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Introduction--The Symbol Table Task

Previous reports [Shaw76b, Wulf7Ga,b] have described the Aiphard programming
language and its associated verification methodology. These reports developed Aiphard
definitions for the canonical examples of data absti’sctions (stac ks, queues, and sets). These
examples are sufficiently simple to be grasped readily, and they have appeared often enough
in other languages that the reader may compare various approaches to their definition. There
is, however, a danger in considering on1~’ these examples. It is possible that an approach will
work for only the easy examples, or that the definition of something more complex will be far
less elegant.

Therefore, in this report we shall consider a larger, more realistic example: an
abstraction of a symbol table. For comparison purposes the reader may wish to refer to the
similar example given In (Guttag76] and to a hashtable example In (Wegbrelt76]~

Suppose that we must produce a number of compilers, assemblers, and interpreters to
operate on several different computers. Each such system will contain a symbol table
mechanism; although each system will have its own requirements, many of the gross , abstrac t
properties of these symbol tables will be the same. It seems desirable to have a single
implementation of these common aspects which is verified; that will be our aim.

But what are the common properties? Many texts (e.g., Gries7l] describe a symbol
table as a map ping from identifiers (strings appearing in a source program) to a set of
ottrSb~fts associated with those identifiers. Examples of such attributes Include “type”, “run-
time memory address”, “number of dimensions” (for arrays), etc. In some cases the mapping
may be sensitive to the context in which the identifier occurs. (Algol-like block structure is
the most common exampl e of this context sensitivity; the mapping from identifier to attributes
depends upon the block in which the identifier appears. Name qualification , as In field
selection from a record, is another example In which the interpretation of the field selector
depends upon the type of the record.) The common properties, then, are ones which Involve
the application and manipulation of this mapping; principally

- some means to apply the mapping, i.e., to find the attributes associated with the
occurrence of an identifier. ~~~~~~~~

— O lti. -~ :1
- some means to alter the mapping, e.g., by inserting and/or deleti ng entries and

signaling changes in context.

Since we want our abstraction to serve a spectrum of languages, system types (e.g.,
comp ilers and assem blers ), and machines, It would not be appropriate to Include the specific
attributes as part of the abstr action. Rathe r, we shall presume t hat the user of our
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abstraction will define some mechanism for storing and retrieving attributes , e.g., a vector of
records; our abstraction will then provide a mapping from an identifier to a unique Integer
which, for example, may then be used as an index into this vector of attribute records.

Concerning the issue of context sensitivity, we shall provide an abstraction which
supports block structure because (1) it is the more general case and (2) with proper
implementation, the generality costs very little when it is not used. We shall not explicitly
provide for the kind of context sensitivity needed for record selectors, but we shall show how
the abstraction may be used to achieve it.

Note that the informal term “block-structured” does not describe a unIque name-binding
policy. For example, consider the program fragment

integer k’ lO;

begin
vector X[1:k)
integer ku”3;

In the declaration of the vector “X”, there is a question about which “K” should be used to
define its upper bound. The semantics of some languages specify that the value of the
variable “ii” defined at the outer block level, i.e., 10, should be used; other languages specify
that It is the innermost definition, i.e., “integer k—3”, which should be used. To accommodate
th. second of these schemes requires that a full lexical analysis pass be performed before
ass,’ name binding (symbol table construction) is done.

In order to make our abstraction useful on this pure lexical pass, as well as later when
the full symbol table is constructed, we shall define it as a mapping between “things” and
integers. In a simple system the “things” will be Identifiers and the integers will probably be
indices into th. vector of attributes described above, in a more complex system, the init ial
lexical pass may use the abstraction to convert identifiers into integers; these Integers may in
turn be the “things” mapped into symbol table indices during a later pass. An example of the
use of th. abstraction will be given later to help clarify this point; for the moment the reader
may simply assume that the “things” ore identifiers.

Summarizing, then, our abstraction shall provide:

(a) A block-structured mapping from “things” to integers.

(b) A set of six operations to insert a new “thing”, to f oohup the integer
associated with a specific “thing”, to test whether a specific “thing” Is
defined at th. current block level, to enter and to lees’s a block level, and to
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test whether the mapping is fu ll, i.e., whether there is room for another
“thing”.

The Symbol Table Abstraction

The preceding section provides an informal description of the symbol table abstraction;
in this section we shall be more precise. Specifically, the specifications part of the f~jj~. called
“symtab” is:1

Lcx.ni symtab(T:form< 4-,—,hash(T,k:integer) returns x:integer p
~~ 

(k>O) ~~ j  (OSx<k’) >,
m,n:integer)

beginforni
soecificptions

reQuires n�1 A m�1;

~j  symt ab — <block:integer , assoc:{(s:T,bl:integer,ui:integer>)>;
invariant

cardina lity(assoc)~n
A lSuiSn A 1~bl sbloc k
A (t 1,t2 ( assoc D (t j .s— t 2.s A t 1.bl—t 2.bl ‘ t j .ui—t2.ui));

initially symtab —

f unctions
defined(st:symtab,str :T) returns t:boolean

~Q~j  t — 3i st <str ,st.block’,i> ( st.assoc ,
insert(st:symtab,str:T) returns i:integer

~~ cardindlity(st.assoc) < n A —defined(st,str)

~~ j  at — <st.block’, st.assoc’ U {<str,st.block’,i ) > ,
lookup(st :symtab,str :T) returns x:integer

~~~ a 3 y st.assoc it (y.s—str A Vz ( st.assoc, z.s—str ~ z.bl ~ y.bl]
x — y.ui

else x - 0,

enterblock(st:symtab)
p~ j~ st — cst.block’+I ,st.assoc’>,

Ieaveblock(st:symtab)
p,~~ st.block ‘ 1

~Q~j  st — <st.block’—l , st.assoc’ - (<s,x,ui> it x�st.block’}>,

I A primed variable (e.g., K’) represents the value of that variable prior to the
execution of an operation. To shorten the 

~~~~~ 
j~ and ~~j  conditions In our papers , we

often, by convention, omit assertions about variables which are completely unchanged. Thus
for example, we have omitted at — at’ from the ~~ j  condition of defined.
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fuli(st:symtab) returns t:boolean
pQ~j t — (cardinality(st .assoc) — n)

Note that , abstract l y, a symbol table consists of a pair: an integer, “block”, and a set ,
“assoc ”. The integer denotes the current block level, has the initial value 1, and is altered
only by the operations enterbloc k and Ieo.vebl.ock. The set , initially empty, consists of triples
containing the “thing” defined, the block level at which it was defined, and the unique integer
(“ui”) associated with the <thing,b~ock level> pair

The parameters of the form specify the type, “1” (usually strings), of “things” to be
entered in the table , and the maximum number, “n”, of simultaneous entries permitted. The
parameter “m” is a bit more difficult to exp lain, and we shall for a moment defer it, together
with the discussion of the required rights of T.

Since the symbol table contains only currently defined things, the block level of each
entry must be legitimate (e.g., between 1 and the current value of “block”). Further, since a
maximum of n entries is allowed, the “associated integer” must lie between 1 and n. The (~j .
clause and the abstract invariant express these restrictions (the last line of the invariant
expresses the uniqueness of the integer associations). The remainder of the specifications
states that the initial symbol table has a block level of 1 and an empty “assoc ” set , and then
lists the symbol table functions end their abstract ore and R~ t conditions.

