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ABSTRACT

A theory of estimation of angular position and other at-

tributes of optically rough and sn~oth targets with a monopu].se

laser radar is developed. It applies to systems deriving in-

formation about the target po5ition by sensing its image with

an array of noncoherent detectors. The theory develops quan-

titative formulations of the fundamental limitations imposed

upon measurement accuracy by the shot noise arising from both

the target return and the background radiation, by the detec-

tor dark current, and by the random fluctuations of the target

cross section.
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I, INTRODUCTION

_1

The potential of considerably higher accuracy than that

of microwave radar motivates interest in employing laser radar

for angle tracking. With the recent advent of high-power la-
:~: sers, angle-tracking laser radars are particularly attractive

for space-borne applications where, due to the absence of at—

mospheric turbulence, the potential for high accuracy, which

results primarily from employing short wavelengths, can be used

to full advantage , High-accuracy tracking used for precision

pointing of a communication laser beam from one satellite to

another distant satellite promotes efficient use of laser en—

ergy in the communication link. It has also been pointed out

that precise knowledge of the relative positions of two space—

craft performing a rendezvous maneuver is difficult and often

impractical to obtain from ground-based radars; accurate laser

radars located on board a spacecraft could serve as accurate

guidance aids.

In an angle-tracking system, a sequence of direct measure—

ments of target position is fed into a tracking filter, which

:~: can produce refined estimates of past, present and future tar-
‘1

get position. Generally, the accuracy of the refined estimate

is proportional to the accuracy of direct neasurements , so that

~F / -‘ r ~~
‘-

~ ~ ~. 
.-
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S
.

schemes for improving measurement accuracy are potentially of

great significance.

Relative to the volume of research on angular tracking of

unresolvable targets with microwave radars, initiated during

- - World War II, or on passive tracking of resolved targets re-

ported more recently in the infrared and visible regions, very

few papers have been published bearing on the problem dealt

with herein.

When applied to tracking in the optical region, such well-
~.- *

‘

known and established microwave radar tracking techniques as

amplitude and phase monopulse need to be reassessed and ex—

tended to cover at least two new aspects. First, the classi-

:~: cal wave description used successfully in microwave radars is

not adequate: since the energy of a single optical photon is

so much greater than that of a microwave photon , there are far

f ewer photons arriving at the receiver in any case of practi—

fl cal interest. One cannot assume, even in principle, that there

exists a noise-free limit in which it is possible to find the

position of an object exactly. The position estimator of an

optical object is always subject to error which, in the most

optimistic case, is quantum-noise limited. Second, the theory

of angular position estimators of nonresolvable, point-type tar-

gets must be extended: the fine resolution of optical imaging

systems allows one to distinguish various features on the ob—

ject , and tracking of resolvable targets must be considered,

—- - 
~~ 

- 

,
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:~ - Furthermore, microwave—radar design literature offers little

or no information for tracking targets illuminated with par-

tially coherent radiation, as might be the case where etficient

multi—line HF lasers are used, or for the systems using direct

detection.

This thesis addresses the issue of target angular posi-

tion (TAP) estimation with a pulsed laser radar, The TAP es-

I timates are obtained from the targets ’ images. The imaging

system receives ligth from both the target that has been illu-

minated with the laser beam provided for tracking and from uni-

form, noncoherent background radiation. This light is imaged

onto the detector array, which converts the photon flow into

an image photocounting distribution (IPD), the electrical sig-

nal used by the image processor, The purpose of the image

processor is to estimate accurately the image position for each

received pulse.

The thesis analyzes several image processors based on the

derived estimators of the TAP O Their accuracy is discussed and

compared. In this comparison, the beam-splitting ratio, which
p is understood here as the factor by which the processor accu-

racy can be improved above the diffraction-limited resolution

of the imaging system, is used as the figure of merit. In the
3 . . .  .next section the scope of the thesis is outlined. The results
5-.

are summarized in the last section of this chapter.
S
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1.1 Outline

The analytical results presented in this thesis have been

developed in four major steps :

a. The semiclassical photon-counting theory was used to

obtain a model for the Image Photoelectron-Counting Profiles

produced at the array output in response to the irradiance dig- :~
tribution at the image plane. This irradiance was assumed to

be a sum of two terms, representing the target image and a uni—

form, noncoherent background. A mathematical model for the

image irradiance that takes into account the coherence of il-

lumination, target surface roughness, -and the illuminator—tar-

get-imaging system geometry was developed. Mande]) s trans for-

:~ 
mation was used to relate this model to the statistical proper-

ties of the image photoelectron-counting profile.

::~ b. The faithfulness with which the image photocounting

distribution provides knowledge about the image irradiance was

addressed by calculating the signal-to-noise ratio at the out—

put of the individual detectors in the array. A general ex-

pression for the SNR was obtained as a function of the relevant

target and system parameters.

c. For the targets much smaller than the diffraction-

limited resolution of the imaging system, their angular posi—

3 tion was estimated, based on image sensing by a four-quadrant

detector. The lower Cram~r-Rao bounds were established for

the estimates. The maximum likelihood estimates of the angular

V
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~~~~~. position were derived for optically rough and smooth targets

and their performance compared with the theoretical limits.

d. The problem of estimation of angular position of ex-

-
~~~~ 

tended targets, well resolved by the pupil aperture, was ad-

dressed by considering the properties of the image centroid

estimator, The mean and variance of this estimator were ex-

pressed in terms of the covariance matrix of the photoelectrons

I at the outputs of the detectors that form the elements of the

:1 . large array. The properties of this matrix were discussed for

optically rough and smooth targets, The variance of the cen—

troid estimator was obtained as a function of relevant target

and system parameters.

1.2 Summary of Results

The problems of TAP estimation with monopulse laser ra—

dars has been analyzed for systems that derive the desired in—

formation out of a single pulse from the target’s image, which

is sensed with an array of noncoherent detectors.

:~..: In Chapter II, a general expression for the signal—to-
4”

noise ratio (sNR) at the output of an individual detector in

the array is obtained as a function of the coherence of the

:~: 
illuminating light, the object surface roughness, the width of

the telescope point spread function, and the aperture and in—

tegration time of the detector, The expression is evaluated

for several limiting cases of coherence of illumination and of

object surface roughness. The expression indicates that, for

I
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‘S
.
.’-
.
.

increasing signal levels, the SNR is limited first by back-

ground noise, then by signal shot noise, and ultimately by the

target fading, The target fading manifests itself as the ran—

‘-
.: dom fluctuations of the laser radar target cross section.

-: The fading contrast involves stochastic, spatial, and

temporal averaging of the second moment of the image irradiance,

I or the degree of co1~~rence, which propagates from the rough tar-

-
• get to the image plane. The roughness enters by way of the

joint characteristic function of the surface statistics. The

expressions obtained for the fading contrast reveal quantita-

tively the efficiency of various means for improving fading-

limited SNR, by temporal averaging, by spatial averaging, or

by increased bandwidth of illumination. Plots of the SNR

against bandwidth for various roughness scales, and against

signal strength for various noise and fading levels, are pre-

sented and it is shown that the SNR can be improved at the ex-

pense of spatial resolution.

In Chapter III, the angular position of a target unre-

solved by the imaging system is estimated by measuring the

location of the target’s photocounting image by means of a non-

coherent four-quadrant detector, The choice of estimator de—

pends on the statistics of the photocounts, which reflect those

of the energy deposited on the detectors by the laser field re-

turned from the target. For an optically rough target, this

is a spatio-temporal complex Gaussian process, producing photo-

‘-5-
-

I
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electrons that obey a negative binomial distribution with M

degrees of freedom. The limitations imposed by target fading

and by signal and background shot and dark current noise on

the accuracy of the estimate are investigated. The theoret- :~
ical limits given by the Cram~r-Rao lower bounds for the stan-

dard deviations of the estimates are derived for fading and

nonfading targets, For several cases it is shown that the

lower bounds are given by the beam—splitting formula; i.e.,

that the standard deviations are proportional to the diffrac-

tion-limited angular resolution of the imaging telescope and

inversely proportional to the SNR, where the noise includes

the shot noise generated by the target and background radia-

tion and dark current, and do not depend on the target fading,

Maximum likelihood estimates are derived for fading and

nonfading targets and their means and standard deviations are

evaluated. All these estimates share the following properties:

a. They depend on the familiar monopulse ratio which,

for the photocounting problem is given by the ratio of the

difference of the total number of photocounts at the detector

• outputs to their sum. This normalization makes the angular

measurement independent of the target range and significantly

reduces the impact of target fading on its accuracy.

b. They are biased, For nonfluctuai ing targets, the

bias decreases exponentially with the signal and background

noise. For fading targets the bias decreases monotonically

_5•’
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.
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with the signal at a rate that depends on the number of de-

grees of freedom in the image radiation.

c. The standard deviations of the estimates approach 5

~J• ‘
5

’-

the theoretical Cram~r-Rao limits for unbiased estimates when 
-‘

the signals are large enough to make the MLEs unbiased.

The last chapter discusses TAP and target size estimation

of extended targets. The image centroid estimator, and that

for its second moment, are obtained by processing the image

photocounting distribution at the output of the multielement

detector array sensor, The expressions for the means and co—

variance matrices of the estimators are derived and discussed.

a. Both estimators are biased; the biases are inversely

proportional to the square of the overall SNR at the sensor

output.

b , The rms errors are inversely proportional to the SNR.

C. The biases and rms errors of the estimators depend

on the detection matrix, comprised of the covariances between

the photocounts at the outputs of pairs of detectors in the

array . The detection matrix becomes diagonal, giving the var-

iances of the photocounts at the individual detector outputs,

for either nonfluctuating targets or noncoherent illumination,

or also for fluctuating targets generating Gaussian image fields,

if the detectors sample them at the Nyquist rate. 

. 
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d. For diagonal detection matrices and nonfluctuating

targets, the bias and rms error of the centroid estimator de—

crease with increasing laser power; for flutuating targets

they cannot be decreased below the limit imposed by laser—

speckle noise, This limitation improves with the number of

degrees of freedom in the image, which depends on the diffrac-

tion-limited resolution of the imaging system,

~~~~~~~~~~~ L ’ S~~~~~L 

It
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_ _ _ _ _ _ _
II. SNR IN PHOTOCOUNTING IMAGES OF ROUGH OBJECTS

IN PARTIALLY COHERENT LIGHT

Image irradiance distributions from objects illuminated

with partially coherent , quasi-monochromatic light , viewed

against a spatially uniform background and received with a

photosensitive detector are analyzed. A general expression for

the signal—to-noise ratio at the detector output is obtained

as a function of the coherence of the illuminating light, the

object surface roughness, the width of the telescope point

spread function, and the aperture and integration time of the

detector . The expression is evaluated for several limiting

cases of coherence of illumination and of object surface rough—

ness.

Published in Appi. Optics, 15, 2268—2275 (1976) with P. Diament.
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2 1  INTRODUCTION

Communication theory shows that the rate of transmission of

information is limited by two basic system propert ies: the bandwidth

through which the signal information passes, and the noise inherently

present in all systems. Analysis of the trade -off between signal-to-

noise ratio (SNR) and bandwidth i~ an important part of the evaluation

of communication systems .

The information conveyed about an object by an imaging system

can be encoded both in time and in space . For systems employing

• direct detection , it is the spatial correspondence between the irradiances

at the objects and at their images that is of primary interest. ~
:~ systems such as laser tracking radars , est imates of the position of

laser-illuminated objects are derived from their images. If the images

are to be observed with an array of detectors , the SNR analysis can

help decide whethe r the array should consist of many detectors with

small apertures (high complexity, high resolution ) or fewer detectors

with larger apertures (less complexity, lower resolution).

The generality of the system to be considered is suggested in

Fig. 1. The object is illuminated with quasi-monochromatic, partially

coherent light. The surface of the object has a height profile z(~~ )

and a reflection coefficient q(x ) that are stochastic processes. We

take z(x 0 ) to be a stationary, Gaussian, zero-mean process. The

widths of the correlation coefficient s of the two processe s, P~ and p

are assumed sufficiently large with respect to the wavelength to justif y

:~. 
~~~~~h 

~~~~~~~~~~~~~~~~~~~~~~~~~~ _________



- .~~~~ -a -~~ ~~~~~~~~~~~ ~‘W ~~W 1 V  ! Y W  r . W  1 ~~-W IS 5’ ~ W T ~~~~~~~’7~~ t~~~ ~‘S ~~~~~~~~ ~~~ ¶~~~I t ’~~~ ~~~1~~~It’ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~ 1~~~~V!~

RIVERSIDE RESEARCH INSTITUTE 12

~~ use of the scalar theory of diffraction . As a result of scattering from

the object surface , the transverse coherence originall y pre sent in the

illuminating field is modified, so t hat the field leaving the object becomes

random in time and in space. The imaging telescope further modifies

5... the transverse coherence of the field at the image plane. The total

image-plane irradiance distribution, consisting of the sum of object and

background irradiance contributions, is sensed with a photodetector ,

which imposes additional noise processes associated with photon counting

and dark current. We seek the SNR at the output for an object illuminated

I . . .with partially coherent, quasi-monochromatic radiation, in the presence

of uniform , thermal background radiation.

The imaging of par tiall y coherent objects was first studied by

Hopkins
1 

:~~
1. more recently , by Ichioka

2 . Enloe3, Lowenthal and

:~: Arsenault , and Dainty have analyzed the statistical propertie s of the

image s of coherently-illuminated diffuse objects. They found that the

noise-like, speckled structure of the image has a mean square intensity

equal to the square of the mean intensity. Enloe, identifying the signal

with the expected value of the fluctuations of the image irradiance

distribution and the noise wit h their standard deviation, suggested that

the SNR can be improved at the expense of the spatial resolution of the

imaging system. Elbaum, Greenebaum and King6, and George and Jam
7

have studied the improvement in SNR when multi-frequency illumination

is employed instead of nearly-monochromatic light. The effects of sur-

face roughness on the statistical distribution , of Image speckle intensity

L
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have been measured by Fujii and Asakura8.

Goodm an 9 was the first to discuss the properties of laser

:~ 
speckle patterns as they affect the performance of optical radars.

Treating the field scattered from a coherently illuminated object as a

complex Gaussian process over space, Goodman applied Mandel’s theory

of photodetection to compute the resulting photocounting statistics. This

10 11paper combines Wolf’s theory of propagation of coherence and Mandel’s
5.

photodetection theory to obtain generalized expressions for SNR.

12The expressions obtained extend the one derived by Bures for L
measuring degeneracy of light , are not restricted to Gaussian light and

include background and dark current noises. When specialized to

Gaussian linearly polarized light, they reveal explicitly the dependence of

the SNR on coherence of illumination, object surface roughness , coherent

point spread function, aperture of detector, and integration time. Although

interest is directed to irradiances at the image plane , most of the

results obtained in this paper can be adapted to apply to irradiances at any

plane.

