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CHAPTER I

INTRODUCTI ON

The significant improvement in Navy parameter identifica-
tion capability has been demonstrated in recent aircraft flight
test programs . The utilization of this capability has brought
the parameter identification algorithms to a point where restric-
tions to the applications of this technology occur because of im-
precisely defined a priori mode l forms and poorly excited modes
(1-3].

The problem of ill-defined model structures occurs naturally
as the application of the system identification technology is
extended to more complex Navy systems (e.g., surface and subsur-
face marine vehicles, aircraft, inertial navigation components).
Additional complexity arises in those operation regimes which are
characterized by significant variation in governing physical
phenomenon (e.g., sepa•ration of flow at high angle-of-attack)
This problem occurs because of two main reasons : (1) these systems
often cannot be well analyzed by theoretical methods and the assump-
tions of the analyses are questionable in extreme regimes, and (2)
even if a reasonable theoretical investigation could be carried out ,
the resulting model may be too complex to be useful for engineer-
ing or simulation objectives . To complement theoretical models ,
it is therefore desirable to have techniques for estimating the
structure of linear and nonlinear models , of varying complexity , 

0

from test data. Such model structure determination algorithms ,
0 when applied to a set of data, could give the simplest model which

substantiates the data. ~The resulting models may be used , for
example, in control system design , handling qualities evaluation ,
stability analysis, and simulation verification.

Proper excitation of significant modes is necessary to ef-
fectively estimate both model structure and the parameters of that

1



model structure. Specification of the test procedure is, thus ,
of paramount importance in high order systems and in complex
nonlinear systems. When there are many important modes , a conven-
tional input (e.g., step, pu].se) may not excite all the modes
leading to identifiability problems . In addition, in nonlinear
systems, it may not be feasible to “hold” the system in any
particular regime for a sufficient time to acquire enough data,
because of safety and stability considerations . Therefore , inputs
which are effective in giving good identifiability of parameters
under amplitude or time const~raints are important for practical
identification applications.

This report describes the work in areas of model structure
determination and input selection. Special emphasis is given to
their application to nonlinear systems.

1.1 PRINCIPAL DEVELOPMENTS

Thw work conducted under the present effort has produced
many theoretical and algorithmic developments.. The main results
are summarized here.

The following theoretical results are obtained:

(1) Optimal Selection of Parameterization in Estimation
Problems: Methods , based upon the likelihood ftnction,
have been developed for selection of a set of parameters
which best describe the observed data. Extraneous para-
meters are dropped .

(2) Model Structure Estimation Using Splines: Use of poly- 0

nomial splines in representing unknown nonlinearity
and time variation is investigated . System identifica-
tion methods based upon such representation are pre-
sented.

(3) Input Design for Model Discrimination: Inputs, which
enhance differentiabmty among many models based upon
data, are studied and methods to select such inputs are
investigated.

2



In addition to these theoretical results , several results
are obtained which should improve current system identification
algorithms . These include:

(1) Improved Techniques for Isolation of Poorly Identifi-
able Parameters: The parameters ,which are only rnargi.n-
ally identifiable, can be discarded with improved relia-
bility with the development of better paralneterization
techniques . 

0

(2) Optimal Subset Re~ression on Spline Representation:Method for determining a useful spline representation
through the application of the optimal subset regres-
sion technique have been developed .

(3) Subop timal Multistep Input: A practical technique for
designing suboptimal inultistep inputs for linear and
nonlinear systems has been developed.

Both the theoretical and the algorithmic developments have
advanced state-of-the-art of system identification, in particular ,
its application to the formulation of mathematical models for

Navy vehicles.

1.2 SUNMARY

This report is organized as follows. Chapter II discusses ,
in brief, the previous results in the areas of model structure
determination and input design. New model structure estimation
methods are developed in Chapter III, followed by the input design
techniques in Chapter IV. Chapter V gives the conclusions .
Applications of these algorithms to testing of Navy vehicles and
other systems is described in other reports and technical papers.

U



CHAPTER II

REVIEW OF PREVIOUS WORK

2.1 INTRODUCTION

The problem of model structure estimation and the importance
of selecting appropriate test signals have long been recognized.
Only preliminary work, however , has been done on these problems
because even the basic techniques for parameter estimation were
unavailable until recently. Most of the work on model structure
determination and input designs until now has been applicable
only to linear systems. Previous model structure determination
and input design methods are now discussed.

2.2 TECHNIQUES FOR MODEL STRUCTURE DETERMINATION

Methods for isolating a model structure from the response
data have been developed mainly for linear systems. In linear
systems, the problem of model structure estimation is simpler
because the structures of multiinput/multioutput linear systems
is completely defined by a finite set of real integers called

the canonical indices (4-61.

The current techniques for finding the canonical indices
from measured data use various approaches . Tse and Weinert (7]
use the fact that Hankel matrices of orders higher than a certain__ value are singular. They compute the highest order of the Hankel
matrix whose determinant is nonzero. This gives one of the
canonical indices. This process is repeated for all canonical
indices . Such a method may work well if the number of inputs and
outputs is small and the number of data points is large. Often

4
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however , it is unsatisfactory because statistical properties of
the determinant of the Hankel matrix are not known .

Akaike [8] has also developed a method for determining model
structures of linear systems . The method selects canonical
indices based upon the minimization of the prediction error of
the outputs (a criterion called the final prediction error cri-
terion is used). It is shown , tha t in the stochastic case , the
dimension of this predictor space is equivalent to the system
order. This method has been applied quite extensively with some
success [9] and some problems [10). Modifications to solve some
of the problems with the Akaike final prediction error criterion
have been suggested [10]. Similar criteria have been suggested
by Parzen (11] and others. Chi-square and statistical F-ratio 0

tests may also be applied .

Estimation of model structures in nonlinear systems is a
relatively newer field and few results are available. The pio-
neering work in this area was done by Hall and Gupta [12). They 0

used a general polynomial representation for the unknown nonlinear
relationships and an optimal subset regression approach to esti-
mate the unknown nonlinear aerodynamic effects at high angle-of-
attack. The results were applied to flight data from an F-4
aircraft with good success. This procedure , however , has limita-
tions . The polynomials may be inadequate for approximating some
nonlinearities commonly encountered in physical systems . In
addition , polynomial models may be computationally marginally
stable. Also , the coefficients of the polynomial terms may have an
unacceptably large correlation. It is apparent , therefore , that
the parameters have to be carefully selected in nonlinear

estimation problems , resulting in a need to use a better repre-
sentation for the nonlinearities.

!
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2.3 TECHNIQUES FOR INPUT DESIGN

Techniques for input design have been developed only for the
linear systems . The selection of test signals was first con-
sidered by Goodwin [131, Reid. [14], and Mehra [15). Goodwin and
Reid worked with the parameter covariance matrix and tried to
optimize it directly . The optimization problem was so complex
that only very simple problems could be solved. Mehra [15) worked
with the trace of the information matrix which gave a simpler
optimization problem , but the inputs were not very useful. Later ,
Gupta and Hall [16), Mehra [17] and Mehra and Gupta [18) were
able to simplify the procedur e for optimizing various functions
of the covariance matrix . This made it possible to solve f a i r ly

.
~~
‘ complex problems , but the computation time was still quite high.

Recently , G. Reid [19] has shown how sums of Walsh functions may
be used to further reduce the computation time.

2.4 SUMMARY

Past work on input design and model structure estimation
has been, in a great part , limited to linear systems and simple
criteria. There is a need to extend these methods to produce
new algorithms for nonlinear systems . In addition , the techniques
for linear systems need. to be futher developed so that they are
computationally feasible for modestly complex systems .

ii
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CHAPTER I I I

MODEL STRUCTURE DETERMINATION TECHNIQUES

3.]. INTRODUCTION

The development of a useful mathematical model from a given —

• response data involves two major steps: (1) model structure
estimation , and (2) parameter identification . The parameter
identification problem has been a subject of research of many
authors leading to several techniques which can be applied to
linear , as well as nonlinear, systems [20-22).

The model structure estimation problem has to be treated 
0

separately for linear and nonlinear systems. In linear systems ,
this problem simplifies considerably because the basic structure
of linear models is completely specified by a f in i te  set of real
integers called canonical indices . Therefore , evaLuat~.on of this
small set of real integers completely determines the structure
of linear models. Techniques for estimating canonical indices
from response data have been developed by Akaike [81, Tsé and
W~inert [7] and Vanden Boom , et al. (23], as discussed in the0 previous chapter.

Absence of such convenient indices in nonlinear systems
makes the problem of determining model structure particularly
di f f i cu l t .  It is to be mentioned. that the estimation of a coin-
pletely unknown nonlinear function from data contaminated with
noise is not a well-posed problem [24]. Therefore , the best t hat
can be hoped is to get a good approximation for the nonlirieari-

0 ties .

During the course of the present effort, two methods have
been developed. The first method starts off with the most complex
model of the system which may be expected from physical or other

1
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a priori considerations . Then the terms which are not relevant
in describing the response are dropped. As we show in Section
3.2 , this technique is useful in accurate estimation of para-
meters of interest from finite data , when the model also contains
other parameters , whose values are not of any direct interest.

The second method utilizes splines to approximately model
unknown, nonlinear functional relationship s and time variat ions in
the representation of a dynamic system . A set of important terms
is selected by the application of the subset regression technique .

Section 3 .2  give s the theoretical back ground of the method
of the selection of an eff ic ient  parameterizat ion for a respons e
data. Some simple examples are presented and its relationship to
other methods is i l lustrated.  Section 3 .3  discusses the applica-
tion of polynomial splines in the mode l ing of nonlinear system s
of unknown structure . The method is demonstrated by using examples

2 of s imulated data and f l ight test data .

3.2 CHOICE OF PARAMETERIZATION IN ESTIMATION PROBLEMS

Most physical processes are governed by a complex interaction
of forces. An exact modeling of s~uch processes is neither feas-
ible nor desirable. In general , a complex mode l may be divided
into two parts: a part which is of direct interest for any appli-
cation (called the primary portion) and a part which is not of
any direct interest (called the secondary portion) . The two por-
tions of the model, however , are not independent because of cross-
coupling terms . Because of this coupling , certain parts of the

p.. . . • .secondary portion must be included even though the basic emphasis
is on identifying the primary portion. Often the entire secondary
portion may not be included because : (a) this will provide poor
estimates of the primary parameters by scattering a finite infor - 

0

rnation over too many parameters , and (b) there may be numerical
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problems during estimation . Therefore , useful parameterization
must be selected such that the primary parameters are estimated

~~ with maximum accuracy and the model is manageable. It should be

noted that dropping some~of the secondary parameters will give
biased estimates of the primary parameters. These biased esti-

-~ mates, however, have a lower mean-square estimation error if the
parameterization is selected carefully.