Now , let us return to the issue of the parameter m and the required rights on T. As
may be seen from the requires clause of the soecifications. the only requirement on m is that
its value be strictly positive; it does not enter into any of the other parts of the formal
specification. Hence, one may properly conclude that its precise value is immaterial and the
abstraction will function correctly with any positive value.

The value of m does, however, affect the performance of the abstraction. Neither
Afphard nor other languages with similar goals have yet found an appropriate way to specify
performance properties. In practical systems , of course, such properties are of paramount
importance. Since we now have no formal way of specifying them, we must give a small peek
Into the representation in order to explain the significance of m. (Indeed, the need to have m
and the hash function name in the specifications has essentially revealed the techniques used
in the implementation of the abstraction. ) The representation uses a hash table, with collisions
resolved by chaining, and m specifies the size of this table, i.e., the number of values that the
hash function may assume. Although any positive value of m will work, larger values will tend
to provide faster searches at the expense of some additional storage.

In addition, the value of m may affect the distribution of “hits” on any particular hash
table entry; see (Knuth73) for a discussion of hashing functions and their properties. We will
not discuss these properties here, but note that the 

~~~ 
T which defines the things stored in

the symbol table Is required to provIde a hashing function which, given an object of type T
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and an integer K, returns an integer in the range 0 to k-i. Thus, an appropriate choice of m
depends in part on the properties of this function.

Implementation of Symbol Table

In choosing the implementation of the symbol table abstraction, we have been careful to
pick a practical one; it is, in fact , one which is used in several commercial compilers. We chose
to do this rather than, for example, to use a direct implementation in terms of sets (e.g., the
sunpLeset f~~ defined in [Shaw76b]). We have done this in order to emphasize that both the
language and ver;fication methodology are intended to be used for practical, production quality
systems. The more direct implementation, and also its proof , would have been straightforward
and clear. However , it would not have been a production quality implementation and thus
would not have been useful in a real system. We shall comment on this point further in the
conclusion, but we feel strongly that language, methodology, and verification ~wst respond to
the requirements of practical, efficient systems.

We shall obtain the implementation in two steps. We shall define an intermediate
abstraction (f~~!) in the process of obtaining the complete implementation. This Intermediate
abstraction will support a restricted, but not uncommon, style of list -processing.

Now, whenever a system implementation is described, one Is faced with a presentation
problem: whether the description should be “top-down” or “bottom-up”. Both have
advantages. In this case we have chosen to make the presentation predominantly top-down --
primarily to emphasize that the implementation of lower level abstractions is irrelevant to the
correctness of the higher level ones. The next paragraph, however, is an exception to the
predominant flavor of the presentation; it describes the implementation of the symbol table in
low—level terms, as it will exist after compilation of the fern,... It is included for those of us
(Including the authors) who still need concrete representations to aid their reasoning; purists
may simply skip the next paragraph.

The symbol table will be implemented as a hash table with explicit entries for the
symbol and its declaration block level, but an implicit encoding of the integer mapping. Hash
collisions are resolved by associating a linked list of symbol table entries with each value of
th, hash function. Each new entry is inserted at the head of the appropriate list. The entries
on the lists are therefore ordered by block level (innermost block first). To find the Innermost
Instance of a symbol, Lookup need only perform a linear search of the list associated with the
hash value of the symbol; the first instance of the symbol In the list is necessarily the one
declared at the innermost block level. It is a simple matter for laas’.biock to delete the proper
entries from the heads of these lists.

Tb. Implementation of symtab presumes the existence of a f~~ called “condis ”
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(ç~ollection ~f flamed, disjoint ~nteger ~equences). The explanation of the sy,ntab
implementation will require that we first understand (i.e., specify) condis. Although condis is
intended to support a group of linear lists , its abstract specification is stated In terms of more
mathematically tractable entities, namely sets and sequences.2 The verification of symtab wilt
use the abstract specification from condis but nothing else. The verification of condis will be
independent of symtab and its verification. The soecifications part of condia is:

f.Q~j~ condis(n,m:integer) —

beginfor m
specifications

requires n~i A m~1;
~j. condis — L:(sq1:<e,j,e~2, ... , em.> I 0~i~m-1 A Cik is integer);
invariant l�e

~k�n A Vi ,j C [O..m-I)(eIk ~~jk2 ~ —
~ 

A

Initially Y~ ro..m-11 sq~ — <>; 
I

functions
xtnd(s :condis,i:integer) returns j :integer

p~~ i ( (0..m-1] A SIGMA~((o rn-i) length(s.sq~)<n,
p
~~
j  s.sq~ — Cj>...s.sq1’, ! note j is a new value not in any sq (by ‘.~del(s:condis, i,j:integer)

Q!~. s.sq1 — < . .. , j, . . .  A i [O..m-i)
P9.~t 

s.sq~ — (i, >~

delall(s:condic,i:intege-)
Q~~ I C (0..m-i]
P2!t s.sq1 —

fut$(s:condis) returns t:boolean
QQ~1 t — SIGMA I((o..m ..l] length(s.sq1) —

e.enerator indis(s:condis,i:integer) extends x:Integer
requires OSi�m- I

~~ indis — s.sq1 where indis,~c> ~
(india — c’.<x> d ~~ c, <x~, and d are disjoint);

~ui~ ~~~ x, <s,i>, ST) —

premise s.sq~—c~<x>~d A 1(c) (SI) I(c~<x>)
r.itL~ f~~j (P, x, <s,i>, f , S i, S2. Q) —

Dremise s.sq~ c w<x>Ad A P A Yy C c(~~(y)) A ~(x) {S 1) Q,
Bremise P A Vy s.sqj’~i(y) tS2) Qi

auxilIary oredicates
foltows(s:condis,i,j:integ .r) ‘df 3k at sq

~ — . . ., I,. . ., j,.. .
mbr(s:coridls,i,j:ir~teger) u

~~ 
sq1 • < . . ., j , . . .

A condis is abstractl y described as a set of precisely m sequences of Integers; these

2 Definitions and properties of sets appear in (Halmos60] and those of sequences In
(Wulf7$a,b)
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sequences are named sq0 through 
~~~~ 

The abstract invariant asserts that: (1) each integer
in any of the sequences lies in the range 1 to n and (2) a particular integer appears as a
sequence element at most once in the entire set of sequences . From these two facts we can
observe that the sum of the lengths of the sequences is at most n; moreover , in the case that
this sum is n, each of the integers 1 through n will appear (precisely once) in one of the
sequences.

As a practical matter , each of the sequences in the condis will represent a linear list;
specifically, sq1 will be associated with the value i produced by the hash function. The

sequence elements will be the (integer) indices into a vector of information within symtab; thus
the sequence sq1 (and the corresponding entries in the vector of information) will represent
the linear list of triples in the abstract “assoc ” set of symtab which have the hash function
value .

Four functions and a generator are provided by the condis ~~~ Function xtnd extends
the head of a specified sequence by one element; the abstract invariant prevents this integer
from being one which already appears in some sequence. Function dcl permits the initial
elements of a specified sequence to be deleted, and function delriJ. 1 permits all the elements of
a specified sequence to be deleted. Function fuU tests whether all of the integers already are
in sonic sequence. Generator india produces the elements of a specified sequence in order ,
starting with the head. The specification of condis also gives two auxiliary predicates (follows
and nzbr) . These may be used in proofs, but are not actually implemented as executable
functions; they should be viewed as an extension to the abstract vocabulary.

At first sight , the condis abstraction may seem unusual; however , we chose to define it
in this way for two reasons:

- By using integers to denote elements, we can obtain an efficient encoding of the
unique integer mapping required by symtab. This encoding is one which
might be selected in actual practice.

