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CHAPTER I
INTRODUCTION

The significant improvement in Navy parameter identifica-
tion capability has been demonstrated in recent aircraft flight
test programs. The utilization of this capability has brought
the parameter identification algorithms to a point where restric-
tions to the applications of this technology occur because of im-
precisely defined a priori model forms and poorly excited modes
[1-3].

The problem of ill-defined model structures occurs naturally

as the application of the system identification technology is
extended to more complex Navy systems (e.g., surface and subsur-
face marine vehicles, aircraft, inertial navigation components).
Additional complexity arises in those operation regimes which are
characterized by significant variation in governing physical
phenomenon (e.g., separation of flow at high angle-of-attack).

This problem occurs because of two main reasons: (1) these systems
often cannot be well analyzed by theoretical methods and the assump-
tions of the analyses are questionable in extreme regimes, and (2)
even if a reasonable theoretical investigation could be carried out,
the resulting model may be too complex to be useful for engineer-
ing or simulation objectives. To complement theoretical models,

it is therefore desirable to have techniques for estimating the
structure of linear and nonlinear models, of varying complexity,
from test data. Such model structure determination algorithms,
when applied to a set of data, could give the simplest model which
substantiates the data. °‘The resulting models may be used, for
example, in control system design, handling qualities evaluation,
stability analysis, and simulation verification.

e Proper excitation of significant modes is necessary to ef-
N> fectively estimate both model structure and the parameters of that
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model structure. Specification of the test procedure is, thus,

of paramount importance in high order systems and in complex
"nonlinear systems. When there are many important modes, a conven-
tional input (e.g., step, pulse) may not excite all the modes
leading to identifiability problems. In addition, in nonlinear
systems, it may not be feasible to "hold'" the system in any
particular regime for a sufficient time to acquire enough data,
because of safety and stability considerations. Therefore, inputs
which are effective in giving good identifiability of parameters
under amplitude or time constraints are important for practical
identification applications.

This report describes the work in areas of model structure
determination and input selection. Special emphasis is given to
their application to nonlinear systems.

1.1 PRINCIPAL DEVELOPMENTS

Thw work conducted under the present effort has produced
many theoretical and algorithmic developments. The main results
are summarized here.

The following theoretical results are obtained:

(1) Optimal Selection of Parameterization in Estimation
Problems: Methods, based upon the likelihood function,
have been developed for selection of a set of parameters
which best describe the observed data. Extraneous para-
meters are dropped.

(2) Model Structure Estimation Using Splines: Use of poly-
nomial splines 1in representing unknown nonlinearity
and time variation is investigated. System identifica-
tion methods based upon such representation are pre-
sented.

(3) Input Design for Model Discrimination: Inputs, which
enhance differentiability among many mocdels based upon
data, are studied and methods to select such inputs are
investigated.
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In addition to these theoretical results, several results
are obtained which should improve current system identification My
algorithms. These include: e

(1) Improved Techniques for Isolation of Poorly Identifi- ;
able Parameters: The parameters,which are only margin- “q

()
ally i1dentifiable can be discarded with improved relia- (]
bility with the development of better parameterization ‘&
techniques. : .

(2) Optimal Subset Regression on Spline Representation:
Method for determining a useful spline representation -
through the application of the optimal subset regres- W,
sion technique have been developed. !

(3) Suboptimal Multistep Input: A practical technique for -
designing suboptimal multistep inputs for linear and -
nonlinear systems has been developed. A%

Both the theoretical and the algorithmic developments have o
advanced state-of-the-art of system identification, in particular, A
its application to the formulation of mathematical models for —
Navy vehicles. :Q':

: 1.2 SUMMARY

This report is organized as follows. Chapter II discusses, i
in brief, the previous results in the areas of model structure e
determination and input design. New model structure estimation !
methods are developed in Chapter III, followed by the input design 5
techniques in Chapter IV. Chapter V gives the conclusions.