We begin with two examples in Section 3.2.1. General nonlin-
ear systems are considered in Section 3.2.2. Section 3.2.3 gives
the summary and the application of the method to the general model
structure determination problems .

3.2.1 Two Examples

To motivate the results in the next sections , two examples
are now given.

Example 3.1

Consider a nonlinear regression example in which the input u
and the output y are related by the equation

y = aü ~ bu2 + v (3.1)

v is random noise with unit variance. This is the true model.
Suppose , we are interested in determining parameter ‘ a ’ accu-
rately. Then the primary model is

y = a u + v  (3.2)

Several input/output measurements at (ui, 
~~~ 

i = 1,2 , ... , r

are taken. Then if the true model is used the parameter estimates
and the covariance of estimation errors are

p.

‘4
‘II
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~~~ ~ 
(3.3)

coy ~ ~~~~~~~~~~~~~ (3.4)
a 

~~~~~ ~~~

where
r

R E x~y~ (3.5)XY j a]~

is the cross-correlation coefficient , and

A 
~~~ 

R
~
2
~
2 - (R 2)

2 (3.6)

If the primary mode l is used, the estimate of ‘a ’ is

ab 
a .l~uy/l~’uu (3.7)

The variance of this estimate is

Var 
~~~ 

(3.8)

However, this estimate is biased. The bias in the estimate is

A 
aR + b R 2 b R 2

Bias Cab ) a u U -a = 
RUU 

(3.9)

The mean-square error of this estimate is

! i b ( R 2 )
MSE 

~~~ 
a U U

2 
(3.10)

uu (Ruu)

10



Case (1): Suppose that a is to be estimated from two measure-
ments at u a 1,2. Figure 3.1 shows the mean-square
error of estimates of Eqs. (3.3) and (3.7) (solid
line). Note that it is better to use the simplified
model when b < 1.12.

Case (2) : Suppose now that a new measurement is added at
u a 3• The broken lines show the variation of mean-
square error with b. Again for b < 0.441 , it is
better to use the simplified model than the true
model.

EST MAT ONS U5I~G — a
SI MPUFtED MODEL .2 .3

• 

i
/
f
/
I
/
I 

/ 
S

Figure 3.1 Mean-Square Errors of Estimate of
Eqs. (3 .3)  and (3 .7 )
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The most interesting result is obtained for 0.195 < b < 0.58.
For this range of b values, using the measurements at two inputs
u~ 1,2 with the simplified model gives lower mean-square error
than the case where all three measurements are used either with theS true or the simplified mo del. In other wards , for the pu rpose of
estimating a , the third measurement should be rejected. This is
an example where the measurement contains information , but cannot
be used for estimation .

Example 3.2

Consider now a dynamic system S
k = -ax + u + b , x(0) = 0 (3.11)

a is the time constant and the parameter of interest. b is a -

bias from uncertain initial condition . Let there be noisy measure-
ments of the state .

S 
y = x + v (3.12)

v is white random noise with. power spectral density of 0.01. Let ,

u a 1 0 < t < 1 (3.13)

Then

x a b 
~ - e~~ t ) (3. 14)

If the parameter b is neglected the estimator ab will  be biased.
Its variance , bias and mean-square error are

I 12



Var(ab) 
a 0.029
(1 +b)

Bias 
~~~ 

— 
0.626b
(1+b )

A Q zgll..Z + 
S

MSE(a ) . J

(l+b) 2 
(3.16)

The root-mean-square error as a function of b is shown in Fig- .
ure 3 .2 .  Thus b should be disregarded , if it is known to lie
between ~ 0.55, but its exact value is not known .

\~ 
ERROR

N\\ SIMPLIFIEDI TRUE MODEL MODEL

/ /
~

I ~ I l~
S 

-1 — .55 0 — .55 1
b~~~~~

Figure 3.2 Variation of the RMS Error with b for the Estima- 
S

tors Based Upon the True and the Simplified Model
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3.2.2 Choice of Parameterization in General Dynamic Systems

Consider a continuous time system , in which the n x 1. state
x and the p x 1 output y follow the equations

— f(x,u,t,e,cp) + w(t) (3.17)

y — h(x ,u, t ,e ,q,) + v(t) (3.18)

where u is the qxl vector of the deterministic inputs and
w ( t )  and v( t )  are random noises . The s tate  equation and
measurement equation are parameterized on two sets of parameters.
9 is the m1 xl vector of parameters whose value we are inter-
ested in estimating . The value of ~~~~5 is not known and is not of
direct interest. Nevertheless , because of its effect on the equa-
tions of motion , p must be given due consideration . Examples
of p are bias in instruments , initial condition errors , para- 

• 

S

meters governing coupling to other approximately independent modes ,
etc.

There are several important questions which come up at this
point. Can the parameters p be neglected? Should some or all
of them be estimated together with 9? Under what circumstances
is it better to neglect p than to estimate cp? The technique
for selecting useful parametrization would answer these questions .

Let J(9,cp) be the negative log-likelihood function with the
global minima at If the parameters p are estimated
together with e, the resulting values are and These
values are asymptotically unbiased and the covariance of the
estimates and 

~m is

cov
[
~_ _ _ j  — M 1 (3.19)
pm 

14



A -““i””-
a 2j a2j M21 M22
aea~ ~

(3.20)

The covariance of can be written explicitly

cov(em) M~~ +Mj~M12 (M 22 
- M 21M~~M 12 1 1 M21M~~ (3. 21)

Suppose that we estimate only the required parameters
9 and disregard the parameters p. Quite clearly, the estimates
of 9, say er, will be biased. If p are set to zero , the
estimates 9r will be .a solution. of in

1 
equations

Expanding the above equation around the corresponding unbiased
estimate ~ of 8r ’ we get ,

- 
a~~~~~p) - 

a 2J(~~ p)~ ~ a
2J(~ ,cp) (9 w)

+ Higher Order Terms (3.23)

E(9r~~
) ~~~~~~~~~ a

8
e~~~ p (3.24)

15



Assuming now that the second derivatives of J are approximately
the same at (~ ,p) as at 

~
9m”m~ ’ 

we get

-1Bias 
~
9r~ 

M~~ M12p (3.25)

The covariance of the est imated 9r is

coy 
~
9r~ 

— M~1 (3.26)

The mean-square error of the estimate er is

MSE 
~
9r~ 

— M~~ M12 
,,T M21M~~ (3.27)

Since 9m is unbiased, its MSE is equal to its covariance of
Eq. (3.21). It is :1ea

~ 

that

MSE (er) > MSE (em)

if
E(p,T) ~~ (M22 

- M21M~~M12Y
1 (3.28)

where the second inequality implies the positive-definiteness of
the difference. Often , the difference between E(PPT) and
(M22 - M21M~~412Y

1 is indefinite. Tests must be made on indi-
vidual elements of cp to determine which of them should be in-
cluded in the identified model and which ones disregarded.
(M22 

- M21M~~M12Y
1 is the covariance of the estimation errors

in cp, if it is estimated. S

This procedure for including parameters in p for identifi-
cation requires a priori information about the possible variations
in the parameters p. This value of p is not intended to supply
any information about the parameters , but is meant solely to

16
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direct us towards selection of useful parazneterization in the
estimation of 9.

What if the range of variations of p is not known? Since
p should be smaller than the standard deviation of its estimation
error, it is not possible to use the estimated value of p to
check the inequality of Eq. (3.28) directly . An alternate proced-
ure is proposed here . r

Let J(er ,O) be the minimum value of the negative log-
likelihoo d function when p is excluded from identification. If
at this point p is included in the minimization , the step in 9
and cp, for small cp, would be

S A9 M 1
~~~O 

S

~ e -e~.S p — 0  (3.29)

It is straightforward to show that the decrease in the likelihood
S function will be

AJ a - .~~~ ~L T (N22 -M 21M~~M12Y~ ~~ (3.30)

AJ may be computed numerically . It can be shown that (-2 AJ) has
the distribution x

2 (m 2) under the hypothesis that p is zero

tl ,21. If the reduction in J is significant , p or the elements
p under consideration must be included in the identification model.
For a 95% confidence level, one or more elements of p mus t be
included in the identif ied parameters , if,

k

(-2 AJ) > C : P (~
2(m ) < C) = 0.95 (3.31)2

17
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Note that C does not depend upon the order of 9 or the number
of data points , but only on the confidence level and in 2 .

in Eq. (3 .30)  consists of two parts:  the stochastic
part, because of random noise in the system , and the deterministic
part because of errors in e and p. Using the fact ,

E•{(~~)random ~~~ random 
) = M22 (3 .3 2)

it is easy to show that

E(AJ) = - -~~~~~ 
- tr{

(M22 - M21M~~M12) ~~T)} (3. 33)

Consider the case where parameters in p are treated sequentially .
Then, at any point in the recursive procedure at

2 
= 1 and p is

a scalar. So,

E(AJ) — - ~ - ~ (M22 - M21M~~M12)c
2 (3.34)

If we choose the 95% confidence interval as the criterion for in-
cluding the set of identified parameters

P(~
2(1) < 3.84) 0.95 (3.35)

Therefore, E(AJ) will meet the above criterion for including
p if

i~ i > /Z.84

~22 21 ll~12

— 
1.68 (3.36)

‘22 21 ll~l2
‘p
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This criterion , in the expected value sense , comes close to that
of Eq. ( 3 . 2 8 ) .

3.2.3 Summary

The last section presented a technique for selecting use-
ful parameterization in parameter estimation problems . The prop-
erties of the likelihood function near its optim um value were ap-
plied and a quantitative measure was developed for inclusion of
parameters , whose value is of no direct interest. In stabil-
ity and control derivative extraction , these parameters usually
include initial conditions , bias and other errors in instruments.
This procedure , when applied to dynamic systems , is the comple-
mnent of the F-test of linear step-wise regression .

3.3 MODELING OF NONLINEAR AND TIME VARY ING SYSTEMS US ING SPL INE
REPRESENTATION

.‘I
In many .sys-tems , the physical processe .s are ~o complex ,

that it is not possible to parameterize the effects of various
forces from a priori analysis. An example is the dynamics of a
high performance fighter airplane in the high angle-of-attack
flight regime . This section develops a technique for the deter-
mination of a representation of the model of a nonlinear or time
varying system with unknown structure and the identification of
the parameters in the representation using response data. First ,
it is necessary to select a representation which is general enough
to include all possible models within the a priori constraints.
Multivariable splines are used for this purpose. A particular form ,
which best describes the response data , is then selected. Finally,
the parameters of this reduced form are identified by using
the maximum likelihood or another method.

‘lT d
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Section 3.3 .1  discusses splines . In Section 3 . 3 . 2  we show
how an unknown static function may be approximated by splines
when the values of the function contaminated by noise are given
at discrete points . Section 3.3.3 shows how nonlinear systems
may be represented in terms of the splines . In Section 3.3.4 , L

we consider as a special case the problem of approximating the
control nonlinearity in a first order system . The general problem
of multiinput/multioutput systems with inultivariable nonlinear-
ities is disucssed in Section 3.3.5. Section 3.3.6 gives an :~i
example of the identification of nonlinear aerodynamic deriva-
tives of a vehicle. The results •are summarized in Section 3.3. ’.

3.3. 1 Polyn omial Splines

Polynomial splines are piecewise polynomials  in one or more
variables. Splines in single variables have been studied exten-
sively [25] and have been applied to data smoothing and approxi-
mation of known functions [26 ,27]. Study of niultivariable splines
is quite recent and somewha t incomplete [28]. In this work , we
use only polynomial splines; therefore , the word spline will be
used to mean polynomial spline . A definition of polynomial
spline in a single variable is now given.

Definition 3.1

A function, S
~ 

,~,(x), is a polynomial spline function of
order in and degree’ of continuity v (in > v) in xa (a,b) if ,

and only if:*

*Usually polynomial splines are defined with v=m- 1. We deviate
from this conventional definition so that it is possible to get
better approximations for functions f(x) which are continuous ,
but do not have continuous derivatives of high order . Sometimes
such splines are said to have each knot of multiplicity ma - v .
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(1) There exists an increasing sequence of real numbers
a = x 1 < x2 < . . .  < x~+1 b such that Sm v (X) is a
polynomial of degree in or less in x between
(x~ ,x~~1). ~ = 1,2,.. .k.

(2) S
~~~