- This definition allows us to skirt the issue of pointers (references) for purposes
of this paper.3

Now we can present the complete definition of the symtab 
~~~

As most people who have followed the recent literature on programming methodology
and verification are aware , the presence of references (unconstrained pointers) in a
programming language interferes with our ability to understand and verif y programs that use
them. White we believe we have made significant progress in Aiphard toward resolving the
problems introduced by the unconstrained pointer, we will not complicate this paper with
pointer issues. 
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tQ.~
j
~ symtab(T :form< ‘-,—,hash(T,k:integer) returns x:integer ore (k>0) ~~j  (O�x<K’) ).,

m,n:integer) —

be&inform
specifications

requires n?1 A m?1;
~ j syintab — <block:integer , assoc:{<s:T,bl:integer,ui:integer>)>;
invariant

cardinality(assoc)~n
A I�ui~n A 1~bl~block
A (t 1,t~ ( assoc D (t 1.s—t 2.s A t 1.bl—t 2.bl • t 1.ui—t 2.ui));

initially symtab —

fjj nctions
defined(st :symtab,str:T) returns t:boolean

~~ j  t — 3i a <str ,st.block~,i’ ( st.assoc ,
insert(st:sytntab ,str:T) returns i:integer

p.r.~ cardinality(st .assoc) < n A -defined(st ,str)
~~~ st — <st.block’, st.assoc ’ u {<str ,st.block’,i>)>,

lookup(st;symtab,str:T) returns x:integer
pQ~j~ if. 3 y ( st.assoc a [y.s—str A Yz ( st.assoc, z.s—str D z.bl S y.bl)

then x — y.ui
x - 0,

enterblock(st:sy,ntab)
p~~j  st — <st.block’+I,st.assoc ’>,

ieavebloch(st :syfntab)

~~ st.bloc k > 1
~~ j  st — <st.block’— l , st.assoc’ - (<s ,x,ui> St x�st.blocI~’)>,full(st:symtab) returns t:boolean

~~~ 
I — (cardinality(st.assoc) —

representation
unique

btvl: integer ,
info: vector(record(s:T,b):integer),1,n),
as: condis(n,m)

nt blvl .- 1;

~(as ,info,blvl) — <blvl, (<info[iJ.s,info(i].bl,i> 3 C (O..m—1] at mbr(as,j ,i))>;
Invariant

(mbr(as,i,j) ~ hash(info[jJ.s,m) — i)
A (fo llows(as ,i,j) ~ blvl � info[i).bl 2 info[jj bl � I A (info[i)—info[j] ~ I—)))

imoleme ntpf ion

~~~~ defined 
~~ 

(t • 3j a st.info[j ]ircst,,st.blvl> A mbr(st.as,hash(s tr,m),j)) —
f~~j j:indis(st.as,hash(str,rn)) suchthpt st.info[j).~—str

th~~ t ~
- st.info(j).bl—~t.blvl ~~~ 1 .- false;
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~Q~1 
insert in —fu ll(st.as) A -defined(st,str)

~~ (st .info[i]—<str ,st.blvl> A sqhash(str,m) — <i> sq~ 55~ 5~r~~)) —

begin
i 4- xtnd(st.as ,hash(str ,m));

st.info(i] <str ,st .blvl>;

~~~~ 
lookup ~~j (x—O ~ 

(j ( (i..n) A 3i ( (0..m-1)(rnbr(st.as,i,j )) ~ st.info[j).s ,‘ sIr)) A

(x>0 ~ st.inlo(x ls—str n (st.info[j ].s—str ~ j — x v st.info(x].bl > st.info[jJ.bl)) —

fj~ j~ j :indis(st.as,hash(str ,m)) suchthat st.info(j ].s—str
th~ii x ~ j else x 4- 0;

~~~~ 
enterblock out (st.blvl — st.blvl’ + 1) —

st.blvl i— st .blvl+1;

~~~~ 
leavebloc k in st.blvl > 1

QMt (st.blvl — st.blvl’ — 1 A (j (1..n] A i C (0..m—1] ~
(mbr(st.as,i,j) • mbr(st.as’,i,j) A st.info(j).bl < st.blvl’))) —

begin
st .blvt .- st.blvl-1;
f ~~ I: upto(0,m-1) ~~ 1 the generator upto is defined in (Shaw76b)

!iL~t 
j: indis(st.as,i) suchthat st.into(jlbl ~ st.blvl

~~~~~ del(st.as,i,j) ~
j
~
j  delall(st.as,i)

~~~~ 
full 2M1 (t — SIGMAj E(O..m..IJ length(s.sq~) — n) —

t .- full(st.as)
endform

Note that the representation of a symtab consists of three objects: (1) blw4 an integer,
is a direct representation of the abstract entity block, and is initialized to 1. (2) usfo Is a
vector of records which hold the “thing” (usually a string) and the block level it which It was
declared. Each of these records is, in effect , one of the triples in the abstract “assoc ” set; the
third element of the triple, the unique integer, is not explicitly represented -- rather , It is
implicitly encoded as the index of this record in the vector. (3) as is a condls, and as
explained above, it represents a set of lists of indices into this vector of records; each such
list Ii uniquely associated with a hash function value.

A point which may not be obvious is worth noting. It is rare that all Info entries will be
in use; we thus have a potential problem In maintaining the free storage of this vector. This
problem is handled by the condis abstraction. The uniqueness of the integers In condis
sequences guarantees that no info entry will be used simultaneously by different m mbs, a of
assoc. In essence, the integer values which are in the condis sequences correspond to
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occupied entries , and all other integers in the range 1 to n correspond to unoccupied, or free,
entries. Specificall y, the abstract invariant of condis and the ~~ j  condition of xtnd together
provide a safe allocation of new info entries. Similarly, dcl and delaLL provide a safe
deallocation mechanism.

To illustrate the operation of the implementation, consider the Interaction of the bodies
of in.sert and Lookup. When a new symbol is to~ be inserted, we first invoke the condis
operation xtnd. This has the effect of extending the head ct the sequence associated with the
hash value of the symbol by a new, unique, integer. This integer is then used as the index
into the vector info and the symbol and current block level are recorded in this entry. When
a later Iookup is performed on this symbol, the indLs generator is used to find the first
integer , ;, in the sequence associated with the hash value of the symbol for which “lnfo(j).s”
matches. Since ztnd extends the sequence at its head, this match Is necessarily the most
recently declared instance of the symbol.

Verification of the form Symtab

A form is verified by proving four properties as described in [Wu lf76e,b] and
summarized in Appendix A. As promised earlier , the verification below uses only the abstract
specification of the 

~2!~ 
condis, including the auxiliary predicates. The implementation of

condis is, as desired, irrelevant to symtab. All uses of the generator indis satisfy the
independence assumption provided that in leaveblock we regard both the tb~~ 

and 
~~~clauses as being outside the fjj~j  generator .4

For the fornz

1. Representation validity
Show: l~(as,info,t~lvl) ~ l~(rep(as,tnfo,blvl))
Proof: cardinatity(sssoc) S n follows from t a for condis , namely , lSe ikSn

and no duplicate Cik’s means at most n elements in assoc . The relat ion
1~ui�n holds because of mbr in the ~~ function and l�e,kSn In a for
condis. The relation iSbIsbIock follows by setting j— i In follows(as,l,j)
in 1€~ To show uniqueness in assoc , first note that identical a and

