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STRATEGIES FOR THE MINIMIZATION OF AN
UNCONSTRAINED NONCONVEX FUNCTION

by

Garth P. McCormick

1. Introduction

Newton's method for finding a zero of a function of one variable
is the prototype algorithm. There is a large body of literature dealing
with Newton's method for solving n simultancous equations in n unknowns
(see [17] for material relating to this). Since finding the unconstrained
minimizer of a function of a twice differentiable function of several vari-
ables involves finding a point where the first partial derivatives vanish,
Newton's method is applied toward solving this problem also. In this paper
Newton's method, with computationally important variations for the case
when the Hessian matrix of the function is occasionally indefinfte, is

analyzed.

In Section 2 Newton's method is derived trom a natural point of
view using the "gradient path" approach. There is an interesting connec-
tion between the classical Cauchy [3] method of steepest descent and
Newton's method. This point of view is helpful in Section 3, where modi-
fications to the basic approach are discussed in order to obtain convergence
to a second order point (one satisfying the requirement that the Hessian
matrix be positive semi-definite, as well as one where the gradient vector
vanishes). The different strategies for doing this involve directions of

negative curvature. The strategies are compared in a simple example.




2. A Cauchy-Newton Approach to Unconstrained

Minimization

A natural way to develop a method for minimizing an unconstrained
function f(x) 1is to consider a physical situation. The trajectory of a
boulder down the side of a mountain (with the boulder restrained by ropes)

would approximately satisfy the differential equation

x(t) = -VE[x(t)] . (1)

In general it is not possible to obtain a solution in closed form

of (1). When f(x) 1is a quadratic form there is a general solution,

since the differential equations are linear. Let x(0) = X be the ini-

tial point, and let EAET be an eigenvector-eigenvalue decomposition of

sz , i.e., X 1is the diagonal matrix of eigenvalues, and EET =1 with !

E the matrix of eigenvectors. Since f is assumed quadratic, this de-

composition is independent of x .
It is well known (see [4]) that the solution of (1) is
T
x(t) = Xy ~ EY(t)E Vf(xo) 5 {(2)

where y(t) 1is a diagonal matrix whose jth diagonal element Yj(t) is !

( -)\,t)

1 e Y JR,, If A, 4¥0

Y0 = J J .
: t , if A, =0

For t small, (2) yields

x(t) = Xg = Vf(xo)t

This is similar to the algorithm known as Cauchy's method of
steepest descent [3]. One version of this algorithm is to generate a se-

quence of minimizing points as

— - Vf(x - e 3§
X xk l\xk)tk - k=0,1, £3)

k+l1




T-343

where each tk is obtained from the following ste¢p size problem (with

S, = —Vf(xk)) -

SSP 1 (Step Size Problem I). At a point X, » given a direction of

search s, , set x =x + st

K where t is a local solution to

k+1 k kk’? k

minimize f(x

LR o) T
t >0 -

k

An important distinction should be made between the continuous form
of steepest descent given by (1) and the discrete form in (3). The former
is suitable for implementation on an analogue computer. There are not many
published results on this. One such experiment (Fiacco and McCormick [6],
Section 7.3) demonstrated the feasibility of this approach. Implementation
of this, however, requires an extraordinary amount of equipment and time.
The discrete approach is easily implemented on a digital computer but is
notoriously slow. Another important point is that the solution of the first
order continuous differential equations seems to imply that the appropriace
algorithm for implementation on a digital computer is not the discrete form
of steepest descent, but rather some form of Newton's method. With this in

mind, analysis of (1) and (2) is continued.

When t 1is large the trajectory x(t) depends upon the signs and

2
magnitudes of the eigenvalues. In the case when V™f is a positive def-

inite matrix, i.e., when A, > 0 for all j ,
J

® VABINE i (O
x(») = Xg = (V) Jf(xn)

This is the algorithm prescribed by the classical version of Newton's

method which minimizes a positive definite quadratic form in one iteration.
The classical method without modifications iterates as

X =

2 -1 ., o ;
K1 xk -V f(xk) \/f(xk) v for  k=U.lcis = (4)
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Near a point x* where Vf(x*) = O and sz(x*) is positive

definite, tne rate of convergence Is "at least quadratic," i.e., there is

a value M > 0 such that

2
ey = xxll < M lx - w2

3. GClobal Convergence Using Directions of Negative
Curvature

There are many theoretical and computational objections to the use
of Newton's method. The computational objections will not be taken up in
this paper; here the theoretical difficulties are discussed and the basic

method modified so that convergence to a second order point can be obtained.