(x) cC” (a ,b), where C”(a,b) is the clas s of
functions continuous through the vth differentiation
over the interval (a,b).

Defini t ion 3 .2

are called the knots of the spline function.

Example 3.3

The following function is considered

• x3 - 4x2~~~2

S3 1 (x) = 5x2 + 2 0 S x < 1 (3.37)

-x3~~8x
2 -3x~~ 3 .  l < x < 2

The first and second derivatives of this spline function are

0J
2( 3x - 8x -2 < x < 0

S 1 (x) = ~ lOx 0 < x < 1 (3.38)

( -3x2 + l6x - 3 1 < x < 2

and
óx - 8 -2 < x < 0

S~
’
1(x) = 10 0 < x < 1 (3.3q)

-6x~~~l6 l < x < 2

21

.id

.-
l-
, 

. ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ ~~~~~~~ ~ .) 4~~



Mote that S~ 1(x) is continuous everywhere , whereas SY (x)
-~• is continuous at x 1, but discontinuous at x 0.

The parameters of a spline in a single variable are:

(1) the order of the polynomial , in and the degree of
continuity , v; :~

(2) the number and positions of knots; and

(3) the coefficients of the polynomial terms. ¶
In the identification of system model from noisy data , i.t is un-
portant to select neither too many , nor too few, knots. If there
are many more knots than are reasonable , the spline function is
unnecessarily complex and the est imates  of knot pos i t ions  and
polynomial coefficients have large errors . Too few knots may not
be adequate to approximate a nonlinear function. In addition to
the number of knots, the position of the knots is also important
as explained by Rice [29], “ . ..the key to the successful use of
splines is to have the location of the knots as variables. ” To
select the number and position of knots optimally , we propose us-
ing a linear least square method , called the subset regression
technique [301 . Linear regression techniques may be used , be-
cause , in the spline function approximation , the nonlinearities
are expressed as a sum of several functions , each multiplied by a
different constant . In other words the rionlinearities are repre-
sented as linear functions of unknown parameters . Recently, the
least squares method has been studied extensively by Mendel who :~developed ef f ic ient comp utation procedures for  subse t regress ion  :~S in bo th the batch and the sequential modes [31].

3.3.2 Estimation of Static Functional Relationships

Consider two scalar variables which are related by an unknown
function

z = f(x) a < x < b (3.40)

I
...,
P .,
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It is assumed that f(x) is a continuous function in x over
the closed interval [a ,b]. Suppose that N pairs of values
(x(i), y(i)), a < x~ < b and 1 < j < N  are given where y(t)

is a noise measurement of z(i). The problem is to estimate a
simple representation of the relationship between x and z from
the data. Since the form of the nonlinear function is not known ,
it is approximated by a spline S

~~,~~
(x) with knots at

a = x1 < x2 < x 3 < . . .  xk+l = b. A general representation

for such a spline is (see Schoenberg [32]):

in . k in
S~ ~(~) 

= E C1. x~ + E E C2.(x-x2)~ (3.41)
S 

‘ j 0  ~ 9~~2 j v ~ l ~

where x~ is the truncated power function

x~ x > O
x~ = 

• (3.42)
0 x < O  S

The spline representation of Eq. (3.41) is very flexible.
The knots can be taken in and out o~ the splines by adding new
terms or removing certain terms. In addition , if C~~ is zero
for j > in ’ and 2 = 1,2,... ,k, the spline S

~~~
(x) reduces to

a lower order spline S
~~~

(x). Thus, by selecting terms in Eq.
(3.41) appropriately, a lower order spline or one with fewer knots
may be obtained. The spline is a nonlinear function of the in-
dependent variable x , but is linear in the unknown parameters
C. The linear least square regression methods are , therefore ,
applicable. When the least square method is used to select a sub-
set of the terms from the equation , it is called the subset
regression technique.

The basic problem in the successful use of spliries for
approximating any nonlinear function is the proper selection of:
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(1) the order in and continuity v of the splines , (b) number
and. position of knots, and Cc) the various coefficients Cj~~.
We indicated above that the subset regression technique may be
applied to drop terms out of the representation of Eq. (3.41) :~starting from the maximal representation (with most possible
knots, highest possible order and lowest possible continuity v).
The method for selecting the more important terms , starting from
the maximal representation , is now described.

Since S
~~~~

(x) is used to approximate f(x), Eq. (3.40) may
be wr i t t en  as

in . k ma .
= Z C1- x~ + E I C~ .(x-x 2)~ a (3.43)

j 0  ~ 2 2 j v ~ l ~
.
.J.

where a is the modeling error because of approximating f(x)
by. a spline function. Eq. (3.43) can be written for the given
data points as: 

. k in .

y(i) = I C1.(x(i))~ + I I C2.(x(i) - x2 ) +j=O ~ 2=2 j=v+l ~

l < i < N  (3.44)

where a (i) is the sum of modeling error and random measurement
error. The problem is to select the fewest number of coefficients
C . which will provide an acceptable difference between z(i)
and S 

~
(x(i)) in the L sense. Let ,

- 

.. 

~~~~~~~~~~~~~~~~

1~ ‘.d ,N.1 ~~~~ . . .~‘ ,~ .~~ p.
., 
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yT [y( 1) , y ( 2 ) ,  y ( 3 ) , . . . y ( N ) ]

10’ 1l’~~~ ’ un ’ 2(v+1)’~~”’ 2m’”~~’ pm

~
T ., (c(1), c(2),...c(N)1

x1 [1, X (j ) , x (i),

x [x 1, X 2 , . . . , X
N ]

(3.45)

Equation (3.44) is written as

y - X 9 ~~~ s

9 can be estimated by using the relation

a (xTxy l xT~

however , a subset of the elements of the vector e can explain 
S

• most of the variation in y. The subset regression method selects

this set of parameters iteratively. The procedure starts by in-
cluding the variable most highly correlated with y. At every
step F-tests are used to determine if a new variable may be in-

cluded in the regression or if any of the variables already in
the regression may be dropped. The cut-off F-value is determined
from the F-distribution based upon a certain confidence level.
If the cut-off value is higher than the partial F-value of any
parameter outside the regression , that parameter may be included S

in the regression . On the other hand , if any parameter in the

regression has a partial F-value smaller than cut-off value , that

parameter may be dropped. The values of coefficients of the terms
which are in the equation are computed simultaneously. For a de-
tailed discussion of the method , see Efroyinson [30].



I
The posit ions of the knots can be refined by using the fol-

lowing iterative procedure :

(1) Represent f(x) by a sufficiently large number of knots
at specific locations (e.g., distributed uniformly over
the interval).

(2) Use subset regression to find which of these knots are
S. important. Discard the remaining knots .

(3) Introduce several knots close to the knots selected in
step ( 2 ) .

(4) Repeat steps (2) and (3) until a good convergence
occurs.

This procedure will give a good set of knots . These will be
locally suboptimal to the extent the subset regression technique
selects a suboptimal set of terms .

3.3.3 Representation of Nonlinear Systems Using Splines

The usefulness of an autoregressive moving average type rep-
resentation in the input/output estimation of linear systems has
been demonstrated previously . For the purpose of this section , we

choose a form which resembles the autoregressive moving average
form for the linear systems. The p x l  output vector y(t) at
time t is a function of M previous input and output vectors .

y(t) = cp(y(t-l) ,y(t-2) ,. . . ,y(t-M ,u ( t - l )

u ( t - 2 ) , . . . , u ( t -M , t) + w( t) (3.48)

where p is an unknown nonlinear function and w(t) is a Gaus-
sian random noise. The representation of Eq. (3.48) will be called

N-ARMA . It is assumed that M is known. This representation rias

been used extensively in econometrics .

Using concepts introduced by Audley and Lee [24], it is
quite clear that the unknown function p cannot be estimated
consistenly from finite data and from a single realization of the
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process y. To get a useful representation of the nature of p,
it may be written as a spline function in terms of its arguments.
Let x(t) be the nxl vector of the arguments of the function
p. Then , Eq. (3.48) may be written compactly as:

y ( t )  a p ( x (t ) )  .1- w(t) (3.49)

The theory of general inultivariable spline functions is not
known because of several conceptual problems . One major problem
is that splines over general multidimensional knot structures are
not well-defined . In the present application , however , the knot
s tructure may be chosen arbitrarily. It has been shown by Arthur
[28 ] that a well-behaved polynomial spline may be defined over a
multidimensional rectangular grid which will be called the net.
To represent a multidimensional function f(x), x R11, in terms of
splines over the rectangular nets (also called tensor product h

nsplines), the P. space is divided into rectangles by lines

X
1 

= 
~~~~~~~~~~~ ~l2’ ~~~~~~~ ~1p1 

.

= 

~21’ ~22’ 
52p2 

(3.50)

X~~ 
~n1’ ~n2’ 

•
~~~~

• ‘  
~npn

A spline or order in in n variables , with continuous deriva-
tives up to order rn-i can be written as

I’
Sia ,a_ i (x) 

~~~~~~~~~ 
~~~~~~~~~~ ~fT~ X j

p 
p1 p2 p3 p

~ ~~~~~~~~~~~~ In
4. . . . Z C 11 (X j - 

~u ‘ .t1~ 1 t f t Q 3.1 t .1 i
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This spline has a fixed polynomial representation in any of the
multidimensional  rectangles and has continuous derivatives up to
order (rn- i) in each variable at the boundary of the rectangle.
The definition can be extended when the spline has continuous
derivatives of order rn-v. For a general nonlinear system of
Eq. (3.48), the above representation has many unknown constants
even for small M and p

~
. To obtain useful representation such

that consistent estimation is possible , it is necessary to select
the more important terms from the general spline representation.