In the next section, the semiclassical theory of photodetection is

.
~~~~ employed to obtain a general formula for the SNR at the output of the

detector. In Section 2,3 theSNR is discussed for large signal levels,

where the limitations are imposed by the random fading of the field

across the detector. Seve ral limiting cases of illumination coherence

and surface roughness are considered. Section 2.4treats the SNR for
:~small signal levels , where signal-shot-noise and backg r ound and dark

‘5.

I-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ ~~~~~~~~~~~~~~~~~
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current noise must be included. The tradeoffs between SNR and spatial

resolution are considered in Section 2 .5. 1
2 .2 Gene ral Expression for Signal-to Noise Ratio

p We seek to estimate significant features of the irradiance at the

object from observations of the number of photocounts at the output of

a detector that senses the image irradiance distribution. We consider a

photosensitive detector with an aperture A illuminated by the image

irradiance I(x~, t). In general the total number of counts 
~T observed

at the output of the detector during some integration time T includes

signal and background photoelectrons, n , n , and dark current electrons ,S B

nD ; i . e . ,

nT = n S + n B + nD . (1)

The first two terms are generated by the energy deposited on the detector

by the electromagnetic fields that arrive from the object and from thep
background . The third term is generated internally in the detector and

depend s only on the detector quality . We associate the signal, S, with

the expected value , (n 8 ) . The noise level , N , may be defined as the

standard deviation of the count s, aT , which measures the random fluctu-

ations at the detector output. Since the three te rms in ( 1) are generated

by independent physical mechanisms and may be treated as mutually

independent stochastic processes, the variances of the signal, background,

and dark current counts simply add , so that the noise level is

.
~~~ N = aT _ (a

S +a~~+~~~ . (2)

L~u

~ ~~ 
~~r~~) r~’
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:~:-~
The semiclassical theory of photoemission developed by Mandel11

SI
J treats the number of photoelectrons, n, resulting from the total
5, i,..

electromagnetic field energy, W=W T) deposited on the detector , as a -
~~~~~

nonhomogeneous Poisson process with mean and variance given in terms

-~~ of those of W by

(n) = cX (W ) (3)

and

a ’2 = ( n > + c t2a’2 
. (4)

- n W
.5’ .

The energy is related to the irradiance by ::T::

W = dt j
~ 

d2x~ I(x ., t) (5)
T A

and the coefficient of proportionality, a = ~~ /h~ , involves the quantum

efficiency of the detector , ~~~, and the average frequency of the field, V;

h is Planck’s constant. The first  term in (4) is the variance of the

1 photoelectron count associated with the photoelectric effect and represents

the intrinsic fluctuation s in the detection process. The second term, :-~-~
which depend s on the fluctuations of W , represents an excess fluctuation

of counts due to bunching of photoelectrons. The process is thus doubly

stochastic.
-~~

When the integration time, T , is much larger than the coherence
I

time of the background radiation, the temporal fluctuations are averaged out

and the bunching effect for the background radiation is absent ; i. e .,

= ‘1~~~ > Similarly, the dark count is assumed to be distributed

0 according to Poisson statistics , with parameter (n
D

’), so that

-~ ~ r ~ ~~ ‘Sj . ~. ~~~‘S 5”. ,5p ’S ~
IS

~
I
~
’ 

~~ 
5’ - 51

L ~~~~ i. s1 ~~~~ 5,
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:~
= (n D). It follows that the SNR can be written as

_ _ _ _ _  

(n
e )SNR = a

T 
= 

[(n5)+a 2 a~ +(nN)] 
(6)

where = (nB)+(nD), and W is the energy deposited on the

detector by the field from only the object. To analyze the relative

strengths of the three contributors to the noise, a modified version of

(6), using (3), is useful

/ 1 
___  

(n
N) ~~~ 1/2

S N R = t ,  ~~~+ + — 1  . ( 7 )\
~~

n
~ 1 (w) 2 (n5) 

/

The second term depends on the spatio-temporal properties of I (xj , t)
-
. -: modified by the temporal and spatial integration at the detector .

For the special case of an aperture and integration time small

with respect to the coherence time, the energy becomes W IAT and

the middle ratio can be written as a~/(I )
2 

• In the theory of laser

speckle patterns3 9 , the ratio C
1 = a1/(I ) is treated as a measure of

the contrast of the spatially random pattern. C1 = 1 for Gaussian

light. It is convenient to extend the notion of the contrast of I to that

of the energy W received by the detector. The contrast of W ,

C~~= a’w/(W ) , generalizes C
1 and can be interpreted as the contrast

of the measured fading.

The general formula for the signal-to-noise ratio, rewritten now

as
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(n >
1/2

SNR = 
[l+C ~~(nS) + (

N
)]

lft 
, (8)

yields some important limiting cases. For large signals (nS> > n N, C~~ )

the SNR is signal-fading-limited and equal to the inverse of the contrast :

SNR = C~~ . For noiseless W , (Cw = O )
~ 

the SNR depends only on

signal-shot-noise and back ground and da rk current noises:

SNR = (ns>/ [ ( n s) ÷ 
~~~~ 

. For background noise larger than the signal , Li
~~ n5), the SNR is background-noise-limited: SNR = (n

S>/~~N
>
t
~ 

.

2 ,3 Fading -Limited SNR

This section discusses the fading contrast , C~~, for complex

Gaussian f ields . We f i r s t  treat fading contrast in terms of the temporal

properties of the illuminating field and the illuminator-object-imaging

system geometry, then apply the results to computations of fading contrast

for optically roug h and smooth surfaces and for limiting values of integration
—

time and detector aperture . Several practically important cases of

illumination are considered: case (a) treats cross-spectrally pure light;

case (b) addresses monochromatic illumination; case (c) considers the

effects of polychromatic illumination on the contrast.

• To gain a qualitative insight into computations of contrast of fading,

consider a laser-generated field at the object , characterized by

some coherence area and time, A 1 and T1. The field leaving the object ,
I~~

* (2 )  . .
V , has coherence area and time, A2 and T2. If the target is stationary

- 
~~~~ 0~~ ~~~~~~~~~~~~~ •~~

. .— •
-
.

—.- ••
-~~~~~~~ - .~~. •

- 
.
•~ ~~ - .~~- .

•. . .~~- •. -
. 

•
•.~~~“ . ~~~~~~ -~~~. - - • . -. • . ~~~. 

- . .- . .-. .
• - . - . _ •. -. ~~ . .
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-
.
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.. with respect to the illuminating beam, the coherence times of V~
2
~ and

vW may be assumed equal. However, the transverse coherence, whose

14area A 1 is assumed to be larger than the object’s dimensions , can be

~: modified by the object surface roughness , or even destroyed completely .

Propagation of the field in space and the spatial filtering imposed

by the imaging telescope lead to a further-modified coherence area and

p time of the image field, ~~~ For spatially incoherent objects, for

example, the coherence area A3 is that of the diffraction-limited

resolution cell at the image plane3’ ‘~~
. The coherence time T3 is equal

to T2 if the maximum differential time delay in propagating along different F
optical paths from the object points to the image plane is much smaller

than T2; otherwise T3 is smaller than T2.

2.3.1 General Theory

Computation of the fading contrast is a difficult task in general;

it depends on the covariance function of the image irradiance and there-

fore requires evaluation of the fourth moment of the field at the image

plane:

,fdt 1 J’dt2 J’d2x~1 J’d2x~1 coy [Ii ,  I~)
C2 

. (9)W 
1~ti ,fdt2 j’d2x~1 !d

2x
~ 

(Ii) (I~ )

The integrations in time and space are ove r T and A respectively,

I~, I~ are  irradiances at x~ , t1 and x~~, t2, and

c O v f I 1, I2~~~~(I 1 I~)-(I~
)(I

~) . (10)

15 16For complex Gaussian fields, ‘ the covariance of the irradiance 

•
1 _ 5~ .. -

-
. - .~5’ - — _

—
.—.. . .- -

-•.- —
.

-
. ... — •

— ..- .. -
‘5 5. 

,,1-5’ 
- ~

._ 

•1 
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:;: can be expressed in terms of the degree of coherence, y
12 (At).

2
COy [I l, Iz) = 1Y

12
(t 1, t2) (i~ ) (i~ > ,  (11)

where

~~ (t1, t2) = (V~
3
~ (~~~ , t 1) V~

3
~~~(x. , t2 ) ) / ( (  I~ > ~~ ) ) lft (12)

When such fields are stationary and linearly polarized, the fading

cont ras t reduces to

L
C~ . = A 2 T 2 Sdt1 j ’dt2 J’d2x11 1d2x~ y ( ~~t) 1

2 
(13)

where ~t ~t~ - t2 1 .  The reciprocal of this is often interpreted as

12the number of degrees  of freedom in linearly polarized light .

10 L IUsing Wolf ’ s theory of propagation of the coherence function ,

26 .
I the degree of coherence at the image plane, y12 (t~t), can be expressed in

terms of th e deg ree of coherence of the field leaving the object, ‘ç~
2
~t~t) :

‘~‘12
(~~t ) =  F12 * ( y~2

2
~~ . t + R/ c ) )  , (14 )rn

in which the deterministic transfer operator F12 is applied to

the expected value of the propagated 5’42~(t~t) . R(x oi, x o2 , x~ 1, ~~2 )/ c  is

the differential time delay in propagating along different optical paths,

one f rom 
~~ 

to .Lc:~1 
and another from 

~~O2 to ,~~. . The expectation is

taken with respect to realizations of R , which depends on random variable L
z , and of the random refle’-tion coefficient, r~ . This operation is dictated

here by defining the coherence to apply to ensembles of both light sources

and scattering surfaces.
S

1.1 the differential time delay R/ c  is much smaller than the coherence

time T2, then (v~~~(~ t + R / c ) )  can be factored int o

Il:
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(y~~~(~ t + R / c ) ) =  ( 2 )
(At) ) (exp(j21~~~R / c ) ) .  (15)

The f irs t  factor is the expectation of the degree of coherence of the

emergent field at the object , with respect to the random reflection

coefficient. It may be expressed as the product of the degree of

coherence of the illuminating field , ~~~~(t~t),  and the mutual correlation

coeff icient of ~ at two object points , P~~(t~x ) .  In the second factor ,I
the path-length difference R can be decomposed into the sum of a

deterministic par t , D(e), and a rand om part , Z ( B ) .  The former depend s

• on the angle of incidence 9 of the illumination and on the optical path

lengths between points on the median scattering surface and the image

plane. The random pa rt ,

ii
Z ( 8 ) = [ z ( x 01) - z ( x 02 ) ] ( 1+ c o s 9) ,  (16)

involves the spatial structure of the surface rou ghness , z(~~~) , and the :~
P-• 

obliquity factor .

The factor due to the su rface roughness is expressible as

K exp(j2’rrV Z/c)) =~~(k ’, -k’), (17)

where ~(k 1, k2) = (exp[j(k1z1 +k 1z2)J) is the joint characteristic function of

and z(x 02 ) and k ’ 2 1T( W C)( 1+Co S 9) . The remaining factor combines

with the deterministic impulse response in a convolution that accounts for

all the geometrical effects , including the telescope aperture, leaving

y
12
(~t)= rd

2x01 rd
2xo2Hiz(~~1,~~.o2

)
~~

(k’, -k’)P (t~ 0)5’ç~
’
~(At)~ (18)

where H12 is the impulse response in the absence of surface roughness

• - I
,

,’