When X is far away from an isolated local minimizer the Hessian

matrix may be in&efinite, and occasionally may even be singular. In this
instance the traditional move may not be a descent direction (and in the
singular case is not defined). Furthermore, even if the Hessian is posi-
tive definite, the quadratic approximation may be so poor that little
progress is made. Since the computation of the Newton direction is rela-
tively expensive computationally and since it is not known how close the
current point is to the isolated local minimizer, it is argued that a
simpler algorithm is to be preferred. Another problem (which may be more
computational than theoretical) is that the condition number of the Hessian
may be 50 high that the numerical procedure for computing the Newton direc-
tion gives a false indication that the Hessian is not positive definite.
There is no way, using the traditional Newton equation, that this possibility

can be adequately handled.

These objections have led investigators recently to propose modifi-
cations to the basic algorithm. Indeed, any computer program which imple-
ments a form of Newton's method must take into account these difficulties.

The problem of what form Newton's method should take when at the point Xy o
i i
when the Hessian matrix V 1(xk) is not positive definite, has been

investigated by several people. The strategies covered by these papers fall

into five general categories.
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A. When in the course of computing the inverse Hessian (usually
in some implicit form) an indication occurs that the Hessian is not pos-
itive definite, force the numerical procedure to generate a positive
definite matrix. The reasoning behind this strategy is that in most
cases when this occurs, it is because of numerical round off errors (caused
sometimes by ill-conditioning) and that this will tend to correct the
round off problem. In any event, it is argued, the resulting direction

will be one of descent.

This strategy will not be pursued further here, except to note
that compared to those discussed below it is wasteful of information.
The same numerical procedure that is used to get the inverse Hessian in
the positive definite case should be able to compute information that
will hasten the search for the minimizer. There is no reason why the des-
cent direction above will be any better than, say, the steepest descent
direction when thé Hessian is indefinite. In other words, if the genera-
tion of a direction of descent is the only concern, there are cheaper ways
to do it. For more information on these techniques the reader is referred
to Matthews and Davies [13], Greenstadt [10], Levenberg [11], and Marquardt
[12].

B. When it is discovered that the Hessian matrix is not positive

definite, modify the numerical procedure and compute dk s @ descent direc-

tion of negative curvature, i.e., a vector such that

.,
dk v f(xk)dk S
and

D s
/ <0 .
dy \t(xk) g

Set S, = dk and find tk the step size scalar by using SSP I.

The motivation behind this strategy is to hasten the search for a
region in which the Hessian matrix of { is positive definite so that the
classical approach will apply and an ultimate quadratic rate of convergence
be obtained. The reason this strategy should accomplish that is that the

direction dk is one in which the function decrecases, and also one (at

g T e e ore——
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least initially) in which the rate of decrease is decreasing. To see i

this, simply note that

T -
df (x, +d £)/dt = d Vi(x) <0, at t=0,

and

2 - S P _
d f(xk+dkt)/dt = d v f(xk)dk <0, at &=0 .

If the problem is well posed, the function is bounded below and {x|f(x) <

f(xk)} is a bounded set. Thus, ultimately the curvature of f in the di-

rection dk emanating from X will become nonnegative.

If the directions {dk} are chosen with care, eventually the sequence

of minimizing points will enter a region in which the Hessian is positive
(semi) definite and remain there. Tt is not difficult to compute a direction
of negative curvature; what is difficult is to compute one which has some
resemblance to an eigenvector of the Hessian associated with its minimum
eigenvalue. When it does, the minimum eigenvalue of the Hessian can be ex-
pected to increase each time the above strategy is used. FEventually the

minimum eigenvalue is brought above zero, as hoped for.

Intuitively this strategy makes sense. Theorems can be used to prove

second order convergence of the strategy if the directions {dk} have cer- i
min
k ’

convergence (except under pathological circumstances) can be established.

tain properties. If one is willing to go to the trouble to compute e

The problem is how to obtain a good direction of negative curvature and use
no more arithmetic operations than would be required to compute the usual
Newton vector. This matter has been discussed elsewhere [15]. For recent
attempts to handle this problem the reader is referred to Gill and Murray
[8], Fletcher and Freeman [7], Fiacco and McCormick [6], and the survey by

Murray [16].