The complexi ty in estimating p depends upon the number of
arguments in the unknown functions and the domain of each argu-
ment . Therefore, to simplify this problem , all known a priori
information about the system must be used . The function p must
be reduced to the simplest form before attempting to approximate
unknown nonlinearities. For example , the physics of the process
may dictate that the function p is a sum of nonlinear functions
of the individual terms y (t-i), u(t-i), i=1 ,2,...,M. Then,
Eq. (3.48) simplifies to 

-

p.
N

y(t) I {cp~(y(t-i)) + 4s~ (u(t- i))}÷ w(t)~ (3.52)

All unknown nonlinear functions wil l  be approximated by splines
( e . g . ,  in Eq. (3 .52) , each cp~ and will be written as indi-
vidual spline functions).

In nonlinear systems, defined by unknown functions, it is
assumed that the behavior of the system in distant regions is sig-
nificantly different . Therefore , from a given set of data , it is
pos sible to estimate a representation of system behavior only over
the region covered. by the data. In contrast , the behavior of lin-
ear systems is the same everywhere; hence , a set of data provides
the same information about its behavior in any part of the phase
space. The rectangular  net of Eq .  ( 3 . 5 0 )  mus t take th is  into con-
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sideration by not selecting any knots in regions where there is
no data.

Starting from the general spline representation , we develop
techniques for choosing important terms which describe the nonlin-
ear behavior of the system in different regions . The next section
illustrates the method for a first-order system with control non-
linearity . The general niultivariable systems are discussed in
Section 3.3.5.

3.3.4 Modeling of a Single Input, Single Output System With a
Contro l Nonlinearity

To illustrate the technique , we discuss in this section , a
system with only a single unknown function in one variable.

• Consider a single input , single output system in which. the scalar
output y(t) follows the equation

N N
y( t)  a I a~y (t-t) I b~g(u(t-t)) + w(t), t>M (3.53)

The control input enters the system equation in a nonlinear man-
ner. It is assumed that the function g does not depend upon

• the delay , t , and the noise w(t) is white. The problem is to
find a good approximation for the nonlinear function g(•) given
y ( s ) ,  u ( s ) ,  s a l,2,...,N. S

• The only unknown and nonlinear function in the above repre-
sentation is g(.). Suppose that u varies between ~~~ and

for s l,2,...,N. Then, from the given data , we may

~~ estimate g(u) for 
~~~~ 

< u < Umax~ 
The function g (u) is

written as the maximal spline function with knots such that

U~~j~~ = 

~i 
< < 5k+l = umax .
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n . k in -

g(u)  % sm v (u) a I C
1~

uJ + I 
- 

I C2 . (u-~2)~ (3.54)
3aQ 2=2 ~~ v 4 i

The problem now is to select appropriate terms from the repre-
sentation of Eq. (3.54) based upon the data. Substituting Eq.
(3.54) in Eq. (3.53), and rearranging ,

N m N
y(t) = I a~y(t-t ) + I C1. Ical j a O  ) tal

k in N
4~ I - 

I C2~ I b~
(u(t-t ) - SQ )~ 

+ w (t) (3.55)2 2  J av +l ~‘ c=l

If a
~ 

and b
~ 

are known, Eq. (3.55) can be written as

m k in
y ’(t)  a I C1.u.(l,t) + I I C2.u.(2 ,t) + w (t) (3.56)

jaQ ~ 2=2 j av+ l ~

‘1

where N
y’(t) a y(t) - I a~y(t-t ) (3.57)

N
I b (u(t-t))3 2 a 1

u~(2~ t) — 

M -

t~~l 
b
~
(u(t-t ) - 

~~~ 
2 ~ 1 (3.58)

1 
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Techniques of multiple regression can be applied to determine
S which coefficients ~~ should be included in Eq. (3.56) to

represent the control nonlinearity .

If at ’s are not known, an expression s imilar  to Eq .  ( 3 . 5 6 )
can be used to determine the important terms ~~~ . y(t)
is the first regressed on y (t-t ) followed by a multiple regres-
sion as described above. If b

~ 
‘s are not known , an iterative

procedure must be applied. b~ ‘s are first estimated by assuming
a certain form for the function g(u), usually based upon a priori

• information ( e . g . ,  linear) . These values are used in Eqs. (3.55)
and (3. 58) to determine important terms in the spline represent-
ation of the nonlinearity . This representation , in turn , is
used to improve estimates of parameters b . This process is

• repeated until the convergence occurs. Though it has not been
proven , this procedure seems to have good convergence properties
in practical applications , as long as the initial representation P

for the function g(u) is reasonable.

N

An example is now presented to demonstrate the technique.

Example 3.4

Conside r a f i rs t -order  system

x(t+1) a ax(t) + bg(u(t)) .4. w(t)

= 1,2,.. .100

5 5 x( l) a 0 (3.59)

Let a 0.9 and b = 1.0. g represents a nonlinearity of the
saturation type

( U  l u l < 1
g(u) =~~~ 

— (3.60)
1. 
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[n

~u t : i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:~-~ 5/15 - 20/ 3 75 < t < 100
—

u varies between -5/3 and 5/3. g(u) is written as a spline func-
) tion S2 ~(u) with knots at -5/3 , -4/3,...5/3 , thus
1~

10 2
g(u) C ,~ 

+ C u + C ,u + 1 1 C2 . (u+2 - 
~- .‘jlv 11 1~ 2— 2 j l  -~ 3 ) +

( 3 . 6 2 )

Two cases are considered:p..
(1) w(t) is white with standard deviation 1

(2) w(t) is colored such that

p.
w(t) a t ( t )  + 0.5~~(t-l)

and ~ (t )  is white with standard deviation 1.

For a 95 percent confidence level , the following expressions were
obtained for the nonlinear function g(u). (In case (b), w (t)
is assumed white during the multiple regression) .

Case (1)

-1 , ~5 / 3 < u < 1

g( u) l .04u + 0.04, -1 < u < 1 (3.63)

-0.13u 1.21 , 1 < u< 5/3
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p

Case (2)

-1 , -5/3 < u < -l

NIP 

g(u) l.03u + 0 . 0 3 , -l < u < 2/3 (3.54)

-0.873u2 + 2.19u 2/3 < u< 5/3
- 0.358 ,

-4,
The function g(u) is shown in Figure 3.3. Although in

case (1,) the form of g(u) is not correct , the actual value of
g(u) comes quite close to the estimated value . Note that out of
a possible ten knots only two knots are included in each case.
The assumption of whiteness of noise does not appear very critical .
The methods for selection of knots and the order and continuity
of spline functions discussed in Section II apply here.

.
~~~~
, estimate with

w(t) wh i te
Si mu1a~1on

~~~~~~ 

.‘ ~stirnat e wi th
w(t) colored —

~‘ //
—I.
., , U

/
/
,/

//

-1 U—

I

Figure 3.3 Plot of g(u) as a Function of u
(Simulated and Identified)
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3.3.5 Multiinput/Multioutput Systems

The autoregressive moving average type of representation for
a nonlinear system with unknown structure leads to Eq. (3.49).
If the spline of Eq. (3.51) is used to approximate the nonlinear-
ity, then Eq. (3.49) becomes .-;

y(t) = ~~~~~~ [x ( t ) ]  + w(t)

In theory, the technique described in the previous sections and
those developed by Mendel [31] may be applied. The general prob-
lem , however, is quite complex. We describe here the applica-
tion of spline representation to several special cases.

Unknown Time Varying System

A multiinput/multioutput time varying system with output
y can be written in the ARMA form as

N
y(t) — I (A

~
(t) y(t-t ) + B

~
(t) u(t-t)} .4. w(t) (3.66)

r 1

ACt) and B(t) are unknown functions of time . To find an ap-
proxiination for these functions from measurements of y(t) and
u(t), each of these functions is written as a spline in t.’~

in . k in .

A
~
(t) 

~ 
5~ ~~(t~ — I C~ .t3 + I I C~ .(t-t 2)~ (3.67)

j O  ~ 2=2 j v+l ~

~. 
.‘.*Note that functions A

~
(t) and B

~
(t) are defined for integral

t. These matrices possess certain continuity properties over :~these values for physical systems . Representing them ~.n terms .
4of continuous splines is , therefore , justified. :~

r .
“.,‘
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where t1, t 2 , . .  . ,tk are the knots and ~~ are matrices of the
same size as A . B is exp anded in a s imilar  fashion . Then
the subset regression technique may be applied to obtain a useful
spline approximation of each of the matrices.

Linearized Representation of a Nonlinear System

The above method can also be successfully applied to non-
linear systems to determine a linearized representation. For
example , the general nonlinear system of Eq. (3.49) may be written
as

dy(t )  = dy(t-t) + au(~ -t) du(t-~ )}

+ Noise (3.68)

Let ,

..~~~
.

ay(~ -t) = A~ (t) and u(~ -t) = B~ (t) (3.69)

Then,

In
dy (t) = 1 { A (t) dy(t-~ ) B (t) du (t-t ) }

t = l  ~ t
Nj .

+Noise (3.70)

If A
~ 

and B
~ 

do not change too rapidly , the above equation can
be approximated as

in

~y(t) 
a I { A~ (t) ~.y(t-t ) 

-~- B~ (t) ~u(t-r ) }t~~l

~Noise (3.71)

..
.

%

P.11
.
.
..4..-.

S . S .p. ~~~~~~~~~ 
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ii
~y(t-t ) y(t-t +1) - y(t-t )

~~U ( t-t ) = u ( t - t  +1) - u(t-t ) (3. 72)

In the representat ion of Eq.  (3. 71) 1~ (t) and B
~ ( t )  can be

determined as functions of t as described previously. The
linearized representations of systems are usefu l in many applic-
ations (e.g., stability analysis , control design , etc.).

Systems Nonlinear in One Variable

Many systems are linear except some elements of the coef-
ficient matrices depend upon a state , a control or a known
function of some states , controls and time . The output y is
written as

In
y(t) = I ( A (a) y(t-t ) 4. B_ (a)  u (t-t)} + w (t) (3.73)

t=l ~

where

a = f(x(t), u(t), t )  ( 3 . 7 4 )

In this case also , the technique for time varying systems m a y  be U

applied. 
-

3.3.6 Application

The above procedure has been implemented using the multiple
regression technique of Hall and Gupta [12] . It is applied to
estimate the nonlinear aerodynamic behavior of a vehicle from
flight data.

