T TRANSS . TRANSS

M24S " ERS MVYAL SV TRANSS o TRANSS GOAL

M2% T SUC DESCR T TRANSF GOAL O8XCT «» GOAL - TRANSF

GOAL «7 FILE EVAL GOAL
GOAL «> FILE EVAL GOAL

M28 © NEW REOUCE ©
MI7 " NEw REOUCE T

T MOOUL £ REDUCE Y

MY REDUCLG * REDUCE GOAL =) APSLY RF DUCE
M| SILOP ™ REOUCE APPLY - SET MOVEOPR +) GENRT GOAL - REDUCE - APPLY

MY? " SELOPSET ™ REDUCL APPLY SET MOVIOPR > GINRT GOAL - REDUCE -

APPLY

MY T SILOPFORM T REOUCE APPLY . SET FORMOPR GOAL «> APPLY REDUCT

MYIS "SI FOM SET * BEOUCE APPLY ST MOVEOPR FORUOPR GOAL +> APPLY RE DUCE

S MOOULE GEVRT X

MIE TSI DS ASG © GIMRT MOVIOPR .\ GINRT APPLY GOA(

MIEA T SEL DES ASG AR © CINRT - MOV OPR MOVE OPR COMPON VAREL)
LOCHROG FILE GENGT VAR APTLY GOAL

MYOM T SILDES ASGE T CINGT MOVIOPR O GENRT APPLY GOAL

MIAN T SEL DFS ASGE T GENRT MOVEOPR o GIWRT APRLY (OA|

MyeR T RS L GINGT MOVI PR - COMPON . VARRL > GINRY
MY T GET oM. T GINRT LOCHROG o GENRT
MYSG T GET CoMe GEMRT . LOCPROG o | OCHROG GEVRT

GINGT COMPON LOCHROG VARRL o GENGYT FILE VAR
GINGT COMPON MOVE OPR VAR +» LOCPROG F ILE

MI8 " GIN S ASG ©
MYSA C GINDES ASG APS ©
GIweT varm

i

Conc s on

M37 “IRS (C " LOCPROG - GINET &) - LOCFROG

M3I7R T ERS LC RE-AS * LOCPROG GEMAT »> GEMRT - LOCPROG

M3I7S TERS LC RE.AS © (OCPROG GINRT o> GIMRT - LOCSROC

M38 " GENDES ASGE © GENRT COMPON VARBL LOCPROG «> LOCPROG F ILE GEMRT
YARBL

M3IBF " GIN ASGe - = GENRT COMPON VAREL - LOCPROG GOAL VARBL FILE +>
LOCPROG - GENRT - GOAL - VARRL - FILE

MJID " GENDES ASGe- ° GENRT - COMPON - VARBL > LOCPROG - GENRT

X MOOULE APPLY %

MAQ " TRY APPLY ° APPLY GOAL - GENRT <> APPLY . GOAL
MAOM © TRY APPLY MLT © APPLY COAL => APPLY

MAOR ~ RE - ASFEASATG © GOAL GENRY APPLY o) GENRT APPLY
MAOU © UN-HO(D TRYAPP ° APPLY o> APPLY

MAa | " APPLY SUC © APPLY o) FILE GOAL - APPLY

MAZ TEVAL 0P DITFR " APPLY .) EVAL APRLY

MAJ “DITFROIFFIC. ™ APPLY (VAL «> APPLY - EVAL

MAZF T DIFFRDIFFICI © APPLY FVAL +> APPLY . EVA(

MAJL T DIFFRDIFFIC- = AFPLY EVAL « APPLY - EVAL

MAQ T AMPLY FATL T AFPPLY o APPLY

MAGE T APPLY ERASE © AFPLY VARBL « - APPLY . VAREL
MAS T SEL DIFFR T APPLY . GOAL « APPLY

MAS] © SEL JDENY T APRLY - GOAL > APPLY

Ma6 " NO OIfFR " APTLY > GOAL - APPLY

MABT " NOOIFFR TAL ™ APPLY . GOAL «> GOAL - APPLY

MA7 T TAYAPP RES © APPLY GOAL «> FILE EVAL GOAL - APRLY

¥ MOOULE REDUCE AGAIN Y

MAR T RETRY ASG ™ REDUCE GOAL «> APPLY . REDUCE - GOAL
MAag " RETRY OPD QEOUCE GOAL « APPLY - REDUCE - GOAL
MAGN " RETRY NOTHING © FEDUCE GOAL > REOUCE - GOAL