C. The most appealing strategy is based on (2). If this were done,

the continuous steepest descent trajectory, or "gradient path" (based on

a quadratic approximation at the point xk), would be approximated. This has
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many desirable features. For one thing, the method is not as sensitive to

numerical round off errors which may give a false indication of indefinite-

ness. It is easy to show that

-\t
lim (l =g )/A, = for all €t >0 .
A0 4
]

There have been some experiments based on this approach (see [18],
[91, [5], and in particular [2]). The major drawback is that it requires
a full eigenvalue-eigenvector decompositon; that is, unless techniques for

exponentiating a matrix are used.

An obvious modification to this would be to do another decomposition

which resembles the eig-eig decomposition using some numerically stable pro-

cedure. There are many possibilities for this, but no published work seems

to have been done in this area. There is one approach which used a quasi-

Newton updating technique to approximate the inverse Hessian [19]. Some
numerical experience has been reported there.

The formal statement of this approach is: let x](t) be the solution
K

given by (2) to the quadratic approximation problem. Set X4l T Xk(tk)
where ty is a local solution to min f[xk(t)] .
t>0
D. The fourth strategy is to create a trajectory which is a combina-
tion of a descent trajectory and a trajectory given by a descent direction of

negative curvature. The desire to simultaneously minimize the function in

the directions in which the Hessian has positive eigenvalues and to move also

in a direction of negative curvature can take several forms. Below is one

form for which convergence to a second order point can be proved.

Two new step size procedures are necessary to implement this strategy.

They are generalizations by McCormick [14] of those suggested by Armijo [1].

SSP 11 At iteration k , given xk and s a descent direction of

k
search emanating from it, find i(k) , the smallest integer from i=0,1,...

such that
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f(xk+sk2") - Fx ) £ Q¥ SZ Welm} .

where o is a preassigned constant where 0 < o < 1 . Set

% o a1iCle)
Koy, % -

SSPE ELE At diteration k , given x , S a descent direction,
e k

1

and dk a descent direction of negative curvature, find 1i(k) , the smallest

integer from 1i=0,1,... , such that

-y, 0 TS SR 1.8 2
f[yk(2 )] f(xk) SO [sk yi(xk) - 5 dk v f(xk)dk] ,
p s N it -i/2
whe re 'vk(“ = X + s.k2 + dk2 . Set
= e i) o—1(k)/2
Xk+1 Xk + skz + de %

(Here again, « 1is a preassigned constant with 0 < o < 1).

Algorithm. Let X be a given point. In general, at iteration k

there is available a point xk . Movement to X+ takes a different form

depending upon which of two cases holds.

Case (i): The Hessian matrix V l(xk) is positive definite. Set s, =

k

--sz(xk)_1 Vl‘(xk) and obtain x using SSP I1.

k+1

%
Case (ii): The Hessian matrix ‘J"l'(xk) is not positive definite. Compute

a descent direction Sy and a descent direction of negative

curvature d,. . Use SSP IIl to obtain x <
“k k+1
A specific realization of 1 and dk in Case (ii) would be the
: ; s min ; S g
negative gradient -Vf (xk) and ‘(-k (with the sign chosen appropriately

to make it a descent direction).
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Again, the difficulty in using this strategy is in finding an effi-

cient numerical procedure for computing dk and a natural choice for Sy

which allows for minimization of some "part of" f(x) .

E. Another strategy, related to the fourth one, is to create an

iteration which consists of several steps. Using x, asa base point,

move successively optimizing along computed directions of negative curva-
ture. The last step of the iteration is tc move so as to minimize the
"positive part" of the quadratic approximation at x .

k

W ol . 2
Specifically, define the positive part of the Hessian V f(xk) to be

5 T Fakey
A?>0 B e

Sl o d - s :
where E A (E) is the eigenvalue-eigenvector decomposition of the Hessian
- . k o . : . : .
matrix. Compute P , a positive semi-definite matrix which is an approxima-

; Sk k k ; : ”
tion to * | and d]""'dq , descent directions of negative curvature for it.

k
Set ¥y < % In general, for the jth step of the kth iteration,
k k 3 - : .
set Si = di (where without loss of generality it is assumed that
kT | : : k , .
(dj) Vf(xk) < 0) and find y]+l by solving the usual step-size problem:
minimize f[yl; + s‘;t] s (5)

t >0

This is to be done for j=1,...,q .