The simplified system has two states (pitch rate , q, and

:~~ 
angle-of-attack , a) and two inputs (flap deflection , 6, and
Mach number , 

~
) .  The equations of motion can be written as

a
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a :(a ,p.,6) + q

M(a ,p. ,6) + Mqq (3.75)

.There are no isy measurements of a ,a , and q and the two controls.
q is obtained by fitting a cubic spline to q. The problem is to
determined Ma (t) and Za (t) for design of the control system . As

U 
described in Section V , Eq. (3.75) may be written as

= 1a(~
) ~.a -i. Z (t) ~u + Z6(t) A~8 4-

= Ma (t) ~~ 
+ M~ (t) ~ UU + M5 (t) ~8 + Mq~q (3.76)

Time histories of a ,~~,6, and q are shown in Figure 3.4. Ma (t),
M~ (t) and M3 (t) are written in terms of spline functions with
knots equally spaced at 0.1 second intervals .  The mul t ip le  regres-
sion technique is used to estimate the important terms in the
spline representation . Ma(t) was identified to be:

Ma (t) = -0.80 + 3.14(t-0.5)2 0.2612 (t-l.5)~

266.2(t-l.9)~ -804.8(t-2.0)~ # l9l8 (t-2.1)~
( 3 . 7 7 )

This function is plotted in Figure 3.5. The behavior of M (t )
• is quite close to what is expected from wind tunnel information .

3.3.7 Summary and Conclusions
P
.

S

This section discusses the application of polynomial splines
in approximating unknown nonlinearities and time variations in
dynamic systems . In the first step of the procedure , all unknown
functional relationships are represented by general splines o_

high order and with many knots. Thereafter , the subset regression
techniques are applied to select the more appropriate knots and
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drop terms of high order if they are not important in explain-
ing the observed response. This results in the best polynomial
spline which approximates any nonlinearity. Techniques other
than subset regression may be applied in selecting the more
pertinent terms .

Two examples are presented to show the applicability of
the above technique to SISO systems with simple control nonhin-
earities and to MIMO systems with maultivariable nonlinearities.

In both cases, excellent results are obtained even when the
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j .

assumption of white noise was violated. It is shown that the
general polynomial. splines of multivariable function over a S
rectangular net often involves too many terms . This stresses
the importance of including a priori information about the
structure of the system.

The spline functions are ~successful because of some of
their excellent properties . Some of these are:

(1) The splines can closely approximate any single valued
function in many variables. S

(2) The behavior of a spline function in one region has S
very little influence on its behavior in another
“dis tant” region.

(3) The knot structure of the fitted spline provides in-
formation on where greatest variation in a function is :~to be expected and, if this variation can be esti-
mated.

(4) Sphine representations often provide an insight into
the physics of the system .• S

The above procedure is proposed to determine an approximate
representation for the unknown nonlinear relationships. Final
estimates of the various parameters in the spline representation 

-

S will be done by using a more efficient and unbiased estimation .

method like the maxim um likelihood and a computationally better
conditioned f orm of the polynomial splines , called the B-splines 

S
[25].

1 
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IV. INPUT SELECTION TECHNIQUES FOR PARAMETER
IDENTIFICATION AND MODEL DISCRIMINATION

The accuracy with which a useful model structure is isolated S
and values of various parameters are estimated depends upon three
factors : (1) the input used to conduct the experiment , (2) the
kind and quality of the measurements , and (3) the data proces-

S sing algorithm. A proper selection of input is required for more 
S

efficient utilization of the test time and for obtaining more ac-
curate results by processing a certain amount of data. In nonlin-

ear problems , where the models are more complex and often unknown,
this requirement becomes even more important . This has been dem-

S onstrated quite successfully by Hall and Gupta in Ref. U.

- I 

The importance of choosing appropriate contro l inputs and ex.-
.~~~~~ cit ing specific aircraft modes for extracting stability and control

derivatives from aircraft flight testing has long been recognized.

Good inputs could resolve parameter identifiability problems ~ idS improve confidences on estimates of stability and control den y-

atives obtained from the resulting flight test data. In other
words , with specially chosen inputs-the same accuracy on para-
meter estimates can be obtained in much shorter flight test
time than with conventional inputs. Shorter flight tests can S
lead to a saving in time required for stability and control
testing and the computation requirements for extraction of aero-
dynamic derivatives. In addition , these inputs can be chosen
specifically to satisfy the ultimate flight test objectives such
as control sys t ems design , simulator parameter specifications ,

S 

response prediction , aerodynamic model validation , or handling
qualities evaluation. Previous work on the selection of para-
meter identifying inputs was discussed in Section II.

:
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There are several methods of testing nonlinear systems . One
method is to take several operating points and estimate an approx-
imate linear.ized model around each operating points. This re-
quires inputs which produce small perturbations around the oper-
ating point , such that the approximation of a linear model are
valid. The techniques for designing such inputs are given in
Section 4.1 and practical solution techniques are described in
Section 4.2. The inputs which provide best model discrimination
are described in Section 4.3. The suimnary and conclusions are
described in Section 4.4.

4.1 INPUT DESIGN FOR PARAMETER I DENTIFICATION OF LINEARIZED P

MODELS AROUND AN OPERATING POINT - - THEORETICAL BACKGROUND

4.1.1 Problem Discussion

In linear operation regimes , the dynamic behavior of aero-
-

~~ dynamic and hydrodynamic vehicles can be described by state space
equations

U’.

d
— x(t) a Fx(t) + Gu(t) 0 < t < T • ( 4 . 1)

dt 
P —

x is the n x 1 state vector (e.g., linear and angular position
and ra tes)  u is the q x 1 input vector (e.g. , hydrodynamic
surface deflections) and F and G are matrices which represent
aerodynamic and gravitational force coefficients and certain kine-
matic relationships. The vehicles are instrumented to measure
certain response variables which are linear functionals of the
state variables. The instruments have bias and random errors ,
therefore , the p x 1 output y is wri tten as

~4w ~~
y( t) a Hx(t) + b + v(t) (4.2)
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b is the bias vector and v(t) is a white Gaussian noise vector
S v(t) has zero mean and power spectral density R. In general , H

may also depend on some aerodynamic (or hydrodvnainic) Darameters.
Examples of F , G and H are given in the next section .

Let a denote the vector of unknown aerodynamic parameters.
It may be estimated from measurement of y(t) and u (t). The
problem is to select an admissible input time history which pro-S vides the best estimates of the aerodynamic parameters based upon

S some criterion . Because of stresses and other considerations , the
outputs are often constrained. Therefore , it is necessary to pu t
an upper bound on a quadratic function of the state and the input ,
i.e., S

IT
/ (x~W x + uTW2u) dt < E ( 4 . 3 )

1

4.1.2 Mathematical Criteria for Input Design
5A S

A quantitative measure of ~Iie knowled ge about a certain set
of parameters in a given response is given by the information ma-
trix. If M is the information matrix for the entire set of
parameters (aerodynamic parameters a and unknown biases b), it
was shown by Cramer and Rao [33J tha t

~~ 1

Cov(e -e ) > M ~ D (4.4).S., — —.P—~..,

irrespective of the data reduction algorithm . e is the true
value (unknown) and e the estimated value of the parameters. In
input design procedures discussed in the next section , it is as-
suited that an efficient identification algorithm is used such that
all information about the parameter is extracted from data. The
input design criterion can then be defined in terms of the infor-
ination matrix . This assuniption is important because it uncouples :
the input design procedure and the parameter identification algor-
i thin.
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It ~.s usually not possible to find an input which give s bet-
ter estimates of all aerodynamic parameters than any other input
for a given operation condition of the vehicle. Therefore , scalar
criteria have to be derived from the information matrix M. Since
we are interested in the estimation of aerodynamic parameters  only,
it is necessary to consider parts of information and dispersion
matrices corresponding to a . Call them ~~~ and D~~~ , respec-
tively. Clearly

[I 01 M rh
L&i

a [
~ 0] M 1 1~L1

LO J

where I are q x.q identity matrices. S

Though several criteria based upon the information and dis-
persian matrices have been discussed in the literature [16], three
of them are particularly useful. for estimation of vehicle para-
meters:

f a l(1) l inear functional of M :c

a m a x  .2’(M(a) ) (4 . 5)

(2) the determinant of the dispersion matrix , ~~~

a mm ID (a) J (4.6)
U

(3) linear functional of the dispersion matrix , D~~

a m m  2 (D (a) ) ( 4 . 7 )
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2 is such that for two positive semi-definite matrices A and B
and a constant c

(a) 2( A )> O  -

(b ) 2 (A  ~
- B) ~‘(A) + 2(3)

(c) 2(cA) a c2(A) (4.8)

Examples of linear operator 2 are the trace and the weighted
trace..

mna~cimizes the total or partial suit of information of all
aerodynamic parameters or linear comb inations of parameters . This
m ay , however , lead to an almost singular information matrix imply-
ing a dispersion matrix with large diagonal terms . As such this
criterion is unsuitable. It is useful because it arises as a sub -
prob lem in other cases.

The positive definite dispersion matrix can be considered to
be the hyperellipsoid of uncertainty iii. the parameter space . J2
wo rks with the determinant of the dispersion matrix and minimizes
the volume of the uncertainty ellipsoid. The advantage of this
method ±s that it is independent of the units of the parameters
and implies optimality of a prediction error criterion , see Mehra
[17].

S 

minimizes a weighted sum of covariances of parameter es-
timates (or some linear combinations of parameters). The weight-
ing matrix serves two purposes . Since the covariances of d i f fe r-
ent parameters have different units , it converts each term in the
sum to the same units. Secondly, the weighting matrix offers
tremendous f lexib i l i ty  because it is possible  to assign varying un-
portance to parameters , through weights on their nondimnensional S

covariance . This is considered to be one of the most sui table  per-
formance criteria since it wor ks wi th  parameter  es t imate  covari-
ances directly . P
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4.1.3 Optimal Input Design

This section develop s two techniques for input design :
(1) the time domain approach , which gives a time history of the
optimal input , and (2) the frequency domain approach , which gives
the spectrum of the optimal input . We derive equations for the

I information matrix and then show algorithms to compute the optimal
input.