Applications of these algorithms to testing of Navy vehicles and N

1

other systems is described in other reports and technical papers. :;
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CHAPTER II
REVIEW OF PREVIOUS WORK

2.1 INTRODUCTION

e~

The problem of model structure estimation and the importance
of selecting appropriate test signals have long been recognized.
Only preliminary work, however, has been done on these problems
because even the basic techniques for parameter estimation were
unavailable until recently. Most of the work on model structure
determination and input designs until now has been applicable _
only to linear systems. Previous model structure determination f
and input design methods are now discussed. .

2.2 TECHNIQUES FOR MODEL STRUCTURE DETERMINATION y

Methods for isolating a model structure from the response p
data have been developed mainly for linear systems. In linear
systems, the problem of model structure estimation is simpler i
because the structures of multiinput/multioutput linear systems
is completely defined by a finite set of real integers called
the canonical indices [4-6].

The current techniques for finding the canonical indices
from measured data use various approaches. Tse and Weinert [7]
use the fact that Hankel matrices of orders higher than a certain
value are singular. They compute the highest order of the Hankel
matrix whose determinant is nonzero. This gives one of the
canonical indices. This process is repeated for all canonical

indices. Such a method may work well if the number of inputs and £
- outputs is small and the number of data points is large. Often
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however, it is unsatisfactory because statistical properties of
the determinant of the Hankel matrix are not known.

Akaike [8] has also developed a method for determining model
structures of linear systems. The method selects canonical
indices based upon the minimization of the prediction error of
the outputs (a criterion called the final prediction error cri-
terion is used). It is shown, that in the stochastic case, the
dimension of this predictor space is equivalent to the system
order. This method has been applied quite extensively with some
success [9] and some problems [10]. Modifications to solve some
of the problems with the Akaike final prediction error criterion
have been suggested [10]. Similar criteria have been suggested
by Parzen [11] and others. Chi-square and statistical F-ratio
tests may also be applied.

Estimation of modei structures in nonlinear systems is a
relatively newer field and few results are available. The pio-
neering work in this area was done by Hall and Gupta [12]. They
used a general polynomial representation for the unknown nonlinear
relationships and an optimal subset regression approach to esti-
mate the unknown nonlinear aerodynamic effects at high angle-of-
attack. The results were applied to flight data from an F-4
aircraft with good success. This procedure, however, has limita-

tions. The polynomials may be inadequate for approximating some
nonlinearities commonly encountered in physical systems. In
addition, polynomial models may be computationally marginally
stable. Also, the coefficients of the polynomial terms may have an
unacceptably lérge correlation. It is apparent, therefore, that
the parameters have to be carefully selected in nonlinear
estimation problems, resulting in a need to use a better repre-
sentation for the nonlinearities.
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2.3 TECHNIQUES FOR INPUT DESIGN

Techniques for input design have been developed only for the
linear systems. The selection of test signals was first con-
sidered by Goodwin [13], Reid [14], and Mehra [15]. Goodwin and
Reid worked with the parameter covariance matrix and tried to
optimize it directly. The optimization problem was so complex
that only very simple problems could be solved. Mehra [15] worked
with the trace of the information matrix which gave a simpler
optimization problem, but the inputs were not very useful. Later,
Gupta and Hall [16], Mehra [17] and Mehra and Gupta [18] were
able to simplify the procedure for optimizing various functions
of the covariance matrix. This made it possible to solve fairly
complex problems, but the computation time was still quite high.
Recently, G. Reid [19] has shown how sums of Walsh functions may
be used to further reduce the computation time.

2.4  SUMMARY

Past work on input design and model structure estimation
has been, in a great part, limited to linear systems and simple
criteria. There is a need to extend these methods to produce
new algorithms for nonlinear systems. In addition, the techniques
for linear systems need. to be futher developed so that they are
computationally feasible for modestly complex systems.
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CHAPTER III
MODEL STRUCTURE DETERMINATION TECHNIQUES

3.1 INTRODUCTION

The development of a useful mathematical model from a given
response data involves two major steps: (1) model structure
estimation, and (2) parameter identification. The parameter
identification problem has been a subject of research of many
authors leading to several techniques which can be applied to
linear, as well as nonlinear, systems [20-22].