- ) -, ~ 
J - 1
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and for uniform reflection properties The consequences for several cases

~~~~~~
. of in terest can now be examined.

a. Cross-Spectrally Pure Illumination ‘
5’

If in addition to R/c < < T2 = T, the spectral density of the light

at the target is uniform, the last factor in (18) is reducible to the product

~::: of the spatial and temporal degrees of coherence Y~~ (0) and ~~At)
17

.

Thus , for Gaussian fields satisf ying the condition of cross spectral purity,

the degree of coherence at the image plane becomes y (At)=y ( 0 ) y  (At )
12 12

where

y (0) = 1d2x01 fd2x
02 H12( x01, ~~ 2 )~~(k ’, —k’)p (A x0) y~~ (0) (19)

and y~1(~ t) = ~1~~ (A t) .  This indicates that the degree of spatial coherence

at the image plane results from propagation of the transverse coherence

of the illumination, modified by the object surface structure. In particular

for ~(J) = 1, y (0) at the image depends only on object surface structure

and on the coherent point spread function of the system. On the other

hand the temporal degree of coherence remains unchanged provided that

the illuminator, object , and receiver do not move with respect to each

:~‘.:~ other during the measurement.  For this case the square of the fading

cont ras t , Ca~ is

C~ = (T 2
~ dt 1 Sdtz t Y  A t ) 12 )(A 2Sd2x. Sd2x .~~~~ I 2 ) (20)

b. Monochromatic Illumination :
Laser illumination is often idealized as fully monochromatic

radiation:

I i

—p ,p ,‘. .r 
•_ ~~~~~~~~~~~~~~ —
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V~~~(~~ 1,t)= U(x0) exp[-jZ’rr v0t]. (21)

I It follows that the degree of coherence , y~~~(At), is given by:

V1~ 
)(At) P~~(A~~~

) exp(-jZ-rT v0At ), (22)

.~~
- where P is the mutual correlation coefficient of the amplitude at

two object points. The fading contrast, Cb, is then time-independent :

C~ = A ~ Sd2xii j ’d2x~ I ;~ 
(23)

5 c. Polychromatzc Illumination

Case (b) can be generalized to includ e frequency diversity techniques ,

which decrease the contrast of the spe ckle pattern. Let the target be

illuminated with M monochromatic laser line s, of equal strength but 
0

I different frequencies . The illumination field is

= U(x~~)~~ exp [-j2rrv t]  (24)

The instantaneous image field , V~~~, is then a superposition of M

:~: contributions,

v~~~(x 1, t) = E  V~”Lx1, t) (25)

Upon integrating the instantaneous irradiance distribution, 1M ~~~~~
ove r a time , T , long enough to average out all beat frequency terms,

1~ 
the irradiance becomes a sum of irradiances, one for each laser line,

and the energy deposited on the detector, WM, is

M
W M TSd2xI E 1~~~~~~

)
~~c~ ) I

2 
- 

(26)
m 1

U..
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~

II. I -. -J .~• 
4- 

_ ‘S~~ ~ ~~“.



-_ 
— - - - _ 5 - . .1 — - S I M I t  - V’ I r~~ W ~~~~~ r T r,  V - ‘W~~~~~~~’ WI’ s-,r-w—-, r I afl-a,, W~I I W  ‘~~~~ 7’~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ nrr~

5’
.’,.4.-

RIVERSIDE RESEARCH INSTITUTE 23

Assuming that all contributions are of equal strength and stationary,

the square of the contrast, CM, is

M
C~~ = M Z A~~ 1d2xii 1d2xi !~~1

I;2 1
2 

(27)
IS

where, by a simple extension of (18) ,

~ 1Z,mn Sd2x01 1d2x02 H12 mn ~2E01~ ~oz~~~~~ ’ -k’ )P (A~~~) ~ ( l )
(Ø) (28)

If the laser line s are dense enough to allow replacement of the summation

:~ ove r lines by integration over frequency, the energy W~ becomes

Wc = $dzx. J’dv S.(v) ILx.,, v), (29) L
where S(v) is the strength of illumination at frequency v, attenuated

by the reflection coefficient, r~ , which is assumed to be frequency-

independent and uniform across the object. The spatial integrand is the

image intensity distribution from quasinionochromatic illumination of the

object, with a coherence time that doe s not satisf y the condition for

cross-spectral purity and is much shorter than the integration time.

This model for the image intensity has been used to study polychromatic

I speckle patterns~
82 1  

Postulating, for simplicity, uniform S(v) between

v1 and v2 , the square of th: contrast is

= B 
- 

A
2
! d2x.2 ~ 

d v f  dv~ G~2;j~..j~ (30)
4
.
’. .
. Vj V 1

where B = v2- v1 is the overall bandwidth and G iz,mn is the Fourier

transform of V lz mn . 

.
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2.3,2 SNR for Rough and Specular Surfaces

The main results of the previous section, Eqs. (20 , 23 , 27 , 30), are

-
‘ valid when the field at the image plane is a spatially complex Gaussian

process. It has been shown, experimentally by Ohtsubo and Asakura
22

and theoretically ‘by Goodman , that this assumption is valid for

sufficiently roug h surfaces. Considerable effort has been devoted

recently to a study of the effects of surface roughness on the :ontrast

of monochromatic and polychromatic speckle patterns .

Qualitatively, for smoother surfaces the random phase modulation of the r
field leaving the object is distributed over a range narrower than ~~~~~~~~

the corresponding field at the image can not be treated as a complex

p Gaussian process, and the contrast of the speckle pattern, measured as

(I), is smaller than unity, decreasing as the surface roughness

decreases . At the limit of specular surfaces the joint characteristic

function of surface roughness approaches unity. For monochromatic and

polychromatic illumination the corresponding energies deposited at the

detector become deterministic and the contrasts are zero. In case (a)

the contrast depends only on the temporal behavior of the field.

Surface roughness is treated here as a stationary, zero-mean

Gaussian process. The joint characteristic function required for

:::-: computation of and y is given by
12

~
mn_n

~ (k1, k2 ) e xp[- ~~~~~~~~~~~~~~~~~~~~ (31)

where p ( A x 0) is the normalized correlation of the surface profile

.5’.
-

-a
‘5’

‘S 
- - 

I ‘(‘
.5 ~~~~\ ‘ 5  5.. 5’- ‘ —5’ .‘ 5”~~ 5-~~~ 5’
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p p(Ax 0 ) =  (z(x
01

) z(x
02 ) ) / cy Z 

. (32)

To gain more qualitative insight into the effects of surface structure C.

on the degree of coherence of the image field , let the correlation

5’
. function p (A ~~

) fall quadratically from unity near the origin, with

width a; p~~ 1 - A~~~~I
2
/a 2 . Then the required characteristic function ’ s

I dependence on Ax 0 is , approximately,

~(k’, — k ’) Z exp [—(k ’ a )2 I A x  I / a z]. (33)
5.-.. z

Takai24 has shown that the above approximation for a Gaussian correlation

is accurate within a few percent for kt a’z� iT . Furthermore, for large

:•~ 
kt a’z~ 

the function can be approximated by

,~ ( a ) ~ ö(A ~~~
) (34)

and , similarly,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ô ( A2E 0 ) - (35)
m n z

Physically, these approximations imply that, for rough surfaces (a~~~X),

the structure behaves as if it were composed of point scatterers, and

the object is spatially incoherent . This model was used by Goodman 25

* 2 7
:
‘ ‘  and many others 

- 

to study speckle pattern statistics

Let *W and °W denote the energies deposited on the detector for

1 images of rough and smooth surfaces, respectively. The corresponding

contrasts for cases a, b and c will be discussed for different ratios of

Ia
V

I~~~~~ !~~&~II’ IIL
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coherence time and coherence area to the integration time and detector

aperture . Consider first ~~~ under condition (a) of cross spectral

purity. Substituting (34) for ø(k ’,-k’) in (19), we obtain the well -known

Van Cittert-Zernilce theorem26 
that the spatial degree of coherence *.~

p
equals the autocorrelation function of the impulse response:

*y ~~ = !d2xo Hlz(~~~, x ) ,  (36)

as appropriate for an ideal diffuser. With the spatial and temporal

coherence separated , the fading contrast becomes

Il for A3 > > A , T3 ->> T
= (37)a t:~

1 —
~~‘- for A3 << A, T3 <<T

pp where Mandel’s definitions of coherence area A3 and coherence time

T3 ar e employed:

A3 = Sd2x Iv 1a~~~ I
2 

(38)

T3 = fdt I y11
(t) 1

2 
(39)

For specular surfaces , ø( k ’, -k ’) l and the degree of spatial

coherence is given by

= J’d2x01 J’d2x02 H12 (~~,1 , x~~)P~ (A~~~ 
,~, ( l)  

- (40)

For uniform illumination (y W = 1) and uniform reflection (P~ = 1), it

:~-: follows that ° = 1. Then the fading contrast is given by E

‘S 

‘S ~~ 
‘-

-.~~ 

‘5
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‘
5’,

~
I*I.

I
~

~5 0

(1 for T3> > T
• 0 2  I
• C =~~~ ‘41,~~j  a 

~~ T3 for T3((T
.
5’.:. St

For specular surfaces , fading becomes minimal when the coherence time

I is very short with respect to the integration time, regardless of the

detector aperture.

b. In the case of monochromatic illumination, the degree of coher-

ence for a rough scatterer is only spatial and the contrast is given by

( 1 A3 >)A
= 

A3/A for 
A3<< A 

(42)

For specular surfaces OW
b is deterministic and

°Cb = 0 (43)

U
c. Lastly, we return to the case of polychromatic illumination.

The general expression (27) for C~~ can be evaluated for rough surfaces

by substituting (35) into (19) for 
~
‘i~~~nn~ 

Assuming that the wavelength

dependence of the PSF is negligibly small , and that adjacent lines are

separated in frequency by Av, the contrast is expressible as

* 2  M l._4 = ~~ [i+~~ E1
(M_n)exp(_b 2n2)1~ (44)

where b = 2,,(Av a~/c)(l+cos 9 ). This predicts that the contrasts for the
5~~~~

limiting cases of complete correlation ( all lines have the same

frequency) and large decorrelation (large Av) are equal to *Cz and to

I ~~~ /M , respectively. The result can be simplified for the following

limited cases:

I’.

~~~~~~~~~~~~ 
.4 .,.... • . . . • . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 5 .. - . .* . . .“- .. . . . . . . - - . - - . — - • - . - . _ . _ _ _ _ . .5.. . . . _
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1 = 0 and A3> >  A

*c2 = 1 /M Av > c/az and A3 >> A

~ (A3/A)/M AV > c/az and A >> A3
5 4

For the specular, deterministic case, °C~~ = 0.

For polychromatic illumination of continuous spectrum, the

contrast is obtained from (30), using (35), yielding

*C
Z 

V2 V2

= B2 
J5’ dVm J’ dVn exp[~(kt

_kt )
2
a~~] (46)

V 1 V 1 
4

21Or

iT 2 l-ex ( 
~
2)= *CZ [  ~ erf ~~- ] (47)

where 
~~

2iT(B
~~

/c)(l+cos8). The contrast decreases with increasing

bandwidth B. Again, for the specular case, °C~ = 0.

The ratio A3/A in the limiting expressions for the contrast reveals

that it is possible to improve fading-limited SNR by spatial averaging

over many coherence areas; the method will be discussed in more detail

in Section 2 • 5. For cross-spectrally pure light the improvement in

SNR can be obtained by temporal averaging over many coherence times

of the illumination. For polychromatic illumination a gain in SNR can be
~ ,44~~~.~

obtained from an increase in frequency separation between the lines, or
I .

- ’-

~~L. an increase in bandwidth of the illumination. As an example , con sider

the situation presented in Fig. 2 , showing three distinct kind s of image

resolution cells observable in laser-illuminated systems. Cell I Is

specular; cell 2 is optically rough but nearly normal to the line of sight;

!JI
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cell 3 is also rough but lie s skewed to the line-of-sight and has a

considerable depth Rd,  much larger than the roughness scale.

Assuming the same average energy from all three resolution cells ,

i the fading-limited SNRs evaluated for each cell are different. Cell 1

does not fade at all in coherent illumination, but image cells 2 and 3

will fade considerably. The cells will also behave differently as the

I coherence time of the illumination is shortened, or , equivalently, as the

bandwidth is broadened. Cell 1 will still be free of fading ; the fading

of cell 2 will diminish slightly; the fading of the “deep ” resolution cell

-; 3, will diminish most rapidly because the controlling dimension of this

cell is not the roughness but the depth of the cell .

p Figure 3 presents fading-limited SNRs for discrete frequencies

(solid line) and for a continuous spectrum (dashed lines) vs- the total

- illumination bandwidth, for different scale s of roughness. For discrete

multiline illumination, the smallest and largest frequency differences

between line s are AV B / ( M - l )  and B respectively. The SNR ranges

from 1 to M1h , the latter being obtained when the sum in (44) is

negligible compared to unity. For the case of two lines, and to reduce

this sum to less than 0.0 1, the bandwidth B A V  must exceed 2 . l4 (c/4na ).

Thus , to decorrelate two speckle patterns, each due to a single line

illuminating a surface with a
~ = 1 .Lm , the frequency offset cannot be

smaller than 50 THz. For wider bandwidths, the SNR is greater

when more line s are used , but for smaller bandwidths, the SNR is seen

to be larger  for M=2 than for M = l l .  This can be explained by

I

~~ .- ‘. -... - . . . . . . . . . . . . . . .. . 
• ~~. . . •

. . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . ..‘ 15’ 
‘5 —

4.1% ~~~~~ ‘S 5’. ~~~~~~~ ‘S ‘5 
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examination of the sum in (44), which has M-l=lO terms, only one of

0. 
them smaller than 0.01. There are 10 terms offset in frequency by

B/b , 9 terms by B/9, 8 terms by B/ 8 , etc. It follows that if the

‘5 total bandwidth is ten times broader than the minimum Av , a surface

roughness with a = l~~m mutually decorrelates all eleven speckle :.~

patterns and the corresponding SNR is equal to ,Ji i . Generally, for

a fixed total bandwidth B and surface roughness az. the SNR is larger

for a smaller number of line s than for more lines when the bandwidth

is less than the one that decorrelates the speckle patterns corresponding

to the smaller number of lines.

For a given degree of roughness, the SNR for a larger number

of lines is well approximated by that for a continuous spectrum when

the bandwidth is smaller than ( M _ l ) c / Z r r c~ , for which not all the

speckle patterns are decorrelated. For wider bandwidths, the SNR

- - can be well approximated by M
1/2 and (~ 2/rr )

1~4 for discrete and continuous

spectra, respectively. The significant difference between the two wideband

cases is that the discrete-spectrum SNR is independent of bandwidth,

while the continuous-spectrum SNR is proportional to the square root

of the bandwidth.

Typical material roughness may vary from fractions of a

micrometer to several tens of micrometers. For a surface with a~~ l~ m

illuminated with radiation covering the visible reg ion 0.4 um-0. 7 ~rn

(B 321 THz) the SNR~~ 3. An Ar laser generating 4 lines at

514 , . 494 , . 484 , and . 474 ~.i m , was used in the first  experiment
. 4 -
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testing the usefulness of the frequency diversity technique for decreasing ,±
the speckle contrast 6. The experiment has shown that the contrast of

a superposition of speckle patterns, each due to a single line diffracted

by a roug h surface with a~~
> 10 ~im and each with unity contrast , is

noticeably smaller then unity. Fig. 3 confirms that, even for the

smallest frequency offset between the lines , B = 12 .6 THz ,

there is some decorrelation.

2 .4 SNR for Low-Level Signal.

Consider f i rs t  the case when there is no fading (Cw = 0) and the

SNR reduces to 
~~~~~~~~~~~~~~~~~~~~~ 

By the preceding discussion, this

formula is valid when temporally coherent and partially coherent illumination —

fields are reflected from specular surfaces. Fading limits the SNR only

for strong signals , since it adds C~~, (n5 )2 to the noise term above ; see (8).

Figure 4 is a typical plot of SNR as a function of signal (n5 ) for

particular levels of noise (n
N

) and fading contrast Cw - For spectrally

pure and for monochromatic illumination, C2
W is the inverse of the

number of degrees of freedom in the field across the detector. This

number becomes the effective number of spatial modes , A/A 3, or the

numbe r of temporal modes , T/T 3, whenever either of these is large ,

or the number of spatio-temporal modes , (A/A 3)(T / T3), when both are

large. With no back ground light or fading, the SNR is signal - shot-noise

limited and equal to the square root of the numbe r of signal photo-

electrons; this is the middle asymptote in the figure . The background
-
.
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noise-limited asymptote, for weak signals , is proportional to (nS ) .

-. 
The asymptotic fading-limited SNR, for strong signals , is independent

-
~~~ of (n5) and equal to the inverse of the fading contrast. The graph

shows the combined effects of signal photocounts, background and dark -;

current counts , and fading due to partial coherence in dete rmining the

:—~ detector SNR .

2 , 5 Trade-Off of Spatial Resolution and SNR

To maximize the spatial resolution of the stationary imaging system,

~~ the detector aperture is normally made no larger than the diffraction-

limited resolution cell of the telescope. In many situations, it may be

desirable to improve the SNR at the expense of resolution. Larger

apertures can increase the SNR by reducing fading contrast . The nature

of this trade-off may be appreciated by considering a uniformly illuminated :
and uniformly reflecting target viewed against a uniform background and

taking as the reference SNR the one associated with the output of a

detector having an aperture that matches the diffraction-limited resolution

cell of the telescope.

In the general expression (8) for  SNR , both ( n )  and the

expected numbers of signal and noise counts, are proportional to the

area A of the detector aperture. On the other hand , C~~ is inversely.

proportional tr- A, whenever it can be approximated by A3 /A . Dainty

has shown that this is valid when A/A3 exceeds 5 and that C~~ is onlyV
slightly larger than A3 /A when 1 < A/A 3 < 5. Furthermore, for spatially
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incoherent , well-resolved objects , the diffraction-limited resolution cell

and the coherence area at the image plane, A3, are the same size. It

follows that both C~~ ( n )  and / <n) are approximately independent
of the detector area , so that the SNR in (8) varies as A”2 . One

concludes that an improvement in SNR can be traded against a loss of

resolution proportional to the square of the enhancement in SNR, or else

in direct proportion to it when only linear resolution is considered.