4.1 .3 .1  Time Domain Approach

S Information Matrix

The information matrix for parameters a and b , defining a
as b element of the vector e , is given by S

= 
fT  a (Hx+b)T R~

1 a (Hx+b) d 
.

ae (4.9)

For simplicity , explicit time dependence is not shown where pos-

S sible. Eq. (4.9) can be written as

S 

~~~ M (ab)

M (ba) 
~~~~ (4.10)

where

a 
fT  a (Hx) T 

R 1 a(H x) dtJo aa aa :~
= fT a~~x) R~~ dt

M~~ - TR~~ (4.11)
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U’

I
UP

From Eq. (4.1)

x ( t )  cp(t ,t) Gu (t ) dt (4.12)

La:

P(t,t), the transition matrix, obeys the following differential
equations

= Fc(t,c) cp (t ,r) = I (4.13)

- Using Eq. (4.12)

8 (Hx ) (T q 8 
5 

.

- 8a z —~~Hip (t,t)G. } u~
(t) dt (4.14)

S I
is the i-th column of G. Using Eqs. (4.11) and (4.14), it can

be shown that

M(a) fT
J

PT 

1~~~1
Mij (r~

s)u
~
(t)u

~(s)dtds

(ab) fT q
M a)  ~ A~ (t)u~ (t)dt (4.15)

0 i—i
P.

~~
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and A
~
(t) are derived in Ref. 16 and are:

$ M1~ (~ ,s) 4 1Tsup(t ,s)

I
+ A .T(t,r)R~~(t)A.(t ,s)}

3 1
.(‘~

A~ (t) = f ~~~~~
- ( Hc~(t~r)G~} dt

The constraint of Eq. (4.3) can be written as

1
TJ 

T
uT~ t) Q(t ,s)u ( s ) d cds < E

q(t ,s) = W28(t-s) + f  GT
P

T (t , t ) W c p ( t , s )Gdt
sup (t ,s) 1 

l6~

,
S’.

where sup (r , t )  is the large r of t and t and 6 is the Dirac
delta function. Since Q(:,s) is a positive semnidefinite function , 

S
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jj
the unequality sign in Eq. (4.16) can be converted into an equality
sign. In addition , E may be taken as one . The optimal inputs
can be scaled if the total energy is different from one. From
Eqs . (4.10) and (4.15)

. p. .qp

I- ~~~ (T ( T q
j~ ai = I / ~.io ..‘ o i,j=1

-

T 1

which is a quadratic function of u, like ~~~~ The methods
which are described in this section are applicable as long as
this quadratic relationship exists. For the sake of s implici ty
in this section , however , it is allowed tha t there is no bias
err&r in the measurement. Then M and ~~~ are the same .
From now on , M and ~~~~ are used interchangeably.

S Maximizing a Linear Functional of M S

From Eqs . (4 . S )  and ( 4 . 1 5 ) ,  the cost is

= 
1

T 
1T 

~~. 2(~f~~~(t , s ) ) u ~ ( t ) u
3
. ( s ) dt d s

= 1T 
fT uT(t)P(t ,s)u(s)dtds (4.17)

P ( : ,s) is a symmetric positive definite matrix. The cost func-
t ion , as well as the constraint , is a quadratic function of the in-

put. This optimization lead s to the linear eigenvalue problem

fT  P ( t ,  )u ( :~~) d z ~ = x f r  Q(t , t ) u ( r )d :  (~L . 18)

p
sop
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S S The optimal input is the eigenvector corresponding to the maximum
eigenvalue . Efficient computation methods to solve the equation
are discussed in in the next section.

Minimization of the Determinant of D

The following result is proved in Appendix A.

Statement 4.1

A necessary and sufficient condition that an input u*(t)
minimizes DI is that u*(t) is an eigenvector of the following
equation corresponding to its maximum eigenvalue

T Tf  ~ * ( t , 5) u(s)ds a X 
0 

Q(t ,s)

(t ,s) a Tr (M*~~ M1.(t,s)) (4.19)

The maximum eigenvalue is mn and i * t refers to the optimal input.
P

Eq. (4.19) cannot be solved directly because P*(r ,s) is a
function of the optimal input. This is a general non1in~ar prob-
lem , which bears a close resemblance to Eq. (4.18), if the un-
ear operator 2’ in Eq. (4.17) is selected as

Tr (M* ( . ) )  (4.20)

.~~~~ Fortunately, an iterative scheme which converges to the optimum
input has been developed.

Algorithm 4.1

(1) Select an input u0(t) which satisfies the constraint
of Eq.  (4 . 16)  and give s a nonsingular i n fo rma t ion  matr ix ,

5~ 1 M~.

(2)  Compute W based upon M 0 .
(3) Compute the input um (t) which maximizes the linear

function of the information matrix defined by Eq.  ( . 2 0 ) .

1 
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(4 )  Find a P
1 

and I3
~ 

such that P 1u0(t) + P 2 U
~~

( t )
give s the least ID I under the constraint of Eq. (4.16)

~t is clear from the step s in the proof of Statement 4.1
that it is always possible to find ~~ ~ 

which re-
duces the cost.

(5) Check if the input has converged. If not , return to
step (b).

The proof of convergence of this algorithm is straightforward and
is not given here.

Minimization of a Linear Functional of D

Statement 4.2

A necessary and sufficient condition that an input u*(t)
minimizes 2(D) is that u*(t) is an eigenvector of the follow-
ing equation corresponding to its maximum value

IT rT
sJ p*(t ,s)u(s)ds = X J . Q(t ,s ) u ( s ) ds

0

S P~~ (t,s) 2(M*~~M~~ (t ,5)M*~~ ) (4 .21)

The maximum eigenvalue is 204* )~

The proof is similar to the proof for Statement 4.1 and is
not repeated. This again is a nonlinear problem and cannot be
solved directly. Algorithm 4.1 can be used with the linear func-

I tional in step (c) defined by Eq. (4.21). 1
4.1.3.2 Frequency Domain Approach

If the duration of the test is long compared to the t ime
constant of the system and the system is stable , frequency domain
techniques can be used. In frequency domain , the optimal inputs
can be computed more efficiently because: (1) the optimal input
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has a discrete spectrum with finite frequencies [ 1 7 ] ,  and (b)
the response of a linear system at different frequencies is
additive and independent . Instead of working with the time
domain description of the system , the transfer function which
describes the relation between the input and the output for
different parameter values at all frequencies. For the system
of Eqs . (4.1) and (4.2) 

1

y(w) a H( jw l  - F) 1 G u(w) + b8 (o,) + v(Q)) (4.22)

If T(oi) ~.H(jwI 
- F) 1G , the various blocks of the in fo rmation

m atr ix per unit time are easily shown to be

a 

~~ 
f  Tr ( B ~~~(w) dF

~~~
(cL)) }

= 

~~ 
Suu~

1 (0)  8T( 0 )

M (b) a .
~~~~~

. Suu~
1(O)  ( 4 . 2 3 )

where

3 ( )  - 
8T* (w) S

~~~~~(o~
) 

~~~~~

— 
~~~~~ 

( 4 . 2 4 )

F
~~
(w) is the spectral density of the input , ‘~~~~~‘ is complex

conjugate and u is the constant part of the optimal input . It

is clear that ~I
(a
~
) can be made zero by choosing u5 equal to

4’ zero (i.e. , by making the optimal input to have zero oower at zero
frequency) . Then the information matrix becomes

~~1
IM~~ 0 I

M — I I (4 . 2 5 )  -~~~~~

t o M
~~~~~IL J

I-,
-

P
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whose inverse is

M 1 1M(
~ o 11 0 ~4

(b ) 1
I ( 4 . 2 6 )

L J
So the biases in measurements have no effect on D~~~ . ~~~~

useful to effect this decoupling. Then M~~~ can be discarded
and M and M~~ used interchangeably. In what is to follow
this decoupling will be assumed and the optimal input will have
zero power at zero frequency .

The constraint of Eq. (4.3), in frequency domain is

~f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + w 2 ) dF
~~
(w) =

-

~~~ .(4.27)
or

~ L Tr(A(w)dFuu(w)) = E/ T - (4.28)

The average power , E/T , may be taken. to be one . The following
result can be proved: - S

Statement 4.3

p.,, A necessary and sufficient condition that the input u with
spectrum 

~~~ 
minimizes I D I (Tr(WD) ) is that the maximum

eigenvalue X (w) of the following equation be mn (.2~(D *) )

3(w) = X (w)A(w) (4.29)

I .‘~- p.
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where
p

In
B(w) E D* . .3.. (w) to mm I D I

13 13

tfl 2
S 

= E (WD* ) .  . B .  . (cij) to rain Tr(WD) (4.30)
5 

j,j~=1 
13 t3 

S

The proof of this statement is not given because it  fol lows the
proof of Statement 4.1 (described in Appendix A). The following S

algorithm can be used to compute the optimal input to minimize

J D J  or Tr(WD).

Algorithm 4.2

(1) Start with an input with spectrum F0 such that the cor-
responding information matrix M0 is nonsingular .
Compute A(w) and B~~ (w) (i,j.=1,2,... ,mn).

(2) Based upon the information matrix, compute B(~)

(3) Find w for which -the biggest eigenvalue of

3(w) X(a,)A(w) (4.31)

is maximum. Mote that A (~) and B(w) are Hessen- 
p

berg matrices , so that all the eigenvalue s of the 
S

above equation are real. If Xmnax is greater than
m (if I D is to be minimized) or Tr (WD ) (if TR(WD)
is to be minimized) continue to the next step ; other-
wise , stop .

(4) Let ‘1’i~ax~°’~ be the normalized eigenvector (viz.

‘
~~ax~~~ 

A(w)
~
Im~~

(w) a 1) corresponding to the maxim um

eigenvalue Xmax . In general , 
~
L1m~~

(w) is complex .
Update the design as follows

-I
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Fk+l = - ak)Fk
4.a

k Xmax(~~ *~ax
(
~~ 

(4.32)

and choo se ak by a gne-dimensional search. Return
to step (b).

p 5
Most of the computations in the above algorithms are straight-

forward. Therefore , this algorithm requires much less

computation time than the corresponding time domain algorithm .
In step (c) the eigenvalue of a q x q matrix equation has to be p.

determined at several values of w. This research can usually
be restricted to (0,w ) ,  where w is related to the time
constant of the system . In step (d), a Fibonacci search is
applied because DI and Tr(WD) are convex functions of ak

This algorithm specifies not only the optimal spectrum of
each of the inputs , but also the various components of the cross-
spectra.  Since the op t imal input has discrete spectra , it can be
realized by a sum of sine waves. It can be approximated by using
binary and other inputs . If the optimal input is implemented
with a sum of sine waves , the cross-spectra terms give the phase
relationship between the sine waves in various inputs.

U’.

4.1.4 A Suboptima ]. Time Domain Input

The computat ion of the optimal input in time domain is quite
complex because it requires minimization over a function. A sub-
optima l input , which approximates the optimal input , can often
be selected by the procedure described in this section. The sub-
optimal input is expressed as a l inear  combina tion  of some bas ic

4 input signals.