The model structure estimation problem has to be treated
separately for linear and nonlinear systems. In linear systems,
this problem simplifies considerably because the basic structure
of linear models is completely specified by a finite set of real
integers called canonical indices. Therefore, evaluation of this
small set of real integers completely determines the structure
of linear models. Techniques for estimating canonical indices
from response data have been developed by Akaike (8], Tse and
Weinert (7] and Vanden Boom, et al. [23], as discussed in the
previous chapter.

Absence of such convenient indices in nonlinear systems
makes the problem of determining model structure particularly
difficult. It is to be mentioned that the estimation of a com-
pletely unknown nonlinear function from data contaminated with
noise is not a well-posed problem [24]. Therefore, the best that
can be hoped is to get a good approximation for the nonlineari-
ties.

During the course of the present effort, two methods have
been developed. The first method starts off with the most complex
model of the system which may be expected from physical or other
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X a priori considerations. Then the terms which are not relevant %‘
i in describing the response are dropped. As we show in Section &:
?k 3.2, this technique is useful in accurate estimation of para- o
X meters of interest from finite data, when the model also contains ,;
‘ﬁ other parameters, whose values are not of any direct interest. h
;% The second method utilizes splines to approximately model é

unknown, nonlinear functional relationships and time variations in =
Eg the representation of a dynamic system. A set of important terms :%f
&% is selected by the application of the subset regression technique. %\
£} Section 3.2 gives the theoretical background of the method :ﬁ
o of the selection of an efficient parameterization for a response %‘
gi data. Some simple examples are presented and its relationship to ;g
§§ other methods is illustrated. Section 3.3 discusses the applica- !
%5 tion of polynomial splines in the modeling of nonlinear systems if
ig of unknown structure. The method is demonstrated by using examples :ﬁ
o of simulated data and flight test data. A
: 3

3.2 CHOICE OF PARAMETERIZATION IN ESTIMATION PROBLEMS

.‘
-

5 5,
% L : : - s
L; Most physical processes are governed by a complex interaction fé
N ~ 7 o - : N
2 of forces. An exact modeling of such processes is neither feas- 'w
o ible nor desirable. In general, a complex model may be divided pe
I? into two parts: a part which is of direct interest for any appli- 5
e 5 5 s " : W
gﬂ cation (called the primary portion) and a part which is not of ,\
£ any di i lled the second i Th . 3
o y direct interest (calle e secondary portion). e two por zﬂ
> tions of the model, however, are not independent because of cross- b
coupling terms. Because of this coupling, certain parts of the {q
*. secondary portion must be included even though the basic emphasis Y
B A (3
?4 is on identifying the primary portion. Often the entire secondary }*
() 5 : 5 # 3 v 4
3 portion may not be included because: (a) this will provide poor 1;
ﬁ; estimates of the primary parameters by scattering a finite infor- ‘&
L '
3} mation over too many parameters, and (b) there may be numerical h§
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problems during estimation. Therefore, useful parameterization
must be selected such that the primary parameters are estimated

with maximum accuracy and the model is manageable. It should.be
noted that dropping some of the secondary parameters will give
biased estimates of the primary parameters. These biased esti-
mates, however, have a lower mean-square estimation error if the
parameterization is selected carefully.

We begin with two examples in Section 3.2.1. General nonlin-
ear systems are considered in Section 3.2.2. Section 3.2.3 gives
the summary and the application of the method to the general model
structure determination problems.

3.2.1 Two Examples

To motivate the results in the next sections, two examples
are now given.

Example 3.1

Consider a nonlinear regreésion example in which the input u
and the output y are related by the equation

y = au + bu + v ' (3.1)
v is random noise with unit variance. This is the true model.
Suppose, we are interested in determining parameter 'a' accu-
rately. Then the primary model is