:2 :1.. 2.6 Conclusions

____ For images of actively illuminated targets detected by a photon

counting ar ray ,  the SNR is affected by the coherence of the radiation,

the roug hness of the target and the PSF of the optical system, as well

as by the aperture and integration time of the detector . All these effects

can be accounted for in a compact expression, (8), for the SNR, by

____ 
introducing the fading of the signal across the detector and the fading

contrast C~~, which generalizes the speckle contrast. The expression

indicates that, for increasing signal levels, the SNR is limited first  by

____  

background noise , then by signal shot noise , and ultimately by the fading .

The fading contrast involves stochastic, spatial , and temporal

averaging of the second moment of the irradiance, or the degree of

coherence, which propagates from the rough target to the image plane.

The roughness enters by way of the joint characteristic function of the

surface statistics. For a resolution cell skewed with respect to the

direction of observation, it is the depth of that cell that plays the role
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of the roughness scale.

The expressions obtained for the fading contrast reveal quantitatively

the efficiency of various means for improving fading-limited SNR, by

temporal averag ing, by spatial ave rag ing, or by increased bandwidth of

illuminat ion . Plots of the SNR against bandwidth for various rou ghness

scales and against signal strength for various noise and fading level s

have been presented and it has been shown that the SNR can be improved j
at the expense of spatial resolution.
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2 .8 Figure Captions

~t -I
Fig. 1 Geometry of the imaging system. 0 = object,

T = imaging lens, I = image , A = array of detectors.

.5’-
. - . *

_5_ --

Fig. 2 Imaging of rough target, showing various

object resolution cells: 1. = specular, 2 optically

rough but nearly normal to the line-of—sight , 3 = optically

rough but skewed to the line-of-sight.

:~~ Fig. 3 Fading-limited SNR for discrete frequencies

(solid lines) and for a continuous spectrum (dashed lines)

vs. the total illumination bandwidth, for different scales of

roughness, assumed greater than the illumination wavelength .

Fig. 4 Typical plot of SNR vs. signal level, <fl5>,

with its asymptotic approximations. The steepest asymptote

is for background—noise—limited operation : SNR =

nS / n N 
5” 
. The middle asymptote is for signal-shot-

noise-limited operation: SNR = <n 5
>1’2. The horizontal

asymptote represents target—fading limitation: SNR =

Noise level <flN
> = 9, fading contrast C = 0.1.w
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III • MAXIMUM ANGULAR ACCURACY OF PULSED LASER RADAR
IN PHOTOCOUNTING LIMIT

C
To estimate the angular position of targets with pulsed

laser radars, their images may be sensed with a four-quadrant

•noncoherent detector and the image photocounting distribution

processed to obtain the angular estimates. The choice of esti-

mator depends on the statistics of the photocounts, which re-

* 
fleet those of the energy deposited on the detectors by the la-

ser field returned from the target. For an optically rough tar-

get, this is a spatio—temporai. complex Gaussian process, produc-

ing photoelectrons that obey a negative binomial distribution

with M degrees of freedom. The limits imposed on the accuracy

of angular estimation by signal and background radiation shot

noise, dark current noise and target cross—section fluctuations

are calculated . Maximum likelihood estimates of angular posi-

tions are derived for optically rough and specular targets and

their performances compared with theoretical lower bounds. These

estimates are realizable in systems with automatic gain control,

fast enough to follow the random fluctuations of the target re- N

turns. For slower systems and large signals, the accuracy of

the resulting estimates is limited by target fluctuations .

Portions of these results were presented at the 1975 meeting
of the Opt. Soc. of Am. in Boston, J. Opt. Soc. Ant., 65, l204A,
with M. King, W. Edelson and P. Diaznent.

Accepted for publication in Appl. Optics, with P. Diament ,
M. King and W. Edelson.
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3.1 Introduction

The potential of considerably higher accuracy than that
-
~~~~~~~ of microwave radars motivates interest in employing laser radar

for angle tracking. With the advent of high-power lasers, an-

gle-tracking laser radars are particularly attractive for space-

borne applications because the absence of atmospheric turbulence

allows their potential for high accuracy to be used to full ad-

vantage. In certain satellite tracking applications, objects

at distances of megameters must be positioned to decimeters.

High-accuracy tracking, used for precisely pointing a communi-

cation laser beam from one satellite to another, promotes eff i-

cient use of laser energy in the communication link. It has

also been pointed out1 that precise knowledge of the relative

positions of two spacecraf t performing a rendezvous maneuver is

often impractical to obtain from ground-based radars ; an accu-

rate laser radar located on board the spacecraft could serve as

a guidance aid .

In an angle-tracking system, a sequence of direct measure-

ments of target position is fed into a tracking filter which

may produce refined estimates of past , present , and fu ture tar—

get position. Generally, the accuracy of the refined estimate

is proportional to the accuracy of direct measurements, so that

2
¶1~

5’ 
~. ~

‘t ~~~~~~~~~ 
-
.. 

5. ‘5 ’.. ‘5 ,, . - 
5*.~)~ ~ 5..



-. - ~~~~~~~~~~~ :- r. - --w :w— I- w--Z-q-- - . - - . - — - - - - - - .— - - . . .- .— €- — .r — - . . .- -
_ .~ .~ 

- — 7 I fl -— - - ft - - p - - . -

RIVERSIDE RESEARCH INSTITUTE 44

schemes for improving measurement accuracy are potentially of

great signi ficance.

Maximum likelihood estimation of the location of an opti-

cal object has been studied by Saleh,2 who considered shot-noise-

limited detection of the images. McGarty3 has investigated es-

timation of the optical position of the centroid of the image

photocounting distribution (IPD). The properties of the IPD

have been analyzed by Amoss and Davidson4 in the context of de-

tection of weak optical images, and by Helstrom,5’6 who consid— :~
ered object radiation in the presence of uniform background

noise. All these papers have considered only self—illuminated

noncoherent objects .

This paper considers the estimation of angular positions

of laser-illuminated optically rough and specular targets from

their images. The field of the returned laser light is treated

as a spatio-temporal stochastic process that forms the image

irradiance distribution (lID), which is sensed by a four-quad-

rant detector and converted into the IPD. An estimate of the

target angular position (TAP) is obtained by splitting and dif-

ferencing the IPD.

The accuracy of estimates of optical-image TAP based on

four-quadrant detection has been evaluated in the past by adapt-

ing conventional microwave radar theory.7 9  The optical an-

alogue of the classical microwave beam—slitting formula,

= g (?~/D)/SNR , (1.1)

I
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indicates that the R~S error ~ is proportional to the optical

system resolution (?~/D) and inversely proportional to the de-

tected SNR , through some function g of the image distribu-

tion.

:! However, three important differences suggest that the accu-

racy of TAP estimates for laser radar systems may not be the same as for

~: microwave radar systems . First, the laser system can employ non-

coherent (or direct) detection of the target return to extract

the angular position. Second, the quantum noise may be quite

.- apparent in the laser system, though insignificant in the micro-

- -
~: 

wave system, Finally, the laser system can resolve targets

with modest-size telescope apertures while the microwave system

~: deals primarily with unresolved objects.

• This paper considers targets considerably smaller than a

diffraction-limited resolution cell of the imaging telescope.

The case of a target that extends over many such resolution

cells has also been considered1° and will be discussed in a

forthcoming paper . The TAP is estimated directly from the out- :~
puts of the photodetectors, which sense a single-look lID.

During this single look, the target does not translate with

respect to the optical line-of—sight; target rotation is per—

mitted during a look, however, so long as the noncoherent re—

flectance distribution of the target remains unchanged, within

the resolution limit of the imaging telescope . The mean and

standard deviation of the single-look TAP estimates are derived,
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and the limitations imposed by laser speckles , photocounting,

background , and dark current noise on the accuracy of the es-

timates are investigated .

3.1.1 Mathematical Idealizations

In order to concentrate on essential considerations, sev—

eral assimptions have been made in this analysis. First, let

the uniformly reflective, optically rough target be illuminated

by a linearly polarized laser beam of wavelength A. The rough-

surface height profile is regarded as a spatially stationary

5’ random process with standard deviation and coherence area

p and does not alter the polarization of the incident light,

The target size is taken to be smaller than the coherence vol—
- . - 

ume associated with the laser illumira tion.

The aberration-free imaging system has a loss-free square

pupil of side D, an effective focal length F, a space-in—

* 
- - - variant coherent point spread function (PSF ) h, and is sit-

uated in the far field of the target at a distance R from it.

The areas of the diffraction—limited resolution cells at the

target and image planes are, respectively, A0 = (AR/D)2 and

A1 = (AF/D)2. The area A is assumed to be much larger than

the target, whose surface contains many surface—coherence areas,
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The detectors are assumed to be ideal photon-counting de-

vices with art ideal time response, identical quantum efficien—

cies r~, and uniform spatial responsivity.

3.1.2 Noise Source

. . .:-~ The sources of noise considered in this analysis are tar-

-
~~ get fading , signal and background light shot noise, and dark

current. These are discussed briefly in the following para-1 graphs .

According to the scalar theory of diffraction, the spatial

coherence of the illumination is destroyed by surface roughness

when 
~~ 
), A,”2 In that case, the field returned from the

target can be treated as a superposition of temporally coherent

~~ fields originating at spatially independent scatterers on the

target surface, with each one introducing into the outgoing wave

a random, uniformly distributed phase shift. Since the total

number of scatterers is large (approximately equal to the ratio of the

illuminated target area to the surface coherence area p5
13),

the central limit theorem implies that the field returned from

the target is a stationary, zero-mean, complex Gaussian process

over the receiver aperture plane.11 In general, the coherence

area of this field can be obtained from tht.- Van Cittert—Zernike

theorem,’4 For instance, if the target is a sphere of radius

r, then the coherence area is given by A2 ~ 7r. (0.6 AR/2r)2,

It follows that, under the assumptions made, the receiver aper—

ture is smaller than A2.
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LU.,:
•5 5

When the target rotates, the receiver pupil plane field

becomes a spatio-temporal complex Gaussian process with co-

herence time T2 equal to the time it takes for the coherence

area A2 to travel a~~oss a point aperture. Therefore the

coherence times of the pupil plane field and of the correspond- 
:

5’

ing image field are equal. :1
It follows that the instantaneous image irradiance distri-

bution i(x~ ,t) is a spatio-temporal process, obeying a neg-

ative exponential probability density function (PDF) with pa-.

rameter <I (x1,t)> , the mean irradiance. 
p

The energy deposited on a detector of area A during

time T is:

w = f d
2

2~ 
,( 

dt I(x1, t )  - 
(1.2)

In this analysis we refer to the fluctuations in W as

the target-fading noise. The deposited energy W is assumed

to obey a gamma PDF with parameter -y and M degrees of free-

dom . If T3 is the coherence time of the image-plane field c.
and A 3 is its area , the number of degrees of freedom is:

M = ( T/T 3 ) (A/A 3 ) f or T > >  T3 and A>> A3 (l. 2a)

M = A/A3 for P << T3 and A > >  A 3 (l.2b)

M = T/T 3 for T> >  T3 and A << A 3 (l.2c)

M = 1 for T << T3 and A << A3 (l.2d)

- 5 - -  . . - - I -

~~ :-“
5 

~~~~ 
.
~~~ 

.
~~~ ‘ 

5’ 
5’ 5’ r •

~ -~ U 
5’



49
RIVERSIDE RESEARCH INSTITUTE

Mandel has shown’9 that Eq. (1.2a) applies well for partially —

coherent Gaussian light that satisfies the conditions for cross—

spectral purity. Equation (l.2c) is satisfied by the noncoher-

ent background light. Equation (l,2d) is well satisfied by

:~ 
monochromatic, linearly polarized laser speckle patterns,’2”3’20

and Eq, (l.2b) is a good approximation for spatially integrated

j  laser speckle patterns.’2~
’3’2°

•
- - - :  Consider also the return from a target illuminated with a

multiline laser. For optically rough targets, all components

of the fields are stationary complex Gaussian processes over

space. The components, taken to be of equal strength for simplicity,

can be treated as statistically independent if the frequency off—

sets between the lines are sufficiently large to allow the rough r
surface to produce spatially decorrelated speckle patterns.’2 ’22 ’2 3

For an integration time long enough to average out he beat
K:. “S

rn frequency cross terms, the resulting energy obeys a gamma PDF

with the number of degrees of freedom equal to the number of

laser lines .

In this analysis we will often use as the fading-limited SNR

the ratio of the mean to the standard deviation of W . It can be :~
shown that in many situations of interest, this ratio is equal

to the inverse of the square root of the number of degrees of

freedom.’2’’3’’8

Spatially incoherent background noise with a coherence -:

time much shorter than the integration time P is assumed.
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Photocounting noise results from the random fluctuations

of the total number of photocounts, m, at the detector ’s out-

:~ 
put , The number m is a sum of three terms: the counts gen—

erated by the noisy signal W, the counts due to the back-

ground radiation, and the dark current counts . The three terms
~‘•2”

~

are mutually independent ; the first one is a doubly stochastic

I pocess,’8 the other two obey Poisson PDFs. The impact of the

first term on the system performance is of particular inter—

est here.

This analysis does not take into account the target-angle

noise that may result from random fluctuations due to finite

size, This effect is caused by variations in the phase front

of radiation from a multiple-point target as the target changes

its aspect . It has been found that in microwave monopulse the

effects of this noise decrease with the target range.26 ’2 7

Thus the angle noise can be disregarded for ranges long enough

for phase-front distortions to be negligible. It is also as—

sumed that detector and preamplifier noise have been reduced

to the point where kT<< hv , so that the Johnson noise is

negligibly small. Also, 1/f noise is not considered .

- 

‘5 5- ‘S ‘5.
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3 , 2 Problem Formulation

The problem of TAP estimation is addressed systematically

by (1) finding the theoretical limits given by the Craxn~r -Rao

lower bounds for the standard deviations of the estimates and c
( 2 )  by proposing operations on the data that lead to estimates

with standard deviations that approach the theoretical lower

bounds. In this paper, the Maximum Likelihood Estimates (MLE)

of the TAP are considered as the candidates likely to possess

the desired properties. In order to derive the Cram~r—Rao

bounds and the MLEs, knowledge of the joint probability den-

P sity function (PDF) of the stochastic processes is required.

In this section, the PDFs for the cases treated in the paper

::~: are introduced. They are used in Parts 3.3 and 3.4for the de-

II rivations of the Cram~r-Rao bounds and of the MLEs.