N
u(t) — E a.~. (i,t) (4.33)J i=l ~

are some preselected function l ike  s teps , s ines  and cosines ,
etc. The coefficients a~ may be selected to obtain the best
identifiability of parameters . N

- - ‘I
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The constraints on the coefficients a~ because of the
quadratic constraint on the input and the output may be written
from Eq. (4.16) (with E assumed to equal one).

S -

S ,-T ,TM 1 N
S J J E a~e(i,t)Q(t ,s) E a.~~(j,s)dt ds = 1o ~ i—i jal -~

or

AT~a = 1 (4.34)

where

= fT 
f

T
~T(i ) Q (  ,s)~~(j,s)dt ds

Similarly , the information ma trix for the aerodynamic parame ters

M = E a.a.M’3 . (4.35)
-p. i,jl 1 3

where Mi3 the cross information matrix defined as

S . .  tT tT q
M13 = J J ~ 

M.~,0(t ,s)~~~(i ,t)~ 0 (j ,s)dt ds
0 0 k,2=1~~~

The following algorithm may be used to minimize I D J , by selecting
the coefficients a

~
Algorithm 4.3

The following procedure converges to the global optimum :

(1) Compute and store Q and M13 for i,j=l ,2 ‘I .

(2) Select a vector a0 such that the corresponding
information matrix M0 is nonsingular .

(3) Compute an N x N matrix p
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- S S~~~

= Tr(M~ 
1 M’3) (4.36)

(4) Find the largest eigenvalue X and the corresp-
onding eigenvect~r amax of the equation

Pa a ~4a (4.37)

If X
x 

in , stop ; otherwise, continue to the next
step.

(5) Update a by selecting P
1 
and p 2 optimally,

ak+l -‘~T ak ~~~ amax (4.38)

such that the constraint of Eq. (4.34) is satisfied.
Compute the new information matrix and return to (3).

Example 4.1

Consider a first order system with unknown input gain (e.g., “p

model for roll control of a missile)

= -x + eu, x(0) 0 (4.39)

with noise measurements

y(t) = x(t) + v(t) 0~~t~~2 (4.40)

v(t) is assumed to be white noise with unit power spectral density.
An input is to be designed to get a good estimate of parameter e
The optimal input is constrained.

f u2(t)dt 1 (.1 .41)

(1) The optimal input for this system has been computed
previously. It is

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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u(t) = 0.59 (sin l.14t + 1.14 cos l.14t) (4.42)

S The inverse of the information matrix (the covariance of
parameter e ) is 2 . 2 9 .

:~ ~2) A suboptimal input is designed; the input is chosen a
sum of two functions

u(t) a a1s1(t)  + a2s2 (t-l) (4.43)

-p.
..

-
-

where s1(t)  is a unit step function of unit duration
4~ at time t a O .  The P and ~ matrices are

1/2 0

0 1/2

r°.3~ o.izs l

L0.125 0. 17 1J  

5 

(4 . 44)

the optimal input is easily shown to be S

a = 0.8841

a2 = 0.465

The inverse of the information matrix is 2.4S.
which is about 6.7 percent higher than the optimal input .

The optimal input and the suboptirnal input are shown
in Figure 4.1.
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Figure 4.1 Optimal and Suboptimal Inputs for a
First Order System

5 ;  4.2 INPUT DESIGN FOR PARAMETER IDENTIFICATION OF LINEARIZED
S S MODES AROUND AN OPERATING POINT - COMPUTATIONAL TECHNIQUES

4 . 2 . 1  Introduction 
S

Computational methods have been a major hindrance in the
routine computation and use of optimal inputs in aerodynamic flight
testing. Efficient methods must be developed for systems with
many state equations and a relatively large number of parameters.
This part deals with the computational aspects of the parameter
identifying inputs .

Iterative algorithms for minimizing the determinant or a un-
ear functional of the dispersion matrix are given in the first part
Section 4.1 The two major steps in the algorithm s are the
determination of an input which maximizes a l inear funct ion  of

~~~ the information matrix and the computation of the information ma-
trix for various inputs. An efficient method for determining the
information matrix has been described previously. This section
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describes computational techniques for determining inputs which
maximizes a linear function of the informat ion matr ix .

4 . 2 . 2  Numerical Methods for Maximizing a Weighted Trace of the
Information Matrix

As before , let the s ta te  equations and the measurement
equation s be

0 
-.

~~- x(t) =Fx(t) + Gu(t) 0 ~ t ~ T (4 . 4 5 )

. -~
. 

S

y(t) = Hx(t) b ~ v(t) (4.46)

The information matrix for the aerodynamic parameters is

:~~ 
M fT ~~Hx)

T 
~-i a(~~c) (4 47)

.~~~~~~ Since
a (Hx) = al-i 8x 

4ae. x + H . 8
3. 3. 1.

and

d ax a~ ax
— = -

~~
-
~~~-- x + F + u (4.49)

If we def ine  S

xe
T
~~~(xT 4~~~, ...~~~~i)
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p
GT a (GT, ~~~ - . .i~~9 

~~

f (Hx)T, ~~~~ 3(Hx)

H

3F1
— H 0

•

:;~:: 38m (4.50)

then.I F9x9 + G9u x9(0) 0

E 

y~ = H9x3 (4.51)

- and the (i , j )  element of the information matrix is

:.‘41

I S
5, ,’
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•1

(T
a J Y~~~~~ R

1
~~~ e~~~dt ( 4 . 5 2 )

It has been shown in Ref.34 that Eqs. (4.51) can be reduced to

~
(e Txc~~~

To xc 
S

in (4.53)

Expressions for T, Fc and Gc are given in Ref. 2 and 34. From
Eqs. (4.52) and (4.53)

M.. afT x~ (t)  T . TR lT~x c t )dt

T
= Tr C (T~T R~~T~ ) f x~

T(t)x~ (t)x~ (t)dt } (4.54)

Therefore ,
In

Tr(WM) a 
~ W ..Tr C (T~

TR lT.) J x T ( t ) x  (t)dt
i,j=1 ~ ~ 0 c c

Tf  x~
T
~t~w* x~

(t)dt (4.55)

where -~~~~

~= : w . .T . L R~~~T.•11, J l  ‘

—
--

-I
..’

.
~~-

- 
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S~ S*

•
~

The quadratic constant on the input and the output may also be
written in terms of xA (t) (with unit energy)

T 

-

f (xc
T (t )T O

TW1TOXc (t ) + uTW,u ) d t = 1 ( 4 . 5 6 )

I t can be shown , by an extension of the results of Ref. 16 , that

to maximi:e Tr(WM) , the following eigenvalue problem must be
solved

-

~~

._ 
[xc

— 

= 
F 

~
.1G
C
W 1GC

T

dt 
[x  W*~ uT TW T  -F

~ X

x
~
(O) = X ( T )  a 0 (4.57)

= -~ W2 C0 X (t) (4.58)

It is assumed here that is nonsingular. If it is , we ge t
singular cont—ol. For example , when W is zero , Eq. (4.58) must
be replaced by G0

TX(t) = 0. Again , we have 
5
the required number

of equat ions to solve for all unknown- qualities. The case of the
si~~u1ar contro l is not discussed. -:

The problem is to find the minimum i.i such that Eq. (4.5~ )

has a nontrivial solution because l/~i is the value of the cor-

responding performance index. The simnplectic property of the

Hamniltonian is used to find a solution to the eigenvalue proble~i.

The eigenvalues of the state transition matrix occur in pairs
.+.X and -X. Let s and s be the positive and negative sets
of sigenvalue s r f  this matrix with the corresponding partitioned

eigenvec tor matrix
I
’p

~~~~
.
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-
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A~ (4.59)

normalized such that
~

-. -~

~1~
T TA X 4 - X A 4 = I (4.60)

It can be shown ~l6I that Eq. (4.57) has a nontrivial solution ,
if

- s T- s T
U = A4

1A e  
.4 

X~~
-X

÷~ 
(4.61)

has at least one eigenvalue equal to 1. A random search , followed ,
S 

by a N ewton -Raphson method , may be used to find the smallest u
such that an eigenvalue of this matrix is unity. This procedure
is detai led in R e f .  16. 

-
4 .2 . 3  Numerical  Computat ion of a Suboptimal Mu lt i s t ep  Input

The algorithm makes it possible to compute the optimal in-
puts for high order systems with many unknown paramaters. The
computation time m ay, however , be quite high . From a practical

viewpoint a suboptimal , multi-step input may be sufficiently good.
In this section , we develop an algorithm for selecting an input
from a class of multi-step inputs. Suppose that an input with s

steps each of duration ~ is to be selected. The optimal input
may be written as

5 : u(t) = ~~ a.~ . (t) 0 < t < T ( 4 . 6 2 )
— —

where ~~~(t) is a Unit step in the interval (i-l)~~ _ t < i.
For sake of simplicity we assume that there is only one input . The

mul tiinput case will be treated subsequently. Let be the re-

sponse of the reduced sensitivity equations to unput ~1
( t ) ,  (i.e.,
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,,

a F~~ + Gc~i
(t) (4.63)

~~~ Then because of the linearity of the system and the fact that

S ~2 (t ) . . .~~5 (t ) are delayed ~1(t), the state x~ for input u
of Eq. (4.62) may be written as

r- .- .

- -

X
c

( t )  = 

i=l 
ajxc(t- (i~

1)
~~
) (4.64)

S wi th the understanding tha t ~(t) = 0 for t < 0. From Eq. (4.55)
weighted trace of the information matrix can be expressed in terms
of a

r T 5
Tr( WM ) a E a i~ c

T ( t _ ( i_ l )  )W* ~ a .x  ( t - ( j - l ) s ) d t
J O i=l j = l  3

a aTpa (4.65)

W~ has been defined before and P is an s x s matrix such that

p .. = f ~ 
T~~~~~~1~ )W *~ (t-(j-1)~~)dt (4.66)13 C c

can be computed by the following recursive relationship

a p + fA x0 (t+T iA x
~
(t+T j

~~
dt

and
= 0 i ,j=l ,2,3, ... s (4.67)

The quadratic constraint on the input and the output may also be
expressed in terms of the var iab les  a. From Eq.  (4 . 5 6 )
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.4

tT ~ T IE (a.~ (t-( i-l)~~)T0 W1T0 
E a.~ (t- (j-l)~~)J O  jaj . 2. C j ai. 3 C

1
¼~ 

+ ~ ~~~~~ (t)W2 E a.~~.(t) }dt = 1 (4.68 )j a j  ji . ~

i.e. ,

-
‘I

aTQa a 1 (4.69)
pS~ 
.
~.

where T
Qji 

a 

10 
T ( t l T Tw T ~~~~(t j l)~~

+ ~~
T ( t ) W ~~~~(t ) }  d-t ( 4 . 7 0 )

Note that both P and Q are writ ten in ~erms of the single time
history propagation of the reduced sensitivity function. This
makes it possible to compute the suboptimal multi-step input using
the following steps (this is a special application of Algorithm
4.3 , Section 4.1~.