~ Strictly speaking, this violates the definition of the fj~ j  statement In (Shaw76b ), a
definition which we must modify to permit, for example, finalization statements and the
leaveblock usage. We must also weaken the independence assumption. With the strict
interpretation, however, an ad hoc argument shows that there are no problems in this case
because Indis does not modif y the generated sequence and no further gener ation Is attempted
after the tb~n and 

~~~ 
clauses .
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identical bi means, letting hash(t1 .s,m) — hash(t2.s ,m) — k, that
mbr(as ,k,tl.ui) and mbr(as,k,t2.ui), whence we have either
fo ltows(as ,f1 .ui,t2.ui) or fottows(as ,t2.ui,t l .uu). In either case, since
info[t I.ui)—info[t2 .ui), then tl.ui — t2.ui as required. The converse of
the uniqueness clause holds since ‘a for condis means no duplicates.

2. Initialization
Show: n�1 A m�1 { blvl~ 1 ) <1 ,(}> — ~~ (as ,info ,blvl) A

Proof: This holds since initial!y of condis says each sq1—<>, i.e., -‘mbr(as,j,i)
and -follows(as,i,,). Note that n21 A m�i permits the declaration
as:condis.

For the func tion defined

3. Concrete operation
Show: 1~ { fi rst j:indis (st.as,hash(str ,m)) suchthat st.into(j ].s—str

~~~ t 
4- st.info [j).hl—st .blvl else t~ false l%Lj~ 

A

Proof: I~ holds since it is unchanged. Indis may be called since
OShash(str ,m)<m. By the first term of 1

~ 
str can only be located from

~~~~~~~~~~ For the then clause, the second term of I~ gives 
~out~(Note that mbr(sl .as hash(str,m),j) holds by the definition of indis.) For

the 
~~~ 

clause str was not located from ~~~~~~~~~ 
whence t is

false as required.
4a. holds -

is true
4b. /

~post holds
Show: 1~ A 

‘
gout ~ t — 3i st ~str ,st.block’,i> C st.assoc

Proof: If t is true in 1~out’ then <st.infolj ].s, si.info(j).bl,j> — <str ,st.block’,i>
C st.assoc , i.e., choose i to be j. If I is false In ‘

gout’ there will be no I
and t is false as required.

For the function in.sert

3. Concrete operation
Show: /~~ 

A 1 { i.-xtnd(st.as,hash(str ,m)); st.info(i)-<str ,st.blvl> } ~~~ A

Proof: The p~ç~ of xtnd holds because hash(str ,m) ( [O..m-1J and because
—full(st.as) means cardinality(st.assoc) < n whence the SIGMA term < n.
The first term of 

~out is clear , Since the hash(str ,m)th sequence of as
is extended, ~~~~~~~~~ — (I sq’~15p~~t,. m) where I is the
appended new element. The first term of IC Iol(ows by the call to
xtnd and st.info(ijs—str; the second term of l~ follows by I

~ 
and

—defined(st,str), i.e., str is not defined at the current block.
4a. 

~ in holds
Show: I~ A cardlnality(st.assoc ).cn A —defined(st,str) 

~ ‘
sin

Proof: cardinality(st.sssoc) < n means —full(st.aa).
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4b. #C?post hOlds
Show: I

~ 
A /1pro A /~out ~ 

/tpost
Proof: The new triple <st.infoLij.s,st.info[iJ.bl,i> Is added to st.assoc.

For the function Zoo/c up

3. Concrete operation
Show: 1 { first j:indis(st.as,hash(str ,m)) suchthat st.info(j ).s—str

then x~-j ~~~ x~O 
~out A

Proof: I~ is unchanged. As in the operation defined, str can only be
located from s

~hash(sfr ,rn). By indis , j ( 11..nl Hence only the eii#
clause makes x—O and, as required in this case , j C (1..n] A 3i C

(O..m—1~ mbr(st.as ,i,j )) ~ st.info(j).s,’str. For the ~~~ clause, the first
term after x>O holds by the suththat clause. For the second term
after x’O, suppose j~x. Using the second term of I~ (note that
follows(st .as,x,j) holds) rules out the possibilIty that
st.info[x].bl—st.info[j ].bl since otherwise j—x. Hence st.info[x].bl >

st.info(jJ.bl.
4a. ,

~~~ 
holds

‘
gin Is true

4b. ‘3post holds
Show: I

~ ‘~ 11ou1 ~ ~post
Proof: x—O means -‘3y at y.s.str. x)O means x — y.uI, i.e., y —

<st.lnfo(j).s,st.info(j].bl,j’.

For th. function eneerblock

3. Concrete operation
Show: I~ ( st.blvl ~- st.blvl+1 ) 

~~~ 
A IC

Proof: gout is clear. Since st .blvl increases, 1c still holds.
4a. ,

~~
,, holds

A~ 
is true

4b. 1post holds
Show: I

~ 
A 
‘
gout ~ f~post

Proof: st.block — st.blvl • st.blvl’+l — st .bloc li’+l and st..ssoc — st .asso c’.

For the function i.av.biock

3. Concrete operation
Show: ‘GIn A 1~ { body } ‘~out “IC
Proof: st.blvl — st.blvl’-l is clear. By the 

~~ statement each sq1 for I C
(O..m-1) Is adjusted by the f~

jj statement. For each of m dii, del, and
delall, we have the ore condition I ( (O..m-1J by the f~ stat•m.nt.
The other part of ~~ j  of del, mbr(st.as,lJ), holds by m dii. In the j~~g~
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case , del(st.as,i,j) deletes all entries in sq1 up to but not including j.
Because j is the first j with st.info[jJ.blsst.blvl<st.blvl’, the block level
ordering asserted by ‘c ensures /~out~ 

In the 
~~~
j  case all

st.info[jJ.hl>st.blvl whence sq1 should become ‘C’, which delall does.
11out follows since st .info[jJ.bl<st.blvl’ • —mbr(st .as ,i,p) . In both the then
and else cases , 1~ still holds because the lists only get shorter and
st.blvl>1 on entry.

4a. 
~ in holds

Show: 1~ A st.bloc k ‘1 ~ st.blvl>1
Proof: In the reo function, st .bloc k and st.blvl correspond.

4b. f
~post holds

Show: Ir. “~~pre “1out ~ ~post
Proof: Since st.blvl—st.blvl’-t , we have st .block—st.block’-l as required. By

i?out and the rep function, st.assoc—st .assoc ’ - (<s,x ,ui> at x~st.block’).

For th. function fuLl

3. Concrete operation
Show: I~ ( t~ full(st.as) I ~out “
Proof: 

~out is exactly the ppst condition of full in condis. I~ is unchanged.
4a. 

~~~~~ 
holds

is true
4b. 

~post holds
Show: ‘c ~ 1~out D ‘Sost
Proof: t — (SIGMA

J C ~o..~-ij length(s.sq~) — n) — (cardinality(st.assoc ) — n).
QEO

Implementation of the ~~~ Condis

As discussed earlier, the abstract representation of condis is a set of precisely m

~equences of integers. The integers in these sequences are all in the range 1 to n, and a
particular integer appears at most once in some sequence.