y = au + v~ {3.2)
Several input/output measurements at (ui, yi), R T8 SRRPREL,

are taken. Then if the true model is used the parameter estimates
and the covariance of estimation errors are
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PN ! -1
o 0 L TS Ry _
" (3.3)
b RuZu : RuZuZ Ruzy
a %25 g
a | - "
cov |= =§ e i A (3.4)
7 Ryl : Ruu
where
T
ny = ifl X;Y5 (3.5)
is the cross-correlation coefficient, and
= i 2 -
A Ruu RuZuZ (Ruuz) (3.6)
If the primary mddel is ﬁsed, the estimate of 'a} is
By = R T (3.7)
The variance of this estimate is
Var (3,) = g (3.8)
uu
However, this estimate is biased. The bias in the estimate is
. aR___+bR 2 bR, .2
Bias (ab) = uuR 22 .3 - —§5—5 (3.9)
uu uu
The mean-square error of this estimate is
e~ 2 % —
- b*(R .2 ) N
MSE (,) = wi- +» 2.0 (3.10)  f
s b R 2 e
i uu (Rs) 3
uu W
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N
i!
Case (1): Suppose that a 1is to be estimated from two measure-
ments at u = 1,2. Figure 3.1 shows the mean-square
error of estimates of Eqs. (3.3) and (3.7) (solid
' line). Note that it is better to use the simplified .
] L] . L
} model when b < 1.12. W
Case (2): Suppose now that a new measurement is added at f
u = 3. The broken lines show the variation of mean- K
square error with b. Again for b < 0.441, it is !
better to use the simplified model than the true
model. ®
“,:_0* \
:;‘33 ESTIMATIONS USING ey & 1,88 &
ik SIMPLIFIED MODEL IRl o
e ; —_—uy 12
e $ b
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The most interesting result is obtained for 0.195 < b < 0.58.
For this range of b values, using the measurements at two inputs
u; = 1,2 with the simplified model gives lower mean-square error
than the case where all three measurements are used either with the
true or the simplified model. In other words, for the purpose of
estimating a, the third measurement should be rejected. This is
an example where the measurement contains information, but cannot
be used for estimation.

Example 3.2

Consider now a dynamic system
X = -ax +u + b, x(0) =0 (3.11)
a is the time constant and the parameter of interest. b is a
bias from uncertain initial condition. Let there be noisy measure-
ments of the state
Yy =X +V (3.12)
v is white random noise with power spectral density of 0.01. Let,

u=1 L S | (3:13)

Then

R (3.14)

If the parameter b 1is neglected the estimator ay will be biased.

Its variance, bias and mean-square error are
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> 2 ; .
MSE(a,) = L:392b% + 0.029
(1+b) (3.16)

The root-mean-square error as a function of b is shown in Fig-
ure 3.2. Thus b should be disregarded

, 1f it is known to lie
between + 0.55, but its exact value is not known

SIMPLIFIED
TRUE MODEL MOEL

Figure 5.2 Variation of the RMS Error with b for the Estima-
tors Based Upon the True and the Simplified Model
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3.2.2 Choice of Parameterization in General Dynamic Systems

Consider a continuous time system, in which the nx1l state
x and the px1l output y follow the equations

x = £(x,u,t,0,9) + w(t) (3.17)
y = h(x,u,t,0,p) + v(t) (3.18)

where u is the qx1 vector of the deterministic inputs and
w(t) and v(t) are random noises. The state equation and
measurement equation are parameterized on two sets of parameters.

® 1is the mlacl vector of parameters whose value we are inter-
ested in estimating. The value of ¢ 1is not known and is not of
direct interest. Nevertheless, because of its effect on the equa-
tions of motion, ¢ must be given due consideration. Examples

of @ are bias in instrumeﬁts, initial condition errors, para-
meters governing coupling to other approximately independent modes,
etc. ;

There are several important questions which come up at this
poiht. Can the parameters ¢ be negleéted? Should some or all
of them be estimated together with ©? Under what circumstances
is it better to neglect ¢ than to estimate ¢? The technique
for selecting useful parametrization would answer these questions.

Let J(9,p) be the negative log-likelihood function with the
global minima at em’¢h' If the parameters ¢ are estimated
together with ©, the resulting values are em and L These
values are asymptotically unbiased and the covariance of the

estimdtes em and P, 1is

cov|----[=M (3.19)
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The covariance of Gm can be written explicitly

e 1 -1 1 =
cov(8y) = MIT +MI1My, [Myy - My MMy o170 My MT ) (3.21)
: Suppose that we estimate only the required parameters
;}i ® and disregard the parameters ¢. Quite clearly, the estimates
o of 6, say er, will be biased. If ¢ are set to zero, the

estimates er will be a solution of my equations

& 0,,0) = 0 | (3.22)

Expanding the above equation around the corresponding unbiased
X estimate & of 0., we get,

X - 2 2: %
. aJ, L 3J(@,9) 23%J(B,0 ,2°J(6,0) -5
_ 30,0 = 5 538 @ et

IR a8
": + Higher Order Terms (3.23)

: 4 .