Steps in the Computation of the Suboptirnal Multi-Step Input

(1) Using the state equations and the unknown parameters
from the reduced sens i t iv i ty  funct ions  Eq.  ( 4 . 5 3 ) ,
(i.e., compute F

~
, G

~ 
and T).

(2) Select the number of steps s and propagate Eq. (4.63)
and st ore Xc~

(3) Compute and store Q using Eq. ( 4 . 7 0 ) .
•

(4) Select an s x 1 vector a
0 

and compute x
~~
(t) from

Eq. (4.64).

(3) Find the information matrix M0.

6’

as
~~~~~~

~~~ ~‘ ~.: .~
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(6) Calculate W based upon the criterion for optimization
and M . Also compute W~ .0

(7)  Compute P using Eq. (4.67).

(8) Determine the highest eigenvalue A max and the corres-
ponding eigenvector amax of the following :~

a XQa (4.71)

(9) Update the design

a~41 = ~~~~ + l’ a (4.72)

such that a~÷1 satisfies Eq. (4. ~O) and optimizes
the criterion function . If the criterion function mi -

proves very little , stop; othe rwise return to step (5).

4.3 INPUT DESIGN FOR MODEL DI SCRIMINATI ON

Sometimes , in complex processes , several competin g models can
be postulated. Tests may then be conducted to discriminate
among these models. In linear systems this may involve select-
ing the order of the process and various canonical indices. This
problem is more complex in nonlinear systems where the natures of
the nonlinearities may have to be discriminated for , in addition
to determining the order of the process. The inputs used to ex- :~cite the system during the test may resolve the model amb iguity
with lower chance of error and in a shorter test time .

4.3.1 Problem Statement

A process may fol low one of several models , 1,2 ‘I. The
ith model may be described by •:~-

a f (x~~u ,9~ ) 
-4- ~~ x(O) = 0 0 < t < T (4.~~3)

I
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4.
.

with measurements ,

y
~ 

a h
~

(x
~
,u,8

~
) ~4- v~

x1 is the state vector for the i-th model and is a set of
unknown parameters in the model. w~ and v~ are random white
noise sources with power spectral densitites of Q and R, re-
spectively (known or unknown). The problem is to determine the
most likely model given a certain input u and the corresponding
response y. S

For the sake of simplicity , we assume that there are two coin-
peting models. The case of multiple models is a straightforward
extension .

~44

4.3.2 The Criterion Function

Let us suppose that the two dynamic models are

Model 4.1

f1 (x 1,u,91)

y1 h1 (x 1,u,91) + V1 (4 . 7 4 )

S Model 4.2

x2 = f 2 (x 2 , u , 8 2 )

y2 = h2(x2,u,e2) v2 C4.~~5)

Note that the two state vectors may be of different dimensions and
the number of unknown parameters in the two models may be different.
We have assume d that  the process noise does not exist , because the
extension to the process noise case may be obtained directly by
using the innovations representation .

5
..
.
...
.
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Suppose an input u is applied to the system and an output

~ y observed. The likelihood that the first model is the true
model is

S s 1 a p (y 1ay/u ,81, M1) (4.76)

The negative logarithm of this likelihood function is

• IT
a 

~ 
C (y-h 1 (x 1,u,91) ) TR1~~ (y-h1 (x 1,u ,e1) )

• log (R 1~
} dt ( 4 . 7 7 )

The negative log-likelihood function of the second mode l being
the true model is also computed in a similar fashion . We begin
with the assumption, that there are rio unknown parameters in either
model. Then, if M1 is the true model , the expected ~alues of

S -L and L are

r T
E ( L 1 (M1) )  a E 

~~ 
J .  

( (h1+v1~h1)
TR1~~ (h1+v1~h1)

+ log 1R 11 } dt

a I (p + log IR 1DT C4.78)
2

-I

E(L2 (M1) )  a E ~ fT( (h2+v1
.h

2)
TR2~~ (h1+v1~h2)

+ log IR 1~ } dt ~~~5 1

a I (Tr(R1R2~~) 
+ log 1R 21)T

-

~~~~~ 2

+ 1 f T (h 1~ h 2 ) TR 2~~~(h 1
p .h

2 )dt  
~~~~~. 79)
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Using ~

E(L 1(M1)) a I (p + log ~R1I)T - (4.84)

where in1 is the number of unknown parameters in the first model.
Computation of E(L 2 (M1) )  is more difficult. Again the estimated
value of 82 follows the equation S

f T  ah
J (h1+v1-h2)R 2~

’
~’ —,~~~~

. dt a ( 4 . 8 5 )
JO 882

Note that there could be a large error in the estimated value of
because an incorrect model is used in the identification.

Let 9 be the estimated value of 9 if there is no noise in
the measurement. Assuining 

~2 
is close to 

~2l 
it is easy to

show that

E(L2 (M1) )  = I (Tr (R1R~~~) + log ~R2j)T 
- I’m 2

.
•.~

•.
.•

-
~5-•~

+ fT  (h 1
(9 .,~) ~h2(921 ) ) TR2~~.(h1(e1)

- h2(821))dt (4.86)

5 

2]. is a parameter vector such that h2(821) is the projection
of h2(e2) on h1(81) .  If we take the difference of E(L1 (M1)).
A criterion similar to that of Eq. (4.80) will be obtained.
Again , we must maximize the last term in the above equation. Note
that 

~2i 
depends upon the applied input.
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4.3.3 Optimal Input Selection

The above discussion shows that an input which maximizes J
must be selected.

~ fT 1 1h 1Cx1,u , 
~~ 

-h 2 (x 2,u, 
~~~~ 

(4.87)

where 
~21 

is given by

T 3h[ (h 1 (x 1,u ,91) ~h 7 (x 2 , u ,e 21 ) ) T R2~~ ~~~ (x ,, u ,8 21 ) dt a 0
p .0 8821

(4 . 88)
where x1 and x2 follow the equations

a f1(x 1, u,81) ,  x1(0) 
a Q (4.89)

and
S a f2 (x 2 , u,821) x2(0) = 0 (4.90)

The constraints of the equation can be removed by selecting an in2
state variable vector x3.

ah2~ -la (x 21,u,921 )R
2 (h 1 (x 1,u,91) -h 2 (x 2 1u,821 ) )

x3 (O) x~ (T) = 0 (4.91)

Le t us assum e tha t u mus t belong to a set of real function R.
Then , the problem is to
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j a ifTII h l (x ,u,e )h(x u e fll 1dtu cR ,821 ( 4 . 9 ~ ) ::.:

Subject to the constraints of Eq. (4.89), (4.9(’) and (4.9]~~.

Note that 
~21 

is a vector of constant controls. This is
a standard problem in contro l theory .

Example 4.2

Ml: i i a~~~~x, + u

0 < t < 2  (4.93)

M 2 :  = -2x2 
+ 2u

a + V 0 < t < 2 (4.94)

We wish to select an input consisting of two steps each of one - :;
second duration to discriminate between these two models. Let the :p.

. steps be of amplitude a1 and a2. Then it is strai ghtfóri~rard
to show that

= a1(l~e
t) 0 < t <  1

a a1
(e_1)e t + a 2 (l~ ee t ) 1 < t < 2

a a1(l~e
2t) 0 < t < 1

a a1(e 2 _ l ) e 2t 
+ a2

(l_e 2e
5’
~~
t) 1 < t < 2
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A straightforward computation gives

2 2 2J~ 
(x 1-x 2) dt a 0 .54 2 8a 1 - O . 0 2 2 8 a 1a, + 0.04428a,

If there is a total energy constraint on the input the opti-
ma]. input is such that

a S

= -1.53
a2 

5

4 . 4  CONCLUS I ONS

This chapter presented various techniques for designing tests
which make best use of the experiment time in terms of obtaining
the most accurate parameter estimates within the constraints of
the system. Various tnethodo1o~ies for conducting tests on nonlin-
ear systems are discussed first. This includes direct estimation.
of the nonlinear relationship s and of conducting tests at several p.
operating points and estimnati:tg the small sighal (linearized) mo-
del at each point. ~nput design techniques for both cases are
covered. A special emphasis is given to the determination of in-
puts which are suboptinial , but easy to compute .

. 5

In nonlinear systems , we often need model discriminating in-
puts. Methods for the selection of such inputs are covered in
detail

I

75

7, S~~~~~~~~~~~J~’ ~~~~‘ ~~ %
•
~ -~~~ 

.‘
~~ -

a-. ~~~~~~~~~~~ ~ ~~‘ ~~



- -I
p.

-P -P..
V. CONCLUSION S :::

To extend the application of system identification technology
to complex Navy systems , two major problems have been solved.
These are: (a) the development of general techniques to determine
the structure of a nonlinear model which best explains an input!
ou tpu t data , and (b) the developmen t of methods for designing

inputs and maneuvers which adequately excite each mode to provide

accurate estimates of all unknown parameters in the identification
stage.

An effective model structure determination technique is devel-

oped as a combination of two methods

(1) Selection of parameterization: This me thod selects
a set o~ importan t parameters from a general model.
The parameters may correspond to coupling between
various parts of the model or the order of dynamics
in the model.

2) Spline representation of nomlinearities: This method
uses a general spline representation for unknown non-
linearities and then app lies optimal subset regression

S to select the appropriate terms from the general sp line
representation. :- .:~

The input design technique for  nonl inear  sys tems is a combin-
a t ion of the fo l lowing  methods .

(1) Inputs  for small motions around operating points:
• Several operating points are selected to cover the non-

linear operating region . Inputs are designed for small
motions around these operating points.

(2) Computational techniques using orthogonal functions:
• Computational techniques , based on representing the

input as a sum of orthogonal functions , are deve loped
to enable determination of optimal input s for complex
nonlinear systems.

(3) ODtimal inputs for model discriminatio n : Inputs , which
enhance the distinguishability among several competing
models , ar e des igned.
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These methods have been used with simulation data and are
currently being implemented for flight test data application .

The results of the present study lead to the follow ing major

conclusions :

(1) Model structure determination is an important part of 
N

the system identification problem in complex nonlinear
sys tems . Techniques  for model structure determination
from noisy data have been developed and are computation-

~p. S ally feasible.

(2) Inputs must be carefully selected to be able to esti-
mate the mode l structure arid the parameters accurately.
Technique s for designing inputs to irn~rove parameterestimation accuracy or ~odel distingu ishability have
been developed.
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