At the (q+l1)st step the direction of search is set equal to

k

) (| Rt g
T GE) «(()\k) s

and the outcome of the optimal step size problem (5) vields a point which is

ake be R
taken to be xk+l
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Partial motivation for this algorithm can be given as follows.

Suppose at X there are q negative eigenvalues associated with its

Hessian matrix. Suppose further that in general the Hessian matrix of

f at any general point x can be approximated by

sz(x) = E/\(x)l‘}’l' . (6)

where EE =1 , and A(x) 1is a diagonal matrix. This is tantamount to
assuming that although the eigenvalues of the Hessian matrix of f(x) may
vary from it point to point, the associated eigenvectors do not change very

much.

For definiteness assume that

< j=
Xj(xk) =0 for §=liesesq s

and
Aj(xk) >0 , fior g=gbl Do o <

Set q? = fei (the sign chosen so that (vi)r Vl(xk) < 0 ). Because

the optimal step-size procedure (5) is used, it follows that

k

L 2
o \ = 3 1=
e Jf(yj+1) (8 far. G=loocasq s 7

Because of the approximation above it follows that

1
k k k k k i) k
VE(y,,,) = Vi(y.) + / EX[y. + (v, = ¢ )¥s]E dse.t,) , for §=licvosq =

ks U LT T e i ' 1

(8)

A simple induction argument shows that

C; Vl(yﬁ) = v; V{(xk) » for  d=Lovien® v (9)

If the problem is well-posed, i.e., if Jx!f(x) : l(x“)‘ is a bounded set,

then the step-size problem terminates at a finite point and the second order

) necessary conditions imply
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!
g Thus this strategy brings the eigenvalues up to zero. Assume that strict
; inequality holds in (10). Assume further that the eigenvalues which were
4 strictly positive have not changed at all (or, not very much). Then at
i
§ y2+1 , by recomputing the new information, a usual Newton move would be
Z made. We shall now show that no new computations are necessary, i.e.,
§ that the step (q+l1) accomplishes this.
{ The Newton direction at yq+] is given by
: B N L o k -1 T k
i _V = e ) / & .
; Eqe) VO = Loy ¢ M 0qr) ¢ V0 (11)
i Now because of (7),
] Tk
; - G =
: Lq r(yq+l) 0 .
: For 1 < j < q , by virtue of (8) and the fact that e; ci =0 . for iI¥j .
f induction yields ;
) T k T K
{ s WE = e ) =
? (j t(yq+l) (j \((yj+l) 0
! (using (7) again). Thus (11) above is equivalent to o
! n k =l e R
{ = . A >, V
: Logegrr &5 X 0en) e VG q4)
! X ) . S - :
i lhe fact that e ci =0, for i#j , coupled with (8), readily yields
] T k T o s
; = e =GtLyses us .
ej Vf(yq+]) o \f(xk) s for j=q+l, n

This, coupled with the assumption that the eigenvalues which were positive

é at Xy do not change much (i.e., Xi(vi+l) = Ai(xk) for = d=qFl cevsa0)s
' implies that
; n K =17 ...k n -1 T
3 o Sl - WX i il
! 23=(|+] €5 2 0qn) €y VEUGy) ziqul €y A\l ey VIG)

which is just -—(Pk)l Vt(xk)
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Example. The nonlinear programming problem is:

minimize sin (xl+x2) + (xl-xz)2 - 3x1/2 + 5x2/2 .

. i

12
The vector (x, x ) 1is further restricted so that xl s =15 x2 bl

-2.5 must hold. This is a nonconvex programming problem and has an in-
finite number of local minimizers. The plot of the problem is in Figure

) T
1. Assume that the starting point ot the process is XO = 05 —28)

The solution of the differential equation (1) starting from that point is

given by

£(e) = [P e} + s 2, wlEr = Iy (e - vyl ,

where

jexp(/r7§t
o.xp(/._7—5t

SRR - 2 ek /5[ .297007) + 1]

+297007) + 1
and

2

y (t) = 1.5 exp(-2t) .
As t approaches infinity this trajectory approaches the local unconstrained
minimizer (~.5471975512, -1.547197551) . The trajectory is plotted (the
dotted curve) in Figure 1.

e 5
At Vf(xo)] = (-1.6224, 4.3776) , and V"f(xn)