For the unresolved target, the image shape matches the

noncoherent PSF of the imaging system and the location of the

peak of the lID depends on the target location. Its peak value,

and therefore the total energy in the image field, can be treated

as a random variable that depends on the realizations of the

field in front of the receiver aperture,

The analysis considers targets that are displaced by an

unknown angle in the x direction with respect to the optical

axis of the imaging system; see Fig. 1. For simplicity, only

one of the two angular coordinates is treated since, for a

I

~ 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5- ‘ 5t ’ ’S ‘5ç5. ‘5. 
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-

square aperture, the two are independent. Also , for unresolved

targets the fluctuations do not depend on the segmentation. The im-

-: age irradiance is redistributed between the two photodetectors by the

ref lective prism, the proportions depending on the TAP. If the irra-

diance is a temporally stationary stochastic process, the energies -~~~~I
deposited on the two detectors during an integration time T are

‘. 5’-

W, = S,W , W2 = s2w (2 .1)

where is the energy captured by the pupil aperture -

~~~~~

during time T. The fractions S, and S2 depend on the noncoherent

PSF, i.e., the squared magnitude of the coherent h(x0 ,y0 ;x~,y1), and
are given by

S, = f dx~ f dy1lh(e0R,0;x1,y1)12 :~:

• (2 .2)
•

S2 = J dx1 J dy1Ih (e0R,0;x~ ,y~ )I2

It is assumed that the PSF is normalized to fix the total

energy in the intensity PSF at unity: - 2
S, + S2 = 1 (2.3a)

In addition , if e0 is smaller than the diffraction—limited

resolution of the aperture, then approximately,

• s, — S2 ~t..e0 (2 ,3b )

where ~ is a known proportionality coefficient depending on 
-

the PSF • For the square aperture under consideration, ~ = 2D/A.

: * ~
1~ I

:-1~:

. ‘ 5~~~’ 5 ’ 5 .  ~~~~~~ 
5’ . . - ’ . .’ 5 . .
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1

Let the number of photoelectrons resulting from the pho-

tons arriving at the two detectors in random quantities

TiWS,/hv = NS, and rjWS2/hv = NS2, be n, and n2, where r~
is the quantum efficiency of the detector, and hv is the

energy of a single photon. N = T-iW/hv obeys the gamma PDF

with M degrees of freedom 20 ’2 8  and parameter y (M/N5):I_i • 5*.
5

I NM~~~p (N) = 
~
‘ (M - l]T exp ( - y N ) (2.4)

with N>, 0 only. The limiting forms are:

p(N) = exp( -N4 15 )/N , M = 1 (2 .4a)

- 

,

- 

p (N) = o ( N  - ) , M -
~~ co (2 .4b)

I 
‘

5’

where N8 = r~ < W >/hv is the mean signal photocount collected

by the pupil. Generally, as the number of degrees of freedom

I M grows large, the relative fluctuations in W become small~
-

~~~~ limiting forms for evaluating M were discussed in Sec. 3.1.2.

For the analysis that follows, it is useful to obtain a

formula for the joint PDF of n, and n2 by using the Mandel

transformation ’8 of the random light distribution:

p (n,,n2) =J dN p (N ) p ( n ,,n 2 I N )  (2 .5)

where p(n,,n2IN) is the joint conditiOnal PDF of n, and n 2 ,

given the probable total number of counts , N .
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2 ~SkN
p(n, ) rt

2 
j N) = 

k=l ~~~~ 
(skN )  (2 .6)

The form of the Mandel transformation given in (2.5) uses a

common value of N, rather than N1,N2, because in the model

- *  for unresolved targets the energies deposited on the two detec-

tors are derived on the average from the same coherence area of

the pupil plane field.

If the laser radiation returned from the target is accom-
I .

5’.
.

-

partied by background noise radiation, the photocounts at the

-
~ detector outputs are the sums of the signal and background

counts . It is assumed that the background photocounts at each

-: detector obey a Poisson PDF with a mean count N~/2 . The

detector dark current noise cart also contribute to the total

number of counts at the detector output. It is assumed that

- the dark current counts of each detector obey a Poisson PDF2’

with an average count Nd/2 . Thus, the total counts in each

detector, m,,m2, are the sum of the mutually independent

signal, background, and dark current counts. The noisy—case

joint PDF of m, and m2 is

q(m,,m2) dN p(N )q(m,,m2 I N )  , (2 .7)
0

I - 

~~~~~ 1

where q(m,,m2IN) is the joint conditional PDF of m, and m2,

I

‘
S.
.
. 

‘.5’:’
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— 
5’ ‘5



- - - -

P
..
’

-

RIVERSIDE RESEARCH INSTITUTE

2 
_ (skN + N N/2)

q ( m ~ ,m2 I N )  = 
k l  

e 
Iflk! 

(SkN +N N/2) 
(2 .8)

N where NN = (Nb +N d ), Equation (2 ,7) can be obtained directly

from (2 ,5), for the sum of mutually independent Poisson random

variables is a Poisson random variable with mean value equal

to the sum of the means.2 4

The formula (2 .7) can be made more suitable for deriving

the MLE of the TAP if it is approximated by the expression valid

* for small background and dark current noises (NN < 1) and for

large signal-to-noise ratio (Ns,41N>> 1). Using in this for-

mula the approximations

and 

(skN+NN/2)~~~~ (SkN)~~[l+ (m,,~
/s,K)(NN/2N)J

exp(_N
N)~~~

l _ N
N

the latter serving merely to maintain the proper normalization,

the approximate joint PDF can be written as:

in + m  ~ 
m, 

~ 
in 2 m m N

q1(m,,m2) < N ~ 2
e
_N

> 
~~r rn 2 1 (l_ NN +*[~~~+~~~]j~~): f

where
r n -I- rn

< N 2
e~~~> /M - 1 + m, + m2\NM = m,+m -l 

= k M+N )Ns , (2.10)

< N  
2 

e~~~> 
S

‘5*
-

- -.

I -

I
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1* 5’~

and the expectations are taken with respect to N, using H’

(2 .4).

For the special case when the random fluctuations of N

j  are negligibly small (number of degrees of freedom M is large),

the PDF of N can be well approximated by the Dirac delta func-

tion 28 in ( 2 .4b) .  After letting the number of photocounts for

this case be m0, and in
0 2 , the joint PDF can be obtained

frorn (2 • 7) and (2 • 8) as

q0 (m
01

,m02 ) = q(rn
01

,m
0 2  IN8 ) • (2 .11)

Note that the above joint PDF5 are functions of the TAP, e0 ,
via the parameters S, and S2.

The first problem, considered in the next section, can be

stated as: given the measurements n, and n2 (for a fluc-

tuating target in the absence of background and dark current

noise) and the a priori knowledge of N5; or , given the mea-

surements m
01 

and in
0 2  

(nonfluctuating target in the pres—

sence of background noise ) and the a priori knowledge of N

and NN, what are the corresponding theoretical lower bounds

for the standard deviations of the TAP estimates?

The second problem, addressed in Part 3.4, can be stated

• as: given n,, n2 and Ns, or given m,,m2 ( fluctuating

target in the presence of background noise) and Ns, NN, and

M; or given m01 , m0 2  and N8 and NN, (1) find the expres-

.1. sions for the parameter e0 that maximize the joint PDFs

~ ~~I1. 1~ ~.. U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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j p (n,,n2), q(m,,rn 2 ), or q0 (m01,m0 2 ), respectively; (2) cal—

culate the means and the standard deviations of these expres-

sions . It is assumed that the parameters N5, NN, and M are

known as a result of averaging many previous measurements, or
p

otherwise,

I -
~~~~~

-

~~~ 

I

a

- 
- 

-
-
I
-
.
. ~~~~~~~~~~~ -

. ~~5’ ; _ .~ _ -_~ _
., .

--
-
.
• - -: :. *;.

_:.1* ; 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~- .

- - _
-.:‘ . 

- . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-:---:- --:.~-~
%
~1

.5’. 1- ~~~~~~ 

1*~ ~~~~~~~~~~~~~~~~~~ ,~ -~~. 
~~~~~

‘
!

‘5 
.J’



— — - - - — ‘— — - — - — — L~~ ~~ U5. ’S5 tTh I
~~~~ ! .’ ’.  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

58
RIVERSIDE RESEARCH INSTITUTE

3.3 Lower Bounds of TAP Estimate Errors
I

The Crarn~r -Rao bound for the standard deviation of a pa-

rameter estimate provides a useful reference for the evalua—

tion and comparison of the operations that can be performed

on the data to estimate the parameter, A theorem cited by

Cram~r ’5 states that the variance of a regular and unbiased

estimate can never fall below a certain limit, dependent only

on the joint PDF of the data and the size of the data sample.

Specifically, if ~( e)  and e* are the PDF of the data and a
“-2
p regular unbiased estimate of 0 then, for a single measure-

ment the variance of 0* satisfies the inequality:

var O~ >. < {~ ln P/~e ] 2 > ’  (3.1)

The Cram~r-Rao bounds are calculated for two instructive cases

of fluctuating and nonfluctuating targets in order to gain a

qualitative insight into the problem of TAP estimation.

3.3.1 FLUCTUATING TARGETS, NOISELESS

For this case, the inequality (3.1) can be rewritten as:

var 0~ >,<[~ln p ( n ,,n2 ) /~e0 ] 2  > ‘  , (3.2)

where p (n ,,n 2 ),  given by (2 .5) and (2.6), depends on
* 

- . ni n~2only through S, ~ 2 • It follows that

-5 ’. 
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- -I

~ln p (n ,n )  2 2

< { 2 
> (~~ 2/4 ) < (

~ 
- >

The expected values < 4> (k = 1,2) and < n,n2 > are given

by

<4> = (NSSk ) 
2 (1 ± ~~) + SkNS ; (3.4)

< n,n 2 > = S1s2N~ (l + ~~) . (3.5)

The inequality for the lower bound is therefore

var 0~ >, , -2 - e~ )/N5 . (3,6)

Since 00 has been assumed to be much smaller than l/~ , the

~ lower bound for the standard deviation of the estimate becomes

effectively

~min = l/.~J,15~
/2 (3.7)

I
The expression for the lower bound of the standard devia—

tion of is the same as the beam splitting formula given by

(1.1), wi th the SNR equal the square root of the signal count

:::- Ns and V ’ proportional to ~/D, This implies that the theo—

retical limit for the accuracy of the TAP derived from n and
•1*

n 2 , given Ns, is limited by signal shot noise and does not
-I

depend on target fading .

~- ‘1~

- .4
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3.3.2 Nonfluctuating Targets with Noise

For nonfluctuating targets the inequality (3.1) can be

rewritten as:

var ~ >~ < [~ lnq0(m
01 ,m

0 2 )/~ e0 J2 > ‘  , (3.8)

where ~* is an estimate of 0,, and q0 (m01,m02) is given
5’ by (2,11) and (2 ,8),

Following the same steps as above, one has

(
~ln q0 (m ,m ) 

)

2 

> = (~~ N8 ) 2<(~2L — 

m
02)  

, (3.9)

where Nk SkNS + NN/2. With

< in k> (Nk+l)Nk (3.10)

and

< i n
0,  

in
0 2 > 

= N,N 2 , (3 .11)

the inequality (3.8) can be written as
.,.; .. 

- I -

var 
NS+N

N[ - 0
0 N5 + N~] 

, (3 ,12)

Again neglecting 00 compared to l/-~, the lower bound of the
• . . .standard deviation is r

cY o min = (Ns + N N ) 1/2/~~NS (3 .13)

‘-
~~~~ ,~~

-
- ~~ 
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~~ This is the same as the beam—splitting formula, with the SNR

now given by the ratio Ns/ (NS + N N )~
/2 , This suggests that the

- 

theoretical limit for the accuracy of the TAP derived from

I 
and in0 2 ,  given Ns and NN, depends on the shot noise gen-

:- - :, erated by the target-returned laser illumination and the back —

:~ ground radiation, and on the dark current , It should be noted

j  that (3. 13) applies also as a bound for the accuracy of angular

position estimates for temporally noncoherent targets, for

which M is large ,
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3,4 MAX IMUM LIKELIHOOD ESTIMATES OF TARGET ANGULAR POSITION

-
- The theoretical bounds for the standard deviations of es-

timates of the TAP, such as those obtained above , do not iden-

t i fy  the estimator whose standard deviation attains these

bounds. The choice of the MLEs as good candidates for estimat-

ing the TAPs is made here because they are asymptotically effi-

cient estimates; i.e,, their variances attain the Cram~r-Rao

bounds as the number of statistically independent measurements

-2 increases,

3 . 4 .1 MLE FOR FADING TARGET WITHOUT BACKGROUND (l~~ M< co~ NN = o)

The NLE of the TAP 
~~~~~~~~ 

is that value of 00 that is

j most likely to cause the observed values of n, and n 2 to

occur. It maximizes the likelihood function p(n,,n2 I e ~
) for

given n~~,n 2 .  If this maximum is interior to the range of 00

and the function is appropriately continuous, the MLE is found

from the likelihood equation 2 5

~p(n ,,n 2 I 0 0 )/~ 00 = 0 . (4,1) 
I
:

By (2,5), (2.6) and the fact that 00 appears only in 
~~~~~~~~~

5’ 5.. 5’

-‘ ~~~~~~~~~~ 
5- 9, 5. 5
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5.,

n n fl+n
fl1+fl

2 -N s~ S2
2 

<N ‘ 2
e
_N
> ~ fn, n2\e 

~~~~~~~~~ n, !n 2 !

and ~(s~
1s 2)/~e0 is solved by

= -~ “(n, —n 2 )An, +n2) . (4.2)

The processing required to realize the MLE of TAP requires

1. taking the scaled ratio of the photocount difference to the

total number of photocounts, where the scaling factor -t is :2:
a-” known and depends on the shape of the PSF of the imaging tel- :~

escope . This estimator is conceptually similar to the one em— -

ployed in microwave angle-tracking monopulse systems. ~ In the

event that both n and n are zero, it is intended that the
1 

1 2

processor not provide any TAP estimate at all , as if no light

were incident.

~1:.
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9,

The derivation of the mean and variance of the MLE of the

TAP, 
~~~~~~~~ 

is presented in the appendix but the main results

are stated and discussed here. The mean and variance of

are given by (A.9) and (A .l8):

= 00(1~~f
M) (4.3)

and

var = ~,_2fM
G + e2fM(l_fM _ G) (4.4)

where

J = l + 1 / y = l ± N / M  (4.5)S

M—l

G 1n J + ~~~~ (Jm - l )/m . (4.6)

I .

For the strongest fading (M~~1) the above equations can be

rewritten in a form more useful for interpretation:

= 0~ N5/ (N5 + 1) (4 • 7)

— var 2 (ln N~ )/~~~ 
- 0~ [(ln N~)/t~ - N3/~~ 1 (4.8)

ln(N +1)
~~ ~ — 2  S IA r ..
— ~ N + 1 ‘ ~.*.oa j

S

where N~~=N5 +1 and the last form accounts for 00 << f~ ’•

,1

-
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Equations (4.3) and (4.7) show that the MLE of 00 is

biased . This bias , which is known and can be corrected when

N5 is known, decreases with increasing total signal N8 and
5’ 

approaches zero for large N
~
. The rate of this convergence

depends on the number of degrees of freedom M and increases

as M increases. At the limiting case of large M (4.3) can
:~ 

5’

be well approximated by ~
- 

-

- -2- -N
<~~~> 0 ~ (l— e S) (4.9)

For small si gnals and strong fading the bias cannot be disre-

garded . Figure 2 plots <O~ >/0~ as a function of N5 for

different values of M. For M 1  more than 50 signal photo-

counts are required to reduce the bias to the same extent as

can just four signal counts for M> 5.