As one might expect , the sequences will be represented by singly linked lists. In fact
we shall use an integer vector , It (for link-table), to store all of the lists which represent
sequences in a condis. The fact that an index i into It is in the kth position of such a list will
represent the fact that i appears in the kt

~’ position of the corresponding abstract sequence.
A separate vector , sq, of length m, is used for the heads of the lists. In all cases, zero, which
is not a legal condic sequence element, is used to indicate the end of a list; thus, In particular ,
If sq(j)irO, the Jth condis sequence Is empty.5 A separate list of those Integers which are not
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currently members of any sequence is also maintained, and the Mad of this list is maintained
in the simple variable free. The following diagram illustrates one possIble configuration of a
condis object which has been declared with m—3 and n—tO:

7 i~~~
J
~

free [ _____ _ _ _ _  

)
10 

_ _ _ _ _ _

The full condis f~ j~ is given below,

~~~~~ condio(n,m:integer) —

beg,infGr m
specifications

requires n?1 A m?l;

~j  condis — L:(sq1:’C 11,e12, ... ) Osi~m-1 A eIk is integer);
invarian.t 1

~~Ik~~ 
“Vi ,) (O..m-I)(e1k1—eIk2 ~ A k 1 k2)

initially VI C [O..m-1) sq, — a;

functions
xtnd(s:condis,i :integer) returns j :integer

ore i ( (O..m-1) A SlGMAjq0~~~j 3 length(s.sqj )<n~
pQ~j  s.sq~ — <j”~s.sq11, I note is a new value not in any sq (by 1~)

del(s:condis, i,j :integer)
p
~~ 

s.sq , — ‘C . .. , j, ... > A  i((O..m-1J
QQ~j  s.sq 1 — <j , ...

detatl(s:condis,i :integer )

~~~ ~ [O..m-13
QQ!t s.sq1 — ‘C>,

fu ll(s:cond is) ret urns t: bool ean

~2g t — SlGMA~~ o rn-i) length(s.sq1) —

5 We can now explai n wh y the function delal I is not redundant. The knowledge that
zero ends a list is private to condis, and therefore il ls not known In sy,ntab . H nce, In the

body of leaveb lock of symtab , the operation delall(as,I)” cannot be replaced by “d el(.s,l,O)~.
To do so would v iolate the ore condition of del because If j Is a membe r of sq1 It means J~1. 



ALPHARO: A Symbol Table Example Page 17

generator indis(s:condis,i:integer) extends x:integer
requires OSi~m-1
~~ indis — s.sq1 where indis,”> ~

(indis — c’...’cx>—d and C, ‘Cx>, and d are disjoint);

~~ fo r (J , x , <s ,i>, ST)
premise s.sq~ c~’<x>~d A 1(c) (ST) i(c~<x’);

~~~~ ~j~~t(P, x, <s,i>, /1, S 1, S2, 0) —

premise s.sq~ c’~<x>~.d A P A Vy ( c(~.f~(y)) A ~t~(x) IS 1) 0~premise P A Vy ( s.sq~f3(y) (
~2} 0;

auxiliary predicates
follows(s:condis,i,i:integer) •df 3~ at sq~ — ‘C . . ., I, . . ., j, . . .
mbr(s:condis,i,j:integer) ‘dl sq1 • ‘C • ~, 

j, . . . >;

cepresentatign
unique

sq: vector(integer ,O,m- 1),
It: vector(integer,1 ,n),
free: integer
ir~i~ begin tree 4- 1; 

~~ 
i:upto( t,n-1) ~~ 11(i) ~ i+i; It[n) ~ 0;

~~ i:upto(O,m-1) ~~ sq(i) ~
- 0 ~~~~~

~~~(sq,lt ,free) — (SQ1 I 0~iSm-1) where

~i 
sq(i) — 0 thQii SQ~ -

jf. sq(i) — p1 A (Yj ( (1..k-1) lt(~~)i..p1+1) A lt[p~].O thin SQ1 — <
~i’~~ • ,~k>

invariant
O~ free S n
A V J  C (0..m-1)O�sq[j]sn
A Yk C [i..n) O S lt[k) � n
A (free, sq(j), lt(k]} • (m+1 0’s, 1, 2, ... , n) I this term Is a multiset equalIty
A VI C (1..n](succ(free,i) xor 3ij (succ(sq(j~i)))

where succ(i,j) ‘dl i—j v (i,’0 co~sd succ(lt(i),j))

ijy~plomentatipn

~2~i 
xtnd th s.fr ee,’O A I ( (0..m-1)

QMI (succ(s.free’,j) A succ(s.sq(I~j ) A s.sq(;3—j A s.lt(j) — s.sq’[i) ) —

begin
j ~ s lice; s .frø• ~ s.lt[j~..It(j) ~ s.sq(l~ s.sq(i) ~-

end:
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~~~~ 
del in succ(s.sq(ij ,j ) ~~ i ( (O..m-1) A j C (0..n] ~yj (s.sq(i ).j ) —

if s.sq~i),~j then
begin ~ ç~j h:integer;
Ic .-. s.sq[iJ
while s.lt(lc] ,‘ j do Ic ~ s.lt[k)
s.It[lc ] .- s.free; s.free ~

- s.sq[i] s.sq(i] ‘-
end•.

~~~~ 
delall in i ( (O..m-1] out (s.sq(i]—O) —

s.del(s,i,0); ! a call to the concrete body del, not the abstract function del

~~~~ full out (t — (s.free—O)) —
t s.f ree—O;

fprmbody indus —
beginfor m
representation

~.j~(s.sq,s.lt ,i,x) —

~j  s.sq[i] — 0 then ‘C> else
if x — 0 

~flçjj c~’d where c — ~~~ and d — ‘C> !i~i 
c.wCx>...d

where c — <p1,.. ., Pr_j >, x—p~, d — <Pr+1~.. .,
— s.sq~iJ, S.lt[Pk] — 0, and (Yj ( t 1..k-1) s.l t [~~1 —

invariant true;
implementation

~~~~ 
&init ~~~~ (x—s.sq[i] A (&b ‘ s.sq[i),d0)) —

(x ~- s.sq[i~ &b

~~~~ &next ~~ succ(s.sq(i),x) A x,~0 ~~~ (x—s.lt(x ’] A (&b ’ s.lt(x ’],’O)) —
(x s.lt(x] &b ~-

endfor m

endlorm

The implementation of the four operations in condls should be fairly obvious. xtnd
merely removes an entry from the free list and places it at the head of the appropriate list;
note that this entry is returned (in j ) as the value of function xtnd. del I. a bit more
Interesting. It searches the appropriate list for the entry In It which points to the fIrst entry,
j, which is not to be removed. It then moves the entire initial portion of the list to the free
space list by simpl y setting the proper pointers. If all the entries are to be removed, d.laJL
dois this; It calls del to search for the list-ending zero and to move the entire lIst to the fr ee
space lis t , full just tests I? the free space list Is empty.
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The predicate succ defined in the concrete invariant is closely related to the abstract
predicate folLows. Although the parameterizations of the two pred icates are d ifferent , they
ask the TMsame ’ question and are related by

fo llows(rep(sq,It ,fr ,e), I, j ) — succ(i, j)

The form indis(s,I) defines a generator for elements of the integer sequence s~, starting
with fir st (s ,). Abstractly, an indis is composed ot three (sub)sequences, the first containin g the
elements already generated, the second the (singleton ) current element , and the third the
other elements yet to be seen.

In (Shaw76b] we discussed the proof rules for iteration statements. We showed that
certain simplif ying assumptions about the generator can yield simple proof rules; these
assumptions are satisfied by indis, as we will show in the verification of condis. We therefore
have a proof rule for the !~~ 

statement which corresponds closely to Hoare’s sequence rule
and also a proof rule for the ~j~ j  statement. These proof rules are given In the soeclflc.tions
of indis, and indeed constitute the major part of those specif ications. The basis for this
specification technique for generators is given in (Shaw76b).