¥ MOOWLE MOYEOPR 3

MSO © MOVE oP ° MOVIOPR - GOAL GOAL «> GOAL - MOYEOPR

M5 " NEW RED APP © GOAL «» FILE EVAL GOAL

M52 " MOVE OF - DIF = MOVEOPR - GOAL GOAL «> GENRT APPLY - MOVEOPR
M57 " TRYAPP RES * APTLY COAL «> GOAL - APPLY

M58 ° RETRY ASG ~ MOVE-OPR GOAL +> APPLY . MOVE-0PR - GOAL

M59 " RETRY OPD ° MOVE OPR GOAL «> APPLY - MOVE OPR - GOAL

¥ MODULE MATCH AGAIN Y

KO " MATCHOIFF TOP = MATCH CHXECT) MATON

K)“MO «" MATCH NODE - ORJECT o) MATOH

K3 " MO BAD VAL © MATCH NODE 3 MATCH

KA " MO UNDEF NI ® MATCH NODE o MATOH

K3 " MO UNDET NZ T MATCH NODE «) MATOH

K6 " MO UNDFF v © MATCH NODE +> MATCH

K7 " MO UNDEF v2 ° MATOH NOOE «) MATCH

K8 " LOCEXTR " MATCH NODE - ORJCT > MATOH DIFFR
K9 " LOC EXTR ToP ~ MATCH NODE OBXCT > FILE DIFFR MATOH
KIO MO RESULTF ™ MATCHDIFFR > MATCH - DIFFR
KII"LOCEXTR T0P | = MAT(H NOOE OBXCT o> MATCH DIFFR

X MOOWULE 200 %

T)TADO LIy © ADO OBXCT - NODE «> ADD NODE
T2 A0O LI T ADD CRECT NOIX ») ADD
T3 “ADO LI N~ ADD - NOOE - ADO NOOE
TA " ADO LI N ° ADO NO(X +> ADO
TS " ADO LI ¥V ™ ADO «» NOIX - ADO
T6 " ADO LI VT ADO DAKXCT «> NONE - ADO

X MODULE REMOVE ¢
TIO " QEMLINK ALL TO® ™ REMOVE OBXCT NONE «> REMOVT - NODE
Ty " @EM LI SPEC TOP © REMOVE ORXECT WONE +> REMOVE
T12 " REM LIMK ALL ARR © REMOVE NMOOE « R MOVE - NOOE
TIZTREM LIMC VAL = REMOVE NOOE o> - REMOVE - NODE
TIA T @EM L INK AR C © REMOVE NOOK +> REMOVE

3 MOOUAE INCR Y}
T20 " INCR LW)T INCROBRCT NODE «) INCR
T21 T INCRLIWN T INCH NOOE o> [NCR
122 " ICRLIMN Y ™ INCE NOOE o) - TNCR - NODE NOOE
T23C INCRLIA YT © JNCRORRCT NODE o) - INCR - NONE NONKE

T MODILE DECR {

SECOND ABSTRACT [OW

TI0TDECRLING | ° DECR ORXCT NOO »> DECR

T3 "OECRLINMKN® DECR NOOX «> DECR

TI2 OECALINCY ™ DECR NODNE «» - DECR - NONE NODE
TIITOECRLIMCYT® DECR ORECT NONE «2 - BECR - NODE NODE

% MODULE COPY 3

TA0 “COPY LIMK | © COPY OBXCT NOME +> COPY

TA) “COPY LIMCN ™ COPY NONE «> COPY
TAZ“COPYLINK Y = COPY NODE «> NODE - COPY
TA3“COPYLINK T ™ COPY OBXCT NODE ! NODE - COPY

CI COPYOB)TOP " COPY OEBXCT «> COPY OBXCT
€2 " CoPY OBIN COPY NODC +> COPY NODE

C3 " COPY 08I NV © COPY NOOE > NO(R - COPY
€A " CoPv 08) - ° COPY - NODE - OBJCT ») - COPY

T MODULE EYAL AGATN Y

0! “DIFFREVAL © EVAL > APRLY EVAL

D2 DIFFREVAL R) © EVAL APPLY D EVAL - APRLY
D3I "DIFFREVAL 82 © EVAL EVAL

D4 "DIFFREVAL R20© VAL » EVAL

D9 “DIFFREVAL R2T * EVAL »> EVAL

% MODULE TRACE

V1T TRANSS T TRACE GOAL .> TRACE GOAL

v2°oRl” TRACE ORXCT . TRACE

V3 T TRANSF © TRACE GOA(«* TRACE GOAL

VA “APPLY © TRACE GOAL »> TRACT GOAL

VS T APRLY T 1RAZE GOAL . TRACE GOAL

V8 TREOUCE © TRACE GOAL OSACT . TRACE GOAL
WWTTASG I T TRACE VARBL « TRACE

V8 “ASG 2" TRACK VAFDL . TRACE

VS “ASG 3" TRACE VAWBL < TRACE

T MOOULE OBECT of XTREPR §

X ®ExT REeR * DBACT NOOE +) NOOE - CBRCT
X2 “DESC T NODE » NOOE

x3 " poTT " NOOE > NOOE

X4 “BOTT NIL © NOOE > NOOE

XS " ASC *© NOOE +> NOOE

8 " ToP NOOE OBJXECT TRACE > OBRCT - NODE

Vil

sl e Aol raa . 4

Beaa o BRI & S b

| golume I

SECURITY CﬂIFICATtoN OF THIS PAGE (When Data Emuod)

|1 JREPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

083 0 —=\p| - -LET

3. RECIPIENT'S CATALOG NUMBER

4 TITLE (and subnuc]

———"