The variance of 0,, can be written as a sum of terms
- - 

dependent on and independent of the target position 0~. Both

terms of var are dependent on the target fading and both

can be made negligibly small for sufficiently large N8. Fig-

ure 3 is a plot of the RMS error 2 9 [var Oc, 1
V2

, in ~/t units,

as a function of for different values of M. The region

covered is that of small with respect to the diffraction

angle ?~/D, A square DXD pupil aperture was assumed for which

= 2D/~~, In the small photocount region 2 < N5 < 10, target

fading does not play a dominant role and the accuracy of is

limited by the signal shot noise For larger Ns the limita-

.“•-.~ -, ‘1
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tions imposed by target fading are clearly pronounced. An in-

crease in the number of degrees of freedom M is particularly

advantageous for fixed N5 when the fading is strong (M small).

Although 0~ is biased, it is instructive to compare its

standard deviation with the lower bound ~ - derived formm
unbiased estimates. The lower bound is plotted on Fig. 3 as a

dashed line . From this comparison one concludes that for weak

fading and for strong signals, for which the bias becomes neg-

ligible, 
~~~~ 

can be used as a good approximation for determ-

ining the accuracy of ~~ Figure 3 indicates that this approx-

imation would be very poor for strong fading. Suppose that an RI4S

error no larger than 0.1 ?~/D is desired , To achieve this accuracy

the expected number of signal photocounts should be larger than

120 for M = 1 and larger than 25 for M> 10, Therefore, to obtain

an accuracy of 0.1 ?~/D, the required laser power must be five

times larger for M = l  than for M> 10.

In those instances when the bias is not negligible, the ques-

tion of whether to modify the estimator to remove the bias can

readily be treated by comparing the accuracies of both types of

estimates, using the results presented here.

:~
-:-
~ 

Several consequences for the design of illumination wave-

fronts and measurement schemes result from the above analysis of

the variance of the MLE. Qualitatively, the target fading lim-
I 

- itations can be decreased by decreasing the temporal coherence

of illumination, as illustrated by the following three cases.

5.
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1. A stationary rough target is illuminated with a sin—

gle pulse from a multiline laser, The illumination wavefront

is a superposition of N laser lines mutually offset in fre—

quency . The frequency offsets are assumed to be sufficiently

large so that the speckle patterns at the receiver, each due

to a single line, are mutually decorrelated.

2. A spinning target is illuminated with M short,

equal-strength pulses from a single—line laser. The return

from each pulse, rendered statistically independent from the

others by the spin, is used to obtain a MLE of the TAP. All

M estimates are used to obtain the sample mean of the esti—

mates of the TAP. The RMS error of the sample mean is smaller

than that of asingle-pulse estimate by a factor of M1/2.

3. A spinning target is illuminated with a long pulse

from a single-line laser. During the integration time,which

is not shorter than the pulse duration, let an average of M

speckles be captured by the receiver aperture.

Cases 1 and 3 are formally similar: a single measure—

ment is made, based on the photocounts generated by energy W

with M degrees of freedom. In Case 2, M measurements are

taken , each based on the photocounts generated by W with one

degree of freedom. Combining Cases 1 and 3, by use of multi-

line radiation, one can perform a single measurement in which

w is sensed with an effective degree of freedom equal to the

product of those of the two cases. Combining Cases 1 and 2,

by use of M pulses of M lines, M measurements are per—

formed, each resulting from sensing W with M degrees

S

5’ L 

5’ 

5-
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of freedom. All three cases and their combinations provide

diversities instrumental in easing target—fading limitations. :
:

Given that the total signal N
~ 

is f ixed in all three

cases, is a smaller RMS error obtained from a single measure-

ment with M degrees of freedom and N5/~4 photocounts per

.~~~~: degree of freedom (Cases 1 and 3) or from M measurements each

based on N /~4 total photocounts with one degree of freedom

(Case 2 ) ?  Generally, the RMS error of the MLE obtained from

a single measurement, based on energy with M degrees of free- -2

dom, is smaller than the one obtained from M independent mea-

surements, each based on energy with one degree of freedom, pro—

vided that other conditions are unchanged. In particular, this

implies that measurements based on the long illumination pulse

offer better results than the one based on averaging over many

short pulses.

Two numerical examples are presented as an illustration of

the use of the c
~.~LE

(NS,M) formula, based on (4.4).

Example 1: Let the total signal be N5 = 100 . Dividing the

signal equally among 10 laser lines that are sufficiently off—

set in frequency to produce 10 degrees of freedom in the energy

deposited on the detector, we obtain an RMS error cY
~~E

(lOO,l0)

= 0.053 ?~/D. If, instead, the total signal N
~ 

= 100 is divided
1
* 5 .

equally among 10 pulses, the RMS error of a single measurement

is 
~MLE (10,l)  = 0.23 7/fl and the RMS error obtained by averag—

ing 10 measurements is 0.074 7~/D.

¶
~~1

.

- I - 
-
.

7
5

‘‘ 
~‘ 
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Example 2: For the same total signal N5 = 100 and dividing

the signal equally among 5 laser lines , one obtains for the

P148 error a
~~~E (l00 , 5) = 0.056 x/n. The P148 error of the MLE

obtained by averaging over 5 pulses each with signal Ns = 20

~~ ~NLE (20 ,~~~
’5~” = 0. 085 7~/D.

In some situations, it may be simpler to replace the de-

5’ nominator of Eq. (4.2) by <n, + n 2>, an estimate of this ex-

: pectation being obtained by averaging the total number of counts

over many observations, each representing an independent reali—

zation of the process. The resulting estimator is not a MLE.

It is expressed by:

= 
n, -n2 

(4.10 )

• 
<n,+n 2>

Formally, the expectation in the denominator makes it statisti--

ca].ly independent of the numerator. A similar situation occurs

in microwave amplitude monopulse radars with slow AGC: the time

period over which the denominator is averaged, the integration

2 time, is long with respect to the inverse of the target scintil-

latmon bandwidth, so that the sum channel’s fluctuations are elim-

m ated while the difference channel remains stochastic. It has been

found that the accuracy of tracking of microwave systems is limited by

target scintillations (target fading) for slowAGC and free of these

limitations for fast AGC. 2 6 , 2 7  Our results demonstrate that the same
I - — 5 ’ ’ -

is true for optical systems, wi th e, and 0
0 

analogous to the est i—

mators obtained in microwave monopulse radar with slow and fast

S

2~ ~
:- : : : ~~~~~~~:-~ ~~~~~~~~~~~~~~~~~~ ~~:: ::~~~~~ :~ :‘~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5’.

‘5’AGCs, respectively, The performance of e,, compared with

that of 00~ is discussed below.

The mean and variance of estimator 0, are

= ( d ) ’<n , n 2 >  (4.11)

var = ( d ) _ 2
[

~~~ , + c ~~2
_ 2 cov(n1~~n 2 )] (4 .12)

I
where d = <n , +n2>, cov(n,,n2) is the covariance of n,
and n2, and and 

~~~2 are the variances of n, and n3.
The photocounts n, and n2 obey the marginal PDF5 p(n,),

p(n2), which can be obtained from the joint one in Eq. (2.5)

as

(s N) ’~~ ~SkN
p(n,~) =J dNp(N ) - e . (4.13)

-
~~ The mean and the variance of are given by29

S~ N5 (4 .14 )

5’ = SkNS + S~ N~/~4 (4 ,15)

:2: and the covariance is

cov(n,,n2) = S,S2 N~44 . (4 .16)

.~~:

- . I
.-— -.

5- 5- 5- 

— 
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Substituting these into (4.11 , 4 .12 ) ,  yields the mean and

variance of 0,:

:-;
<e ,> =00 (4.17)

• var ~~ 2/N5 + 002/M . (4 . 18)

~~~ Thus, ~~ is an unbiased estimator of 00. Its variance is

a sum of two terms ; the f irst  depends on the PSF of the system P
(via ) and is in versely proportional to the square of the sig—

nal-shot-noise-limited SNR. The second term is proportional

to G~ , and is inversely proportional to the square of the

fading-limited SNR . For a target on the optical axis , 9
~ 

= 0 ,

the fading noise can be disregarded and the system performance

I is limited by the signal-shot-noise . For 0 and large

N the photocounting noise can be neglected with respect to

the target-fading noise and the second term limits the accuracy

of this estimator. For a fixed and nonzero value of 00~ 
this

term is largest for the deepest fading (M l). As M increases,

the second term decreases and can be neglected at the limit of

noncoherent light (large M).

Comparing the P145 error- of 0
0 

and 0, with the lower

bound 
~min 

for the case of strong target-fading noise (M=l, :
00 = 0 . 1 75’/D), one concludes that (1) the theoretical limit

for the RMS errors does not depend on the target fading, whereas

the RMS erros of and are target noise dependent;

S

17 .~ 
5’ 

~-
‘
~
- ‘- P ‘5’- ~- 

-I ~,
5’ 5’ \. ‘~ ‘~ - 5- ‘~

‘
~~ ~~~~~~~~~~



V-r,5. T ’SJ 5’ 5 . T  %r~~~ W~P f l Y  ~~ W 5 - ’ W J WIV 5’ -5. 5’ P - W —
. C. 5. . ~~ ~~~ 5.1 — — I -. ,1 - . - 5’_~~~~~1 PT. P — — - ~~ - - - 

~~~ — - - 5’. — . • - 5.. -- — — —

5% 
_

5’

RIVERSIDE RESEARCH INSTITUTE 72

I
.

-
.

5-

( 2 )  the P148 error of ~~~,, 
which1 is an unbiased estimate, is

larger than 
~min for all values of signal ; they are equal

only if 00 
= 0  or if M is very large, The difference be-

I tween them is negligible for small signals. For large signals

the RMS error of is significantly larger than 
~min ’ 

being
c-..—5’,

three times larger than ~ - for N =l0~ and a hundred
5. nan S

I times larger for N5 ~~~~ ( 3 )  the estimate is biased ,

which allows its RMS error to be smaller than 
~min for small

signals. For N5 = 1, for example, for which the bias of

is 50 per cent , the RMS error- of and amin are 0 , 3 X/D r-:.
-

~~ 
and 0 .5 7~/D , respectively. The RMS error of ~ is larger

S.- 0 5’ .

-
~~ than that of for values of N5 for which is approx-

imately unbiased and signal shot noise dominates . As the sig-

:~ nal increases to where the target-fading noise dominates , 
~~

:~: performs significantly better than ~~~ the P115 errors of

are 2 .4 and 6. 6 times smaller than the corresponding values for

for N5 = l0~ and Ns 104 , respectively,

3.4 .2 MLE for Fading Target in Weak Background Noise

j  In the preceding section the background noise and dark cur-

rent were neglected in the derivation of the MLE of the TAP .

For low levels of signal ligh t , however , the analysis ought to

include such noise. This is considered in this section under

the assumption that the noise is weak : NN < l, (
~~/Ns)<< 

1.

The mean and variance of the MLE , A , are computed for M 1 .

The accuracy of A 0 for intermediate values of M is also

5-
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discussed, based on computer-simulated data, Confidence in

I the simulations is gained from their good agreement with the

analytically derived formulas for M = l  and M c o .

The NLE is the value of that maximizes q (m,,m2)

given in (2 .9 ) .  Differentiation yields the condition

I.
:. (

~ 
)(1 NN ) + 

[

m~~
;

~~ 1) 
- 

m2 (rn 2 -l)] NN = ~ . (4.19 )

But to zero order in the noise

m m 2 _
~—~~~~-— --m , + m 2 . 5’—

-

2

Applying these equations to the factor of NN in (4 .19), the

maximum likelihood condition becomes, to first order in NN,

m,52 —m 25, = (m , _ m 2 )NN/2NM . (4.l9a)

Combining this with (2.3a) and (2.3b), one finds that the noise-

less MLE is modified by the factor l + N N/~1M :

m -m  N M + N
= 

~
‘
‘ 

m + m [1+i~~~M _ l + m~~+m 2] 
(4.20 )

To realize it is necessary to know ~~~ NN and M.

These parameters are assumed to be known from averaging of many

independent measurements, of the background alone to obtain an

estimate of N , of the target-returned laser illumination with

the background to obtain estimates of the sum NS +NN, and

5’. -P. 5’ 5.

— 5’. -5. 5 . A~~ — ,. . ~~q ~t-~ ~~~~~~~~~~~~_ &  - I 1 —
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lastly of the variance of the total number of photocounts,

+m 2). All these estimates are needed to estimate M

M = N ~ {var(m,+m 2) 
- (NS

+NN
)] ’ 

, (4 ,21)

since var (m,+m 2) = N S +NN +var N and varN N~/M.

To calculate the mean and variance of A it is conven-
0

ient to introduce the following notation,

= ‘~s 
+ AN , - (4. 22)

q, (m,,m2 ) = <(Q5
+Q

~~
)e

~~~> , (4 ,23)

where subscripts S and N are used to indica~-e terms that

are independent and dependent on the background noise , respec-

tively, and the expectation is with respect to N; i.e., 
I

A~ A5 (m ,,m2 ) = ~~~ m + m :

AN NN ( l + M/~1S )A S (m,,m 2 )/ ( M _ l + m , + m 2 ) ,

m m
1 2(s,N ) (s 2N)

= m, ! m 2 !

= NN {
~~

QS (m l ,m2 1)+~~~ 5 (m 1 ~~m 2~) 
~~~s (m ,,m2 ) ]

The approximate expressions for the mean and variance of A
• 0

to f irst  order in NN,/t~S, are

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (4.24)

.5
.