Verification of Condis

We can now verify the ~~~ condis.

For the ferns

1. Representation validity
Show: I~(sq,It ,free ) ~ I~(rep(sq ,lt ,f ice))
Proof: l�e,kSn holds by the bounds on sq(j] and lt(k) and the fact that the

reo function drops the zeroes that indicate the end of a list. The eIk’s
are distinct because the multiset (sq(j ), lt(k]) contains each of 1, 2,
n at most once. The muitiset property of I~ Implies succ(fre.,0) and
succ (sq(j]0).

2. InitialIzatIon
Show: n�1 A m~1 (

~~~I) 
Vi (0..m-1) sq1—’C> A

Proof: After m u  we have free—i , lt[1)—2, ... , lt[n-1)—n, lt(n)—O, sq(0)—O,
sq(m-1)—O. UsIng the ~~ function , each sq1—’C> since each ~.q(I)—O.
n�1 means Osfre.�n. The bounds on sqU] and lt(k] and the mult iset
property are clear. VI C (1..n](succ(fre.,I) A “succ(O,i)).
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For the function a tnd

3. Concrete operation
Show: s.f ree ,’O A i ( [O..m-!] A 

~ 
{ body } 

~out A
Proof: The four terms of 

~out are clear as are the bounds in I~. The
multiset property holds because the body permutes the val ues s .free ’,
s.sq’(i), and s.It ’[s.free’). Since the + ead of s.free moves to the head of
s.sq(i], each i c [1.,nJ still satisfies exactly one succ term. 

~~~~ 
(and 

~~ensures that the accesses to sit and s.sq are within bounds.
4a. /3~ holds

Show: l
~ 

A 1
~pre ~ ~in

Proof: i ( [0..m-IJ us immediate. If s.free—O, then the multiset property of
1~ means, using the ~~ function, that the SIGMA term is exactly ii , a
contradiction. Hence s.free,’O.

4b. i?post holds
Show: I

~ 
A 

~out A 
‘~pre ~Proof: Since s.sqli)a, and s.lt[j )—s.sq’[i], the rep function gives sq~.’Cj> .sq1’.

For the function dcl

3. Concrete operation
Show: 1’~in A 1~ ( body J s.sq(i]—j A
Proof: If s.sq[iJ—j then 

~out holds and ‘c is unchanged. if s.sq1ij,’j thsn
define the set — ( x succ(s.sq[i),x) A succ(x ,p)). Add the ghost
operation “ff~H u (Ic)” after “k.-s.lt[kJ” in the j~~ loop and add
“H4-(k)~’ after ivu-s.sq[i~ . A ~~~~-loop invarian t (placed b fore the
test) is then H—G,~ because 

~~sq(i] — (s.~q[iJJ and

H
~Gk A s.tt(k),’j ‘ H U (s .ft[k] } —

The 
~~~~ termin ates because suc c(s.sq(i ] ,j) and s.sq[i],~j . At

termination s.l t( k)—3 and H—G,,~. The multiset property of 1~ ho’ds
because the last thre e statements in the body permute the values
s lice’, s.sq~i], and s.It ’(k]. Furtherm ore , each element in H is now a
successor of s lice rather than of s.sq(iJ All other successors of
s.sq(i ) and all previous successors of s lice remain so, respective ly .
1
~out and the bounds in I~ are clear.

4. A~ holds
Show: I

~ 
A 

~
tpre ‘s in

Proof: Immediate from and I
~ 

for condis.
4b. 

~post hOlds
Show: L, A 

~~~ ~~~~~~ 
‘sq ~-< i, . . . >

Proof: Only sq, changes. sq 1 now begins with j and there are no other
changes to sq1. 

~- ~-
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For the function delalL

3. Concrete operation
Show: /~~ 

A I~ { s.del(s,i,0) ) s.sq[i)—O A

Proof: / in and the multiset property of IC Imply in holds for s.del.
holds for s.del as required.) The ~~ for s.del gives s.sq[i)—O. I~
after s.del gives IC after delall.

4a. /~~ holds
Show: i [0..m-1]~ I ( [0..m-1)
Proof: Immediate

4b. 
~post holds

Show: I
~ 

A i ( (0..m-1) A s.sq(i]—O ~ sq~”<>
Proof: Only sq1 changes. s.sq(i]—0 means sq1—<>.

For the J~inction JuU

3. Concrete operation
Show: I~ ( t~s.free—0 ) t — (s. free —0) A

Proof: Immediate
4a. /~~ holds

~in is true
4b. 1post holds

Show: I
~ 

A gout ~ 
/tpost

Proof: t — (s.free—0) — (SIGMA. .. — n) using the multiset property of IC.

To verif y the Indis generator, we must first reconstruct the ~~j  and ~9~j  conditions
from the sp ecified pr oof rules:

&init
gQIj (&b • s.sq1p~<>) A (&b ’ x — I irst(s.sq~) A c — ‘C>)

&next
p.~~ 

mbr(s,i,w )
2211 (Sib ‘ d’,’<>) A (Sib ~ x — first(d’) A c — c’~cx’>)

Next, we must show that indis satisfies the standard aggregat. assumptions:

(a) The India abstraction is explicated in terms of sequences. The normal empty
sequence (‘C>), concatenation operator ( ‘), and leading element selector
(first) are available.

(b) The complete sequence to be generated Is s.sq1, which can be decomposed as
indicated in the ~gj clause of Indis.
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(c) The specifications of &init and &next have the required form.

Furthermore, indis satisfies the basic generator assumptions because (a) &Init and &next
terminate and (b) &init and &next alter only the indis variable x (and the return value Sib).

Since “sq, “1t , and fr ee are unchanged by indis, the I~ of condis still holds and will be
used in the proof.