R 2 “l 42+¢,® 0
W - = ) J(§)@ ) J(er(p) 2 O
¢ E(er D) { aez EEL] () (3.24) X
;
R &
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Assuming now that the second derivatives of J are approximately
the same at (8,p) as at (em’¢h)’ we get

-1

Bias (er) = M11

M12¢ {3.25)

The covariance of the estimated er is

=1

cov (Br) M11 (3.26)

The mean-square error of the estimate er is

T

MSE (8,) = Mol oo oMol My, PO MZIMH (3.27)

11 ii

Since em is unbiased, its MSE is equal to its covariance of
Eq. (3.21). It is clear that

<
MSE (Gr) > MSE (Sm)

if
Ee') § (My, - MyMjlu )2 (3.28)

where the second inequality implies the positive-definiteness of
the difference Often, the difference between E(¢¢?) and

(Mz2 - MZl ll 12) is indefinite. Tests must be made on indi-
vidual elements of ¢ to determine which of them should be in-
cluded in the identified model and which ones disregarded.

My, - MZlMiiMlz)'l is the covariance of the estimation errors
in @, if it is estimated.

This procedure for including parameters in ¢ for identifi-
cation requires a priori information about the possible variations
in the parameters ¢. This value of ¢ 1is not intended to supply
any information about the parameters, but is meant solely to

16

UK DO § OO0
s_'g,:..—,o_ a'4 t.u ’,uu‘,k,n.c..'.‘ i

paly etealy 'n s‘ 'l‘ ‘ﬂ‘ .i'




direct us towards selection of useful parameterization in the
estimation of 6.

What if the range of variations of ¢ 1is not known? Since
@ should be smaller than the standard deviation of its estimation
error, it is not possible to use the estimated value of ¢
check the inequality of Eq. (3.28) directly.
ure is proposed here.

to
An alternate proced-

Let J(er,O) be the minimum value of the negative log-
likelihood function when ¢

is excluded from identification. If
at this point ¢

is included in the minimization, the step in 8
and @, for small ¢, would be

A0 | Mir o

aJ
o 3¢
? e0=0,

ol (3.29)

It is straightforward to show that the decrease in the likelihood
function will be

T
A
wrTE N U

aJ
9@

Iyl
21M 12) 39 (3.30)
AJ may be computed numerically. It can be shown that (-2 AJ)

the distribution xz(mz) under the hypothesis that ¢ is
[1,2). 1If the reduction in J 1is significant,

has

zero

@ or the elements
@ under consideration must be included in the identification model.
For a 95% confidence level, one or more elements of ¢ must be

. included in the identified parameters, if,

(-24F) > € P(xz(mz) < C) = 0.95 (3.31)
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Note that C does not depend upon the order of © or the number
of data points, but only on the confidence level and my.

g% in Eq. (3.30) consists of two parts: the stochastic

part, because of random noise in the system, and the deterministic
part because of errors in 6 and ¢. Using the fact,

aJ aJ\" :
E{(_—)ra.ndc:nu 9 random } MZZ A

it is easy to show that

m
A A T .
E@D) = - 2 - er{(yy - My M0 5) oo} (3.

w
(¥}
~

Consider the case where parameters in ¢ are treated sequentially.
Then, at any point in the recursive procedure m, = 1 and ¢ 1is
a scalar. So,

EQ@J) = - - 3 (Myy - My MI1My )@ (3.34)

If we choose the 95% confidence interval as the criterion for in-
cluding the set of identified parameters

P(x%(1) < 3.84) = 0.95 ' (3.35)

Therefore, E(AJ) will meet the above criterion for including
¢ 1if

i = et Y8
(Mg, - My M17M;5)
- 1.68 (3.36)
My, M21M11 12)
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This criterion, in the expected value sense, comes close to that :
of Bq. (3.28).