5’-

I
.l~ *~~• -: - - -.-1-.~---:-.: :-.-~~

-
~
. :- . :-:.~ ~~~~

-
~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.
~ j~5- 2~’ - 

‘5. 5’

~
’
~~
J. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~‘ 5 - %  5.. %~~~- , S.~~~_



RIVERSIDE RESEARCH INSTITUTE

ii
var var + < e

_N
~~~~QNA S A S - 2< ~~~> ) >  + 2< e~~~~~~Q

5 (A 5 _ < S o >)A N >

:1: (4,25) 22

where the sums are over m1 and m2, exclusive of m, =m 2 =0,

the expectations are taken over N, and <eO >  and var

were computed in Sec. (3.4.1). The remaining terms in (4.24-25)

can be evaluated by extens ion of the computational techniques

employed in the Appendix . The expressions involve modified ex-

ponential integrals and are not informative in general . For

M = 1, however , the analytic expression for the mean of the

estimator, 
:

5’

: 1
_ I 

<~~~ > = 
~~

(N s + N N )/( Ns +1)  , (4 .26) 
I

valid for NN smaller than both N~ and unity, shows that the

noise, when weak, reduces the bias of the MLE, because the noise 2-

• and signal bias act in opposite directions.

-5 -
5’-~~~~~~
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Standard deviations of the MLE were obtained in com-

puter simulations using 5000 realizations of the random

and m2 and examined as functions of the signal N
s for dif—

ferent values of M and N
N O For large Ns, the RMS error

-
~~~~ of can be considered practically equal to that of

For weak signals, however , the difference between the errors

• 
of these estimators can be appreciable . The percentage di f-

f erence between the RMS errors of A and ~ , normalized to
0 0

that of 6~~, is plotted in Fig. 4 as a function of the signal

for M = l ,2,20, and for N
N
=O .l (solid lines) and -

~~~

NN
=O .5 (dashed lines). The RMS error of is larger than

that of for the same N~ , and M, The normalized er—

ror difference decreases with the signal N$ and , for fixed

N5 and NN, dec reases with M . Also , for fixed M and

it increases with the noise level.
Consider now an estimator A~ realizable wi th a slow AGC

:-:~ 
system. This estimator is defined as: 1:

= ~~-1 
rn

2 ( ! ~1
M + N

) 
(4 .27 )

The mean and variance of A 1 are readily obtained from those

of m ± m from (2 .8), without approximation .

7-’

< A 1 > = eo (N
s +

~~
N

N )/ (N S
+ N

N
) , (4.28)

2 -:
5.... - -

. 10 2 N +N  u N  + X ~ 1
var A~ = [-

~
- + ~~~‘2 S NJ[S N] , (4, 29)

.• .
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where x (N S + M )/ (N s + M + N N
_ l) ,  This estimator is biased ,

~~ ~~ 
except for NN = l .  Its RIMS error is target-fading limited for -:

large signals.

3 .4 .3 MLE FOR A NONFADING TARGET IN BACKGROUND NOISE (M -~~ 
,

~~~~~ 
N~ >0)

The likelihood function for this case is q0 (m 01 ,m02 J N ~~) ,  as

in ( 2 .7a) ,  and the MLE is most easily obtained by ma ximizing

in q0 ,  This estimator is

= ~~~ 
(1 + (4 .30 )

The mean and variance of can be obtained by the method

1
~~~ I

1
~~

’ 

used in the Appendix .

= [ - N T] , 
(4 .31)

var 0 = 0 ~ e T [l_ e  T + E i n ( N ) ]  ~~
2 ( N T/N ) 2 e T Ein (-NT )

(4,32)

where NT =NS +NN and the exponential integral is the one that

appears in (A-13). The MLE is biased, but underestimates

only slightly whenever the total of signal and noise is not

negligible . In this case the RIMS error in can be consid-

ered equal to the lower bound 
~~ mm for all practical purposes.

i:;
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Finally, consider an estimate ~~~~,, defined as

S .
N m —m

,~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
01 0 2

1 
— 

N5 <m0, + m0 2 > 
•

S From the mean and variance of m0, ±m02, there follows that

= (4.34)

var ~~~~~~~~~
_

2 ( N + N )/~~2 
‘ (4 ,35)  

:
Thus, this estimator is unbiased and its standard deviation

equals the lower bound c~ mm

.1

~.-7 .
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3.5 SUMMARY

I In a laser radar monopulse system, the angular position

of a target is estimated by measuring the location of the tar-

- 2’ get’ s photocounting image by means of a noncoherent four-quad-

I rant detector. The limitations imposed by target fading and

by signal and background shot and dark current noise on the ac-

curacy of the estimate have been investigated . The theoret-

ical limits given by the Cram~r-Rao lower bounds for the stan- L

dard deviations of the estimates have been derived for fading

and nonfading targets. For several cases it has been shown

that the lower bounds are g iven by the beam-splitting formula;

i .e., that the standard deviations are proportional to the dif-

fraction—limited angular resolution of the imaging telescope 2 - -

and inversely proportional to the SNR , where the noise includes

the shot noise generated by the target and background radiation

and dark current , and do not depend on the target fading .

• Maximum likelihood estimates have been derived for fading

and nonfading targets and their means and standard deviations
.5 ’ ,

have been evaluated , All these estimates share the following

properties :

1. They depend on the familiar monopulse ratio which, r5’.
for the photocounting problem, is given by the ratio of the

‘I

-I.

I..
’. -

5’
.
,
-

S
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—I 
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5” -

difference of the total number of photocounts at the detector

outputs to their sum. This normalization makes the angular

measurement independent of the target range and significantly

reduces the impact of target fading on its accuracy.

2. They are biased. For nonfluctuating targets, the

bias decreases exponentially with the signal and background

j  noise. For fading targets the bias depends on the number of

degrees of freedom, M, and decreases monotonically with the 2-
signal at a rate that is significantly faster for M >  5 than

for M = 1. For M >  5 and N
s > 2, the estimates for fluctu-

ating targets can be considered practically unbiased.

3. The standard deviations of the estimates approach the

I 
theoretical Cram~r-Rao limits for unbiased estimates when the

signals are large enough to make the NLE5 unbiased.

4 , The processing of data according to the MLEs requires

systems with fast automatic gain control, which can follow the

:‘!~: temporal fluctuations of the target fading. The fast AGC is 21-

necessary to obtain the correlation between the difference and

sum channels. If the AGC is slow, the difference and sum pho-

tocounts ~ -e decorrelated and the corresponding estimates,

although unbiased, have, standard deviations that are limited

for large signals by target fading noise.

5-, 
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3 06 APPENDIX: MEAN AND VARIANCE OF MLE

a

We need <r> and <r2> for

(A .l)

where the counts n1,n2 are doubly stochastic:

-
-

-

-
I cc

<r
e ) =J ~~~~ r~ p(n 1, n 2 j N ) p ( N ) d~& (A. 2)

0 n1,n 2

with
n1 n2

• (S 1N )  (S2N) Np(n 1,n 2 I N )  = 
n1 ! n !  e (A.3)

and

p p ( N )  = e~~
N 

. (A ,4)

The sum in (A .2) must exclude the possibility of no counts at 
fr

~~ all, n1 =n 2 =0 . Let,

n n
n — n  n+n S 1 s 2

H(x,S1,S2 ) =  
~~~~~ 

n~~+ n~ 
x

1 2 : 

~~~~ 
(A.5) 1—:

n1 ,n2

• Then
n n

-
P (xs ~ 

1 (xs ~ 
2

x~H/~x = (n1 —n 2) ~~ 
, (A .6)

Ti 1 ,fl
2

•
1 ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - I

.. 
•

• • I •
~~~5’

5’ • V  
- - . -

. ~ I 5 .
•
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p which readily sums to

(s +s )x
x~H/~3X = x(S1 —S 2 )e 

3. 2 
= x(S3. 

_ S
2)e~

C (A.7)

since S1 +S2 =l. Integrating this, with ii(o ,s3. ,s2 ) o , yields

H(x,S1,S2) = (S3. _ S 2 )(e~
C _ l) . (A .8)

It follows that, setting J=l+l/-y,

<r> =J H(N,S3.,S2) e_Np (N)~~
- 

(S1 -S2 )< l-e
~~ > 

(A.9)

= (s~ — s 2 ) (1. ~
_M
)

P by use of (A.4) -:

Similarly, to obtain the variance, evaluate
n n

n - n  2 n + n  s 1 s 2

K(x,S3.,S2) = 
~~~~(n +n)x 

1 2 

fl
3.

l :2 1 (A.lo)

na ,n2

by forming
n n

-~~ 1 2

~ ~K 
(xS ) (xS )

x ~~(x ~~) = (na, 
_ n

2
)2 ~~~ n

2
i 

(A.ll)

which, after rewriting (n1 -n 2 )2 as

[n 1 (n 3. — l ) + n1 — 2n1n3 + n 2(n 2 — l)+n 2 ], readily sums to

- I~ -
~~

a ’
I I-

~- 1- ~~ .- ,~~ - 
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5’
...

5 ’.-
- I -

x —k-- (x ~~~) =  (x 2 S~~+xS 3. _ 2 x 2 S1S2 +x 2 S~~+xS 2 )e~C
X X 

(A l2)
5” -  x= [x2(s1 — s 2 )2 +x]e

Integrating twice yields K in terms of the exponential integral :
x

K(x ,S1,S2 ) =

(A.l3)
= 4S1S2 [—Ein(—x)J + (s 1 _ S 2 )2(e

X _l ) ,

Thus,

<r2> =JK(N,Si,S2)e
_N
p(N)dN

0 (A .l4)

= 
~~~~~~~~~~~~ 

Ei n ( — N ) )  + (S 3. 
_ 5

2)2<
l_e_N)

1 The double integral for the expectation involving the exponen-

tial integral can be evaluated as follows:

N
1~ 

-
. cc

<_ e
_N 

Ein ( - N ))  
j

dNp (N )e~~~J 5 l  dx

5’
.

-
‘ 5.. cc cc.j

~ 
e~

c
;lj ~~~p ( N) e

_N

= ( f lM ~~~~~ ( l + - Y )mf dx xm
~~~[exp(~ yx)~~ exp (~~[l+.y ]x )]

= (~~~~~~)M [l ( l +~~ ) 
~~~

1 ( l+ ~~ )m _ l ]  
. (A.l5)
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I Hence, with J l+l/-y,

var r = 4S S J
_M
[lnJ+~~~

Jm _l]+ (s~ 
_ 5  )2~~’M(1 _~~

_M
) (A.l6)

or , since 
~~~~~~ 

l — (s 1 ~s2 )2 and letting

G = lnJ + ~~~~ (J~~- l )/m , (A ,l7)

var r = J
_M

G + (s 3. _ s
2
)2J ’M (l_ J ”M _ G ) • (A.l8)
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3.8 Figure Captions

Fig. 1, Single—Axis tracking sensor. L = laser , 0 = object,

T = telescope, Q = four—quadrant prism, RI = receiver

irradiance, I = image irradiance, n1,n2 = output

photocounts. The areas under the irradiance curve

on the two sides of the center line are in the ratio

S1 :S2.

:~ Fig. 2. Normalized mean of MLE vs mean signal count. -:
I ’

Fig. 3. RIMS error of NLE 00 vs mean signal count. The

dashed line is the Cramér-Rao lower bound.

11 Fig. 4 . Normalized difference between RIMS errors of and

~~:lOO~ty ,5’ - c~0 )/a 0 vs mean signal count for noise

counts NN = O . l (solid lines ) and NN =O .S (dashed

l ines),
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IV. ESTIMATION OF IMAGE CENTROID I SIZE~
AND ORIENTATION WITH LASER RADAR

Angular tracking of targets with monopulse laser radar can

be performed by tracking the centroid of the image. The image

irradiance distribution is sensed with an array of noncoherent

photocounting detectors and the individual counts processed to pro-

vide estimates of the image centroid coordinates and of its size and

orientation. These estimates are discussed for optically rough

and smooth extended targets, viewed against a noncoherent uni—

form background. General expressions for the mean and variance

of the image centroid and second moment are obtained as a func-

tion of coherence of illumination, target extent, number of

degrees of freedom in the target’s image, the diffraction—lini—

ited resolution of the image telescope, and the integration

P1 time of the detectors. The fundamental limits imposed on the

accuracy of the estimates by the shot noise from the image and

background irradiances and by the laser speckle noise are

discussed.

Portions of these results were presented at the 1975 meeting
of the Opt. Soc. of Amer. in Boston, J. Opt. Soc. Amer., ~~~~~,
l204A.
Submitted for publication in Appl. Optics with P. Diament.
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_
4.1 Introduction

An important application of laser radar is to angular track-

ing, in which a sequence of direct measurements of target posi—

tion is fed into a tracking filter to produce refined estimates

j  of present and future target position. The theory of angular

tracking developed for microwave radars~’
2 does not apply fully

to laser radars. Unlike microwave radars, laser systems can re—

solve targets with only modest-size telescope apertures. The

quantum noise may be quite apparent in the optical electromag-

netic spectrum. If background radiation noise is not a dom—

inant factor, the laser energy returned by the target can be

reliably sensed with noncoherent detectors. These are simpler

than heterodyne sensors and are particularly attractive for use

with recently developed powerful chemical laser sources that

have poor temporal coherence.

This paper discusses estimation of angular position, size, and

orientation of extended targets by use of monopulse laser radars

which derive their information about target angular position El
(TAP) and target size and orientation (~so) from a single pulse.
The TAP is estimated from the position of the centroid of the

image. The image centroid, one of many ad hoc estimators that

can be used for TAP estimation, generalizes to extended targets

r r ‘
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the usual 3 point target4 angular estimators derived from four—

quadrant image sensing detectors, The TSO is estimated from

the properly normalized image second—moment tensor.

The imaging system receives both reflected ligh t from the

I target, which is illumina ted with the laser beam provided for

tracking, and from uniform, noncoherent background radiation.

This li ght is imaged onto the detector array, which converts

the photon flow into an image photocounting distribution (IPD),

the electrical signal used by the image processor. The image

-
~~ processor is to estimate accurately the image position, size and

J orientation from each received pulse.

The sensor consists of an array of L detectors; the k—th

-~~~ one is located at position ~~ and registers 1
~k 

photoelectron

I counts in response to one laser pi~ilse. Of these, some are back—

ground photoelectrons and dark current electrons, the rest are

signal photoelectrons. In the absence of a target image, the

noise count consists of only background and dark current, fluc-

tuating in number about a mean noise count *( mN) that is as—

sumed to be known and the same for all the detectors. The re-

L duced count at the k-th detector is

nk n
~k

< m N > , (1)

1~- the total count diminished by the known mean noise count; this

include s the random signal counts and the fluctuations of the

noise counts.

1-

~~~~~~~~~~~ ~~~~~ -:~--:. •
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I-

j  The processor considered here provides the tracking system

with the location of the reduced IPD centroid and second moment.

The former is the vector (see Fig. 1)

(2)

and the latter is the optical moment of inertia tensor

(3)

The sumnations are over all the detectors of the array. The

moments are measured with respect to the optical axis of the

imaging system. Upon shifting I to refer to the optical cen—

troid, its eigenvalues and eigenvectors provide the image size

p and orientation.

The numerators of these quantities estimate the first and

second moments of the image irradiance distribution and, except

P1 for their randomness, correspond to those of the irradianc e -

distribution at the target. The normalization denominator for

both moments is the total nunber of counts in the array, reduced

by the expected value of the total number of noise counts. This

normalization factor makes the position, size, and orientation

measurements independent of the target’s range and, because it

too is random, can ease the dependence of the measured moments

on the target-related random fluctuations, provided a correla-

tion exists between the total count and each of the moments.

• - .-.
.~~~~~~~~ - --

- ..
- -.- - -
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The statistical properties of the estimators depend on

those of the IPD. It is assumed that the noise counts obey

Poisson statistics with parameter equal to the sum of the mean

background and dark current counts and are independent of each

other and of the signal counts. The statistics of the signal

counts reflect those of the energy Wk deposited on the in—
- --p

dividual detectors by the laser field returned from the target.

- 
These counts are generall y cx rrelated.