For the 
~~~ 

(end is)

1. Representation validity
Show: ‘C ~ 

1~’ i.e., true ~ true
Proof: Immediate

2. Initialization
Show: 0~i~m-1 ( ) true A true
Proof: Immediate

For the function &iiut

3. Concrete operation
Show: true ( x.-s.sq(i~ &b~-x#0 ) x—s.sq(i] A (Sib e s.sq(i],’0)
Proof: Clear

~~ holds

~~ is true
4b. ‘Sost holds

Show: x—s.sq(i) A (Sib • s.sq(i),’0) ~
(Sib • s.sq1,’<>) A (Sib ~ x — first(s.sq~) A c — ‘C>)

Proof: From the reo function for india, s.sq~ — (~ s.sqli}”O tj~~ ‘C>

some non-empty sequence). Hence Sib • s.sq(i~~0 • s.sq1,K>. For the
second term of the conclusion, assume Sib. Then x—s.sq(i)’0 and the
I inal clause of reo give s s.sq~ — c w’Cx>’~d. Since x—s.sq(I]—pj , then C —

‘C> whence also x — f irst (s .sq 1).

For the function &n xt

3. Concrete operation
Similar to &init.3

~~ An holds
Show: mbr(s,i,x ) ~ succ(s.sq(i],x) A xj’0
Proof: mbr(s,i,x) means x,’0 by I~ for condis. The term succ(s.sqIj],x )

f ollows from mbr(s ,i,x ), the ~gp. function, and the definition of aucc.
4b. F4ost holds

Show: mbr (s ,i,x ’) A x—s.l t(x ’] A (Sib • s. lt(x ’]i’O) 3
(Sib • d’,K)) A (Sib ~ x — I ir.t(d’) A C — c’AC x ’))

_____________ - -~~ — - - —-~~~- ~~~~~~~~~~~ - -— - - - - - - - -~~~~--
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Proof: mbr(s,i,x ’) means x’øO and s.sq~ ’C>, and therefore by the ~~~~

function also s.sq(iJ~O. Hence in the final clause of the reo function,
Sib • s.lt[x’],’O a d’ø<>. For the second term of the conclusion, assume
Sib. Then x—s.lt [x ’],’O and the final clause of ~~ 

gives s.sq1—c”<x>’~d
and, because x’,’O, also s.sq1_c’w’Cx’>A.<d’>. Since x—s.l t[x ’J, It follows
that x — first (d’) and c — c’”~<x’>.

QED

Examples of the Use of Symtab

In this section we shall present a skeletal examp le which involves three different styles
of usage of the symtab abstraction. It is not our intent either to make this example complete
or to suggest that the utility of the abstraction is limited to these three cases. Rather , we

wish to bolster the reader’s intuition about ways in which the abstraction might be used.

The example we have chosen is a multi-pass compiler for an Algol-lIke (i.e., block-
structured) language, and indeed we have restricted ourselves to the first two passes --
lexical and syntactic analysis, respectively. In this scheme, the first pass Is responsible for
reading units of the source file (identifiers, literals, punctuation marks , etc.) and converting
them to an internal form called a “lexemeTM. These lexemes are written onto a file which will
be read again by the second pass. The second pass is responsible for reading the file of
lexemes generated by the first pass and performing syntactic analysis. Although it Is not
important to our example, the output of the second pass will likely be some other Intermediate
representation (e.g., reverse polish or trees) which is suitable for optimization and code
generation.

Here, then, is the skeletal program; more detailed comments on the uses of the symtab
abstraction, and on the program in general, follow the example.

function compiler (source: fiIe~char))—
begin

!.Qr.in condic

~~.~~symtab.. .;
f~9j~~ id ex tends string—

~çg~~~rm
s~ecific.tions

func tio n hash (s: id, m:integer) returns k:tnteger ~~~j  m>O 221j 0~kcm’l

endfor~~
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form lox extends integer—
begintorm
specificat ions

function hash (x: lex , rn:integer) returns k:integer pzj. m>0 2211 O~kcm ’;

endfori~

local 1: fi le(lex);

~~~~ ! pass 1
local NT: symtab (id, 127, 1000);

pure lexical pass, see discussion below.

end’