XO,

1.520574, -2.479426
=2 <4

THh 3 e s 4 on - > __("‘ 5 i ) i et i
9426, 1.520574) . This has an eigenvalue (-.95885) in the direction

1 . ; : > g = i —
t(1,1) , and an eigenvalue (4.) in the direction *(1,-1) . For simplicity
the normalization of the eigenvectors will be incorporated into the diagonal
matrix. The trajectory given by the quadratic approximation method (Strategy

C) is

(0.) 1 1)((1—exp(-/.u\/8 0 )(1 ~1 ~|.h::a)
.5 -1 1 0 ~(l-expl.95885t 1)/1.9177/\1  1J\ 4.3376/ ~

This trajectory is plotted in Figure 1. The point to notice is how

closely this follows the solution of the differential equation. Initially tin

- 12 -
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———————— x = =Vf[{x(t)], x(0) = X
To (—») x = —VQO[x(t)] where Qo(x) is quadratic
» O = Armijo (second order) points
2 A = Minimizer of f along ’I‘0
B = Solution of second order Armijo step-size procedure
C = Minimizer of f along cgln
*0
\
]
& 0 :
S :
29 o "
-.54
/I @
€ w
/o’ *
o
; "
‘
B
o
=}.54
o
’ 0
p /
(=2.5, ~1.5) = )
2
MIN SlN(x]+x2) +(x7x,) - %x,/? + 5x,/2 S.T. =2.5 < x;y -1

Figure 1,--Results of different strategies for a non-
convex unconstrained minimizat ion problem.

- 13 =
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tangent to the trajectory is the steepest descent direction, and later

i
it turns to point in the direction (-1,-1) . It passes very close to the

unconstrained minimizer. The solution of the optimal step-size problem is

at tO = .67 with xo(to) = (-.67, —1.50)T . The objective function value

there is f[xo(to)] = -2.85 . This is given as point A in Figure 1.

Use of Strategy B on this example involves minimizing f along the

i :
ray (-1,-1) starting from (0.,.5)T . The result of this is point C in

Figure 1, approximately (-1.2972, —.7972)T . The region of positive def-
initeness has been found and the regular Case (i) version of Newton's

method would apply now.

The results of applying Strategy D are summarized in Table 1 and are
also given in Figure 1. A value of « = 1/2 was used in the Armijo proce-
dure. For i=0 the point generated was outside the given bounds. The thresh-

old criterion failed for i=1 but passed for i=2 . The terminal point is
labelled B in the figure and is approximately (.0520, —1.&3795)T .

Applying the classical version of Newton's method (4) at this point

yields

Sk ( .0520 ) : ( 2.982964, -l.0170'35)’1(1.66'36953) - (-.samngaz)
2 -1.43795 -1.017035, 2.982964 =+2961045 -1.54079799
which is very close to the unconstrained minimizer.

The result using the general Strategy E is as follows. The positive

portion of the Hessian matrix is

\2(1,-1) : (1/’/2)4(1//2, 1/v2)
-1 -1/V2

The move from X along the direcction of negative curvature is that pre-

0
scribed by Strategy B and can be used as a starting point. This is point (

in Figure 1.
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The direction vector is then
% a/vz, 1//2)
%t VE(xg) = - 1//2: -1.6224\ _ f .75
-1/V/2 4.3776 = 75

With a step size of one, this yields

-« 3472 =1 2972 A

+
~1.5472 ~. #9772 —. 13

In this example this is the desired unconstrained minimizer and no further

computations are necessary.

4. Summary

In this paper several strategies have been presented for modifying
the classical form of Newton's method when the Hessian matrix is not posi-
tive definite at some iterate. The emphasis was on the geometric motiva-
tion for the methods, rather than on convergence theorems which can be
proved for specific algebraic implementations of the methods. 1In the papers
referenced there is a general concensus that although the natural way to
look at the methods is from the point of view of the eigenvector-eigenvalue
decomposition of the Hessian matrix, it is also agreed that computationally
this is too expensive. Most of the authors quoted intend to work on imita-
tive algorithms which do not require this (and in some cases do not require

explicit computation of the second derivatives).

The computational problems associated with these methods have not
been elaborated upon here, nor have the difficulties in getting good test
problems. Since the modifications to be made occur infrequently compared
to the usual Newton or quasi-Newton steps, care in generating test situations

to compare these different strategies must be taken.
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