As has been shown,5 the statistical properties of the en-

ergy at each detector depend on the coherence of the illuminat-

- - 
ing light, the target-surface roughness, the width of the tel-

escope point-spread functions, the illuminator—target-telescope

geometry, and the aperture and integration time of the detec-

tor. The random fluctuations in W make the resultant signal

counts a doubly stochastic Poisson process .6 For an optically

rough target, the returned field is a stochastic spatio-tempo—

ral, zero-mean complex Gaussian process and the photoelectron

counts obey a negative binomial distribution with N degrees

of freedom.5’7 The image irradiance distribution from such

fields has the characteristic random spatial structure referred

:~:::~
.. to as the laser speckle pattern.8’9 For an optically smooth

target and temporally coherent illumination, the image field

does not fluctuate and the photoelectrons are then only singly

stochastic, obeying Poisson statistics,5’7

T~ . 
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.
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p.

:-~ 
• To determine the limitations imposed on the accuracies of

C the es timators by the laser speckle structure, the signal and

background shot noise and the dark current, the general ex-

pressions for the means and variances of c and I are de-

rived in the next section. The relevant expressions are spe-

cialized in Sec. 4.3 for TAP es timation with the monopulse

laser .
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4 • 2 • MEAN AND VARIANCE OF THE ESTIMATORS

pp. .
--

The performance and accuracy of the estimators c~ and ,~

are determined by their means and covariance matrices. These

can be evaluated by adapting the method of statistical error

j  propagation~° or the delta method~~ to the centroid~
2 and sec-

ond moment expressions, It is shown that the means and var-

iances for both estimators are expressible in terms of a de—

tection matrix comprised of the covariances of pairs of counts,

p-p
.
-

ii~~ = < [ m~ - < n ~~ ][m~, -< me)) . (4)

Both moments, as well as higi—er-order ones that could be

treated analogously, are of the form of a deterministic func-

tion of the location of the k-th detector, averaged over

the reduced counts at each detector:

E 
E~k~k”~~~~

’
~ 

(5)

This random quantity is intended to estimate the corresponding

property of the image

F =
~~~~~~k<nk>/Bn

~~
) . (6 )

The quantity 
~k’ 

and hence also E and F, can be of any

scalar , vector , or tensor character. For the centroid, 
~k 

is
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E is ~~~~, and F is the true image centroid 
~~~. For

the second moment tensor , 
~k 

is 
~kEks 

E is I, and F

is the true optical moment of iner tia tensor Z~j, referred to
p.

the optical axis.

Let N = E<~k> 
be the total mean reduced count and let

Ax = x - <x) be the deviation from its mean of any random var-

~~ iable x. When express ed in terms of such deviations, the es-
timator is

E = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (7)

Expanding the reciprocal of the denominator in a Taylor series

and retaining terms to only the second order in An,

E = F + ~~ - F - 
~~k 

- F )An~~ n~ft2 . (8)

it follows that the mean of the estimator is, to this order,

<E)  = F _

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ (9)

and its variance, or covariance matrix, is given to the same
:~:.:- order by the outer product

:~
<AEAE > = 

~~k 
- F) (~~ 

- F) <AnkAn~ )
~4~2 

• (10)

1!
-p

‘p S - - p  ‘- S-~-S.
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is

The relevant statistical parameters are seen to be only the

: p.
-
~ 

total mean N and the covariances <AnkAn.~> 
of the reduced

counts. Note that the estimator is generally biased, the bias

~~
• arising from the correlation between the random numerator and

denominator of the expression for E. Note also that, since

the difference between the total count m.K and the reduced

one is not random, their covariances are the same :

<An~An~ ) = <Am~Am~ > =

In detail , the mean of the estimated centroid is

<C)  = s (l+ 1i,,~~/N2) 
~~~~~~~~~~~~~~~~~~ (11)

and its covariance matrix isI.
<Ac1~c) E[~kE ~~~

+r k (12 )
k,-e.

For the second moment, the mean and the fourth-rank covariance

tensor are

<I>  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (13)
k,~ k -

~~

<AIAI> =
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (14 )

k ,~

in which juxtaposed vectors and matrices denote outer products,

~~~~ .
-.

~~~
- - :-. ‘ --~-—~---:c:- -

- -: s-:-- :--~ :•-—:-.-:-.— -.- • -:- - -:- --:- . ~-
- -.—: - ~
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The diagonal elements of the detection matrix p. are the

variances of the number of photocounts at the detector out-

puts. Some properties of the variances were discussed in

Ref. 5, where Mandel’s semiclassical theory of photodetection13

was applied for several types of laser illumination and target

surface roughness. The off-diagonal elements of p. involve
.
~~~•: correlations of photoelectrons among pairs of detectors in the

array. This correlation was demonstrated first by Hanbury

Brown and Twiss. 14
‘S-

The elements of p. involve fourth-order correlations of

:1: the optical field, corresponding to second-order correlations

of the irradiance, and are therefore expressible as15

, (15)

: where 6k~ 
is the Kronecker delta and is an integrated

cross correlation of the instantaneous intensity I(r,t) at

!! the k—th and -?..-th detectors , at different times t ,t ’:

C,~~ <AIkAI~ >/<
Ik)<I~) . (16)

The overbars denote spatio-tentporal averaging over the detector

apertures and integration time ,

The first term in (15) represents the quantum noise in the

count of photons from the image and background radiation and

the detector dark current. The other term reflects random fluc— :~
tuations in the energy W and involves the covariance of the

L
- 5_

. .

p. 
p. -p 

• -p -

‘S - 

p. 
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-p
-p
.

energy at pairs of detectors. In Ref. ~~~, 

~~~ 
was def ined as

the contrast of the measured fading of the fluctuating irra—

-
~~~ diance, generalizing the quantity known as contrast of the

laser-speckle pattern.

‘P For optical fields that can be modeled as complex Gaussian,

weakly stationary processes, C~~ is related to their spatio-

temporal degree of coherence byI ___
= 

~k
t_ t H . (17)

For monochromatic illumination and rough targets, for which

fluctuations in W are strongest , the image field is such a

process, over space. The degree of coherence is then only spa—

:1.- tial and is fully determined by the point spread function of

p.
-:: the telescope .5 For the same illumination but targets with

smooth surfaces, there are no random fluctuations in energy

and the last term in (15) is absent . This term is also zero
mp . . for temporally noncoherent illumination with coherence time

much shorter than the integration time .
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4.3 DISCUSSION

To aid in interpreting the general expressions for the

performance and accuracy of the estimators, it is usefu l to

relate them to the SNR of the array as a whole. This compo-
~‘•
‘. .,

site sensor registers a random total reduced count 
~~
nk

with mean N and variance 
~~~~~ 

The signal-to-noise ratio

at the output of the array is

R = N/(~~~~~ p~~~) 1/2 
. (18)

The frac tional covariances, summing to unity , are

= P1~~/~~~~P.~j • (19)

P1 The correlation between an individual reduced count and

the total count, normalized to the overall variance, is

Vk E
?Sk~, 

. (20)

The centroid of this fluctuation count is located at

~~~~. ~~~~ k”k ~~~ 
(21)

k k,~. p.

and its second moment is

( 22)
k k ,~.

U

S -S - ‘ p  ‘ ‘ - S - ‘s.’S ’p.. L’p
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In terms of these statistically meaningful quantities,
the mean and accuracy of the estimators are expressible by

= + (s-q)/R 2 
(23)1~i• <A cAc > =[

~~~~~ ~~~~~~~ 
- qq + ( s_ q ) ( s_ q ) ] / R2 ; (24 )

k ,~ -‘S

~~ (M Q)/R 2 
, (25)

p.

<AIAI> = 
~k~k”k E~~ t 

- 

~~ 
+ (

~ - Q) (M - Q)J /R2 
. (26)

k ,~

The m i s  errors in the estimates are inversely proportional to

the overall SNR ; the biases are inversely proportional to the

square of the SNR.

Equations (23) and (24 ) can be applied to a tracking sys—

tern in which the displacement of the image centroid from the

optical axis is used to control the monopulse laser radar track—

ing the TAP. The system can be conceptually similar to typical

ones employed for tracking point targets, in which the peak po-

si tion of the imaging system’s point spread function is tracked

with a four-quadrant detector,4 In what follows, these equa—
• tions are specialized to cases in which the detection matrix p.

retains only its diagonal terms.

I
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~
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S
-.’ For monochromatic illumination and optically smooth tar-

gets , or for temporally noncoherent illumination and arbitrary

target-surface roughness, the off-diagonal terms in p. are
‘p

absent , Generally, however, the photocounting distribution

depar ts from Poisson statis tics , the off-diagonal terms can be

present, and the variances of the number of counts at the de-

tector outputs may exceed those given by the Poisson distribu-

tion. Specializing to a practically important case of complex

Gaussian, weakly stationary random image fields, consider a

spatial arrangement of the detectors designed to sample the

image plane at the Nyquist rate.16”7 For well—resolved tar-

gets, the spatial bandwidth of the image field is determined
-.

~~
- . by the telescope aperture; sampling at the Nyquist rate implies

that the degree of coherence in (17) is zero for k~~ -t .

With matrix p. thus rendered diagonal, the reduced count

:-:-; 
~~~

R = N / ( N + NN
+ K 2N2) 1/ 2 .  

, (27)

where NN is the total mean noise count and

K =
~~~~<~k> 

Iy 12/N2

is a measure of the bunching of photons, reflecting the fluc—

tuations in the energy W deposited by the image field on the
:-:-~ detectors, The mean of the centroid estimator is then
•....-

j
•d.

:~ <c) = s(l+NN/~
I2) + K2 (s_sw) (29)

“l

I

~ )
~i~~ -)C. 
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where s
~ 

is the centroid of the energy fluctuations

<ilk) 
.y~~) 

2 
• In the absence of the photon-bunching effect,

only the first term in (29) remains, and this bias becomes neg-

ligible when the signal count N becomes substantial. Even

when strong energy fluctuations are present, it should be noted

that - is a measure of the nonuniformi ty of the image

irrad iance and K2 is generally less than unity. From (28),

one observes that K 1 can be interpreted as the SNR at the

arr ay output, when it is limited by the laser-speckle noise.
This SNR increases as the square root of the number of detectors

sensing the image intensity; for Nyquist sampling, this equals

the number of degrees of freedom in the image.

- -:5.., The diagonal detection matrix also yields for the covar-

5 .
_ _ iance matrix of the centroid estimate

P1 (30)

in which M-ss is the image’s intrinsic moment of inertia,

referred to its own centroid, ~~~~~~~~~~~~~~~~~~~~~~~~~ is the corresponding

moment of the speckle noise, and M~ that for the array. The

geometrical factors depend on image size orientation, and loca-

tion; they do not change with laser power, provided the illumi-

nation is uniform. The coefficients are the inverse — square

SNR of the sensor, when limited by the signal shot noise, back-

ground and dark current noise, and laser speckle. The last of

— .5 -
.’
..

•
•p . •_

1,

~~~ 
~~ 
,/

~~
.‘

5. ~ •,. ,~ ~, )? 
~~, 

p. .~ ~~~~ ~~~ .
~ 

~~~ ~ ~~~~~~~~ “ ~~~~~~ ,t ., - ‘~ p. - 
p. 

5 
p.
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• these is insensitive to changes in the laser power, while the

others can be reduced by increasing the power, For large sig-
P....nals, the laser-speckle noise limits the system’s accuracy.

For fixed longitudinal geometry of the optical system and given

laser coherence, this limitation can be eased by increasing

the space-bandwidth product of the imaging system by an increase

of the telescope aperture. This not only improves the diffrac-

tion-limited resolution of the imaging system, but also produces

more degrees of freedom in the image, thereby increasing the

speckle-noise-limited 5NR .5 For nonfluc tuating targets, the

last term in (31) is absent.

The square root of the trace of the matrix <A~A2) ~

the rins error in the centroid estimate. Assuming, for simplic—

ity, a uniformly illuminated and reflecting target and cross-

spectrally pure light, one has and Mw M. The accu-

racy of the centroid estimate is then given by

= [K2 +1,4~+(NN,4T
2)(r~ +s 2)/i4)1/2 , (31)

where ~ is the standard deviation of the centroid location,

r1 and rA are the optical radii of gyration of the image and

array, respectively, and s is the dis tance of the image cen-

troid from the optical axis. Figure 2 is an asymptotic log-log
‘

~~~~~~; plot of normalized mis error as a function of signal N. It

shows the combined effects of total signal photocounts, back-

ground and dark current counts, and laser—speckle noise, as

A,

H
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well as the impact of geometric factors, including image size,
U centroid displacement, and sensor size. As the signal increases

from weak levels, the accuracy is limited first by background
light and dark current, and varies with image location. At

intermediate signal levels, the image size and the shot noise

determine the accuracy. For strong signals, the accuracy be-

comes independent of signal level, being limited by speckle

I noise, but still depends on the size of the image. F

_5
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4.4 CONCLUSIONS

The angular position, shape, and orientation of extended

targets can be estimated by use of monopulse laser radars, with
target images sensed by a photon counting array. The processing

involves conversion of the output counts into measurements of

the image centroid and optical moment of inertia.

A Taylor series expansion, valid for small fluctuations

of the photocounts about their means, was used to derive the

means and covamiance matrices of the estimators, to the second

order of smallness. It has been found that:

a, Both estimators are biased; the biases are inversely

proportional to the square of the overall SNR at the sensor :
output.

b. The rins errors are inversely proportional to the SNR .

c, The biases and rms errors of the estimators depend

on the detection matrix, comprised of the covariances between
.

5
.
--
-

,

the photocounts at the outputs of pairs of detectors in the

array. The detection matrix becomes diagonal, giving the var-

iances of the photocounts at the individual detector outputs,

for either nonfluctuating targets or noncoherent illumination,
p.

or also for fluctuating targets generating Gaussian image fields,

if the detectors sample them at the Nyquist rate.
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-•

d. For diagonal detection matrices and nonfluctuating

targets, the bias and rins error of the centroid estimator de-

.5 crease with increasing laser power; for fluctuating targets

they cannot be decreased below the limit imposed by laser-

speckle noise. This limitation improves with the number of

degrees of freedom in the image, which depends on the diffrac-

tion-liinited resolution of the imaging system.
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4 .6 Figure Captions
:1 P

Fig . 1. Image Plane . I = image, ~ = position of k-th detec-

tor , m~ = number of photocounts at rk, ~~= cetroid esti-

mator, <~
) = mean value of centroid estimator,

= - <~ ), 
and = true image centroid.

Fig . 2 . Normalized rms error of vs mean signal counts; :1

asymptotic approximations . The steepest asymptote

is background-noise-limited : p1 = rI/[NN (rL + ~~~2 )j 1/2,

N, = (r
~~

+s 2)NN/i4. The middle asymptote is for sig-

nal-shot-noise-limited operation: p2 = K , N3 K 2 .

The horizontal asymptote represents laser—speckle-

h al ted operation ,
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