2:2.3 Summary

The last section presented a technique for selecting use- ?
ful parameterization in parameter estimation problems. The prop- :
erties of the likelihood function near its optimum value were ap- :
plied and a quantitat;ve measure was developed for inclusion of 3
parameters, whose value is of no direct interest. In stabil- 5
ity and control derivative extraction, these parameters usually g
include initial conditions, bias and other errors in instruments.
This procedure, when applied to dynamic systems, is the comple- "
ment of the F-test of linear step-wise regression. 3

5.3 MODELING OF NONLINEAR AND TIME VARYING SYSTEMS USING SPLINE -1

REPRESENTATION z

b

In many systems, the physical processes are so complex, %

that it is not possible to parameterize the effects of various '

forces from a priori analysis. An example is the dynamics of a
high performance fighter airplane in the high angle-of-attack
flight regime. This section develops a technique for the deter- :

mination of a representation of the model of a nonlinear or time R
. 5 " 5 o 3 t
varying system with unknown structure and the identification of A
¢

the parameters in the representation using response data. First, §

it is necessary to select a representation which is general enough
to include all possible models within the a priori constraints.
Multivariable splines are used for this purpose. A particular form,
which best describes the response data, is then selected. Finally,
the parameters of this reduced form are identified by using

the maximum likelihood or another method.
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Section 3.3.1 discusses splines. In Section 3.3.2 we show
how an unknown static function may be approximated by splines
when the values of the function contaminated by noise are given
at discrete points. Section 3.3.3 shows how nonlinear systems
may be represented in terms of the splines. In Section 3.3.4

~we consider as a special case the problem of approximating the
control nonlinearity in a first order system. The general problem
of multiinput/multioutput systems with multivariable nonlinear-
ities is disucssed in Section 3.3.5. Section 3.3.6 gives an
example of the identification of nonlinear aerodynamic deriva-

tives of a vehicle. The results ‘are summarized in Section 3.3.7

3.3.1 Polynomial Splines

Polynomial splines are piecewise polynomials in one or more
variables. Splines in single variables have been studied exten-
sively [25] and have been abplied to data smoothing and approxi-
mation of known functions [26,27]. Study of multivariable splines
is quite recent and somewhat incompléte [28]. In this work, we
use only polynomial splines; therefore, the word spline will be
used to mean polynomial spline. A definition of polynomial
spline in a single variable is now given.

Definition 3.1

A function, Srn (x), is a polynomial spline function of
order m and degree of continuity v (m>wvw) in xs(a,b) if,
and only if:*

$ *Usually polynomial splines are defined with v=m-1. We deviate
a from this conventional definition so that it is possible to get

$ better approximations for functions £(x) which are continuous,
a but do not have continuous derivatives of high order. Sometimes

such splines are said to have each knot of multiplicity m-v.
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(1) There exists an increasing sequence of real numbers S
a=x; < X, < ... < xk+l=b such that Sm’v(x) is a o
polynomial of degree m or less in x between W'
(x{%5,4)» 1=1,2,...k.

%

; (2) s, ,(x) ec(a,b), where CY(a,b) is the class of !
' ? > : . z y 3

3 functions continuous through the vth differentiation v
* over the interval (a,b). &

SR — 3
. Definition 3.2 <4

3 X1»X55...,X, are called the knots of the spline function. e

Example 3.3 L

The following function is considered ety

%" - kgt v 3 S2<x<0 e
2 N

+ 2 g<€<x<1 (3.37) iy
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’l(x) = Sx

L A Ay

cxd*8x° 3% + 3 . 1
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< 2

. 2 g $ 5 : g
The first and second derivatives of this spline function are o
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Note that Sé 1(x) is continuous everywhere, whereas Sé’l(x)
- . , - . ?
is continuous at x=1, but discontinuous at x=0.

The parameters of a spline in a single variable are:

(1) the order of the polynomial, m and the degree of
continuity, wv;

(2) the number and positions of knots; and
(3) the coefficients of the polynomial terms.