begin ! pass 2
fQyJJj attributes — ... ! see discussion below
local A: vector (attributes , 1, 2000);

~~~ ST: symteb (lox, 127, 2000),

syntactic (parse) analysis pass; see discussion below.

ends.

end.

This program first defines four ~~~~ Symtab and condis have been defined in detail
previously and hence are not repeated. The forms Sd and lax are ex ;ensi ons of strings and
integers, respectively, and merely add hashing functions; we have not defIned the
implementations of these functions, since they are not germane to the example. Note too that
a file of Sexes is defined ~t the outermost block level; this file is the explicit interface between
the first and second passes.

As noted earlier, the function of the first pass is to convert the external representation
of the program (a file of characters ) into a more convenient internal form -- namel y a file of
lexenies (where each lexeme represents an atom of the language ). Since this pass doe s no
syntactic analysis, in particular it does not recognize block structure. This Implies that all
occurrences of the same atom (e.g., “xyz ”) will be mapped to the same lexeme. This mapping
is accomp lished through the use of the NT (for name-table) instantiation of symtab; indeed, the
only use of NT is to obtain this unique mapping and the instantiation Is therefore deleted on
exit fr om the block in which the first pass is accomplished.
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In skeletal form , the body of the block for pass 1 might look somewhat as follows:

open(source), open(L)
while -‘end of f ile(source) do
begin

local i:id, x: lex;

do whatever is appropriate to assemble the next atom
from the source tile into “1” .

if (x~-lookup(NT,i))—0 A -full(NT) then x~-insert(NT,i);
write (L,x);

~f l~;rewind(L);

Note that the operations •n.zerbLock and LeavebLoc k are not used, all insert operations
are done at the same bloc k level , and only one entry per atom will be made .

The second pass is substantiall y more complex since it performs the full syntactic
analysis; hence we wil l not even attempt to illustrate its skeleta l form. We would, however ,
Pike to point out several things about it .

First , notice that this block defines a form named attributes. We have not shown the
body of this !.Q~ nI since it will be highly language- and machine-s pecific. However , the notion
is that this form provides for the storage and manipulation of whatever information must be
retaine d about a symbol, e.g., its type , run-time storage address, array bounds, end so forth .

Second, we have dec lared a vector , A , of these attribute objects. As suggested in an
ear lier sect ion, instances declared at a given block level will be associated with a unique
integer , but this integer wi ll be different from the one assoc iated wit h the same identifter
declared at a diffe rent bloc k level. These integers will, in turn, be used as Indices into the
vector A (e .g., to set and retrieve information about the identifier) .

Finally, we have declared another instantiation of symtab ST . This one wi.U be used to
recognize bloc k structure , and, specificall y, will map from the siniple lexemes generated in the
first pass into indices info the vector , A, of attributes. As the parser detects blocks (begin-
ç
~~ 

pairs) in the source program , it will invoke .ntirblock and Seas .block. The declaration
processing routines will invoke defined to determine whether an identifier has been declared
twice at the same block level (presumabl y an error), and perform ens rr operations to define
the instances of the identifier at the current bloc k level. The rest of the compiler will perform
Lookup operations to obtain the index of the attribute vector entry associated with specific
lex ern es. (Note , by the way , that by appropriate ordering of ens.rt and Lookup operations the
declaratio n processor can obtain either of the interpretations of “block-structure” discussed in
the introduction.)
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Before leaving this examp le, let us return to the form attribu tes (defined in pass 2) to
il lustrate another potential use of the symtab abstraction . As was mentioned in the
introduction, in general the mapp ing fr om identif ,er to unique integer may be context-
sensitive. Block structure is the most familiar form of such sensitivity, but another is name
qualificati on, as in field selectors for records. In many languages one makes a declara tion such
as

x:record (name:string, age:integer , z:integer);

and then refers to “x.name~’, “x .age ”, and ‘ x.z ”. A problem arises when, at the same block
level, there is another declaration such as

y:record(ss:integer , z:boolean);

In such a case the identifier “z is no longer unique -- its interpretation depends upon the
name it qualifies.

There are many ways one might tr eat this , including inserting each of “x ’, “x.name ”,
“x .age”, “x .z ”, “y”, ~‘y.ss ’~, and “y.z~’ as complete identifiers in ST . An attractive alternative,
however, is to include instantiations of sytntab in each of the attributes; that is, to make 

~~attributes appear somewhat as follows:

f.~r.rn. attributes—
beginform

representation

unique qual:symtab(lex ,1,10),

endfor m;

If this is done, then to determine the interpretation of “x.z” one would first search ST
for the index, i, associated with the lexeme for “x ”, then search A[ij.qual for the index
associated with the lexeme for “z ”.

Although this comp iler examp le has been sketch y, we hope that it has suggested some
of the ways in which the symtab abstraction may be applied. The details of the example are
not important , except insofar as they help the reader ’s intuition; what is important is the
notion that well-chosen abstractions have many uses. The class of broadly useful abstractions
is simply too large to include them all in a single programming language -- hence Alphard has
chosen to provide a linguistic facility so that the programmer may define them. Many such
(verified) abstractions will find their way into the library, and hence incrementally enhance the
“power ” available to the programmer -- without , at the same time, limiting him to the language
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designer ’s preconceived notions of what constitutes en appropriate set of abstractions (or , for
that matter , ‘mplementat ions) .

Conclusions

A programming language is a tool for the construction and commun ;cation of programs;
as such its utility should be measured relative to these tas Ks. In other words , the language
should be used, and the qualit y of that use must be judged. While this Is true of any
programming language, it is especially so of one such as A lphard , which departs substantially
from those in common use.

Thus , in this and other reports we are attemp ting to exhibit Aiphard ri relativel y
real istic contexts and, along with the reader , to judge the practical util t y of our creation. It is
far too soon to draw definitive conclusions -- that must await the use of Alphard in real
programs -- but we would like to share some of our impressions resulting from these
experiences .

First , the symtab abs~~ ct ,on is about the (conceptual ) size we envision for most
abstract ions~ larger programs will be constructed by further “layering”. Thus we take our
abilit y to specify and verif y this fOrm as fairly strong evidence that larger programs will also
be tractable.

Second, in most respects the implementation is a practica l , efficient one. This reinforces
our intuitions that no efficiency need be sacrificed to obtain clear , verifiable programs. (The
one exception to this statement is our use of fixed -sized vectors and, correspondingly,
integers for the unique identification of symbols. A more realis tic implementation would,
perhaps, have done true dynamic storage allocation and used references . We avoided this
implementation primaril y because it would have carried us into portions of Atphard not
covered in previous reports , but also because those portions of the language are still in flux.
We trust that the reader will forgive this departure from realism .)

Third, one of the anticipated advantages of an Alphard-like language is that a library of
verified abstractions will develop. Both of the forms developed here might well go into that
library so we are getting some evidence that this hoped-for advantage will be realized.

Fourth, one of our private objectives was to make the ~~~ mechanism strong enough to
suppor t an extremel y broad class of abstractions -- the ultimate target being the spectrum
covered by our intuitive notion of the word “abstraction ”. The evidence is not conclusive, but
we are feeling better about meeting that goal all the time.

Finally, we should say a few words about our experience concerning the effort needed
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to define a form. It should be clear that the actual code in a form body, I.e., the
implemen tation part , is roughly the same size as the corresponding code in other languages
(although the f i r st  statement does seem to shorten many of the examp les). Moreover , for
some reason, the information needed for verification (abstract and concrete invaria~!t,~
abstract p~~ arid ~~~ conditions rep func tion, etc.) usuall y seems about equal to the code
size ; thus a full form is about twice the size of the code alone. This does not particularly
c oncern us, since these hinds of spec ifications tend lo rep lace much of the documentation that
would otherwise be needed -- and they are certainl y more precise.

We find the verification of a t2L~
, once the specifications and code have been written,

to be more difficult and time -consuming than coding, but not unreasonably so (say by as much
as a fac tor of two or three). Sometimes it is necessa ry to modif y the specifications , or the
code, during the verification in order to remove inconsistencies that are uncovered. The

verification may also suggest different specifica tions , usually ones that are more constrained
but sometimes simpler ones. In spite of the difficulties , the bodies of functions tend to be
small and their proofs correspondingly small , as can be seen fr om these examples. Moreover,
the proofs of the two forms symtab and condis were independent. To date our proofs have

been manually generated, but we envision having automated , interactive aids in the future.
These should reduce the verification time to approximate ly the coding time. Since this is less
than the time currently spent on debugging, we feel highly encouraged.

The majority of our time goes into designing and specifying the abstraction. There are

two related aspects of this: getting the intuitive abstraction “right , and formalizing it (at least
sufficientl y for it to be verified). The two appear related in that difficul ty in formalizing an
intuitive abstraction often seems to uncover muddy thinking at the intuitive level. While we
seem to be improving our ability to formalize, indicating that it is a learnable skill, we have no
easy rules for picking the right abstraction in the first place. While, with practice, our abilities
in choosing abstractions may also improve, we suspec t that this is a fundamental problem of
design and has a significant aesthetic component.

It is clear that we are just learning to use the power of the tools we are creating and
exploring. Much remains to be discovered about what is possible or impossible, easy or hard,
and reasonable or unreasonable to do with the facilit ies. In this connection we note that en
early version of symtab was a one -level ~~~ used no generator such as indis, and had only
some of the same verification information. Although that version of symtab used the same
implementation ideas, it was essentially incomprehensible. When we realIzed that multIple
ideas were becoming confused, we separated the maintenance of the lists fr om the lookup
algorithms . The result was that the code, the specifications , and the verification all became
much more manageable.
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Appendix A
Informal Description of Verification Methodology

Aiphard’s verification methodology is designed to determine whether a !.2~~ 
will actuall y

behave as promised by its abstract specifications. The methodology depends on explicitly
separating the descri ption of how an object behaves from the code that manipulates the
representation in order to achieve that behavior . It is derived from Hoare ’s technique for
showing correctness of data representations[Hoare72).

The abstract object and its behavior are described in terms of some mathematical
entities natural to the problem domain. Graphs are used in (Shaw76a] to describe binary
trees , sequences are used in [Wulf76a ,b] to describe queues and stacks and in condis to
describe list processing, and so on. We appeal to these abstract types

- in the invariant, which explains that an instantiation of the f

~

j

~ 

may be v iewed
as an object of the abstract type that meets certain restrictions ,

— in the initially clause, where a particular abstract object is displayed, and

- in the ~~ and p~~ conditions for each function, which describe the effect the
function has on an abstract object which satisfies the invariant.

The form contains a parallel set of descriptions of the concrete object and how it
behaves. In many cases this makes the effect of a function much easier to specif y and verif y
than would the abstract description atone .

Now, although it is useful to distinguish between the behavior we want and the data
structures we operate on, we also need to show a relationship that holds between the two.
This is ac hieved with the representation function ~~ (x), which gives • mapping fr om the
concrete representation to the abstract description. The purpose of a 

~~~~ 
verification is to

ensure that the two invariants and the ~g~p(x) relation between them are preserved.

In order to verify a 
~~~ 

we must therefore prove four things. Two relate to the
representation itself and two must be shown for each function. Informally, the four required
steps are 6:

6 We will use I.(rep(x)) to denote the abstract invariant of an object whose concrete
representation is x, I~

(x) to denote the corresponding concrete invariant, italics to refer to
code segments, and the names of specif ication clauses and assertions to refer to those
formulas. In step 4b, r.p(xt))w refers to the value of x befor. execution of the function.
A complete development of the f,Qj,~ . verification methodology appears in (Wu lf76a,b]
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For the

1. Representation validity

~
2. Initialization

reQuires ( t.fl4t clause nitialjy(rep(x)) A L
~
(x)

For each function

3. Concrete operation
in(x) A I

~
(x) { function body ) Q~j (x) A I

~
(x)

4. Relation between abstract and concrete
~~ 1c(

~
) A ~~ (rep(x)) ~ ~ (x)

4b. I
~
(x) A pre(rep(x ’)) A o~j (x) ~ p~ .~(rep(x))

Step 1 shows that any legal state of the concrete representation has a corresponding abstract
object (the converse is deducible from the other steps). Step 2 shows that the initial state
created by the repres entation section is legal. Step 3 is the standard verification formula for
the concrete Operation as a simple program; note that it enforces the preservation of 

~~~ 
Step

4 guarantees (a) that the concrete operation is applicable whenever the abstract p~~ condition
holds and (b) that if the operation is performed, the result corresponds properly to the
abstract spec IfIcat Ions.
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