-

>’,ER70DUC’I‘ION SYSTEMS AS A PROGRAMMING

S. TYPE OF REPORT & PERIOD COVERED

9] Interim /(L{/]

ANGUAGE
FOR ARTIFICIAL INTELLIGENCE APPLICA ONS,

Mm'uwvwmc' ORG. REPORT m.yije

| R

8. CONTRACT OR GRANT NUMBER(s)

F446._20 73 C-0074/

\ i /
t Mlchael D /{ychener | (/5
9. PERFORM!NG ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Dept.

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

61102 F

Pittsburgh, PA 15213 2304/A2
11, CONTROLLING OFFICE NAME AND ADDRESS R EPORTORTE
De fense Advanced Research Projects Agency @ De cemili@r 676}
1400 Wilson Blvd 3. NUMBER OF PAGES—
Arlington, VA 22209 503
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)
Air Force Office of S ientific Research (NM)
Bolling AFB, DC 20332 UNCLASSIFIED
1Sa. DECL ASSIFICATION'DOWNGRADING
SCHEDULE

; 153/.

TATEMENT (of this Report)

2547 |

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered Iin Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT This thesis develops a system architecture for artificial intelligence (Al), called

production systems (PSs). Each production is a simple condition-action rule, with
conditions stated on a global Working Memory and actions consisting primarily of simple
modifications to that memory. Actions can also consist of forming new productions, PSs
have been applied to a imited extent in computer science and to a somewhat larger extent
to specialized studies in Al They are used in cognitive psychology to model human
inteliectual capabilities at a defailed level. With Al research tending toward larger systems
with greater flexibility requirements, PSs are promising as candidates for the primary

oD ,

o5 1473 €0ITION OF 1 NOV 65 1S OBSOLETE UNCLASSTFIED

s‘ az a :! ii z SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Lata Ente:ed)

b

knowledge encoding medium, but certain questions and problems with PSs have been
raised. The questions revolve around the practical feasibity of PSs for building large
systems in a diversity of task domains, the preservation of desirable PS propertics when
they are applicd to much larger systems than previously, and the specific advantages and
disadvantages of PS architectural features.

This thesis_ sceks answers te such questions by constructing PSs to perform the
following tasks, all of which have been developed by past Al research: extracting
equations from typical high school algebra story problens (Bobrow's STUDENT); learning
lists of nonsense syllable pairs (Feigenbaum's EPAM); solving a variely of puzzle tasks
using a single set of general methods and processes (Newell, Shaw, Simon and Ernst’s
GPS); playing a simple class of chess endgames (Perdue and Berliner); discoursing in
natural language about a toy blocks scene (Moran's mini-linguistic system); and solving toy
blocks manipulation problems (Winograd's SHRDLU system). Each implementation is
analyzed to bring outl PS characteristics.

Evaluations of PSs as a programming language are made accordmg to the traits:
practical feasibility, style, degree of theory-boundness, power and overhead of expression,
productivity, efficiency, architectural fiexibility, and level. A taxonomy of control is
presented, and measures of frequencies of usages in the PSs of various forms ot control in
that taxonomy are used to support the discussion of power and overhead of expression.
The aclual PSs are able to effectively exploit PS power in the particular areas “of
selections and iterations. Specific features of the particular language design used here
are central to the capabilities discussed. A taxonomy of representation is developed, to
provide a basis for adding openness to the PSs, replacing ad hoc internal naming
conventions, and to allow measurement of the modularity of PSs, making interdependencies
of various parts more examinable. The taxonomy of representation is applied to one of
the larger PS programs with the finding that the split between inter-module assumptions
and intra-module assumptions is roughly an order of magnitude, approximately the form of
a nearly decomposable system.

PSs are found to be cifcctive and advaniagecus for the programming constructe
typical of Al systems. They have particular advantages in style, conciseness, and
architectural flexibility. Major successes can be expected in applying PSs to large-scale
understanding systems of the sort currently being explored. They are particularly useful
in domains where system knowledge must grow dynamically through interaction with -
humans and with a task environment, but without the expense of analysis of how each new
piece of knowledge must fit into existing structure. Their diversity of application and their
problem-solving capabilitics, both of which are deemed essential to building understanding
systems, have been adequately demonstrated by this thesis.

UNCLASSIFIED