In the identification of system model from noisy data, it is im-
portant to select neither too many, nor too few, knots. If there
are many more knots than are reasonable, the spline function is
unnecessarily complex and the estimates of knot positions and
polynomial coefficients have large errors. Too few knots may not
be adequate to approximate a nonlinear function. In addition to
the number of knots, the position of the knots is also important
as explained by Rice [29], "...the key to the successful use of
splines is to have the location of the knots as variables." To
select the number and position of knots optimally, we propose us-
ing a linear least square method, called the subset regression
technique [30]. Linear regression techniques may be used, be-
cause, in the spline function approximation, the nonlinearities
are expressed as a sum of several functions, each multiplied by a
different constant. In other words the nonlinearities are repre-
sented as linear functions of unknown parameters. Recently, the
least squares method has been studied extensively by Mendel who
developed efficient computation procedures for subset regression
in both the batch and the sequential modes [31].

3.3.2 Estimation of Static Functional Relationships

Consider two scalar variables which are related by an unknown

(R function

(X

!:s

&

o z» £(x) ag<x<b (3.40)
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It is assumed that £(x) 1is a continuous function in x over

the closed interval [a,b]. Suppose that N pairs of values
(x(1), y(1}}, a < x5 <b and 1< i< N are given where y(t)

is a noise measurement of z(i). The problem is to estimate a
simple representation of the relationship between x and 2z from
the data. Since the form of the nonlinear function is not known,
it is approximated by a spline Sm’v(x) with knots at

X1 < X, < Xz A S Xpe1 = b. A general representation

for such a spline is (see Schoenberg [32])

a =

m 3 k m 3
(x} = E € o M B z C..Ix"% ) [(3.41)
% j=0 1] 922 j=vel © e
where xi is the truncated power function
’ xj x>0
x) = | (3.42)
0 x < B

The spline representation of Eq. (3.41) is very flexible.
The knots can be taken in and out of the splines by adding new
terms or removing certain terms. In addition, if C 2] is zero
for i >m" and ¢ s 1,2,...,Kk, the spline Sm (x) reduces to
a lower order spline S&,V(x). Thus, by selectlng terms in Eq.
(3.41) appropriately, a lower order spline or one with fewer knots

may be obtained. The spline is a nonlinear function of the in-

dependent variable x, but is linear in the unknown parameters

C. The linear least square regression methods are, therefore,
applicable. When the least square method is used to select a sub-
set of the terms from the equation, it is called the subset

regression technique.

and
Eey

The basic problem in the successful use of splines for :
approximating any nonlinear function is the proper selection of:

b SR A S

'&
e T R -f."* ”o“ L 5';"'0 e *a o"?o‘g h "o OB

&

&5: 3 l,z‘l

. 4’}&?,!, e

Yo ey VT 8% N W T Hu TSN
) 2 ' ogt.a i.. ‘ga‘. Ocl.g "I"...#." Lt

,‘5 A\t'a ‘otu
s r. "g. ‘i c.\ c,:




(1) the order m and continuity v of the splines, (b) number
and position of knots, and (c) the various coefficients Cij'

We indicated above that the subset regression technique may be
applied to drop terms out of the representation of Eq. (3.41)
starting from the maximal representation (with most possible
knots, highest possible order and lowest possible continuity v).
The method for selecting the more important terms, starting from

the maximal representation, is now described.

Since Sm v(x) is used to approximate f(x), Eq. (3.40) may

be written as

m j k m j
¢ o B C.ox .5 = e s (=2, )2 * & (3.43)
j=o0 1 g=2 jay+l ) TR0

where €& 1is the modeling error because of approximating £f(x)

by .a spline function. Eq. (3.43) can be written for the given
data points as:

m j k m 3
¥y(i) = £ C,.(x{(i))’ +# X z Cogeix(i) ~ %)
jzo lJ 232 j=v+l 2] 2 -+
+ e (i) , 1<i<N (3.44)

where €(i) 1is the sum of modeling error and random measurement
error. The problem is to select the fewest number of coefficients
ng which will provide anzacceptable difference between z(i)

and Sm’v(x(i)) in the L sense. Let,




T o [y(1), y(2), ¥(3),...y(N)]

Y =
B 00 il ST i
10°>-11’ *“1m? ZCV"'].)’ »~2m? ’ pm
el = [e(1), €(2),...e(N)]
x; & B 2. 20, . (B0} m )]
x =

by Raan iR
LI N] (3.45)

Equation (3.44) is written as

y = X6 + ¢

® can be estimated by using the relation

=1 XTY

o = (XTX)

however, a subset of the elements of the vector 6 can explain
.most of the variation in y. The subset regression method selects
this set of parameters iteratively. The procedure starts by in-
cluding the variable most highly correlated with y. At every
step F-tests are used to determine if a new variable may be in-
cluded in the regression or if any of the variables already in

the regression may be dropped. The cut-off F-value is determined
from the F-distribution based upon a certain confidence level.

If the cut-off value is higher than the partial F-value of any
parameter outside the regression, that parameter may be included
in the regression. On the other hand, if any parameter in the
_ regression has a partial F-value smaller than cut-off value, that
0! parameter may be dropped. The values of coefficients of the terms
N which are in the equation are computed simultaneously. For a de- !
) tailed discussion of the method, see Efroymson [30]. i+
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The positions of the knots can be refined by using the fol-
lowing iterative procedure:

(1) Represent £(x) by a sufficiently large number of knots

at specific locations (e.g., distributed uniformly over
the interval).

(2) Use subset regression to find which of these knots are
important. Discard the remaining knots.

(3) Introduce several knots close to the knots selected in

step (2). ‘
(4) Repeat steps (2) and (3) until a good convergence
occurs.
- This procedure will give a good set of knots. These will be

locally suboptimal to the extent the subset regression technique
selects a suboptimal set of terms.

Pin

A 5.3.3 Representation of Nonlinear Systems Using Splines

T A
s 1

-

The usefulness of an autoregressive moving average type rep-
resentation in the input/output estimation of linear systems has
been demonstrated previously. For the purpose of this section, we
choose a form which resembles the autoregressive moving average
form for the linear systems. The px1 output vector y(t) at
time t 1is a function of M previous input and output vectors.

»

»

o e e e
S o

y(t) = oly(t-1),y(t-2),...,y(t-M,u(t-1)

le=2) ;5. u{t=M,t) + w(t) (3.48)

where ¢ 1is an unknown nonlinear function and w(t) 1is a Gaus-
:i sian random noise. The representation of Eq. (3.48) will be called

55

— N-ARMA. It is assumed that M 1is known. This representation nas
& been used extensively in econometrics.

Using concepts introduced by Audley and Lee [24], it is
quite clear that the unknown function ¢ cannot be estimated
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sasses |

process y. To get a useful representation of the nature of o,
it may be written as a spline function in terms of its arguments.
Let x(t) be the nx1l vector of the arguments of the function
@. Then, Eq. (3.48) may be written compactly as:

y(t) = o(x(t)) + w(t) (3.49)

The theory of general multivariable spline functions is not
known because of several conceptual problems. One major problem
is that splines over general multidimensional knot structures are
not well-defined. In the present application, however, the knot
structure may be chosen arbitrarily. It has been shown by Arthur
(28] that a well-behaved polynomial spline may be defined over a
multidimensional rectangular grid which will be called the net.

To represent a multidimensional function f£(x), x R", in terms of
splines over the rectangular nets (also called tensor product

splines), the R space is divided into rectangles by lines

X1 * 8310 8330 o0 §1p1

B2 "V e rve Sy (3.50)

o s §nl’ §n2’ e §npn

A spline or order m in n variables, with continuous deriva-
tives up to order m-1 can be written as

z c A
- X
sn'n-l(X) jl.jz,.z...jn-o Jpedgeeeerdp qar 7t

¥y 73 ¥ Py z
o R AR n1(xi "8y is
go1 2,71 241 !n-l
(3.51)
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This spline has a fixed polynomial representation in any of the
M multidimensional rectangles and has continuous derivatives up to
‘ order (m-1) in each variable at the boundary of the rectangle.
! The definition can be extended when the spline has continudus "
:31 derivatives of order m-v. For a general nonlinear system of E
va; Eq. (3.48), the above representation has many unknown constants f
' even for small M and P;- To obtain useful representation such
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